diff options
author | dos-reis <gdr@axiomatics.org> | 2008-09-18 15:39:03 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2008-09-18 15:39:03 +0000 |
commit | 1b3396b1949f19e057c047fc602aa3b0b5f44d98 (patch) | |
tree | eecef0d8a6ab830e9d3c0d344de48ed2faf4e7fa | |
parent | 4126dc2b32ee818635e57990b3e6f647b9a7dbcb (diff) | |
download | open-axiom-1b3396b1949f19e057c047fc602aa3b0b5f44d98.tar.gz |
Update algebra databases
-rwxr-xr-x | configure | 18 | ||||
-rw-r--r-- | configure.ac | 2 | ||||
-rw-r--r-- | configure.ac.pamphlet | 3 | ||||
-rw-r--r-- | src/boot/ast.boot | 2 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 4090 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6121 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1959 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10172 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32616 |
9 files changed, 28555 insertions, 26428 deletions
@@ -1,6 +1,6 @@ #! /bin/sh # Guess values for system-dependent variables and create Makefiles. -# Generated by GNU Autoconf 2.60 for OpenAxiom 1.3.0-2008-09-17. +# Generated by GNU Autoconf 2.60 for OpenAxiom 1.3.0-2008-09-18. # # Report bugs to <open-axiom-bugs@lists.sf.net>. # @@ -713,8 +713,8 @@ SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='OpenAxiom' PACKAGE_TARNAME='openaxiom' -PACKAGE_VERSION='1.3.0-2008-09-17' -PACKAGE_STRING='OpenAxiom 1.3.0-2008-09-17' +PACKAGE_VERSION='1.3.0-2008-09-18' +PACKAGE_STRING='OpenAxiom 1.3.0-2008-09-18' PACKAGE_BUGREPORT='open-axiom-bugs@lists.sf.net' ac_unique_file="src/Makefile.pamphlet" @@ -1405,7 +1405,7 @@ if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF -\`configure' configures OpenAxiom 1.3.0-2008-09-17 to adapt to many kinds of systems. +\`configure' configures OpenAxiom 1.3.0-2008-09-18 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... @@ -1475,7 +1475,7 @@ fi if test -n "$ac_init_help"; then case $ac_init_help in - short | recursive ) echo "Configuration of OpenAxiom 1.3.0-2008-09-17:";; + short | recursive ) echo "Configuration of OpenAxiom 1.3.0-2008-09-18:";; esac cat <<\_ACEOF @@ -1579,7 +1579,7 @@ fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF -OpenAxiom configure 1.3.0-2008-09-17 +OpenAxiom configure 1.3.0-2008-09-18 generated by GNU Autoconf 2.60 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, @@ -1593,7 +1593,7 @@ cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. -It was created by OpenAxiom $as_me 1.3.0-2008-09-17, which was +It was created by OpenAxiom $as_me 1.3.0-2008-09-18, which was generated by GNU Autoconf 2.60. Invocation command line was $ $0 $@ @@ -26099,7 +26099,7 @@ exec 6>&1 # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" -This file was extended by OpenAxiom $as_me 1.3.0-2008-09-17, which was +This file was extended by OpenAxiom $as_me 1.3.0-2008-09-18, which was generated by GNU Autoconf 2.60. Invocation command line was CONFIG_FILES = $CONFIG_FILES @@ -26148,7 +26148,7 @@ Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF ac_cs_version="\\ -OpenAxiom config.status 1.3.0-2008-09-17 +OpenAxiom config.status 1.3.0-2008-09-18 configured by $0, generated by GNU Autoconf 2.60, with options \\"`echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" diff --git a/configure.ac b/configure.ac index a1535205..1e9ca9ed 100644 --- a/configure.ac +++ b/configure.ac @@ -1,6 +1,6 @@ sinclude(config/open-axiom.m4) sinclude(config/aclocal.m4) -AC_INIT([OpenAxiom], [1.3.0-2008-09-17], +AC_INIT([OpenAxiom], [1.3.0-2008-09-18], [open-axiom-bugs@lists.sf.net]) AC_CONFIG_AUX_DIR(config) diff --git a/configure.ac.pamphlet b/configure.ac.pamphlet index 4bbbf5f4..59f10bbb 100644 --- a/configure.ac.pamphlet +++ b/configure.ac.pamphlet @@ -1051,7 +1051,6 @@ AC_SUBST(int_type) AC_SUBST(float_type) AC_SUBST(double_type) AC_SUBST(string_type) -AC_SUBST(pointer_type) @ @@ -1127,7 +1126,7 @@ information: <<Autoconf init>>= sinclude(config/open-axiom.m4) sinclude(config/aclocal.m4) -AC_INIT([OpenAxiom], [1.3.0-2008-09-17], +AC_INIT([OpenAxiom], [1.3.0-2008-09-18], [open-axiom-bugs@lists.sf.net]) @ diff --git a/src/boot/ast.boot b/src/boot/ast.boot index 15cd2ab8..9bdd3e08 100644 --- a/src/boot/ast.boot +++ b/src/boot/ast.boot @@ -1227,7 +1227,7 @@ nativeType t == null t => t -- for the time being, approximate `data buffer' by `pointer to data' t = "buffer" or t = "pointer" => - %hasFeature KEYWORD::GCL => "fixnum" + %hasFeature KEYWORD::GCL => "FIXNUM" %hasFeature KEYWORD::ECL => KEYWORD::POINTER_-VOID %hasFeature KEYWORD::SBCL => ["*",true] %hasFeature KEYWORD::CLISP => bfColonColon("FFI","C-POINTER") diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index b6f03929..bacff8b9 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2249452 . 3430368522) +(2255888 . 3430739784) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,184 +46,184 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4307 . T) (-4305 . T) (-4304 . T) ((-4312 "*") . T) (-4303 . T) (-4308 . T) (-4302 . T) (-2337 . T)) +((-4324 . T) (-4322 . T) (-4321 . T) ((-4329 "*") . T) (-4320 . T) (-4325 . T) (-4319 . T) (-2409 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -3395) +(-31) +((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|Syntax|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|Syntax|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) +NIL +NIL +(-32 R -1426) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) -(-32 S) +((|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) +(-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4310))) -(-33) +((|HasAttribute| |#1| (QUOTE -4327))) +(-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2337 . T)) +((-2409 . T)) NIL -(-34) +(-35) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) NIL NIL -(-35 |Key| |Entry|) +(-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4310 . T) (-4311 . T) (-2337 . T)) +((-4327 . T) (-4328 . T) (-2409 . T)) NIL -(-36 S R) +(-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) NIL NIL -(-37 R) +(-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4304 . T) (-4305 . T) (-4307 . T)) +((-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-38 UP) +(-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -3395 UP UPUP -2909) +(-40 -1426 UP UPUP -1328) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4303 |has| (-392 |#2|) (-348)) (-4308 |has| (-392 |#2|) (-348)) (-4302 |has| (-392 |#2|) (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-392 |#2|) (QUOTE (-139))) (|HasCategory| (-392 |#2|) (QUOTE (-141))) (|HasCategory| (-392 |#2|) (QUOTE (-335))) (-3850 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (QUOTE (-335)))) (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (QUOTE (-353))) (-3850 (-12 (|HasCategory| (-392 |#2|) (QUOTE (-219))) (|HasCategory| (-392 |#2|) (QUOTE (-348)))) (|HasCategory| (-392 |#2|) (QUOTE (-335)))) (-3850 (-12 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-335))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353))) (-3850 (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 |#2|) (QUOTE (-348)))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-219))) (|HasCategory| (-392 |#2|) (QUOTE (-348))))) -(-40 R -3395) +((-4320 |has| (-399 |#2|) (-355)) (-4325 |has| (-399 |#2|) (-355)) (-4319 |has| (-399 |#2|) (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-399 |#2|) (QUOTE (-143))) (|HasCategory| (-399 |#2|) (QUOTE (-145))) (|HasCategory| (-399 |#2|) (QUOTE (-341))) (-1524 (|HasCategory| (-399 |#2|) (QUOTE (-355))) (|HasCategory| (-399 |#2|) (QUOTE (-341)))) (|HasCategory| (-399 |#2|) (QUOTE (-355))) (|HasCategory| (-399 |#2|) (QUOTE (-360))) (-1524 (-12 (|HasCategory| (-399 |#2|) (QUOTE (-226))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (|HasCategory| (-399 |#2|) (QUOTE (-341)))) (-1524 (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-341))))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360))) (-1524 (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (QUOTE (-226))) (|HasCategory| (-399 |#2|) (QUOTE (-355))))) +(-41 R -1426) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -406) (|devaluate| |#1|))))) -(-41 OV E P) +((-12 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) +(-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL NIL -(-42 R A) +(-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-292)))) -(-43 R |n| |ls| |gamma|) +((|HasCategory| |#1| (QUOTE (-299)))) +(-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4307 |has| |#1| (-533)) (-4305 . T) (-4304 . T)) -((|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) -(-44 |Key| |Entry|) +((-4324 |has| |#1| (-540)) (-4322 . T) (-4321 . T)) +((|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) +(-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4310 . T) (-4311 . T)) -((-3850 (-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-811)))) (-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-811))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-811))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-45 S R E) +((-4327 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|))))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348)))) -(-46 R E) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355)))) +(-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-47) -((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| $ (QUOTE (-1004))) (|HasCategory| $ (LIST (QUOTE -995) (QUOTE (-526))))) (-48) +((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-548))))) +(-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL -(-49 R |lVar|) +(-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4307 . T)) -NIL -(-50) -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) -NIL +((-4324 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) NIL NIL -(-52 R M P) +(-52) +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) +NIL +NIL +(-53 R M P) ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -3395) +(-54 |Base| R -1426) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL -(-54 S R |Row| |Col|) +(-55 S R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#2|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) NIL NIL -(-55 R |Row| |Col|) +(-56 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4310 . T) (-4311 . T) (-2337 . T)) +((-4327 . T) (-4328 . T) (-2409 . T)) NIL -(-56 S) -((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (-57 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-58 R) +(-58 S) +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-59 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-59 -3864) -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-60 -3864) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-60 -2275) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-61 -3864) +(-61 -2275) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-62 -3864) +(-62 -2275) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -3864) +(-63 -2275) +((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-64 -2275) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3864) +(-65 -2275) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3864) +(-66 -2275) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3864) +(-67 -2275) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3864) +(-68 -2275) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -3864) +(-69 -2275) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3864) +(-70 -2275) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -3864) +(-71 -2275) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -3864) +(-72 -2275) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -3864) +(-73 -2275) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-73 -3864) -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL (-74 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL @@ -232,4637 +232,4689 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 -3864) +(-76 -2275) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -3864) +(-77 -2275) +((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-78 -2275) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3864) +(-79 -2275) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3864) +(-80 -2275) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3864) -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-81 -3864) +(-81 -2275) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3864) +(-82 -2275) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3864) +(-83 -2275) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3864) +(-84 -2275) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3864) -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) +(-85 -2275) +((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3864) +(-86 -2275) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3864) +(-87 -2275) +((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) +NIL +NIL +(-88 -2275) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-88 R L) +(-89 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-348)))) -(-89 S) -((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +((|HasCategory| |#1| (QUOTE (-355)))) (-90 S) +((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-91 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL NIL -(-91) +(-92) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL NIL -(-92 S) +(-93 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL NIL -(-93) +(-94) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL NIL -(-94) +(-95) ((|constructor| (NIL "This domain represents the syntax of an attribute in \\indented{2}{a category expression.}")) (|name| (((|Syntax|) $) "\\spad{name(a)} returns the name of the attribute `a'. Note,{} this name may be domain name,{} not just an identifier."))) NIL NIL -(-95) +(-96) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4310 . T)) +((-4327 . T)) NIL -(-96) +(-97) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4310 . T) ((-4312 "*") . T) (-4311 . T) (-4307 . T) (-4305 . T) (-4304 . T) (-4303 . T) (-4308 . T) (-4302 . T) (-4301 . T) (-4300 . T) (-4299 . T) (-4298 . T) (-4306 . T) (-4309 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4297 . T)) +((-4327 . T) ((-4329 "*") . T) (-4328 . T) (-4324 . T) (-4322 . T) (-4321 . T) (-4320 . T) (-4325 . T) (-4319 . T) (-4318 . T) (-4317 . T) (-4316 . T) (-4315 . T) (-4323 . T) (-4326 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4314 . T)) NIL -(-97 R) +(-98 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4307 . T)) +((-4324 . T)) NIL -(-98 R UP) +(-99 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) NIL NIL -(-99 S) +(-100 S) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-100) +(-101) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-101 S) +(-102 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-102 R UP M |Row| |Col|) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-103 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4312 "*")))) -(-103) +((|HasAttribute| |#1| (QUOTE (-4329 "*")))) +(-104) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4310 . T)) +((-4327 . T)) NIL -(-104 A S) +(-105 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL -(-105 S) +(-106 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4311 . T) (-2337 . T)) +((-4328 . T) (-2409 . T)) NIL -(-106) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-526) (QUOTE (-869))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-526) (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-141))) (|HasCategory| (-526) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-977))) (|HasCategory| (-526) (QUOTE (-784))) (-3850 (|HasCategory| (-526) (QUOTE (-784))) (|HasCategory| (-526) (QUOTE (-811)))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-1099))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-526) (QUOTE (-219))) (|HasCategory| (-526) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-526) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -294) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -271) (QUOTE (-526)) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-292))) (|HasCategory| (-526) (QUOTE (-525))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-526) (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (|HasCategory| (-526) (QUOTE (-139))))) (-107) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-548) (QUOTE (-878))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-548) (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-145))) (|HasCategory| (-548) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-991))) (|HasCategory| (-548) (QUOTE (-794))) (-1524 (|HasCategory| (-548) (QUOTE (-794))) (|HasCategory| (-548) (QUOTE (-821)))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-1111))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-548) (QUOTE (-226))) (|HasCategory| (-548) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-548) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -301) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -278) (QUOTE (-548)) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-299))) (|HasCategory| (-548) (QUOTE (-533))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-548) (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (|HasCategory| (-548) (QUOTE (-143))))) +(-108) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL -(-108) +(-109) ((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-109) +(-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| (-111) (QUOTE (-1052))) (|HasCategory| (-111) (LIST (QUOTE -294) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-111) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-111) (QUOTE (-1052))) (|HasCategory| (-111) (LIST (QUOTE -583) (QUOTE (-823))))) -(-110 R S) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -301) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-112) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -592) (QUOTE (-832))))) +(-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4305 . T) (-4304 . T)) -NIL -(-111) -((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) -NIL +((-4322 . T) (-4321 . T)) NIL (-112) -((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) +((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL (-113 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-811)))) -(-114 -3395 UP) +((|HasCategory| |#1| (QUOTE (-821)))) +(-114) +((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) +NIL +NIL +(-115 -1426 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-115 |p|) +(-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-116 |p|) +(-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-115 |#1|) (QUOTE (-869))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-115 |#1|) (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-141))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-115 |#1|) (QUOTE (-977))) (|HasCategory| (-115 |#1|) (QUOTE (-784))) (-3850 (|HasCategory| (-115 |#1|) (QUOTE (-784))) (|HasCategory| (-115 |#1|) (QUOTE (-811)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-115 |#1|) (QUOTE (-1099))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-115 |#1|) (QUOTE (-219))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -271) (LIST (QUOTE -115) (|devaluate| |#1|)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (QUOTE (-292))) (|HasCategory| (-115 |#1|) (QUOTE (-525))) (|HasCategory| (-115 |#1|) (QUOTE (-811))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-869)))) (|HasCategory| (-115 |#1|) (QUOTE (-139))))) -(-117 A S) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-878))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-116 |#1|) (QUOTE (-991))) (|HasCategory| (-116 |#1|) (QUOTE (-794))) (-1524 (|HasCategory| (-116 |#1|) (QUOTE (-794))) (|HasCategory| (-116 |#1|) (QUOTE (-821)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-116 |#1|) (QUOTE (-1111))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-116 |#1|) (QUOTE (-226))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -301) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -278) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-299))) (|HasCategory| (-116 |#1|) (QUOTE (-533))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-878)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) +(-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4311))) -(-118 S) +((|HasAttribute| |#1| (QUOTE -4328))) +(-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2337 . T)) +((-2409 . T)) NIL -(-119 UP) +(-120 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-120 S) -((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (-121 S) +((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL -(-122) +(-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-123 A S) +(-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-124 S) +(-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4310 . T) (-4311 . T) (-2337 . T)) +((-4327 . T) (-4328 . T) (-2409 . T)) NIL -(-125 S) -((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (-126 S) +((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-127) -((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) -NIL -NIL +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (-128) ((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| (-127) (QUOTE (-811))) (|HasCategory| (-127) (LIST (QUOTE -294) (QUOTE (-127))))) (-12 (|HasCategory| (-127) (QUOTE (-1052))) (|HasCategory| (-127) (LIST (QUOTE -294) (QUOTE (-127)))))) (-3850 (-12 (|HasCategory| (-127) (QUOTE (-1052))) (|HasCategory| (-127) (LIST (QUOTE -294) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-127) (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| (-127) (QUOTE (-811))) (|HasCategory| (-127) (QUOTE (-1052)))) (|HasCategory| (-127) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-127) (QUOTE (-1052))) (-12 (|HasCategory| (-127) (QUOTE (-1052))) (|HasCategory| (-127) (LIST (QUOTE -294) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -583) (QUOTE (-823))))) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-129) (LIST (QUOTE -301) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -301) (QUOTE (-129)))))) (-1524 (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -301) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-129) (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-129) (QUOTE (-1063)))) (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-129) (QUOTE (-1063))) (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -301) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -592) (QUOTE (-832))))) (-129) -((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) +((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL (-130) -((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) +((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL (-131) +((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) +NIL +NIL +(-132) +((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|Syntax|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in \\spad{`c'}."))) +NIL +NIL +(-133) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4312 "*") . T)) +(((-4329 "*") . T)) +NIL +(-134 |minix| -3670 S T$) +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +NIL NIL -(-132 |minix| -2916 R) +(-135 |minix| -3670 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-133 |minix| -2916 S T$) -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +(-136) +((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-134) +(-137) +((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|Syntax|)) $) "\\spad{body(c)} returns the list of exports in category syntax \\spad{`c'}.")) (|kind| (((|Symbol|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) +NIL +NIL +(-138) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: February 16,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type"))) NIL NIL -(-135) +(-139) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4310 . T) (-4300 . T) (-4311 . T)) -((-3850 (-12 (|HasCategory| (-138) (QUOTE (-353))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-138) (QUOTE (-353))) (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-138) (QUOTE (-1052))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -583) (QUOTE (-823))))) -(-136 R Q A) +((-4327 . T) (-4317 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| (-142) (QUOTE (-360))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-142) (QUOTE (-360))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-832))))) +(-140 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-137) +(-141) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-138) +(-142) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-139) +(-143) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4307 . T)) +((-4324 . T)) NIL -(-140 R) +(-144 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-141) +(-145) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4307 . T)) +((-4324 . T)) NIL -(-142 -3395 UP UPUP) +(-146 -1426 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL -(-143 R CR) +(-147 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-144 A S) +(-148 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasAttribute| |#1| (QUOTE -4310))) -(-145 S) +((|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasAttribute| |#1| (QUOTE -4327))) +(-149 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2337 . T)) +((-2409 . T)) NIL -(-146 |n| K Q) +(-150 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4305 . T) (-4304 . T) (-4307 . T)) +((-4322 . T) (-4321 . T) (-4324 . T)) NIL -(-147) +(-151) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-148 UP |Par|) +(-152 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-149) +(-153) +((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) +NIL +NIL +(-154) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-150 R -3395) +(-155 R -1426) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-151 I) +(-156 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-152) +(-157) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-153) +(-158) +((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|Syntax|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) +NIL +NIL +(-159) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-154) +(-160) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-155 R UP UPUP) +(-161 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-156 S R) +(-162 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasAttribute| |#2| (QUOTE -4306)) (|HasAttribute| |#2| (QUOTE -4309)) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-811)))) -(-157 R) +((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-355))) (|HasAttribute| |#2| (QUOTE -4323)) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-821)))) +(-163 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4303 -3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4306 |has| |#1| (-6 -4306)) (-4309 |has| |#1| (-6 -4309)) (-1401 . T) (-2337 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 -1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4323 |has| |#1| (-6 -4323)) (-4326 |has| |#1| (-6 -4326)) (-3247 . T) (-2409 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-158 RR PR) +(-164 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-159 R) -((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4303 -3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4306 |has| |#1| (-6 -4306)) (-4309 |has| |#1| (-6 -4309)) (-1401 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-335))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-219))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-785)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-977))))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-869))))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-785))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-525))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-219))) (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasAttribute| |#1| (QUOTE -4306)) (|HasAttribute| |#1| (QUOTE -4309)) (-12 (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-335))))) -(-160 R S) +(-165 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-161 R S CS) +(-166 R) +((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) +((-4320 -1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4323 |has| |#1| (-6 -4323)) (-4326 |has| |#1| (-6 -4326)) (-3247 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-341))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-226))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-802)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-878))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-878))))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1157)))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1157)))) (|HasCategory| |#1| (QUOTE (-533))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-226))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasAttribute| |#1| (QUOTE -4323)) (|HasAttribute| |#1| (QUOTE -4326)) (-12 (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-341))))) +(-167 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-162) +(-168) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-163) +(-169) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-164) +(-170) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-165 R) +(-171 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4312 "*") . T) (-4303 . T) (-4308 . T) (-4302 . T) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") . T) (-4320 . T) (-4325 . T) (-4319 . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-166) +(-172) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-167 R) +(-173 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-168 R |PolR| E) +(-174 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-169 R S CS) +(-175 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-905 |#2|) (LIST (QUOTE -845) (|devaluate| |#1|)))) -(-170 R) +((|HasCategory| (-921 |#2|) (LIST (QUOTE -855) (|devaluate| |#1|)))) +(-176 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-171) +(-177) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-172 R UP) +(-178 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-173 S ST) +(-179 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-174) +(-180) ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-175 R -3395) +(-181 R -1426) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-176 R) +(-182 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-177) +(-183) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-178) +(-184) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-179) +(-185) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-180) +(-186) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-181) +(-187) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-182) +(-188) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-183) +(-189) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-184) +(-190) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-185) +(-191) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-186) +(-192) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-187) +(-193) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-188) +(-194) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-189) +(-195) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-190) +(-196) NIL NIL NIL -(-191) +(-197) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-192) +(-198) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-193) +(-199) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-194) +(-200) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-195) +(-201) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-196) +(-202) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-197) +(-203) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-198) +(-204) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-199) +(-205) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-200 N T$) +(-206 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|setelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "\\spad{setelt(b,{}i,{}x)} sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|elt| ((|#2| $ (|NonNegativeInteger|)) "\\spad{elt(b,{}i)} returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-201 S) +(-207 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-202 -3395 UP UPUP R) +(-208 -1426 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-203 -3395 FP) +(-209 -1426 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-204) +(-210) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-526) (QUOTE (-869))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-526) (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-141))) (|HasCategory| (-526) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-977))) (|HasCategory| (-526) (QUOTE (-784))) (-3850 (|HasCategory| (-526) (QUOTE (-784))) (|HasCategory| (-526) (QUOTE (-811)))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-1099))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-526) (QUOTE (-219))) (|HasCategory| (-526) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-526) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -294) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -271) (QUOTE (-526)) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-292))) (|HasCategory| (-526) (QUOTE (-525))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-526) (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (|HasCategory| (-526) (QUOTE (-139))))) -(-205 R -3395) -((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-548) (QUOTE (-878))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-548) (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-145))) (|HasCategory| (-548) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-991))) (|HasCategory| (-548) (QUOTE (-794))) (-1524 (|HasCategory| (-548) (QUOTE (-794))) (|HasCategory| (-548) (QUOTE (-821)))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-1111))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-548) (QUOTE (-226))) (|HasCategory| (-548) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-548) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -301) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -278) (QUOTE (-548)) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-299))) (|HasCategory| (-548) (QUOTE (-533))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-548) (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (|HasCategory| (-548) (QUOTE (-143))))) +(-211) +((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|Syntax|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|List| (|Identifier|)) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-206 R) -((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +(-212 R -1426) +((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-207 R1 R2) +(-213 R) +((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +NIL +NIL +(-214 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-208 S) +(-215 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-209 |CoefRing| |listIndVar|) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-216 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4307 . T)) +((-4324 . T)) NIL -(-210 R -3395) +(-217 R -1426) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-211) -((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4088 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +(-218) +((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-2439 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-212) +(-219) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-213 R) +(-220 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-533))) (|HasAttribute| |#1| (QUOTE (-4312 "*"))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-214 A S) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-540))) (|HasAttribute| |#1| (QUOTE (-4329 "*"))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-221 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-215 S) +(-222 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4311 . T) (-2337 . T)) +((-4328 . T) (-2409 . T)) NIL -(-216 S R) +(-223 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-219)))) -(-217 R) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226)))) +(-224 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4307 . T)) +((-4324 . T)) NIL -(-218 S) +(-225 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-219) +(-226) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4307 . T)) +((-4324 . T)) NIL -(-220 A S) +(-227 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4310))) -(-221 S) +((|HasAttribute| |#1| (QUOTE -4327))) +(-228 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4311 . T) (-2337 . T)) +((-4328 . T) (-2409 . T)) NIL -(-222) +(-229) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-223 S -2916 R) +(-230 S -3670 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-809))) (|HasAttribute| |#3| (QUOTE -4307)) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-1052)))) -(-224 -2916 R) +((|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819))) (|HasAttribute| |#3| (QUOTE -4324)) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-1063)))) +(-231 -3670 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4304 |has| |#2| (-1004)) (-4305 |has| |#2| (-1004)) (-4307 |has| |#2| (-6 -4307)) ((-4312 "*") |has| |#2| (-163)) (-4310 . T) (-2337 . T)) +((-4321 |has| |#2| (-1016)) (-4322 |has| |#2| (-1016)) (-4324 |has| |#2| (-6 -4324)) ((-4329 "*") |has| |#2| (-169)) (-4327 . T) (-2409 . T)) NIL -(-225 -2916 R) -((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4304 |has| |#2| (-1004)) (-4305 |has| |#2| (-1004)) (-4307 |has| |#2| (-6 -4307)) ((-4312 "*") |has| |#2| (-163)) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-757))) (-3850 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809)))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4307)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) -(-226 -2916 A B) +(-232 -3670 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-227) +(-233 -3670 R) +((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) +((-4321 |has| |#2| (-1016)) (-4322 |has| |#2| (-1016)) (-4324 |has| |#2| (-6 -4324)) ((-4329 "*") |has| |#2| (-169)) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-360)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4324)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) +(-234) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-228 S) +(-235 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-229) +(-236) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4303 . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-230 S) +(-237 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2337 . T)) +((-2409 . T)) NIL -(-231 S) +(-238 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-232 M) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-239 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-233 |vl| R) +(-240 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-869))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-234) +(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-241) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-235 |n| R M S) +(-242 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4307 -3850 (-3155 (|has| |#4| (-1004)) (|has| |#4| (-219))) (-3155 (|has| |#4| (-1004)) (|has| |#4| (-859 (-1123)))) (|has| |#4| (-6 -4307)) (-3155 (|has| |#4| (-1004)) (|has| |#4| (-606 (-526))))) (-4304 |has| |#4| (-1004)) (-4305 |has| |#4| (-1004)) ((-4312 "*") |has| |#4| (-163)) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-691))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-348))) (-3850 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (QUOTE (-1004)))) (-3850 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-348)))) (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (QUOTE (-757))) (-3850 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-809)))) (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (QUOTE (-691))) (|HasCategory| |#4| (QUOTE (-163))) (-3850 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-1004)))) (|HasCategory| |#4| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-691))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-691))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1004)))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1004)))) (|HasCategory| |#4| (QUOTE (-691)))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#4| (QUOTE (-1004)))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasAttribute| |#4| (QUOTE -4307)) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1004))))) (|HasCategory| |#4| (QUOTE (-129))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) -(-236 |n| R S) +((-4324 -1524 (-1723 (|has| |#4| (-1016)) (|has| |#4| (-226))) (-1723 (|has| |#4| (-1016)) (|has| |#4| (-869 (-1135)))) (|has| |#4| (-6 -4324)) (-1723 (|has| |#4| (-1016)) (|has| |#4| (-615 (-548))))) (-4321 |has| |#4| (-1016)) (-4322 |has| |#4| (-1016)) ((-4329 "*") |has| |#4| (-169)) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-355))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#4| (QUOTE (-355))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-355))) (|HasCategory| |#4| (QUOTE (-1016)))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-355)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (QUOTE (-767))) (-1524 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (QUOTE (-819)))) (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (QUOTE (-169))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-169)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-226)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-355)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-360)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-701)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-767)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-819)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-1016)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-355))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-701))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (|HasCategory| |#4| (QUOTE (-1016))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-1063)))) (-1524 (|HasAttribute| |#4| (QUOTE -4324)) (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1016)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +(-243 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4307 -3850 (-3155 (|has| |#3| (-1004)) (|has| |#3| (-219))) (-3155 (|has| |#3| (-1004)) (|has| |#3| (-859 (-1123)))) (|has| |#3| (-6 -4307)) (-3155 (|has| |#3| (-1004)) (|has| |#3| (-606 (-526))))) (-4304 |has| |#3| (-1004)) (-4305 |has| |#3| (-1004)) ((-4312 "*") |has| |#3| (-163)) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-348))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004)))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348)))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-757))) (-3850 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-809)))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (QUOTE (-163))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004)))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasCategory| |#3| (QUOTE (-691)))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#3| (QUOTE (-1004)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasAttribute| |#3| (QUOTE -4307)) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004))))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-823))))) -(-237 A R S V E) +((-4324 -1524 (-1723 (|has| |#3| (-1016)) (|has| |#3| (-226))) (-1723 (|has| |#3| (-1016)) (|has| |#3| (-869 (-1135)))) (|has| |#3| (-6 -4324)) (-1723 (|has| |#3| (-1016)) (|has| |#3| (-615 (-548))))) (-4321 |has| |#3| (-1016)) (-4322 |has| |#3| (-1016)) ((-4329 "*") |has| |#3| (-169)) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#3| (QUOTE (-355))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-767))) (-1524 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819)))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-169))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-226)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-355)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-360)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-701)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-767)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-819)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-701))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (|HasCategory| |#3| (QUOTE (-1016))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063)))) (-1524 (|HasAttribute| |#3| (QUOTE -4324)) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-832))))) +(-244 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-219)))) -(-238 R S V E) +((|HasCategory| |#2| (QUOTE (-226)))) +(-245 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) NIL -(-239 S) +(-246 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4310 . T) (-4311 . T) (-2337 . T)) -NIL -(-240 |Ex|) -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +((-4327 . T) (-4328 . T) (-2409 . T)) NIL -NIL -(-241) +(-247) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-242 R |Ex|) +(-248 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-243) +(-249) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-244 R) +(-250 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-245) -((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) +(-251 |Ex|) +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-246) -((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) +(-252) +((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-247) +(-253) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-248 S) +(-254 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-249 R S V) +(-255) +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) +NIL +NIL +(-256 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#3| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#3| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#3| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-250 A S) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#3| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#3| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-257 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-251 S) +(-258 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-252) +(-259) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-253) +(-260) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-254) +(-261) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-255) +(-262) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-256) +(-263) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-257) +(-264) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-258) +(-265) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-259) +(-266) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-260) +(-267) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-261 R -3395) +(-268 R -1426) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-262 R -3395) +(-269 R -1426) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-263 |Coef| UTS ULS) +(-270 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-348)))) -(-264 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-355)))) +(-271 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-348)))) -(-265) +((|HasCategory| |#1| (QUOTE (-355)))) +(-272) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-266 A S) +(-273 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052)))) -(-267 S) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063)))) +(-274 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4311 . T) (-2337 . T)) +((-4328 . T) (-2409 . T)) NIL -(-268 S) +(-275 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-269) +(-276) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-270 |Coef| UTS) +(-277 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-271 S |Index|) +(-278 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-272 S |Dom| |Im|) +(-279 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4311))) -(-273 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4328))) +(-280 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-274 S R |Mod| -2125 -3832 |exactQuo|) +(-281 S R |Mod| -3037 -2913 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-275) +(-282) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4303 . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-276) +(-283) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-277 R) +(-284 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-278 S) -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4307 -3850 (|has| |#1| (-1004)) (|has| |#1| (-457))) (-4304 |has| |#1| (-1004)) (-4305 |has| |#1| (-1004))) -((|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1004)))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-691)))) (|HasCategory| |#1| (QUOTE (-457))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-283))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-457)))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-691)))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1004)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) -(-279 S R) +(-285 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-280 |Key| |Entry|) +(-286 S) +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) +((-4324 -1524 (|has| |#1| (-1016)) (|has| |#1| (-464))) (-4321 |has| |#1| (-1016)) (-4322 |has| |#1| (-1016))) +((|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-701)))) (|HasCategory| |#1| (QUOTE (-464))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1075)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-294))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-464)))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +(-287 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-281) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-288) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-282 S) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) -NIL -((|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-1004)))) -(-283) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) -NIL -NIL -(-284 -3395 S) +(-289 -1426 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-285 E -3395) +(-290 E -1426) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-286) -((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) +(-291 A B) +((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-287 A B) -((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) +(-292) +((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-288) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) +(-293 S) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL +((|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1016)))) +(-294) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -(-289 R1) +NIL +(-295 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-290 R1 R2) +(-296 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-291 S) +(-297) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) +NIL +NIL +(-298 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-292) +(-299) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-293 S R) +(-300 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-294 R) +(-301 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-295 -3395) +(-302 -1426) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-296) -((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) +(-303) +((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-297) -((|constructor| (NIL "This domain represents exit expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) +(-304) +((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-298 R FE |var| |cen|) +(-305 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-869))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-141))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-977))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-784))) (-3850 (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-784))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-811)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-1099))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-219))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -271) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-292))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-525))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-869)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-139))))) -(-299 R) -((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4307 -3850 (-3155 (|has| |#1| (-1004)) (|has| |#1| (-606 (-526)))) (-12 (|has| |#1| (-533)) (-3850 (-3155 (|has| |#1| (-1004)) (|has| |#1| (-606 (-526)))) (|has| |#1| (-1004)) (|has| |#1| (-457)))) (|has| |#1| (-1004)) (|has| |#1| (-457))) (-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) ((-4312 "*") |has| |#1| (-533)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-533)) (-4302 |has| |#1| (-533))) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-1063)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1063)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1004)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| $ (QUOTE (-1004))) (|HasCategory| $ (LIST (QUOTE -995) (QUOTE (-526))))) -(-300 R S) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-991))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-794))) (-1524 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-794))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-1111))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-226))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -301) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -278) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-299))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-533))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| $ (QUOTE (-143)))) (-1524 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| $ (QUOTE (-143)))))) +(-306 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-301 R FE) +(-307 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-302 R -3395) +(-308 R) +((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) +((-4324 -1524 (-1723 (|has| |#1| (-1016)) (|has| |#1| (-615 (-548)))) (-12 (|has| |#1| (-540)) (-1524 (-1723 (|has| |#1| (-1016)) (|has| |#1| (-615 (-548)))) (|has| |#1| (-1016)) (|has| |#1| (-464)))) (|has| |#1| (-1016)) (|has| |#1| (-464))) (-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) ((-4329 "*") |has| |#1| (-540)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-540)) (-4319 |has| |#1| (-540))) +((-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1075)))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))))) (-1524 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1075)))) (-1524 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-548))))) +(-309 R -1426) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-303) +(-310) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-304 FE |var| |cen|) +(-311 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) -(-305 M) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(-312 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-306 E OV R P) +(-313 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-307 S) +(-314 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4305 . T) (-4304 . T)) -((|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-756)))) -(-308 S E) +((-4322 . T) (-4321 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-766)))) +(-315 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-309 S) +(-316 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-735) (QUOTE (-756)))) -(-310 S R E) +((|HasCategory| (-745) (QUOTE (-766)))) +(-317 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163)))) -(-311 R E) +((|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169)))) +(-318 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-312 S) +(-319 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-313 S -3395) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-320 S -1426) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-353)))) -(-314 -3395) +((|HasCategory| |#2| (QUOTE (-360)))) +(-321 -1426) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-315) +(-322) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-316 E) +(-323 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-317) +(-324) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-318 -3395 UP UPUP R) -((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) -NIL -NIL -(-319 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-325 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-320 S -3395 UP UPUP R) +(-326 S -1426 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-321 -3395 UP UPUP R) +(-327 -1426 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-322 S R) +(-328 -1426 UP UPUP R) +((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) +NIL +NIL +(-329 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -271) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-323 R) +((|HasCategory| |#2| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-330 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-324 |basicSymbols| |subscriptedSymbols| R) +(-331 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-363)))) (|HasCategory| $ (QUOTE (-1004))) (|HasCategory| $ (LIST (QUOTE -995) (QUOTE (-526))))) -(-325 |p| |n|) -((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| (-865 |#1|) (QUOTE (-139))) (|HasCategory| (-865 |#1|) (QUOTE (-353)))) (|HasCategory| (-865 |#1|) (QUOTE (-141))) (|HasCategory| (-865 |#1|) (QUOTE (-353))) (|HasCategory| (-865 |#1|) (QUOTE (-139)))) -(-326 S -3395 UP UPUP) -((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-371)))) (|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-548))))) +(-332 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-348)))) -(-327 -3395 UP UPUP) -((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4303 |has| (-392 |#2|) (-348)) (-4308 |has| (-392 |#2|) (-348)) (-4302 |has| (-392 |#2|) (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-328 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) +(-333 S -1426 UP UPUP) +((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL +((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-355)))) +(-334 -1426 UP UPUP) +((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) +((-4320 |has| (-399 |#2|) (-355)) (-4325 |has| (-399 |#2|) (-355)) (-4319 |has| (-399 |#2|) (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-329 |p| |extdeg|) +(-335 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| (-865 |#1|) (QUOTE (-139))) (|HasCategory| (-865 |#1|) (QUOTE (-353)))) (|HasCategory| (-865 |#1|) (QUOTE (-141))) (|HasCategory| (-865 |#1|) (QUOTE (-353))) (|HasCategory| (-865 |#1|) (QUOTE (-139)))) -(-330 GF |defpol|) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-360)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-360))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) +(-336 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) -(-331 GF |extdeg|) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) +(-337 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) -(-332 GF) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) +(-338 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-333 F1 GF F2) +(-339 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-334 S) +(-340 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-335) +(-341) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-336 R UP -3395) +(-342 R UP -1426) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-337 |p| |extdeg|) +(-343 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| (-865 |#1|) (QUOTE (-139))) (|HasCategory| (-865 |#1|) (QUOTE (-353)))) (|HasCategory| (-865 |#1|) (QUOTE (-141))) (|HasCategory| (-865 |#1|) (QUOTE (-353))) (|HasCategory| (-865 |#1|) (QUOTE (-139)))) -(-338 GF |uni|) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-360)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-360))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) +(-344 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) -(-339 GF |extdeg|) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) +(-345 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) -(-340 GF |defpol|) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) +(-346 |p| |n|) +((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-360)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-360))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) +(-347 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) -(-341 GF) -((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) +(-348 -1426 GF) +((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-342 -3395 GF) -((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) +(-349 GF) +((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-343 -3395 FP FPP) +(-350 -1426 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-344 GF |n|) +(-351 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) -(-345 R |ls|) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) +(-352 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-346 S) +(-353 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4307 . T)) +((-4324 . T)) NIL -(-347 S) +(-354 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-348) +(-355) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-349 S) -((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) +(-356 |Name| S) +((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-350 |Name| S) -((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) +(-357 S) +((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-351 S R) +(-358 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-533)))) -(-352 R) +((|HasCategory| |#2| (QUOTE (-540)))) +(-359 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4307 |has| |#1| (-533)) (-4305 . T) (-4304 . T)) +((-4324 |has| |#1| (-540)) (-4322 . T) (-4321 . T)) NIL -(-353) +(-360) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-354 S R UP) +(-361 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-348)))) -(-355 R UP) +((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-355)))) +(-362 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4304 . T) (-4305 . T) (-4307 . T)) +((-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-356 A S) -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +(-363 S A R B) +((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL -((|HasAttribute| |#1| (QUOTE -4311)) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052)))) -(-357 S) -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4310 . T) (-2337 . T)) NIL -(-358 S A R B) -((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) +(-364 A S) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL +((|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063)))) +(-365 S) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +((-4327 . T) (-2409 . T)) NIL -(-359 |VarSet| R) +(-366 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4305 . T) (-4304 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4322 . T) (-4321 . T)) NIL -(-360 S V) +(-367 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-361 S R) +(-368 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) -(-362 R) +((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) +(-369 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4307 . T)) +((-4324 . T)) NIL -(-363) -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4293 . T) (-4301 . T) (-4088 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -NIL -(-364 |Par|) +(-370 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-365 |Par|) +(-371) +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-4310 . T) (-4318 . T) (-2439 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +NIL +(-372 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-366 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4305 . T) (-4304 . T)) -((|HasCategory| |#1| (QUOTE (-163)))) -(-367 R S) +(-373 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4305 . T) (-4304 . T)) -((|HasCategory| |#1| (QUOTE (-163)))) -(-368) -((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2337 . T)) -NIL -(-369 R |Basis|) +((-4322 . T) (-4321 . T)) +((|HasCategory| |#1| (QUOTE (-169)))) +(-374 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4305 . T) (-4304 . T)) +((-4322 . T) (-4321 . T)) NIL -(-370) +(-375) +((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) +((-2409 . T)) +NIL +(-376) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2337 . T)) +((-2409 . T)) NIL -(-371 S) +(-377 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-4322 . T) (-4321 . T)) +((|HasCategory| |#1| (QUOTE (-169)))) +(-378 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-811)))) -(-372) +((|HasCategory| |#1| (QUOTE (-821)))) +(-379) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-373) +(-380) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-374) +(-381) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-375 |n| |class| R) +(-382 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4305 . T) (-4304 . T)) +((-4322 . T) (-4321 . T)) NIL -(-376) +(-383) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-377 -3395 UP UPUP R) +(-384 -1426 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-378) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) -NIL -NIL -(-379 S) +(-385 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-380) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) +(-386) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-381) +(-387) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2337 . T)) +((-2409 . T)) NIL -(-382) +(-388) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2337 . T)) +((-2409 . T)) +NIL +(-389) +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL -(-383 -3864 |returnType| -1444 |symbols|) +NIL +(-390 -2275 |returnType| -3277 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-384 -3395 UP) +(-391 -1426 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-385 R) +(-392 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2337 . T)) +((-2409 . T)) NIL -(-386 S) +(-393 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-387) +(-394) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-388 S) +(-395 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4293)) (|HasAttribute| |#1| (QUOTE -4301))) -(-389) +((|HasAttribute| |#1| (QUOTE -4310)) (|HasAttribute| |#1| (QUOTE -4318))) +(-396) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4088 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-2439 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-390 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -271) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-1164))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-1164)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-436)))) -(-391 R S) +(-397 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-392 S) -((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4297 -12 (|has| |#1| (-6 -4308)) (|has| |#1| (-436)) (|has| |#1| (-6 -4297))) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-784))) (-3850 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-811)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-1099))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-525))) (-12 (|HasAttribute| |#1| (QUOTE -4297)) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-393 A B) +(-398 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-394 S R UP) +(-399 S) +((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) +((-4314 -12 (|has| |#1| (-6 -4325)) (|has| |#1| (-443)) (|has| |#1| (-6 -4314))) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-794))) (-1524 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-821)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1111))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-533))) (-12 (|HasAttribute| |#1| (QUOTE -4325)) (|HasAttribute| |#1| (QUOTE -4314)) (|HasCategory| |#1| (QUOTE (-443)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-400 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-395 R UP) +(-401 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4304 . T) (-4305 . T) (-4307 . T)) +((-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-396 A S) +(-402 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) -(-397 S) +((|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) +(-403 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-398 R -3395 UP A) -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4307 . T)) -NIL -(-399 R1 F1 U1 A1 R2 F2 U2 A2) +(-404 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-400 R -3395 UP A |ibasis|) +(-405 R -1426 UP A) +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) +((-4324 . T)) +NIL +(-406 R -1426 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -995) (|devaluate| |#2|)))) -(-401 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1007) (|devaluate| |#2|)))) +(-407 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-402 S R) +(-408 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-348)))) -(-403 R) +((|HasCategory| |#2| (QUOTE (-355)))) +(-409 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4307 |has| |#1| (-533)) (-4305 . T) (-4304 . T)) +((-4324 |has| |#1| (-540)) (-4322 . T) (-4321 . T)) NIL -(-404 R) +(-410 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -301) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -278) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-1176))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-443)))) +(-411 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-405 S R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +(-412 R FE |x| |cen|) +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) -(-406 R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4307 -3850 (|has| |#1| (-1004)) (|has| |#1| (-457))) (-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) ((-4312 "*") |has| |#1| (-533)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-533)) (-4302 |has| |#1| (-533)) (-2337 . T)) NIL -(-407 R A S B) +(-413 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-408 R FE |x| |cen|) -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) +(-414 R FE |Expon| UPS TRAN |x|) +((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-409 R FE |Expon| UPS TRAN |x|) -((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) +(-415 S A R B) +((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-410 A S) +(-416 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-353)))) -(-411 S) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-360)))) +(-417 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4310 . T) (-4300 . T) (-4311 . T) (-2337 . T)) -NIL -(-412 S A R B) -((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +((-4327 . T) (-4317 . T) (-4328 . T) (-2409 . T)) NIL -NIL -(-413 R -3395) +(-418 R -1426) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-414 R E) +(-419 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4297 -12 (|has| |#1| (-6 -4297)) (|has| |#2| (-6 -4297))) (-4304 . T) (-4305 . T) (-4307 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4297)) (|HasAttribute| |#2| (QUOTE -4297)))) -(-415 R -3395) +((-4314 -12 (|has| |#1| (-6 -4314)) (|has| |#2| (-6 -4314))) (-4321 . T) (-4322 . T) (-4324 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4314)) (|HasAttribute| |#2| (QUOTE -4314)))) +(-420 R -1426) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-416 R -3395) +(-421 S R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +NIL +((|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) +(-422 R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((-4324 -1524 (|has| |#1| (-1016)) (|has| |#1| (-464))) (-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) ((-4329 "*") |has| |#1| (-540)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-540)) (-4319 |has| |#1| (-540)) (-2409 . T)) +NIL +(-423 R -1426) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-417 R -3395) +(-424 R -1426) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-418 R -3395) +(-425 R -1426) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-419) +(-426) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-420 R -3395 UP) +(-427 R -1426 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-47))))) -(-421) -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) +((|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-48))))) +(-428) +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-422) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) +(-429) +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-423 |f|) +(-430 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-424) +(-431) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2337 . T)) +((-2409 . T)) NIL -(-425) +(-432) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2337 . T)) +((-2409 . T)) NIL -(-426 UP) +(-433 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-427 R UP -3395) +(-434 R UP -1426) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-428 R UP) +(-435 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-429 R) +(-436 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-389)))) -(-430) +((|HasCategory| |#1| (QUOTE (-396)))) +(-437) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-431 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) -NIL -((|HasCategory| |#1| (QUOTE (-348)))) -(-432 |Dom| |Expon| |VarSet| |Dpol|) +(-438 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-433 |Dom| |Expon| |VarSet| |Dpol|) +(-439 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-434 |Dom| |Expon| |VarSet| |Dpol|) +(-440 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-435 S) +(-441 |Dom| |Expon| |VarSet| |Dpol|) +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) +NIL +((|HasCategory| |#1| (QUOTE (-355)))) +(-442 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-436) +(-443) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-437 R |n| |ls| |gamma|) +(-444 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4307 |has| (-392 (-905 |#1|)) (-533)) (-4305 . T) (-4304 . T)) -((|HasCategory| (-392 (-905 |#1|)) (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| (-392 (-905 |#1|)) (QUOTE (-533)))) -(-438 |vl| R E) +((-4324 |has| (-399 (-921 |#1|)) (-540)) (-4322 . T) (-4321 . T)) +((|HasCategory| (-399 (-921 |#1|)) (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| (-399 (-921 |#1|)) (QUOTE (-540)))) +(-445 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-869))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-439 R BP) +(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-446 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-440 OV E S R P) +(-447 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-441 E OV R P) +(-448 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-442 R) +(-449 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-443 R FE) +(-450 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-444 RP TP) +(-451 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-445 |vl| R IS E |ff| P) +(-452 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4305 . T) (-4304 . T)) +((-4322 . T) (-4321 . T)) NIL -(-446 E V R P Q) +(-453 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-447 R E |VarSet| P) +(-454 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) -(-448 S R E) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +(-455 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-449 R E) +(-456 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-450) +(-457) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-451) +(-458) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-452) +(-459) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-453 S R E) +(-460 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-454 R E) +(-461 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-455 |lv| -3395 R) +(-462 |lv| -1426 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-456 S) +(-463 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-457) +(-464) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4307 . T)) +((-4324 . T)) NIL -(-458 |Coef| |var| |cen|) +(-465 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) -(-459 |Key| |Entry| |Tbl| |dent|) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(-466 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-811))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-460 R E V P) +((-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-467 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) -(-461) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +(-468) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +NIL +(-469) +((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) +NIL NIL -(-462 |Key| |Entry| |hashfn|) +(-470 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-463) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-471) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-464 |vl| R) +(-472 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-869))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-465 -2916 S) +(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-473 -3670 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4304 |has| |#2| (-1004)) (-4305 |has| |#2| (-1004)) (-4307 |has| |#2| (-6 -4307)) ((-4312 "*") |has| |#2| (-163)) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-757))) (-3850 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809)))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4307)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) -(-466) +((-4321 |has| |#2| (-1016)) (-4322 |has| |#2| (-1016)) (-4324 |has| |#2| (-6 -4324)) ((-4329 "*") |has| |#2| (-169)) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-360)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4324)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) +(-474) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-467 S) +(-475 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-468 -3395 UP UPUP R) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-476 -1426 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-469 BP) +(-477 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-470) +(-478) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-526) (QUOTE (-869))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-526) (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-141))) (|HasCategory| (-526) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-977))) (|HasCategory| (-526) (QUOTE (-784))) (-3850 (|HasCategory| (-526) (QUOTE (-784))) (|HasCategory| (-526) (QUOTE (-811)))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-1099))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-526) (QUOTE (-219))) (|HasCategory| (-526) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-526) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -294) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -271) (QUOTE (-526)) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-292))) (|HasCategory| (-526) (QUOTE (-525))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-526) (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (|HasCategory| (-526) (QUOTE (-139))))) -(-471 A S) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-548) (QUOTE (-878))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-548) (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-145))) (|HasCategory| (-548) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-991))) (|HasCategory| (-548) (QUOTE (-794))) (-1524 (|HasCategory| (-548) (QUOTE (-794))) (|HasCategory| (-548) (QUOTE (-821)))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-1111))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-548) (QUOTE (-226))) (|HasCategory| (-548) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-548) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -301) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -278) (QUOTE (-548)) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-299))) (|HasCategory| (-548) (QUOTE (-533))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-548) (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (|HasCategory| (-548) (QUOTE (-143))))) +(-479 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4310)) (|HasAttribute| |#1| (QUOTE -4311)) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) -(-472 S) +((|HasAttribute| |#1| (QUOTE -4327)) (|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) +(-480 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2337 . T)) +((-2409 . T)) NIL -(-473) +(-481) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-474 S) +(-482 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-475) +(-483) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-476 -3395 UP |AlExt| |AlPol|) +(-484 -1426 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-477) +(-485) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| $ (QUOTE (-1004))) (|HasCategory| $ (LIST (QUOTE -995) (QUOTE (-526))))) -(-478 S |mn|) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-548))))) +(-486 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-479 R |mnRow| |mnCol|) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-487 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-480 K R UP) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-488 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-481 R UP -3395) +(-489 R UP -1426) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-482 |mn|) +(-490 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| (-111) (QUOTE (-1052))) (|HasCategory| (-111) (LIST (QUOTE -294) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-111) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-111) (QUOTE (-1052))) (|HasCategory| (-111) (LIST (QUOTE -583) (QUOTE (-823))))) -(-483 K R UP L) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -301) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-112) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -592) (QUOTE (-832))))) +(-491 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-484) +(-492) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-485 R Q A B) +(-493 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-486 -3395 |Expon| |VarSet| |DPoly|) +(-494 -1426 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-1123))))) -(-487 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-1135))))) +(-495 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-488) +(-496) ((|constructor| (NIL "This domain represents identifer AST."))) NIL NIL -(-489 A S) +(-497 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-490 A S) +(-498 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-491 A S) +(-499 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-492 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) -NIL -NIL -(-493 A S) +(-500 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-494 A S) +(-501 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-495 S A B) +(-502 A S) +((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) +NIL +NIL +(-503 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-496 A B) +(-504 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-497 S E |un|) +(-505 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-756)))) -(-498 S |mn|) +((|HasCategory| |#2| (QUOTE (-766)))) +(-506 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-499) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-507) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|Syntax|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|Syntax|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|Syntax|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-500 |p| |n|) +(-508 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (|HasCategory| (-554 |#1|) (QUOTE (-139))) (|HasCategory| (-554 |#1|) (QUOTE (-353)))) (|HasCategory| (-554 |#1|) (QUOTE (-141))) (|HasCategory| (-554 |#1|) (QUOTE (-353))) (|HasCategory| (-554 |#1|) (QUOTE (-139)))) -(-501 R |mnRow| |mnCol| |Row| |Col|) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| (-562 |#1|) (QUOTE (-143))) (|HasCategory| (-562 |#1|) (QUOTE (-360)))) (|HasCategory| (-562 |#1|) (QUOTE (-145))) (|HasCategory| (-562 |#1|) (QUOTE (-360))) (|HasCategory| (-562 |#1|) (QUOTE (-143)))) +(-509 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-502 S |mn|) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-510 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-503 R |Row| |Col| M) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-511 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4311))) -(-504 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4328))) +(-512 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4311))) -(-505 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4328))) +(-513 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-533))) (|HasAttribute| |#1| (QUOTE (-4312 "*"))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-506) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-540))) (|HasAttribute| |#1| (QUOTE (-4329 "*"))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-514) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-507) +(-515) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|Syntax|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-508 S) +(-516 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-509) +(-517) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-510 GF) +(-518 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-511 R) +(-519 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-512 |Varset|) +(-520 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-513 K -3395 |Par|) +(-521 K -1426 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-514) +(-522) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-515) -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +(-523 R) +((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-516 R) -((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) +(-524) +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-517 |Coef| UTS) +(-525 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-518 K -3395 |Par|) +(-526 K -1426 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-519 R BP |pMod| |nextMod|) +(-527 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-520 OV E R P) +(-528 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-521 K UP |Coef| UTS) +(-529 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-522 |Coef| UTS) +(-530 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-523 R UP) -((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) -NIL +(-531 R UP) +((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL -(-524 S) -((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL +(-532 S) +((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL -(-525) -((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4308 . T) (-4309 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-526) -((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4292 . T) (-4298 . T) (-4302 . T) (-4297 . T) (-4308 . T) (-4309 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +(-533) +((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) +((-4325 . T) (-4326 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-527 |Key| |Entry| |addDom|) +(-534 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-528 R -3395) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-535 R -1426) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-529 R0 -3395 UP UPUP R) +(-536 R0 -1426 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-530) +(-537) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-531 R) +(-538 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4088 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-2439 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-532 S) +(-539 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-533) +(-540) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-534 R -3395) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) +(-541 R -1426) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-535 I) +(-542 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-536) -((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) +(-543) +((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-537 R -3395 L) -((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) +(-544 R -1426 L) +((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -623) (|devaluate| |#2|)))) -(-538) +((|HasCategory| |#3| (LIST (QUOTE -630) (|devaluate| |#2|)))) +(-545) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-539 -3395 UP UPUP R) +(-546 -1426 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-540 -3395 UP) +(-547 -1426 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-541) +(-548) +((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) +((-4309 . T) (-4315 . T) (-4319 . T) (-4314 . T) (-4325 . T) (-4326 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +NIL +(-549) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-542 R -3395 L) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) +(-550 R -1426 L) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -623) (|devaluate| |#2|)))) -(-543 R -3395) +((|HasCategory| |#3| (LIST (QUOTE -630) (|devaluate| |#2|)))) +(-551 R -1426) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-597))))) -(-544 -3395 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-605))))) +(-552 -1426 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-545 S) +(-553 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-546 -3395) +(-554 -1426) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-547 R) +(-555 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4088 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-2439 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-548) +(-556) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-549 R -3395) +(-557 R -1426) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-269))) (|HasCategory| |#2| (QUOTE (-597))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-269)))) (|HasCategory| |#1| (QUOTE (-533)))) -(-550 -3395 UP) -((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) +((-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-605))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-276)))) (|HasCategory| |#1| (QUOTE (-540)))) +(-558 -1426 UP) +((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-551 R -3395) +(-559 R -1426) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-552) +(-560) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-553 |p| |unBalanced?|) +(-561 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-554 |p|) +(-562 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| $ (QUOTE (-141))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| $ (QUOTE (-353)))) -(-555) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-360)))) +(-563) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-556 -3395) -((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4305 . T) (-4304 . T)) -((|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-1123))))) -(-557 E -3395) -((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) +(-564 R -1426) +((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-558 R -3395) -((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) +(-565 E -1426) +((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-559 I) +(-566 -1426) +((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) +((-4322 . T) (-4321 . T)) +((|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-1135))))) +(-567 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-560 GF) +(-568 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-561 R) +(-569 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-141)))) -(-562) +((|HasCategory| |#1| (QUOTE (-145)))) +(-570) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-563 R E V P TS) +(-571 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-564 |mn|) +(-572) +((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) +NIL +NIL +(-573 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138)))))) (-3850 (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-138) (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-138) (QUOTE (-1052)))) (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-138) (QUOTE (-1052))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -583) (QUOTE (-823))))) -(-565 E V R P) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142)))))) (-1524 (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-832)))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063)))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-832))))) +(-574 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-566 |Coef|) +(-575 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))) (|HasCategory| (-526) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526)))))) -(-567 |Coef|) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|)))) (|HasCategory| (-548) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548)))))) +(-576 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4305 |has| |#1| (-533)) (-4304 |has| |#1| (-533)) ((-4312 "*") |has| |#1| (-533)) (-4303 |has| |#1| (-533)) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-533)))) -(-568 A B) +((-4322 |has| |#1| (-540)) (-4321 |has| |#1| (-540)) ((-4329 "*") |has| |#1| (-540)) (-4320 |has| |#1| (-540)) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-540)))) +(-577 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-569 A B C) +(-578 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-570 R -3395 FG) +(-579 R -1426 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-571 S) +(-580 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-572 R |mn|) +(-581 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-573 S |Index| |Entry|) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-582 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4311)) (|HasCategory| |#2| (QUOTE (-811))) (|HasAttribute| |#1| (QUOTE -4310)) (|HasCategory| |#3| (QUOTE (-1052)))) -(-574 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#3| (QUOTE (-1063)))) +(-583 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2337 . T)) +((-2409 . T)) NIL -(-575) +(-584) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) NIL NIL -(-576) +(-585) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-577 R A) +(-586 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4307 -3850 (-3155 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))) (-4305 . T) (-4304 . T)) -((-3850 (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|)))) -(-578 |Entry|) +((-4324 -1524 (-1723 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))) (-4322 . T) (-4321 . T)) +((-1524 (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|)))) +(-587 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1106))) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| (-1106) (QUOTE (-811))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-579 S |Key| |Entry|) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| (-1118) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-588 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-580 |Key| |Entry|) +(-589 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4311 . T) (-2337 . T)) -NIL -(-581 S) -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) +((-4328 . T) (-2409 . T)) NIL -((|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) -(-582 R S) +(-590 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-583 S) +(-591 S) +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) +NIL +((|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) +(-592 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-584 S) +(-593 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-585 -3395 UP) +(-594 -1426 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-586 A R S) -((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-809)))) -(-587 S R) +(-595 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-588 R) +(-596 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4307 . T)) +((-4324 . T)) NIL -(-589 R -3395) +(-597 A R S) +((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-819)))) +(-598 R -1426) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-590 R UP) +(-599 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4305 . T) (-4304 . T) ((-4312 "*") . T) (-4303 . T) (-4307 . T)) -((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) -(-591 R E V P TS ST) +((-4322 . T) (-4321 . T) ((-4329 "*") . T) (-4320 . T) (-4324 . T)) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) +(-600 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-592 OV E Z P) +(-601 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-593) +(-602) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-594 |VarSet| R |Order|) +(-603 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4307 . T)) +((-4324 . T)) NIL -(-595 R |ls|) +(-604 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-596 R -3395) -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) +(-605) +((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-597) -((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) +(-606 R -1426) +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-598 |lv| -3395) +(-607 |lv| -1426) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-599) +(-608) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1106))) (LIST (QUOTE |:|) (QUOTE -2164) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -294) (QUOTE (-50))))) (|HasCategory| (-1106) (QUOTE (-811))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823))))) -(-600 R A) -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4307 -3850 (-3155 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))) (-4305 . T) (-4304 . T)) -((-3850 (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|)))) -(-601 S R) +((-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1657) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -301) (QUOTE (-52))))) (|HasCategory| (-1118) (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832))))) +(-609 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-348)))) -(-602 R) +((|HasCategory| |#2| (QUOTE (-355)))) +(-610 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4305 . T) (-4304 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4322 . T) (-4321 . T)) NIL -(-603 R FE) -((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) +(-611 R A) +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) +((-4324 -1524 (-1723 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))) (-4322 . T) (-4321 . T)) +((-1524 (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|)))) +(-612 R FE) +((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-604 R) -((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) +(-613 R) +((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-605 S R) +(-614 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3636 (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-348)))) -(-606 R) +((-3958 (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-355)))) +(-615 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4307 . T)) +((-4324 . T)) NIL -(-607 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-785))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-608 A B) -((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) +(-616 A B) +((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-609 A B) -((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) +(-617 A B) +((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-610 A B C) +(-618 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-611 T$) +(-619 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-620 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-612 S) +(-621 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-613 R) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-622 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-614 S E |un|) +(-623 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-615 A S) +(-624 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4311))) -(-616 S) +((|HasAttribute| |#1| (QUOTE -4328))) +(-625 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2337 . T)) +((-2409 . T)) NIL -(-617 M R S) -((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4305 . T) (-4304 . T)) -((|HasCategory| |#1| (QUOTE (-755)))) -(-618 R -3395 L) +(-626 R -1426 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-619 A -2717) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-348)))) -(-620 A) +(-627 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-348)))) -(-621 A M) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-355)))) +(-628 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-348)))) -(-622 S A) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-355)))) +(-629 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-348)))) -(-623 A) +((|HasCategory| |#2| (QUOTE (-355)))) +(-630 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4304 . T) (-4305 . T) (-4307 . T)) +((-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-624 -3395 UP) +(-631 -1426 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-625 A L) +(-632 A -2997) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-355)))) +(-633 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-626 S) +(-634 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-627) +(-635) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-628 R) +(-636 M R S) +((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4322 . T) (-4321 . T)) +((|HasCategory| |#1| (QUOTE (-765)))) +(-637 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-629 |VarSet| R) +(-638 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4305 . T) (-4304 . T)) -((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-163)))) -(-630 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4322 . T) (-4321 . T)) +((|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-169)))) +(-639 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-631 S) +(-640 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-632 -3395 |Row| |Col| M) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-641 -1426) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-633 -3395) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-642 -1426 |Row| |Col| M) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-634 R E OV P) +(-643 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-635 |n| R) +(-644 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4307 . T) (-4310 . T) (-4304 . T) (-4305 . T)) -((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-219))) (|HasAttribute| |#2| (QUOTE (-4312 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-533))) (-3850 (|HasAttribute| |#2| (QUOTE (-4312 #1#))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-163)))) -(-636) +((-4324 . T) (-4327 . T) (-4321 . T) (-4322 . T)) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (-1524 (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-540))) (-1524 (|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-169)))) +(-645) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|Syntax|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-637 |VarSet|) +(-646 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-638 A S) +(-647 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-639 S) +(-648 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2337 . T)) +((-2409 . T)) NIL -(-640 R) +(-649 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-641 |VarSet|) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-650) +((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|Syntax|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|List| (|Identifier|)) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) +NIL +NIL +(-651 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-642 A) +(-652 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-643 A C) +(-653 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-644 A B C) +(-654 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-645) +(-655) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-646 A) +(-656 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-647 A C) +(-657 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-648 A B C) +(-658 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-649 S R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +(-659 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#2| (QUOTE (-4312 "*"))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-533)))) -(-650 R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4310 . T) (-4311 . T) (-2337 . T)) NIL -(-651 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) -((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) +(-660 S R |Row| |Col|) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL +((|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-540)))) +(-661 R |Row| |Col|) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +((-4327 . T) (-4328 . T) (-2409 . T)) NIL -(-652 R |Row| |Col| M) +(-662 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-533)))) -(-653 R) +((|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-540)))) +(-663 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4310 . T) (-4311 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-533))) (|HasAttribute| |#1| (QUOTE (-4312 "*"))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-654 R) +((-4327 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-540))) (|HasAttribute| |#1| (QUOTE (-4329 "*"))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-664 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-655 T$) +(-665 T$) ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-656 S -3395 FLAF FLAS) +(-666 S -1426 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-657 R Q) +(-667 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-658) +(-668) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4303 . T) (-4308 |has| (-663) (-348)) (-4302 |has| (-663) (-348)) (-1401 . T) (-4309 |has| (-663) (-6 -4309)) (-4306 |has| (-663) (-6 -4306)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-663) (QUOTE (-141))) (|HasCategory| (-663) (QUOTE (-139))) (|HasCategory| (-663) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-663) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-663) (QUOTE (-353))) (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-663) (QUOTE (-219))) (-3850 (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (QUOTE (-335)))) (|HasCategory| (-663) (QUOTE (-335))) (|HasCategory| (-663) (LIST (QUOTE -271) (QUOTE (-663)) (QUOTE (-663)))) (|HasCategory| (-663) (LIST (QUOTE -294) (QUOTE (-663)))) (|HasCategory| (-663) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-663)))) (|HasCategory| (-663) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-663) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-663) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-663) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (-3850 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (QUOTE (-335)))) (|HasCategory| (-663) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-663) (QUOTE (-977))) (|HasCategory| (-663) (QUOTE (-1145))) (-12 (|HasCategory| (-663) (QUOTE (-960))) (|HasCategory| (-663) (QUOTE (-1145)))) (-3850 (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (-12 (|HasCategory| (-663) (QUOTE (-335))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-348)))) (-3850 (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (-12 (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (QUOTE (-869)))) (-12 (|HasCategory| (-663) (QUOTE (-335))) (|HasCategory| (-663) (QUOTE (-869))))) (|HasCategory| (-663) (QUOTE (-525))) (-12 (|HasCategory| (-663) (QUOTE (-1013))) (|HasCategory| (-663) (QUOTE (-1145)))) (|HasCategory| (-663) (QUOTE (-1013))) (-3850 (|HasCategory| (-663) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-663) (QUOTE (-348)))) (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869))) (-3850 (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-348)))) (-3850 (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-533)))) (-12 (|HasCategory| (-663) (QUOTE (-219))) (|HasCategory| (-663) (QUOTE (-348)))) (-12 (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| (-663) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-663) (QUOTE (-811))) (|HasCategory| (-663) (QUOTE (-533))) (|HasAttribute| (-663) (QUOTE -4309)) (|HasAttribute| (-663) (QUOTE -4306)) (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-139)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-335))))) -(-659 S) +((-4320 . T) (-4325 |has| (-673) (-355)) (-4319 |has| (-673) (-355)) (-3247 . T) (-4326 |has| (-673) (-6 -4326)) (-4323 |has| (-673) (-6 -4323)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-673) (QUOTE (-145))) (|HasCategory| (-673) (QUOTE (-143))) (|HasCategory| (-673) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-673) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-673) (QUOTE (-360))) (|HasCategory| (-673) (QUOTE (-355))) (|HasCategory| (-673) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-673) (QUOTE (-226))) (-1524 (|HasCategory| (-673) (QUOTE (-355))) (|HasCategory| (-673) (QUOTE (-341)))) (|HasCategory| (-673) (QUOTE (-341))) (|HasCategory| (-673) (LIST (QUOTE -278) (QUOTE (-673)) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -301) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-673) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-673) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-673) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (-1524 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-355))) (|HasCategory| (-673) (QUOTE (-341)))) (|HasCategory| (-673) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-673) (QUOTE (-991))) (|HasCategory| (-673) (QUOTE (-1157))) (-12 (|HasCategory| (-673) (QUOTE (-971))) (|HasCategory| (-673) (QUOTE (-1157)))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-355))) (-12 (|HasCategory| (-673) (QUOTE (-341))) (|HasCategory| (-673) (QUOTE (-878))))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (-12 (|HasCategory| (-673) (QUOTE (-355))) (|HasCategory| (-673) (QUOTE (-878)))) (-12 (|HasCategory| (-673) (QUOTE (-341))) (|HasCategory| (-673) (QUOTE (-878))))) (|HasCategory| (-673) (QUOTE (-533))) (-12 (|HasCategory| (-673) (QUOTE (-1025))) (|HasCategory| (-673) (QUOTE (-1157)))) (|HasCategory| (-673) (QUOTE (-1025))) (-1524 (|HasCategory| (-673) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-673) (QUOTE (-355)))) (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-355)))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-540)))) (-12 (|HasCategory| (-673) (QUOTE (-226))) (|HasCategory| (-673) (QUOTE (-355)))) (-12 (|HasCategory| (-673) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-673) (QUOTE (-355)))) (|HasCategory| (-673) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-673) (QUOTE (-821))) (|HasCategory| (-673) (QUOTE (-540))) (|HasAttribute| (-673) (QUOTE -4326)) (|HasAttribute| (-673) (QUOTE -4323)) (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-143)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-341))))) +(-669 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4311 . T) (-2337 . T)) +((-4328 . T) (-2409 . T)) NIL -(-660 U) +(-670 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-661) -((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) +(-671) +((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-662 OV E -3395 PG) +(-672 OV E -1426 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-663) +(-673) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4088 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-2439 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-664 R) +(-674 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-665) +(-675) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4309 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4326 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-666 S D1 D2 I) +(-676 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-667 S) +(-677 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-668 S) +(-678 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-669 S) +(-679 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-670 S T$) +(-680 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-671 S -2969 I) +(-681 S -3296 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-672 E OV R P) +(-682 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-673 R) +(-683 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4304 . T) (-4305 . T) (-4307 . T)) +((-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-674 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-684 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-675) +(-685) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-676 R |Mod| -2125 -3832 |exactQuo|) +(-686 R |Mod| -3037 -2913 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-677 R |Rep|) +(-687 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4306 |has| |#1| (-348)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1033) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-335))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-678 IS E |ff|) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4323 |has| |#1| (-355)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-341))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-688 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-679 R M) +(-689 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141)))) -(-680 R |Mod| -2125 -3832 |exactQuo|) +((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) +(-690 R |Mod| -3037 -2913 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4307 . T)) +((-4324 . T)) NIL -(-681 S R) +(-691 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-682 R) +(-692 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4305 . T) (-4304 . T)) +((-4322 . T) (-4321 . T)) NIL -(-683 -3395) +(-693 -1426) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4307 . T)) +((-4324 . T)) NIL -(-684 S) +(-694 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-685) +(-695) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-686 S) +(-696 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-687) +(-697) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-688 S R UP) +(-698 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-353)))) -(-689 R UP) +((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-360)))) +(-699 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4303 |has| |#1| (-348)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 |has| |#1| (-355)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-690 S) +(-700 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-691) +(-701) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-692 -3395 UP) +(-702 -1426 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-693 |VarSet| E1 E2 R S PR PS) +(-703 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-694 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-704 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-695 E OV R PPR) +(-705 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-696 |vl| R) +(-706 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-869))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-697 E OV R PRF) +(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-707 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-698 E OV R P) +(-708 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-699 R S M) +(-709 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-700 R M) +(-710 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-811)))) -(-701 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4310 . T) (-4300 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-702 S) +((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-821)))) +(-711 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4300 . T) (-4311 . T) (-2337 . T)) +((-4317 . T) (-4328 . T) (-2409 . T)) NIL -(-703) +(-712 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-4327 . T) (-4317 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-713) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-704 S) +(-714 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-705 |Coef| |Var|) +(-715 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4305 . T) (-4304 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4322 . T) (-4321 . T) (-4324 . T)) NIL -(-706 OV E R P) +(-716 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-707 E OV R P) +(-717 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-708 S R) +(-718 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-709 R) +(-719 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4305 . T) (-4304 . T)) +((-4322 . T) (-4321 . T)) NIL -(-710) +(-720) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-711) +(-721) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-712) +(-722) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-713) +(-723) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-714) +(-724) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-715) +(-725) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-716) +(-726) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-717) +(-727) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-718) +(-728) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-719) +(-729) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-720) +(-730) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-721) +(-731) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-722) +(-732) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-723) +(-733) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-724) +(-734) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-725 S) +(-735 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-726) +(-736) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-727 S) +(-737 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-728) +(-738) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-729 |Par|) +(-739 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-730 -3395) +(-740 -1426) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-731 P -3395) +(-741 P -1426) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-732 UP -3395) +(-742 UP -1426) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-733) +(-743) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-734 R) +(-744 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-735) +(-745) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4312 "*") . T)) +(((-4329 "*") . T)) NIL -(-736 R -3395) +(-746 R -1426) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-737) -((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) +(-747 S) +((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-738 S) -((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) +(-748) +((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-739 R |PolR| E |PolE|) +(-749 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-740 R E V P TS) +(-750 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-741 -3395 |ExtF| |SUEx| |ExtP| |n|) +(-751 -1426 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-742 BP E OV R P) +(-752 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-743 |Par|) +(-753 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-744 R |VarSet|) +(-754 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123))))) (-3850 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))))) (-3850 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (-3636 (|HasCategory| |#1| (QUOTE (-525)))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-526))))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-526))))))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-745 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4306 |has| |#1| (-348)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1033) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-746 R S) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (-3958 (|HasCategory| |#1| (QUOTE (-533)))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-548))))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-548))))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-755 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-747 R) +(-756 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4323 |has| |#1| (-355)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-757 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) -(-748 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) +(-758 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-749 S) +(-759 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-163)))) -(-750) +((-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-169)))) +(-760) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-751) +(-761) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-752) +(-762) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-753) +(-763) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-754 |Curve|) +(-764 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-755) +(-765) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-756) +(-766) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-757) +(-767) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-758) +(-768) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-759 S R) -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) +(-769) +((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL -((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-353)))) -(-760 R) -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-761) -((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) +(-770 S R) +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL +((|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-360)))) +(-771 R) +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) +((-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-762 R) -((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (-3850 (|HasCategory| (-954 |#1|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-954 |#1|) (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-954 |#1|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-954 |#1|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) -(-763 -3850 R OS S) +(-772 -1524 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-764) +(-773 R) +((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (-1524 (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) +(-774) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-765 R -3395 L) +(-775 R -1426 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-766 R -3395) -((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) +(-776 R -1426) +((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-767) +(-777) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-768 R -3395) +(-778 R -1426) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-769) +(-779) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-770 -3395 UP UPUP R) +(-780 -1426 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-771 -3395 UP L LQ) +(-781 -1426 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-772) +(-782) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-773 -3395 UP L LQ) +(-783 -1426 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-774 -3395 UP) -((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) +(-784 -1426 UP) +((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-775 -3395 L UP A LO) +(-785 -1426 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-776 -3395 UP) +(-786 -1426 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-777 -3395 LO) +(-787 -1426 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-778 -3395 LODO) +(-788 -1426 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-779 -2916 S |f|) +(-789 -3670 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4304 |has| |#2| (-1004)) (-4305 |has| |#2| (-1004)) (-4307 |has| |#2| (-6 -4307)) ((-4312 "*") |has| |#2| (-163)) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-757))) (-3850 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809)))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4307)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) -(-780 R) +((-4321 |has| |#2| (-1016)) (-4322 |has| |#2| (-1016)) (-4324 |has| |#2| (-6 -4324)) ((-4329 "*") |has| |#2| (-169)) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-360)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4324)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) +(-790 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-781 |Kernels| R |var|) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-791 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4312 "*") |has| |#2| (-348)) (-4303 |has| |#2| (-348)) (-4308 |has| |#2| (-348)) (-4302 |has| |#2| (-348)) (-4307 . T) (-4305 . T) (-4304 . T)) -((|HasCategory| |#2| (QUOTE (-348)))) -(-782 S) +(((-4329 "*") |has| |#2| (-355)) (-4320 |has| |#2| (-355)) (-4325 |has| |#2| (-355)) (-4319 |has| |#2| (-355)) (-4324 . T) (-4322 . T) (-4321 . T)) +((|HasCategory| |#2| (QUOTE (-355)))) +(-792 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-783 S) +(-793 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-784) +(-794) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -NIL -(-785) -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) -NIL +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-786) +(-795) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-787) +(-796) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-788) +(-797) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-789) -((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) +(-798) +((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-790) -((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) +(-799) +((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-791 R) +(-800 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-792 P R) +(-801 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-219)))) -(-793) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-226)))) +(-802) +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) +NIL +NIL +(-803) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-794 S) +(-804 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4310 . T) (-4300 . T) (-4311 . T) (-2337 . T)) +((-4327 . T) (-4317 . T) (-4328 . T) (-2409 . T)) NIL -(-795) +(-805) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-796 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4307 |has| |#1| (-809))) -((|HasCategory| |#1| (QUOTE (-809))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-809)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-525))) (-3850 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-797 R S) +(-806 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-798 R) +(-807 R) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4324 |has| |#1| (-819))) +((|HasCategory| |#1| (QUOTE (-819))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-533))) (-1524 (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-808 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141)))) -(-799) +((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) +(-809) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-800) +(-810) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-801) +(-811) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-802) +(-812) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-803 R) -((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4307 |has| |#1| (-809))) -((|HasCategory| |#1| (QUOTE (-809))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-809)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-525))) (-3850 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-804 R S) +(-813 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-805) +(-814 R) +((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) +((-4324 |has| |#1| (-819))) +((|HasCategory| |#1| (QUOTE (-819))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-533))) (-1524 (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-815) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-806 -2916 S) +(-816 -3670 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-807) +(-817) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-808 S) +(-818 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-809) +(-819) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4307 . T)) +((-4324 . T)) NIL -(-810 S) +(-820 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-811) +(-821) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-812 S R) +(-822 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163)))) -(-813 R) +((|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169)))) +(-823 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4304 . T) (-4305 . T) (-4307 . T)) +((-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-814 R C) +(-824 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) -(-815 R |sigma| -3556) +((|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) +(-825 R |sigma| -1605) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-348)))) -(-816 |x| R |sigma| -3556) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-355)))) +(-826 |x| R |sigma| -1605) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-348)))) -(-817 R) +((-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-355)))) +(-827 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) -(-818) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) +(-828) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-819) +(-829) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-820) -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) -NIL -NIL -(-821 S) +(-830 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-822) +(-831) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-823) +(-832) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-824 |VariableList|) +(-833) +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +NIL +NIL +(-834 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-825 R |vl| |wl| |wtlevel|) +(-835 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348)))) -(-826 R PS UP) +((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355)))) +(-836 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-827 R |x| |pt|) +(-837 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-828 |p|) -((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -NIL -(-829 |p|) +(-838 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +NIL +(-839 |p|) +((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-830 |p|) +(-840 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-828 |#1|) (QUOTE (-869))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-828 |#1|) (QUOTE (-139))) (|HasCategory| (-828 |#1|) (QUOTE (-141))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-828 |#1|) (QUOTE (-977))) (|HasCategory| (-828 |#1|) (QUOTE (-784))) (-3850 (|HasCategory| (-828 |#1|) (QUOTE (-784))) (|HasCategory| (-828 |#1|) (QUOTE (-811)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-828 |#1|) (QUOTE (-1099))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-828 |#1|) (QUOTE (-219))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -828) (|devaluate| |#1|)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -828) (|devaluate| |#1|)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -271) (LIST (QUOTE -828) (|devaluate| |#1|)) (LIST (QUOTE -828) (|devaluate| |#1|)))) (|HasCategory| (-828 |#1|) (QUOTE (-292))) (|HasCategory| (-828 |#1|) (QUOTE (-525))) (|HasCategory| (-828 |#1|) (QUOTE (-811))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-828 |#1|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-828 |#1|) (QUOTE (-869)))) (|HasCategory| (-828 |#1|) (QUOTE (-139))))) -(-831 |p| PADIC) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-839 |#1|) (QUOTE (-878))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-839 |#1|) (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-145))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-839 |#1|) (QUOTE (-991))) (|HasCategory| (-839 |#1|) (QUOTE (-794))) (-1524 (|HasCategory| (-839 |#1|) (QUOTE (-794))) (|HasCategory| (-839 |#1|) (QUOTE (-821)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-839 |#1|) (QUOTE (-1111))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-839 |#1|) (QUOTE (-226))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -301) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -278) (LIST (QUOTE -839) (|devaluate| |#1|)) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (QUOTE (-299))) (|HasCategory| (-839 |#1|) (QUOTE (-533))) (|HasCategory| (-839 |#1|) (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-878)))) (|HasCategory| (-839 |#1|) (QUOTE (-143))))) +(-841 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-784))) (-3850 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-811)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -271) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-811))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-832 S T$) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-794))) (-1524 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-842 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3850 (-12 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1052))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))))) -(-833) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))))) +(-843) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-834) +(-844) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-835 CF1 CF2) +(-845 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-836 |ComponentFunction|) +(-846 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-837 CF1 CF2) +(-847 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-838 |ComponentFunction|) +(-848 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-839) +(-849) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-840 CF1 CF2) +(-850 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-841 |ComponentFunction|) +(-851 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-842) +(-852) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-843 R) +(-853 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-844 R S L) +(-854 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-845 S) +(-855 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-846 |Base| |Subject| |Pat|) +(-856 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3636 (|HasCategory| |#2| (QUOTE (-1004)))) (-3636 (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (-3636 (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123)))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123))))) -(-847 R S) -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) -NIL -NIL -(-848 R A B) +((-12 (-3958 (|HasCategory| |#2| (QUOTE (-1016)))) (-3958 (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (-3958 (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) +(-857 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-849 R) -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +(-858 R S) +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-850 R -2969) +(-859 R -3296) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-851 R S) +(-860 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-852 |VarSet|) +(-861 R) +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +NIL +NIL +(-862 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-853 UP R) +(-863 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-854) +(-864) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-855 UP -3395) +(-865 UP -1426) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-856) +(-866) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-857) +(-867) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-858 A S) +(-868 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-859 S) +(-869 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4307 . T)) +((-4324 . T)) NIL -(-860 S) +(-870 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-861 S) -((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4307 . T)) -((-3850 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-811)))) -(-862 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-871 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-863 S) +(-872 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4307 . T)) +((-4324 . T)) NIL -(-864 S) +(-873 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-865 |p|) -((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| $ (QUOTE (-141))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| $ (QUOTE (-353)))) -(-866 R E |VarSet| S) +(-874 S) +((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) +((-4324 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-821)))) +(-875 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-867 R S) +(-876 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-868 S) +(-877 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-139)))) -(-869) +((|HasCategory| |#1| (QUOTE (-143)))) +(-878) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-870 R0 -3395 UP UPUP R) +(-879 |p|) +((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-360)))) +(-880 R0 -1426 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-871 UP UPUP R) +(-881 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-872 UP UPUP) +(-882 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-873 R) +(-883 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-874 R) +(-884 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-875 E OV R P) +(-885 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-876) +(-886) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-877 -3395) +(-887 -1426) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-878) -((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4312 "*") . T)) -NIL -(-879 R) +(-888 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-880) +(-889) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -NIL -(-881 |xx| -3395) -((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL +(-890) +((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) +(((-4329 "*") . T)) NIL -(-882 -3395 P) +(-891 -1426 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-883 R |Var| |Expon| GR) -((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) +(-892 |xx| -1426) +((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-884) -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) +(-893 R |Var| |Expon| GR) +((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-885 S) +(-894 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-886) +(-895) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-887) -((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) +(-896) +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-888) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +(-897) +((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-889 R -3395) +(-898 R -1426) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-890 S A B) +(-899) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +NIL +NIL +(-900 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-891 S R -3395) +(-901 S R -1426) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-892 I) +(-902 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-893 S E) +(-903 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-894 S R L) +(-904 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-895 S E V R P) +(-905 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -845) (|devaluate| |#1|)))) -(-896 -2969) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) +((|HasCategory| |#3| (LIST (QUOTE -855) (|devaluate| |#1|)))) +(-906 R -1426 -3296) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-897 R -3395 -2969) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) +(-907 -3296) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-898 S R Q) +(-908 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-899 S) +(-909 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-900 S R P) +(-910 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-901) +(-911) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-902 R) +(-912 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-903 |lv| R) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-913 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-904 |TheField| |ThePols|) +(-914 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-809)))) -(-905 R) -((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1123) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1123) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1123) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1123) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1123) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-906 R S) +((|HasCategory| |#1| (QUOTE (-819)))) +(-915 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-907 |x| R) +(-916 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-908 S R E |VarSet|) +(-917 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-869))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#4| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#4| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-811)))) -(-909 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-878))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#4| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#4| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#4| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-821)))) +(-918 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) NIL -(-910 E V R P -3395) +(-919 E V R P -1426) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-911 E |Vars| R P S) +(-920 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-912 E V R P -3395) +(-921 R) +((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-922 E V R P -1426) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-436)))) -(-913) +((|HasCategory| |#3| (QUOTE (-443)))) +(-923) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-914) +(-924) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-915 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-129)))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308))) -(-916 R L) +(-925 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-917 S) -((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-918 A B) +(-926 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-919) +(-927 S) +((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-928) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-920 -3395) +(-929 -1426) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-921 I) +(-930 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-922) +(-931) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-923 A B) +(-932 R E) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-130)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325))) +(-933 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4307 -12 (|has| |#2| (-457)) (|has| |#1| (-457)))) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-811))))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-457)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-457)))) (-12 (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-691))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-353)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-457)))) (-12 (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-691))))) (-12 (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-691)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-811))))) -(-924) +((-4324 -12 (|has| |#2| (-464)) (|has| |#1| (-464)))) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-821))))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-464)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-464)))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-360)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-464)))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-821))))) +(-934) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-925 T$) +(-935 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-926) +((|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-936) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-927 S) +(-937 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4310 . T) (-4311 . T) (-2337 . T)) +((-4327 . T) (-4328 . T) (-2409 . T)) NIL -(-928 R |polR|) +(-938 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-436)))) -(-929) +((|HasCategory| |#1| (QUOTE (-443)))) +(-939) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-930) +(-940) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-931 S |Coef| |Expon| |Var|) +(-941 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-932 |Coef| |Expon| |Var|) +(-942 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-933) +(-943) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-934 S R E |VarSet| P) +(-944 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-533)))) -(-935 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-540)))) +(-945 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4310 . T) (-2337 . T)) +((-4327 . T) (-2409 . T)) NIL -(-936 R E V P) +(-946 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-436)))) -(-937 K) +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-443)))) +(-947 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-938 |VarSet| E RC P) +(-948 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-939 R) +(-949 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-940 R1 R2) +(-950 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-941 R) +(-951 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-942 K) +(-952 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-943 R E OV PPR) +(-953 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-944 K R UP -3395) +(-954 K R UP -1426) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-945 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) -NIL -((-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-292))))) -(-946 |vl| |nv|) +(-955 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-947 R E V P TS) +(-956 R |Var| |Expon| |Dpoly|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) +NIL +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-299))))) +(-957 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-948) +(-958) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-949 A S) +(-959 A B R S) +((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) +NIL +NIL +(-960 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-1099)))) -(-950 S) +((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1111)))) +(-961 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2337 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-2409 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-951 A B R S) -((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) +(-962 |n| K) +((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-952 |n| K) -((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) +(-963) +((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-953 S) +(-964 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4310 . T) (-4311 . T) (-2337 . T)) +((-4327 . T) (-4328 . T) (-2409 . T)) NIL -(-954 R) -((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4303 |has| |#1| (-275)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-275))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-275))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-525))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) -(-955 S R) +(-965 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-275)))) -(-956 R) +((|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-282)))) +(-966 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4303 |has| |#1| (-275)) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 |has| |#1| (-282)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-957 QR R QS S) +(-967 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-958 S) +(-968 R) +((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) +((-4320 |has| |#1| (-282)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-533))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355))))) +(-969 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-959 S) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-970 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-960) +(-971) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-961 -3395 UP UPUP |radicnd| |n|) +(-972 -1426 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4303 |has| (-392 |#2|) (-348)) (-4308 |has| (-392 |#2|) (-348)) (-4302 |has| (-392 |#2|) (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-392 |#2|) (QUOTE (-139))) (|HasCategory| (-392 |#2|) (QUOTE (-141))) (|HasCategory| (-392 |#2|) (QUOTE (-335))) (-3850 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (QUOTE (-335)))) (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (QUOTE (-353))) (-3850 (-12 (|HasCategory| (-392 |#2|) (QUOTE (-219))) (|HasCategory| (-392 |#2|) (QUOTE (-348)))) (|HasCategory| (-392 |#2|) (QUOTE (-335)))) (-3850 (-12 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-335))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353))) (-3850 (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 |#2|) (QUOTE (-348)))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-219))) (|HasCategory| (-392 |#2|) (QUOTE (-348))))) -(-962 |bb|) +((-4320 |has| (-399 |#2|) (-355)) (-4325 |has| (-399 |#2|) (-355)) (-4319 |has| (-399 |#2|) (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-399 |#2|) (QUOTE (-143))) (|HasCategory| (-399 |#2|) (QUOTE (-145))) (|HasCategory| (-399 |#2|) (QUOTE (-341))) (-1524 (|HasCategory| (-399 |#2|) (QUOTE (-355))) (|HasCategory| (-399 |#2|) (QUOTE (-341)))) (|HasCategory| (-399 |#2|) (QUOTE (-355))) (|HasCategory| (-399 |#2|) (QUOTE (-360))) (-1524 (-12 (|HasCategory| (-399 |#2|) (QUOTE (-226))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (|HasCategory| (-399 |#2|) (QUOTE (-341)))) (-1524 (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-341))))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360))) (-1524 (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (QUOTE (-226))) (|HasCategory| (-399 |#2|) (QUOTE (-355))))) +(-973 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-526) (QUOTE (-869))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-526) (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-141))) (|HasCategory| (-526) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-977))) (|HasCategory| (-526) (QUOTE (-784))) (-3850 (|HasCategory| (-526) (QUOTE (-784))) (|HasCategory| (-526) (QUOTE (-811)))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-1099))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-526) (QUOTE (-219))) (|HasCategory| (-526) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-526) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -294) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -271) (QUOTE (-526)) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-292))) (|HasCategory| (-526) (QUOTE (-525))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-526) (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (|HasCategory| (-526) (QUOTE (-139))))) -(-963) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-548) (QUOTE (-878))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-548) (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-145))) (|HasCategory| (-548) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-991))) (|HasCategory| (-548) (QUOTE (-794))) (-1524 (|HasCategory| (-548) (QUOTE (-794))) (|HasCategory| (-548) (QUOTE (-821)))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-1111))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-548) (QUOTE (-226))) (|HasCategory| (-548) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-548) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -301) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -278) (QUOTE (-548)) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-299))) (|HasCategory| (-548) (QUOTE (-533))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-548) (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (|HasCategory| (-548) (QUOTE (-143))))) +(-974) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-964) +(-975) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-965 RP) +(-976 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-966 S) +(-977 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-967 A S) +(-978 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4311)) (|HasCategory| |#2| (QUOTE (-1052)))) -(-968 S) +((|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#2| (QUOTE (-1063)))) +(-979 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2337 . T)) +((-2409 . T)) NIL -(-969 S) +(-980 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-970) +(-981) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4303 . T) (-4308 . T) (-4302 . T) (-4305 . T) (-4304 . T) ((-4312 "*") . T) (-4307 . T)) +((-4320 . T) (-4325 . T) (-4319 . T) (-4322 . T) (-4321 . T) ((-4329 "*") . T) (-4324 . T)) NIL -(-971 R -3395) +(-982 R -1426) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-972 R -3395) +(-983 R -1426) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-973 -3395 UP) +(-984 -1426 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-974 -3395 UP) +(-985 -1426 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-975 S) +(-986 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-976 F1 UP UPUP R F2) +(-987 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-977) -((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) +(-988) +((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|Syntax|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|Syntax|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-978 |Pol|) +(-989 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-979 |Pol|) +(-990 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-980) +(-991) +((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) +NIL +NIL +(-992) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-981 |TheField|) +(-993 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4303 . T) (-4308 . T) (-4302 . T) (-4305 . T) (-4304 . T) ((-4312 "*") . T) (-4307 . T)) -((-3850 (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-392 (-526)) (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-392 (-526)) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 (-526)) (LIST (QUOTE -995) (QUOTE (-526))))) -(-982 -3395 L) +((-4320 . T) (-4325 . T) (-4319 . T) (-4322 . T) (-4321 . T) ((-4329 "*") . T) (-4324 . T)) +((-1524 (|HasCategory| (-399 (-548)) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-399 (-548)) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 (-548)) (LIST (QUOTE -1007) (QUOTE (-548))))) +(-994 -1426 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-983 S) +(-995 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1052)))) -(-984 R E V P) +((|HasCategory| |#1| (QUOTE (-1063)))) +(-996 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) -(-985) -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) -NIL -NIL -(-986 R) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +(-997 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4312 "*")))) -(-987 R) +((|HasAttribute| |#1| (QUOTE (-4329 "*")))) +(-998 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-292)))) -(-988 S) +((-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-299)))) +(-999 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-989 S) +(-1000) +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) +NIL +NIL +(-1001 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-990 S) +(-1002 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-991 -3395 |Expon| |VarSet| |FPol| |LFPol|) +(-1003 -1426 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-992) +(-1004) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1123))) (LIST (QUOTE |:|) (QUOTE -2164) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -294) (QUOTE (-50))))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052))) (|HasCategory| (-1123) (QUOTE (-811))) (|HasCategory| (-50) (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823))))) -(-993) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -1657) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -301) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-1135) (QUOTE (-821))) (|HasCategory| (-52) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832))))) +(-1005) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-994 A S) +(-1006 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-995 S) +(-1007 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-996 Q R) +(-1008 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-997 R) -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) -NIL -NIL -(-998) +(-1009) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-999 UP) +(-1010 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1000 R) +(-1011 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1001 R |ls|) +(-1012 R) +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +NIL +NIL +(-1013 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| (-744 |#1| (-824 |#2|)) (QUOTE (-1052))) (|HasCategory| (-744 |#1| (-824 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -744) (|devaluate| |#1|) (LIST (QUOTE -824) (|devaluate| |#2|)))))) (|HasCategory| (-744 |#1| (-824 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-744 |#1| (-824 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| (-824 |#2|) (QUOTE (-353))) (|HasCategory| (-744 |#1| (-824 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-1002) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| (-754 |#1| (-834 |#2|)) (QUOTE (-1063))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -754) (|devaluate| |#1|) (LIST (QUOTE -834) (|devaluate| |#2|)))))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-754 |#1| (-834 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| (-834 |#2|) (QUOTE (-360))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-1014) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1003 S) +(-1015 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1004) +(-1016) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4307 . T)) +((-4324 . T)) NIL -(-1005 |xx| -3395) +(-1017 |xx| -1426) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1006 S |m| |n| R |Row| |Col|) +(-1018 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-292))) (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (QUOTE (-533))) (|HasCategory| |#4| (QUOTE (-163)))) -(-1007 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-299))) (|HasCategory| |#4| (QUOTE (-355))) (|HasCategory| |#4| (QUOTE (-540))) (|HasCategory| |#4| (QUOTE (-169)))) +(-1019 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4310 . T) (-2337 . T) (-4305 . T) (-4304 . T)) +((-4327 . T) (-2409 . T) (-4322 . T) (-4321 . T)) NIL -(-1008 |m| |n| R) +(-1020 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4310 . T) (-4305 . T) (-4304 . T)) -((-3850 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348)))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-292))) (|HasCategory| |#3| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-823)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))))) -(-1009 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4327 . T) (-4322 . T) (-4321 . T)) +((-1524 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355)))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (QUOTE (-299))) (|HasCategory| |#3| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-832)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))))) +(-1021 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1010 R) +(-1022 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1011) +(-1023) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1012 S) +(-1024 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1013) +(-1025) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1014 |TheField| |ThePolDom|) +(-1026 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1015) +(-1027) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4298 . T) (-4302 . T) (-4297 . T) (-4308 . T) (-4309 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4315 . T) (-4319 . T) (-4314 . T) (-4325 . T) (-4326 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1016) +(-1028) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1123))) (LIST (QUOTE |:|) (QUOTE -2164) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -294) (QUOTE (-50))))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052))) (|HasCategory| (-1123) (QUOTE (-811))) (|HasCategory| (-50) (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823))))) -(-1017 S R E V) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -1657) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -301) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-1135) (QUOTE (-821))) (|HasCategory| (-52) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832))))) +(-1029 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-1123))))) -(-1018 R E V) +((|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-1135))))) +(-1030 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) NIL -(-1019) +(-1031) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|Syntax|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|Syntax|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1020 S |TheField| |ThePols|) +(-1032 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1021 |TheField| |ThePols|) +(-1033 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1022 R E V P TS) +(-1034 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1023 S R E V P) +(-1035 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1024 R E V P) +(-1036 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-1025 R E V P TS) +(-1037 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1026 |Base| R -3395) -((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) +(-1038 |f|) +((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1027 |f|) -((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) +(-1039 |Base| R -1426) +((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1028 |Base| R -3395) +(-1040 |Base| R -1426) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1029 R |ls|) +(-1041 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1030 R UP M) -((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4303 |has| |#1| (-348)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-335))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-335)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (QUOTE (-348))))) -(-1031 UP SAE UPA) +(-1042 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1032 UP SAE UPA) +(-1043 R UP M) +((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) +((-4320 |has| |#1| (-355)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-341))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-341)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355))))) +(-1044 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1033) +(-1045) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1034 S) +(-1046 S) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1035) +(-1047) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1036 S) +(-1048 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1037) +(-1049) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1038 R) +(-1050 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1039 R) +(-1051 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1040 S) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1052 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1041 S) -((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) -NIL -((|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#1| (QUOTE (-1052)))) -(-1042 R S) +(-1053 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-809)))) -(-1043) -((|constructor| (NIL "This domain represents segement expressions."))) -NIL +((|HasCategory| |#1| (QUOTE (-819)))) +(-1054) +((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|Syntax|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL -(-1044 S) -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1052)))) -(-1045 R S) +(-1055 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1046 S) +(-1056 S) +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) +NIL +((|HasCategory| |#1| (QUOTE (-1063)))) +(-1057 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2337 . T)) +((-2409 . T)) NIL -(-1047 S L) +(-1058 S) +((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) +NIL +((|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1063)))) +(-1059 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2337 . T)) +((-2409 . T)) NIL -(-1048 S) -((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4310 . T) (-4300 . T) (-4311 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1049 A S) +(-1060 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1050 S) +(-1061 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4300 . T) (-2337 . T)) +((-4317 . T) (-2409 . T)) NIL -(-1051 S) +(-1062 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1052) +(-1063) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1053 |m| |n|) -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) +(-1064 |m| |n|) +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1054) -((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) +(-1065 S) +((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) +((-4327 . T) (-4317 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1066 |Str| |Sym| |Int| |Flt| |Expr|) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1055 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +(-1067) +((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1056 |Str| |Sym| |Int| |Flt| |Expr|) +(-1068 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1057 R FS) +(-1069 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1058 R E V P TS) +(-1070 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1059 R E V P TS) +(-1071 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1060 R E V P) +(-1072 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-1061) +(-1073) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1062 S) +(-1074 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1063) +(-1075) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1064 |dimtot| |dim1| S) +(-1076 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4304 |has| |#3| (-1004)) (-4305 |has| |#3| (-1004)) (-4307 |has| |#3| (-6 -4307)) ((-4312 "*") |has| |#3| (-163)) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#3| (QUOTE (-348))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004)))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348)))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-757))) (-3850 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-809)))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (QUOTE (-163))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004)))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#3| (QUOTE (-1004)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#3| (QUOTE -4307)) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1065 R |x|) +((-4321 |has| |#3| (-1016)) (-4322 |has| |#3| (-1016)) (-4324 |has| |#3| (-6 -4324)) ((-4329 "*") |has| |#3| (-169)) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063)))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#3| (QUOTE (-355))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-767))) (-1524 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819)))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-169))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-1063)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-226)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-355)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-360)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-701)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-767)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-819)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#3| (QUOTE (-1016))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063)))) (|HasAttribute| |#3| (QUOTE -4324)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1077 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-436)))) -(-1066) -((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) +((|HasCategory| |#1| (QUOTE (-443)))) +(-1078 R -1426) +((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1067 R -3395) -((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1079 R) +((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1068 R) -((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1080) +((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1069) +(-1081) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1070) +(-1082) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4298 . T) (-4302 . T) (-4297 . T) (-4308 . T) (-4309 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4315 . T) (-4319 . T) (-4314 . T) (-4325 . T) (-4326 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1071 S) +(-1083 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4310 . T) (-4311 . T) (-2337 . T)) +((-4327 . T) (-4328 . T) (-2409 . T)) NIL -(-1072 S |ndim| R |Row| |Col|) +(-1084 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-348))) (|HasAttribute| |#3| (QUOTE (-4312 "*"))) (|HasCategory| |#3| (QUOTE (-163)))) -(-1073 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-355))) (|HasAttribute| |#3| (QUOTE (-4329 "*"))) (|HasCategory| |#3| (QUOTE (-169)))) +(-1085 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2337 . T) (-4310 . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-2409 . T) (-4327 . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1074 R |Row| |Col| M) +(-1086 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1075 R |VarSet|) +(-1087 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1076 |Coef| |Var| SMP) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1088 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-348)))) -(-1077 R E V P) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-355)))) +(-1089 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-1078 UP -3395) +(-1090 UP -1426) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1079 R) +(-1091 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1080 R) +(-1092 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1081 R) +(-1093 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1082 S A) +(-1094 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-811)))) -(-1083 R) +((|HasCategory| |#1| (QUOTE (-821)))) +(-1095 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1084 R) +(-1096 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1085) +(-1097) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1086) +(-1098) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1087) +(-1099) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1088 V C) +(-1100 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1089 V C) +(-1101 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-1088 |#1| |#2|) (LIST (QUOTE -294) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1088 |#1| |#2|) (QUOTE (-1052)))) (|HasCategory| (-1088 |#1| |#2|) (QUOTE (-1052))) (-3850 (-12 (|HasCategory| (-1088 |#1| |#2|) (LIST (QUOTE -294) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1088 |#1| |#2|) (QUOTE (-1052)))) (|HasCategory| (-1088 |#1| |#2|) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-1088 |#1| |#2|) (LIST (QUOTE -583) (QUOTE (-823))))) -(-1090 |ndim| R) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -301) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063))) (-1524 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -592) (QUOTE (-832)))) (-12 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -301) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063))))) (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -592) (QUOTE (-832))))) +(-1102 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4307 . T) (-4299 |has| |#2| (-6 (-4312 "*"))) (-4310 . T) (-4304 . T) (-4305 . T)) -((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-219))) (|HasAttribute| |#2| (QUOTE (-4312 "*"))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasAttribute| |#2| (QUOTE (-4312 "*"))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-163)))) -(-1091 S) +((-4324 . T) (-4316 |has| |#2| (-6 (-4329 "*"))) (-4327 . T) (-4321 . T) (-4322 . T)) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (-1524 (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-169)))) +(-1103 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1092) +(-1104) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-1093 R E V P TS) +(-1105 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1094 R E V P) +(-1106 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1095 S) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1107 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1096 A S) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1108 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1097 S) +(-1109 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2337 . T)) +((-2409 . T)) NIL -(-1098 |Key| |Ent| |dent|) +(-1110 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-811))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-1099) +((-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-1111) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1100 |Coef|) +(-1112 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1101 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4311 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1102 S) +(-1113 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1103 A B) +(-1114 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1104 A B C) +(-1115 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1105) +(-1116 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1117) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-1106) +(-1118) NIL -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-138) (QUOTE (-1052))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -583) (QUOTE (-823))))) -(-1107 |Entry|) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-832))))) +(-1119 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1106))) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052))) (|HasCategory| (-1106) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-1108 A) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#1|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| (-1118) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-1120 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) -(-1109 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +((|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) +(-1121 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1110 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +(-1122 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1111 R UP) +(-1123 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-292)))) -(-1112 |n| R) +((|HasCategory| |#1| (QUOTE (-299)))) +(-1124 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1113 S1 S2) +(-1125 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1114 |Coef| |var| |cen|) +(-1126 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4312 "*") -3850 (-3155 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-784))) (|has| |#1| (-163)) (-3155 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-869)))) (-4303 -3850 (-3155 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-784))) (|has| |#1| (-533)) (-3155 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-869)))) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -271) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-141)))) (|HasCategory| |#1| (QUOTE (-141)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-219)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|))))) (|HasCategory| (-526) (QUOTE (-1063))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-977)))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-811))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -271) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-292)))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-139))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-163)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-139)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1115 R -3395) +(((-4329 "*") -1524 (-1723 (|has| |#1| (-355)) (|has| (-1133 |#1| |#2| |#3|) (-794))) (|has| |#1| (-169)) (-1723 (|has| |#1| (-355)) (|has| (-1133 |#1| |#2| |#3|) (-878)))) (-4320 -1524 (-1723 (|has| |#1| (-355)) (|has| (-1133 |#1| |#2| |#3|) (-794))) (|has| |#1| (-540)) (-1723 (|has| |#1| (-355)) (|has| (-1133 |#1| |#2| |#3|) (-878)))) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -301) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|)))))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (|HasCategory| (-548) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355))))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -301) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1127 R -1426) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1116 R) +(-1128 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1117 R) -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4306 |has| |#1| (-348)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1033) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1118 R S) +(-1129 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1119 E OV R P) +(-1130 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1120 |Coef| |var| |cen|) +(-1131 R) +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4323 |has| |#1| (-355)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1132 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) -(-1121 |Coef| |var| |cen|) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(-1133 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-735)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-735)) (|devaluate| |#1|)))) (|HasCategory| (-735) (QUOTE (-1063))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-735))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-735))))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) -(-1122) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|)))) (|HasCategory| (-745) (QUOTE (-1075))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(-1134) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1123) +(-1135) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1124 R) +(-1136 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1125 R) +(-1137 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| (-930) (QUOTE (-129)))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308))) -(-1126) -((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| (-940) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325))) +(-1138) +((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1127) +(-1139) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1128) +(-1140) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1129 R) +(-1141 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1130) +(-1142) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1131 S) +(-1143 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1132 |Key| |Entry|) -((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4310 . T) (-4311 . T)) -((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) -(-1133 S) +(-1144 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1134 R) +(-1145 |Key| |Entry|) +((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) +((-4327 . T) (-4328 . T)) +((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +(-1146 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1135 S |Key| |Entry|) +(-1147 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1136 |Key| |Entry|) +(-1148 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4311 . T) (-2337 . T)) +((-4328 . T) (-2409 . T)) NIL -(-1137 |Key| |Entry|) +(-1149 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1138) +(-1150) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1139) -((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) +(-1151 S) +((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1140 S) -((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) +(-1152) +((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1141) +(-1153) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1142 R) +(-1154 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1143) +(-1155) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1144 S) +(-1156 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1145) +(-1157) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1146 S) +(-1158 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1147 S) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1159 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1148) +(-1160) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1149 R -3395) +(-1161 R -1426) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1150 R |Row| |Col| M) +(-1162 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1151 R -3395) +(-1163 R -1426) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -845) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -845) (|devaluate| |#1|))))) -(-1152 |Coef|) -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-348)))) -(-1153 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -855) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -855) (|devaluate| |#1|))))) +(-1164 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-353)))) -(-1154 R E V P) +((|HasCategory| |#4| (QUOTE (-360)))) +(-1165 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-1155 |Curve|) +(-1166 |Coef|) +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-355)))) +(-1167 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1156) +(-1168) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1157 S) +(-1169 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1158 -3395) +((|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1170 -1426) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1159) -((|constructor| (NIL "The fundamental Type."))) -((-2337 . T)) -NIL -(-1160) +(-1171) ((|constructor| (NIL "This domain represents a type AST.")) (|coerce| (($ (|Syntax|)) "s::TypeAst injects \\spad{`s'} into the TypeAst domain."))) NIL NIL -(-1161 S) +(-1172) +((|constructor| (NIL "The fundamental Type."))) +((-2409 . T)) +NIL +(-1173 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-811)))) -(-1162) +((|HasCategory| |#1| (QUOTE (-821)))) +(-1174) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1163 S) +(-1175 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1164) +(-1176) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1165 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4312 "*") -3850 (-3155 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-784))) (|has| |#1| (-163)) (-3155 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-869)))) (-4303 -3850 (-3155 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-784))) (|has| |#1| (-533)) (-3155 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-869)))) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -271) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-141)))) (|HasCategory| |#1| (QUOTE (-141)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-219)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|))))) (|HasCategory| (-526) (QUOTE (-1063))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-977)))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-811))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -271) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-292)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-139))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (|HasCategory| |#1| (QUOTE (-163)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-139)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1166 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1177 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1167 |Coef|) +(-1178 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1168 S |Coef| UTS) +(-1179 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-348)))) -(-1169 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-355)))) +(-1180 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-2337 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-2409 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1170 |Coef| UTS) +(-1181 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -271) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-139))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-139))))) (-3850 (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-141))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))))) (-3850 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-219))))) (|HasCategory| (-526) (QUOTE (-1063))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-977)))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-784)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-811))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -271) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-811)))) (|HasCategory| |#2| (QUOTE (-869))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-139)))))) -(-1171 ZP) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-143))))) (-1524 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-145))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-226)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (|HasCategory| (-548) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-991)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-794)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-821))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-878))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-143)))))) +(-1182 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4329 "*") -1524 (-1723 (|has| |#1| (-355)) (|has| (-1210 |#1| |#2| |#3|) (-794))) (|has| |#1| (-169)) (-1723 (|has| |#1| (-355)) (|has| (-1210 |#1| |#2| |#3|) (-878)))) (-4320 -1524 (-1723 (|has| |#1| (-355)) (|has| (-1210 |#1| |#2| |#3|) (-794))) (|has| |#1| (-540)) (-1723 (|has| |#1| (-355)) (|has| (-1210 |#1| |#2| |#3|) (-878)))) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +((-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -301) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|)))))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (|HasCategory| (-548) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355))))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -301) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1183 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1172 S) -((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) -NIL -((|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#1| (QUOTE (-1052)))) -(-1173 R S) +(-1184 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-809)))) -(-1174 |x| R) -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4306 |has| |#2| (-348)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1033) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#2| (QUOTE (-219))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-1175 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-819)))) +(-1185 S) +((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) +NIL +((|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1063)))) +(-1186 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1176 R Q UP) +(-1187 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1177 R UP) +(-1188 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1178 R UP) +(-1189 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1179 R U) +(-1190 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1180 S R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +(-1191 |x| R) +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) +(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4323 |has| |#2| (-355)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#2| (QUOTE (-226))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-1192 R PR S PS) +((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1099)))) -(-1181 R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4306 |has| |#1| (-348)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) NIL -(-1182 R PR S PS) -((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) +(-1193 S R) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1111)))) +(-1194 R) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4323 |has| |#1| (-355)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) NIL -(-1183 S |Coef| |Expon|) +(-1195 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1063))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4274) (LIST (|devaluate| |#2|) (QUOTE (-1123)))))) -(-1184 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1075))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3743) (LIST (|devaluate| |#2|) (QUOTE (-1135)))))) +(-1196 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1185 RC P) -((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) +(-1197 RC P) +((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1186 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) -(-1187 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1198 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1188 |Coef|) +(-1199 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1189 S |Coef| ULS) +(-1200 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1190 |Coef| ULS) +(-1201 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1191 |Coef| ULS) +(-1202 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) -(-1192 R FE |var| |cen|) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) +(-1203 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(-1204 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4312 "*") |has| (-1186 |#2| |#3| |#4|) (-163)) (-4303 |has| (-1186 |#2| |#3| |#4|) (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-139))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-141))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-163))) (|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-348))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-436))) (-3850 (|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-533)))) -(-1193 A S) +(((-4329 "*") |has| (-1203 |#2| |#3| |#4|) (-169)) (-4320 |has| (-1203 |#2| |#3| |#4|) (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-169))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-355))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-443))) (-1524 (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-540)))) +(-1205 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4311))) -(-1194 S) +((|HasAttribute| |#1| (QUOTE -4328))) +(-1206 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2337 . T)) +((-2409 . T)) NIL -(-1195 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-735)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-735)) (|devaluate| |#1|)))) (|HasCategory| (-735) (QUOTE (-1063))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-735))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-735))))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) -(-1196 |Coef1| |Coef2| UTS1 UTS2) +(-1207 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1197 S |Coef|) +(-1208 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasSignature| |#2| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4131) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1123))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348)))) -(-1198 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasSignature| |#2| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3810) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1135))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355)))) +(-1209 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1199 |Coef| UTS) +(-1210 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|)))) (|HasCategory| (-745) (QUOTE (-1075))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(-1211 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1200 -3395 UP L UTS) +(-1212 -1426 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-533)))) -(-1201) +((|HasCategory| |#1| (QUOTE (-540)))) +(-1213) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-2337 . T)) +((-2409 . T)) NIL -(-1202 |sym|) +(-1214 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1203 S R) +(-1215 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1204 R) +((|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1216 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4311 . T) (-4310 . T) (-2337 . T)) +((-4328 . T) (-4327 . T) (-2409 . T)) NIL -(-1205 R) -((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4311 . T) (-4310 . T)) -((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1206 A B) +(-1217 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1207) -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) -NIL -NIL -(-1208) +(-1218 R) +((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) +((-4328 . T) (-4327 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1219) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1209) +(-1220) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1210) +(-1221) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1211) +(-1222) +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) +NIL +NIL +(-1223) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1212 A S) +(-1224 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1213 S) +(-1225 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4305 . T) (-4304 . T)) +((-4322 . T) (-4321 . T)) NIL -(-1214 R) +(-1226 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1215 K R UP -3395) +(-1227 K R UP -1426) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1216) +(-1228) +((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|Syntax|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|Syntax|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) +NIL +NIL +(-1229) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|Syntax|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1217 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1230 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348)))) -(-1218 R E V P) +((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355)))) +(-1231 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4311 . T) (-4310 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) -(-1219 R) +((-4328 . T) (-4327 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +(-1232 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4304 . T) (-4305 . T) (-4307 . T)) +((-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1220 |vl| R) +(-1233 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4307 . T) (-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasAttribute| |#2| (QUOTE -4303))) -(-1221 R |VarSet| XPOLY) +((-4324 . T) (-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4320))) +(-1234 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1222 S -3395) -((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) +(-1235 |vl| R) +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) +((-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) NIL -((|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141)))) -(-1223 -3395) +(-1236 S -1426) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1224 |vl| R) -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) +(-1237 -1426) +((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) +((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL -(-1225 |VarSet| R) +(-1238 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -682) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasAttribute| |#2| (QUOTE -4303))) -(-1226 R) -((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4303 |has| |#1| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasAttribute| |#1| (QUOTE -4303))) -(-1227 |vl| R) +((-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -692) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasAttribute| |#2| (QUOTE -4320))) +(-1239 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) +((-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) NIL -(-1228 R E) +(-1240 R) +((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) +((-4320 |has| |#1| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasAttribute| |#1| (QUOTE -4320))) +(-1241 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4307 . T) (-4308 |has| |#1| (-6 -4308)) (-4303 |has| |#1| (-6 -4303)) (-4305 . T) (-4304 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasAttribute| |#1| (QUOTE -4307)) (|HasAttribute| |#1| (QUOTE -4308)) (|HasAttribute| |#1| (QUOTE -4303))) -(-1229 |VarSet| R) +((-4324 . T) (-4325 |has| |#1| (-6 -4325)) (-4320 |has| |#1| (-6 -4320)) (-4322 . T) (-4321 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasAttribute| |#1| (QUOTE -4324)) (|HasAttribute| |#1| (QUOTE -4325)) (|HasAttribute| |#1| (QUOTE -4320))) +(-1242 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasAttribute| |#2| (QUOTE -4303))) -(-1230 A) +((-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4320))) +(-1243 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1231 R |ls| |ls2|) +(-1244 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1232 R) +(-1245 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1233 |p|) +(-1246 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +(((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) NIL NIL NIL @@ -4880,4 +4932,4 @@ NIL NIL NIL NIL -((-3 NIL 2249432 2249437 2249442 2249447) (-2 NIL 2249412 2249417 2249422 2249427) (-1 NIL 2249392 2249397 2249402 2249407) (0 NIL 2249372 2249377 2249382 2249387) (-1233 "ZMOD.spad" 2249181 2249194 2249310 2249367) (-1232 "ZLINDEP.spad" 2248225 2248236 2249171 2249176) (-1231 "ZDSOLVE.spad" 2238074 2238096 2248215 2248220) (-1230 "YSTREAM.spad" 2237567 2237578 2238064 2238069) (-1229 "XRPOLY.spad" 2236787 2236807 2237423 2237492) (-1228 "XPR.spad" 2234516 2234529 2236505 2236604) (-1227 "XPOLYC.spad" 2233833 2233849 2234442 2234511) (-1226 "XPOLY.spad" 2233388 2233399 2233689 2233758) (-1225 "XPBWPOLY.spad" 2231825 2231845 2233168 2233237) (-1224 "XFALG.spad" 2228849 2228865 2231751 2231820) (-1223 "XF.spad" 2227310 2227325 2228751 2228844) (-1222 "XF.spad" 2225751 2225768 2227194 2227199) (-1221 "XEXPPKG.spad" 2225002 2225028 2225741 2225746) (-1220 "XDPOLY.spad" 2224616 2224632 2224858 2224927) (-1219 "XALG.spad" 2224214 2224225 2224572 2224611) (-1218 "WUTSET.spad" 2220053 2220070 2223860 2223887) (-1217 "WP.spad" 2219067 2219111 2219911 2219978) (-1216 "WHILEAST.spad" 2218866 2218875 2219057 2219062) (-1215 "WFFINTBS.spad" 2216429 2216451 2218856 2218861) (-1214 "WEIER.spad" 2214643 2214654 2216419 2216424) (-1213 "VSPACE.spad" 2214316 2214327 2214611 2214638) (-1212 "VSPACE.spad" 2214009 2214022 2214306 2214311) (-1211 "VOID.spad" 2213599 2213608 2213999 2214004) (-1210 "VIEWDEF.spad" 2208796 2208805 2213589 2213594) (-1209 "VIEW3D.spad" 2192631 2192640 2208786 2208791) (-1208 "VIEW2D.spad" 2180368 2180377 2192621 2192626) (-1207 "VIEW.spad" 2177990 2177999 2180358 2180363) (-1206 "VECTOR2.spad" 2176617 2176630 2177980 2177985) (-1205 "VECTOR.spad" 2175292 2175303 2175543 2175570) (-1204 "VECTCAT.spad" 2173180 2173191 2175248 2175287) (-1203 "VECTCAT.spad" 2170888 2170901 2172958 2172963) (-1202 "VARIABLE.spad" 2170668 2170683 2170878 2170883) (-1201 "UTYPE.spad" 2170302 2170311 2170648 2170663) (-1200 "UTSODETL.spad" 2169595 2169619 2170258 2170263) (-1199 "UTSODE.spad" 2167783 2167803 2169585 2169590) (-1198 "UTSCAT.spad" 2165234 2165250 2167681 2167778) (-1197 "UTSCAT.spad" 2162329 2162347 2164778 2164783) (-1196 "UTS2.spad" 2161922 2161957 2162319 2162324) (-1195 "UTS.spad" 2156711 2156739 2160389 2160486) (-1194 "URAGG.spad" 2151333 2151344 2156691 2156706) (-1193 "URAGG.spad" 2145929 2145942 2151289 2151294) (-1192 "UPXSSING.spad" 2143575 2143601 2145013 2145146) (-1191 "UPXSCONS.spad" 2141332 2141352 2141707 2141856) (-1190 "UPXSCCA.spad" 2139790 2139810 2141178 2141327) (-1189 "UPXSCCA.spad" 2138390 2138412 2139780 2139785) (-1188 "UPXSCAT.spad" 2136971 2136987 2138236 2138385) (-1187 "UPXS2.spad" 2136512 2136565 2136961 2136966) (-1186 "UPXS.spad" 2133539 2133567 2134644 2134793) (-1185 "UPSQFREE.spad" 2131952 2131966 2133529 2133534) (-1184 "UPSCAT.spad" 2129545 2129569 2131850 2131947) (-1183 "UPSCAT.spad" 2126844 2126870 2129151 2129156) (-1182 "UPOLYC2.spad" 2126313 2126332 2126834 2126839) (-1181 "UPOLYC.spad" 2121291 2121302 2126155 2126308) (-1180 "UPOLYC.spad" 2116161 2116174 2121027 2121032) (-1179 "UPMP.spad" 2115051 2115064 2116151 2116156) (-1178 "UPDIVP.spad" 2114614 2114628 2115041 2115046) (-1177 "UPDECOMP.spad" 2112851 2112865 2114604 2114609) (-1176 "UPCDEN.spad" 2112058 2112074 2112841 2112846) (-1175 "UP2.spad" 2111420 2111441 2112048 2112053) (-1174 "UP.spad" 2108465 2108480 2108973 2109126) (-1173 "UNISEG2.spad" 2107958 2107971 2108421 2108426) (-1172 "UNISEG.spad" 2107311 2107322 2107877 2107882) (-1171 "UNIFACT.spad" 2106412 2106424 2107301 2107306) (-1170 "ULSCONS.spad" 2100455 2100475 2100827 2100976) (-1169 "ULSCCAT.spad" 2098052 2098072 2100275 2100450) (-1168 "ULSCCAT.spad" 2095783 2095805 2098008 2098013) (-1167 "ULSCAT.spad" 2093999 2094015 2095629 2095778) (-1166 "ULS2.spad" 2093511 2093564 2093989 2093994) (-1165 "ULS.spad" 2084070 2084098 2085163 2085592) (-1164 "UFD.spad" 2083135 2083144 2083996 2084065) (-1163 "UFD.spad" 2082262 2082273 2083125 2083130) (-1162 "UDVO.spad" 2081109 2081118 2082252 2082257) (-1161 "UDPO.spad" 2078536 2078547 2081065 2081070) (-1160 "TYPEAST.spad" 2078369 2078378 2078526 2078531) (-1159 "TYPE.spad" 2078291 2078300 2078349 2078364) (-1158 "TWOFACT.spad" 2076941 2076956 2078281 2078286) (-1157 "TUPLE.spad" 2076327 2076338 2076840 2076845) (-1156 "TUBETOOL.spad" 2073164 2073173 2076317 2076322) (-1155 "TUBE.spad" 2071805 2071822 2073154 2073159) (-1154 "TSETCAT.spad" 2058920 2058937 2071761 2071800) (-1153 "TSETCAT.spad" 2046033 2046052 2058876 2058881) (-1152 "TS.spad" 2044622 2044638 2045598 2045695) (-1151 "TRMANIP.spad" 2038988 2039005 2044328 2044333) (-1150 "TRIMAT.spad" 2037947 2037972 2038978 2038983) (-1149 "TRIGMNIP.spad" 2036464 2036481 2037937 2037942) (-1148 "TRIGCAT.spad" 2035976 2035985 2036454 2036459) (-1147 "TRIGCAT.spad" 2035486 2035497 2035966 2035971) (-1146 "TREE.spad" 2034057 2034068 2035093 2035120) (-1145 "TRANFUN.spad" 2033888 2033897 2034047 2034052) (-1144 "TRANFUN.spad" 2033717 2033728 2033878 2033883) (-1143 "TOPSP.spad" 2033391 2033400 2033707 2033712) (-1142 "TOOLSIGN.spad" 2033054 2033065 2033381 2033386) (-1141 "TEXTFILE.spad" 2031611 2031620 2033044 2033049) (-1140 "TEX1.spad" 2031167 2031178 2031601 2031606) (-1139 "TEX.spad" 2028184 2028193 2031157 2031162) (-1138 "TEMUTL.spad" 2027739 2027748 2028174 2028179) (-1137 "TBCMPPK.spad" 2025832 2025855 2027729 2027734) (-1136 "TBAGG.spad" 2024856 2024879 2025800 2025827) (-1135 "TBAGG.spad" 2023900 2023925 2024846 2024851) (-1134 "TANEXP.spad" 2023276 2023287 2023890 2023895) (-1133 "TABLEAU.spad" 2022757 2022768 2023266 2023271) (-1132 "TABLE.spad" 2021168 2021191 2021438 2021465) (-1131 "TABLBUMP.spad" 2017951 2017962 2021158 2021163) (-1130 "SYSTEM.spad" 2017225 2017234 2017941 2017946) (-1129 "SYSSOLP.spad" 2014698 2014709 2017215 2017220) (-1128 "SYNTAX.spad" 2010890 2010899 2014688 2014693) (-1127 "SYMTAB.spad" 2008946 2008955 2010880 2010885) (-1126 "SYMS.spad" 2004937 2004946 2008936 2008941) (-1125 "SYMPOLY.spad" 2003947 2003958 2004029 2004156) (-1124 "SYMFUNC.spad" 2003422 2003433 2003937 2003942) (-1123 "SYMBOL.spad" 2000758 2000767 2003412 2003417) (-1122 "SWITCH.spad" 1997515 1997524 2000748 2000753) (-1121 "SUTS.spad" 1994414 1994442 1995982 1996079) (-1120 "SUPXS.spad" 1991428 1991456 1992546 1992695) (-1119 "SUPFRACF.spad" 1990533 1990551 1991418 1991423) (-1118 "SUP2.spad" 1989923 1989936 1990523 1990528) (-1117 "SUP.spad" 1986695 1986706 1987476 1987629) (-1116 "SUMRF.spad" 1985661 1985672 1986685 1986690) (-1115 "SUMFS.spad" 1985294 1985311 1985651 1985656) (-1114 "SULS.spad" 1975840 1975868 1976946 1977375) (-1113 "SUCH.spad" 1975520 1975535 1975830 1975835) (-1112 "SUBSPACE.spad" 1967527 1967542 1975510 1975515) (-1111 "SUBRESP.spad" 1966687 1966701 1967483 1967488) (-1110 "STTFNC.spad" 1963155 1963171 1966677 1966682) (-1109 "STTF.spad" 1959254 1959270 1963145 1963150) (-1108 "STTAYLOR.spad" 1951652 1951663 1959135 1959140) (-1107 "STRTBL.spad" 1950157 1950174 1950306 1950333) (-1106 "STRING.spad" 1949566 1949575 1949580 1949607) (-1105 "STRICAT.spad" 1949342 1949351 1949522 1949561) (-1104 "STREAM3.spad" 1948887 1948902 1949332 1949337) (-1103 "STREAM2.spad" 1947955 1947968 1948877 1948882) (-1102 "STREAM1.spad" 1947659 1947670 1947945 1947950) (-1101 "STREAM.spad" 1944427 1944438 1947184 1947199) (-1100 "STINPROD.spad" 1943333 1943349 1944417 1944422) (-1099 "STEP.spad" 1942534 1942543 1943323 1943328) (-1098 "STBL.spad" 1941060 1941088 1941227 1941242) (-1097 "STAGG.spad" 1940125 1940136 1941040 1941055) (-1096 "STAGG.spad" 1939198 1939211 1940115 1940120) (-1095 "STACK.spad" 1938549 1938560 1938805 1938832) (-1094 "SREGSET.spad" 1936253 1936270 1938195 1938222) (-1093 "SRDCMPK.spad" 1934798 1934818 1936243 1936248) (-1092 "SRAGG.spad" 1929883 1929892 1934754 1934793) (-1091 "SRAGG.spad" 1925000 1925011 1929873 1929878) (-1090 "SQMATRIX.spad" 1922626 1922644 1923534 1923621) (-1089 "SPLTREE.spad" 1917178 1917191 1922062 1922089) (-1088 "SPLNODE.spad" 1913766 1913779 1917168 1917173) (-1087 "SPFCAT.spad" 1912543 1912552 1913756 1913761) (-1086 "SPECOUT.spad" 1911093 1911102 1912533 1912538) (-1085 "spad-parser.spad" 1910558 1910567 1911083 1911088) (-1084 "SPACEC.spad" 1894571 1894582 1910548 1910553) (-1083 "SPACE3.spad" 1894347 1894358 1894561 1894566) (-1082 "SORTPAK.spad" 1893892 1893905 1894303 1894308) (-1081 "SOLVETRA.spad" 1891649 1891660 1893882 1893887) (-1080 "SOLVESER.spad" 1890169 1890180 1891639 1891644) (-1079 "SOLVERAD.spad" 1886179 1886190 1890159 1890164) (-1078 "SOLVEFOR.spad" 1884599 1884617 1886169 1886174) (-1077 "SNTSCAT.spad" 1884187 1884204 1884555 1884594) (-1076 "SMTS.spad" 1882447 1882473 1883752 1883849) (-1075 "SMP.spad" 1879889 1879909 1880279 1880406) (-1074 "SMITH.spad" 1878732 1878757 1879879 1879884) (-1073 "SMATCAT.spad" 1876830 1876860 1878664 1878727) (-1072 "SMATCAT.spad" 1874872 1874904 1876708 1876713) (-1071 "SKAGG.spad" 1873821 1873832 1874828 1874867) (-1070 "SINT.spad" 1872129 1872138 1873687 1873816) (-1069 "SIMPAN.spad" 1871857 1871866 1872119 1872124) (-1068 "SIGNRF.spad" 1870972 1870983 1871847 1871852) (-1067 "SIGNEF.spad" 1870248 1870265 1870962 1870967) (-1066 "SIG.spad" 1869576 1869585 1870238 1870243) (-1065 "SHP.spad" 1867494 1867509 1869532 1869537) (-1064 "SHDP.spad" 1858510 1858537 1859019 1859150) (-1063 "SGROUP.spad" 1858118 1858127 1858500 1858505) (-1062 "SGROUP.spad" 1857724 1857735 1858108 1858113) (-1061 "SGCF.spad" 1850605 1850614 1857714 1857719) (-1060 "SFRTCAT.spad" 1849521 1849538 1850561 1850600) (-1059 "SFRGCD.spad" 1848584 1848604 1849511 1849516) (-1058 "SFQCMPK.spad" 1843221 1843241 1848574 1848579) (-1057 "SFORT.spad" 1842656 1842670 1843211 1843216) (-1056 "SEXOF.spad" 1842499 1842539 1842646 1842651) (-1055 "SEXCAT.spad" 1839603 1839643 1842489 1842494) (-1054 "SEX.spad" 1839495 1839504 1839593 1839598) (-1053 "SETMN.spad" 1837931 1837948 1839485 1839490) (-1052 "SETCAT.spad" 1837416 1837425 1837921 1837926) (-1051 "SETCAT.spad" 1836899 1836910 1837406 1837411) (-1050 "SETAGG.spad" 1833408 1833419 1836867 1836894) (-1049 "SETAGG.spad" 1829937 1829950 1833398 1833403) (-1048 "SET.spad" 1828237 1828248 1829358 1829397) (-1047 "SEGXCAT.spad" 1827349 1827362 1828217 1828232) (-1046 "SEGCAT.spad" 1826168 1826179 1827329 1827344) (-1045 "SEGBIND2.spad" 1825864 1825877 1826158 1826163) (-1044 "SEGBIND.spad" 1824936 1824947 1825819 1825824) (-1043 "SEGAST.spad" 1824845 1824854 1824926 1824931) (-1042 "SEG2.spad" 1824270 1824283 1824801 1824806) (-1041 "SEG.spad" 1824083 1824094 1824189 1824194) (-1040 "SDVAR.spad" 1823359 1823370 1824073 1824078) (-1039 "SDPOL.spad" 1820752 1820763 1821043 1821170) (-1038 "SCPKG.spad" 1818831 1818842 1820742 1820747) (-1037 "SCOPE.spad" 1817976 1817985 1818821 1818826) (-1036 "SCACHE.spad" 1816658 1816669 1817966 1817971) (-1035 "SASTCAT.spad" 1816567 1816576 1816648 1816653) (-1034 "SASTCAT.spad" 1816474 1816485 1816557 1816562) (-1033 "SAOS.spad" 1816346 1816355 1816464 1816469) (-1032 "SAERFFC.spad" 1816059 1816079 1816336 1816341) (-1031 "SAEFACT.spad" 1815760 1815780 1816049 1816054) (-1030 "SAE.spad" 1813938 1813954 1814549 1814684) (-1029 "RURPK.spad" 1811579 1811595 1813928 1813933) (-1028 "RULESET.spad" 1811020 1811044 1811569 1811574) (-1027 "RULECOLD.spad" 1810872 1810885 1811010 1811015) (-1026 "RULE.spad" 1809076 1809100 1810862 1810867) (-1025 "RSETGCD.spad" 1805454 1805474 1809066 1809071) (-1024 "RSETCAT.spad" 1795226 1795243 1805410 1805449) (-1023 "RSETCAT.spad" 1785030 1785049 1795216 1795221) (-1022 "RSDCMPK.spad" 1783482 1783502 1785020 1785025) (-1021 "RRCC.spad" 1781866 1781896 1783472 1783477) (-1020 "RRCC.spad" 1780248 1780280 1781856 1781861) (-1019 "RPTAST.spad" 1779952 1779961 1780238 1780243) (-1018 "RPOLCAT.spad" 1759312 1759327 1779820 1779947) (-1017 "RPOLCAT.spad" 1738387 1738404 1758897 1758902) (-1016 "ROUTINE.spad" 1734250 1734259 1737034 1737061) (-1015 "ROMAN.spad" 1733482 1733491 1734116 1734245) (-1014 "ROIRC.spad" 1732562 1732594 1733472 1733477) (-1013 "RNS.spad" 1731465 1731474 1732464 1732557) (-1012 "RNS.spad" 1730454 1730465 1731455 1731460) (-1011 "RNG.spad" 1730189 1730198 1730444 1730449) (-1010 "RMODULE.spad" 1729827 1729838 1730179 1730184) (-1009 "RMCAT2.spad" 1729235 1729292 1729817 1729822) (-1008 "RMATRIX.spad" 1727914 1727933 1728402 1728441) (-1007 "RMATCAT.spad" 1723435 1723466 1727858 1727909) (-1006 "RMATCAT.spad" 1718858 1718891 1723283 1723288) (-1005 "RINTERP.spad" 1718746 1718766 1718848 1718853) (-1004 "RING.spad" 1718103 1718112 1718726 1718741) (-1003 "RING.spad" 1717468 1717479 1718093 1718098) (-1002 "RIDIST.spad" 1716852 1716861 1717458 1717463) (-1001 "RGCHAIN.spad" 1715431 1715447 1716337 1716364) (-1000 "RFFACTOR.spad" 1714893 1714904 1715421 1715426) (-999 "RFFACT.spad" 1714629 1714640 1714883 1714888) (-998 "RFDIST.spad" 1713618 1713626 1714619 1714624) (-997 "RF.spad" 1711233 1711243 1713608 1713613) (-996 "RETSOL.spad" 1710651 1710663 1711223 1711228) (-995 "RETRACT.spad" 1710001 1710011 1710641 1710646) (-994 "RETRACT.spad" 1709349 1709361 1709991 1709996) (-993 "RETAST.spad" 1709163 1709171 1709339 1709344) (-992 "RESULT.spad" 1707224 1707232 1707810 1707837) (-991 "RESRING.spad" 1706572 1706618 1707162 1707219) (-990 "RESLATC.spad" 1705897 1705907 1706562 1706567) (-989 "REPSQ.spad" 1705627 1705637 1705887 1705892) (-988 "REPDB.spad" 1705333 1705343 1705617 1705622) (-987 "REP2.spad" 1694906 1694916 1705175 1705180) (-986 "REP1.spad" 1688897 1688907 1694856 1694861) (-985 "REP.spad" 1686450 1686458 1688887 1688892) (-984 "REGSET.spad" 1684248 1684264 1686096 1686123) (-983 "REF.spad" 1683578 1683588 1684203 1684208) (-982 "REDORDER.spad" 1682755 1682771 1683568 1683573) (-981 "RECLOS.spad" 1681545 1681564 1682248 1682341) (-980 "REALSOLV.spad" 1680678 1680686 1681535 1681540) (-979 "REAL0Q.spad" 1677961 1677975 1680668 1680673) (-978 "REAL0.spad" 1674790 1674804 1677951 1677956) (-977 "REAL.spad" 1674663 1674671 1674780 1674785) (-976 "RDIV.spad" 1674315 1674339 1674653 1674658) (-975 "RDIST.spad" 1673879 1673889 1674305 1674310) (-974 "RDETRS.spad" 1672676 1672693 1673869 1673874) (-973 "RDETR.spad" 1670784 1670801 1672666 1672671) (-972 "RDEEFS.spad" 1669858 1669874 1670774 1670779) (-971 "RDEEF.spad" 1668855 1668871 1669848 1669853) (-970 "RCFIELD.spad" 1666042 1666050 1668757 1668850) (-969 "RCFIELD.spad" 1663315 1663325 1666032 1666037) (-968 "RCAGG.spad" 1661218 1661228 1663295 1663310) (-967 "RCAGG.spad" 1659058 1659070 1661137 1661142) (-966 "RATRET.spad" 1658419 1658429 1659048 1659053) (-965 "RATFACT.spad" 1658112 1658123 1658409 1658414) (-964 "RANDSRC.spad" 1657432 1657440 1658102 1658107) (-963 "RADUTIL.spad" 1657187 1657195 1657422 1657427) (-962 "RADIX.spad" 1653980 1653993 1655657 1655750) (-961 "RADFF.spad" 1652397 1652433 1652515 1652671) (-960 "RADCAT.spad" 1651991 1651999 1652387 1652392) (-959 "RADCAT.spad" 1651583 1651593 1651981 1651986) (-958 "QUEUE.spad" 1650926 1650936 1651190 1651217) (-957 "QUATCT2.spad" 1650545 1650563 1650916 1650921) (-956 "QUATCAT.spad" 1648710 1648720 1650475 1650540) (-955 "QUATCAT.spad" 1646626 1646638 1648393 1648398) (-954 "QUAT.spad" 1645211 1645221 1645553 1645618) (-953 "QUAGG.spad" 1644025 1644035 1645167 1645206) (-952 "QFORM.spad" 1643488 1643502 1644015 1644020) (-951 "QFCAT2.spad" 1643179 1643195 1643478 1643483) (-950 "QFCAT.spad" 1641870 1641880 1643069 1643174) (-949 "QFCAT.spad" 1640167 1640179 1641368 1641373) (-948 "QEQUAT.spad" 1639724 1639732 1640157 1640162) (-947 "QCMPACK.spad" 1634471 1634490 1639714 1639719) (-946 "QALGSET2.spad" 1632467 1632485 1634461 1634466) (-945 "QALGSET.spad" 1628544 1628576 1632381 1632386) (-944 "PWFFINTB.spad" 1625854 1625875 1628534 1628539) (-943 "PUSHVAR.spad" 1625183 1625202 1625844 1625849) (-942 "PTRANFN.spad" 1621309 1621319 1625173 1625178) (-941 "PTPACK.spad" 1618397 1618407 1621299 1621304) (-940 "PTFUNC2.spad" 1618218 1618232 1618387 1618392) (-939 "PTCAT.spad" 1617300 1617310 1618174 1618213) (-938 "PSQFR.spad" 1616607 1616631 1617290 1617295) (-937 "PSEUDLIN.spad" 1615465 1615475 1616597 1616602) (-936 "PSETPK.spad" 1600898 1600914 1615343 1615348) (-935 "PSETCAT.spad" 1594806 1594829 1600866 1600893) (-934 "PSETCAT.spad" 1588700 1588725 1594762 1594767) (-933 "PSCURVE.spad" 1587683 1587691 1588690 1588695) (-932 "PSCAT.spad" 1586450 1586479 1587581 1587678) (-931 "PSCAT.spad" 1585307 1585338 1586440 1586445) (-930 "PRTITION.spad" 1584150 1584158 1585297 1585302) (-929 "PRTDAST.spad" 1583870 1583878 1584140 1584145) (-928 "PRS.spad" 1573432 1573449 1583826 1583831) (-927 "PRQAGG.spad" 1572851 1572861 1573388 1573427) (-926 "PROPLOG.spad" 1572254 1572262 1572841 1572846) (-925 "PROPFRML.spad" 1570118 1570129 1572190 1572195) (-924 "PROPERTY.spad" 1569612 1569620 1570108 1570113) (-923 "PRODUCT.spad" 1567292 1567304 1567578 1567633) (-922 "PRINT.spad" 1567044 1567052 1567282 1567287) (-921 "PRIMES.spad" 1565295 1565305 1567034 1567039) (-920 "PRIMELT.spad" 1563276 1563290 1565285 1565290) (-919 "PRIMCAT.spad" 1562899 1562907 1563266 1563271) (-918 "PRIMARR2.spad" 1561622 1561634 1562889 1562894) (-917 "PRIMARR.spad" 1560627 1560637 1560805 1560832) (-916 "PREASSOC.spad" 1559999 1560011 1560617 1560622) (-915 "PR.spad" 1558388 1558400 1559093 1559220) (-914 "PPCURVE.spad" 1557525 1557533 1558378 1558383) (-913 "PORTNUM.spad" 1557300 1557308 1557515 1557520) (-912 "POLYROOT.spad" 1556072 1556094 1557256 1557261) (-911 "POLYLIFT.spad" 1555333 1555356 1556062 1556067) (-910 "POLYCATQ.spad" 1553435 1553457 1555323 1555328) (-909 "POLYCAT.spad" 1546841 1546862 1553303 1553430) (-908 "POLYCAT.spad" 1539549 1539572 1546013 1546018) (-907 "POLY2UP.spad" 1538997 1539011 1539539 1539544) (-906 "POLY2.spad" 1538592 1538604 1538987 1538992) (-905 "POLY.spad" 1535892 1535902 1536409 1536536) (-904 "POLUTIL.spad" 1534833 1534862 1535848 1535853) (-903 "POLTOPOL.spad" 1533581 1533596 1534823 1534828) (-902 "POINT.spad" 1532420 1532430 1532507 1532534) (-901 "PNTHEORY.spad" 1529086 1529094 1532410 1532415) (-900 "PMTOOLS.spad" 1527843 1527857 1529076 1529081) (-899 "PMSYM.spad" 1527388 1527398 1527833 1527838) (-898 "PMQFCAT.spad" 1526975 1526989 1527378 1527383) (-897 "PMPREDFS.spad" 1526419 1526441 1526965 1526970) (-896 "PMPRED.spad" 1525888 1525902 1526409 1526414) (-895 "PMPLCAT.spad" 1524958 1524976 1525820 1525825) (-894 "PMLSAGG.spad" 1524539 1524553 1524948 1524953) (-893 "PMKERNEL.spad" 1524106 1524118 1524529 1524534) (-892 "PMINS.spad" 1523682 1523692 1524096 1524101) (-891 "PMFS.spad" 1523255 1523273 1523672 1523677) (-890 "PMDOWN.spad" 1522541 1522555 1523245 1523250) (-889 "PMASSFS.spad" 1521510 1521526 1522531 1522536) (-888 "PMASS.spad" 1520522 1520530 1521500 1521505) (-887 "PLOTTOOL.spad" 1520302 1520310 1520512 1520517) (-886 "PLOT3D.spad" 1516722 1516730 1520292 1520297) (-885 "PLOT1.spad" 1515863 1515873 1516712 1516717) (-884 "PLOT.spad" 1510694 1510702 1515853 1515858) (-883 "PLEQN.spad" 1497910 1497937 1510684 1510689) (-882 "PINTERPA.spad" 1497692 1497708 1497900 1497905) (-881 "PINTERP.spad" 1497308 1497327 1497682 1497687) (-880 "PID.spad" 1496264 1496272 1497234 1497303) (-879 "PICOERCE.spad" 1495921 1495931 1496254 1496259) (-878 "PI.spad" 1495528 1495536 1495895 1495916) (-877 "PGROEB.spad" 1494125 1494139 1495518 1495523) (-876 "PGE.spad" 1485378 1485386 1494115 1494120) (-875 "PGCD.spad" 1484260 1484277 1485368 1485373) (-874 "PFRPAC.spad" 1483403 1483413 1484250 1484255) (-873 "PFR.spad" 1480060 1480070 1483305 1483398) (-872 "PFOTOOLS.spad" 1479318 1479334 1480050 1480055) (-871 "PFOQ.spad" 1478688 1478706 1479308 1479313) (-870 "PFO.spad" 1478107 1478134 1478678 1478683) (-869 "PFECAT.spad" 1475773 1475781 1478033 1478102) (-868 "PFECAT.spad" 1473467 1473477 1475729 1475734) (-867 "PFBRU.spad" 1471337 1471349 1473457 1473462) (-866 "PFBR.spad" 1468875 1468898 1471327 1471332) (-865 "PF.spad" 1468449 1468461 1468680 1468773) (-864 "PERMGRP.spad" 1463185 1463195 1468439 1468444) (-863 "PERMCAT.spad" 1461737 1461747 1463165 1463180) (-862 "PERMAN.spad" 1460269 1460283 1461727 1461732) (-861 "PERM.spad" 1455950 1455960 1460099 1460114) (-860 "PENDTREE.spad" 1455223 1455233 1455579 1455584) (-859 "PDRING.spad" 1453714 1453724 1455203 1455218) (-858 "PDRING.spad" 1452213 1452225 1453704 1453709) (-857 "PDEPROB.spad" 1451170 1451178 1452203 1452208) (-856 "PDEPACK.spad" 1445172 1445180 1451160 1451165) (-855 "PDECOMP.spad" 1444634 1444651 1445162 1445167) (-854 "PDECAT.spad" 1442988 1442996 1444624 1444629) (-853 "PCOMP.spad" 1442839 1442852 1442978 1442983) (-852 "PBWLB.spad" 1441421 1441438 1442829 1442834) (-851 "PATTERN2.spad" 1441157 1441169 1441411 1441416) (-850 "PATTERN1.spad" 1439459 1439475 1441147 1441152) (-849 "PATTERN.spad" 1433890 1433900 1439449 1439454) (-848 "PATRES2.spad" 1433552 1433566 1433880 1433885) (-847 "PATRES.spad" 1431099 1431111 1433542 1433547) (-846 "PATMATCH.spad" 1429259 1429290 1430810 1430815) (-845 "PATMAB.spad" 1428684 1428694 1429249 1429254) (-844 "PATLRES.spad" 1427768 1427782 1428674 1428679) (-843 "PATAB.spad" 1427532 1427542 1427758 1427763) (-842 "PARTPERM.spad" 1424894 1424902 1427522 1427527) (-841 "PARSURF.spad" 1424322 1424350 1424884 1424889) (-840 "PARSU2.spad" 1424117 1424133 1424312 1424317) (-839 "script-parser.spad" 1423637 1423645 1424107 1424112) (-838 "PARSCURV.spad" 1423065 1423093 1423627 1423632) (-837 "PARSC2.spad" 1422854 1422870 1423055 1423060) (-836 "PARPCURV.spad" 1422312 1422340 1422844 1422849) (-835 "PARPC2.spad" 1422101 1422117 1422302 1422307) (-834 "PAN2EXPR.spad" 1421513 1421521 1422091 1422096) (-833 "PALETTE.spad" 1420483 1420491 1421503 1421508) (-832 "PAIR.spad" 1419466 1419479 1420071 1420076) (-831 "PADICRC.spad" 1416799 1416817 1417974 1418067) (-830 "PADICRAT.spad" 1414817 1414829 1415038 1415131) (-829 "PADICCT.spad" 1413358 1413370 1414743 1414812) (-828 "PADIC.spad" 1413053 1413065 1413284 1413353) (-827 "PADEPAC.spad" 1411732 1411751 1413043 1413048) (-826 "PADE.spad" 1410472 1410488 1411722 1411727) (-825 "OWP.spad" 1409456 1409486 1410330 1410397) (-824 "OVAR.spad" 1409237 1409260 1409446 1409451) (-823 "OUTFORM.spad" 1398651 1398659 1409227 1409232) (-822 "OUTBCON.spad" 1397930 1397938 1398641 1398646) (-821 "OUTBCON.spad" 1397207 1397217 1397920 1397925) (-820 "OUT.spad" 1396291 1396299 1397197 1397202) (-819 "OSI.spad" 1395766 1395774 1396281 1396286) (-818 "OSGROUP.spad" 1395684 1395692 1395756 1395761) (-817 "ORTHPOL.spad" 1394145 1394155 1395601 1395606) (-816 "OREUP.spad" 1393505 1393533 1393827 1393866) (-815 "ORESUP.spad" 1392806 1392830 1393187 1393226) (-814 "OREPCTO.spad" 1390625 1390637 1392726 1392731) (-813 "OREPCAT.spad" 1384682 1384692 1390581 1390620) (-812 "OREPCAT.spad" 1378629 1378641 1384530 1384535) (-811 "ORDSET.spad" 1377795 1377803 1378619 1378624) (-810 "ORDSET.spad" 1376959 1376969 1377785 1377790) (-809 "ORDRING.spad" 1376349 1376357 1376939 1376954) (-808 "ORDRING.spad" 1375747 1375757 1376339 1376344) (-807 "ORDMON.spad" 1375602 1375610 1375737 1375742) (-806 "ORDFUNS.spad" 1374728 1374744 1375592 1375597) (-805 "ORDFIN.spad" 1374662 1374670 1374718 1374723) (-804 "ORDCOMP2.spad" 1373947 1373959 1374652 1374657) (-803 "ORDCOMP.spad" 1372415 1372425 1373497 1373526) (-802 "OPTPROB.spad" 1370995 1371003 1372405 1372410) (-801 "OPTPACK.spad" 1363380 1363388 1370985 1370990) (-800 "OPTCAT.spad" 1361055 1361063 1363370 1363375) (-799 "OPQUERY.spad" 1360604 1360612 1361045 1361050) (-798 "OP.spad" 1360346 1360356 1360426 1360493) (-797 "ONECOMP2.spad" 1359764 1359776 1360336 1360341) (-796 "ONECOMP.spad" 1358512 1358522 1359314 1359343) (-795 "OMSERVER.spad" 1357514 1357522 1358502 1358507) (-794 "OMSAGG.spad" 1357290 1357300 1357458 1357509) (-793 "OMPKG.spad" 1355902 1355910 1357280 1357285) (-792 "OMLO.spad" 1355327 1355339 1355788 1355827) (-791 "OMEXPR.spad" 1355161 1355171 1355317 1355322) (-790 "OMERRK.spad" 1354195 1354203 1355151 1355156) (-789 "OMERR.spad" 1353738 1353746 1354185 1354190) (-788 "OMENC.spad" 1353082 1353090 1353728 1353733) (-787 "OMDEV.spad" 1347371 1347379 1353072 1353077) (-786 "OMCONN.spad" 1346780 1346788 1347361 1347366) (-785 "OM.spad" 1345745 1345753 1346770 1346775) (-784 "OINTDOM.spad" 1345508 1345516 1345671 1345740) (-783 "OFMONOID.spad" 1341695 1341705 1345498 1345503) (-782 "ODVAR.spad" 1340956 1340966 1341685 1341690) (-781 "ODR.spad" 1340404 1340430 1340768 1340917) (-780 "ODPOL.spad" 1337753 1337763 1338093 1338220) (-779 "ODP.spad" 1328905 1328925 1329278 1329409) (-778 "ODETOOLS.spad" 1327488 1327507 1328895 1328900) (-777 "ODESYS.spad" 1325138 1325155 1327478 1327483) (-776 "ODERTRIC.spad" 1321079 1321096 1325095 1325100) (-775 "ODERED.spad" 1320466 1320490 1321069 1321074) (-774 "ODERAT.spad" 1318019 1318036 1320456 1320461) (-773 "ODEPRRIC.spad" 1314910 1314932 1318009 1318014) (-772 "ODEPROB.spad" 1314109 1314117 1314900 1314905) (-771 "ODEPRIM.spad" 1311383 1311405 1314099 1314104) (-770 "ODEPAL.spad" 1310759 1310783 1311373 1311378) (-769 "ODEPACK.spad" 1297361 1297369 1310749 1310754) (-768 "ODEINT.spad" 1296792 1296808 1297351 1297356) (-767 "ODEIFTBL.spad" 1294187 1294195 1296782 1296787) (-766 "ODEEF.spad" 1289558 1289574 1294177 1294182) (-765 "ODECONST.spad" 1289077 1289095 1289548 1289553) (-764 "ODECAT.spad" 1287673 1287681 1289067 1289072) (-763 "OCTCT2.spad" 1287317 1287338 1287663 1287668) (-762 "OCT.spad" 1285463 1285473 1286179 1286218) (-761 "OCAMON.spad" 1285311 1285319 1285453 1285458) (-760 "OC.spad" 1283085 1283095 1285267 1285306) (-759 "OC.spad" 1280584 1280596 1282768 1282773) (-758 "OASGP.spad" 1280399 1280407 1280574 1280579) (-757 "OAMONS.spad" 1279919 1279927 1280389 1280394) (-756 "OAMON.spad" 1279780 1279788 1279909 1279914) (-755 "OAGROUP.spad" 1279642 1279650 1279770 1279775) (-754 "NUMTUBE.spad" 1279229 1279245 1279632 1279637) (-753 "NUMQUAD.spad" 1267091 1267099 1279219 1279224) (-752 "NUMODE.spad" 1258227 1258235 1267081 1267086) (-751 "NUMINT.spad" 1255785 1255793 1258217 1258222) (-750 "NUMFMT.spad" 1254625 1254633 1255775 1255780) (-749 "NUMERIC.spad" 1246697 1246707 1254430 1254435) (-748 "NTSCAT.spad" 1245187 1245203 1246653 1246692) (-747 "NTPOLFN.spad" 1244732 1244742 1245104 1245109) (-746 "NSUP2.spad" 1244124 1244136 1244722 1244727) (-745 "NSUP.spad" 1237137 1237147 1241677 1241830) (-744 "NSMP.spad" 1233336 1233355 1233644 1233771) (-743 "NREP.spad" 1231708 1231722 1233326 1233331) (-742 "NPCOEF.spad" 1230954 1230974 1231698 1231703) (-741 "NORMRETR.spad" 1230552 1230591 1230944 1230949) (-740 "NORMPK.spad" 1228454 1228473 1230542 1230547) (-739 "NORMMA.spad" 1228142 1228168 1228444 1228449) (-738 "NONE1.spad" 1227818 1227828 1228132 1228137) (-737 "NONE.spad" 1227559 1227567 1227808 1227813) (-736 "NODE1.spad" 1227028 1227044 1227549 1227554) (-735 "NNI.spad" 1225915 1225923 1227002 1227023) (-734 "NLINSOL.spad" 1224537 1224547 1225905 1225910) (-733 "NIPROB.spad" 1223020 1223028 1224527 1224532) (-732 "NFINTBAS.spad" 1220480 1220497 1223010 1223015) (-731 "NCODIV.spad" 1218678 1218694 1220470 1220475) (-730 "NCNTFRAC.spad" 1218320 1218334 1218668 1218673) (-729 "NCEP.spad" 1216480 1216494 1218310 1218315) (-728 "NASRING.spad" 1216076 1216084 1216470 1216475) (-727 "NASRING.spad" 1215670 1215680 1216066 1216071) (-726 "NARNG.spad" 1215014 1215022 1215660 1215665) (-725 "NARNG.spad" 1214356 1214366 1215004 1215009) (-724 "NAGSP.spad" 1213429 1213437 1214346 1214351) (-723 "NAGS.spad" 1202954 1202962 1213419 1213424) (-722 "NAGF07.spad" 1201347 1201355 1202944 1202949) (-721 "NAGF04.spad" 1195579 1195587 1201337 1201342) (-720 "NAGF02.spad" 1189388 1189396 1195569 1195574) (-719 "NAGF01.spad" 1184991 1184999 1189378 1189383) (-718 "NAGE04.spad" 1178451 1178459 1184981 1184986) (-717 "NAGE02.spad" 1168793 1168801 1178441 1178446) (-716 "NAGE01.spad" 1164677 1164685 1168783 1168788) (-715 "NAGD03.spad" 1162597 1162605 1164667 1164672) (-714 "NAGD02.spad" 1155128 1155136 1162587 1162592) (-713 "NAGD01.spad" 1149241 1149249 1155118 1155123) (-712 "NAGC06.spad" 1145028 1145036 1149231 1149236) (-711 "NAGC05.spad" 1143497 1143505 1145018 1145023) (-710 "NAGC02.spad" 1142752 1142760 1143487 1143492) (-709 "NAALG.spad" 1142287 1142297 1142720 1142747) (-708 "NAALG.spad" 1141842 1141854 1142277 1142282) (-707 "MULTSQFR.spad" 1138800 1138817 1141832 1141837) (-706 "MULTFACT.spad" 1138183 1138200 1138790 1138795) (-705 "MTSCAT.spad" 1136217 1136238 1138081 1138178) (-704 "MTHING.spad" 1135874 1135884 1136207 1136212) (-703 "MSYSCMD.spad" 1135308 1135316 1135864 1135869) (-702 "MSETAGG.spad" 1135141 1135151 1135264 1135303) (-701 "MSET.spad" 1133083 1133093 1134847 1134886) (-700 "MRING.spad" 1130054 1130066 1132791 1132858) (-699 "MRF2.spad" 1129622 1129636 1130044 1130049) (-698 "MRATFAC.spad" 1129168 1129185 1129612 1129617) (-697 "MPRFF.spad" 1127198 1127217 1129158 1129163) (-696 "MPOLY.spad" 1124636 1124651 1124995 1125122) (-695 "MPCPF.spad" 1123900 1123919 1124626 1124631) (-694 "MPC3.spad" 1123715 1123755 1123890 1123895) (-693 "MPC2.spad" 1123357 1123390 1123705 1123710) (-692 "MONOTOOL.spad" 1121692 1121709 1123347 1123352) (-691 "MONOID.spad" 1121011 1121019 1121682 1121687) (-690 "MONOID.spad" 1120328 1120338 1121001 1121006) (-689 "MONOGEN.spad" 1119074 1119087 1120188 1120323) (-688 "MONOGEN.spad" 1117842 1117857 1118958 1118963) (-687 "MONADWU.spad" 1115856 1115864 1117832 1117837) (-686 "MONADWU.spad" 1113868 1113878 1115846 1115851) (-685 "MONAD.spad" 1113012 1113020 1113858 1113863) (-684 "MONAD.spad" 1112154 1112164 1113002 1113007) (-683 "MOEBIUS.spad" 1110840 1110854 1112134 1112149) (-682 "MODULE.spad" 1110710 1110720 1110808 1110835) (-681 "MODULE.spad" 1110600 1110612 1110700 1110705) (-680 "MODRING.spad" 1109931 1109970 1110580 1110595) (-679 "MODOP.spad" 1108590 1108602 1109753 1109820) (-678 "MODMONOM.spad" 1108122 1108140 1108580 1108585) (-677 "MODMON.spad" 1104827 1104843 1105603 1105756) (-676 "MODFIELD.spad" 1104185 1104224 1104729 1104822) (-675 "MMLFORM.spad" 1103045 1103053 1104175 1104180) (-674 "MMAP.spad" 1102785 1102819 1103035 1103040) (-673 "MLO.spad" 1101212 1101222 1102741 1102780) (-672 "MLIFT.spad" 1099784 1099801 1101202 1101207) (-671 "MKUCFUNC.spad" 1099317 1099335 1099774 1099779) (-670 "MKRECORD.spad" 1098919 1098932 1099307 1099312) (-669 "MKFUNC.spad" 1098300 1098310 1098909 1098914) (-668 "MKFLCFN.spad" 1097256 1097266 1098290 1098295) (-667 "MKCHSET.spad" 1097032 1097042 1097246 1097251) (-666 "MKBCFUNC.spad" 1096517 1096535 1097022 1097027) (-665 "MINT.spad" 1095956 1095964 1096419 1096512) (-664 "MHROWRED.spad" 1094457 1094467 1095946 1095951) (-663 "MFLOAT.spad" 1092902 1092910 1094347 1094452) (-662 "MFINFACT.spad" 1092302 1092324 1092892 1092897) (-661 "MESH.spad" 1090039 1090047 1092292 1092297) (-660 "MDDFACT.spad" 1088232 1088242 1090029 1090034) (-659 "MDAGG.spad" 1087507 1087517 1088200 1088227) (-658 "MCMPLX.spad" 1083485 1083493 1084099 1084300) (-657 "MCDEN.spad" 1082693 1082705 1083475 1083480) (-656 "MCALCFN.spad" 1079795 1079821 1082683 1082688) (-655 "MAYBE.spad" 1079044 1079055 1079785 1079790) (-654 "MATSTOR.spad" 1076320 1076330 1079034 1079039) (-653 "MATRIX.spad" 1075024 1075034 1075508 1075535) (-652 "MATLIN.spad" 1072350 1072374 1074908 1074913) (-651 "MATCAT2.spad" 1071618 1071666 1072340 1072345) (-650 "MATCAT.spad" 1063191 1063213 1071574 1071613) (-649 "MATCAT.spad" 1054648 1054672 1063033 1063038) (-648 "MAPPKG3.spad" 1053547 1053561 1054638 1054643) (-647 "MAPPKG2.spad" 1052881 1052893 1053537 1053542) (-646 "MAPPKG1.spad" 1051699 1051709 1052871 1052876) (-645 "MAPPAST.spad" 1051012 1051020 1051689 1051694) (-644 "MAPHACK3.spad" 1050820 1050834 1051002 1051007) (-643 "MAPHACK2.spad" 1050585 1050597 1050810 1050815) (-642 "MAPHACK1.spad" 1050215 1050225 1050575 1050580) (-641 "MAGMA.spad" 1048005 1048022 1050205 1050210) (-640 "M3D.spad" 1045701 1045711 1047383 1047388) (-639 "LZSTAGG.spad" 1042919 1042929 1045681 1045696) (-638 "LZSTAGG.spad" 1040145 1040157 1042909 1042914) (-637 "LWORD.spad" 1036850 1036867 1040135 1040140) (-636 "LSTAST.spad" 1036635 1036643 1036840 1036845) (-635 "LSQM.spad" 1034860 1034874 1035258 1035309) (-634 "LSPP.spad" 1034393 1034410 1034850 1034855) (-633 "LSMP1.spad" 1032214 1032228 1034383 1034388) (-632 "LSMP.spad" 1031061 1031089 1032204 1032209) (-631 "LSAGG.spad" 1030718 1030728 1031017 1031056) (-630 "LSAGG.spad" 1030407 1030419 1030708 1030713) (-629 "LPOLY.spad" 1029361 1029380 1030263 1030332) (-628 "LPEFRAC.spad" 1028618 1028628 1029351 1029356) (-627 "LOGIC.spad" 1028220 1028228 1028608 1028613) (-626 "LOGIC.spad" 1027820 1027830 1028210 1028215) (-625 "LODOOPS.spad" 1026738 1026750 1027810 1027815) (-624 "LODOF.spad" 1025782 1025799 1026695 1026700) (-623 "LODOCAT.spad" 1024440 1024450 1025738 1025777) (-622 "LODOCAT.spad" 1023096 1023108 1024396 1024401) (-621 "LODO2.spad" 1022371 1022383 1022778 1022817) (-620 "LODO1.spad" 1021773 1021783 1022053 1022092) (-619 "LODO.spad" 1021159 1021175 1021455 1021494) (-618 "LODEEF.spad" 1019931 1019949 1021149 1021154) (-617 "LO.spad" 1019332 1019346 1019865 1019892) (-616 "LNAGG.spad" 1015124 1015134 1019312 1019327) (-615 "LNAGG.spad" 1010890 1010902 1015080 1015085) (-614 "LMOPS.spad" 1007626 1007643 1010880 1010885) (-613 "LMODULE.spad" 1007268 1007278 1007616 1007621) (-612 "LMDICT.spad" 1006551 1006561 1006819 1006846) (-611 "LITERAL.spad" 1006457 1006468 1006541 1006546) (-610 "LIST3.spad" 1005748 1005762 1006447 1006452) (-609 "LIST2MAP.spad" 1002625 1002637 1005738 1005743) (-608 "LIST2.spad" 1001265 1001277 1002615 1002620) (-607 "LIST.spad" 998983 998993 1000412 1000439) (-606 "LINEXP.spad" 998415 998425 998963 998978) (-605 "LINDEP.spad" 997192 997204 998327 998332) (-604 "LIMITRF.spad" 995125 995135 997182 997187) (-603 "LIMITPS.spad" 994015 994028 995115 995120) (-602 "LIECAT.spad" 993491 993501 993941 994010) (-601 "LIECAT.spad" 992995 993007 993447 993452) (-600 "LIE.spad" 991009 991021 992285 992430) (-599 "LIB.spad" 989057 989065 989668 989683) (-598 "LGROBP.spad" 986410 986429 989047 989052) (-597 "LFCAT.spad" 985429 985437 986400 986405) (-596 "LF.spad" 984348 984364 985419 985424) (-595 "LEXTRIPK.spad" 979851 979866 984338 984343) (-594 "LEXP.spad" 977854 977881 979831 979846) (-593 "LETAST.spad" 977555 977563 977844 977849) (-592 "LEADCDET.spad" 975939 975956 977545 977550) (-591 "LAZM3PK.spad" 974643 974665 975929 975934) (-590 "LAUPOL.spad" 973334 973347 974238 974307) (-589 "LAPLACE.spad" 972907 972923 973324 973329) (-588 "LALG.spad" 972683 972693 972887 972902) (-587 "LALG.spad" 972467 972479 972673 972678) (-586 "LA.spad" 971907 971921 972389 972428) (-585 "KOVACIC.spad" 970620 970637 971897 971902) (-584 "KONVERT.spad" 970342 970352 970610 970615) (-583 "KOERCE.spad" 970079 970089 970332 970337) (-582 "KERNEL2.spad" 969782 969794 970069 970074) (-581 "KERNEL.spad" 968317 968327 969566 969571) (-580 "KDAGG.spad" 967408 967430 968285 968312) (-579 "KDAGG.spad" 966519 966543 967398 967403) (-578 "KAFILE.spad" 965482 965498 965717 965744) (-577 "JORDAN.spad" 963309 963321 964772 964917) (-576 "JOINAST.spad" 963003 963011 963299 963304) (-575 "JAVACODE.spad" 962769 962777 962993 962998) (-574 "IXAGG.spad" 960882 960906 962749 962764) (-573 "IXAGG.spad" 958860 958886 960729 960734) (-572 "IVECTOR.spad" 957631 957646 957786 957813) (-571 "ITUPLE.spad" 956776 956786 957621 957626) (-570 "ITRIGMNP.spad" 955587 955606 956766 956771) (-569 "ITFUN3.spad" 955081 955095 955577 955582) (-568 "ITFUN2.spad" 954811 954823 955071 955076) (-567 "ITAYLOR.spad" 952603 952618 954647 954772) (-566 "ISUPS.spad" 945014 945029 951577 951674) (-565 "ISUMP.spad" 944511 944527 945004 945009) (-564 "ISTRING.spad" 943514 943527 943680 943707) (-563 "IRURPK.spad" 942227 942246 943504 943509) (-562 "IRSN.spad" 940187 940195 942217 942222) (-561 "IRRF2F.spad" 938662 938672 940143 940148) (-560 "IRREDFFX.spad" 938263 938274 938652 938657) (-559 "IROOT.spad" 936594 936604 938253 938258) (-558 "IR2F.spad" 935794 935810 936584 936589) (-557 "IR2.spad" 934814 934830 935784 935789) (-556 "IR.spad" 932604 932618 934670 934697) (-555 "IPRNTPK.spad" 932364 932372 932594 932599) (-554 "IPF.spad" 931929 931941 932169 932262) (-553 "IPADIC.spad" 931690 931716 931855 931924) (-552 "IOBCON.spad" 931555 931563 931680 931685) (-551 "INVLAPLA.spad" 931200 931216 931545 931550) (-550 "INTTR.spad" 924458 924475 931190 931195) (-549 "INTTOOLS.spad" 922170 922186 924033 924038) (-548 "INTSLPE.spad" 921476 921484 922160 922165) (-547 "INTRVL.spad" 921042 921052 921390 921471) (-546 "INTRF.spad" 919406 919420 921032 921037) (-545 "INTRET.spad" 918838 918848 919396 919401) (-544 "INTRAT.spad" 917513 917530 918828 918833) (-543 "INTPM.spad" 915876 915892 917156 917161) (-542 "INTPAF.spad" 913651 913669 915808 915813) (-541 "INTPACK.spad" 903961 903969 913641 913646) (-540 "INTHERTR.spad" 903227 903244 903951 903956) (-539 "INTHERAL.spad" 902893 902917 903217 903222) (-538 "INTHEORY.spad" 899306 899314 902883 902888) (-537 "INTG0.spad" 892787 892805 899238 899243) (-536 "INTFTBL.spad" 888241 888249 892777 892782) (-535 "INTFACT.spad" 887300 887310 888231 888236) (-534 "INTEF.spad" 885617 885633 887290 887295) (-533 "INTDOM.spad" 884232 884240 885543 885612) (-532 "INTDOM.spad" 882909 882919 884222 884227) (-531 "INTCAT.spad" 881162 881172 882823 882904) (-530 "INTBIT.spad" 880665 880673 881152 881157) (-529 "INTALG.spad" 879847 879874 880655 880660) (-528 "INTAF.spad" 879339 879355 879837 879842) (-527 "INTABL.spad" 877857 877888 878020 878047) (-526 "INT.spad" 877218 877226 877711 877852) (-525 "INS.spad" 874614 874622 877120 877213) (-524 "INS.spad" 872096 872106 874604 874609) (-523 "INPSIGN.spad" 871552 871565 872086 872091) (-522 "INPRODPF.spad" 870618 870637 871542 871547) (-521 "INPRODFF.spad" 869676 869700 870608 870613) (-520 "INNMFACT.spad" 868647 868664 869666 869671) (-519 "INMODGCD.spad" 868131 868161 868637 868642) (-518 "INFSP.spad" 866416 866438 868121 868126) (-517 "INFPROD0.spad" 865466 865485 866406 866411) (-516 "INFORM1.spad" 865091 865101 865456 865461) (-515 "INFORM.spad" 862359 862367 865081 865086) (-514 "INFINITY.spad" 861911 861919 862349 862354) (-513 "INEP.spad" 860443 860465 861901 861906) (-512 "INDE.spad" 860172 860189 860433 860438) (-511 "INCRMAPS.spad" 859593 859603 860162 860167) (-510 "INBFF.spad" 855363 855374 859583 859588) (-509 "INBCON.spad" 854663 854671 855353 855358) (-508 "INBCON.spad" 853961 853971 854653 854658) (-507 "INAST.spad" 853627 853635 853951 853956) (-506 "IMPTAST.spad" 853335 853343 853617 853622) (-505 "IMATRIX.spad" 852280 852306 852792 852819) (-504 "IMATQF.spad" 851374 851418 852236 852241) (-503 "IMATLIN.spad" 849979 850003 851330 851335) (-502 "ILIST.spad" 848635 848650 849162 849189) (-501 "IIARRAY2.spad" 848023 848061 848242 848269) (-500 "IFF.spad" 847433 847449 847704 847797) (-499 "IFAST.spad" 847050 847058 847423 847428) (-498 "IFARRAY.spad" 844537 844552 846233 846260) (-497 "IFAMON.spad" 844399 844416 844493 844498) (-496 "IEVALAB.spad" 843788 843800 844389 844394) (-495 "IEVALAB.spad" 843175 843189 843778 843783) (-494 "IDPOAMS.spad" 842931 842943 843165 843170) (-493 "IDPOAM.spad" 842651 842663 842921 842926) (-492 "IDPO.spad" 842449 842461 842641 842646) (-491 "IDPC.spad" 841383 841395 842439 842444) (-490 "IDPAM.spad" 841128 841140 841373 841378) (-489 "IDPAG.spad" 840875 840887 841118 841123) (-488 "IDENT.spad" 840792 840800 840865 840870) (-487 "IDECOMP.spad" 838029 838047 840782 840787) (-486 "IDEAL.spad" 832952 832991 837964 837969) (-485 "ICDEN.spad" 832103 832119 832942 832947) (-484 "ICARD.spad" 831292 831300 832093 832098) (-483 "IBPTOOLS.spad" 829885 829902 831282 831287) (-482 "IBITS.spad" 829084 829097 829521 829548) (-481 "IBATOOL.spad" 825959 825978 829074 829079) (-480 "IBACHIN.spad" 824446 824461 825949 825954) (-479 "IARRAY2.spad" 823434 823460 824053 824080) (-478 "IARRAY1.spad" 822479 822494 822617 822644) (-477 "IAN.spad" 820693 820701 822296 822389) (-476 "IALGFACT.spad" 820294 820327 820683 820688) (-475 "HYPCAT.spad" 819718 819726 820284 820289) (-474 "HYPCAT.spad" 819140 819150 819708 819713) (-473 "HOSTNAME.spad" 818948 818956 819130 819135) (-472 "HOAGG.spad" 816206 816216 818928 818943) (-471 "HOAGG.spad" 813249 813261 815973 815978) (-470 "HEXADEC.spad" 811121 811129 811719 811812) (-469 "HEUGCD.spad" 810136 810147 811111 811116) (-468 "HELLFDIV.spad" 809726 809750 810126 810131) (-467 "HEAP.spad" 809118 809128 809333 809360) (-466 "HEADAST.spad" 808649 808657 809108 809113) (-465 "HDP.spad" 799797 799813 800174 800305) (-464 "HDMP.spad" 796976 796991 797594 797721) (-463 "HB.spad" 795213 795221 796966 796971) (-462 "HASHTBL.spad" 793683 793714 793894 793921) (-461 "HACKPI.spad" 793166 793174 793585 793678) (-460 "GTSET.spad" 792105 792121 792812 792839) (-459 "GSTBL.spad" 790624 790659 790798 790813) (-458 "GSERIES.spad" 787791 787818 788756 788905) (-457 "GROUP.spad" 787060 787068 787771 787786) (-456 "GROUP.spad" 786337 786347 787050 787055) (-455 "GROEBSOL.spad" 784825 784846 786327 786332) (-454 "GRMOD.spad" 783396 783408 784815 784820) (-453 "GRMOD.spad" 781965 781979 783386 783391) (-452 "GRIMAGE.spad" 774570 774578 781955 781960) (-451 "GRDEF.spad" 772949 772957 774560 774565) (-450 "GRAY.spad" 771408 771416 772939 772944) (-449 "GRALG.spad" 770455 770467 771398 771403) (-448 "GRALG.spad" 769500 769514 770445 770450) (-447 "GPOLSET.spad" 768954 768977 769182 769209) (-446 "GOSPER.spad" 768219 768237 768944 768949) (-445 "GMODPOL.spad" 767357 767384 768187 768214) (-444 "GHENSEL.spad" 766426 766440 767347 767352) (-443 "GENUPS.spad" 762527 762540 766416 766421) (-442 "GENUFACT.spad" 762104 762114 762517 762522) (-441 "GENPGCD.spad" 761688 761705 762094 762099) (-440 "GENMFACT.spad" 761140 761159 761678 761683) (-439 "GENEEZ.spad" 759079 759092 761130 761135) (-438 "GDMP.spad" 756100 756117 756876 757003) (-437 "GCNAALG.spad" 749995 750022 755894 755961) (-436 "GCDDOM.spad" 749167 749175 749921 749990) (-435 "GCDDOM.spad" 748401 748411 749157 749162) (-434 "GBINTERN.spad" 744421 744459 748391 748396) (-433 "GBF.spad" 740178 740216 744411 744416) (-432 "GBEUCLID.spad" 738052 738090 740168 740173) (-431 "GB.spad" 735570 735608 738008 738013) (-430 "GAUSSFAC.spad" 734867 734875 735560 735565) (-429 "GALUTIL.spad" 733189 733199 734823 734828) (-428 "GALPOLYU.spad" 731635 731648 733179 733184) (-427 "GALFACTU.spad" 729800 729819 731625 731630) (-426 "GALFACT.spad" 719933 719944 729790 729795) (-425 "FVFUN.spad" 716946 716954 719913 719928) (-424 "FVC.spad" 715988 715996 716926 716941) (-423 "FUNCTION.spad" 715837 715849 715978 715983) (-422 "FTEM.spad" 715000 715008 715827 715832) (-421 "FT.spad" 713215 713223 714990 714995) (-420 "FSUPFACT.spad" 712116 712135 713152 713157) (-419 "FST.spad" 710202 710210 712106 712111) (-418 "FSRED.spad" 709680 709696 710192 710197) (-417 "FSPRMELT.spad" 708504 708520 709637 709642) (-416 "FSPECF.spad" 706581 706597 708494 708499) (-415 "FSINT.spad" 706239 706255 706571 706576) (-414 "FSERIES.spad" 705426 705438 706059 706158) (-413 "FSCINT.spad" 704739 704755 705416 705421) (-412 "FSAGG2.spad" 703438 703454 704729 704734) (-411 "FSAGG.spad" 702543 702553 703382 703433) (-410 "FSAGG.spad" 701622 701634 702463 702468) (-409 "FS2UPS.spad" 696011 696045 701612 701617) (-408 "FS2EXPXP.spad" 695134 695157 696001 696006) (-407 "FS2.spad" 694779 694795 695124 695129) (-406 "FS.spad" 688829 688839 694542 694774) (-405 "FS.spad" 682670 682682 688385 688390) (-404 "FRUTIL.spad" 681612 681622 682660 682665) (-403 "FRNAALG.spad" 676699 676709 681554 681607) (-402 "FRNAALG.spad" 671798 671810 676655 676660) (-401 "FRNAAF2.spad" 671252 671270 671788 671793) (-400 "FRMOD.spad" 670647 670677 671184 671189) (-399 "FRIDEAL2.spad" 670249 670281 670637 670642) (-398 "FRIDEAL.spad" 669444 669465 670229 670244) (-397 "FRETRCT.spad" 668955 668965 669434 669439) (-396 "FRETRCT.spad" 668334 668346 668815 668820) (-395 "FRAMALG.spad" 666662 666675 668290 668329) (-394 "FRAMALG.spad" 665022 665037 666652 666657) (-393 "FRAC2.spad" 664625 664637 665012 665017) (-392 "FRAC.spad" 661728 661738 662131 662304) (-391 "FR2.spad" 661062 661074 661718 661723) (-390 "FR.spad" 654786 654796 660089 660158) (-389 "FPS.spad" 651595 651603 654676 654781) (-388 "FPS.spad" 648432 648442 651515 651520) (-387 "FPC.spad" 647474 647482 648334 648427) (-386 "FPC.spad" 646602 646612 647464 647469) (-385 "FPATMAB.spad" 646354 646364 646582 646597) (-384 "FPARFRAC.spad" 644827 644844 646344 646349) (-383 "FORTRAN.spad" 643333 643376 644817 644822) (-382 "FORTFN.spad" 640493 640501 643313 643328) (-381 "FORTCAT.spad" 640167 640175 640473 640488) (-380 "FORT.spad" 639096 639104 640157 640162) (-379 "FORMULA1.spad" 638575 638585 639086 639091) (-378 "FORMULA.spad" 635913 635921 638565 638570) (-377 "FORDER.spad" 635604 635628 635903 635908) (-376 "FOP.spad" 634805 634813 635594 635599) (-375 "FNLA.spad" 634229 634251 634773 634800) (-374 "FNCAT.spad" 632557 632565 634219 634224) (-373 "FNAME.spad" 632449 632457 632547 632552) (-372 "FMTC.spad" 632247 632255 632375 632444) (-371 "FMONOID.spad" 629302 629312 632203 632208) (-370 "FMFUN.spad" 626322 626330 629282 629297) (-369 "FMCAT.spad" 623976 623994 626290 626317) (-368 "FMC.spad" 623018 623026 623956 623971) (-367 "FM1.spad" 622375 622387 622952 622979) (-366 "FM.spad" 622070 622082 622309 622336) (-365 "FLOATRP.spad" 619791 619805 622060 622065) (-364 "FLOATCP.spad" 617208 617222 619781 619786) (-363 "FLOAT.spad" 610372 610380 617074 617203) (-362 "FLINEXP.spad" 610084 610094 610352 610367) (-361 "FLINEXP.spad" 609750 609762 610020 610025) (-360 "FLASORT.spad" 609070 609082 609740 609745) (-359 "FLALG.spad" 606716 606735 608996 609065) (-358 "FLAGG2.spad" 605397 605413 606706 606711) (-357 "FLAGG.spad" 602403 602413 605365 605392) (-356 "FLAGG.spad" 599322 599334 602286 602291) (-355 "FINRALG.spad" 597351 597364 599278 599317) (-354 "FINRALG.spad" 595306 595321 597235 597240) (-353 "FINITE.spad" 594458 594466 595296 595301) (-352 "FINAALG.spad" 583439 583449 594400 594453) (-351 "FINAALG.spad" 572432 572444 583395 583400) (-350 "FILECAT.spad" 570950 570967 572422 572427) (-349 "FILE.spad" 570533 570543 570940 570945) (-348 "FIELD.spad" 569939 569947 570435 570528) (-347 "FIELD.spad" 569431 569441 569929 569934) (-346 "FGROUP.spad" 568040 568050 569411 569426) (-345 "FGLMICPK.spad" 566827 566842 568030 568035) (-344 "FFX.spad" 566202 566217 566543 566636) (-343 "FFSLPE.spad" 565691 565712 566192 566197) (-342 "FFPOLY2.spad" 564751 564768 565681 565686) (-341 "FFPOLY.spad" 556003 556014 564741 564746) (-340 "FFP.spad" 555400 555420 555719 555812) (-339 "FFNBX.spad" 553912 553932 555116 555209) (-338 "FFNBP.spad" 552425 552442 553628 553721) (-337 "FFNB.spad" 550890 550911 552106 552199) (-336 "FFINTBAS.spad" 548304 548323 550880 550885) (-335 "FFIELDC.spad" 545879 545887 548206 548299) (-334 "FFIELDC.spad" 543540 543550 545869 545874) (-333 "FFHOM.spad" 542288 542305 543530 543535) (-332 "FFF.spad" 539723 539734 542278 542283) (-331 "FFCGX.spad" 538570 538590 539439 539532) (-330 "FFCGP.spad" 537459 537479 538286 538379) (-329 "FFCG.spad" 536251 536272 537140 537233) (-328 "FFCAT2.spad" 535996 536036 536241 536246) (-327 "FFCAT.spad" 529023 529045 535835 535991) (-326 "FFCAT.spad" 522129 522153 528943 528948) (-325 "FF.spad" 521577 521593 521810 521903) (-324 "FEXPR.spad" 513289 513335 521336 521375) (-323 "FEVALAB.spad" 512995 513005 513279 513284) (-322 "FEVALAB.spad" 512486 512498 512772 512777) (-321 "FDIVCAT.spad" 510528 510552 512476 512481) (-320 "FDIVCAT.spad" 508568 508594 510518 510523) (-319 "FDIV2.spad" 508222 508262 508558 508563) (-318 "FDIV.spad" 507664 507688 508212 508217) (-317 "FCPAK1.spad" 506217 506225 507654 507659) (-316 "FCOMP.spad" 505596 505606 506207 506212) (-315 "FC.spad" 495421 495429 505586 505591) (-314 "FAXF.spad" 488356 488370 495323 495416) (-313 "FAXF.spad" 481343 481359 488312 488317) (-312 "FARRAY.spad" 479489 479499 480526 480553) (-311 "FAMR.spad" 477609 477621 479387 479484) (-310 "FAMR.spad" 475713 475727 477493 477498) (-309 "FAMONOID.spad" 475363 475373 475667 475672) (-308 "FAMONC.spad" 473585 473597 475353 475358) (-307 "FAGROUP.spad" 473191 473201 473481 473508) (-306 "FACUTIL.spad" 471387 471404 473181 473186) (-305 "FACTFUNC.spad" 470563 470573 471377 471382) (-304 "EXPUPXS.spad" 467396 467419 468695 468844) (-303 "EXPRTUBE.spad" 464624 464632 467386 467391) (-302 "EXPRODE.spad" 461496 461512 464614 464619) (-301 "EXPR2UPS.spad" 457588 457601 461486 461491) (-300 "EXPR2.spad" 457291 457303 457578 457583) (-299 "EXPR.spad" 452576 452586 453290 453697) (-298 "EXPEXPAN.spad" 449517 449542 450151 450244) (-297 "EXITAST.spad" 449339 449347 449507 449512) (-296 "EXIT.spad" 449010 449018 449329 449334) (-295 "EVALCYC.spad" 448468 448482 449000 449005) (-294 "EVALAB.spad" 448032 448042 448458 448463) (-293 "EVALAB.spad" 447594 447606 448022 448027) (-292 "EUCDOM.spad" 445136 445144 447520 447589) (-291 "EUCDOM.spad" 442740 442750 445126 445131) (-290 "ESTOOLS2.spad" 442341 442355 442730 442735) (-289 "ESTOOLS1.spad" 442026 442037 442331 442336) (-288 "ESTOOLS.spad" 433866 433874 442016 442021) (-287 "ESCONT1.spad" 433615 433627 433856 433861) (-286 "ESCONT.spad" 430388 430396 433605 433610) (-285 "ES2.spad" 429883 429899 430378 430383) (-284 "ES1.spad" 429449 429465 429873 429878) (-283 "ES.spad" 421996 422004 429439 429444) (-282 "ES.spad" 414450 414460 421895 421900) (-281 "ERROR.spad" 411771 411779 414440 414445) (-280 "EQTBL.spad" 410243 410265 410452 410479) (-279 "EQ2.spad" 409959 409971 410233 410238) (-278 "EQ.spad" 404833 404843 407632 407744) (-277 "EP.spad" 401147 401157 404823 404828) (-276 "ENV.spad" 399849 399857 401137 401142) (-275 "ENTIRER.spad" 399517 399525 399793 399844) (-274 "EMR.spad" 398718 398759 399443 399512) (-273 "ELTAGG.spad" 396958 396977 398708 398713) (-272 "ELTAGG.spad" 395162 395183 396914 396919) (-271 "ELTAB.spad" 394609 394627 395152 395157) (-270 "ELFUTS.spad" 393988 394007 394599 394604) (-269 "ELEMFUN.spad" 393677 393685 393978 393983) (-268 "ELEMFUN.spad" 393364 393374 393667 393672) (-267 "ELAGG.spad" 391295 391305 393332 393359) (-266 "ELAGG.spad" 389175 389187 391214 391219) (-265 "ELABEXPR.spad" 388106 388114 389165 389170) (-264 "EFUPXS.spad" 384882 384912 388062 388067) (-263 "EFULS.spad" 381718 381741 384838 384843) (-262 "EFSTRUC.spad" 379673 379689 381708 381713) (-261 "EF.spad" 374439 374455 379663 379668) (-260 "EAB.spad" 372715 372723 374429 374434) (-259 "E04UCFA.spad" 372251 372259 372705 372710) (-258 "E04NAFA.spad" 371828 371836 372241 372246) (-257 "E04MBFA.spad" 371408 371416 371818 371823) (-256 "E04JAFA.spad" 370944 370952 371398 371403) (-255 "E04GCFA.spad" 370480 370488 370934 370939) (-254 "E04FDFA.spad" 370016 370024 370470 370475) (-253 "E04DGFA.spad" 369552 369560 370006 370011) (-252 "E04AGNT.spad" 365394 365402 369542 369547) (-251 "DVARCAT.spad" 362079 362089 365384 365389) (-250 "DVARCAT.spad" 358762 358774 362069 362074) (-249 "DSMP.spad" 356196 356210 356501 356628) (-248 "DROPT1.spad" 355859 355869 356186 356191) (-247 "DROPT0.spad" 350686 350694 355849 355854) (-246 "DROPT.spad" 344631 344639 350676 350681) (-245 "DRAWPT.spad" 342786 342794 344621 344626) (-244 "DRAWHACK.spad" 342094 342104 342776 342781) (-243 "DRAWCX.spad" 339536 339544 342084 342089) (-242 "DRAWCURV.spad" 339073 339088 339526 339531) (-241 "DRAWCFUN.spad" 328245 328253 339063 339068) (-240 "DRAW.spad" 320845 320858 328235 328240) (-239 "DQAGG.spad" 319001 319011 320801 320840) (-238 "DPOLCAT.spad" 314342 314358 318869 318996) (-237 "DPOLCAT.spad" 309769 309787 314298 314303) (-236 "DPMO.spad" 303097 303113 303235 303536) (-235 "DPMM.spad" 296438 296456 296563 296864) (-234 "DOMAIN.spad" 295709 295717 296428 296433) (-233 "DMP.spad" 292934 292949 293506 293633) (-232 "DLP.spad" 292282 292292 292924 292929) (-231 "DLIST.spad" 290694 290704 291465 291492) (-230 "DLAGG.spad" 289095 289105 290674 290689) (-229 "DIVRING.spad" 288637 288645 289039 289090) (-228 "DIVRING.spad" 288223 288233 288627 288632) (-227 "DISPLAY.spad" 286403 286411 288213 288218) (-226 "DIRPROD2.spad" 285211 285229 286393 286398) (-225 "DIRPROD.spad" 276096 276112 276736 276867) (-224 "DIRPCAT.spad" 275026 275042 275948 276091) (-223 "DIRPCAT.spad" 273697 273715 274621 274626) (-222 "DIOSP.spad" 272522 272530 273687 273692) (-221 "DIOPS.spad" 271494 271504 272490 272517) (-220 "DIOPS.spad" 270452 270464 271450 271455) (-219 "DIFRING.spad" 269744 269752 270432 270447) (-218 "DIFRING.spad" 269044 269054 269734 269739) (-217 "DIFEXT.spad" 268203 268213 269024 269039) (-216 "DIFEXT.spad" 267279 267291 268102 268107) (-215 "DIAGG.spad" 266897 266907 267247 267274) (-214 "DIAGG.spad" 266535 266547 266887 266892) (-213 "DHMATRIX.spad" 264839 264849 265992 266019) (-212 "DFSFUN.spad" 258247 258255 264829 264834) (-211 "DFLOAT.spad" 254770 254778 258137 258242) (-210 "DFINTTLS.spad" 252979 252995 254760 254765) (-209 "DERHAM.spad" 250889 250921 252959 252974) (-208 "DEQUEUE.spad" 250207 250217 250496 250523) (-207 "DEGRED.spad" 249822 249836 250197 250202) (-206 "DEFINTRF.spad" 247392 247402 249812 249817) (-205 "DEFINTEF.spad" 245916 245932 247382 247387) (-204 "DECIMAL.spad" 243800 243808 244386 244479) (-203 "DDFACT.spad" 241599 241616 243790 243795) (-202 "DBLRESP.spad" 241197 241221 241589 241594) (-201 "DBASE.spad" 239769 239779 241187 241192) (-200 "DATABUF.spad" 239257 239270 239759 239764) (-199 "D03FAFA.spad" 239085 239093 239247 239252) (-198 "D03EEFA.spad" 238905 238913 239075 239080) (-197 "D03AGNT.spad" 237985 237993 238895 238900) (-196 "D02EJFA.spad" 237447 237455 237975 237980) (-195 "D02CJFA.spad" 236925 236933 237437 237442) (-194 "D02BHFA.spad" 236415 236423 236915 236920) (-193 "D02BBFA.spad" 235905 235913 236405 236410) (-192 "D02AGNT.spad" 230709 230717 235895 235900) (-191 "D01WGTS.spad" 229028 229036 230699 230704) (-190 "D01TRNS.spad" 229005 229013 229018 229023) (-189 "D01GBFA.spad" 228527 228535 228995 229000) (-188 "D01FCFA.spad" 228049 228057 228517 228522) (-187 "D01ASFA.spad" 227517 227525 228039 228044) (-186 "D01AQFA.spad" 226963 226971 227507 227512) (-185 "D01APFA.spad" 226387 226395 226953 226958) (-184 "D01ANFA.spad" 225881 225889 226377 226382) (-183 "D01AMFA.spad" 225391 225399 225871 225876) (-182 "D01ALFA.spad" 224931 224939 225381 225386) (-181 "D01AKFA.spad" 224457 224465 224921 224926) (-180 "D01AJFA.spad" 223980 223988 224447 224452) (-179 "D01AGNT.spad" 220039 220047 223970 223975) (-178 "CYCLOTOM.spad" 219545 219553 220029 220034) (-177 "CYCLES.spad" 216377 216385 219535 219540) (-176 "CVMP.spad" 215794 215804 216367 216372) (-175 "CTRIGMNP.spad" 214284 214300 215784 215789) (-174 "CTORCALL.spad" 213872 213880 214274 214279) (-173 "CSTTOOLS.spad" 213115 213128 213862 213867) (-172 "CRFP.spad" 206819 206832 213105 213110) (-171 "CRCAST.spad" 206540 206548 206809 206814) (-170 "CRAPACK.spad" 205583 205593 206530 206535) (-169 "CPMATCH.spad" 205083 205098 205508 205513) (-168 "CPIMA.spad" 204788 204807 205073 205078) (-167 "COORDSYS.spad" 199681 199691 204778 204783) (-166 "CONTOUR.spad" 199083 199091 199671 199676) (-165 "CONTFRAC.spad" 194695 194705 198985 199078) (-164 "CONDUIT.spad" 194453 194461 194685 194690) (-163 "COMRING.spad" 194127 194135 194391 194448) (-162 "COMPPROP.spad" 193641 193649 194117 194122) (-161 "COMPLPAT.spad" 193408 193423 193631 193636) (-160 "COMPLEX2.spad" 193121 193133 193398 193403) (-159 "COMPLEX.spad" 187152 187162 187396 187657) (-158 "COMPFACT.spad" 186754 186768 187142 187147) (-157 "COMPCAT.spad" 184810 184820 186476 186749) (-156 "COMPCAT.spad" 182572 182584 184240 184245) (-155 "COMMUPC.spad" 182318 182336 182562 182567) (-154 "COMMONOP.spad" 181851 181859 182308 182313) (-153 "COMM.spad" 181660 181668 181841 181846) (-152 "COMBOPC.spad" 180565 180573 181650 181655) (-151 "COMBINAT.spad" 179310 179320 180555 180560) (-150 "COMBF.spad" 176678 176694 179300 179305) (-149 "COLOR.spad" 175515 175523 176668 176673) (-148 "CMPLXRT.spad" 175224 175241 175505 175510) (-147 "CLIP.spad" 171316 171324 175214 175219) (-146 "CLIF.spad" 169955 169971 171272 171311) (-145 "CLAGG.spad" 166430 166440 169935 169950) (-144 "CLAGG.spad" 162786 162798 166293 166298) (-143 "CINTSLPE.spad" 162111 162124 162776 162781) (-142 "CHVAR.spad" 160189 160211 162101 162106) (-141 "CHARZ.spad" 160104 160112 160169 160184) (-140 "CHARPOL.spad" 159612 159622 160094 160099) (-139 "CHARNZ.spad" 159365 159373 159592 159607) (-138 "CHAR.spad" 157233 157241 159355 159360) (-137 "CFCAT.spad" 156549 156557 157223 157228) (-136 "CDEN.spad" 155707 155721 156539 156544) (-135 "CCLASS.spad" 153856 153864 155118 155157) (-134 "CATEGORY.spad" 153635 153643 153846 153851) (-133 "CARTEN2.spad" 153021 153048 153625 153630) (-132 "CARTEN.spad" 148124 148148 153011 153016) (-131 "CARD.spad" 145413 145421 148098 148119) (-130 "CACHSET.spad" 145035 145043 145403 145408) (-129 "CABMON.spad" 144588 144596 145025 145030) (-128 "BYTEARY.spad" 143663 143671 143757 143784) (-127 "BYTE.spad" 143057 143065 143653 143658) (-126 "BTREE.spad" 142126 142136 142664 142691) (-125 "BTOURN.spad" 141129 141139 141733 141760) (-124 "BTCAT.spad" 140505 140515 141085 141124) (-123 "BTCAT.spad" 139913 139925 140495 140500) (-122 "BTAGG.spad" 139023 139031 139869 139908) (-121 "BTAGG.spad" 138165 138175 139013 139018) (-120 "BSTREE.spad" 136900 136910 137772 137799) (-119 "BRILL.spad" 135095 135106 136890 136895) (-118 "BRAGG.spad" 134009 134019 135075 135090) (-117 "BRAGG.spad" 132897 132909 133965 133970) (-116 "BPADICRT.spad" 130881 130893 131136 131229) (-115 "BPADIC.spad" 130545 130557 130807 130876) (-114 "BOUNDZRO.spad" 130201 130218 130535 130540) (-113 "BOP1.spad" 127587 127597 130157 130162) (-112 "BOP.spad" 123051 123059 127577 127582) (-111 "BOOLEAN.spad" 122375 122383 123041 123046) (-110 "BMODULE.spad" 122087 122099 122343 122370) (-109 "BITS.spad" 121506 121514 121723 121750) (-108 "BINFILE.spad" 120849 120857 121496 121501) (-107 "BINDING.spad" 120268 120276 120839 120844) (-106 "BINARY.spad" 118161 118169 118738 118831) (-105 "BGAGG.spad" 117346 117356 118129 118156) (-104 "BGAGG.spad" 116551 116563 117336 117341) (-103 "BFUNCT.spad" 116115 116123 116531 116546) (-102 "BEZOUT.spad" 115249 115276 116065 116070) (-101 "BBTREE.spad" 112068 112078 114856 114883) (-100 "BASTYPE.spad" 111740 111748 112058 112063) (-99 "BASTYPE.spad" 111411 111420 111730 111735) (-98 "BALFACT.spad" 110851 110863 111401 111406) (-97 "AUTOMOR.spad" 110298 110307 110831 110846) (-96 "ATTREG.spad" 107017 107024 110050 110293) (-95 "ATTRBUT.spad" 103040 103047 106997 107012) (-94 "ATTRAST.spad" 102758 102765 103030 103035) (-93 "ATRIG.spad" 102228 102235 102748 102753) (-92 "ATRIG.spad" 101696 101705 102218 102223) (-91 "ASTCAT.spad" 101600 101607 101686 101691) (-90 "ASTCAT.spad" 101502 101511 101590 101595) (-89 "ASTACK.spad" 100835 100844 101109 101136) (-88 "ASSOCEQ.spad" 99635 99646 100791 100796) (-87 "ASP9.spad" 98716 98729 99625 99630) (-86 "ASP80.spad" 98038 98051 98706 98711) (-85 "ASP8.spad" 97081 97094 98028 98033) (-84 "ASP78.spad" 96532 96545 97071 97076) (-83 "ASP77.spad" 95901 95914 96522 96527) (-82 "ASP74.spad" 94993 95006 95891 95896) (-81 "ASP73.spad" 94264 94277 94983 94988) (-80 "ASP7.spad" 93424 93437 94254 94259) (-79 "ASP6.spad" 92056 92069 93414 93419) (-78 "ASP55.spad" 90565 90578 92046 92051) (-77 "ASP50.spad" 88382 88395 90555 90560) (-76 "ASP49.spad" 87381 87394 88372 88377) (-75 "ASP42.spad" 85788 85827 87371 87376) (-74 "ASP41.spad" 84367 84406 85778 85783) (-73 "ASP4.spad" 83662 83675 84357 84362) (-72 "ASP35.spad" 82650 82663 83652 83657) (-71 "ASP34.spad" 81951 81964 82640 82645) (-70 "ASP33.spad" 81511 81524 81941 81946) (-69 "ASP31.spad" 80651 80664 81501 81506) (-68 "ASP30.spad" 79543 79556 80641 80646) (-67 "ASP29.spad" 79009 79022 79533 79538) (-66 "ASP28.spad" 70282 70295 78999 79004) (-65 "ASP27.spad" 69179 69192 70272 70277) (-64 "ASP24.spad" 68266 68279 69169 69174) (-63 "ASP20.spad" 67482 67495 68256 68261) (-62 "ASP19.spad" 62168 62181 67472 67477) (-61 "ASP12.spad" 61582 61595 62158 62163) (-60 "ASP10.spad" 60853 60866 61572 61577) (-59 "ASP1.spad" 60234 60247 60843 60848) (-58 "ARRAY2.spad" 59594 59603 59841 59868) (-57 "ARRAY12.spad" 58263 58274 59584 59589) (-56 "ARRAY1.spad" 57098 57107 57446 57473) (-55 "ARR2CAT.spad" 52748 52769 57054 57093) (-54 "ARR2CAT.spad" 48430 48453 52738 52743) (-53 "APPRULE.spad" 47674 47696 48420 48425) (-52 "APPLYORE.spad" 47289 47302 47664 47669) (-51 "ANY1.spad" 46360 46369 47279 47284) (-50 "ANY.spad" 44702 44709 46350 46355) (-49 "ANTISYM.spad" 43141 43157 44682 44697) (-48 "ANON.spad" 42838 42845 43131 43136) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2255868 2255873 2255878 2255883) (-2 NIL 2255848 2255853 2255858 2255863) (-1 NIL 2255828 2255833 2255838 2255843) (0 NIL 2255808 2255813 2255818 2255823) (-1246 "ZMOD.spad" 2255617 2255630 2255746 2255803) (-1245 "ZLINDEP.spad" 2254661 2254672 2255607 2255612) (-1244 "ZDSOLVE.spad" 2244510 2244532 2254651 2254656) (-1243 "YSTREAM.spad" 2244003 2244014 2244500 2244505) (-1242 "XRPOLY.spad" 2243223 2243243 2243859 2243928) (-1241 "XPR.spad" 2240952 2240965 2242941 2243040) (-1240 "XPOLY.spad" 2240507 2240518 2240808 2240877) (-1239 "XPOLYC.spad" 2239824 2239840 2240433 2240502) (-1238 "XPBWPOLY.spad" 2238261 2238281 2239604 2239673) (-1237 "XF.spad" 2236722 2236737 2238163 2238256) (-1236 "XF.spad" 2235163 2235180 2236606 2236611) (-1235 "XFALG.spad" 2232187 2232203 2235089 2235158) (-1234 "XEXPPKG.spad" 2231438 2231464 2232177 2232182) (-1233 "XDPOLY.spad" 2231052 2231068 2231294 2231363) (-1232 "XALG.spad" 2230650 2230661 2231008 2231047) (-1231 "WUTSET.spad" 2226489 2226506 2230296 2230323) (-1230 "WP.spad" 2225503 2225547 2226347 2226414) (-1229 "WHILEAST.spad" 2225302 2225311 2225493 2225498) (-1228 "WHEREAST.spad" 2224975 2224984 2225292 2225297) (-1227 "WFFINTBS.spad" 2222538 2222560 2224965 2224970) (-1226 "WEIER.spad" 2220752 2220763 2222528 2222533) (-1225 "VSPACE.spad" 2220425 2220436 2220720 2220747) (-1224 "VSPACE.spad" 2220118 2220131 2220415 2220420) (-1223 "VOID.spad" 2219708 2219717 2220108 2220113) (-1222 "VIEW.spad" 2217330 2217339 2219698 2219703) (-1221 "VIEWDEF.spad" 2212527 2212536 2217320 2217325) (-1220 "VIEW3D.spad" 2196362 2196371 2212517 2212522) (-1219 "VIEW2D.spad" 2184099 2184108 2196352 2196357) (-1218 "VECTOR.spad" 2182774 2182785 2183025 2183052) (-1217 "VECTOR2.spad" 2181401 2181414 2182764 2182769) (-1216 "VECTCAT.spad" 2179289 2179300 2181357 2181396) (-1215 "VECTCAT.spad" 2176997 2177010 2179067 2179072) (-1214 "VARIABLE.spad" 2176777 2176792 2176987 2176992) (-1213 "UTYPE.spad" 2176411 2176420 2176757 2176772) (-1212 "UTSODETL.spad" 2175704 2175728 2176367 2176372) (-1211 "UTSODE.spad" 2173892 2173912 2175694 2175699) (-1210 "UTS.spad" 2168681 2168709 2172359 2172456) (-1209 "UTSCAT.spad" 2166132 2166148 2168579 2168676) (-1208 "UTSCAT.spad" 2163227 2163245 2165676 2165681) (-1207 "UTS2.spad" 2162820 2162855 2163217 2163222) (-1206 "URAGG.spad" 2157442 2157453 2162800 2162815) (-1205 "URAGG.spad" 2152038 2152051 2157398 2157403) (-1204 "UPXSSING.spad" 2149681 2149707 2151119 2151252) (-1203 "UPXS.spad" 2146708 2146736 2147813 2147962) (-1202 "UPXSCONS.spad" 2144465 2144485 2144840 2144989) (-1201 "UPXSCCA.spad" 2142923 2142943 2144311 2144460) (-1200 "UPXSCCA.spad" 2141523 2141545 2142913 2142918) (-1199 "UPXSCAT.spad" 2140104 2140120 2141369 2141518) (-1198 "UPXS2.spad" 2139645 2139698 2140094 2140099) (-1197 "UPSQFREE.spad" 2138057 2138071 2139635 2139640) (-1196 "UPSCAT.spad" 2135650 2135674 2137955 2138052) (-1195 "UPSCAT.spad" 2132949 2132975 2135256 2135261) (-1194 "UPOLYC.spad" 2127927 2127938 2132791 2132944) (-1193 "UPOLYC.spad" 2122797 2122810 2127663 2127668) (-1192 "UPOLYC2.spad" 2122266 2122285 2122787 2122792) (-1191 "UP.spad" 2119308 2119323 2119816 2119969) (-1190 "UPMP.spad" 2118198 2118211 2119298 2119303) (-1189 "UPDIVP.spad" 2117761 2117775 2118188 2118193) (-1188 "UPDECOMP.spad" 2115998 2116012 2117751 2117756) (-1187 "UPCDEN.spad" 2115205 2115221 2115988 2115993) (-1186 "UP2.spad" 2114567 2114588 2115195 2115200) (-1185 "UNISEG.spad" 2113920 2113931 2114486 2114491) (-1184 "UNISEG2.spad" 2113413 2113426 2113876 2113881) (-1183 "UNIFACT.spad" 2112514 2112526 2113403 2113408) (-1182 "ULS.spad" 2103068 2103096 2104161 2104590) (-1181 "ULSCONS.spad" 2097107 2097127 2097479 2097628) (-1180 "ULSCCAT.spad" 2094704 2094724 2096927 2097102) (-1179 "ULSCCAT.spad" 2092435 2092457 2094660 2094665) (-1178 "ULSCAT.spad" 2090651 2090667 2092281 2092430) (-1177 "ULS2.spad" 2090163 2090216 2090641 2090646) (-1176 "UFD.spad" 2089228 2089237 2090089 2090158) (-1175 "UFD.spad" 2088355 2088366 2089218 2089223) (-1174 "UDVO.spad" 2087202 2087211 2088345 2088350) (-1173 "UDPO.spad" 2084629 2084640 2087158 2087163) (-1172 "TYPE.spad" 2084551 2084560 2084609 2084624) (-1171 "TYPEAST.spad" 2084384 2084393 2084541 2084546) (-1170 "TWOFACT.spad" 2083034 2083049 2084374 2084379) (-1169 "TUPLE.spad" 2082420 2082431 2082933 2082938) (-1168 "TUBETOOL.spad" 2079257 2079266 2082410 2082415) (-1167 "TUBE.spad" 2077898 2077915 2079247 2079252) (-1166 "TS.spad" 2076487 2076503 2077463 2077560) (-1165 "TSETCAT.spad" 2063602 2063619 2076443 2076482) (-1164 "TSETCAT.spad" 2050715 2050734 2063558 2063563) (-1163 "TRMANIP.spad" 2045081 2045098 2050421 2050426) (-1162 "TRIMAT.spad" 2044040 2044065 2045071 2045076) (-1161 "TRIGMNIP.spad" 2042557 2042574 2044030 2044035) (-1160 "TRIGCAT.spad" 2042069 2042078 2042547 2042552) (-1159 "TRIGCAT.spad" 2041579 2041590 2042059 2042064) (-1158 "TREE.spad" 2040150 2040161 2041186 2041213) (-1157 "TRANFUN.spad" 2039981 2039990 2040140 2040145) (-1156 "TRANFUN.spad" 2039810 2039821 2039971 2039976) (-1155 "TOPSP.spad" 2039484 2039493 2039800 2039805) (-1154 "TOOLSIGN.spad" 2039147 2039158 2039474 2039479) (-1153 "TEXTFILE.spad" 2037704 2037713 2039137 2039142) (-1152 "TEX.spad" 2034721 2034730 2037694 2037699) (-1151 "TEX1.spad" 2034277 2034288 2034711 2034716) (-1150 "TEMUTL.spad" 2033832 2033841 2034267 2034272) (-1149 "TBCMPPK.spad" 2031925 2031948 2033822 2033827) (-1148 "TBAGG.spad" 2030949 2030972 2031893 2031920) (-1147 "TBAGG.spad" 2029993 2030018 2030939 2030944) (-1146 "TANEXP.spad" 2029369 2029380 2029983 2029988) (-1145 "TABLE.spad" 2027780 2027803 2028050 2028077) (-1144 "TABLEAU.spad" 2027261 2027272 2027770 2027775) (-1143 "TABLBUMP.spad" 2024044 2024055 2027251 2027256) (-1142 "SYSTEM.spad" 2023318 2023327 2024034 2024039) (-1141 "SYSSOLP.spad" 2020791 2020802 2023308 2023313) (-1140 "SYNTAX.spad" 2016983 2016992 2020781 2020786) (-1139 "SYMTAB.spad" 2015039 2015048 2016973 2016978) (-1138 "SYMS.spad" 2011024 2011033 2015029 2015034) (-1137 "SYMPOLY.spad" 2010031 2010042 2010113 2010240) (-1136 "SYMFUNC.spad" 2009506 2009517 2010021 2010026) (-1135 "SYMBOL.spad" 2006842 2006851 2009496 2009501) (-1134 "SWITCH.spad" 2003599 2003608 2006832 2006837) (-1133 "SUTS.spad" 2000498 2000526 2002066 2002163) (-1132 "SUPXS.spad" 1997512 1997540 1998630 1998779) (-1131 "SUP.spad" 1994281 1994292 1995062 1995215) (-1130 "SUPFRACF.spad" 1993386 1993404 1994271 1994276) (-1129 "SUP2.spad" 1992776 1992789 1993376 1993381) (-1128 "SUMRF.spad" 1991742 1991753 1992766 1992771) (-1127 "SUMFS.spad" 1991375 1991392 1991732 1991737) (-1126 "SULS.spad" 1981916 1981944 1983022 1983451) (-1125 "SUCH.spad" 1981596 1981611 1981906 1981911) (-1124 "SUBSPACE.spad" 1973603 1973618 1981586 1981591) (-1123 "SUBRESP.spad" 1972763 1972777 1973559 1973564) (-1122 "STTF.spad" 1968862 1968878 1972753 1972758) (-1121 "STTFNC.spad" 1965330 1965346 1968852 1968857) (-1120 "STTAYLOR.spad" 1957728 1957739 1965211 1965216) (-1119 "STRTBL.spad" 1956233 1956250 1956382 1956409) (-1118 "STRING.spad" 1955642 1955651 1955656 1955683) (-1117 "STRICAT.spad" 1955418 1955427 1955598 1955637) (-1116 "STREAM.spad" 1952186 1952197 1954943 1954958) (-1115 "STREAM3.spad" 1951731 1951746 1952176 1952181) (-1114 "STREAM2.spad" 1950799 1950812 1951721 1951726) (-1113 "STREAM1.spad" 1950503 1950514 1950789 1950794) (-1112 "STINPROD.spad" 1949409 1949425 1950493 1950498) (-1111 "STEP.spad" 1948610 1948619 1949399 1949404) (-1110 "STBL.spad" 1947136 1947164 1947303 1947318) (-1109 "STAGG.spad" 1946201 1946212 1947116 1947131) (-1108 "STAGG.spad" 1945274 1945287 1946191 1946196) (-1107 "STACK.spad" 1944625 1944636 1944881 1944908) (-1106 "SREGSET.spad" 1942329 1942346 1944271 1944298) (-1105 "SRDCMPK.spad" 1940874 1940894 1942319 1942324) (-1104 "SRAGG.spad" 1935959 1935968 1940830 1940869) (-1103 "SRAGG.spad" 1931076 1931087 1935949 1935954) (-1102 "SQMATRIX.spad" 1928700 1928718 1929608 1929695) (-1101 "SPLTREE.spad" 1923252 1923265 1928136 1928163) (-1100 "SPLNODE.spad" 1919840 1919853 1923242 1923247) (-1099 "SPFCAT.spad" 1918617 1918626 1919830 1919835) (-1098 "SPECOUT.spad" 1917167 1917176 1918607 1918612) (-1097 "spad-parser.spad" 1916632 1916641 1917157 1917162) (-1096 "SPACEC.spad" 1900645 1900656 1916622 1916627) (-1095 "SPACE3.spad" 1900421 1900432 1900635 1900640) (-1094 "SORTPAK.spad" 1899966 1899979 1900377 1900382) (-1093 "SOLVETRA.spad" 1897723 1897734 1899956 1899961) (-1092 "SOLVESER.spad" 1896243 1896254 1897713 1897718) (-1091 "SOLVERAD.spad" 1892253 1892264 1896233 1896238) (-1090 "SOLVEFOR.spad" 1890673 1890691 1892243 1892248) (-1089 "SNTSCAT.spad" 1890261 1890278 1890629 1890668) (-1088 "SMTS.spad" 1888521 1888547 1889826 1889923) (-1087 "SMP.spad" 1885960 1885980 1886350 1886477) (-1086 "SMITH.spad" 1884803 1884828 1885950 1885955) (-1085 "SMATCAT.spad" 1882901 1882931 1884735 1884798) (-1084 "SMATCAT.spad" 1880943 1880975 1882779 1882784) (-1083 "SKAGG.spad" 1879892 1879903 1880899 1880938) (-1082 "SINT.spad" 1878200 1878209 1879758 1879887) (-1081 "SIMPAN.spad" 1877928 1877937 1878190 1878195) (-1080 "SIG.spad" 1877256 1877265 1877918 1877923) (-1079 "SIGNRF.spad" 1876364 1876375 1877246 1877251) (-1078 "SIGNEF.spad" 1875633 1875650 1876354 1876359) (-1077 "SHP.spad" 1873551 1873566 1875589 1875594) (-1076 "SHDP.spad" 1864536 1864563 1865045 1865176) (-1075 "SGROUP.spad" 1864144 1864153 1864526 1864531) (-1074 "SGROUP.spad" 1863750 1863761 1864134 1864139) (-1073 "SGCF.spad" 1856631 1856640 1863740 1863745) (-1072 "SFRTCAT.spad" 1855547 1855564 1856587 1856626) (-1071 "SFRGCD.spad" 1854610 1854630 1855537 1855542) (-1070 "SFQCMPK.spad" 1849247 1849267 1854600 1854605) (-1069 "SFORT.spad" 1848682 1848696 1849237 1849242) (-1068 "SEXOF.spad" 1848525 1848565 1848672 1848677) (-1067 "SEX.spad" 1848417 1848426 1848515 1848520) (-1066 "SEXCAT.spad" 1845521 1845561 1848407 1848412) (-1065 "SET.spad" 1843821 1843832 1844942 1844981) (-1064 "SETMN.spad" 1842255 1842272 1843811 1843816) (-1063 "SETCAT.spad" 1841740 1841749 1842245 1842250) (-1062 "SETCAT.spad" 1841223 1841234 1841730 1841735) (-1061 "SETAGG.spad" 1837732 1837743 1841191 1841218) (-1060 "SETAGG.spad" 1834261 1834274 1837722 1837727) (-1059 "SEGXCAT.spad" 1833373 1833386 1834241 1834256) (-1058 "SEG.spad" 1833186 1833197 1833292 1833297) (-1057 "SEGCAT.spad" 1832005 1832016 1833166 1833181) (-1056 "SEGBIND.spad" 1831077 1831088 1831960 1831965) (-1055 "SEGBIND2.spad" 1830773 1830786 1831067 1831072) (-1054 "SEGAST.spad" 1830488 1830497 1830763 1830768) (-1053 "SEG2.spad" 1829913 1829926 1830444 1830449) (-1052 "SDVAR.spad" 1829189 1829200 1829903 1829908) (-1051 "SDPOL.spad" 1826579 1826590 1826870 1826997) (-1050 "SCPKG.spad" 1824658 1824669 1826569 1826574) (-1049 "SCOPE.spad" 1823803 1823812 1824648 1824653) (-1048 "SCACHE.spad" 1822485 1822496 1823793 1823798) (-1047 "SASTCAT.spad" 1822394 1822403 1822475 1822480) (-1046 "SASTCAT.spad" 1822301 1822312 1822384 1822389) (-1045 "SAOS.spad" 1822173 1822182 1822291 1822296) (-1044 "SAERFFC.spad" 1821886 1821906 1822163 1822168) (-1043 "SAE.spad" 1820061 1820077 1820672 1820807) (-1042 "SAEFACT.spad" 1819762 1819782 1820051 1820056) (-1041 "RURPK.spad" 1817403 1817419 1819752 1819757) (-1040 "RULESET.spad" 1816844 1816868 1817393 1817398) (-1039 "RULE.spad" 1815048 1815072 1816834 1816839) (-1038 "RULECOLD.spad" 1814900 1814913 1815038 1815043) (-1037 "RSETGCD.spad" 1811278 1811298 1814890 1814895) (-1036 "RSETCAT.spad" 1801050 1801067 1811234 1811273) (-1035 "RSETCAT.spad" 1790854 1790873 1801040 1801045) (-1034 "RSDCMPK.spad" 1789306 1789326 1790844 1790849) (-1033 "RRCC.spad" 1787690 1787720 1789296 1789301) (-1032 "RRCC.spad" 1786072 1786104 1787680 1787685) (-1031 "RPTAST.spad" 1785776 1785785 1786062 1786067) (-1030 "RPOLCAT.spad" 1765136 1765151 1785644 1785771) (-1029 "RPOLCAT.spad" 1744210 1744227 1764720 1764725) (-1028 "ROUTINE.spad" 1740073 1740082 1742857 1742884) (-1027 "ROMAN.spad" 1739305 1739314 1739939 1740068) (-1026 "ROIRC.spad" 1738385 1738417 1739295 1739300) (-1025 "RNS.spad" 1737288 1737297 1738287 1738380) (-1024 "RNS.spad" 1736277 1736288 1737278 1737283) (-1023 "RNG.spad" 1736012 1736021 1736267 1736272) (-1022 "RMODULE.spad" 1735650 1735661 1736002 1736007) (-1021 "RMCAT2.spad" 1735058 1735115 1735640 1735645) (-1020 "RMATRIX.spad" 1733737 1733756 1734225 1734264) (-1019 "RMATCAT.spad" 1729258 1729289 1733681 1733732) (-1018 "RMATCAT.spad" 1724681 1724714 1729106 1729111) (-1017 "RINTERP.spad" 1724569 1724589 1724671 1724676) (-1016 "RING.spad" 1723926 1723935 1724549 1724564) (-1015 "RING.spad" 1723291 1723302 1723916 1723921) (-1014 "RIDIST.spad" 1722675 1722684 1723281 1723286) (-1013 "RGCHAIN.spad" 1721254 1721270 1722160 1722187) (-1012 "RF.spad" 1718868 1718879 1721244 1721249) (-1011 "RFFACTOR.spad" 1718330 1718341 1718858 1718863) (-1010 "RFFACT.spad" 1718065 1718077 1718320 1718325) (-1009 "RFDIST.spad" 1717053 1717062 1718055 1718060) (-1008 "RETSOL.spad" 1716470 1716483 1717043 1717048) (-1007 "RETRACT.spad" 1715819 1715830 1716460 1716465) (-1006 "RETRACT.spad" 1715166 1715179 1715809 1715814) (-1005 "RETAST.spad" 1714979 1714988 1715156 1715161) (-1004 "RESULT.spad" 1713039 1713048 1713626 1713653) (-1003 "RESRING.spad" 1712386 1712433 1712977 1713034) (-1002 "RESLATC.spad" 1711710 1711721 1712376 1712381) (-1001 "REPSQ.spad" 1711439 1711450 1711700 1711705) (-1000 "REP.spad" 1708991 1709000 1711429 1711434) (-999 "REPDB.spad" 1708697 1708707 1708981 1708986) (-998 "REP2.spad" 1698270 1698280 1708539 1708544) (-997 "REP1.spad" 1692261 1692271 1698220 1698225) (-996 "REGSET.spad" 1690059 1690075 1691907 1691934) (-995 "REF.spad" 1689389 1689399 1690014 1690019) (-994 "REDORDER.spad" 1688566 1688582 1689379 1689384) (-993 "RECLOS.spad" 1687350 1687369 1688053 1688146) (-992 "REALSOLV.spad" 1686483 1686491 1687340 1687345) (-991 "REAL.spad" 1686356 1686364 1686473 1686478) (-990 "REAL0Q.spad" 1683639 1683653 1686346 1686351) (-989 "REAL0.spad" 1680468 1680482 1683629 1683634) (-988 "RDUCEAST.spad" 1680192 1680200 1680458 1680463) (-987 "RDIV.spad" 1679844 1679868 1680182 1680187) (-986 "RDIST.spad" 1679408 1679418 1679834 1679839) (-985 "RDETRS.spad" 1678205 1678222 1679398 1679403) (-984 "RDETR.spad" 1676313 1676330 1678195 1678200) (-983 "RDEEFS.spad" 1675387 1675403 1676303 1676308) (-982 "RDEEF.spad" 1674384 1674400 1675377 1675382) (-981 "RCFIELD.spad" 1671571 1671579 1674286 1674379) (-980 "RCFIELD.spad" 1668844 1668854 1671561 1671566) (-979 "RCAGG.spad" 1666747 1666757 1668824 1668839) (-978 "RCAGG.spad" 1664587 1664599 1666666 1666671) (-977 "RATRET.spad" 1663948 1663958 1664577 1664582) (-976 "RATFACT.spad" 1663641 1663652 1663938 1663943) (-975 "RANDSRC.spad" 1662961 1662969 1663631 1663636) (-974 "RADUTIL.spad" 1662716 1662724 1662951 1662956) (-973 "RADIX.spad" 1659507 1659520 1661184 1661277) (-972 "RADFF.spad" 1657921 1657957 1658039 1658195) (-971 "RADCAT.spad" 1657515 1657523 1657911 1657916) (-970 "RADCAT.spad" 1657107 1657117 1657505 1657510) (-969 "QUEUE.spad" 1656450 1656460 1656714 1656741) (-968 "QUAT.spad" 1655032 1655042 1655374 1655439) (-967 "QUATCT2.spad" 1654651 1654669 1655022 1655027) (-966 "QUATCAT.spad" 1652816 1652826 1654581 1654646) (-965 "QUATCAT.spad" 1650732 1650744 1652499 1652504) (-964 "QUAGG.spad" 1649546 1649556 1650688 1650727) (-963 "QQUTAST.spad" 1649316 1649324 1649536 1649541) (-962 "QFORM.spad" 1648779 1648793 1649306 1649311) (-961 "QFCAT.spad" 1647470 1647480 1648669 1648774) (-960 "QFCAT.spad" 1645765 1645777 1646966 1646971) (-959 "QFCAT2.spad" 1645456 1645472 1645755 1645760) (-958 "QEQUAT.spad" 1645013 1645021 1645446 1645451) (-957 "QCMPACK.spad" 1639760 1639779 1645003 1645008) (-956 "QALGSET.spad" 1635835 1635867 1639674 1639679) (-955 "QALGSET2.spad" 1633831 1633849 1635825 1635830) (-954 "PWFFINTB.spad" 1631141 1631162 1633821 1633826) (-953 "PUSHVAR.spad" 1630470 1630489 1631131 1631136) (-952 "PTRANFN.spad" 1626596 1626606 1630460 1630465) (-951 "PTPACK.spad" 1623684 1623694 1626586 1626591) (-950 "PTFUNC2.spad" 1623505 1623519 1623674 1623679) (-949 "PTCAT.spad" 1622587 1622597 1623461 1623500) (-948 "PSQFR.spad" 1621894 1621918 1622577 1622582) (-947 "PSEUDLIN.spad" 1620752 1620762 1621884 1621889) (-946 "PSETPK.spad" 1606185 1606201 1620630 1620635) (-945 "PSETCAT.spad" 1600093 1600116 1606153 1606180) (-944 "PSETCAT.spad" 1593987 1594012 1600049 1600054) (-943 "PSCURVE.spad" 1592970 1592978 1593977 1593982) (-942 "PSCAT.spad" 1591737 1591766 1592868 1592965) (-941 "PSCAT.spad" 1590594 1590625 1591727 1591732) (-940 "PRTITION.spad" 1589437 1589445 1590584 1590589) (-939 "PRTDAST.spad" 1589157 1589165 1589427 1589432) (-938 "PRS.spad" 1578719 1578736 1589113 1589118) (-937 "PRQAGG.spad" 1578138 1578148 1578675 1578714) (-936 "PROPLOG.spad" 1577541 1577549 1578128 1578133) (-935 "PROPFRML.spad" 1575405 1575416 1577477 1577482) (-934 "PROPERTY.spad" 1574899 1574907 1575395 1575400) (-933 "PRODUCT.spad" 1572579 1572591 1572865 1572920) (-932 "PR.spad" 1570965 1570977 1571670 1571797) (-931 "PRINT.spad" 1570717 1570725 1570955 1570960) (-930 "PRIMES.spad" 1568968 1568978 1570707 1570712) (-929 "PRIMELT.spad" 1566949 1566963 1568958 1568963) (-928 "PRIMCAT.spad" 1566572 1566580 1566939 1566944) (-927 "PRIMARR.spad" 1565577 1565587 1565755 1565782) (-926 "PRIMARR2.spad" 1564300 1564312 1565567 1565572) (-925 "PREASSOC.spad" 1563672 1563684 1564290 1564295) (-924 "PPCURVE.spad" 1562809 1562817 1563662 1563667) (-923 "PORTNUM.spad" 1562584 1562592 1562799 1562804) (-922 "POLYROOT.spad" 1561356 1561378 1562540 1562545) (-921 "POLY.spad" 1558653 1558663 1559170 1559297) (-920 "POLYLIFT.spad" 1557914 1557937 1558643 1558648) (-919 "POLYCATQ.spad" 1556016 1556038 1557904 1557909) (-918 "POLYCAT.spad" 1549422 1549443 1555884 1556011) (-917 "POLYCAT.spad" 1542130 1542153 1548594 1548599) (-916 "POLY2UP.spad" 1541578 1541592 1542120 1542125) (-915 "POLY2.spad" 1541173 1541185 1541568 1541573) (-914 "POLUTIL.spad" 1540114 1540143 1541129 1541134) (-913 "POLTOPOL.spad" 1538862 1538877 1540104 1540109) (-912 "POINT.spad" 1537701 1537711 1537788 1537815) (-911 "PNTHEORY.spad" 1534367 1534375 1537691 1537696) (-910 "PMTOOLS.spad" 1533124 1533138 1534357 1534362) (-909 "PMSYM.spad" 1532669 1532679 1533114 1533119) (-908 "PMQFCAT.spad" 1532256 1532270 1532659 1532664) (-907 "PMPRED.spad" 1531725 1531739 1532246 1532251) (-906 "PMPREDFS.spad" 1531169 1531191 1531715 1531720) (-905 "PMPLCAT.spad" 1530239 1530257 1531101 1531106) (-904 "PMLSAGG.spad" 1529820 1529834 1530229 1530234) (-903 "PMKERNEL.spad" 1529387 1529399 1529810 1529815) (-902 "PMINS.spad" 1528963 1528973 1529377 1529382) (-901 "PMFS.spad" 1528536 1528554 1528953 1528958) (-900 "PMDOWN.spad" 1527822 1527836 1528526 1528531) (-899 "PMASS.spad" 1526834 1526842 1527812 1527817) (-898 "PMASSFS.spad" 1525803 1525819 1526824 1526829) (-897 "PLOTTOOL.spad" 1525583 1525591 1525793 1525798) (-896 "PLOT.spad" 1520414 1520422 1525573 1525578) (-895 "PLOT3D.spad" 1516834 1516842 1520404 1520409) (-894 "PLOT1.spad" 1515975 1515985 1516824 1516829) (-893 "PLEQN.spad" 1503191 1503218 1515965 1515970) (-892 "PINTERP.spad" 1502807 1502826 1503181 1503186) (-891 "PINTERPA.spad" 1502589 1502605 1502797 1502802) (-890 "PI.spad" 1502196 1502204 1502563 1502584) (-889 "PID.spad" 1501152 1501160 1502122 1502191) (-888 "PICOERCE.spad" 1500809 1500819 1501142 1501147) (-887 "PGROEB.spad" 1499406 1499420 1500799 1500804) (-886 "PGE.spad" 1490659 1490667 1499396 1499401) (-885 "PGCD.spad" 1489541 1489558 1490649 1490654) (-884 "PFRPAC.spad" 1488684 1488694 1489531 1489536) (-883 "PFR.spad" 1485341 1485351 1488586 1488679) (-882 "PFOTOOLS.spad" 1484599 1484615 1485331 1485336) (-881 "PFOQ.spad" 1483969 1483987 1484589 1484594) (-880 "PFO.spad" 1483388 1483415 1483959 1483964) (-879 "PF.spad" 1482962 1482974 1483193 1483286) (-878 "PFECAT.spad" 1480628 1480636 1482888 1482957) (-877 "PFECAT.spad" 1478322 1478332 1480584 1480589) (-876 "PFBRU.spad" 1476192 1476204 1478312 1478317) (-875 "PFBR.spad" 1473730 1473753 1476182 1476187) (-874 "PERM.spad" 1469411 1469421 1473560 1473575) (-873 "PERMGRP.spad" 1464147 1464157 1469401 1469406) (-872 "PERMCAT.spad" 1462699 1462709 1464127 1464142) (-871 "PERMAN.spad" 1461231 1461245 1462689 1462694) (-870 "PENDTREE.spad" 1460504 1460514 1460860 1460865) (-869 "PDRING.spad" 1458995 1459005 1460484 1460499) (-868 "PDRING.spad" 1457494 1457506 1458985 1458990) (-867 "PDEPROB.spad" 1456451 1456459 1457484 1457489) (-866 "PDEPACK.spad" 1450453 1450461 1456441 1456446) (-865 "PDECOMP.spad" 1449915 1449932 1450443 1450448) (-864 "PDECAT.spad" 1448269 1448277 1449905 1449910) (-863 "PCOMP.spad" 1448120 1448133 1448259 1448264) (-862 "PBWLB.spad" 1446702 1446719 1448110 1448115) (-861 "PATTERN.spad" 1441133 1441143 1446692 1446697) (-860 "PATTERN2.spad" 1440869 1440881 1441123 1441128) (-859 "PATTERN1.spad" 1439171 1439187 1440859 1440864) (-858 "PATRES.spad" 1436718 1436730 1439161 1439166) (-857 "PATRES2.spad" 1436380 1436394 1436708 1436713) (-856 "PATMATCH.spad" 1434537 1434568 1436088 1436093) (-855 "PATMAB.spad" 1433962 1433972 1434527 1434532) (-854 "PATLRES.spad" 1433046 1433060 1433952 1433957) (-853 "PATAB.spad" 1432810 1432820 1433036 1433041) (-852 "PARTPERM.spad" 1430172 1430180 1432800 1432805) (-851 "PARSURF.spad" 1429600 1429628 1430162 1430167) (-850 "PARSU2.spad" 1429395 1429411 1429590 1429595) (-849 "script-parser.spad" 1428915 1428923 1429385 1429390) (-848 "PARSCURV.spad" 1428343 1428371 1428905 1428910) (-847 "PARSC2.spad" 1428132 1428148 1428333 1428338) (-846 "PARPCURV.spad" 1427590 1427618 1428122 1428127) (-845 "PARPC2.spad" 1427379 1427395 1427580 1427585) (-844 "PAN2EXPR.spad" 1426791 1426799 1427369 1427374) (-843 "PALETTE.spad" 1425761 1425769 1426781 1426786) (-842 "PAIR.spad" 1424744 1424757 1425349 1425354) (-841 "PADICRC.spad" 1422075 1422093 1423250 1423343) (-840 "PADICRAT.spad" 1420091 1420103 1420312 1420405) (-839 "PADIC.spad" 1419786 1419798 1420017 1420086) (-838 "PADICCT.spad" 1418327 1418339 1419712 1419781) (-837 "PADEPAC.spad" 1417006 1417025 1418317 1418322) (-836 "PADE.spad" 1415746 1415762 1416996 1417001) (-835 "OWP.spad" 1414730 1414760 1415604 1415671) (-834 "OVAR.spad" 1414511 1414534 1414720 1414725) (-833 "OUT.spad" 1413595 1413603 1414501 1414506) (-832 "OUTFORM.spad" 1403009 1403017 1413585 1413590) (-831 "OUTBCON.spad" 1402288 1402296 1402999 1403004) (-830 "OUTBCON.spad" 1401565 1401575 1402278 1402283) (-829 "OSI.spad" 1401040 1401048 1401555 1401560) (-828 "OSGROUP.spad" 1400958 1400966 1401030 1401035) (-827 "ORTHPOL.spad" 1399419 1399429 1400875 1400880) (-826 "OREUP.spad" 1398777 1398805 1399099 1399138) (-825 "ORESUP.spad" 1398076 1398100 1398457 1398496) (-824 "OREPCTO.spad" 1395895 1395907 1397996 1398001) (-823 "OREPCAT.spad" 1389952 1389962 1395851 1395890) (-822 "OREPCAT.spad" 1383899 1383911 1389800 1389805) (-821 "ORDSET.spad" 1383065 1383073 1383889 1383894) (-820 "ORDSET.spad" 1382229 1382239 1383055 1383060) (-819 "ORDRING.spad" 1381619 1381627 1382209 1382224) (-818 "ORDRING.spad" 1381017 1381027 1381609 1381614) (-817 "ORDMON.spad" 1380872 1380880 1381007 1381012) (-816 "ORDFUNS.spad" 1379998 1380014 1380862 1380867) (-815 "ORDFIN.spad" 1379932 1379940 1379988 1379993) (-814 "ORDCOMP.spad" 1378397 1378407 1379479 1379508) (-813 "ORDCOMP2.spad" 1377682 1377694 1378387 1378392) (-812 "OPTPROB.spad" 1376262 1376270 1377672 1377677) (-811 "OPTPACK.spad" 1368647 1368655 1376252 1376257) (-810 "OPTCAT.spad" 1366322 1366330 1368637 1368642) (-809 "OPQUERY.spad" 1365871 1365879 1366312 1366317) (-808 "OP.spad" 1365613 1365623 1365693 1365760) (-807 "ONECOMP.spad" 1364358 1364368 1365160 1365189) (-806 "ONECOMP2.spad" 1363776 1363788 1364348 1364353) (-805 "OMSERVER.spad" 1362778 1362786 1363766 1363771) (-804 "OMSAGG.spad" 1362554 1362564 1362722 1362773) (-803 "OMPKG.spad" 1361166 1361174 1362544 1362549) (-802 "OM.spad" 1360131 1360139 1361156 1361161) (-801 "OMLO.spad" 1359556 1359568 1360017 1360056) (-800 "OMEXPR.spad" 1359390 1359400 1359546 1359551) (-799 "OMERR.spad" 1358933 1358941 1359380 1359385) (-798 "OMERRK.spad" 1357967 1357975 1358923 1358928) (-797 "OMENC.spad" 1357311 1357319 1357957 1357962) (-796 "OMDEV.spad" 1351600 1351608 1357301 1357306) (-795 "OMCONN.spad" 1351009 1351017 1351590 1351595) (-794 "OINTDOM.spad" 1350772 1350780 1350935 1351004) (-793 "OFMONOID.spad" 1346959 1346969 1350762 1350767) (-792 "ODVAR.spad" 1346220 1346230 1346949 1346954) (-791 "ODR.spad" 1345668 1345694 1346032 1346181) (-790 "ODPOL.spad" 1343014 1343024 1343354 1343481) (-789 "ODP.spad" 1334135 1334155 1334508 1334639) (-788 "ODETOOLS.spad" 1332718 1332737 1334125 1334130) (-787 "ODESYS.spad" 1330368 1330385 1332708 1332713) (-786 "ODERTRIC.spad" 1326309 1326326 1330325 1330330) (-785 "ODERED.spad" 1325696 1325720 1326299 1326304) (-784 "ODERAT.spad" 1323247 1323264 1325686 1325691) (-783 "ODEPRRIC.spad" 1320138 1320160 1323237 1323242) (-782 "ODEPROB.spad" 1319337 1319345 1320128 1320133) (-781 "ODEPRIM.spad" 1316611 1316633 1319327 1319332) (-780 "ODEPAL.spad" 1315987 1316011 1316601 1316606) (-779 "ODEPACK.spad" 1302589 1302597 1315977 1315982) (-778 "ODEINT.spad" 1302020 1302036 1302579 1302584) (-777 "ODEIFTBL.spad" 1299415 1299423 1302010 1302015) (-776 "ODEEF.spad" 1294782 1294798 1299405 1299410) (-775 "ODECONST.spad" 1294301 1294319 1294772 1294777) (-774 "ODECAT.spad" 1292897 1292905 1294291 1294296) (-773 "OCT.spad" 1291035 1291045 1291751 1291790) (-772 "OCTCT2.spad" 1290679 1290700 1291025 1291030) (-771 "OC.spad" 1288453 1288463 1290635 1290674) (-770 "OC.spad" 1285952 1285964 1288136 1288141) (-769 "OCAMON.spad" 1285800 1285808 1285942 1285947) (-768 "OASGP.spad" 1285615 1285623 1285790 1285795) (-767 "OAMONS.spad" 1285135 1285143 1285605 1285610) (-766 "OAMON.spad" 1284996 1285004 1285125 1285130) (-765 "OAGROUP.spad" 1284858 1284866 1284986 1284991) (-764 "NUMTUBE.spad" 1284445 1284461 1284848 1284853) (-763 "NUMQUAD.spad" 1272307 1272315 1284435 1284440) (-762 "NUMODE.spad" 1263443 1263451 1272297 1272302) (-761 "NUMINT.spad" 1261001 1261009 1263433 1263438) (-760 "NUMFMT.spad" 1259841 1259849 1260991 1260996) (-759 "NUMERIC.spad" 1251913 1251923 1259646 1259651) (-758 "NTSCAT.spad" 1250403 1250419 1251869 1251908) (-757 "NTPOLFN.spad" 1249948 1249958 1250320 1250325) (-756 "NSUP.spad" 1242958 1242968 1247498 1247651) (-755 "NSUP2.spad" 1242350 1242362 1242948 1242953) (-754 "NSMP.spad" 1238545 1238564 1238853 1238980) (-753 "NREP.spad" 1236917 1236931 1238535 1238540) (-752 "NPCOEF.spad" 1236163 1236183 1236907 1236912) (-751 "NORMRETR.spad" 1235761 1235800 1236153 1236158) (-750 "NORMPK.spad" 1233663 1233682 1235751 1235756) (-749 "NORMMA.spad" 1233351 1233377 1233653 1233658) (-748 "NONE.spad" 1233092 1233100 1233341 1233346) (-747 "NONE1.spad" 1232768 1232778 1233082 1233087) (-746 "NODE1.spad" 1232237 1232253 1232758 1232763) (-745 "NNI.spad" 1231124 1231132 1232211 1232232) (-744 "NLINSOL.spad" 1229746 1229756 1231114 1231119) (-743 "NIPROB.spad" 1228229 1228237 1229736 1229741) (-742 "NFINTBAS.spad" 1225689 1225706 1228219 1228224) (-741 "NCODIV.spad" 1223887 1223903 1225679 1225684) (-740 "NCNTFRAC.spad" 1223529 1223543 1223877 1223882) (-739 "NCEP.spad" 1221689 1221703 1223519 1223524) (-738 "NASRING.spad" 1221285 1221293 1221679 1221684) (-737 "NASRING.spad" 1220879 1220889 1221275 1221280) (-736 "NARNG.spad" 1220223 1220231 1220869 1220874) (-735 "NARNG.spad" 1219565 1219575 1220213 1220218) (-734 "NAGSP.spad" 1218638 1218646 1219555 1219560) (-733 "NAGS.spad" 1208163 1208171 1218628 1218633) (-732 "NAGF07.spad" 1206556 1206564 1208153 1208158) (-731 "NAGF04.spad" 1200788 1200796 1206546 1206551) (-730 "NAGF02.spad" 1194597 1194605 1200778 1200783) (-729 "NAGF01.spad" 1190200 1190208 1194587 1194592) (-728 "NAGE04.spad" 1183660 1183668 1190190 1190195) (-727 "NAGE02.spad" 1174002 1174010 1183650 1183655) (-726 "NAGE01.spad" 1169886 1169894 1173992 1173997) (-725 "NAGD03.spad" 1167806 1167814 1169876 1169881) (-724 "NAGD02.spad" 1160337 1160345 1167796 1167801) (-723 "NAGD01.spad" 1154450 1154458 1160327 1160332) (-722 "NAGC06.spad" 1150237 1150245 1154440 1154445) (-721 "NAGC05.spad" 1148706 1148714 1150227 1150232) (-720 "NAGC02.spad" 1147961 1147969 1148696 1148701) (-719 "NAALG.spad" 1147496 1147506 1147929 1147956) (-718 "NAALG.spad" 1147051 1147063 1147486 1147491) (-717 "MULTSQFR.spad" 1144009 1144026 1147041 1147046) (-716 "MULTFACT.spad" 1143392 1143409 1143999 1144004) (-715 "MTSCAT.spad" 1141426 1141447 1143290 1143387) (-714 "MTHING.spad" 1141083 1141093 1141416 1141421) (-713 "MSYSCMD.spad" 1140517 1140525 1141073 1141078) (-712 "MSET.spad" 1138459 1138469 1140223 1140262) (-711 "MSETAGG.spad" 1138292 1138302 1138415 1138454) (-710 "MRING.spad" 1135263 1135275 1138000 1138067) (-709 "MRF2.spad" 1134831 1134845 1135253 1135258) (-708 "MRATFAC.spad" 1134377 1134394 1134821 1134826) (-707 "MPRFF.spad" 1132407 1132426 1134367 1134372) (-706 "MPOLY.spad" 1129842 1129857 1130201 1130328) (-705 "MPCPF.spad" 1129106 1129125 1129832 1129837) (-704 "MPC3.spad" 1128921 1128961 1129096 1129101) (-703 "MPC2.spad" 1128563 1128596 1128911 1128916) (-702 "MONOTOOL.spad" 1126898 1126915 1128553 1128558) (-701 "MONOID.spad" 1126217 1126225 1126888 1126893) (-700 "MONOID.spad" 1125534 1125544 1126207 1126212) (-699 "MONOGEN.spad" 1124280 1124293 1125394 1125529) (-698 "MONOGEN.spad" 1123048 1123063 1124164 1124169) (-697 "MONADWU.spad" 1121062 1121070 1123038 1123043) (-696 "MONADWU.spad" 1119074 1119084 1121052 1121057) (-695 "MONAD.spad" 1118218 1118226 1119064 1119069) (-694 "MONAD.spad" 1117360 1117370 1118208 1118213) (-693 "MOEBIUS.spad" 1116046 1116060 1117340 1117355) (-692 "MODULE.spad" 1115916 1115926 1116014 1116041) (-691 "MODULE.spad" 1115806 1115818 1115906 1115911) (-690 "MODRING.spad" 1115137 1115176 1115786 1115801) (-689 "MODOP.spad" 1113796 1113808 1114959 1115026) (-688 "MODMONOM.spad" 1113328 1113346 1113786 1113791) (-687 "MODMON.spad" 1110030 1110046 1110806 1110959) (-686 "MODFIELD.spad" 1109388 1109427 1109932 1110025) (-685 "MMLFORM.spad" 1108248 1108256 1109378 1109383) (-684 "MMAP.spad" 1107988 1108022 1108238 1108243) (-683 "MLO.spad" 1106415 1106425 1107944 1107983) (-682 "MLIFT.spad" 1104987 1105004 1106405 1106410) (-681 "MKUCFUNC.spad" 1104520 1104538 1104977 1104982) (-680 "MKRECORD.spad" 1104122 1104135 1104510 1104515) (-679 "MKFUNC.spad" 1103503 1103513 1104112 1104117) (-678 "MKFLCFN.spad" 1102459 1102469 1103493 1103498) (-677 "MKCHSET.spad" 1102235 1102245 1102449 1102454) (-676 "MKBCFUNC.spad" 1101720 1101738 1102225 1102230) (-675 "MINT.spad" 1101159 1101167 1101622 1101715) (-674 "MHROWRED.spad" 1099660 1099670 1101149 1101154) (-673 "MFLOAT.spad" 1098105 1098113 1099550 1099655) (-672 "MFINFACT.spad" 1097505 1097527 1098095 1098100) (-671 "MESH.spad" 1095237 1095245 1097495 1097500) (-670 "MDDFACT.spad" 1093430 1093440 1095227 1095232) (-669 "MDAGG.spad" 1092705 1092715 1093398 1093425) (-668 "MCMPLX.spad" 1088680 1088688 1089294 1089495) (-667 "MCDEN.spad" 1087888 1087900 1088670 1088675) (-666 "MCALCFN.spad" 1084990 1085016 1087878 1087883) (-665 "MAYBE.spad" 1084239 1084250 1084980 1084985) (-664 "MATSTOR.spad" 1081515 1081525 1084229 1084234) (-663 "MATRIX.spad" 1080219 1080229 1080703 1080730) (-662 "MATLIN.spad" 1077545 1077569 1080103 1080108) (-661 "MATCAT.spad" 1069118 1069140 1077501 1077540) (-660 "MATCAT.spad" 1060575 1060599 1068960 1068965) (-659 "MATCAT2.spad" 1059843 1059891 1060565 1060570) (-658 "MAPPKG3.spad" 1058742 1058756 1059833 1059838) (-657 "MAPPKG2.spad" 1058076 1058088 1058732 1058737) (-656 "MAPPKG1.spad" 1056894 1056904 1058066 1058071) (-655 "MAPPAST.spad" 1056207 1056215 1056884 1056889) (-654 "MAPHACK3.spad" 1056015 1056029 1056197 1056202) (-653 "MAPHACK2.spad" 1055780 1055792 1056005 1056010) (-652 "MAPHACK1.spad" 1055410 1055420 1055770 1055775) (-651 "MAGMA.spad" 1053200 1053217 1055400 1055405) (-650 "MACROAST.spad" 1052768 1052776 1053190 1053195) (-649 "M3D.spad" 1050464 1050474 1052146 1052151) (-648 "LZSTAGG.spad" 1047682 1047692 1050444 1050459) (-647 "LZSTAGG.spad" 1044908 1044920 1047672 1047677) (-646 "LWORD.spad" 1041613 1041630 1044898 1044903) (-645 "LSTAST.spad" 1041398 1041406 1041603 1041608) (-644 "LSQM.spad" 1039624 1039638 1040022 1040073) (-643 "LSPP.spad" 1039157 1039174 1039614 1039619) (-642 "LSMP.spad" 1037997 1038025 1039147 1039152) (-641 "LSMP1.spad" 1035801 1035815 1037987 1037992) (-640 "LSAGG.spad" 1035458 1035468 1035757 1035796) (-639 "LSAGG.spad" 1035147 1035159 1035448 1035453) (-638 "LPOLY.spad" 1034101 1034120 1035003 1035072) (-637 "LPEFRAC.spad" 1033358 1033368 1034091 1034096) (-636 "LO.spad" 1032759 1032773 1033292 1033319) (-635 "LOGIC.spad" 1032361 1032369 1032749 1032754) (-634 "LOGIC.spad" 1031961 1031971 1032351 1032356) (-633 "LODOOPS.spad" 1030879 1030891 1031951 1031956) (-632 "LODO.spad" 1030263 1030279 1030559 1030598) (-631 "LODOF.spad" 1029307 1029324 1030220 1030225) (-630 "LODOCAT.spad" 1027965 1027975 1029263 1029302) (-629 "LODOCAT.spad" 1026621 1026633 1027921 1027926) (-628 "LODO2.spad" 1025894 1025906 1026301 1026340) (-627 "LODO1.spad" 1025294 1025304 1025574 1025613) (-626 "LODEEF.spad" 1024066 1024084 1025284 1025289) (-625 "LNAGG.spad" 1019858 1019868 1024046 1024061) (-624 "LNAGG.spad" 1015624 1015636 1019814 1019819) (-623 "LMOPS.spad" 1012360 1012377 1015614 1015619) (-622 "LMODULE.spad" 1012002 1012012 1012350 1012355) (-621 "LMDICT.spad" 1011285 1011295 1011553 1011580) (-620 "LITERAL.spad" 1011191 1011202 1011275 1011280) (-619 "LIST.spad" 1008909 1008919 1010338 1010365) (-618 "LIST3.spad" 1008200 1008214 1008899 1008904) (-617 "LIST2.spad" 1006840 1006852 1008190 1008195) (-616 "LIST2MAP.spad" 1003717 1003729 1006830 1006835) (-615 "LINEXP.spad" 1003149 1003159 1003697 1003712) (-614 "LINDEP.spad" 1001926 1001938 1003061 1003066) (-613 "LIMITRF.spad" 999840 999850 1001916 1001921) (-612 "LIMITPS.spad" 998723 998736 999830 999835) (-611 "LIE.spad" 996737 996749 998013 998158) (-610 "LIECAT.spad" 996213 996223 996663 996732) (-609 "LIECAT.spad" 995717 995729 996169 996174) (-608 "LIB.spad" 993765 993773 994376 994391) (-607 "LGROBP.spad" 991118 991137 993755 993760) (-606 "LF.spad" 990037 990053 991108 991113) (-605 "LFCAT.spad" 989056 989064 990027 990032) (-604 "LEXTRIPK.spad" 984559 984574 989046 989051) (-603 "LEXP.spad" 982562 982589 984539 984554) (-602 "LETAST.spad" 982263 982271 982552 982557) (-601 "LEADCDET.spad" 980647 980664 982253 982258) (-600 "LAZM3PK.spad" 979351 979373 980637 980642) (-599 "LAUPOL.spad" 978040 978053 978944 979013) (-598 "LAPLACE.spad" 977613 977629 978030 978035) (-597 "LA.spad" 977053 977067 977535 977574) (-596 "LALG.spad" 976829 976839 977033 977048) (-595 "LALG.spad" 976613 976625 976819 976824) (-594 "KOVACIC.spad" 975326 975343 976603 976608) (-593 "KONVERT.spad" 975048 975058 975316 975321) (-592 "KOERCE.spad" 974785 974795 975038 975043) (-591 "KERNEL.spad" 973320 973330 974569 974574) (-590 "KERNEL2.spad" 973023 973035 973310 973315) (-589 "KDAGG.spad" 972114 972136 972991 973018) (-588 "KDAGG.spad" 971225 971249 972104 972109) (-587 "KAFILE.spad" 970188 970204 970423 970450) (-586 "JORDAN.spad" 968015 968027 969478 969623) (-585 "JOINAST.spad" 967709 967717 968005 968010) (-584 "JAVACODE.spad" 967475 967483 967699 967704) (-583 "IXAGG.spad" 965588 965612 967455 967470) (-582 "IXAGG.spad" 963566 963592 965435 965440) (-581 "IVECTOR.spad" 962337 962352 962492 962519) (-580 "ITUPLE.spad" 961482 961492 962327 962332) (-579 "ITRIGMNP.spad" 960293 960312 961472 961477) (-578 "ITFUN3.spad" 959787 959801 960283 960288) (-577 "ITFUN2.spad" 959517 959529 959777 959782) (-576 "ITAYLOR.spad" 957309 957324 959353 959478) (-575 "ISUPS.spad" 949720 949735 956283 956380) (-574 "ISUMP.spad" 949217 949233 949710 949715) (-573 "ISTRING.spad" 948220 948233 948386 948413) (-572 "ISAST.spad" 947941 947949 948210 948215) (-571 "IRURPK.spad" 946654 946673 947931 947936) (-570 "IRSN.spad" 944614 944622 946644 946649) (-569 "IRRF2F.spad" 943089 943099 944570 944575) (-568 "IRREDFFX.spad" 942690 942701 943079 943084) (-567 "IROOT.spad" 941021 941031 942680 942685) (-566 "IR.spad" 938810 938824 940876 940903) (-565 "IR2.spad" 937830 937846 938800 938805) (-564 "IR2F.spad" 937030 937046 937820 937825) (-563 "IPRNTPK.spad" 936790 936798 937020 937025) (-562 "IPF.spad" 936355 936367 936595 936688) (-561 "IPADIC.spad" 936116 936142 936281 936350) (-560 "IOBCON.spad" 935981 935989 936106 936111) (-559 "INVLAPLA.spad" 935626 935642 935971 935976) (-558 "INTTR.spad" 928872 928889 935616 935621) (-557 "INTTOOLS.spad" 926583 926599 928446 928451) (-556 "INTSLPE.spad" 925889 925897 926573 926578) (-555 "INTRVL.spad" 925455 925465 925803 925884) (-554 "INTRF.spad" 923819 923833 925445 925450) (-553 "INTRET.spad" 923251 923261 923809 923814) (-552 "INTRAT.spad" 921926 921943 923241 923246) (-551 "INTPM.spad" 920289 920305 921569 921574) (-550 "INTPAF.spad" 918057 918075 920221 920226) (-549 "INTPACK.spad" 908367 908375 918047 918052) (-548 "INT.spad" 907728 907736 908221 908362) (-547 "INTHERTR.spad" 906994 907011 907718 907723) (-546 "INTHERAL.spad" 906660 906684 906984 906989) (-545 "INTHEORY.spad" 903073 903081 906650 906655) (-544 "INTG0.spad" 896536 896554 903005 903010) (-543 "INTFTBL.spad" 890565 890573 896526 896531) (-542 "INTFACT.spad" 889624 889634 890555 890560) (-541 "INTEF.spad" 887939 887955 889614 889619) (-540 "INTDOM.spad" 886554 886562 887865 887934) (-539 "INTDOM.spad" 885231 885241 886544 886549) (-538 "INTCAT.spad" 883484 883494 885145 885226) (-537 "INTBIT.spad" 882987 882995 883474 883479) (-536 "INTALG.spad" 882169 882196 882977 882982) (-535 "INTAF.spad" 881661 881677 882159 882164) (-534 "INTABL.spad" 880179 880210 880342 880369) (-533 "INS.spad" 877646 877654 880081 880174) (-532 "INS.spad" 875199 875209 877636 877641) (-531 "INPSIGN.spad" 874633 874646 875189 875194) (-530 "INPRODPF.spad" 873699 873718 874623 874628) (-529 "INPRODFF.spad" 872757 872781 873689 873694) (-528 "INNMFACT.spad" 871728 871745 872747 872752) (-527 "INMODGCD.spad" 871212 871242 871718 871723) (-526 "INFSP.spad" 869497 869519 871202 871207) (-525 "INFPROD0.spad" 868547 868566 869487 869492) (-524 "INFORM.spad" 865708 865716 868537 868542) (-523 "INFORM1.spad" 865333 865343 865698 865703) (-522 "INFINITY.spad" 864885 864893 865323 865328) (-521 "INEP.spad" 863417 863439 864875 864880) (-520 "INDE.spad" 863146 863163 863407 863412) (-519 "INCRMAPS.spad" 862567 862577 863136 863141) (-518 "INBFF.spad" 858337 858348 862557 862562) (-517 "INBCON.spad" 857637 857645 858327 858332) (-516 "INBCON.spad" 856935 856945 857627 857632) (-515 "INAST.spad" 856601 856609 856925 856930) (-514 "IMPTAST.spad" 856309 856317 856591 856596) (-513 "IMATRIX.spad" 855254 855280 855766 855793) (-512 "IMATQF.spad" 854348 854392 855210 855215) (-511 "IMATLIN.spad" 852953 852977 854304 854309) (-510 "ILIST.spad" 851609 851624 852136 852163) (-509 "IIARRAY2.spad" 850997 851035 851216 851243) (-508 "IFF.spad" 850407 850423 850678 850771) (-507 "IFAST.spad" 850024 850032 850397 850402) (-506 "IFARRAY.spad" 847511 847526 849207 849234) (-505 "IFAMON.spad" 847373 847390 847467 847472) (-504 "IEVALAB.spad" 846762 846774 847363 847368) (-503 "IEVALAB.spad" 846149 846163 846752 846757) (-502 "IDPO.spad" 845947 845959 846139 846144) (-501 "IDPOAMS.spad" 845703 845715 845937 845942) (-500 "IDPOAM.spad" 845423 845435 845693 845698) (-499 "IDPC.spad" 844357 844369 845413 845418) (-498 "IDPAM.spad" 844102 844114 844347 844352) (-497 "IDPAG.spad" 843849 843861 844092 844097) (-496 "IDENT.spad" 843766 843774 843839 843844) (-495 "IDECOMP.spad" 841003 841021 843756 843761) (-494 "IDEAL.spad" 835926 835965 840938 840943) (-493 "ICDEN.spad" 835077 835093 835916 835921) (-492 "ICARD.spad" 834266 834274 835067 835072) (-491 "IBPTOOLS.spad" 832859 832876 834256 834261) (-490 "IBITS.spad" 832058 832071 832495 832522) (-489 "IBATOOL.spad" 828933 828952 832048 832053) (-488 "IBACHIN.spad" 827420 827435 828923 828928) (-487 "IARRAY2.spad" 826408 826434 827027 827054) (-486 "IARRAY1.spad" 825453 825468 825591 825618) (-485 "IAN.spad" 823666 823674 825269 825362) (-484 "IALGFACT.spad" 823267 823300 823656 823661) (-483 "HYPCAT.spad" 822691 822699 823257 823262) (-482 "HYPCAT.spad" 822113 822123 822681 822686) (-481 "HOSTNAME.spad" 821921 821929 822103 822108) (-480 "HOAGG.spad" 819179 819189 821901 821916) (-479 "HOAGG.spad" 816222 816234 818946 818951) (-478 "HEXADEC.spad" 814092 814100 814690 814783) (-477 "HEUGCD.spad" 813107 813118 814082 814087) (-476 "HELLFDIV.spad" 812697 812721 813097 813102) (-475 "HEAP.spad" 812089 812099 812304 812331) (-474 "HEADAST.spad" 811620 811628 812079 812084) (-473 "HDP.spad" 802737 802753 803114 803245) (-472 "HDMP.spad" 799913 799928 800531 800658) (-471 "HB.spad" 798150 798158 799903 799908) (-470 "HASHTBL.spad" 796620 796651 796831 796858) (-469 "HASAST.spad" 796338 796346 796610 796615) (-468 "HACKPI.spad" 795821 795829 796240 796333) (-467 "GTSET.spad" 794760 794776 795467 795494) (-466 "GSTBL.spad" 793279 793314 793453 793468) (-465 "GSERIES.spad" 790446 790473 791411 791560) (-464 "GROUP.spad" 789715 789723 790426 790441) (-463 "GROUP.spad" 788992 789002 789705 789710) (-462 "GROEBSOL.spad" 787480 787501 788982 788987) (-461 "GRMOD.spad" 786051 786063 787470 787475) (-460 "GRMOD.spad" 784620 784634 786041 786046) (-459 "GRIMAGE.spad" 777225 777233 784610 784615) (-458 "GRDEF.spad" 775604 775612 777215 777220) (-457 "GRAY.spad" 774063 774071 775594 775599) (-456 "GRALG.spad" 773110 773122 774053 774058) (-455 "GRALG.spad" 772155 772169 773100 773105) (-454 "GPOLSET.spad" 771609 771632 771837 771864) (-453 "GOSPER.spad" 770874 770892 771599 771604) (-452 "GMODPOL.spad" 770012 770039 770842 770869) (-451 "GHENSEL.spad" 769081 769095 770002 770007) (-450 "GENUPS.spad" 765182 765195 769071 769076) (-449 "GENUFACT.spad" 764759 764769 765172 765177) (-448 "GENPGCD.spad" 764343 764360 764749 764754) (-447 "GENMFACT.spad" 763795 763814 764333 764338) (-446 "GENEEZ.spad" 761734 761747 763785 763790) (-445 "GDMP.spad" 758752 758769 759528 759655) (-444 "GCNAALG.spad" 752647 752674 758546 758613) (-443 "GCDDOM.spad" 751819 751827 752573 752642) (-442 "GCDDOM.spad" 751053 751063 751809 751814) (-441 "GB.spad" 748571 748609 751009 751014) (-440 "GBINTERN.spad" 744591 744629 748561 748566) (-439 "GBF.spad" 740348 740386 744581 744586) (-438 "GBEUCLID.spad" 738222 738260 740338 740343) (-437 "GAUSSFAC.spad" 737519 737527 738212 738217) (-436 "GALUTIL.spad" 735841 735851 737475 737480) (-435 "GALPOLYU.spad" 734287 734300 735831 735836) (-434 "GALFACTU.spad" 732452 732471 734277 734282) (-433 "GALFACT.spad" 722585 722596 732442 732447) (-432 "FVFUN.spad" 719598 719606 722565 722580) (-431 "FVC.spad" 718640 718648 719578 719593) (-430 "FUNCTION.spad" 718489 718501 718630 718635) (-429 "FT.spad" 716701 716709 718479 718484) (-428 "FTEM.spad" 715864 715872 716691 716696) (-427 "FSUPFACT.spad" 714764 714783 715800 715805) (-426 "FST.spad" 712850 712858 714754 714759) (-425 "FSRED.spad" 712328 712344 712840 712845) (-424 "FSPRMELT.spad" 711152 711168 712285 712290) (-423 "FSPECF.spad" 709229 709245 711142 711147) (-422 "FS.spad" 703279 703289 708992 709224) (-421 "FS.spad" 697119 697131 702834 702839) (-420 "FSINT.spad" 696777 696793 697109 697114) (-419 "FSERIES.spad" 695964 695976 696597 696696) (-418 "FSCINT.spad" 695277 695293 695954 695959) (-417 "FSAGG.spad" 694382 694392 695221 695272) (-416 "FSAGG.spad" 693461 693473 694302 694307) (-415 "FSAGG2.spad" 692160 692176 693451 693456) (-414 "FS2UPS.spad" 686549 686583 692150 692155) (-413 "FS2.spad" 686194 686210 686539 686544) (-412 "FS2EXPXP.spad" 685317 685340 686184 686189) (-411 "FRUTIL.spad" 684259 684269 685307 685312) (-410 "FR.spad" 677954 677964 683284 683353) (-409 "FRNAALG.spad" 673041 673051 677896 677949) (-408 "FRNAALG.spad" 668140 668152 672997 673002) (-407 "FRNAAF2.spad" 667594 667612 668130 668135) (-406 "FRMOD.spad" 666988 667018 667525 667530) (-405 "FRIDEAL.spad" 666183 666204 666968 666983) (-404 "FRIDEAL2.spad" 665785 665817 666173 666178) (-403 "FRETRCT.spad" 665296 665306 665775 665780) (-402 "FRETRCT.spad" 664673 664685 665154 665159) (-401 "FRAMALG.spad" 663001 663014 664629 664668) (-400 "FRAMALG.spad" 661361 661376 662991 662996) (-399 "FRAC.spad" 658461 658471 658864 659037) (-398 "FRAC2.spad" 658064 658076 658451 658456) (-397 "FR2.spad" 657398 657410 658054 658059) (-396 "FPS.spad" 654207 654215 657288 657393) (-395 "FPS.spad" 651044 651054 654127 654132) (-394 "FPC.spad" 650086 650094 650946 651039) (-393 "FPC.spad" 649214 649224 650076 650081) (-392 "FPATMAB.spad" 648966 648976 649194 649209) (-391 "FPARFRAC.spad" 647439 647456 648956 648961) (-390 "FORTRAN.spad" 645945 645988 647429 647434) (-389 "FORT.spad" 644874 644882 645935 645940) (-388 "FORTFN.spad" 642034 642042 644854 644869) (-387 "FORTCAT.spad" 641708 641716 642014 642029) (-386 "FORMULA.spad" 639046 639054 641698 641703) (-385 "FORMULA1.spad" 638525 638535 639036 639041) (-384 "FORDER.spad" 638216 638240 638515 638520) (-383 "FOP.spad" 637417 637425 638206 638211) (-382 "FNLA.spad" 636841 636863 637385 637412) (-381 "FNCAT.spad" 635169 635177 636831 636836) (-380 "FNAME.spad" 635061 635069 635159 635164) (-379 "FMTC.spad" 634859 634867 634987 635056) (-378 "FMONOID.spad" 631914 631924 634815 634820) (-377 "FM.spad" 631609 631621 631848 631875) (-376 "FMFUN.spad" 628629 628637 631589 631604) (-375 "FMC.spad" 627671 627679 628609 628624) (-374 "FMCAT.spad" 625325 625343 627639 627666) (-373 "FM1.spad" 624682 624694 625259 625286) (-372 "FLOATRP.spad" 622403 622417 624672 624677) (-371 "FLOAT.spad" 615567 615575 622269 622398) (-370 "FLOATCP.spad" 612984 612998 615557 615562) (-369 "FLINEXP.spad" 612696 612706 612964 612979) (-368 "FLINEXP.spad" 612362 612374 612632 612637) (-367 "FLASORT.spad" 611682 611694 612352 612357) (-366 "FLALG.spad" 609328 609347 611608 611677) (-365 "FLAGG.spad" 606334 606344 609296 609323) (-364 "FLAGG.spad" 603253 603265 606217 606222) (-363 "FLAGG2.spad" 601934 601950 603243 603248) (-362 "FINRALG.spad" 599963 599976 601890 601929) (-361 "FINRALG.spad" 597918 597933 599847 599852) (-360 "FINITE.spad" 597070 597078 597908 597913) (-359 "FINAALG.spad" 586051 586061 597012 597065) (-358 "FINAALG.spad" 575044 575056 586007 586012) (-357 "FILE.spad" 574627 574637 575034 575039) (-356 "FILECAT.spad" 573145 573162 574617 574622) (-355 "FIELD.spad" 572551 572559 573047 573140) (-354 "FIELD.spad" 572043 572053 572541 572546) (-353 "FGROUP.spad" 570652 570662 572023 572038) (-352 "FGLMICPK.spad" 569439 569454 570642 570647) (-351 "FFX.spad" 568814 568829 569155 569248) (-350 "FFSLPE.spad" 568303 568324 568804 568809) (-349 "FFPOLY.spad" 559555 559566 568293 568298) (-348 "FFPOLY2.spad" 558615 558632 559545 559550) (-347 "FFP.spad" 558012 558032 558331 558424) (-346 "FF.spad" 557460 557476 557693 557786) (-345 "FFNBX.spad" 555972 555992 557176 557269) (-344 "FFNBP.spad" 554485 554502 555688 555781) (-343 "FFNB.spad" 552950 552971 554166 554259) (-342 "FFINTBAS.spad" 550364 550383 552940 552945) (-341 "FFIELDC.spad" 547939 547947 550266 550359) (-340 "FFIELDC.spad" 545600 545610 547929 547934) (-339 "FFHOM.spad" 544348 544365 545590 545595) (-338 "FFF.spad" 541783 541794 544338 544343) (-337 "FFCGX.spad" 540630 540650 541499 541592) (-336 "FFCGP.spad" 539519 539539 540346 540439) (-335 "FFCG.spad" 538311 538332 539200 539293) (-334 "FFCAT.spad" 531338 531360 538150 538306) (-333 "FFCAT.spad" 524444 524468 531258 531263) (-332 "FFCAT2.spad" 524189 524229 524434 524439) (-331 "FEXPR.spad" 515898 515944 523945 523984) (-330 "FEVALAB.spad" 515604 515614 515888 515893) (-329 "FEVALAB.spad" 515095 515107 515381 515386) (-328 "FDIV.spad" 514537 514561 515085 515090) (-327 "FDIVCAT.spad" 512579 512603 514527 514532) (-326 "FDIVCAT.spad" 510619 510645 512569 512574) (-325 "FDIV2.spad" 510273 510313 510609 510614) (-324 "FCPAK1.spad" 508826 508834 510263 510268) (-323 "FCOMP.spad" 508205 508215 508816 508821) (-322 "FC.spad" 498030 498038 508195 508200) (-321 "FAXF.spad" 490965 490979 497932 498025) (-320 "FAXF.spad" 483952 483968 490921 490926) (-319 "FARRAY.spad" 482098 482108 483135 483162) (-318 "FAMR.spad" 480218 480230 481996 482093) (-317 "FAMR.spad" 478322 478336 480102 480107) (-316 "FAMONOID.spad" 477972 477982 478276 478281) (-315 "FAMONC.spad" 476194 476206 477962 477967) (-314 "FAGROUP.spad" 475800 475810 476090 476117) (-313 "FACUTIL.spad" 473996 474013 475790 475795) (-312 "FACTFUNC.spad" 473172 473182 473986 473991) (-311 "EXPUPXS.spad" 470005 470028 471304 471453) (-310 "EXPRTUBE.spad" 467233 467241 469995 470000) (-309 "EXPRODE.spad" 464105 464121 467223 467228) (-308 "EXPR.spad" 459380 459390 460094 460501) (-307 "EXPR2UPS.spad" 455472 455485 459370 459375) (-306 "EXPR2.spad" 455175 455187 455462 455467) (-305 "EXPEXPAN.spad" 452114 452139 452748 452841) (-304 "EXIT.spad" 451785 451793 452104 452109) (-303 "EXITAST.spad" 451522 451530 451775 451780) (-302 "EVALCYC.spad" 450980 450994 451512 451517) (-301 "EVALAB.spad" 450544 450554 450970 450975) (-300 "EVALAB.spad" 450106 450118 450534 450539) (-299 "EUCDOM.spad" 447648 447656 450032 450101) (-298 "EUCDOM.spad" 445252 445262 447638 447643) (-297 "ESTOOLS.spad" 437092 437100 445242 445247) (-296 "ESTOOLS2.spad" 436693 436707 437082 437087) (-295 "ESTOOLS1.spad" 436378 436389 436683 436688) (-294 "ES.spad" 428925 428933 436368 436373) (-293 "ES.spad" 421378 421388 428823 428828) (-292 "ESCONT.spad" 418151 418159 421368 421373) (-291 "ESCONT1.spad" 417900 417912 418141 418146) (-290 "ES2.spad" 417395 417411 417890 417895) (-289 "ES1.spad" 416961 416977 417385 417390) (-288 "ERROR.spad" 414282 414290 416951 416956) (-287 "EQTBL.spad" 412754 412776 412963 412990) (-286 "EQ.spad" 407628 407638 410427 410539) (-285 "EQ2.spad" 407344 407356 407618 407623) (-284 "EP.spad" 403658 403668 407334 407339) (-283 "ENV.spad" 402360 402368 403648 403653) (-282 "ENTIRER.spad" 402028 402036 402304 402355) (-281 "EMR.spad" 401229 401270 401954 402023) (-280 "ELTAGG.spad" 399469 399488 401219 401224) (-279 "ELTAGG.spad" 397673 397694 399425 399430) (-278 "ELTAB.spad" 397120 397138 397663 397668) (-277 "ELFUTS.spad" 396499 396518 397110 397115) (-276 "ELEMFUN.spad" 396188 396196 396489 396494) (-275 "ELEMFUN.spad" 395875 395885 396178 396183) (-274 "ELAGG.spad" 393806 393816 395843 395870) (-273 "ELAGG.spad" 391686 391698 393725 393730) (-272 "ELABEXPR.spad" 390617 390625 391676 391681) (-271 "EFUPXS.spad" 387393 387423 390573 390578) (-270 "EFULS.spad" 384229 384252 387349 387354) (-269 "EFSTRUC.spad" 382184 382200 384219 384224) (-268 "EF.spad" 376950 376966 382174 382179) (-267 "EAB.spad" 375226 375234 376940 376945) (-266 "E04UCFA.spad" 374762 374770 375216 375221) (-265 "E04NAFA.spad" 374339 374347 374752 374757) (-264 "E04MBFA.spad" 373919 373927 374329 374334) (-263 "E04JAFA.spad" 373455 373463 373909 373914) (-262 "E04GCFA.spad" 372991 372999 373445 373450) (-261 "E04FDFA.spad" 372527 372535 372981 372986) (-260 "E04DGFA.spad" 372063 372071 372517 372522) (-259 "E04AGNT.spad" 367905 367913 372053 372058) (-258 "DVARCAT.spad" 364590 364600 367895 367900) (-257 "DVARCAT.spad" 361273 361285 364580 364585) (-256 "DSMP.spad" 358704 358718 359009 359136) (-255 "DROPT.spad" 352649 352657 358694 358699) (-254 "DROPT1.spad" 352312 352322 352639 352644) (-253 "DROPT0.spad" 347139 347147 352302 352307) (-252 "DRAWPT.spad" 345294 345302 347129 347134) (-251 "DRAW.spad" 337894 337907 345284 345289) (-250 "DRAWHACK.spad" 337202 337212 337884 337889) (-249 "DRAWCX.spad" 334644 334652 337192 337197) (-248 "DRAWCURV.spad" 334181 334196 334634 334639) (-247 "DRAWCFUN.spad" 323353 323361 334171 334176) (-246 "DQAGG.spad" 321509 321519 323309 323348) (-245 "DPOLCAT.spad" 316850 316866 321377 321504) (-244 "DPOLCAT.spad" 312277 312295 316806 316811) (-243 "DPMO.spad" 305580 305596 305718 306019) (-242 "DPMM.spad" 298896 298914 299021 299322) (-241 "DOMAIN.spad" 298167 298175 298886 298891) (-240 "DMP.spad" 295389 295404 295961 296088) (-239 "DLP.spad" 294737 294747 295379 295384) (-238 "DLIST.spad" 293149 293159 293920 293947) (-237 "DLAGG.spad" 291550 291560 293129 293144) (-236 "DIVRING.spad" 291092 291100 291494 291545) (-235 "DIVRING.spad" 290678 290688 291082 291087) (-234 "DISPLAY.spad" 288858 288866 290668 290673) (-233 "DIRPROD.spad" 279712 279728 280352 280483) (-232 "DIRPROD2.spad" 278520 278538 279702 279707) (-231 "DIRPCAT.spad" 277450 277466 278372 278515) (-230 "DIRPCAT.spad" 276121 276139 277045 277050) (-229 "DIOSP.spad" 274946 274954 276111 276116) (-228 "DIOPS.spad" 273918 273928 274914 274941) (-227 "DIOPS.spad" 272876 272888 273874 273879) (-226 "DIFRING.spad" 272168 272176 272856 272871) (-225 "DIFRING.spad" 271468 271478 272158 272163) (-224 "DIFEXT.spad" 270627 270637 271448 271463) (-223 "DIFEXT.spad" 269703 269715 270526 270531) (-222 "DIAGG.spad" 269321 269331 269671 269698) (-221 "DIAGG.spad" 268959 268971 269311 269316) (-220 "DHMATRIX.spad" 267263 267273 268416 268443) (-219 "DFSFUN.spad" 260671 260679 267253 267258) (-218 "DFLOAT.spad" 257274 257282 260561 260666) (-217 "DFINTTLS.spad" 255483 255499 257264 257269) (-216 "DERHAM.spad" 253393 253425 255463 255478) (-215 "DEQUEUE.spad" 252711 252721 253000 253027) (-214 "DEGRED.spad" 252326 252340 252701 252706) (-213 "DEFINTRF.spad" 249851 249861 252316 252321) (-212 "DEFINTEF.spad" 248347 248363 249841 249846) (-211 "DEFAST.spad" 247704 247712 248337 248342) (-210 "DECIMAL.spad" 245586 245594 246172 246265) (-209 "DDFACT.spad" 243385 243402 245576 245581) (-208 "DBLRESP.spad" 242983 243007 243375 243380) (-207 "DBASE.spad" 241555 241565 242973 242978) (-206 "DATABUF.spad" 241043 241056 241545 241550) (-205 "D03FAFA.spad" 240871 240879 241033 241038) (-204 "D03EEFA.spad" 240691 240699 240861 240866) (-203 "D03AGNT.spad" 239771 239779 240681 240686) (-202 "D02EJFA.spad" 239233 239241 239761 239766) (-201 "D02CJFA.spad" 238711 238719 239223 239228) (-200 "D02BHFA.spad" 238201 238209 238701 238706) (-199 "D02BBFA.spad" 237691 237699 238191 238196) (-198 "D02AGNT.spad" 232495 232503 237681 237686) (-197 "D01WGTS.spad" 230814 230822 232485 232490) (-196 "D01TRNS.spad" 230791 230799 230804 230809) (-195 "D01GBFA.spad" 230313 230321 230781 230786) (-194 "D01FCFA.spad" 229835 229843 230303 230308) (-193 "D01ASFA.spad" 229303 229311 229825 229830) (-192 "D01AQFA.spad" 228749 228757 229293 229298) (-191 "D01APFA.spad" 228173 228181 228739 228744) (-190 "D01ANFA.spad" 227667 227675 228163 228168) (-189 "D01AMFA.spad" 227177 227185 227657 227662) (-188 "D01ALFA.spad" 226717 226725 227167 227172) (-187 "D01AKFA.spad" 226243 226251 226707 226712) (-186 "D01AJFA.spad" 225766 225774 226233 226238) (-185 "D01AGNT.spad" 221825 221833 225756 225761) (-184 "CYCLOTOM.spad" 221331 221339 221815 221820) (-183 "CYCLES.spad" 218163 218171 221321 221326) (-182 "CVMP.spad" 217580 217590 218153 218158) (-181 "CTRIGMNP.spad" 216070 216086 217570 217575) (-180 "CTORCALL.spad" 215658 215666 216060 216065) (-179 "CSTTOOLS.spad" 214901 214914 215648 215653) (-178 "CRFP.spad" 208605 208618 214891 214896) (-177 "CRCAST.spad" 208326 208334 208595 208600) (-176 "CRAPACK.spad" 207369 207379 208316 208321) (-175 "CPMATCH.spad" 206869 206884 207294 207299) (-174 "CPIMA.spad" 206574 206593 206859 206864) (-173 "COORDSYS.spad" 201467 201477 206564 206569) (-172 "CONTOUR.spad" 200869 200877 201457 201462) (-171 "CONTFRAC.spad" 196481 196491 200771 200864) (-170 "CONDUIT.spad" 196239 196247 196471 196476) (-169 "COMRING.spad" 195913 195921 196177 196234) (-168 "COMPPROP.spad" 195427 195435 195903 195908) (-167 "COMPLPAT.spad" 195194 195209 195417 195422) (-166 "COMPLEX.spad" 189220 189230 189464 189725) (-165 "COMPLEX2.spad" 188933 188945 189210 189215) (-164 "COMPFACT.spad" 188535 188549 188923 188928) (-163 "COMPCAT.spad" 186591 186601 188257 188530) (-162 "COMPCAT.spad" 184353 184365 186021 186026) (-161 "COMMUPC.spad" 184099 184117 184343 184348) (-160 "COMMONOP.spad" 183632 183640 184089 184094) (-159 "COMM.spad" 183441 183449 183622 183627) (-158 "COMMAAST.spad" 183205 183213 183431 183436) (-157 "COMBOPC.spad" 182110 182118 183195 183200) (-156 "COMBINAT.spad" 180855 180865 182100 182105) (-155 "COMBF.spad" 178223 178239 180845 180850) (-154 "COLOR.spad" 177060 177068 178213 178218) (-153 "COLONAST.spad" 176727 176735 177050 177055) (-152 "CMPLXRT.spad" 176436 176453 176717 176722) (-151 "CLIP.spad" 172528 172536 176426 176431) (-150 "CLIF.spad" 171167 171183 172484 172523) (-149 "CLAGG.spad" 167642 167652 171147 171162) (-148 "CLAGG.spad" 163998 164010 167505 167510) (-147 "CINTSLPE.spad" 163323 163336 163988 163993) (-146 "CHVAR.spad" 161401 161423 163313 163318) (-145 "CHARZ.spad" 161316 161324 161381 161396) (-144 "CHARPOL.spad" 160824 160834 161306 161311) (-143 "CHARNZ.spad" 160577 160585 160804 160819) (-142 "CHAR.spad" 158445 158453 160567 160572) (-141 "CFCAT.spad" 157761 157769 158435 158440) (-140 "CDEN.spad" 156919 156933 157751 157756) (-139 "CCLASS.spad" 155068 155076 156330 156369) (-138 "CATEGORY.spad" 154847 154855 155058 155063) (-137 "CATAST.spad" 154475 154483 154837 154842) (-136 "CASEAST.spad" 154191 154199 154465 154470) (-135 "CARTEN.spad" 149294 149318 154181 154186) (-134 "CARTEN2.spad" 148680 148707 149284 149289) (-133 "CARD.spad" 145969 145977 148654 148675) (-132 "CAPSLAST.spad" 145744 145752 145959 145964) (-131 "CACHSET.spad" 145366 145374 145734 145739) (-130 "CABMON.spad" 144919 144927 145356 145361) (-129 "BYTE.spad" 144313 144321 144909 144914) (-128 "BYTEARY.spad" 143388 143396 143482 143509) (-127 "BTREE.spad" 142457 142467 142995 143022) (-126 "BTOURN.spad" 141460 141470 142064 142091) (-125 "BTCAT.spad" 140836 140846 141416 141455) (-124 "BTCAT.spad" 140244 140256 140826 140831) (-123 "BTAGG.spad" 139354 139362 140200 140239) (-122 "BTAGG.spad" 138496 138506 139344 139349) (-121 "BSTREE.spad" 137231 137241 138103 138130) (-120 "BRILL.spad" 135426 135437 137221 137226) (-119 "BRAGG.spad" 134340 134350 135406 135421) (-118 "BRAGG.spad" 133228 133240 134296 134301) (-117 "BPADICRT.spad" 131210 131222 131465 131558) (-116 "BPADIC.spad" 130874 130886 131136 131205) (-115 "BOUNDZRO.spad" 130530 130547 130864 130869) (-114 "BOP.spad" 125994 126002 130520 130525) (-113 "BOP1.spad" 123380 123390 125950 125955) (-112 "BOOLEAN.spad" 122704 122712 123370 123375) (-111 "BMODULE.spad" 122416 122428 122672 122699) (-110 "BITS.spad" 121835 121843 122052 122079) (-109 "BINFILE.spad" 121178 121186 121825 121830) (-108 "BINDING.spad" 120597 120605 121168 121173) (-107 "BINARY.spad" 118488 118496 119065 119158) (-106 "BGAGG.spad" 117673 117683 118456 118483) (-105 "BGAGG.spad" 116878 116890 117663 117668) (-104 "BFUNCT.spad" 116442 116450 116858 116873) (-103 "BEZOUT.spad" 115576 115603 116392 116397) (-102 "BBTREE.spad" 112395 112405 115183 115210) (-101 "BASTYPE.spad" 112067 112075 112385 112390) (-100 "BASTYPE.spad" 111737 111747 112057 112062) (-99 "BALFACT.spad" 111177 111189 111727 111732) (-98 "AUTOMOR.spad" 110624 110633 111157 111172) (-97 "ATTREG.spad" 107343 107350 110376 110619) (-96 "ATTRBUT.spad" 103366 103373 107323 107338) (-95 "ATTRAST.spad" 103084 103091 103356 103361) (-94 "ATRIG.spad" 102554 102561 103074 103079) (-93 "ATRIG.spad" 102022 102031 102544 102549) (-92 "ASTCAT.spad" 101926 101933 102012 102017) (-91 "ASTCAT.spad" 101828 101837 101916 101921) (-90 "ASTACK.spad" 101161 101170 101435 101462) (-89 "ASSOCEQ.spad" 99961 99972 101117 101122) (-88 "ASP9.spad" 99042 99055 99951 99956) (-87 "ASP8.spad" 98085 98098 99032 99037) (-86 "ASP80.spad" 97407 97420 98075 98080) (-85 "ASP7.spad" 96567 96580 97397 97402) (-84 "ASP78.spad" 96018 96031 96557 96562) (-83 "ASP77.spad" 95387 95400 96008 96013) (-82 "ASP74.spad" 94479 94492 95377 95382) (-81 "ASP73.spad" 93750 93763 94469 94474) (-80 "ASP6.spad" 92382 92395 93740 93745) (-79 "ASP55.spad" 90891 90904 92372 92377) (-78 "ASP50.spad" 88708 88721 90881 90886) (-77 "ASP4.spad" 88003 88016 88698 88703) (-76 "ASP49.spad" 87002 87015 87993 87998) (-75 "ASP42.spad" 85409 85448 86992 86997) (-74 "ASP41.spad" 83988 84027 85399 85404) (-73 "ASP35.spad" 82976 82989 83978 83983) (-72 "ASP34.spad" 82277 82290 82966 82971) (-71 "ASP33.spad" 81837 81850 82267 82272) (-70 "ASP31.spad" 80977 80990 81827 81832) (-69 "ASP30.spad" 79869 79882 80967 80972) (-68 "ASP29.spad" 79335 79348 79859 79864) (-67 "ASP28.spad" 70608 70621 79325 79330) (-66 "ASP27.spad" 69505 69518 70598 70603) (-65 "ASP24.spad" 68592 68605 69495 69500) (-64 "ASP20.spad" 67808 67821 68582 68587) (-63 "ASP1.spad" 67189 67202 67798 67803) (-62 "ASP19.spad" 61875 61888 67179 67184) (-61 "ASP12.spad" 61289 61302 61865 61870) (-60 "ASP10.spad" 60560 60573 61279 61284) (-59 "ARRAY2.spad" 59920 59929 60167 60194) (-58 "ARRAY1.spad" 58755 58764 59103 59130) (-57 "ARRAY12.spad" 57424 57435 58745 58750) (-56 "ARR2CAT.spad" 53074 53095 57380 57419) (-55 "ARR2CAT.spad" 48756 48779 53064 53069) (-54 "APPRULE.spad" 48000 48022 48746 48751) (-53 "APPLYORE.spad" 47615 47628 47990 47995) (-52 "ANY.spad" 45957 45964 47605 47610) (-51 "ANY1.spad" 45028 45037 45947 45952) (-50 "ANTISYM.spad" 43467 43483 45008 45023) (-49 "ANON.spad" 43164 43171 43457 43462) (-48 "AN.spad" 41465 41472 42980 43073) (-47 "AMR.spad" 39644 39655 41363 41460) (-46 "AMR.spad" 37660 37673 39381 39386) (-45 "ALIST.spad" 35072 35093 35422 35449) (-44 "ALGSC.spad" 34195 34221 34944 34997) (-43 "ALGPKG.spad" 29904 29915 34151 34156) (-42 "ALGMFACT.spad" 29093 29107 29894 29899) (-41 "ALGMANIP.spad" 26513 26528 28890 28895) (-40 "ALGFF.spad" 24828 24855 25045 25201) (-39 "ALGFACT.spad" 23949 23959 24818 24823) (-38 "ALGEBRA.spad" 23680 23689 23905 23944) (-37 "ALGEBRA.spad" 23443 23454 23670 23675) (-36 "ALAGG.spad" 22941 22962 23399 23438) (-35 "AHYP.spad" 22322 22329 22931 22936) (-34 "AGG.spad" 20621 20628 22302 22317) (-33 "AGG.spad" 18894 18903 20577 20582) (-32 "AF.spad" 17319 17334 18829 18834) (-31 "ADDAST.spad" 16999 17006 17309 17314) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index aabeee19..2c160f17 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3246 +1,3259 @@ -(144269 . 3430368528) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-392 |#2|) |#3|) . T)) -((((-392 (-526))) |has| #1=(-392 |#2|) (-995 (-392 (-526)))) (((-526)) |has| #1# (-995 (-526))) ((#1#) . T)) -((((-392 |#2|)) . T)) -((((-526)) |has| #1=(-392 |#2|) (-606 (-526))) ((#1#) . T)) -((((-392 |#2|)) . T)) -((((-392 |#2|) |#3|) . T)) -(|has| (-392 |#2|) (-141)) -((((-392 |#2|) |#3|) . T)) -(|has| (-392 |#2|) (-139)) -((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) -((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) -(|has| (-392 |#2|) (-219)) -((((-1123)) |has| (-392 |#2|) (-859 (-1123)))) -((((-392 |#2|)) . T)) -(((|#3|) . T)) -(((#1=(-392 |#2|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) -(((|#1| |#2| |#3|) . T)) -(((|#1|) . T)) +(144785 . 3430739790) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((|#2| |#2|) . T)) +((((-548)) . T)) +((($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) ((|#2| |#2|) . T) ((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548))))) +((($) . T)) (((|#1|) . T)) -((((-1090 |#2| |#1|)) . T) ((|#1|) . T)) -((((-823)) . T)) +((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#2|) . T)) +((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) ((|#2|) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548))))) +(|has| |#1| (-878)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((($) . T) (((-399 (-548))) . T)) +((($) . T)) +((($) . T)) +(((|#2| |#2|) . T)) +((((-142)) . T)) +((((-524)) . T) (((-1118)) . T) (((-218)) . T) (((-371)) . T) (((-861 (-371))) . T)) +(((|#1|) . T)) +((((-218)) . T) (((-832)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) +((($ $) . T) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1| |#1|) . T)) +(-1524 (|has| |#1| (-794)) (|has| |#1| (-821))) +((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +((((-832)) . T)) +((((-832)) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(|has| |#1| (-819)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#2| |#3|) . T)) +(((|#4|) . T)) +((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((((-832)) . T)) +((((-832)) |has| |#1| (-1063))) +((((-832)) . T) (((-1140)) . T)) +(((|#1|) . T) ((|#2|) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#2| (-473 (-3643 |#1|) (-745))) . T)) +(((|#1| (-520 (-1135))) . T)) +(((#0=(-839 |#1|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(|has| |#4| (-360)) +(|has| |#3| (-360)) +(((|#1|) . T)) +((((-839 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1| |#2|) . T)) +((($) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-540)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +((($) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-832)) . T)) +((((-832)) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-355)) (($) . T) ((|#1|) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1|) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) . T)) +(((|#1| |#2|) . T)) +((((-832)) . T)) +(((|#1|) . T)) +(((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +(((|#1|) . T)) +(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((($ $) . T)) +(((|#2|) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((($) . T)) +(|has| |#1| (-360)) (((|#1|) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-832)) . T)) +((((-832)) . T)) +(((|#1| |#2|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) (((|#1| |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-823)) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(|has| |#1| (-540)) +(((|#2| |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-301 |#2|))) (((-1135) |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-504 (-1135) |#2|)))) +((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) +((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(|has| |#1| (-1063)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(|has| |#1| (-1063)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(|has| |#1| (-819)) +((($) . T) (((-399 (-548))) . T)) +(((|#1|) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#4| (-767)) (|has| |#4| (-819))) +(-1524 (|has| |#4| (-767)) (|has| |#4| (-819))) +(-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) +(-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) (((|#1| |#2|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((|#1| |#2|) . T)) -((((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((|#2|) . T)) -(((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) ((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -((((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((|#1| |#2|) . T)) +(|has| |#1| (-1063)) +(|has| |#1| (-1063)) +(((|#1| (-1135) (-1052 (-1135)) (-520 (-1052 (-1135)))) . T)) +((((-548) |#1|) . T)) +((((-548)) . T)) +((((-548)) . T)) +((((-879 |#1|)) . T)) +(((|#1| (-520 |#2|)) . T)) +((((-548)) . T)) +((((-548)) . T)) +(((|#1|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#1| (-745)) . T)) +(|has| |#2| (-767)) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(|has| |#2| (-819)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-159 (-363))) . T) (((-211)) . T) (((-363)) . T)) -((((-392 (-526))) . T) (((-526)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($) . T) (((-392 (-526))) . T)) -((($) . T) (((-392 (-526))) . T)) -((((-392 (-526))) . T) (($) . T)) -(((#1=(-392 (-526)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-581 $) $) . T)) -((((-823)) . T)) -((((-392 (-526))) . T) (((-526)) . T) (((-581 $)) . T)) -((((-823)) . T)) -(((|#1|) . T)) -((((-823)) . T)) +((((-1118) |#1|) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(((|#1|) . T)) +(((|#3| (-745)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(|has| |#1| (-1063)) +((((-399 (-548))) . T) (((-548)) . T)) +((((-1135) |#2|) |has| |#2| (-504 (-1135) |#2|)) ((|#2| |#2|) |has| |#2| (-301 |#2|))) +((((-399 (-548))) . T) (((-548)) . T)) (((|#1|) . T) (($) . T)) +((((-548)) . T)) +((((-548)) . T)) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) |has| |#1| (-169))) +((((-548)) . T)) +((((-548)) . T)) +(((#0=(-673) (-1131 #0#)) . T)) +((((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +((((-548) |#1|) . T)) +((($) . T) (((-548)) . T) (((-399 (-548))) . T)) +(((|#1|) . T)) +(|has| |#2| (-355)) (((|#1|) . T)) -((((-823)) . T)) -(((|#1|) . T)) -(|has| |#1| (-811)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1| (-56 |#1|) (-56 |#1|)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-823)) . T)) +(((|#1| |#2|) . T)) +((((-832)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-1118) |#1|) . T)) +(((|#3| |#3|) . T)) +((((-832)) . T)) +((((-832)) . T)) (((|#1| |#1|) . T)) -((((-823)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-526)) . T)) -((((-526)) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) (((-526)) . T) (((-392 (-526))) . T)) -((((-526)) . T) (($) . T) (((-392 (-526))) . T)) -((((-526)) . T) (((-392 (-526))) . T) (($) . T)) -(((#1=(-526) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-515)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) -((((-392 (-526))) . T) (((-526)) . T)) -((((-526)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-373) (-1070)) . T)) -((((-111)) . T)) -((((-111)) . T)) -((((-526) (-111)) . T)) -((((-526) (-111)) . T)) -((((-526) (-111)) . T)) -((((-515)) . T)) -((((-111)) . T)) -((((-823)) . T)) -((((-111)) . T)) -((((-111)) . T)) -((((-515)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((($) . T)) -((((-823)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-115 |#1|)) . T)) -((((-115 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) (((-115 |#1|)) . T) (((-392 (-526))) . T)) -((((-115 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) -((((-115 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -(((#1=(-115 |#1|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-115 |#1|)) . T)) -((((-1123) #1=(-115 |#1|)) |has| #1# (-496 (-1123) #1#)) ((#1# #1#) |has| #1# (-294 #1#))) -(((#1=(-115 |#1|)) |has| #1# (-294 #1#))) -(((#1=(-115 |#1|) $) |has| #1# (-271 #1# #1#))) -((((-115 |#1|)) . T)) -((((-115 |#1|)) . T)) -((((-115 |#1|)) . T)) -((((-115 |#1|)) . T)) -((((-115 |#1|)) . T)) -((((-115 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) . T)) +(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) . T)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016)))) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-548) |#1|) . T)) +((((-832)) . T)) +((((-166 (-218))) |has| |#1| (-991)) (((-166 (-371))) |has| |#1| (-991)) (((-524)) |has| |#1| (-593 (-524))) (((-1131 |#1|)) . T) (((-861 (-548))) |has| |#1| (-593 (-861 (-548)))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371))))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#2|) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) +(|has| |#1| (-355)) +(-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) +(-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) +(-1524 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016))) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) +(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +(|has| |#1| (-540)) +(|has| |#1| (-540)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(((|#1|) . T)) +(|has| |#1| (-540)) +(|has| |#1| (-540)) +(|has| |#1| (-540)) +((((-673)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-971)) (|has| |#1| (-1157))) +(((|#2|) . T) (($) . T) (((-399 (-548))) . T)) +(-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))) +((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-355)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) . T)) +(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +(((|#4| |#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-355)) (|has| |#4| (-1016))) (($ $) |has| |#4| (-169))) +(((|#3| |#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016))) (($ $) |has| |#3| (-169))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-524)) |has| |#2| (-593 (-524))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548))))) +((((-832)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-832)) . T)) +((((-524)) |has| |#1| (-593 (-524))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#1| (-593 (-861 (-548))))) +(((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-355)) (|has| |#4| (-1016))) (($) |has| |#4| (-169))) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016))) (($) |has| |#3| (-169))) +((((-832)) . T)) +((((-832)) . T)) +((((-524)) . T) (((-548)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +((($) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T)) +((((-399 $) (-399 $)) |has| |#2| (-540)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-878)) +((((-1118) (-52)) . T)) +((((-548)) |has| #0=(-399 |#2|) (-615 (-548))) ((#0#) . T)) +((((-524)) . T) (((-218)) . T) (((-371)) . T) (((-861 (-371))) . T)) +((((-832)) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +(((|#1|) |has| |#1| (-169))) +(((|#1| $) |has| |#1| (-278 |#1| |#1|))) +((((-832)) . T)) +((((-832)) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-832)) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-1063)) +(((|#1|) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((((-129)) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-129)) . T)) +((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(|has| |#1| (-226)) +((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1| (-520 (-792 (-1135)))) . T)) +(((|#1| (-940)) . T)) +(((#0=(-839 |#1|) $) |has| #0# (-278 #0# #0#))) +((((-548) |#4|) . T)) +((((-548) |#3|) . T)) (((|#1|) . T)) -((((-735)) . T) (((-823)) . T)) -((((-127)) . T)) -((((-127)) . T)) -((((-823)) . T)) -((((-127)) . T)) -((((-526) (-127)) . T)) -((((-526) (-127)) . T)) -((((-526) (-127)) . T)) -((((-127)) . T)) -((((-127)) . T)) -((((-735)) . T)) -((((-823)) . T)) -((((-526) (-735)) . T) ((|#3| (-735)) . T)) -((((-823)) . T)) -(((|#3|) . T)) -(((|#3| (-735)) . T)) -((((-823)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-607 (-138))) . T) (((-1106)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T) (($) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(|has| |#1| (-785)) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-335))) -((((-823)) . T)) -(|has| |#1| (-141)) -(((|#1|) . T)) -((((-1123)) |has| |#1| (-859 (-1123)))) -(-3850 (|has| |#1| (-219)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(((|#1|) . T)) -((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((|#1| |#1|) |has| |#1| (-294 |#1|))) -(((|#1|) |has| |#1| (-294 |#1|))) -(((|#1| $) |has| |#1| (-271 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) -(((|#1|) . T)) -((((-526)) |has| |#1| (-845 (-526))) (((-363)) |has| |#1| (-845 (-363)))) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) -(((|#1| (-1117 |#1|)) . T)) -(((|#1| (-1117 |#1|)) . T)) -((($) -3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) -((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) -((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1| |#1|) . T)) -((($) -3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) -(((|#1| (-1117 |#1|)) . T)) -(|has| |#1| (-335)) -(|has| |#1| (-335)) -(|has| |#1| (-335)) -(-3850 (|has| |#1| (-353)) (|has| |#1| (-335))) -(|has| |#1| (-811)) -(((|#1|) . T)) -((((-159 (-211))) |has| |#1| . #1=((-977))) (((-159 (-363))) |has| |#1| . #1#) (((-515)) |has| |#1| (-584 (-515))) (((-1117 |#1|)) . T) (((-849 (-526))) |has| |#1| (-584 (-849 (-526)))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363))))) -(-12 (|has| |#1| (-292)) (|has| |#1| (-869))) -(-12 (|has| |#1| (-960)) (|has| |#1| (-1145))) -(|has| |#1| (-1145)) -(|has| |#1| (-1145)) -(|has| |#1| (-1145)) -(|has| |#1| (-1145)) -(|has| |#1| (-1145)) -(|has| |#1| (-1145)) -(((|#1|) . T)) -((((-823)) . T)) -((((-392 (-526))) . T) (($) . T) (((-392 |#1|)) . T) ((|#1|) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) . T) (((-392 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) . T) ((#2=(-392 |#1|) #2#) . T) ((|#1| |#1|) . T)) -((((-392 (-526))) . T) (((-392 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T) (((-392 |#1|)) . T) ((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-526)) . T)) -((((-526)) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) (((-526)) . T) (((-392 (-526))) . T)) -((((-526)) . T) (($) . T) (((-392 (-526))) . T)) -((((-526)) . T) (((-392 (-526))) . T) (($) . T)) -(((#1=(-526) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-515)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) -((((-392 (-526))) . T) (((-526)) . T)) -((((-526)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-299 |#1|)) . T)) -((((-823)) . T)) -((((-299 |#1|)) . T) (($) . T)) -((((-299 |#1|)) . T)) -((((-526)) . T) (((-392 (-526))) . T)) -((((-363)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-515)) . T) (((-211)) . T) (((-363)) . T) (((-849 (-363))) . T)) -((((-823)) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1| (-1205 |#1|) (-1205 |#1|)) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -(((|#1| (-1205 |#1|) (-1205 |#1|)) . T)) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) -(((|#2|) |has| |#2| (-163))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -((($) -3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) ((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004)))) -(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)))) -((((-823)) -3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-583 (-823))) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) (((-1205 |#2|)) . T)) -(|has| |#2| (-163)) -(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($) |has| |#2| (-163))) -(((|#2| |#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($ $) |has| |#2| (-163))) -(((|#2|) |has| |#2| (-1004))) -((((-1123)) -12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) -(-12 (|has| |#2| (-219)) (|has| |#2| (-1004))) -(|has| |#2| (-353)) -(((|#2|) |has| |#2| (-1004))) -(((|#2|) |has| |#2| (-1004)) (((-526)) -12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) -(((|#2|) |has| |#2| (-1052))) -(((|#2|) |has| |#2| (-1052)) (((-526)) -12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (((-392 (-526))) -12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) -((((-526) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2|) . T)) -((((-526) |#2|) . T)) -((((-526) |#2|) . T)) -(|has| |#2| (-757)) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(|has| |#2| (-809)) -(|has| |#2| (-809)) -(((|#2|) |has| |#2| (-348))) -(((|#1| |#2|) . T)) -(((|#1|) . T)) +(|has| |#1| (-1111)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +(|has| (-1204 |#1| |#2| |#3| |#4|) (-143)) +(|has| (-1204 |#1| |#2| |#3| |#4|) (-145)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(((|#1|) |has| |#1| (-169))) +((((-1135)) -12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) +(((|#2|) . T)) +(|has| |#1| (-1063)) +((((-1118) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +(|has| |#2| (-360)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((($) . T) ((|#1|) . T)) +(((|#2|) |has| |#2| (-1016))) +((((-832)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) (((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-811)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-515)) |has| |#2| (-584 (-515))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526))))) -((($) . T)) -(((|#2| (-225 (-4273 |#1|) (-735))) . T)) -(((|#2|) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T)) -(|has| |#2| (-139)) -(|has| |#2| (-141)) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T) (($) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526)))) ((|#2| |#2|) . T) (($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(((|#2| (-225 (-4273 |#1|) (-735))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-869))) -((($ $) . T) ((#1=(-824 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-811)) -((((-824 |#1|)) . T)) -(|has| |#2| (-869)) -(|has| |#2| (-869)) -((((-392 (-526))) |has| |#2| (-995 (-392 (-526)))) (((-526)) |has| |#2| (-995 (-526))) ((|#2|) . T) (((-824 |#1|)) . T)) -(((|#2| (-225 (-4273 |#1|) (-735)) (-824 |#1|)) . T)) -((((-823)) . T)) -(((|#4|) |has| |#4| (-163))) -(-3850 (|has| |#4| (-163)) (|has| |#4| (-691)) (|has| |#4| (-809)) (|has| |#4| (-1004))) -(-3850 (|has| |#4| (-163)) (|has| |#4| (-691)) (|has| |#4| (-809)) (|has| |#4| (-1004))) -(-3850 (|has| |#4| (-163)) (|has| |#4| (-809)) (|has| |#4| (-1004))) -(-3850 (|has| |#4| (-163)) (|has| |#4| (-809)) (|has| |#4| (-1004))) -(((|#3|) . T) ((|#2|) . T) (($) -3850 (|has| |#4| (-163)) (|has| |#4| (-809)) (|has| |#4| (-1004))) ((|#4|) -3850 (|has| |#4| (-163)) (|has| |#4| (-348)) (|has| |#4| (-1004)))) -(((|#4|) -3850 (|has| |#4| (-163)) (|has| |#4| (-348)))) -((((-823)) . T) (((-1205 |#4|)) . T)) -(|has| |#4| (-163)) -(((|#4|) -3850 (|has| |#4| (-163)) (|has| |#4| (-348)) (|has| |#4| (-1004))) (($) |has| |#4| (-163))) -(((|#4| |#4|) -3850 (|has| |#4| (-163)) (|has| |#4| (-348)) (|has| |#4| (-1004))) (($ $) |has| |#4| (-163))) -(((|#4|) |has| |#4| (-1004))) -((((-1123)) -12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) -(-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) -(|has| |#4| (-353)) -(((|#4|) |has| |#4| (-1004))) -(((|#4|) |has| |#4| (-1004)) (((-526)) -12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004)))) -(((|#4|) |has| |#4| (-1052))) -(((|#4|) |has| |#4| (-1052)) (((-526)) -12 (|has| |#4| (-995 (-526))) (|has| |#4| (-1052))) (((-392 (-526))) -12 (|has| |#4| (-995 (-392 (-526)))) (|has| |#4| (-1052)))) -((((-526) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) . T)) -((((-526) |#4|) . T)) -((((-526) |#4|) . T)) -(|has| |#4| (-757)) -(-3850 (|has| |#4| (-757)) (|has| |#4| (-809))) -(-3850 (|has| |#4| (-757)) (|has| |#4| (-809))) -(-3850 (|has| |#4| (-757)) (|has| |#4| (-809))) -(-3850 (|has| |#4| (-757)) (|has| |#4| (-809))) -(|has| |#4| (-809)) -(|has| |#4| (-809)) -(((|#4|) |has| |#4| (-348))) -(((|#1| |#4|) . T)) -(((|#3|) |has| |#3| (-163))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-691)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-691)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(((|#2|) . T) (($) -3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) ((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004)))) -(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)))) -((((-823)) . T) (((-1205 |#3|)) . T)) -(|has| |#3| (-163)) -(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004))) (($) |has| |#3| (-163))) -(((|#3| |#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004))) (($ $) |has| |#3| (-163))) -(((|#3|) |has| |#3| (-1004))) -((((-1123)) -12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) -(-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) -(|has| |#3| (-353)) -(((|#3|) |has| |#3| (-1004))) -(((|#3|) |has| |#3| (-1004)) (((-526)) -12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) -(((|#3|) |has| |#3| (-1052))) -(((|#3|) |has| |#3| (-1052)) (((-526)) -12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052))) (((-392 (-526))) -12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) -((((-526) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) -(((|#3| |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) -(((|#3|) . T)) -((((-526) |#3|) . T)) -((((-526) |#3|) . T)) -(|has| |#3| (-757)) -(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) -(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) -(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) -(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) -(|has| |#3| (-809)) -(|has| |#3| (-809)) -(((|#3|) |has| |#3| (-348))) -(((|#1| |#3|) . T)) -((((-823)) . T)) -(((|#1|) . T)) -((((-823)) . T)) -(|has| |#1| (-219)) -((($) . T)) -(((|#1| (-512 |#3|) |#3|) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))) (((-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363))))) -((((-1123)) |has| |#1| (-859 (-1123))) ((|#3|) . T)) -(|has| |#1| (-811)) -((($ $) . T) ((|#2| $) |has| |#1| . #1=((-219))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) -((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-512 |#3|)) . T)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T)) -(((|#1| (-512 |#3|)) . T)) -((((-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526))))) (((-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363))))) (((-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515))))) -((((-1075 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-512 |#3|)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -((((-823)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((#0=(-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) #0#) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) +((((-548) |#1|) . T)) +((((-832)) . T)) +((((-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#2| (-593 (-524)))) (((-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371))))) (((-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) +((((-832)) . T)) ((($) . T)) +((((-832)) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) ((($) . T)) -((((-823)) . T)) ((($) . T)) -((($ $) . T)) ((($) . T)) -((((-823)) . T)) -(((|#1|) |has| |#1| (-348))) -((((-1123)) |has| |#1| (-859 (-1123)))) -(((|#1|) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)))) -(((|#1|) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-1004)))) -(((|#1| |#1|) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-1004)))) -(((|#1|) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-1004))) (($) -3850 (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)))) -(-3850 (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) -(|has| |#1| (-457)) -(-3850 (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)) (|has| |#1| (-1063))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)) (|has| |#1| (-1063)) (|has| |#1| (-1052))) -((((-111)) |has| |#1| (-1052)) (((-823)) -3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)) (|has| |#1| (-1063)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)) (|has| |#1| (-1063)) (|has| |#1| (-1052))) -((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|))) -(((|#1| |#2|) . T)) -((((-823)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#1| |#2|) . T)) -((((-823)) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-823)) . T)) -(|has| (-1192 |#1| |#2| |#3| |#4|) (-139)) -(|has| (-1192 |#1| |#2| |#3| |#4|) (-141)) -((((-1192 |#1| |#2| |#3| |#4|)) . T)) -((((-1192 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) (((-1192 |#1| |#2| |#3| |#4|)) . T) (((-392 (-526))) . T)) -((((-1192 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-392 (-526))) . T)) -((((-1192 |#1| |#2| |#3| |#4|)) . T) (((-392 (-526))) . T) (($) . T)) -(((#1=(-1192 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-1192 |#1| |#2| |#3| |#4|)) . T)) -((((-1123) #1=(-1192 |#1| |#2| |#3| |#4|)) |has| #1# (-496 (-1123) #1#)) ((#1# #1#) |has| #1# (-294 #1#))) -(((#1=(-1192 |#1| |#2| |#3| |#4|)) |has| #1# (-294 #1#))) -(((#1=(-1192 |#1| |#2| |#3| |#4|) $) |has| #1# (-271 #1# #1#))) -((((-1192 |#1| |#2| |#3| |#4|)) . T)) -((((-1192 |#1| |#2| |#3| |#4|)) . T)) -((((-1192 |#1| |#2| |#3| |#4|)) . T)) -((((-1192 |#1| |#2| |#3| |#4|)) . T)) -((((-1186 |#2| |#3| |#4|)) . T) (((-1192 |#1| |#2| |#3| |#4|)) . T)) -((((-1192 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(((|#1|) |has| |#1| (-533))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) -((((-823)) . T)) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-457)) (|has| |#1| (-533)) (|has| |#1| (-1004)) (|has| |#1| (-1063))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-457)) (|has| |#1| (-533)) (|has| |#1| (-1004)) (|has| |#1| (-1063))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -((((-581 $) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533)) (((-392 (-526))) |has| |#1| (-533))) -((($) -3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-533))) -(((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533)) (((-392 (-526))) |has| |#1| (-533))) -(|has| |#1| (-533)) -(((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-533)) (($) |has| |#1| (-533))) -(((|#1| |#1|) |has| |#1| (-163)) ((#1=(-392 (-526)) #1#) |has| |#1| (-533)) (($ $) |has| |#1| (-533))) -(|has| |#1| (-533)) -(((|#1|) |has| |#1| (-1004))) -(((|#1|) |has| |#1| (-1004)) (((-526)) -12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) -(((|#1|) . T)) -((((-526)) |has| |#1| (-845 (-526))) (((-363)) |has| |#1| (-845 (-363)))) -(((|#1|) . T)) -(|has| |#1| (-457)) -((((-1123)) |has| |#1| (-1004))) -(((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515))) (((-849 (-526))) |has| |#1| (-584 (-849 (-526)))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363))))) -((((-47)) -12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526)))) (((-581 $)) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) -3850 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526)))) (|has| |#1| (-995 (-392 (-526))))) (((-392 (-905 |#1|))) |has| |#1| (-533)) (((-905 |#1|)) |has| |#1| (-1004)) (((-1123)) . T)) -(((|#1|) . T)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -((((-823)) . T)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(((|#1| (-392 (-526))) . T)) -(((|#1| (-392 (-526))) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) |has| |#1| (-163))) -((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#1|) . T)) -(((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#1| |#1|) . T)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) |has| |#1| (-163))) -(((|#1| (-392 (-526)) (-1033)) . T)) -((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) -((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-811)) -(((|#1|) . T)) -(((|#1| (-526)) . T)) -(((#1=(-526) #1#) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1|) . T)) -(((|#1| (-735)) . T)) -(((|#1|) . T)) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-832)) . T)) +((((-832)) . T)) +(|has| (-1203 |#2| |#3| |#4|) (-145)) +(|has| (-1203 |#2| |#3| |#4|) (-143)) +(((|#2|) |has| |#2| (-1063)) (((-548)) -12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (((-399 (-548))) -12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((|#1|) . T)) -(|has| |#1| (-811)) +(|has| |#1| (-1063)) +((((-832)) . T)) (((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) (((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) (((|#1|) . T)) +((((-548) |#1|) . T)) +(((|#2|) |has| |#2| (-169))) +(((|#1|) |has| |#1| (-169))) (((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-1123)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#3| |#3|) . T)) -(((|#3|) . T) (($) . T)) -(((|#3|) . T)) -((($) . T)) -((($ $) . T) (((-581 $) $) . T)) -((((-823)) . T)) -(((|#3|) . T) (((-581 $)) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) -(((#1=(-865 |#1|) #1#) . T) (($ $) . T) ((#2=(-392 (-526)) #2#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -(|has| $ (-141)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) -(((#1=(-865 |#1|) #1#) . T) (($ $) . T) ((#2=(-392 (-526)) #2#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -(|has| $ (-141)) -((((-865 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(((|#1|) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) -(((#1=(-865 |#1|) #1#) . T) (($ $) . T) ((#2=(-392 (-526)) #2#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -(|has| $ (-141)) -((((-865 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(|has| |#1| (-353)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-373) |#1|) . T)) -((((-526)) . T) (((-392 (-526))) . T)) -((((-363)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-515)) . T) (((-1106)) . T) (((-211)) . T) (((-363)) . T) (((-849 (-363))) . T)) -((((-211)) . T) (((-823)) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1|) |has| |#1| (-163))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) +((((-832)) |has| |#1| (-1063))) +(-1524 (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +((((-879 |#1|)) . T)) +((((-399 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-548) |#1|))) +((((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-821)) +(((|#1|) . T) (($) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) +(|has| |#1| (-355)) +(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))) +(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) +(|has| |#1| (-355)) +((((-548)) . T)) +(|has| |#1| (-15 * (|#1| (-745) |#1|))) +((((-1102 |#2| (-399 (-921 |#1|)))) . T) (((-399 (-921 |#1|))) . T)) +((($) . T)) +(((|#1|) |has| |#1| (-169)) (($) . T)) +(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +(((|#1|) . T)) +((((-548) |#1|) . T)) +(((|#2|) . T)) +(-1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(((|#1|) . T)) +((((-1135)) -12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) +(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341)) (|has| |#1| (-540))) +(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) +((($ $) |has| |#1| (-540))) +(((#0=(-673) (-1131 #0#)) . T)) +((((-832)) . T)) +((((-832)) . T) (((-1218 |#4|)) . T)) +((((-832)) . T) (((-1218 |#3|)) . T)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) +((($) |has| |#1| (-540))) +((((-832)) . T)) +((($) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((#1=(-1210 |#1| |#2| |#3|) #1#) |has| |#1| (-355)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) . T)) +(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) +(((|#3|) |has| |#3| (-1016))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(|has| |#1| (-1063)) +(((|#2| (-793 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-355)) +((((-399 $) (-399 $)) |has| |#1| (-540)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1045) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-879 |#1|)) . T)) +((((-142)) . T)) +((((-142)) . T)) +(((|#3|) |has| |#3| (-1063)) (((-548)) -12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063))) (((-399 (-548))) -12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) +((((-832)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +(|has| |#1| (-355)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) +((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-301 |#1|))) +(|has| |#2| (-794)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-819)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +((((-832)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-524)) |has| |#1| (-593 (-524)))) (((|#1| |#2|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -(((|#1|) . T)) +((((-1135)) -12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) +((((-1118) |#1|) . T)) +(((|#1| |#2| |#3| (-520 |#3|)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +((((-832)) . T)) +(((|#1|) . T)) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(|has| |#1| (-360)) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-548)) . T)) +((((-548)) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +((((-832)) . T)) +((((-832)) . T)) +(-12 (|has| |#2| (-226)) (|has| |#2| (-1016))) +((((-1135) #0=(-839 |#1|)) |has| #0# (-504 (-1135) #0#)) ((#0# #0#) |has| #0# (-301 #0#))) +(((|#1|) . T)) +((((-548) |#4|) . T)) +((((-548) |#3|) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-1204 |#1| |#2| |#3| |#4|)) . T)) +((((-399 (-548))) . T) (((-548)) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) (((|#1| |#1|) . T)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-548)) . T) (((-399 (-548))) . T)) +((((-548)) . T)) +((((-548)) . T)) +((($) . T) (((-548)) . T) (((-399 (-548))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#0=(-548) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) |has| |#1| (-540))) +((((-548) |#4|) . T)) +((((-548) |#3|) . T)) +((((-832)) . T)) +((((-548)) . T) (((-399 (-548))) . T) (($) . T)) +((((-832)) . T)) +((((-548) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1135) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-169))) +((($) -1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) ((|#2|) |has| |#2| (-169)) (((-399 (-548))) |has| |#2| (-38 (-399 (-548))))) +(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) +((((-142)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-360)) (|has| |#2| (-360))) +((((-832)) . T)) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) +(((|#1|) . T)) +((((-832)) . T)) +(|has| |#1| (-1063)) +(|has| $ (-145)) +((((-548) |#1|) . T)) +((($) -1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) +(|has| |#1| (-355)) +(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))) +(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) +(|has| |#1| (-355)) +(|has| |#1| (-15 * (|#1| (-745) |#1|))) +(((|#1|) . T)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +((((-832)) . T)) +((((-548) (-129)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(((|#2| (-520 (-834 |#1|))) . T)) +((((-832)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-562 |#1|)) . T)) +((($) . T)) +(((|#1|) . T) (($) . T)) +((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +(((|#4|) . T)) +(((|#3|) . T)) +((((-839 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((((-1135)) -12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) +(((|#1|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-548) |#2|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1| |#2| |#3| |#4| |#5|) . T)) +(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((#1=(-1133 |#1| |#2| |#3|) #1#) |has| |#1| (-355)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +(((|#2|) |has| |#2| (-1016))) +(|has| |#1| (-1063)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) . T)) +(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) |has| |#1| (-169)) (($) . T)) +(((|#1|) . T)) +(((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-832)) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +(((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((($) . T)) +(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-355))) +(((|#2|) |has| |#2| (-1063)) (((-548)) -12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (((-399 (-548))) -12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) +((((-548) |#1|) . T)) +((((-832)) . T)) +((((-399 |#2|) |#3|) . T)) +(((|#1| (-399 (-548))) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +((((-832)) . T) (((-1140)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-399 (-548))) . T) (($) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-399 (-548))) . T) (($) . T)) +(((|#2| |#3| (-834 |#1|)) . T)) +((((-1135)) |has| |#2| (-869 (-1135)))) +(((|#1|) . T)) +(((|#1| (-520 |#2|) |#2|) . T)) +(((|#1| (-745) (-1045)) . T)) +((((-399 (-548))) |has| |#2| (-355)) (($) . T)) +(((|#1| (-520 (-1052 (-1135))) (-1052 (-1135))) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#1|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(|has| |#2| (-767)) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#2| (-819)) +((((-862 |#1|)) . T) (((-793 |#1|)) . T)) +((((-793 (-1135))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-619 (-548))) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-524)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +(|has| |#1| (-226)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((($ $) . T)) (((|#1| |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-1210 |#1| |#2| |#3|) $) -12 (|has| (-1210 |#1| |#2| |#3|) (-278 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355))) (($ $) . T)) +((($ $) . T)) +((($ $) . T)) (((|#1|) . T)) -((((-823)) . T)) +((((-1100 |#1| |#2|)) |has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#2|) . T) (((-548)) |has| |#2| (-1007 (-548))) (((-399 (-548))) |has| |#2| (-1007 (-399 (-548))))) +(((|#3| |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-811)) -(((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -((((-823)) . T)) -(((|#3|) . T)) -(((|#3| |#3|) . T)) +((($) . T)) +((($) . T)) +(((|#2|) . T)) (((|#3|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-392 |#2|)) . T)) -((((-823)) . T)) -(|has| |#1| (-1164)) -((((-515)) |has| |#1| (-584 (-515))) (((-211)) . #1=(|has| |#1| (-977))) (((-363)) . #1#)) -(|has| |#1| (-977)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-1164))) -((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) -(((|#1|) . T)) -((($ $) |has| |#1| (-271 $ $)) ((|#1| $) |has| |#1| (-271 |#1| |#1|))) -((($) |has| |#1| (-294 $)) ((|#1|) |has| |#1| (-294 |#1|))) -((((-1123) $) |has| |#1| (-496 (-1123) $)) (($ $) |has| |#1| (-294 $)) ((|#1| |#1|) |has| |#1| (-294 |#1|)) (((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-219)) -((((-1123)) |has| |#1| (-859 (-1123)))) -(((|#1|) . T)) -(((|#1|) . T) (($) . T)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((|#2|) . T)) +((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-592 (-832))) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) +(((|#1|) |has| |#1| (-169))) +((((-548)) . T)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-548) (-142)) . T)) +((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016)))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) +(((|#1|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) +(((|#2|) |has| |#1| (-355))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (((|#1| |#1|) . T) (($ $) . T)) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) |has| |#1| (-169))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| (-520 #0=(-1135)) #0#) . T)) (((|#1|) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T) (($) . T)) -(-12 (|has| |#1| (-525)) (|has| |#1| (-785))) -((((-823)) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#1|) . T)) -((((-1123)) |has| |#1| (-859 (-1123)))) -(|has| |#1| (-219)) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) ((|#1|) . T) (((-392 (-526))) . T)) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((|#1| |#1|) |has| |#1| (-294 |#1|))) -(((|#1|) |has| |#1| (-294 |#1|))) -(((|#1| $) |has| |#1| (-271 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) -(((|#1|) . T)) -((((-526)) |has| |#1| (-845 (-526))) (((-363)) |has| |#1| (-845 (-363)))) -(|has| |#1| (-784)) -(|has| |#1| (-784)) -(|has| |#1| (-784)) -(-3850 (|has| |#1| (-784)) (|has| |#1| (-811))) -(|has| |#1| (-784)) -(|has| |#1| (-784)) -(|has| |#1| (-784)) -(((|#1|) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-977)) -((((-515)) |has| |#1| (-584 (-515))) (((-849 (-526))) |has| |#1| (-584 (-849 (-526)))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363)))) (((-363)) . #1=(|has| |#1| (-977))) (((-211)) . #1#)) -((((-392 (-526))) |has| |#1| . #1=((-995 (-526)))) (((-526)) |has| |#1| . #1#) (((-1123)) |has| |#1| (-995 (-1123))) ((|#1|) . T)) -(|has| |#1| (-1099)) -(((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1|) . T)) -((((-823)) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-373) (-1106)) . T)) -((((-823)) . T)) -((((-392 (-905 |#1|))) . T)) -((((-392 (-905 |#1|))) . T)) -((((-1090 |#2| (-392 (-905 |#1|)))) . T) (((-392 (-905 |#1|))) . T)) -((((-823)) . T)) -((((-392 (-905 |#1|))) . T)) -(((#1=(-392 (-905 |#1|)) #1#) . T)) -((((-392 (-905 |#1|))) . T)) -((((-392 (-905 |#1|))) . T)) -((((-515)) |has| |#2| (-584 (-515))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526))))) -((($) . T)) -(((|#2| |#3|) . T)) -(((|#2|) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T)) -(|has| |#2| (-139)) -(|has| |#2| (-141)) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T) (($) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526)))) ((|#2| |#2|) . T) (($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(((|#2| |#3|) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-869))) -((($ $) . T) ((#1=(-824 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-811)) -((((-824 |#1|)) . T)) -(|has| |#2| (-869)) -(|has| |#2| (-869)) -((((-392 (-526))) |has| |#2| (-995 (-392 (-526)))) (((-526)) |has| |#2| (-995 (-526))) ((|#2|) . T) (((-824 |#1|)) . T)) -(((|#2| |#3| (-824 |#1|)) . T)) -(((|#2| |#2|) . T) ((|#6| |#6|) . T)) -(((|#2|) . T) ((|#6|) . T)) -((((-823)) . T)) -(((|#2|) . T) ((|#6|) . T)) -(((|#2|) . T) ((|#6|) . T)) -(((|#4|) . T)) -((((-607 |#4|)) . T) (((-823)) . T)) -(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) . T)) -((((-515)) |has| |#4| (-584 (-515)))) -(((|#1| |#2| |#3| |#4|) . T)) -((((-823)) . T)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -((((-823)) . T)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(((|#1| (-392 (-526))) . T)) -(((|#1| (-392 (-526))) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) |has| |#1| (-163))) -((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#1|) . T)) -(((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#1| |#1|) . T)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) |has| |#1| (-163))) -(((|#1| (-392 (-526)) (-1033)) . T)) -((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) -((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) -(((|#1|) . T)) +(|has| |#4| (-169)) +(|has| |#3| (-169)) +(((#0=(-399 (-921 |#1|)) #0#) . T)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(|has| |#1| (-1063)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(|has| |#1| (-1063)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +((((-832)) . T) (((-1140)) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T)) +((((-399 (-921 |#1|))) . T)) +((((-548) (-129)) . T)) +(((|#1|) |has| |#1| (-169))) +((((-129)) . T)) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-832)) . T)) +((((-1204 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1016)) (((-548)) -12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) (((|#1| |#2|) . T)) -((((-823)) . T)) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +(|has| |#3| (-767)) +(-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) +(|has| |#3| (-819)) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#2|) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) +(((|#2|) . T)) +((((-548) (-129)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-548) |#2|) . T)) +(((|#1| (-1116 |#1|)) |has| |#1| (-819))) +(|has| |#1| (-1063)) +(((|#1|) . T)) +(-12 (|has| |#1| (-355)) (|has| |#2| (-1111))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(|has| |#1| (-1063)) +(((|#2|) . T)) +((((-524)) |has| |#2| (-593 (-524))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548))))) +(((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-355)))) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)))) +((((-832)) . T)) +(((|#1|) . T)) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-878))) +((($ $) . T) ((#0=(-1135) $) |has| |#1| (-226)) ((#0# |#1|) |has| |#1| (-226)) ((#1=(-792 (-1135)) |#1|) . T) ((#1# $) . T)) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) +((((-548) |#2|) . T)) +((((-832)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((($) -1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016)))) +((((-548) |#1|) . T)) +(|has| (-399 |#2|) (-145)) +(|has| (-399 |#2|) (-143)) +(((|#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-301 |#2|)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-399 (-548))) . T)) +((((-832)) . T)) +(|has| |#1| (-540)) +(|has| |#1| (-540)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-832)) . T)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +(|has| |#1| (-38 (-399 (-548)))) +((((-380) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#2| (-1111)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-1171)) . T) (((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +(((|#1|) . T)) +((((-380) (-1118)) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(|has| |#1| (-540)) +((((-116 |#1|)) . T)) +((((-129)) . T)) +((((-548) |#1|) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#2|) . T)) +((((-832)) . T)) +((((-793 |#1|)) . T)) +(((|#2|) |has| |#2| (-169))) +((((-1135) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-540)) +(((|#1|) |has| |#1| (-169))) +((((-832)) . T)) +((((-524)) |has| |#1| (-593 (-524)))) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(((|#2|) |has| |#2| (-301 |#2|))) +(((#0=(-548) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1131 |#1|)) . T)) +(|has| $ (-145)) +(((|#2|) . T)) +(((#0=(-548) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +((($) . T) (((-548)) . T) (((-399 (-548))) . T)) +(|has| |#2| (-360)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +((((-548)) . T) (((-399 (-548))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-515)) |has| |#4| (-584 (-515)))) -(((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) . T)) -((((-823)) . T) (((-607 |#4|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-515)) . T) (((-392 (-1117 (-526)))) . T) (((-211)) . T) (((-363)) . T)) -((((-392 (-526))) . T) (((-526)) . T)) -((((-363)) . T) (((-211)) . T) (((-823)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) -(((|#1| |#2|) . T)) -((((-823)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#1| |#2|) . T)) -((((-515)) |has| |#2| (-584 (-515))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526))))) -((($) . T)) -(((|#2| (-465 (-4273 |#1|) (-735))) . T)) -(((|#2|) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T)) -(|has| |#2| (-139)) -(|has| |#2| (-141)) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T) (($) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526)))) ((|#2| |#2|) . T) (($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(((|#2| (-465 (-4273 |#1|) (-735))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-869))) -((($ $) . T) ((#1=(-824 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-811)) -((((-824 |#1|)) . T)) -(|has| |#2| (-869)) -(|has| |#2| (-869)) -((((-392 (-526))) |has| |#2| (-995 (-392 (-526)))) (((-526)) |has| |#2| (-995 (-526))) ((|#2|) . T) (((-824 |#1|)) . T)) -(((|#2| (-465 (-4273 |#1|) (-735)) (-824 |#1|)) . T)) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) -(((|#2|) |has| |#2| (-163))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -((($) -3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) ((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004)))) -(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)))) -((((-823)) -3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-583 (-823))) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) (((-1205 |#2|)) . T)) -(|has| |#2| (-163)) -(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($) |has| |#2| (-163))) -(((|#2| |#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($ $) |has| |#2| (-163))) -(((|#2|) |has| |#2| (-1004))) -((((-1123)) -12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) -(-12 (|has| |#2| (-219)) (|has| |#2| (-1004))) -(|has| |#2| (-353)) -(((|#2|) |has| |#2| (-1004))) -(((|#2|) |has| |#2| (-1004)) (((-526)) -12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) -(((|#2|) |has| |#2| (-1052))) -(((|#2|) |has| |#2| (-1052)) (((-526)) -12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (((-392 (-526))) -12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) -((((-526) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2|) . T)) -((((-526) |#2|) . T)) -((((-526) |#2|) . T)) -(|has| |#2| (-757)) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(|has| |#2| (-809)) -(|has| |#2| (-809)) -(((|#2|) |has| |#2| (-348))) -(((|#1| |#2|) . T)) -((((-823)) . T) (((-1128)) . T)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) +((((-548)) . T) (((-399 (-548))) . T) (($) . T)) +((((-1133 |#1| |#2| |#3|) $) -12 (|has| (-1133 |#1| |#2| |#3|) (-278 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355))) (($ $) . T)) +((((-832)) . T)) +((((-832)) . T)) +((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((($ $) . T)) +((($ $) . T)) +((((-832)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((#0=(-1210 |#1| |#2| |#3|) #0#) -12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355))) (((-1135) #0#) -12 (|has| (-1210 |#1| |#2| |#3|) (-504 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) +(-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-399 (-548))) . T) (((-548)) . T)) +((((-548) (-142)) . T)) +((((-142)) . T)) +(((|#1|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) +((((-112)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-112)) . T)) +(((|#1|) . T)) +((((-524)) |has| |#1| (-593 (-524))) (((-218)) . #0=(|has| |#1| (-991))) (((-371)) . #0#)) +((((-832)) . T)) +(|has| |#1| (-794)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(|has| |#1| (-821)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +(|has| |#1| (-540)) +(|has| |#1| (-878)) +(((|#1|) . T)) +(|has| |#1| (-1063)) +((((-832)) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1| (-1218 |#1|) (-1218 |#1|)) . T)) +((((-548) (-142)) . T)) +((($) . T)) +(-1524 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016))) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +((((-832)) . T)) +(|has| |#1| (-1063)) +(((|#1| (-940)) . T)) +(((|#1| |#1|) . T)) +((($) . T)) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(-12 (|has| |#1| (-464)) (|has| |#2| (-464))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) (((|#1|) . T)) -((((-823)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-823)) . T)) -((((-526)) . T)) -((((-526)) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) (((-526)) . T) (((-392 (-526))) . T)) -((((-526)) . T) (($) . T) (((-392 (-526))) . T)) -((((-526)) . T) (((-392 (-526))) . T) (($) . T)) -(((#1=(-526) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-515)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) -((((-392 (-526))) . T) (((-526)) . T)) -((((-526)) . T)) -((((-1106)) . T) (((-823)) . T)) -((((-159 (-363))) . T) (((-211)) . T) (((-363)) . T)) -((((-392 (-526))) . T) (((-526)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($) . T) (((-392 (-526))) . T)) -((($) . T) (((-392 (-526))) . T)) -((((-392 (-526))) . T) (($) . T)) -(((#1=(-392 (-526)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-581 $) $) . T)) -((((-823)) . T)) -((((-392 (-526))) . T) (((-526)) . T) (((-581 $)) . T)) -(((|#1|) . T)) -(|has| |#1| (-811)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1| (-478 |#1| |#3|) (-478 |#1| |#2|)) . T)) -((((-111)) . T)) -((((-111)) . T)) -((((-526) (-111)) . T)) -((((-526) (-111)) . T)) -((((-526) (-111)) . T)) -((((-515)) . T)) -((((-111)) . T)) -((((-823)) . T)) -((((-111)) . T)) -((((-111)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-1123)) . T) (((-823)) . T) (((-1128)) . T)) +(|has| |#2| (-767)) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) (((|#1| |#2|) . T)) -((((-823)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(|has| |#2| (-819)) +(-12 (|has| |#1| (-767)) (|has| |#2| (-767))) +(-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (((|#1| |#2|) . T)) -((((-823)) . T)) -((((-823)) . T)) +(((|#2|) |has| |#2| (-169))) +(((|#1|) |has| |#1| (-169))) +((((-832)) . T)) +(|has| |#1| (-341)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-399 (-548))) . T) (($) . T)) +((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) . T)) +(|has| |#1| (-802)) +((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +(|has| |#1| (-1063)) +(((|#1| $) |has| |#1| (-278 |#1| |#1|))) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) +((($) |has| |#1| (-540))) +(((|#4|) |has| |#4| (-1063))) +(((|#3|) |has| |#3| (-1063))) +(|has| |#3| (-360)) +(((|#1|) . T) (((-832)) . T)) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) +((((-832)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) +((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) (((|#1| |#2|) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +(|has| |#2| (-355)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-169))) +((((-399 (-548))) . T) (((-548)) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((((-142)) . T)) +(((|#1|) . T)) +((((-142)) . T)) +((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016)))) +((((-142)) . T)) +(((|#1| |#2| |#3|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) +(|has| $ (-145)) +(|has| $ (-145)) +(|has| |#1| (-1063)) +((((-832)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-464)) (|has| |#1| (-540)) (|has| |#1| (-1016)) (|has| |#1| (-1075))) +((($ $) |has| |#1| (-278 $ $)) ((|#1| $) |has| |#1| (-278 |#1| |#1|))) +(((|#1| (-399 (-548))) . T)) +(((|#1|) . T)) +((((-1135)) . T)) +(|has| |#1| (-540)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(|has| |#1| (-540)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +((((-832)) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(((|#2|) . T) (($) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(|has| |#4| (-819)) +(((|#2| (-233 (-3643 |#1|) (-745)) (-834 |#1|)) . T)) +(|has| |#3| (-819)) +(((|#1| (-520 |#3|) |#3|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(((#0=(-399 (-548)) #0#) |has| |#2| (-355)) (($ $) . T)) +((((-839 |#1|)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-143)) +((((-399 (-548))) |has| |#2| (-355)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-341)) (|has| |#1| (-360))) +((((-1102 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-169)) (((|#1| |#2|) . T)) -((((-823)) . T)) -(((|#1| |#2|) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1|) . T)) -(((|#1| |#2|) . T)) +(-12 (|has| |#2| (-226)) (|has| |#2| (-1016))) +(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) +(-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) +((((-832)) . T)) (((|#1|) . T)) +(((|#2|) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +((((-673)) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(|has| |#1| (-540)) (((|#1|) . T)) -(|has| |#1| (-811)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-554 |#1|)) . T)) -((((-554 |#1|)) . T)) -((((-554 |#1|)) . T)) -((((-554 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) -(((#1=(-554 |#1|) #1#) . T) (($ $) . T) ((#2=(-392 (-526)) #2#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-554 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -((((-554 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -(|has| $ (-141)) -((((-554 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1| |#4| |#5|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) (((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-811)) +((((-1135) (-52)) . T)) +((((-832)) . T)) +((((-524)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) (((|#1|) . T)) +((((-832)) . T)) +((((-524)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +(((|#1| (-548)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) +(((|#1| (-399 (-548))) . T)) +(((|#3|) . T) (((-591 $)) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) (((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((($ $) . T) ((|#2| $) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((#0=(-1133 |#1| |#2| |#3|) #0#) -12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355))) (((-1135) #0#) -12 (|has| (-1133 |#1| |#2| |#3|) (-504 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) +((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1| |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) +((((-832)) . T)) (((|#1|) . T)) -(((|#1| (-572 |#1| |#3|) (-572 |#1| |#2|)) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) +(((|#3| |#3|) . T)) (((|#1|) . T)) -(((|#1| (-572 |#1| |#3|) (-572 |#1| |#2|)) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-735) |#1|) . T)) -((((-823)) . T)) -((((-1054)) . T)) -((((-823)) . T)) -((((-1106) (-1123) (-526) (-211) (-823)) . T)) -((($) . T)) -((((-823)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-1106)) . T) (((-515)) . T) (((-526)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) -((((-526)) . T)) +((($) . T) ((|#2|) . T)) +((((-1135) (-52)) . T)) +(((|#3|) . T)) +((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-802)) +(|has| |#1| (-1063)) +(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)))) +((((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) +((((-745)) . T)) +((((-548)) . T)) +(|has| |#1| (-540)) +((((-832)) . T)) +(((|#1| (-399 (-548)) (-1045)) . T)) +(|has| |#1| (-143)) +(((|#1|) . T)) +(|has| |#1| (-540)) +((((-548)) . T)) +((((-116 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-145)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +((((-861 (-548))) . T) (((-861 (-371))) . T) (((-524)) . T) (((-1135)) . T)) +((((-832)) . T)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +((((-832)) . T) (((-1140)) . T)) +((($) . T)) +((((-832)) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(((|#2|) |has| |#2| (-169))) +((($) -1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) ((|#2|) |has| |#2| (-169)) (((-399 (-548))) |has| |#2| (-38 (-399 (-548))))) +((((-839 |#1|)) . T)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +(-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) +(|has| |#2| (-1111)) +(((#0=(-52)) . T) (((-2 (|:| -3156 (-1135)) (|:| -1657 #0#))) . T)) (((|#1| |#2|) . T)) -((((-823)) . T)) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +(((|#1| (-548) (-1045)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| (-399 (-548)) (-1045)) . T)) +((($) -1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((((-548) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) +(|has| |#2| (-360)) +(-12 (|has| |#1| (-360)) (|has| |#2| (-360))) +((((-832)) . T)) +((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-301 |#1|))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(((|#1|) . T)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) +((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-832)) . T)) +(|has| |#1| (-341)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(|has| |#1| (-540)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-832)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) +((((-399 (-548))) . T) (((-548)) . T)) +((((-548)) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((($) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((((-839 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((((-832)) . T)) +(((|#3| |#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016))) (($ $) |has| |#3| (-169))) +(|has| |#1| (-991)) +((((-832)) . T)) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016))) (($) |has| |#3| (-169))) +((((-548) (-112)) . T)) +(((|#1|) |has| |#1| (-301 |#1|))) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +((((-1135) $) |has| |#1| (-504 (-1135) $)) (($ $) |has| |#1| (-301 $)) ((|#1| |#1|) |has| |#1| (-301 |#1|)) (((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|))) +((((-1135)) |has| |#1| (-869 (-1135)))) +(-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341))) +((((-380) (-1082)) . T)) +(((|#1| |#4|) . T)) +(((|#1| |#3|) . T)) +((((-380) |#1|) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(|has| |#1| (-1063)) +((((-832)) . T)) +((((-832)) . T)) +((((-879 |#1|)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) (((|#1| |#2|) . T)) ((($) . T)) -((($ $) . T)) -((($) . T)) -((((-823)) . T)) -((($) . T)) -((($) . T)) -((((-526)) . T)) +(((|#1| |#1|) . T)) +(((#0=(-839 |#1|)) |has| #0# (-301 #0#))) +(((|#1| |#2|) . T)) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (((|#1|) . T)) -((($) . T)) -((((-823)) . T)) -((($) . T)) +(-12 (|has| |#1| (-767)) (|has| |#2| (-767))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#2|) . T) (($) . T)) +(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(|has| |#1| (-1157)) +(((#0=(-548) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +((((-399 (-548))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1016))) +(((|#3|) |has| |#3| (-1016))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(|has| |#1| (-355)) +((((-548)) . T) (((-399 (-548))) . T) (($) . T)) +((($ $) . T) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1| |#1|) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-548) |#3|) . T)) +((((-832)) . T)) +((((-524)) |has| |#3| (-593 (-524)))) +((((-663 |#3|)) . T) (((-832)) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-819)) +(|has| |#1| (-819)) +((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +(((#0=(-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) #0#) |has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) +((($) . T)) +(|has| |#2| (-821)) +((($) . T)) +(((|#2|) |has| |#2| (-1063))) +((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-592 (-832))) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1118) (-52)) . T)) +(|has| |#1| (-821)) +((((-832)) . T)) +((((-548)) |has| #0=(-399 |#2|) (-615 (-548))) ((#0#) . T)) +((((-548) (-142)) . T)) +((((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((|#1| |#2|) . T)) +((((-399 (-548))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-832)) . T)) +((((-879 |#1|)) . T)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) +(|has| |#1| (-819)) +(|has| |#1| (-355)) +(|has| |#1| (-819)) +(((|#1|) . T) (($) . T)) +(|has| |#1| (-819)) +((((-1135)) |has| |#1| (-869 (-1135)))) +(((|#1| (-1135)) . T)) +(((|#1| (-1218 |#1|) (-1218 |#1|)) . T)) +((((-832)) . T) (((-1140)) . T)) +(((|#1| |#2|) . T)) ((($ $) . T)) +(|has| |#1| (-1063)) +(((|#1| (-1135) (-792 (-1135)) (-520 (-792 (-1135)))) . T)) +((((-399 (-921 |#1|))) . T)) +((((-524)) . T)) +((((-832)) . T)) ((($) . T)) -((($) . T)) -(((|#1|) . T)) -((((-526)) . T)) -((($) . T)) -((($) . T)) -((($) . T)) -(|has| $ (-141)) -((($) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($) . T) (((-392 (-526))) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) +(((|#2|) . T) (($) . T)) +((((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -(((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T)) -((((-823)) . T)) -((((-392 (-526))) . T)) -((((-392 (-526))) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-526) (-138)) . T)) -((((-526) (-138)) . T)) -((((-526) (-138)) . T)) -((((-138)) . T)) -((((-823)) . T)) -((((-138)) . T)) -((((-138)) . T)) -(|has| |#1| (-15 * (|#1| (-526) |#1|))) -((((-823)) . T)) -((($ $) . T)) -((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) -(((|#1| (-526) (-1033)) . T)) -((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) -(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) -(((|#1| (-526)) . T)) -(((|#1| (-526)) . T)) -((($) |has| |#1| (-533))) -((($ $) |has| |#1| (-533))) -((($) |has| |#1| (-533))) -((($) |has| |#1| (-533))) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -((($) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -(((|#1|) . T)) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) . T)) -(|has| |#1| (-811)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-127)) . T) (((-823)) . T)) -((((-1160)) . T) (((-823)) . T) (((-1128)) . T)) -(((|#1|) -3850 (|has| |#2| (-352 |#1|)) (|has| |#2| (-403 |#1|)))) -(((|#1|) |has| |#2| (-403 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-823)) . T)) +(((|#1|) |has| |#1| (-169))) +((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#3|) . T)) +(((|#1|) |has| |#1| (-169))) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-524)) |has| |#1| (-593 (-524))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#1| (-593 (-861 (-548))))) +((((-832)) . T)) +(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(|has| |#2| (-819)) +(-12 (|has| |#2| (-226)) (|has| |#2| (-1016))) +(|has| |#1| (-540)) +(|has| |#1| (-1111)) +((((-1118) |#1|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#1| |#1|) . T)) +((((-399 (-548))) |has| |#1| (-1007 (-548))) (((-548)) |has| |#1| (-1007 (-548))) (((-1135)) |has| |#1| (-1007 (-1135))) ((|#1|) . T)) +((((-548) |#2|) . T)) +((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +((((-548)) |has| |#1| (-855 (-548))) (((-371)) |has| |#1| (-855 (-371)))) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#1|) . T)) +(((|#1|) . T)) +((((-619 |#4|)) . T) (((-832)) . T)) +((((-524)) |has| |#4| (-593 (-524)))) +((((-524)) |has| |#4| (-593 (-524)))) +((((-832)) . T) (((-619 |#4|)) . T)) +((($) |has| |#1| (-819))) +(((|#1|) . T)) +((((-619 |#4|)) . T) (((-832)) . T)) +((((-524)) |has| |#4| (-593 (-524)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1135)) |has| (-399 |#2|) (-869 (-1135)))) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-832)) -1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-592 (-832))) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-360)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) (((-1218 |#3|)) . T)) +((((-548) |#2|) . T)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) +((((-832)) . T)) +((((-832)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((|#2|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-1118) (-1135) (-548) (-218) (-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +((((-832)) . T)) +((((-548) (-112)) . T)) +(((|#1|) . T)) +((((-832)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-112)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +((((-832)) . T)) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) +(|has| $ (-145)) +((((-399 |#2|)) . T)) +((((-399 (-548))) |has| #0=(-399 |#2|) (-1007 (-399 (-548)))) (((-548)) |has| #0# (-1007 (-548))) ((#0#) . T)) +(((|#2| |#2|) . T)) +(((|#4|) |has| |#4| (-169))) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(((|#3|) |has| |#3| (-169))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(|has| |#1| (-145)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(|has| |#1| (-145)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(|has| |#1| (-145)) +(((|#1|) . T)) +(((|#2|) . T)) +(|has| |#2| (-226)) +((((-832)) . T) (((-1140)) . T)) +((((-1135) (-52)) . T)) +((((-832)) . T)) +(((|#1| |#1|) . T)) +((((-1135)) |has| |#2| (-869 (-1135)))) +((((-548) (-112)) . T)) +(|has| |#1| (-540)) +(((|#2|) . T)) +(((|#2|) . T)) (((|#1|) . T)) +(((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-1106) |#1|) . T)) -((((-1106) |#1|) . T)) -((((-1106) |#1|) . T)) -((((-1106) |#1|) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((#1=(-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) #1#) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) -((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -((((-1106) |#1|) . T)) -((((-823)) . T)) -((((-373) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -((((-515)) |has| |#1| (-584 (-515))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#1| (-584 (-849 (-526))))) -(((|#1|) . T)) -((((-823)) . T)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(((|#2|) . T)) -((((-823)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#3|) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#1|) . T)) +((((-832)) . T)) +((((-524)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-968 |#1|)) . T) ((|#1|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-399 (-548))) . T) (((-399 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1131 |#1|)) . T)) +((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +(((|#3|) . T) (($) . T)) +(|has| |#1| (-821)) +(((|#2|) . T)) +((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-548) |#2|) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(((|#2|) . T)) +((((-548) |#3|) . T)) (((|#2|) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +(|has| |#1| (-38 (-399 (-548)))) +((((-832)) . T)) +(|has| |#1| (-1063)) +(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) (((|#2| |#2|) . T)) -(((|#2|) . T) (($) . T)) +(|has| |#2| (-355)) +(((|#2|) . T) (((-548)) |has| |#2| (-1007 (-548))) (((-399 (-548))) |has| |#2| (-1007 (-399 (-548))))) (((|#2|) . T)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#2|) . T) (((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) +((((-1118) (-52)) . T)) +(((|#2|) |has| |#2| (-169))) +((((-548) |#3|) . T)) +((((-548) (-142)) . T)) +((((-142)) . T)) +((((-832)) . T)) +((((-112)) . T)) +(|has| |#1| (-145)) (((|#1|) . T)) -((((-392 |#2|)) . T)) -((($) . T)) -((($ $) . T)) +(|has| |#1| (-143)) ((($) . T)) +(|has| |#1| (-540)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) ((($) . T)) -(|has| |#2| (-219)) -((($) . T)) -((((-823)) . T)) -((((-1123)) |has| |#2| (-859 (-1123)))) -(((|#2|) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-823)) . T)) -((((-1106) (-50)) . T)) -((((-823)) . T)) -((((-1106) (-50)) . T)) -((((-1106) (-50)) . T)) -((((-1106) (-50)) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) . T)) -(((#1=(-50)) . T) (((-2 (|:| -4179 (-1106)) (|:| -2164 #1#))) . T)) -(((#1=(-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) #1#) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))))) -((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))))) -((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) . T)) -((((-1106) (-50)) . T)) -(((|#1|) -3850 (|has| |#2| (-352 |#1|)) (|has| |#2| (-403 |#1|)))) -(((|#1|) |has| |#2| (-403 |#1|))) (((|#1|) . T)) +(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +((((-832)) . T)) +((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +((((-1118) (-52)) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-823)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#2|) . T)) +((((-548) (-142)) . T)) +(((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(|has| |#1| (-821)) +(((|#2| (-745) (-1045)) . T)) +(((|#1| |#2|) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +(|has| |#1| (-765)) +(((|#1|) |has| |#1| (-169))) +(((|#4|) . T)) +(((|#4|) . T)) +(((|#1| |#2|) . T)) +(-1524 (|has| |#1| (-145)) (-12 (|has| |#1| (-355)) (|has| |#2| (-145)))) +(-1524 (|has| |#1| (-143)) (-12 (|has| |#1| (-355)) (|has| |#2| (-143)))) +(((|#4|) . T)) +(|has| |#1| (-143)) +((((-1118) |#1|) . T)) +(|has| |#1| (-145)) +(((|#1|) . T)) +((((-548)) . T)) +((((-832)) . T)) +(((|#1| |#2|) . T)) +((((-832)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#3|) . T)) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(((|#1|) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063))) (((-927 |#1|)) . T)) +(|has| |#1| (-819)) +(|has| |#1| (-819)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(|has| |#2| (-355)) +(((|#1|) |has| |#1| (-169))) +(((|#2|) |has| |#2| (-1016))) +((((-1118) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) +(((|#2| (-862 |#1|)) . T)) +((($) . T)) +((((-380) (-1118)) . T)) +((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-592 (-832))) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3156 (-1118)) (|:| -1657 #0#))) . T)) +(((|#1|) . T)) +((((-832)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((((-142)) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(|has| |#1| (-464)) +(-1524 (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +(|has| |#1| (-355)) +((((-832)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) +((($) |has| |#1| (-540))) +(|has| |#1| (-819)) +(|has| |#1| (-819)) +((((-832)) . T)) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) +((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1| |#2|) . T)) +((((-1135)) |has| |#1| (-869 (-1135)))) +((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-832)) . T)) +((((-832)) . T)) +(|has| |#1| (-1063)) +(((|#2| (-473 (-3643 |#1|) (-745)) (-834 |#1|)) . T)) +((((-399 (-548))) . #0=(|has| |#2| (-355))) (($) . #0#)) +(((|#1| (-520 (-1135)) (-1135)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-785)) +(|has| |#2| (-169)) +(((|#2| |#2|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) (((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(((|#2|) . T)) +(((|#1|) . T) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-1135) (-52)) . T)) +((($ $) . T)) +(((|#1| (-548)) . T)) +((((-879 |#1|)) . T)) +(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-1016))) (($) -1524 (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)))) +(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-548) |#2|) . T)) +((((-548)) . T)) +((((-1210 |#1| |#2| |#3|)) -12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) +(|has| |#1| (-821)) +((((-663 |#2|)) . T) (((-832)) . T)) +(((|#1| |#2|) . T)) +((((-399 (-921 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#1|) |has| |#1| (-169))) +(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)))) +(|has| |#2| (-821)) +(|has| |#1| (-821)) +(-1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-878))) +((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +((((-548) |#2|) . T)) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)))) +(|has| |#1| (-341)) +(((|#3| |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) +((($) . T) (((-399 (-548))) . T)) +((((-548) (-112)) . T)) +(|has| |#1| (-794)) +(|has| |#1| (-794)) +(((|#1|) . T)) +(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341))) +(|has| |#1| (-819)) +(|has| |#1| (-819)) +(|has| |#1| (-819)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-38 (-399 (-548)))) +((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(|has| |#1| (-38 (-399 (-548)))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-1135)) |has| |#1| (-869 (-1135))) (((-1045)) . T)) +(((|#1|) . T)) +(|has| |#1| (-819)) +(((#0=(-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) #0#) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(|has| |#1| (-1063)) +((((-832)) . T) (((-1140)) . T)) (((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) +(((|#2| |#2|) . T)) (((|#1|) . T)) +(((|#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) . T)) (((|#1|) . T)) -(|has| |#1| (-811)) +(((|#3| |#3|) . T)) +(((|#2|) . T)) (((|#1|) . T)) +(((|#1| (-520 |#2|) |#2|) . T)) +((((-832)) . T)) +((((-745)) . T) (((-832)) . T)) +(((|#1| (-745) (-1045)) . T)) +(((|#3|) . T)) (((|#1|) . T)) +((((-142)) . T)) +(((|#2|) |has| |#2| (-169))) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#3| (-169)) +(((|#4|) |has| |#4| (-355))) +(((|#3|) |has| |#3| (-355))) (((|#1|) . T)) -(((|#1|) . T) (((-823)) . T) (((-1128)) . T)) +(((|#2|) |has| |#1| (-355))) +((((-832)) . T)) +(((|#2|) . T)) +(((|#1| (-1131 |#1|)) . T)) +((((-1045)) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +((($) . T) ((|#1|) . T) (((-399 (-548))) . T)) +(((|#2|) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +((($) |has| |#1| (-819))) +(|has| |#1| (-878)) +((((-832)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) +(((|#1| |#2|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((#0=(-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) #0#) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) +(((|#1|) . T) (($) . T)) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) (((|#1|) . T)) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)))) +(|has| |#1| (-821)) +(|has| |#1| (-540)) +((((-562 |#1|)) . T)) +((($) . T)) +(((|#2|) . T)) +(-1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-794))) (-12 (|has| |#1| (-355)) (|has| |#2| (-821)))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +((((-879 |#1|)) . T)) +(((|#1| (-486 |#1| |#3|) (-486 |#1| |#2|)) . T)) +(((|#1| |#4| |#5|) . T)) +(((|#1| (-745)) . T)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) +((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-646 |#1|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-524)) . T)) +((((-832)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-832)) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#2|) . T)) +(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-360)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +(|has| |#1| (-1157)) +(|has| |#1| (-1157)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +(|has| |#1| (-1157)) +(|has| |#1| (-1157)) +(((|#3| |#3|) . T)) +((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +((($) . T) (((-399 (-548))) . T) (((-399 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#0=(-399 (-548)) #0#) . T) ((#1=(-399 |#1|) #1#) . T) ((|#1| |#1|) . T)) +(((|#3|) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +((((-1118) (-52)) . T)) +(|has| |#1| (-1063)) +(-1524 (|has| |#2| (-794)) (|has| |#2| (-821))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-169)) (($) . T)) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((($) . T)) +((((-1133 |#1| |#2| |#3|)) -12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) +((((-832)) . T)) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +((($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-832)) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(|has| |#2| (-878)) +(|has| |#1| (-355)) +(((|#2|) |has| |#2| (-1063))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) +((($) . T) ((|#2|) . T)) +((((-524)) . T) (((-399 (-1131 (-548)))) . T) (((-218)) . T) (((-371)) . T)) +((((-371)) . T) (((-218)) . T) (((-832)) . T)) +(|has| |#1| (-878)) +(|has| |#1| (-878)) +(|has| |#1| (-878)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((($ $) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((($ $) . T)) +((((-548) (-112)) . T)) +((($) . T)) (((|#1|) . T)) +((((-548)) . T)) +((((-112)) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#1| (-548)) . T)) +((($) . T)) +(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) (((|#1|) . T)) -((((-823)) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-823)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) +((((-548)) . T)) +(((|#1| |#2|) . T)) +((((-1135)) |has| |#1| (-1016))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#1|) . T)) +((((-832)) . T)) +(((|#1| (-548)) . T)) +(((|#1| (-1210 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-399 (-548))) . T)) +(((|#1| (-1182 |#1| |#2| |#3|)) . T)) +(((|#1| (-745)) . T)) +(((|#1|) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-832)) . T)) +(|has| |#1| (-1063)) +((((-1118) |#1|) . T)) +((($) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-143)) +(((|#1| (-520 (-792 (-1135))) (-792 (-1135))) . T)) +((((-832)) . T)) +((((-1204 |#1| |#2| |#3| |#4|)) . T)) +((((-1204 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1016))) +((((-548) (-112)) . T)) +((((-832)) |has| |#1| (-1063))) +(|has| |#2| (-169)) +((((-548)) . T)) +(|has| |#2| (-819)) +(((|#1|) . T)) +((((-548)) . T)) +((((-832)) . T)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-341))) +(|has| |#1| (-145)) +((((-832)) . T)) +(((|#3|) . T)) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +((((-832)) . T)) +((((-1203 |#2| |#3| |#4|)) . T) (((-1204 |#1| |#2| |#3| |#4|)) . T)) +((((-832)) . T)) +((((-48)) -12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548)))) (((-591 $)) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) -1524 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548)))) (|has| |#1| (-1007 (-399 (-548))))) (((-399 (-921 |#1|))) |has| |#1| (-540)) (((-921 |#1|)) |has| |#1| (-1016)) (((-1135)) . T)) +(((|#1|) . T) (($) . T)) +(((|#1| (-745)) . T)) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-301 |#1|))) +((((-1204 |#1| |#2| |#3| |#4|)) . T)) +((((-548)) |has| |#1| (-855 (-548))) (((-371)) |has| |#1| (-855 (-371)))) +(((|#1|) . T)) +(|has| |#1| (-540)) +(((|#1|) . T)) +((((-832)) . T)) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((|#1|) |has| |#1| (-169))) +((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1063))) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)))) +((((-1203 |#2| |#3| |#4|)) . T)) +((((-112)) . T)) +(|has| |#1| (-794)) +(|has| |#1| (-794)) +(((|#1| (-548) (-1045)) . T)) +((($) |has| |#1| (-301 $)) ((|#1|) |has| |#1| (-301 |#1|))) +(|has| |#1| (-819)) +(|has| |#1| (-819)) +(((|#1| (-548) (-1045)) . T)) +(-1524 (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1| (-399 (-548)) (-1045)) . T)) +(((|#1| (-745) (-1045)) . T)) +(|has| |#1| (-821)) +(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-399 (-548)) #1#) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(((|#2|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-1063)) +((((-879 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +(|has| |#1| (-1063)) +(((|#1|) . T)) +(|has| |#1| (-1063)) +((((-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-615 (-548)))) ((|#2|) |has| |#1| (-355))) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +(((|#2|) |has| |#2| (-169))) +(((|#1|) |has| |#1| (-169))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-832)) . T)) +(|has| |#3| (-819)) +((((-832)) . T)) +((((-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) . T)) +((((-832)) . T)) +(((|#1| |#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-1016)))) +(((|#1|) . T)) +((((-548)) . T)) +((((-548)) . T)) +(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-1016)))) +(((|#2|) |has| |#2| (-355))) +((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-355))) +(|has| |#1| (-821)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) |has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) +(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-524)) . T) (((-548)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +((((-832)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +(|has| |#1| (-226)) +(((|#1|) . T)) +(((|#1| (-548)) . T)) +(|has| |#1| (-819)) +(((|#1| (-1133 |#1| |#2| |#3|)) . T)) +(((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) -((((-823)) . T)) +(((|#1| (-399 (-548))) . T)) +(((|#1| (-1126 |#1| |#2| |#3|)) . T)) +(((|#1| (-745)) . T)) +(((|#1|) . T)) +(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(((|#1| |#2|) . T)) +((((-129)) . T)) +((((-142)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#1|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) . T) (($ $) . T)) +((((-832)) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +(|has| (-399 |#2|) (-226)) +(|has| |#1| (-878)) +(((|#2|) |has| |#2| (-1016))) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(|has| |#1| (-355)) +(((|#1|) |has| |#1| (-169))) (((|#1| |#1|) . T)) +((((-839 |#1|)) . T)) +((((-832)) . T)) (((|#1|) . T)) -((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) +(((|#2|) |has| |#2| (-1063))) +(|has| |#2| (-821)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) -((((-823)) . T)) +((((-399 (-548))) . T) (((-548)) . T) (((-591 $)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) |has| |#1| (-163))) +((((-832)) . T)) +((($) . T)) +(|has| |#1| (-821)) +((((-832)) . T)) +(((|#1| (-520 |#2|) |#2|) . T)) +(((|#1| (-548) (-1045)) . T)) +((((-879 |#1|)) . T)) +((((-832)) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T) ((|#1| |#1|) . T)) +(((|#1| (-399 (-548)) (-1045)) . T)) +(((|#1| (-745) (-1045)) . T)) +(((#0=(-399 |#2|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-548)) -1524 (|has| (-399 (-548)) (-1007 (-548))) (|has| |#1| (-1007 (-548)))) (((-399 (-548))) . T)) +(((|#1| (-581 |#1| |#3|) (-581 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-169))) (((|#1|) . T)) -((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) -((((-823)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) +((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +(|has| |#2| (-226)) +(((|#2| (-520 (-834 |#1|)) (-834 |#1|)) . T)) +((((-832)) . T)) +((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-832)) . T)) +(((|#1| |#3|) . T)) +((((-832)) . T)) +(((|#1|) |has| |#1| (-169))) +((((-673)) . T)) +((((-673)) . T)) +(((|#2|) |has| |#2| (-169))) +(|has| |#2| (-819)) +((((-112)) |has| |#1| (-1063)) (((-832)) -1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063)))) (((|#1|) . T) (($) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1|) . T)) -((((-637 |#1|)) . T)) -(((|#2| (-637 |#1|)) . T)) -(((|#2|) . T)) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-823)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4312 "*")))) +((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) . T)) +((((-832)) . T)) +((((-548) |#1|) . T)) +((((-673)) . T) (((-399 (-548))) . T) (((-548)) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +(((|#2|) . T)) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +((((-371)) . T)) +((((-673)) . T)) +((((-399 (-548))) . #0=(|has| |#2| (-355))) (($) . #0#)) +(((|#1|) |has| |#1| (-169))) +((((-399 (-921 |#1|))) . T)) (((|#2| |#2|) . T)) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#2|) . T)) +(|has| |#2| (-821)) +(((|#3|) |has| |#3| (-1016))) +(|has| |#2| (-878)) +(|has| |#1| (-878)) +(|has| |#1| (-355)) +(|has| |#1| (-821)) +((((-1135)) |has| |#2| (-869 (-1135)))) +((((-832)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-464)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-355)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-464)) (|has| |#1| (-540)) (|has| |#1| (-1016)) (|has| |#1| (-1075))) +(|has| |#1| (-38 (-399 (-548)))) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +(|has| |#1| (-341)) +((((-142)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +((($) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#2|) . T) (((-832)) . T)) +(((|#2|) . T) (((-832)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-821)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) ((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (((|#2|) . T)) -((((-653 |#2|)) . T) (((-823)) . T)) -((($) . T) ((|#2|) . T)) +(((|#3|) . T)) +((((-116 |#1|)) . T)) +(|has| |#1| (-360)) +(|has| |#1| (-821)) +(((|#2|) . T) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +((((-116 |#1|)) . T)) +(((|#2|) |has| |#2| (-169))) +(((|#1|) . T)) +((((-548)) . T)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +((((-832)) . T)) +((((-832)) . T)) +((((-524)) |has| |#1| (-593 (-524))) (((-861 (-548))) |has| |#1| (-593 (-861 (-548)))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371)))) (((-371)) . #0=(|has| |#1| (-991))) (((-218)) . #0#)) +(((|#1|) |has| |#1| (-355))) +((((-832)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((($ $) . T) (((-591 $) $) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +((($) . T) (((-1204 |#1| |#2| |#3| |#4|)) . T) (((-399 (-548))) . T)) +((($) -1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-540))) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +((((-371)) . T) (((-548)) . T) (((-399 (-548))) . T)) +((((-619 (-754 |#1| (-834 |#2|)))) . T) (((-832)) . T)) +((((-524)) |has| (-754 |#1| (-834 |#2|)) (-593 (-524)))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-371)) . T)) +(((|#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) +((((-832)) . T)) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-878))) +(((|#1|) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(|has| |#1| (-1063)) +((((-832)) . T)) +((((-1135)) . T) (((-832)) . T) (((-1140)) . T)) +((((-399 (-548))) . T) (((-548)) . T) (((-591 $)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +((((-548)) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(((#0=(-1203 |#2| |#3| |#4|)) . T) (((-399 (-548))) |has| #0# (-38 (-399 (-548)))) (($) . T)) +((((-548)) . T)) +(|has| |#1| (-355)) +(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-145)) (|has| |#1| (-355))) (|has| |#1| (-145))) +(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))) +(|has| |#1| (-355)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(|has| |#1| (-226)) +(|has| |#1| (-355)) +(((|#3|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-548)) |has| |#2| (-615 (-548))) ((|#2|) . T)) (((|#2|) . T)) +(|has| |#1| (-1063)) +(((|#1| |#2|) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) +(((|#3|) |has| |#3| (-169))) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +((((-548)) . T)) +(((|#1| $) |has| |#1| (-278 |#1| |#1|))) +((((-399 (-548))) . T) (($) . T) (((-399 |#1|)) . T) ((|#1|) . T)) +((((-832)) . T)) +(((|#3|) . T)) +(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-282)) (|has| |#1| (-355))) ((#0=(-399 (-548)) #0#) |has| |#1| (-355))) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +((($) . T)) +((((-548) |#1|) . T)) +((((-1135)) |has| (-399 |#2|) (-869 (-1135)))) +(((|#1|) . T) (($) -1524 (|has| |#1| (-282)) (|has| |#1| (-355))) (((-399 (-548))) |has| |#1| (-355))) +((((-524)) |has| |#2| (-593 (-524)))) +((((-663 |#2|)) . T) (((-832)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +((((-839 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#4| (-767)) (|has| |#4| (-819))) +(-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) +((((-832)) . T)) +((((-832)) . T)) +(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#2|) |has| |#2| (-1016))) +(((|#1|) . T)) +((((-399 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) +((((-548) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-399 (-548))) . T) (($) . T)) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-1176))) +((($) . T)) +((((-399 (-548))) |has| #0=(-399 |#2|) (-1007 (-399 (-548)))) (((-548)) |has| #0# (-1007 (-548))) ((#0#) . T)) +(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +(((|#1| (-745)) . T)) +(|has| |#1| (-821)) +(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((((-548)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(|has| |#1| (-819)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-341)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#1| |#2|) . T)) +((((-142)) . T)) +((((-754 |#1| (-834 |#2|))) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(|has| |#1| (-1157)) +(((|#1|) . T)) +(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-360)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) +((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|))) +(((|#2|) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-879 |#1|)) . T)) +((($) . T)) +((((-399 (-921 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-524)) |has| |#4| (-593 (-524)))) +((((-832)) . T) (((-619 |#4|)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-819)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) +(|has| |#1| (-1063)) +(|has| |#1| (-355)) +(|has| |#1| (-821)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-399 (-548))) . T)) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) |has| |#1| (-169))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-145)) (|has| |#1| (-355))) (|has| |#1| (-145))) +(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +(|has| |#1| (-819)) +(((|#1| |#2|) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) +((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-1063)) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T) (((-548)) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-1063)) +(((|#2|) |has| |#2| (-169))) (((|#2|) . T)) -((((-1123)) |has| |#2| (-859 (-1123)))) -(|has| |#2| (-219)) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-995 (-526))) (((-392 (-526))) |has| |#2| (-995 (-392 (-526))))) -(((|#1| |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2|) . T)) -(((|#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) -((((-823)) . T) (((-1128)) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-1160)) . T) (((-823)) . T) (((-1128)) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -(((|#1| (-1205 |#1|) (-1205 |#1|)) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -(((|#1| (-1205 |#1|) (-1205 |#1|)) . T)) -((((-823)) . T)) -((((-663)) . T)) -((((-663)) . T)) -((((-663)) . T)) -((((-663)) . T)) -((((-663)) . T)) -((((-363)) . T)) -((((-663)) . T)) -(((#1=(-663) (-1117 #1#)) . T)) -(((#1=(-663) (-1117 #1#)) . T)) -(((#1=(-663) (-1117 #1#)) . T)) -((((-663)) . T)) -((((-159 (-211))) . T) (((-159 (-363))) . T) (((-1117 (-663))) . T) (((-849 (-363))) . T)) -((((-663)) . T)) -((((-392 (-526))) . T) (((-663)) . T) (($) . T)) -((((-392 (-526))) . T) (((-663)) . T) (($) . T)) -((((-823)) . T)) -((((-392 (-526))) . T) (((-663)) . T) (($) . T)) -(((#1=(-392 (-526)) #1#) . T) ((#2=(-663) #2#) . T) (($ $) . T)) -((((-392 (-526))) . T) (((-663)) . T) (($) . T)) -((((-663)) . T) (((-392 (-526))) . T) (((-526)) . T)) -((((-363)) . T) (((-526)) . T) (((-392 (-526))) . T)) -((((-363)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-211)) . T) (((-363)) . T) (((-849 (-363))) . T)) -((((-823)) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-515)) . T) (((-526)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) -((($) . T)) -((($) . T)) -((((-823)) . T)) -((($) . T)) +(((|#1| |#1|) . T)) +(((|#3|) |has| |#3| (-355))) +((((-399 |#2|)) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-524)) |has| |#1| (-593 (-524)))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-301 |#1|))) +(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)))) +((((-308 |#1|)) . T)) +(((|#2|) |has| |#2| (-355))) +(((|#2|) . T)) +((((-399 (-548))) . T) (((-673)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((#0=(-754 |#1| (-834 |#2|)) #0#) |has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|))))) +((((-834 |#1|)) . T)) +(((|#2|) |has| |#2| (-169))) +(((|#1|) |has| |#1| (-169))) +(((|#2|) . T)) +((((-1135)) |has| |#1| (-869 (-1135))) (((-1045)) . T)) +((((-1135)) |has| |#1| (-869 (-1135))) (((-1052 (-1135))) . T)) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(|has| |#1| (-38 (-399 (-548)))) +(((|#4|) |has| |#4| (-1016)) (((-548)) -12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016)))) +(((|#3|) |has| |#3| (-1016)) (((-548)) -12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) ((($ $) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063))) +(|has| |#1| (-540)) +(((|#2|) . T)) +((((-548)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) . T)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) +((((-562 |#1|)) . T)) ((($) . T)) -((((-526)) . T)) -(((|#1|) . T) (((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) -(|has| |#1| (-353)) -(((|#1|) . T)) -((((-823)) . T)) -((((-392 $) (-392 $)) |has| |#1| (-533)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(|has| |#1| (-348)) -(((|#1| (-735) (-1033)) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-1123)) |has| |#1| (-859 (-1123))) (((-1033)) . T)) -(|has| |#1| (-811)) -((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-735)) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T)) -((((-1033)) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) -(((|#1| (-735)) . T)) -(((#1=(-1033) |#1|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1099)) -(((|#1|) . T)) -((((-823)) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#2| |#2|) . T)) -((((-112)) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-163)) (($) . T)) -((((-823)) . T)) -((($) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-515)) |has| |#2| (-584 (-515))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526))))) -((($) . T)) -(((|#2| (-512 (-824 |#1|))) . T)) -(((|#2|) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T)) -(|has| |#2| (-139)) -(|has| |#2| (-141)) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T) (($) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526)))) ((|#2| |#2|) . T) (($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) -(((|#2| (-512 (-824 |#1|))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) -(-3850 (|has| |#2| (-436)) (|has| |#2| (-869))) -((($ $) . T) ((#1=(-824 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-811)) -((((-824 |#1|)) . T)) -(|has| |#2| (-869)) -(|has| |#2| (-869)) -((((-392 (-526))) |has| |#2| (-995 (-392 (-526)))) (((-526)) |has| |#2| (-995 (-526))) ((|#2|) . T) (((-824 |#1|)) . T)) -(((|#2| (-512 (-824 |#1|)) (-824 |#1|)) . T)) -(-12 (|has| |#1| (-353)) (|has| |#2| (-353))) -(((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#1|) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-163)) (($) . T)) -((((-823)) . T)) +(((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-823)) . T)) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((($) . T)) (((|#1|) . T)) +((((-832)) . T)) +(((|#2|) |has| |#2| (-6 (-4329 "*")))) (((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1| (-512 |#2|) |#2|) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#2| (-845 (-526)))) (((-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#2| (-845 (-363))))) -(((|#2|) . T)) -(|has| |#1| (-811)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) -((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) +((((-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) (((-548)) |has| |#2| (-1007 (-548))) ((|#2|) . T) (((-834 |#1|)) . T)) +((($) . T) (((-116 |#1|)) . T) (((-399 (-548))) . T)) +((((-1087 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +((((-1131 |#1|)) . T) (((-1045)) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +((((-1087 |#1| (-1135))) . T) (((-1052 (-1135))) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-1135)) . T)) +(|has| |#1| (-1063)) +((($) . T)) +(|has| |#1| (-1063)) +((((-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#2| (-855 (-548)))) (((-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#2| (-855 (-371))))) +(((|#1| |#2|) . T)) +((((-1135) |#1|) . T)) +(((|#4|) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +((((-1135) (-52)) . T)) +((((-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) . T)) +((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +((((-832)) . T)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +(((#0=(-1204 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-169)) ((#0=(-399 (-548)) #0#) |has| |#1| (-540)) (($ $) |has| |#1| (-540))) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1| $) |has| |#1| (-278 |#1| |#1|))) +((((-1204 |#1| |#2| |#3| |#4|)) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-540)) (($) |has| |#1| (-540))) +(|has| |#1| (-355)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-399 (-548))) . T) (($) . T)) +(((|#3|) |has| |#3| (-355))) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((((-1135)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((|#2| |#3|) . T)) +(-1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(((|#1| (-520 |#2|)) . T)) +(((|#1| (-745)) . T)) +(((|#1| (-520 (-1052 (-1135)))) . T)) +(((|#1|) |has| |#1| (-169))) +(((|#1|) . T)) +(|has| |#2| (-878)) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +((((-832)) . T)) +((($ $) . T) ((#0=(-1203 |#2| |#3| |#4|) #0#) . T) ((#1=(-399 (-548)) #1#) |has| #0# (-38 (-399 (-548))))) +((((-879 |#1|)) . T)) +(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) +((($) . T) (((-399 (-548))) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-355)) +(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341)) (|has| |#1| (-540))) +(|has| |#1| (-355)) +((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) . T) (((-399 (-548))) |has| #0# (-38 (-399 (-548))))) +(((|#1| |#2|) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +(-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +(((|#1| |#2|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-112)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) +(|has| |#2| (-355)) +(|has| |#1| (-821)) (((|#1|) . T)) -(((|#1| (-512 |#2|)) . T)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((((-1075 |#1| |#2|)) . T) (((-905 |#1|)) |has| |#2| (-584 (-1123))) (((-823)) . T)) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) -((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) (((|#1|) . T)) -((((-1075 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) -(((|#1| (-512 |#2|)) . T)) -(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) +(((|#1|) . T)) +((((-832)) . T)) +(|has| |#1| (-1063)) +(((|#4|) . T)) +(((|#4|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-399 $) (-399 $)) |has| |#1| (-540)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-794)) +(((|#4|) . T)) ((($) . T)) -((((-905 |#1|)) |has| |#2| (-584 (-1123))) (((-1106)) -12 (|has| |#1| (-995 (-526))) (|has| |#2| (-584 (-1123)))) (((-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526))))) (((-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363))))) (((-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#2| (-584 (-515))))) -(((|#1| (-512 |#2|) |#2|) . T)) -(((|#1|) . T)) -((((-1117 |#1|)) . T) (((-823)) . T)) -((((-392 $) (-392 $)) |has| |#1| (-533)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(|has| |#1| (-348)) -(((|#1| (-735) (-1033)) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-1123)) |has| |#1| (-859 (-1123))) (((-1033)) . T)) -(|has| |#1| (-811)) -((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-735)) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T)) -((((-1117 |#1|)) . T) (((-1033)) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) -(((|#1| (-735)) . T)) -(((#1=(-1033) |#1|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1099)) +((($ $) . T)) +((($) . T)) +((((-832)) . T)) +(((|#1| (-520 (-1135))) . T)) +(((|#1|) |has| |#1| (-169))) +((((-832)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#2|) -1524 (|has| |#2| (-6 (-4329 "*"))) (|has| |#2| (-169)))) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(|has| |#2| (-821)) +(|has| |#2| (-878)) +(|has| |#1| (-878)) +(((|#2|) |has| |#2| (-169))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-832)) . T)) +((((-832)) . T)) +((((-524)) . T) (((-548)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) . T)) +(((|#1|) . T)) +((((-832)) . T)) +(((|#1| |#2|) . T)) +(((|#1| (-399 (-548))) . T)) (((|#1|) . T)) +(-1524 (|has| |#1| (-282)) (|has| |#1| (-355))) +((((-142)) . T)) +((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-819)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-823)) . T)) -((($) . T) ((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -((((-515)) |has| |#1| (-584 (-515)))) -(|has| |#1| (-353)) -(((|#1|) . T)) -((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((|#1| |#1|) |has| |#1| (-294 |#1|))) -(((|#1|) |has| |#1| (-294 |#1|))) -(((|#1| $) |has| |#1| (-271 |#1| |#1|))) -((((-954 |#1|)) . T) ((|#1|) . T)) -((((-954 |#1|)) . T) ((|#1|) . T) (((-526)) -3850 (|has| |#1| (-995 (-526))) (|has| (-954 |#1|) (-995 (-526)))) (((-392 (-526))) -3850 (|has| |#1| (-995 (-392 (-526)))) (|has| (-954 |#1|) (-995 (-392 (-526)))))) -(|has| |#1| (-811)) -(((|#1|) . T)) -((((-823)) . T)) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) -(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) -(((|#2|) |has| |#2| (-163))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) -((($) -3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) ((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004)))) -(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)))) -((((-823)) -3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-583 (-823))) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) (((-1205 |#2|)) . T)) -(|has| |#2| (-163)) -(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($) |has| |#2| (-163))) -(((|#2| |#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($ $) |has| |#2| (-163))) -(((|#2|) |has| |#2| (-1004))) -((((-1123)) -12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) -(-12 (|has| |#2| (-219)) (|has| |#2| (-1004))) -(|has| |#2| (-353)) -(((|#2|) |has| |#2| (-1004))) -(((|#2|) |has| |#2| (-1004)) (((-526)) -12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) -(((|#2|) |has| |#2| (-1052))) -(((|#2|) |has| |#2| (-1052)) (((-526)) -12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (((-392 (-526))) -12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) -((((-526) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2|) . T)) -((((-526) |#2|) . T)) -((((-526) |#2|) . T)) -(|has| |#2| (-757)) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) -(|has| |#2| (-809)) -(|has| |#2| (-809)) -(((|#2|) |has| |#2| (-348))) (((|#1| |#2|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -(|has| |#1| (-219)) -((($) . T)) -(((|#1| (-512 (-782 (-1123))) (-782 (-1123))) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-1123)) |has| |#1| (-859 (-1123))) (((-782 (-1123))) . T)) -(|has| |#1| (-811)) -((($ $) . T) ((#1=(-1123) $) |has| |#1| . #2=((-219))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-782 (-1123)) |#1|) . T) ((#3# $) . T)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) -((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-512 (-782 (-1123)))) . T)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T)) -(((|#1| (-512 (-782 (-1123)))) . T)) -((((-1075 |#1| (-1123))) . T) (((-782 (-1123))) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-1123)) . T)) -(((|#1| (-1123) (-782 (-1123)) (-512 (-782 (-1123)))) . T)) -(|has| |#2| (-348)) -(|has| |#2| (-348)) -(|has| |#2| (-348)) -(|has| |#2| (-348)) -((((-392 (-526))) . #1=(|has| |#2| (-348))) (($) . #1#)) -((((-392 (-526))) . #1=(|has| |#2| (-348))) (($) . #1#)) -(|has| |#2| (-348)) -(|has| |#2| (-348)) -(|has| |#2| (-348)) -(|has| |#2| (-348)) -(|has| |#2| (-348)) -((((-392 (-526))) |has| |#2| (-348)) (($) . T)) -((((-823)) . T)) -((((-392 (-526))) |has| |#2| (-348)) (($) . T)) -(((#1=(-392 (-526)) #1#) |has| |#2| (-348)) (($ $) . T)) -((((-823)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(|has| |#1| (-219)) -(((|#2|) |has| |#2| (-163))) -(((|#2| |#2|) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#2| |#2|) . T) ((|#1| |#1|) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-524)) |has| |#1| (-593 (-524))) (((-861 (-548))) |has| |#1| (-593 (-861 (-548)))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371))))) +((((-1135) (-52)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-832)) . T)) +((((-619 (-142))) . T) (((-1118)) . T)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-301 |#1|))) +(|has| |#1| (-821)) +((((-832)) . T)) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) . T)) +(((|#2|) |has| |#2| (-355))) +((((-832)) . T)) +((((-524)) |has| |#4| (-593 (-524)))) +((((-832)) . T) (((-619 |#4|)) . T)) +(((|#2|) . T)) +((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +(-1524 (|has| |#4| (-169)) (|has| |#4| (-701)) (|has| |#4| (-819)) (|has| |#4| (-1016))) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +((((-1135) (-52)) . T)) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(|has| |#1| (-878)) +(|has| |#1| (-878)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-832)) . T)) +((((-548)) . T)) +(((#0=(-399 (-548)) #0#) . T) (($ $) . T)) +((((-399 (-548))) . T) (($) . T)) +(((|#1| (-399 (-548)) (-1045)) . T)) +(|has| |#1| (-1063)) +(|has| |#1| (-540)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(|has| |#1| (-794)) +(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-399 (-548)) #1#) . T)) +((((-399 |#2|)) . T)) +(|has| |#1| (-819)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) . T) ((#1=(-548) #1#) . T) (($ $) . T)) +((((-879 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +(((|#2|) |has| |#2| (-1016)) (((-548)) -12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) +(((|#1|) . T) (((-399 (-548))) . T) (((-548)) . T) (($) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(((|#2|) . T)) +((((-832)) . T)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3156 (-1135)) (|:| -1657 #0#))) . T)) +(|has| |#1| (-341)) +((((-548)) . T)) +((((-832)) . T)) +(((#0=(-1204 |#1| |#2| |#3| |#4|) $) |has| #0# (-278 #0# #0#))) +(|has| |#1| (-355)) +(((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(((#0=(-399 (-548)) #0#) . T) ((#1=(-673) #1#) . T) (($ $) . T)) +((((-308 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) |has| |#1| (-355))) +(|has| |#1| (-1063)) +(((|#1|) . T)) +(((|#1|) -1524 (|has| |#2| (-359 |#1|)) (|has| |#2| (-409 |#1|)))) +(((|#1|) -1524 (|has| |#2| (-359 |#1|)) (|has| |#2| (-409 |#1|)))) +(((|#2|) . T)) +((((-399 (-548))) . T) (((-673)) . T) (($) . T)) +(((|#3| |#3|) . T)) +(|has| |#2| (-226)) +((((-834 |#1|)) . T)) +((((-1135)) |has| |#1| (-869 (-1135))) ((|#3|) . T)) +(-12 (|has| |#1| (-355)) (|has| |#2| (-991))) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-832)) . T)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +((((-399 (-548))) . T) (($) . T) (((-399 |#1|)) . T) ((|#1|) . T)) +((((-548)) . T)) +(|has| |#1| (-1063)) +(((|#3|) . T)) (((|#2|) . T)) -((((-823)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#2|) . T)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -((($) |has| |#1| (-809))) -(|has| |#1| (-809)) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) -((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#1| |#1|) . T)) -((((-112)) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-163)) (($) . T)) -((((-823)) . T)) -((((-823)) . T)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -(|has| |#1| (-809)) -((($) |has| |#1| (-809))) -(|has| |#1| (-809)) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) -(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) -((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-823)) . T)) -((($) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) +((((-548)) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +(((|#1| |#2|) . T)) +((($) . T)) +((((-562 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((($) . T) (((-399 (-548))) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1|) . T) (($) . T)) +(((|#1| (-1218 |#1|) (-1218 |#1|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((#0=(-116 |#1|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +((((-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) (((-548)) |has| |#2| (-1007 (-548))) ((|#2|) . T) (((-834 |#1|)) . T)) +((((-1087 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((|#2|) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-823)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-995 (-526))) (((-392 (-526))) |has| |#2| (-995 (-392 (-526))))) -(((|#2|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-849 (-526))) . T) (((-849 (-363))) . T) (((-515)) . T) (((-1123)) . T)) -((((-823)) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163)) (($) . T)) -((((-823)) . T)) +(((|#1|) . T)) +((($ $) . T)) +((((-646 |#1|)) . T)) +((($) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T)) +((((-116 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))) (((-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371))))) +(((|#2|) . T) ((|#6|) . T)) +(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +((((-142)) . T)) ((($) . T)) -((((-823)) . T)) +((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) . T)) +(|has| |#2| (-878)) +(|has| |#1| (-878)) +(|has| |#1| (-878)) +(((|#4|) . T)) +(|has| |#2| (-991)) ((($) . T)) -((($ $) . T)) +(|has| |#1| (-878)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) ((($) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T)) ((($) . T)) +(|has| |#1| (-355)) +((((-879 |#1|)) . T)) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(-1524 (|has| |#1| (-360)) (|has| |#1| (-821))) +(((|#1|) . T)) +((((-832)) . T)) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) +((((-399 |#2|) |#3|) . T)) +((($) . T) (((-399 (-548))) . T)) +((((-745) |#1|) . T)) +(((|#2| (-233 (-3643 |#1|) (-745))) . T)) +(((|#1| (-520 |#3|)) . T)) +((((-399 (-548))) . T)) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-832)) . T)) +(((#0=(-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) #0#) |has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) +(|has| |#1| (-878)) +(|has| |#2| (-355)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-166 (-371))) . T) (((-218)) . T) (((-371)) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((((-371)) . T) (((-548)) . T)) +(((#0=(-399 (-548)) #0#) . T) (($ $) . T)) +((($ $) . T)) +((($ $) . T)) +(((|#1| |#1|) . T)) +((((-832)) . T)) +(|has| |#1| (-540)) +((((-399 (-548))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341))) +(|has| |#1| (-38 (-399 (-548)))) +(-12 (|has| |#1| (-533)) (|has| |#1| (-802))) +((((-832)) . T)) +((((-1135)) -1524 (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))) (-12 (|has| |#1| (-355)) (|has| |#2| (-869 (-1135)))))) +(|has| |#1| (-355)) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) +(|has| |#1| (-355)) +((((-399 (-548))) . T) (($) . T)) +((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) +((((-548) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-355))) +(((|#2|) |has| |#1| (-355))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-169))) +(((|#1|) . T)) +(((|#2|) . T) (((-1135)) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-1135)))) (((-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-548)))) (((-399 (-548))) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-548))))) +(((|#2|) . T)) +((((-1135) #0=(-1204 |#1| |#2| |#3| |#4|)) |has| #0# (-504 (-1135) #0#)) ((#0# #0#) |has| #0# (-301 #0#))) +((((-591 $) $) . T) (($ $) . T)) +((((-166 (-218))) . T) (((-166 (-371))) . T) (((-1131 (-673))) . T) (((-861 (-371))) . T)) +((((-832)) . T)) +(|has| |#1| (-540)) +(|has| |#1| (-540)) +(|has| (-399 |#2|) (-226)) +(((|#1| (-399 (-548))) . T)) +((($ $) . T)) +((((-1135)) |has| |#2| (-869 (-1135)))) +((($) . T)) +((((-832)) . T)) +((((-399 (-548))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-832)) . T)) +(((|#2|) |has| |#1| (-355))) +((((-371)) -12 (|has| |#1| (-355)) (|has| |#2| (-855 (-371)))) (((-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-855 (-548))))) +(|has| |#1| (-355)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(|has| |#1| (-355)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(|has| |#1| (-355)) +(|has| |#1| (-540)) +(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#3|) . T)) (((|#1|) . T)) -((((-823)) . T)) -((((-828 |#1|)) . T)) -((((-828 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) (((-828 |#1|)) . T) (((-392 (-526))) . T)) -((((-828 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) -((((-828 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) -(((#1=(-828 |#1|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-828 |#1|)) . T)) -((((-1123) #1=(-828 |#1|)) |has| #1# (-496 (-1123) #1#)) ((#1# #1#) |has| #1# (-294 #1#))) -(((#1=(-828 |#1|)) |has| #1# (-294 #1#))) -(((#1=(-828 |#1|) $) |has| #1# (-271 #1# #1#))) -((((-828 |#1|)) . T)) -((((-828 |#1|)) . T)) -((((-828 |#1|)) . T)) -((((-828 |#1|)) . T)) -((((-828 |#1|)) . T)) -((((-828 |#1|)) . T)) -((((-823)) . T)) -(|has| |#2| (-139)) -(|has| |#2| (-141)) -(((|#2|) . T)) -((((-1123)) |has| |#2| (-859 (-1123)))) -(|has| |#2| (-219)) -(((|#2|) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) ((|#2|) . T) (((-392 (-526))) . T)) -(((|#2|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#2|) . T) (((-392 (-526))) . T) (($) . T)) -(((|#2| |#2|) . T) ((#1=(-392 (-526)) #1#) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1123) |#2|) |has| |#2| (-496 (-1123) |#2|)) ((|#2| |#2|) |has| |#2| (-294 |#2|))) -(((|#2|) |has| |#2| (-294 |#2|))) -(((|#2| $) |has| |#2| (-271 |#2| |#2|))) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) -(((|#2|) . T)) -((((-526)) |has| |#2| (-845 (-526))) (((-363)) |has| |#2| (-845 (-363)))) -(|has| |#2| (-784)) -(|has| |#2| (-784)) -(|has| |#2| (-784)) -(-3850 (|has| |#2| (-784)) (|has| |#2| (-811))) -(|has| |#2| (-784)) -(|has| |#2| (-784)) -(|has| |#2| (-784)) -(((|#2|) . T)) -(|has| |#2| (-869)) -(|has| |#2| (-977)) -((((-515)) |has| |#2| (-584 (-515))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526)))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-363)) . #1=(|has| |#2| (-977))) (((-211)) . #1#)) -((((-392 (-526))) |has| |#2| . #1=((-995 (-526)))) (((-526)) |has| |#2| . #1#) (((-1123)) |has| |#2| (-995 (-1123))) ((|#2|) . T)) -(|has| |#2| (-1099)) -(((|#2|) . T)) -(-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))) -(-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))) -((((-823)) -3850 (-12 (|has| |#1| (-583 (-823))) (|has| |#2| (-583 (-823)))) (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))))) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-1123)) . T) ((|#1|) . T)) -((((-823)) . T)) -((((-637 |#1|)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -(-3850 (|has| |#1| (-353)) (|has| |#1| (-811))) -(((|#1|) . T)) -((((-823)) . T)) -((((-526)) . T)) -((($) . T)) -((($) . T)) -((($) . T)) -(|has| $ (-141)) -((($) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) . T)) -((($) . T) (((-392 (-526))) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-811)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#1| (-584 (-849 (-526))))) -((($) . T)) -(((|#1| (-512 (-1123))) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) -(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) -(((|#1| (-512 (-1123))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) -((($ $) . T) ((#1=(-1123) $) . T) ((#1# |#1|) . T)) -(|has| |#1| (-811)) -((((-1123)) . T)) -((((-363)) |has| |#1| (-845 (-363))) (((-526)) |has| |#1| (-845 (-526)))) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T) (((-1123)) . T)) -(((|#1| (-512 (-1123)) (-1123)) . T)) -((((-1070)) . T) (((-823)) . T)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#2|) . T)) +(((|#2|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(|has| |#1| (-38 (-399 (-548)))) (((|#1| |#2|) . T)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((((-823)) . T)) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) -((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) +(|has| |#1| (-38 (-399 (-548)))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(|has| |#1| (-145)) +((((-1118) |#1|) . T)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(|has| |#1| (-145)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(|has| |#1| (-145)) +((((-562 |#1|)) . T)) +((($) . T)) +((((-399 |#2|)) . T)) +(|has| |#1| (-540)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-341))) +(|has| |#1| (-145)) +((((-832)) . T)) +((($) . T)) +((((-399 (-548))) |has| |#2| (-1007 (-548))) (((-548)) |has| |#2| (-1007 (-548))) (((-1135)) |has| |#2| (-1007 (-1135))) ((|#2|) . T)) +(((#0=(-399 |#2|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +((((-1100 |#1| |#2|)) . T)) +(((|#1| (-548)) . T)) +(((|#1| (-399 (-548))) . T)) +((((-548)) |has| |#2| (-855 (-548))) (((-371)) |has| |#2| (-855 (-371)))) +(((|#2|) . T)) +((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-112)) . T)) +(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-832)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-1135) (-52)) . T)) +((((-399 |#2|)) . T)) +((((-832)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1063)) +(|has| |#1| (-765)) +(|has| |#1| (-765)) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-114)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-218)) . T) (((-371)) . T) (((-861 (-371))) . T)) +((((-832)) . T)) +((((-1204 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540)) (((-399 (-548))) |has| |#1| (-540))) +((((-832)) . T)) +((((-832)) . T)) +(((|#2|) . T)) +((((-832)) . T)) +(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-399 (-548)) #1#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-879 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +(|has| |#1| (-355)) +(((|#2|) . T)) +((((-548)) . T)) +((((-832)) . T)) +((((-548)) . T)) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +((((-166 (-371))) . T) (((-218)) . T) (((-371)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-1118)) . T) (((-524)) . T) (((-548)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +((((-832)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) |has| #0# (-169)) (((-399 (-548))) |has| #0# (-38 (-399 (-548))))) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063))) +(|has| |#1| (-1111)) +((((-548) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-116 |#1|) $) |has| #0# (-278 #0# #0#))) +(((|#1|) |has| |#1| (-169))) +(((|#1|) . T)) +((((-114)) . T) ((|#1|) . T)) +((((-832)) . T)) (((|#1| |#2|) . T)) +((((-1135) |#1|) . T)) +(((|#1|) |has| |#1| (-301 |#1|))) +((((-548) |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-811)) +((((-548)) . T) (((-399 (-548))) . T)) (((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(|has| |#1| (-540)) +((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +((((-371)) . T)) (((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +(|has| |#1| (-540)) +(|has| |#1| (-1063)) +((((-754 |#1| (-834 |#2|))) |has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|))))) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) (((|#1|) . T)) -(-12 (|has| |#1| (-757)) (|has| |#2| (-757))) -(-12 (|has| |#1| (-757)) (|has| |#2| (-757))) -(-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))) -(-12 (|has| |#1| (-757)) (|has| |#2| (-757))) -(-12 (|has| |#1| (-757)) (|has| |#2| (-757))) -(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-457)) (|has| |#2| (-457))) -(-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) -(-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) -(-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) -(-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))) -(-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))) -(-12 (|has| |#1| (-353)) (|has| |#2| (-353))) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) |has| |#1| (-583 (-823)))) -((((-823)) . T) (((-1128)) . T)) -((((-607 (-526))) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -((((-515)) |has| |#1| (-584 (-515)))) -(((|#1|) . T)) -((((-1123)) |has| |#1| (-859 (-1123)))) -(|has| |#1| (-219)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-275)) (|has| |#1| (-348))) -(((|#1|) . T) (((-392 (-526))) |has| |#1| (-348))) -((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-348))) -(((|#1|) . T) (($) -3850 (|has| |#1| (-275)) (|has| |#1| (-348))) (((-392 (-526))) |has| |#1| (-348))) -(((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-275)) (|has| |#1| (-348))) ((#1=(-392 (-526)) #1#) |has| |#1| (-348))) -(((|#1|) . T) (((-392 (-526))) |has| |#1| (-348))) -(((|#1|) . T)) -((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((|#1| |#1|) |has| |#1| (-294 |#1|))) -(((|#1|) |has| |#1| (-294 |#1|))) -(((|#1| $) |has| |#1| (-271 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) -(|has| |#1| (-811)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-392 |#2|) |#3|) . T)) -((((-392 (-526))) |has| #1=(-392 |#2|) (-995 (-392 (-526)))) (((-526)) |has| #1# (-995 (-526))) ((#1#) . T)) -((((-392 |#2|)) . T)) -((((-526)) |has| #1=(-392 |#2|) (-606 (-526))) ((#1#) . T)) -((((-392 |#2|)) . T)) -((((-392 |#2|) |#3|) . T)) -(|has| (-392 |#2|) (-141)) -((((-392 |#2|) |#3|) . T)) -(|has| (-392 |#2|) (-139)) -((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) -((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) -(|has| (-392 |#2|) (-219)) -((((-1123)) |has| (-392 |#2|) (-859 (-1123)))) -((((-392 |#2|)) . T)) +(((|#2| |#3|) . T)) +(((|#1|) . T)) +(|has| |#2| (-878)) +(((|#1| (-520 |#2|)) . T)) +(((|#1| (-745)) . T)) +(|has| |#1| (-226)) +(((|#1| (-520 (-1052 (-1135)))) . T)) +(|has| |#2| (-355)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-832)) . T)) +((((-832)) . T)) +(-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) +((((-832)) . T)) +((((-1082)) . T) (((-832)) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-591 $) $) . T)) +(((|#1|) . T)) +((((-548)) . T)) (((|#3|) . T)) -(((#1=(-392 |#2|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) -((((-823)) . T)) -((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) -(((|#1| |#2| |#3|) . T)) -((((-823)) . T)) -((((-526)) . T)) -((((-526)) . T) (($) . T) (((-392 (-526))) . T)) -((($) . T) (((-526)) . T) (((-392 (-526))) . T)) -((((-526)) . T) (($) . T) (((-392 (-526))) . T)) -((((-526)) . T) (((-392 (-526))) . T) (($) . T)) -(((#1=(-526) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-515)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) -((((-392 (-526))) . T) (((-526)) . T)) -((((-526)) . T)) -((((-823)) . T)) -(((|#1|) . T) (($) . T) (((-392 (-526))) . T) (((-526)) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (((-526)) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) . T) ((#2=(-526) #2#) . T) (($ $) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (((-526)) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T) (((-526)) . T) (($) . T)) -(((|#1|) . T) (((-392 (-526))) . T)) -(((|#1|) . T) (((-526)) -3850 (|has| |#1| (-995 (-526))) (|has| (-392 (-526)) (-995 (-526)))) (((-392 (-526))) . T)) -(|has| |#1| (-1052)) -((((-823)) |has| |#1| (-1052))) -(|has| |#1| (-1052)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#4|) . T)) -((((-607 |#4|)) . T) (((-823)) . T)) -(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) . T)) -((((-515)) |has| |#4| (-584 (-515)))) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) +((((-832)) . T)) +(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) +(((#0=(-562 |#1|) #0#) . T) (($ $) . T) ((#1=(-399 (-548)) #1#) . T)) +((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(((|#1|) |has| |#1| (-169))) +(((|#1| (-1218 |#1|) (-1218 |#1|)) . T)) +((((-562 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((($) . T) (((-399 (-548))) . T)) +((($) . T) (((-399 (-548))) . T)) +(((|#2|) |has| |#2| (-6 (-4329 "*")))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-832)) |has| |#1| (-592 (-832)))) +((((-286 |#3|)) . T)) +(((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +(((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) +((($) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +(((|#2|) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +(((|#2|) . T) ((|#6|) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +((((-832)) . T)) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(|has| |#2| (-878)) +(|has| |#1| (-878)) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) (((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T)) -(((|#1|) . T) (($) . T)) -((((-823)) . T)) -(((|#1|) . T) (($) . T)) -((((-1123) (-50)) . T)) -((((-823)) . T)) -((((-1123) (-50)) . T)) -((((-1123) (-50)) . T)) -((((-1123) (-50)) . T)) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) -(((#1=(-50)) . T) (((-2 (|:| -4179 (-1123)) (|:| -2164 #1#))) . T)) -(((#1=(-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) #1#) |has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) |has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) -((((-1123) (-50)) . T)) -((((-823)) . T) (((-1128)) . T)) -(((|#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) . T)) -((((-744 |#1| (-824 |#2|))) . T)) -((((-607 (-744 |#1| (-824 |#2|)))) . T) (((-823)) . T)) -((((-744 |#1| (-824 |#2|))) |has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|))))) -(((#1=(-744 |#1| (-824 |#2|)) #1#) |has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|))))) -((((-744 |#1| (-824 |#2|))) . T)) -((((-515)) |has| (-744 |#1| (-824 |#2|)) (-584 (-515)))) -(((|#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) . T)) -(((|#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) . T)) -((((-515)) |has| |#3| (-584 (-515)))) -(((|#3|) |has| |#3| (-348))) -(((|#3| |#3|) . T)) -(((|#3|) . T)) -((((-653 |#3|)) . T) (((-823)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) -(((|#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) -(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)))) -(((|#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) . T)) -((((-823)) . T)) -(((|#1| |#2|) . T)) -((($) . T)) -((((-823)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-515)) . T) (((-526)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) -((((-526)) . T)) -((((-1123) (-50)) . T)) -((((-823)) . T)) -((((-1123) (-50)) . T)) -((((-1123) (-50)) . T)) -((((-1123) (-50)) . T)) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) -(((#1=(-50)) . T) (((-2 (|:| -4179 (-1123)) (|:| -2164 #1#))) . T)) -(((#1=(-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) #1#) |has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) |has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) -((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) -((((-1123) (-50)) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-278 |#3|)) . T)) -(((|#3| |#3|) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#3| |#3|) . T)) -((((-823)) . T)) -((((-823)) . T)) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-348))) -((((-1123)) -12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) -(-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) -(-3850 (|has| |#1| (-353)) (|has| |#1| (-335))) -(|has| |#1| (-335)) -(|has| |#1| (-335)) -(-3850 (|has| |#1| (-139)) (|has| |#1| (-335))) -(|has| |#1| (-335)) -(((|#1| |#2|) . T)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) -((($ $) . T) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1| |#1|) . T)) -((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) -((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) -(|has| |#1| (-141)) -(((|#1| |#2|) . T)) +((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) (((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) -(((|#1| |#2|) . T)) -((((-823)) . T)) -((((-823)) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-823)) . T)) -(|has| |#1| (-219)) -((($) . T)) -(((|#1| (-512 (-1040 (-1123))) (-1040 (-1123))) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-1123)) |has| |#1| (-859 (-1123))) (((-1040 (-1123))) . T)) -(|has| |#1| (-811)) -((($ $) . T) ((#1=(-1123) $) |has| |#1| . #2=((-219))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1040 (-1123)) |#1|) . T) ((#3# $) . T)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) -((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-512 (-1040 (-1123)))) . T)) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +(|has| |#1| (-1063)) +(((|#1|) . T)) +((((-1135)) . T) ((|#1|) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((#0=(-399 (-548)) #0#) . T)) +((((-399 (-548))) . T)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#1|) . T)) +(((|#1|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-524)) . T)) +((((-832)) . T)) +((((-1135)) |has| |#2| (-869 (-1135))) (((-1045)) . T)) +((((-1203 |#2| |#3| |#4|)) . T)) +((((-879 |#1|)) . T)) +((($) . T) (((-399 (-548))) . T)) +(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) +(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) +((((-832)) . T)) +(|has| |#1| (-1176)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +((((-1135)) |has| |#1| (-869 (-1135)))) +((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) . T)) +(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) +((($) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (((-548)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1016)) (((-548)) -12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) +(|has| |#1| (-540)) +(((|#1|) |has| |#1| (-355))) +((((-548)) . T)) +(|has| |#1| (-765)) +(|has| |#1| (-765)) +((((-1135) #0=(-116 |#1|)) |has| #0# (-504 (-1135) #0#)) ((#0# #0#) |has| #0# (-301 #0#))) +(((|#2|) . T) (((-548)) |has| |#2| (-1007 (-548))) (((-399 (-548))) |has| |#2| (-1007 (-399 (-548))))) +((((-1045)) . T) ((|#2|) . T) (((-548)) |has| |#2| (-1007 (-548))) (((-399 (-548))) |has| |#2| (-1007 (-399 (-548))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-548) (-745)) . T) ((|#3| (-745)) . T)) (((|#1|) . T)) -(((|#1| (-512 (-1040 (-1123)))) . T)) -((((-1075 |#1| (-1123))) . T) (((-1040 (-1123))) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-1123)) . T)) -(((|#1| (-1123) (-1040 (-1123)) (-512 (-1040 (-1123)))) . T)) -((((-823)) . T)) +(((|#1| |#2|) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-832)) . T)) +(|has| |#2| (-794)) +(|has| |#2| (-794)) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#2|) |has| |#1| (-355)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +((((-548)) |has| |#1| (-855 (-548))) (((-371)) |has| |#1| (-855 (-371)))) (((|#1|) . T)) +((((-839 |#1|)) . T)) +((((-839 |#1|)) . T)) +(-12 (|has| |#1| (-355)) (|has| |#2| (-878))) +((((-399 (-548))) . T) (((-673)) . T) (($) . T)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) (((|#1|) . T)) -(((|#1| (-607 |#1|)) |has| |#1| (-809))) -(|has| |#1| (-1052)) -((((-823)) |has| |#1| (-1052))) -(|has| |#1| (-1052)) (((|#1|) . T)) -((((-823)) . T) (((-1128)) . T)) -(|has| |#1| (-1052)) -((((-823)) |has| |#1| (-1052))) -(|has| |#1| (-1052)) +(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(|has| |#1| (-355)) +(((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-823)) . T)) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (((|#1|) . T)) (((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) +((((-834 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-353)) (((|#1|) . T)) +(((|#2| (-745)) . T)) +((((-1135)) . T)) +((((-839 |#1|)) . T)) +(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +((((-832)) . T)) (((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-1106) (-1123) (-526) (-211) (-823)) . T)) -((((-823)) . T)) -(((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-823)) . T)) -(-3850 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-353)) (|has| |#3| (-691)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004)) (|has| |#3| (-1052))) -(-3850 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-353)) (|has| |#3| (-691)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004)) (|has| |#3| (-1052))) -(((|#3|) |has| |#3| (-163))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-691)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-691)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -(-3850 (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004))) -((($) -3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) ((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004)))) -(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)))) -((((-823)) -3850 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-583 (-823))) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-353)) (|has| |#3| (-691)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004)) (|has| |#3| (-1052))) (((-1205 |#3|)) . T)) -(|has| |#3| (-163)) -(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004))) (($) |has| |#3| (-163))) -(((|#3| |#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004))) (($ $) |has| |#3| (-163))) -(((|#3|) |has| |#3| (-1004))) -((((-1123)) -12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) -(-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) -(|has| |#3| (-353)) -(((|#3|) |has| |#3| (-1004))) -(((|#3|) |has| |#3| (-1004)) (((-526)) -12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) -(((|#3|) |has| |#3| (-1052))) -(((|#3|) |has| |#3| (-1052)) (((-526)) -12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052))) (((-392 (-526))) -12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) -((((-526) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) -(((|#3| |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) -(((|#3|) . T)) -((((-526) |#3|) . T)) -((((-526) |#3|) . T)) -(|has| |#3| (-757)) -(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) -(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) -(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) -(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) -(|has| |#3| (-809)) -(|has| |#3| (-809)) -(((|#3|) |has| |#3| (-348))) -(((|#1| |#3|) . T)) -((((-823)) . T)) -((($) . T)) -((((-823)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) +(-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) +(-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))) +((((-839 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +((($ $) . T) (((-591 $) $) . T)) ((($) . T)) -((((-526)) . T)) -((((-526)) . T)) -((((-515)) . T) (((-526)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) -((((-526)) . T)) -((((-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#2| (-584 (-515)))) (((-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363))))) (((-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) -((($) . T)) -(((|#1| (-512 |#2|)) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) -(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) -(((|#1| (-512 |#2|)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) -(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) -((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -(|has| |#1| (-811)) +((((-832)) . T)) +((((-548)) . T)) (((|#2|) . T)) -((((-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#2| (-845 (-363)))) (((-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#2| (-845 (-526))))) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T) ((|#2|) . T)) -(((|#1| (-512 |#2|) |#2|) . T)) +((((-832)) . T)) +(((|#1|) . T) (((-399 (-548))) |has| |#1| (-355))) +((((-832)) . T)) +(((|#1|) . T)) +((((-832)) . T)) +((($) . T) ((|#2|) . T) (((-399 (-548))) . T)) +(|has| |#1| (-1063)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-832)) . T)) +(|has| |#2| (-878)) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +((((-524)) |has| |#2| (-593 (-524))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548))))) +((((-832)) . T)) +((((-832)) . T)) +(((|#3|) |has| |#3| (-1016)) (((-548)) -12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) +((((-1087 |#1| |#2|)) . T) (((-921 |#1|)) |has| |#2| (-593 (-1135))) (((-832)) . T)) +((((-921 |#1|)) |has| |#2| (-593 (-1135))) (((-1118)) -12 (|has| |#1| (-1007 (-548))) (|has| |#2| (-593 (-1135)))) (((-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548))))) (((-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371))))) (((-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#2| (-593 (-524))))) +((((-1131 |#1|)) . T) (((-832)) . T)) +((((-832)) . T)) +((((-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) (((-548)) |has| |#2| (-1007 (-548))) ((|#2|) . T) (((-834 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T) (((-1135)) . T)) +((((-832)) . T)) +((((-548)) . T)) ((($) . T)) -((($ $) . T) ((|#2| $) . T)) -(((|#2|) . T)) -((((-823)) . T)) -(((|#1| (-512 |#2|) |#2|) . T)) -((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) -(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) -(((|#1| (-512 |#2|)) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(((|#1| |#2|) . T)) -((((-823)) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-1088 |#1| |#2|)) . T)) -(((#1=(-1088 |#1| |#2|) #1#) |has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|)))) -((((-1088 |#1| |#2|)) |has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|)))) -((((-823)) . T)) -((((-1088 |#1| |#2|)) . T)) -((((-515)) |has| |#2| (-584 (-515)))) -(((|#2|) |has| |#2| (-6 (-4312 "*")))) +((((-371)) |has| |#1| (-855 (-371))) (((-548)) |has| |#1| (-855 (-548)))) +((((-548)) . T)) +(((|#1|) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((((-832)) . T)) +(((|#1|) |has| |#1| (-169)) (($) . T)) +((((-548)) . T) (((-399 (-548))) . T)) +(((|#1|) |has| |#1| (-301 |#1|))) +((((-832)) . T)) +((((-371)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-832)) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-399 |#2|) |#3|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1063)) +(((|#2| (-473 (-3643 |#1|) (-745))) . T)) +((((-548) |#1|) . T)) +((((-1118)) . T) (((-832)) . T)) (((|#2| |#2|) . T)) +(((|#1| (-520 (-1135))) . T)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-548)) . T)) (((|#2|) . T)) -((((-653 |#2|)) . T) (((-823)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) -3850 (|has| |#2| (-6 (-4312 "*"))) (|has| |#2| (-163)))) -(((|#2|) . T)) -((((-1123)) |has| |#2| (-859 (-1123)))) -(|has| |#2| (-219)) -(((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) (((|#2|) . T)) -(((|#2|) . T) (((-526)) |has| |#2| (-995 (-526))) (((-392 (-526))) |has| |#2| (-995 (-392 (-526))))) -(((|#1| |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) -(((|#2|) . T)) -(((|#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-515)) |has| |#4| (-584 (-515)))) -(((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) . T)) -((((-823)) . T) (((-607 |#4|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) +((((-1135)) |has| |#1| (-869 (-1135))) (((-1045)) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) +(|has| |#1| (-540)) +((($) . T) (((-399 (-548))) . T)) +((($) . T)) +((($) . T)) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-823)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#1| |#2|) . T)) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-832)) . T)) +((((-142)) . T)) +(((|#1|) . T) (((-399 (-548))) . T)) (((|#1|) . T)) (((|#1|) . T)) +((((-832)) . T)) (((|#1|) . T)) +(|has| |#1| (-1111)) +(((|#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) (((|#1|) . T)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-526) (-138)) . T)) -((((-526) (-138)) . T)) -((((-526) (-138)) . T)) -((((-138)) . T)) -((((-138)) . T)) -((((-1106) |#1|) . T)) -((((-823)) . T)) -((((-1106) |#1|) . T)) -((((-1106) |#1|) . T)) -((((-1106) |#1|) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((#1=(-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) #1#) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) -((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) -((((-1106) |#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) -((((-1121 |#1| |#2| |#3|)) . T)) -((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) -(|has| |#1| (-348)) -((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) -((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) -((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) -((((-1121 |#1| |#2| |#3|)) -12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))))) -(((#1=(-1121 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|)))) (((-1123) #1#) -12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-496 (-1123) (-1121 |#1| |#2| |#3|))))) -((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(-3850 (-12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) -((((-1123)) -3850 (-12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123)))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) -((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) -(-3850 (|has| |#1| (-141)) (-12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-141)))) -(-3850 (|has| |#1| (-139)) (-12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-139)))) -((((-823)) . T)) -(((|#1|) . T)) -((((-1121 |#1| |#2| |#3|) $) -12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-271 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-526) (-1033)) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-1121 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((#2=(-1121 |#1| |#2| |#3|) #2#) |has| |#1| (-348)) ((|#1| |#1|) . T)) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (((-1121 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (((-1121 |#1| |#2| |#3|)) |has| |#1| (-348)) (($) . T) ((|#1|) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-1121 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) -(((|#1| (-526)) . T)) -(((|#1| (-526)) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(((|#1| (-1121 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -((((-823)) . T)) -((((-392 $) (-392 $)) |has| |#1| (-533)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) -(|has| |#1| (-348)) -(((|#1| (-735) (-1033)) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-1123)) |has| |#1| (-859 (-1123))) (((-1033)) . T)) -(|has| |#1| (-811)) -((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-735)) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T)) -((((-1033)) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) -(((|#1| (-735)) . T)) -(((#1=(-1033) |#1|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1099)) -(((|#1|) . T)) -((((-1121 |#1| |#2| |#3|)) . T) (((-1114 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) -((($ $) . T)) -((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) -(((|#1| (-392 (-526)) (-1033)) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#1| (-392 (-526))) . T)) -(((|#1| (-392 (-526))) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -((((-823)) . T)) -(((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) -(((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) -(((|#1|) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) . T)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) -(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(((|#1| (-1114 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(((|#1| (-735)) . T)) -(((|#1| (-735)) . T)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1| (-735) (-1033)) . T)) -((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) -((($ $) . T)) -((((-823)) . T)) -(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) -(|has| |#1| (-15 * (|#1| (-735) |#1|))) -(((|#1|) . T)) -((((-823)) . T)) -((((-363)) . T) (((-526)) . T)) -((((-849 (-363))) . T) (((-849 (-526))) . T) (((-1123)) . T) (((-515)) . T)) -((((-823)) . T)) -(((|#1| (-930)) . T)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((((-823)) . T)) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) -((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1|) . T)) -(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) -(((|#1| (-930)) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T)) +((((-399 $) (-399 $)) |has| |#1| (-540)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +((((-832)) . T)) +((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T) ((|#2|) . T)) +((((-1045)) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +((((-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#2| (-855 (-371)))) (((-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#2| (-855 (-548))))) +((((-1204 |#1| |#2| |#3| |#4|)) . T)) +((((-548) |#1|) . T)) +(((|#1| |#1|) . T)) +((($) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-169)) (($) . T)) +((($) . T)) +((((-673)) . T)) +((((-754 |#1| (-834 |#2|))) . T)) +((($) . T)) +((((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-1063)) +(|has| |#1| (-1063)) +(|has| |#2| (-355)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +(|has| |#1| (-38 (-399 (-548)))) +((((-548)) . T)) +((((-1135)) -12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) +((((-1135)) -12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) +(((|#1|) . T)) +(|has| |#1| (-226)) +(((|#1| (-520 |#3|)) . T)) +(|has| |#1| (-360)) +(((|#2| (-233 (-3643 |#1|) (-745))) . T)) +(|has| |#1| (-360)) +(|has| |#1| (-360)) +(((|#1|) . T) (($) . T)) +(((|#1| (-520 |#2|)) . T)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#1| (-745)) . T)) +(|has| |#1| (-540)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) +((((-832)) . T)) +(-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) +(-1524 (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#1|) |has| |#1| (-169))) +(((|#4|) |has| |#4| (-1016))) +(((|#3|) |has| |#3| (-1016))) +(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) +(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +((((-832)) . T)) +((($) . T) (((-399 (-548))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1063)) (((-548)) -12 (|has| |#4| (-1007 (-548))) (|has| |#4| (-1063))) (((-399 (-548))) -12 (|has| |#4| (-1007 (-399 (-548)))) (|has| |#4| (-1063)))) +(((|#3|) |has| |#3| (-1063)) (((-548)) -12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063))) (((-399 (-548))) -12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) +(|has| |#2| (-355)) +(((|#2|) |has| |#2| (-1016)) (((-548)) -12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) +(((|#1|) . T)) +(|has| |#2| (-355)) +(((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(((|#2| |#2|) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#2|) . T)) +((((-832)) |has| |#1| (-1063))) +((($) . T)) +((((-1204 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-794)) +(|has| |#2| (-794)) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) +(|has| |#1| (-355)) +(((|#1|) |has| |#2| (-409 |#1|))) +(((|#1|) |has| |#2| (-409 |#1|))) +((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-1171)) . T) (((-832)) . T) (((-1140)) . T)) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) |has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +((((-548) |#1|) . T)) +((((-548) |#1|) . T)) +((((-548) |#1|) . T)) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-548) |#1|) . T)) +(((|#1|) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-1135)) |has| |#1| (-869 (-1135))) (((-792 (-1135))) . T)) +(-1524 (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +((((-793 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-823)) . T)) +((((-832)) . T)) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016))) (((|#1| |#2|) . T)) +(|has| |#1| (-38 (-399 (-548)))) +((((-832)) . T)) +((((-1204 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540)) (((-399 (-548))) |has| |#1| (-540))) +(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +(|has| |#1| (-355)) +(-1524 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (-12 (|has| |#1| (-355)) (|has| |#2| (-226)))) +(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) +(|has| |#1| (-355)) +(((|#1|) . T)) +(((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#1| |#1|) . T)) +((((-548) |#1|) . T)) +((((-308 |#1|)) . T)) +(((#0=(-673) (-1131 #0#)) . T)) +((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#1|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(|has| |#1| (-819)) +((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1087 |#1| (-1135))) . T) (((-792 (-1135))) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-1135)) . T)) +((($) . T)) +(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) +(((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1135) $) |has| |#1| (-226)) ((#0# |#1|) |has| |#1| (-226)) ((#1=(-1052 (-1135)) |#1|) . T) ((#1# $) . T)) +((($) . T) ((|#2|) . T)) +((($) . T) ((|#2|) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548))))) +(|has| |#2| (-878)) +((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) |has| #0# (-169)) (((-399 (-548))) |has| #0# (-38 (-399 (-548))))) +((((-548) |#1|) . T)) +(((#0=(-1204 |#1| |#2| |#3| |#4|)) |has| #0# (-301 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#2| |#2|) |has| |#1| (-355)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) +(|has| |#2| (-226)) +(|has| $ (-145)) +((((-832)) . T)) +((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((((-832)) . T)) +(|has| |#1| (-819)) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) +((((-399 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-832)) . T)) +(((|#2| (-646 |#1|)) . T)) +(-12 (|has| |#1| (-299)) (|has| |#1| (-878))) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#4|) . T)) +(|has| |#1| (-540)) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#2|) |has| |#1| (-355)) ((|#1|) . T)) +((((-1135)) -1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) +(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) +(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +((((-548) |#1|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(((|#1|) . T)) +(((|#1| (-520 (-792 (-1135)))) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#1|) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#1|) . T)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +((($) . T) (((-839 |#1|)) . T) (((-399 (-548))) . T)) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +(|has| |#1| (-540)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-399 |#2|)) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-399 (-548)) #0#) . T) (($ $) . T)) +((((-548)) . T)) +((((-832)) . T)) +(((|#2|) . T) (((-399 (-548))) . T) (($) . T)) +((((-562 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-832)) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-548) |#1|) . T)) +((((-832)) . T)) +((($ $) . T) (((-1135) $) . T)) +((((-1210 |#1| |#2| |#3|)) . T)) +((((-524)) |has| |#2| (-593 (-524))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548))))) +((((-832)) . T)) +((((-832)) . T)) +((((-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548))))) (((-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371))))) (((-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524))))) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1|) . T) (((-832)) . T) (((-1140)) . T)) +((((-832)) . T)) +(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) +(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +((((-832)) . T)) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +(|has| |#1| (-355)) +((((-1210 |#1| |#2| |#3|)) . T) (((-1182 |#1| |#2| |#3|)) . T)) +((((-1135)) . T) (((-832)) . T)) +((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +(((|#2|) . T) ((|#6|) . T)) +((($) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T)) +((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-1067)) . T)) +((((-832)) . T)) +((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) +((($) . T)) +((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(|has| |#2| (-878)) +(|has| |#1| (-878)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +((((-673)) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169))) +((((-399 (-548))) . T) (($) . T)) +(((|#1| (-548)) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(|has| |#1| (-355)) +(|has| |#1| (-355)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +(((|#1| (-548)) . T)) +(((|#1| (-399 (-548))) . T)) +(((|#1| (-745)) . T)) +((((-399 (-548))) . T)) +(((|#1| (-520 |#2|) |#2|) . T)) +((((-548) |#1|) . T)) +((((-548) |#1|) . T)) +(|has| |#1| (-1063)) +((((-548) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-861 (-371))) . T) (((-861 (-548))) . T) (((-1135)) . T) (((-524)) . T)) +(((|#1|) . T)) +((((-832)) . T)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) +((((-548)) . T)) +((((-548)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) (((|#1| |#2|) . T)) +(((|#1|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-1135)) -12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) +(-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-355)) (((|#1| |#2|) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) -((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-373) (-1106)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1123) $) . T)) -((((-1123)) . T)) -((((-823)) . T)) -(((|#1| (-512 #1=(-1123)) #1#) . T)) -((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) -(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) -((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) -(((|#1| (-512 (-1123))) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(((|#1| (-1123)) . T)) -(|has| |#1| (-1052)) -(|has| |#1| (-1052)) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052))) (((-917 |#1|)) . T)) -((((-823)) . T) (((-1128)) . T)) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) -((((-1195 |#1| |#2| |#3|)) . T)) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) -(|has| |#1| (-348)) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) -((((-1195 |#1| |#2| |#3|)) -12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))))) -(((#1=(-1195 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|)))) (((-1123) #1#) -12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-496 (-1123) (-1195 |#1| |#2| |#3|))))) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(-3850 (-12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) -((((-1123)) -3850 (-12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123)))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) -(-3850 (|has| |#1| (-141)) (-12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-141)))) -(-3850 (|has| |#1| (-139)) (-12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-139)))) -((((-823)) . T)) -(((|#1|) . T)) -((((-1195 |#1| |#2| |#3|) $) -12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-271 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-526) (-1033)) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((#2=(-1195 |#1| |#2| |#3|) #2#) |has| |#1| (-348)) ((|#1| |#1|) . T)) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-348)) (($) . T) ((|#1|) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) -(((|#1| (-526)) . T)) -(((|#1| (-526)) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(((|#1| (-1195 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-348))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-1099))) -(((|#2|) . T) (((-1123)) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123)))) (((-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526)))) (((-392 (-526))) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-977))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-869))) -(((|#2|) |has| |#1| (-348))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) -(-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-784))) (-12 (|has| |#1| (-348)) (|has| |#2| (-811)))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) -(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) -((((-363)) -12 (|has| |#1| (-348)) (|has| |#2| (-845 (-363)))) (((-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-845 (-526))))) -(|has| |#1| (-348)) -(((|#2|) |has| |#1| (-348))) -((((-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-606 (-526)))) ((|#2|) |has| |#1| (-348))) -(((|#2|) |has| |#1| (-348))) -(((|#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|))) (((-1123) |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-496 (-1123) |#2|)))) -(((|#2|) |has| |#1| (-348))) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) -((((-1123)) -3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) -(((|#2|) |has| |#1| (-348))) -((((-211)) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) (((-363)) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) (((-849 (-363))) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-363))))) (((-849 (-526))) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-526))))) (((-515)) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-515))))) -(-3850 (|has| |#1| (-141)) (-12 (|has| |#1| (-348)) (|has| |#2| (-141)))) -(-3850 (|has| |#1| (-139)) (-12 (|has| |#1| (-348)) (|has| |#2| (-139)))) -((((-823)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-348)) (|has| |#2| (-271 |#2| |#2|))) (($ $) . T)) -(((|#1| (-526) (-1033)) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#2|) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#2| |#2|) |has| |#1| (-348)) ((|#1| |#1|) . T)) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#2|) |has| |#1| (-348)) ((|#1|) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#2|) |has| |#1| (-348)) (($) . T) ((|#1|) . T)) -((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#2|) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) -(((|#1| (-526)) . T)) -(((|#1| (-526)) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-226)) +((((-832)) . T)) +(((|#1| (-745) (-1045)) . T)) +((((-548) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-548) |#1|) . T)) +((((-548) |#1|) . T)) +((((-116 |#1|)) . T)) +((((-399 (-548))) . T) (((-548)) . T)) +(((|#2|) |has| |#2| (-1016))) +((((-399 (-548))) . T) (($) . T)) +(((|#2|) . T)) +((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) +((((-548)) . T)) +((((-548)) . T)) +((((-1118) (-1135) (-548) (-218) (-832)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(((|#1| (-1101 |#1|)) |has| |#1| (-809))) -(|has| |#1| (-1052)) -((((-823)) |has| |#1| (-1052))) -(|has| |#1| (-1052)) -(((|#1|) . T)) -(((|#2|) . T)) -((((-823)) . T)) -((((-392 $) (-392 $)) |has| |#2| (-533)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-348)) -(-3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-869))) -(-3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -(-3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -(-3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) -(|has| |#2| (-348)) -(((|#2| (-735) (-1033)) . T)) -(|has| |#2| (-869)) -(|has| |#2| (-869)) -((((-1123)) |has| |#2| (-859 (-1123))) (((-1033)) . T)) -(|has| |#2| (-811)) -((((-526)) |has| |#2| (-606 (-526))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-735)) . T)) -(|has| |#2| (-141)) -(|has| |#2| (-139)) -((($) -3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) ((|#2|) |has| |#2| (-163)) (((-392 (-526))) |has| |#2| (-37 (-392 (-526))))) -((($) . T) ((|#2|) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526))))) -((($) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) ((|#2|) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) ((|#2| |#2|) . T) ((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526))))) -((($) -3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) ((|#2|) |has| |#2| (-163)) (((-392 (-526))) |has| |#2| (-37 (-392 (-526))))) -(((|#2|) . T)) -((((-1033)) . T) ((|#2|) . T) (((-526)) |has| |#2| (-995 (-526))) (((-392 (-526))) |has| |#2| (-995 (-392 (-526))))) -(((|#2| (-735)) . T)) -(((#1=(-1033) |#2|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#2| (-1099)) -(((|#2|) . T)) -((((-1195 |#1| |#2| |#3|)) . T) (((-1165 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) -((($ $) . T)) -((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) -(((|#1| (-392 (-526)) (-1033)) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#1| (-392 (-526))) . T)) -(((|#1| (-392 (-526))) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -((((-823)) . T)) -(((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) -(((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) -(((|#1|) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) . T)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) -(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(((|#1| (-1165 |#1| |#2| |#3|)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) -((($ $) . T)) -((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) -(((|#1| (-392 (-526)) (-1033)) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#1| (-392 (-526))) . T)) -(((|#1| (-392 (-526))) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-348)) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -((((-823)) . T)) -(((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) -(((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) -(((|#1|) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) . T)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) -(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) -(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) -(|has| |#1| (-348)) -(|has| |#1| (-348)) -(|has| |#1| (-348)) +(-1524 (|has| |#1| (-341)) (|has| |#1| (-360))) (((|#1| |#2|) . T)) -((((-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) . T)) -(|has| (-1186 |#2| |#3| |#4|) (-141)) -(|has| (-1186 |#2| |#3| |#4|) (-139)) -((($) . T) ((#1=(-1186 |#2| |#3| |#4|)) |has| #1# (-163)) (((-392 (-526))) |has| #1# (-37 (-392 (-526))))) -((((-823)) . T)) -((($) . T) ((#1=(-1186 |#2| |#3| |#4|)) . T) (((-392 (-526))) |has| #1# (-37 (-392 (-526))))) -((($ $) . T) ((#1=(-1186 |#2| |#3| |#4|) #1#) . T) ((#2=(-392 (-526)) #2#) |has| #1# (-37 (-392 (-526))))) -(((#1=(-1186 |#2| |#3| |#4|)) . T) (((-392 (-526))) |has| #1# (-37 (-392 (-526)))) (($) . T)) -((($) . T) ((#1=(-1186 |#2| |#3| |#4|)) |has| #1# (-163)) (((-392 (-526))) |has| #1# (-37 (-392 (-526))))) -((((-1186 |#2| |#3| |#4|)) . T)) -((((-1186 |#2| |#3| |#4|)) . T)) -((((-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(|has| |#1| (-37 (-392 (-526)))) -(((|#1| (-735)) . T)) -(((|#1| (-735)) . T)) -(|has| |#1| (-533)) -(|has| |#1| (-533)) -(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) -((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) -(((|#1| (-735) (-1033)) . T)) -((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) -((($ $) . T)) -((((-823)) . T)) -(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) -(|has| |#1| (-15 * (|#1| (-735) |#1|))) -(((|#1|) . T)) -((((-1123)) . T) (((-823)) . T)) -(((|#1|) . T)) +((($) . T) ((|#1|) . T)) +((((-832)) . T)) +((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +(((|#2|) |has| |#2| (-1063)) (((-548)) -12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (((-399 (-548))) -12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) +((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((($) . T) (((-399 (-548))) . T)) +(|has| |#1| (-878)) +(|has| |#1| (-878)) +((((-218)) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) (((-371)) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) (((-861 (-371))) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-861 (-371))))) (((-861 (-548))) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-861 (-548))))) (((-524)) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-524))))) +((((-832)) . T)) +((((-832)) . T)) +(((|#2| |#2|) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) +(((|#2|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) +(((|#1|) |has| |#1| (-169))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-832)) -1524 (-12 (|has| |#1| (-592 (-832))) (|has| |#2| (-592 (-832)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) +((((-399 |#2|) |#3|) . T)) +((((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-355)) +((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(|has| (-399 |#2|) (-145)) +(|has| (-399 |#2|) (-143)) +((((-673)) . T)) +(((|#1|) . T) (((-399 (-548))) . T) (((-548)) . T) (($) . T)) +(((#0=(-548) #0#) . T)) +((($) . T) (((-399 (-548))) . T)) +(-1524 (|has| |#4| (-169)) (|has| |#4| (-701)) (|has| |#4| (-819)) (|has| |#4| (-1016))) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +((((-832)) . T) (((-1140)) . T)) +(|has| |#4| (-767)) +(-1524 (|has| |#4| (-767)) (|has| |#4| (-819))) +(|has| |#4| (-819)) +(|has| |#3| (-767)) +(-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) +(|has| |#3| (-819)) +((((-548)) . T)) +(((|#2|) . T)) +((((-1135)) -1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-526) |#1|) . T)) -((((-515)) |has| |#1| (-584 (-515)))) (((|#1|) . T)) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) -(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) -((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) (((|#1|) . T)) -(|has| |#1| (-811)) (((|#1|) . T)) +(((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-823)) . T)) -((((-823)) . T)) -((((-823)) . T) (((-1128)) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163)) (($) . T)) -((((-823)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-515)) |has| |#4| (-584 (-515)))) -(((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) -(((|#4|) . T)) -((((-823)) . T) (((-607 |#4|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#2|) . T)) -(((|#1| |#2|) . T)) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-823)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-163))) -((((-783 |#1|)) . T)) -(((|#2| (-783 |#1|)) . T)) -(((|#2| (-852 |#1|)) . T)) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#2| |#2|) . T)) +((((-834 |#1|)) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-1100 |#1| |#2|)) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-991)) +(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-832)) . T)) +((((-524)) |has| |#2| (-593 (-524))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548)))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-371)) . #0=(|has| |#2| (-991))) (((-218)) . #0#)) +((((-1135) (-52)) . T)) +(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-399 (-548)))) (((|#2|) . T)) -(((|#2|) |has| |#2| (-163))) +((($ $) . T)) +((((-399 (-548))) . T) (((-673)) . T) (($) . T)) +((((-1133 |#1| |#2| |#3|)) . T)) +((((-1133 |#1| |#2| |#3|)) . T) (((-1126 |#1| |#2| |#3|)) . T)) +((((-832)) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-548) |#1|) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1|) . T)) (((|#2|) . T)) -(((|#2|) . T) (($) . T)) -((((-823)) . T)) -((((-852 |#1|)) . T) (((-783 |#1|)) . T)) -(((|#1| |#2|) . T)) -((((-1123) |#1|) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) . T)) +(|has| |#2| (-355)) +(((|#3|) . T) ((|#2|) . T) (($) -1524 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016))) ((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-355)) (|has| |#4| (-1016)))) +(((|#2|) . T) (($) -1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016)))) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-823)) . T)) -((((-783 (-1123))) . T)) -((((-1123) |#1|) . T)) -(((|#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) . T)) +(|has| |#1| (-355)) +((((-116 |#1|)) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-823)) . T)) +((((-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) (((-548)) |has| |#2| (-1007 (-548))) ((|#2|) . T) (((-834 |#1|)) . T)) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1|) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-129)) . T) (((-832)) . T)) +((((-548) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-355)) (|has| |#2| (-278 |#2| |#2|))) (($ $) . T)) +((($ $) . T)) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +((((-832)) . T)) +((((-832)) . T)) +((((-832)) . T)) +(((|#1| (-520 |#2|)) . T)) +((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +(((|#1| (-548)) . T)) +(((|#1| (-399 (-548))) . T)) +(((|#1| (-745)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-832)) . T) (((-1140)) . T)) +(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((($) . T)) +(((|#2| (-520 (-834 |#1|))) . T)) +((((-832)) . T) (((-1140)) . T)) +((((-548) |#1|) . T)) +(((|#2|) . T)) +(((|#2| (-745)) . T)) +((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +(((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#2|) . T)) -(((|#2|) . T) (($) . T)) -((((-823)) . T)) -((((-783 |#1|)) . T)) +((((-1118) |#1|) . T)) +((((-399 |#2|)) . T)) +((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(|has| |#1| (-540)) +(|has| |#1| (-540)) +((($) . T) ((|#2|) . T)) +(((|#1|) . T)) (((|#1| |#2|) . T)) -((((-526)) . T)) +(((|#2| $) |has| |#2| (-278 |#2| |#2|))) +(((|#1| (-619 |#1|)) |has| |#1| (-819))) +(-1524 (|has| |#1| (-226)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(|has| |#1| (-1063)) +(((|#1|) . T)) +((((-399 (-548))) . T) (($) . T)) +((((-968 |#1|)) . T) ((|#1|) . T) (((-548)) -1524 (|has| (-968 |#1|) (-1007 (-548))) (|has| |#1| (-1007 (-548)))) (((-399 (-548))) -1524 (|has| (-968 |#1|) (-1007 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-1135)) |has| |#1| (-869 (-1135)))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| (-581 |#1| |#3|) (-581 |#1| |#2|)) . T)) +(((|#1|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((#0=(-1100 |#1| |#2|) #0#) |has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((#0=(-116 |#1|)) |has| #0# (-301 #0#))) ((($ $) . T)) -((($) . T)) -((((-823)) . T)) -((($) . T)) -(((-1233 . -163) T) ((-1233 . -691) T) ((-1233 . -1063) T) ((-1233 . -1011) T) ((-1233 . -1004) T) ((-1233 . -613) 144256) ((-1233 . -129) T) ((-1233 . -25) T) ((-1233 . -100) T) ((-1233 . -583) 144238) ((-1233 . -1052) T) ((-1233 . -23) T) ((-1233 . -21) T) ((-1233 . -1010) 144225) ((-1233 . -110) 144210) ((-1233 . -353) T) ((-1233 . -584) 144192) ((-1233 . -1099) T) ((-1229 . -1227) 144171) ((-1229 . -995) 144148) ((-1229 . -1004) T) ((-1229 . -1011) T) ((-1229 . -1063) T) ((-1229 . -691) T) ((-1229 . -21) T) ((-1229 . -23) T) ((-1229 . -1052) T) ((-1229 . -583) 144130) ((-1229 . -100) T) ((-1229 . -25) T) ((-1229 . -129) T) ((-1229 . -613) 144104) ((-1229 . -1219) 144088) ((-1229 . -682) 144058) ((-1229 . -1010) 144042) ((-1229 . -110) 144021) ((-1229 . -37) 143991) ((-1229 . -1224) 143970) ((-1228 . -1004) T) ((-1228 . -1011) T) ((-1228 . -1063) T) ((-1228 . -691) T) ((-1228 . -21) T) ((-1228 . -23) T) ((-1228 . -1052) T) ((-1228 . -583) 143952) ((-1228 . -100) T) ((-1228 . -25) T) ((-1228 . -129) T) ((-1228 . -613) 143926) ((-1228 . -1219) 143910) ((-1228 . -682) 143880) ((-1228 . -1010) 143864) ((-1228 . -110) 143843) ((-1228 . -37) 143813) ((-1228 . -369) 143792) ((-1228 . -995) 143776) ((-1226 . -1227) 143752) ((-1226 . -995) 143726) ((-1226 . -1004) T) ((-1226 . -1011) T) ((-1226 . -1063) T) ((-1226 . -691) T) ((-1226 . -21) T) ((-1226 . -23) T) ((-1226 . -1052) T) ((-1226 . -583) 143708) ((-1226 . -100) T) ((-1226 . -25) T) ((-1226 . -129) T) ((-1226 . -613) 143682) ((-1226 . -1219) 143666) ((-1226 . -682) 143636) ((-1226 . -1010) 143620) ((-1226 . -110) 143599) ((-1226 . -37) 143569) ((-1226 . -1224) 143545) ((-1225 . -1227) 143524) ((-1225 . -995) 143481) ((-1225 . -1004) T) ((-1225 . -1011) T) ((-1225 . -1063) T) ((-1225 . -691) T) ((-1225 . -21) T) ((-1225 . -23) T) ((-1225 . -1052) T) ((-1225 . -583) 143463) ((-1225 . -100) T) ((-1225 . -25) T) ((-1225 . -129) T) ((-1225 . -613) 143437) ((-1225 . -1219) 143421) ((-1225 . -682) 143391) ((-1225 . -1010) 143375) ((-1225 . -110) 143354) ((-1225 . -37) 143324) ((-1225 . -1224) 143303) ((-1225 . -369) 143275) ((-1220 . -369) 143247) ((-1220 . -995) 143224) ((-1220 . -682) 143194) ((-1220 . -613) 143168) ((-1220 . -129) T) ((-1220 . -25) T) ((-1220 . -100) T) ((-1220 . -583) 143150) ((-1220 . -1052) T) ((-1220 . -23) T) ((-1220 . -21) T) ((-1220 . -1010) 143134) ((-1220 . -110) 143113) ((-1220 . -1227) 143092) ((-1220 . -1004) T) ((-1220 . -1011) T) ((-1220 . -1063) T) ((-1220 . -691) T) ((-1220 . -1219) 143076) ((-1220 . -37) 143046) ((-1220 . -1224) 143025) ((-1218 . -1154) 142994) ((-1218 . -583) 142956) ((-1218 . -145) 142940) ((-1218 . -33) T) ((-1218 . -1159) T) ((-1218 . -294) 142878) ((-1218 . -496) 142811) ((-1218 . -1052) T) ((-1218 . -100) T) ((-1218 . -472) 142795) ((-1218 . -584) 142756) ((-1218 . -935) 142725) ((-1217 . -1004) T) ((-1217 . -1011) T) ((-1217 . -1063) T) ((-1217 . -691) T) ((-1217 . -21) T) ((-1217 . -23) T) ((-1217 . -1052) T) ((-1217 . -583) 142707) ((-1217 . -100) T) ((-1217 . -25) T) ((-1217 . -129) T) ((-1217 . -613) 142667) ((-1217 . -37) 142637) ((-1217 . -110) 142602) ((-1217 . -1010) 142572) ((-1217 . -682) 142542) ((-1216 . -1035) T) ((-1216 . -583) 142508) ((-1216 . -1052) T) ((-1216 . -100) T) ((-1216 . -91) T) ((-1209 . -1052) T) ((-1209 . -583) 142490) ((-1209 . -100) T) ((-1208 . -1052) T) ((-1208 . -583) 142472) ((-1208 . -100) T) ((-1205 . -1204) 142456) ((-1205 . -357) 142440) ((-1205 . -811) 142419) ((-1205 . -145) 142403) ((-1205 . -33) T) ((-1205 . -1159) T) ((-1205 . -583) 142315) ((-1205 . -294) 142253) ((-1205 . -496) 142186) ((-1205 . -1052) 142136) ((-1205 . -100) 142086) ((-1205 . -472) 142070) ((-1205 . -584) 142031) ((-1205 . -574) 142008) ((-1205 . -271) 141985) ((-1205 . -273) 141962) ((-1205 . -616) 141946) ((-1205 . -19) 141930) ((-1202 . -1052) T) ((-1202 . -583) 141896) ((-1202 . -100) T) ((-1195 . -1198) 141880) ((-1195 . -219) 141839) ((-1195 . -613) 141764) ((-1195 . -129) T) ((-1195 . -25) T) ((-1195 . -100) T) ((-1195 . -583) 141746) ((-1195 . -1052) T) ((-1195 . -23) T) ((-1195 . -21) T) ((-1195 . -691) T) ((-1195 . -1063) T) ((-1195 . -1011) T) ((-1195 . -1004) T) ((-1195 . -271) 141731) ((-1195 . -859) 141644) ((-1195 . -932) 141613) ((-1195 . -37) 141510) ((-1195 . -110) 141379) ((-1195 . -1010) 141262) ((-1195 . -682) 141159) ((-1195 . -139) 141138) ((-1195 . -141) 141117) ((-1195 . -163) 141068) ((-1195 . -533) 141047) ((-1195 . -275) 141026) ((-1195 . -46) 141003) ((-1195 . -1184) 140980) ((-1195 . -34) 140946) ((-1195 . -93) 140912) ((-1195 . -269) 140878) ((-1195 . -475) 140844) ((-1195 . -1148) 140810) ((-1195 . -1145) 140776) ((-1195 . -960) 140742) ((-1192 . -311) 140686) ((-1192 . -995) 140652) ((-1192 . -397) 140618) ((-1192 . -37) 140510) ((-1192 . -613) 140415) ((-1192 . -691) T) ((-1192 . -1063) T) ((-1192 . -1011) T) ((-1192 . -1004) T) ((-1192 . -110) 140307) ((-1192 . -1010) 140212) ((-1192 . -21) T) ((-1192 . -23) T) ((-1192 . -1052) T) ((-1192 . -583) 140194) ((-1192 . -100) T) ((-1192 . -25) T) ((-1192 . -129) T) ((-1192 . -682) 140086) ((-1192 . -139) 140047) ((-1192 . -141) 140008) ((-1192 . -163) T) ((-1192 . -533) T) ((-1192 . -275) T) ((-1192 . -46) 139952) ((-1191 . -1190) 139931) ((-1191 . -348) 139910) ((-1191 . -1164) 139889) ((-1191 . -880) 139868) ((-1191 . -533) 139819) ((-1191 . -163) 139750) ((-1191 . -682) 139591) ((-1191 . -37) 139432) ((-1191 . -436) 139411) ((-1191 . -292) 139390) ((-1191 . -613) 139287) ((-1191 . -691) T) ((-1191 . -1063) T) ((-1191 . -1011) T) ((-1191 . -1004) T) ((-1191 . -110) 139108) ((-1191 . -1010) 138943) ((-1191 . -21) T) ((-1191 . -23) T) ((-1191 . -1052) T) ((-1191 . -583) 138925) ((-1191 . -100) T) ((-1191 . -25) T) ((-1191 . -129) T) ((-1191 . -275) 138876) ((-1191 . -229) 138855) ((-1191 . -960) 138821) ((-1191 . -1145) 138787) ((-1191 . -1148) 138753) ((-1191 . -475) 138719) ((-1191 . -269) 138685) ((-1191 . -93) 138651) ((-1191 . -34) 138617) ((-1191 . -1184) 138587) ((-1191 . -46) 138557) ((-1191 . -141) 138536) ((-1191 . -139) 138515) ((-1191 . -932) 138477) ((-1191 . -859) 138383) ((-1191 . -271) 138368) ((-1191 . -219) 138320) ((-1191 . -1188) 138304) ((-1191 . -995) 138288) ((-1186 . -1190) 138249) ((-1186 . -348) 138228) ((-1186 . -1164) 138207) ((-1186 . -880) 138186) ((-1186 . -533) 138137) ((-1186 . -163) 138068) ((-1186 . -682) 137909) ((-1186 . -37) 137750) ((-1186 . -436) 137729) ((-1186 . -292) 137708) ((-1186 . -613) 137605) ((-1186 . -691) T) ((-1186 . -1063) T) ((-1186 . -1011) T) ((-1186 . -1004) T) ((-1186 . -110) 137426) ((-1186 . -1010) 137261) ((-1186 . -21) T) ((-1186 . -23) T) ((-1186 . -1052) T) ((-1186 . -583) 137243) ((-1186 . -100) T) ((-1186 . -25) T) ((-1186 . -129) T) ((-1186 . -275) 137194) ((-1186 . -229) 137173) ((-1186 . -960) 137139) ((-1186 . -1145) 137105) ((-1186 . -1148) 137071) ((-1186 . -475) 137037) ((-1186 . -269) 137003) ((-1186 . -93) 136969) ((-1186 . -34) 136935) ((-1186 . -1184) 136905) ((-1186 . -46) 136875) ((-1186 . -141) 136854) ((-1186 . -139) 136833) ((-1186 . -932) 136795) ((-1186 . -859) 136701) ((-1186 . -271) 136686) ((-1186 . -219) 136638) ((-1186 . -1188) 136622) ((-1186 . -995) 136557) ((-1174 . -1181) 136541) ((-1174 . -1099) 136519) ((-1174 . -584) NIL) ((-1174 . -294) 136506) ((-1174 . -496) 136453) ((-1174 . -311) 136430) ((-1174 . -995) 136312) ((-1174 . -397) 136296) ((-1174 . -37) 136125) ((-1174 . -110) 135934) ((-1174 . -1010) 135757) ((-1174 . -613) 135682) ((-1174 . -682) 135511) ((-1174 . -139) 135490) ((-1174 . -141) 135469) ((-1174 . -46) 135446) ((-1174 . -362) 135430) ((-1174 . -606) 135378) ((-1174 . -811) 135357) ((-1174 . -859) 135300) ((-1174 . -845) NIL) ((-1174 . -869) 135279) ((-1174 . -1164) 135258) ((-1174 . -909) 135227) ((-1174 . -880) 135206) ((-1174 . -533) 135117) ((-1174 . -275) 135028) ((-1174 . -163) 134919) ((-1174 . -436) 134850) ((-1174 . -292) 134829) ((-1174 . -271) 134756) ((-1174 . -219) T) ((-1174 . -129) T) ((-1174 . -25) T) ((-1174 . -100) T) ((-1174 . -583) 134738) ((-1174 . -1052) T) ((-1174 . -23) T) ((-1174 . -21) T) ((-1174 . -691) T) ((-1174 . -1063) T) ((-1174 . -1011) T) ((-1174 . -1004) T) ((-1174 . -217) 134722) ((-1172 . -1046) 134706) ((-1172 . -1159) T) ((-1172 . -1052) 134684) ((-1172 . -583) 134651) ((-1172 . -100) 134629) ((-1172 . -1047) 134586) ((-1170 . -1169) 134565) ((-1170 . -960) 134531) ((-1170 . -1145) 134497) ((-1170 . -1148) 134463) ((-1170 . -475) 134429) ((-1170 . -269) 134395) ((-1170 . -93) 134361) ((-1170 . -34) 134327) ((-1170 . -1184) 134304) ((-1170 . -46) 134281) ((-1170 . -682) 134095) ((-1170 . -613) 133965) ((-1170 . -1010) 133773) ((-1170 . -110) 133562) ((-1170 . -37) 133376) ((-1170 . -932) 133345) ((-1170 . -271) 133265) ((-1170 . -1167) 133249) ((-1170 . -691) T) ((-1170 . -1063) T) ((-1170 . -1011) T) ((-1170 . -1004) T) ((-1170 . -21) T) ((-1170 . -23) T) ((-1170 . -1052) T) ((-1170 . -583) 133231) ((-1170 . -100) T) ((-1170 . -25) T) ((-1170 . -129) T) ((-1170 . -139) 133156) ((-1170 . -141) 133081) ((-1170 . -584) 132754) ((-1170 . -217) 132724) ((-1170 . -859) 132575) ((-1170 . -219) 132480) ((-1170 . -348) 132459) ((-1170 . -1164) 132438) ((-1170 . -880) 132417) ((-1170 . -533) 132368) ((-1170 . -163) 132299) ((-1170 . -436) 132278) ((-1170 . -292) 132257) ((-1170 . -275) 132208) ((-1170 . -229) 132187) ((-1170 . -323) 132157) ((-1170 . -496) 132017) ((-1170 . -294) 131956) ((-1170 . -362) 131926) ((-1170 . -606) 131834) ((-1170 . -385) 131804) ((-1170 . -1159) 131783) ((-1170 . -845) 131656) ((-1170 . -784) 131609) ((-1170 . -755) 131562) ((-1170 . -756) 131515) ((-1170 . -811) 131414) ((-1170 . -758) 131367) ((-1170 . -761) 131320) ((-1170 . -809) 131273) ((-1170 . -843) 131243) ((-1170 . -869) 131196) ((-1170 . -977) 131149) ((-1170 . -995) 130938) ((-1170 . -1099) 130890) ((-1170 . -950) 130860) ((-1165 . -1169) 130821) ((-1165 . -960) 130787) ((-1165 . -1145) 130753) ((-1165 . -1148) 130719) ((-1165 . -475) 130685) ((-1165 . -269) 130651) ((-1165 . -93) 130617) ((-1165 . -34) 130583) ((-1165 . -1184) 130560) ((-1165 . -46) 130537) ((-1165 . -682) 130333) ((-1165 . -613) 130185) ((-1165 . -1010) 129975) ((-1165 . -110) 129744) ((-1165 . -37) 129540) ((-1165 . -932) 129509) ((-1165 . -271) 129357) ((-1165 . -1167) 129341) ((-1165 . -691) T) ((-1165 . -1063) T) ((-1165 . -1011) T) ((-1165 . -1004) T) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1052) T) ((-1165 . -583) 129323) ((-1165 . -100) T) ((-1165 . -25) T) ((-1165 . -129) T) ((-1165 . -139) 129230) ((-1165 . -141) 129137) ((-1165 . -584) NIL) ((-1165 . -217) 129089) ((-1165 . -859) 128922) ((-1165 . -219) 128809) ((-1165 . -348) 128788) ((-1165 . -1164) 128767) ((-1165 . -880) 128746) ((-1165 . -533) 128697) ((-1165 . -163) 128628) ((-1165 . -436) 128607) ((-1165 . -292) 128586) ((-1165 . -275) 128537) ((-1165 . -229) 128516) ((-1165 . -323) 128468) ((-1165 . -496) 128237) ((-1165 . -294) 128122) ((-1165 . -362) 128074) ((-1165 . -606) 128026) ((-1165 . -385) 127978) ((-1165 . -1159) 127957) ((-1165 . -845) NIL) ((-1165 . -784) NIL) ((-1165 . -755) NIL) ((-1165 . -756) NIL) ((-1165 . -811) NIL) ((-1165 . -758) NIL) ((-1165 . -761) NIL) ((-1165 . -809) NIL) ((-1165 . -843) 127909) ((-1165 . -869) NIL) ((-1165 . -977) NIL) ((-1165 . -995) 127875) ((-1165 . -1099) NIL) ((-1165 . -950) 127827) ((-1160 . -1035) T) ((-1160 . -583) 127793) ((-1160 . -1052) T) ((-1160 . -100) T) ((-1160 . -91) T) ((-1157 . -583) 127705) ((-1157 . -1052) 127683) ((-1157 . -100) 127661) ((-1152 . -705) 127637) ((-1152 . -34) 127603) ((-1152 . -93) 127569) ((-1152 . -269) 127535) ((-1152 . -475) 127501) ((-1152 . -1148) 127467) ((-1152 . -1145) 127433) ((-1152 . -960) 127399) ((-1152 . -46) 127368) ((-1152 . -37) 127265) ((-1152 . -682) 127162) ((-1152 . -275) 127141) ((-1152 . -533) 127120) ((-1152 . -110) 126989) ((-1152 . -1010) 126872) ((-1152 . -163) 126823) ((-1152 . -141) 126802) ((-1152 . -139) 126781) ((-1152 . -613) 126706) ((-1152 . -932) 126668) ((-1152 . -1004) T) ((-1152 . -1011) T) ((-1152 . -1063) T) ((-1152 . -691) T) ((-1152 . -21) T) ((-1152 . -23) T) ((-1152 . -1052) T) ((-1152 . -583) 126650) ((-1152 . -100) T) ((-1152 . -25) T) ((-1152 . -129) T) ((-1152 . -859) 126631) ((-1152 . -496) 126598) ((-1152 . -294) 126585) ((-1146 . -968) 126569) ((-1146 . -33) T) ((-1146 . -1159) T) ((-1146 . -583) 126501) ((-1146 . -294) 126439) ((-1146 . -496) 126372) ((-1146 . -1052) 126350) ((-1146 . -100) 126328) ((-1146 . -472) 126312) ((-1141 . -350) 126286) ((-1141 . -100) T) ((-1141 . -583) 126268) ((-1141 . -1052) T) ((-1139 . -1052) T) ((-1139 . -583) 126250) ((-1139 . -100) T) ((-1132 . -1136) 126229) ((-1132 . -215) 126179) ((-1132 . -105) 126129) ((-1132 . -294) 125933) ((-1132 . -496) 125725) ((-1132 . -472) 125662) ((-1132 . -145) 125612) ((-1132 . -584) NIL) ((-1132 . -221) 125562) ((-1132 . -580) 125541) ((-1132 . -273) 125520) ((-1132 . -271) 125499) ((-1132 . -100) T) ((-1132 . -1052) T) ((-1132 . -583) 125481) ((-1132 . -1159) T) ((-1132 . -33) T) ((-1132 . -574) 125460) ((-1128 . -1201) T) ((-1128 . -1052) T) ((-1128 . -583) 125442) ((-1128 . -100) T) ((-1127 . -583) 125424) ((-1126 . -583) 125406) ((-1125 . -311) 125383) ((-1125 . -995) 125281) ((-1125 . -397) 125265) ((-1125 . -37) 125162) ((-1125 . -613) 125087) ((-1125 . -691) T) ((-1125 . -1063) T) ((-1125 . -1011) T) ((-1125 . -1004) T) ((-1125 . -110) 124956) ((-1125 . -1010) 124839) ((-1125 . -21) T) ((-1125 . -23) T) ((-1125 . -1052) T) ((-1125 . -583) 124821) ((-1125 . -100) T) ((-1125 . -25) T) ((-1125 . -129) T) ((-1125 . -682) 124718) ((-1125 . -139) 124697) ((-1125 . -141) 124676) ((-1125 . -163) 124627) ((-1125 . -533) 124606) ((-1125 . -275) 124585) ((-1125 . -46) 124562) ((-1123 . -811) T) ((-1123 . -100) T) ((-1123 . -583) 124544) ((-1123 . -1052) T) ((-1123 . -584) 124466) ((-1123 . -785) T) ((-1123 . -845) 124433) ((-1122 . -583) 124415) ((-1121 . -1198) 124399) ((-1121 . -219) 124358) ((-1121 . -613) 124283) ((-1121 . -129) T) ((-1121 . -25) T) ((-1121 . -100) T) ((-1121 . -583) 124265) ((-1121 . -1052) T) ((-1121 . -23) T) ((-1121 . -21) T) ((-1121 . -691) T) ((-1121 . -1063) T) ((-1121 . -1011) T) ((-1121 . -1004) T) ((-1121 . -271) 124250) ((-1121 . -859) 124163) ((-1121 . -932) 124132) ((-1121 . -37) 124029) ((-1121 . -110) 123898) ((-1121 . -1010) 123781) ((-1121 . -682) 123678) ((-1121 . -139) 123657) ((-1121 . -141) 123636) ((-1121 . -163) 123587) ((-1121 . -533) 123566) ((-1121 . -275) 123545) ((-1121 . -46) 123522) ((-1121 . -1184) 123499) ((-1121 . -34) 123465) ((-1121 . -93) 123431) ((-1121 . -269) 123397) ((-1121 . -475) 123363) ((-1121 . -1148) 123329) ((-1121 . -1145) 123295) ((-1121 . -960) 123261) ((-1120 . -1190) 123222) ((-1120 . -348) 123201) ((-1120 . -1164) 123180) ((-1120 . -880) 123159) ((-1120 . -533) 123110) ((-1120 . -163) 123041) ((-1120 . -682) 122882) ((-1120 . -37) 122723) ((-1120 . -436) 122702) ((-1120 . -292) 122681) ((-1120 . -613) 122578) ((-1120 . -691) T) ((-1120 . -1063) T) ((-1120 . -1011) T) ((-1120 . -1004) T) ((-1120 . -110) 122399) ((-1120 . -1010) 122234) ((-1120 . -21) T) ((-1120 . -23) T) ((-1120 . -1052) T) ((-1120 . -583) 122216) ((-1120 . -100) T) ((-1120 . -25) T) ((-1120 . -129) T) ((-1120 . -275) 122167) ((-1120 . -229) 122146) ((-1120 . -960) 122112) ((-1120 . -1145) 122078) ((-1120 . -1148) 122044) ((-1120 . -475) 122010) ((-1120 . -269) 121976) ((-1120 . -93) 121942) ((-1120 . -34) 121908) ((-1120 . -1184) 121878) ((-1120 . -46) 121848) ((-1120 . -141) 121827) ((-1120 . -139) 121806) ((-1120 . -932) 121768) ((-1120 . -859) 121674) ((-1120 . -271) 121659) ((-1120 . -219) 121611) ((-1120 . -1188) 121595) ((-1120 . -995) 121530) ((-1117 . -1181) 121514) ((-1117 . -1099) 121492) ((-1117 . -584) NIL) ((-1117 . -294) 121479) ((-1117 . -496) 121426) ((-1117 . -311) 121403) ((-1117 . -995) 121285) ((-1117 . -397) 121269) ((-1117 . -37) 121098) ((-1117 . -110) 120907) ((-1117 . -1010) 120730) ((-1117 . -613) 120655) ((-1117 . -682) 120484) ((-1117 . -139) 120463) ((-1117 . -141) 120442) ((-1117 . -46) 120419) ((-1117 . -362) 120403) ((-1117 . -606) 120351) ((-1117 . -811) 120330) ((-1117 . -859) 120273) ((-1117 . -845) NIL) ((-1117 . -869) 120252) ((-1117 . -1164) 120231) ((-1117 . -909) 120200) ((-1117 . -880) 120179) ((-1117 . -533) 120090) ((-1117 . -275) 120001) ((-1117 . -163) 119892) ((-1117 . -436) 119823) ((-1117 . -292) 119802) ((-1117 . -271) 119729) ((-1117 . -219) T) ((-1117 . -129) T) ((-1117 . -25) T) ((-1117 . -100) T) ((-1117 . -583) 119711) ((-1117 . -1052) T) ((-1117 . -23) T) ((-1117 . -21) T) ((-1117 . -691) T) ((-1117 . -1063) T) ((-1117 . -1011) T) ((-1117 . -1004) T) ((-1117 . -217) 119695) ((-1114 . -1169) 119656) ((-1114 . -960) 119622) ((-1114 . -1145) 119588) ((-1114 . -1148) 119554) ((-1114 . -475) 119520) ((-1114 . -269) 119486) ((-1114 . -93) 119452) ((-1114 . -34) 119418) ((-1114 . -1184) 119395) ((-1114 . -46) 119372) ((-1114 . -682) 119168) ((-1114 . -613) 119020) ((-1114 . -1010) 118810) ((-1114 . -110) 118579) ((-1114 . -37) 118375) ((-1114 . -932) 118344) ((-1114 . -271) 118192) ((-1114 . -1167) 118176) ((-1114 . -691) T) ((-1114 . -1063) T) ((-1114 . -1011) T) ((-1114 . -1004) T) ((-1114 . -21) T) ((-1114 . -23) T) ((-1114 . -1052) T) ((-1114 . -583) 118158) ((-1114 . -100) T) ((-1114 . -25) T) ((-1114 . -129) T) ((-1114 . -139) 118065) ((-1114 . -141) 117972) ((-1114 . -584) NIL) ((-1114 . -217) 117924) ((-1114 . -859) 117757) ((-1114 . -219) 117644) ((-1114 . -348) 117623) ((-1114 . -1164) 117602) ((-1114 . -880) 117581) ((-1114 . -533) 117532) ((-1114 . -163) 117463) ((-1114 . -436) 117442) ((-1114 . -292) 117421) ((-1114 . -275) 117372) ((-1114 . -229) 117351) ((-1114 . -323) 117303) ((-1114 . -496) 117072) ((-1114 . -294) 116957) ((-1114 . -362) 116909) ((-1114 . -606) 116861) ((-1114 . -385) 116813) ((-1114 . -1159) 116792) ((-1114 . -845) NIL) ((-1114 . -784) NIL) ((-1114 . -755) NIL) ((-1114 . -756) NIL) ((-1114 . -811) NIL) ((-1114 . -758) NIL) ((-1114 . -761) NIL) ((-1114 . -809) NIL) ((-1114 . -843) 116744) ((-1114 . -869) NIL) ((-1114 . -977) NIL) ((-1114 . -995) 116710) ((-1114 . -1099) NIL) ((-1114 . -950) 116662) ((-1113 . -1052) T) ((-1113 . -583) 116644) ((-1113 . -100) T) ((-1112 . -1052) T) ((-1112 . -583) 116626) ((-1112 . -100) T) ((-1107 . -1136) 116602) ((-1107 . -215) 116549) ((-1107 . -105) 116496) ((-1107 . -294) 116291) ((-1107 . -496) 116074) ((-1107 . -472) 116008) ((-1107 . -145) 115955) ((-1107 . -584) NIL) ((-1107 . -221) 115902) ((-1107 . -580) 115878) ((-1107 . -273) 115854) ((-1107 . -271) 115830) ((-1107 . -100) T) ((-1107 . -1052) T) ((-1107 . -583) 115812) ((-1107 . -1159) T) ((-1107 . -33) T) ((-1107 . -574) 115788) ((-1106 . -1105) T) ((-1106 . -19) 115770) ((-1106 . -616) 115752) ((-1106 . -273) 115727) ((-1106 . -271) 115702) ((-1106 . -574) 115677) ((-1106 . -584) NIL) ((-1106 . -472) 115659) ((-1106 . -496) NIL) ((-1106 . -294) NIL) ((-1106 . -1159) T) ((-1106 . -33) T) ((-1106 . -145) 115641) ((-1106 . -811) T) ((-1106 . -357) 115623) ((-1106 . -1092) T) ((-1106 . -100) T) ((-1106 . -583) 115605) ((-1106 . -1052) T) ((-1106 . -785) T) ((-1101 . -639) 115589) ((-1101 . -616) 115573) ((-1101 . -273) 115550) ((-1101 . -271) 115527) ((-1101 . -574) 115504) ((-1101 . -584) 115465) ((-1101 . -472) 115449) ((-1101 . -100) 115427) ((-1101 . -1052) 115405) ((-1101 . -496) 115338) ((-1101 . -294) 115276) ((-1101 . -583) 115208) ((-1101 . -1159) T) ((-1101 . -33) T) ((-1101 . -145) 115192) ((-1101 . -1194) 115176) ((-1101 . -968) 115160) ((-1101 . -1097) 115144) ((-1098 . -1136) 115123) ((-1098 . -215) 115073) ((-1098 . -105) 115023) ((-1098 . -294) 114827) ((-1098 . -496) 114619) ((-1098 . -472) 114556) ((-1098 . -145) 114506) ((-1098 . -584) NIL) ((-1098 . -221) 114456) ((-1098 . -580) 114435) ((-1098 . -273) 114414) ((-1098 . -271) 114393) ((-1098 . -100) T) ((-1098 . -1052) T) ((-1098 . -583) 114375) ((-1098 . -1159) T) ((-1098 . -33) T) ((-1098 . -574) 114354) ((-1095 . -1071) 114338) ((-1095 . -472) 114322) ((-1095 . -100) 114300) ((-1095 . -1052) 114278) ((-1095 . -496) 114211) ((-1095 . -294) 114149) ((-1095 . -583) 114081) ((-1095 . -1159) T) ((-1095 . -33) T) ((-1095 . -105) 114065) ((-1094 . -1060) 114034) ((-1094 . -1154) 114003) ((-1094 . -583) 113965) ((-1094 . -145) 113949) ((-1094 . -33) T) ((-1094 . -1159) T) ((-1094 . -294) 113887) ((-1094 . -496) 113820) ((-1094 . -1052) T) ((-1094 . -100) T) ((-1094 . -472) 113804) ((-1094 . -584) 113765) ((-1094 . -935) 113734) ((-1094 . -1024) 113703) ((-1090 . -1073) 113648) ((-1090 . -472) 113632) ((-1090 . -496) 113565) ((-1090 . -294) 113503) ((-1090 . -1159) T) ((-1090 . -33) T) ((-1090 . -1007) 113443) ((-1090 . -995) 113341) ((-1090 . -397) 113325) ((-1090 . -606) 113273) ((-1090 . -362) 113257) ((-1090 . -219) 113236) ((-1090 . -859) 113195) ((-1090 . -217) 113179) ((-1090 . -682) 113111) ((-1090 . -613) 113085) ((-1090 . -129) T) ((-1090 . -25) T) ((-1090 . -100) T) ((-1090 . -583) 113047) ((-1090 . -1052) T) ((-1090 . -23) T) ((-1090 . -21) T) ((-1090 . -1010) 113031) ((-1090 . -110) 113010) ((-1090 . -1004) T) ((-1090 . -1011) T) ((-1090 . -1063) T) ((-1090 . -691) T) ((-1090 . -37) 112970) ((-1090 . -584) 112931) ((-1089 . -968) 112902) ((-1089 . -33) T) ((-1089 . -1159) T) ((-1089 . -583) 112884) ((-1089 . -294) 112810) ((-1089 . -496) 112729) ((-1089 . -1052) T) ((-1089 . -100) T) ((-1089 . -472) 112700) ((-1088 . -1052) T) ((-1088 . -583) 112682) ((-1088 . -100) T) ((-1083 . -1084) 112666) ((-1083 . -100) T) ((-1083 . -583) 112648) ((-1083 . -1052) T) ((-1076 . -705) 112627) ((-1076 . -34) 112593) ((-1076 . -93) 112559) ((-1076 . -269) 112525) ((-1076 . -475) 112491) ((-1076 . -1148) 112457) ((-1076 . -1145) 112423) ((-1076 . -960) 112389) ((-1076 . -46) 112361) ((-1076 . -37) 112258) ((-1076 . -682) 112155) ((-1076 . -275) 112134) ((-1076 . -533) 112113) ((-1076 . -110) 111982) ((-1076 . -1010) 111865) ((-1076 . -163) 111816) ((-1076 . -141) 111795) ((-1076 . -139) 111774) ((-1076 . -613) 111699) ((-1076 . -932) 111666) ((-1076 . -1004) T) ((-1076 . -1011) T) ((-1076 . -1063) T) ((-1076 . -691) T) ((-1076 . -21) T) ((-1076 . -23) T) ((-1076 . -1052) T) ((-1076 . -583) 111648) ((-1076 . -100) T) ((-1076 . -25) T) ((-1076 . -129) T) ((-1076 . -859) 111632) ((-1076 . -496) 111602) ((-1076 . -294) 111589) ((-1075 . -909) 111556) ((-1075 . -995) 111441) ((-1075 . -1164) 111420) ((-1075 . -869) 111399) ((-1075 . -845) 111258) ((-1075 . -859) 111242) ((-1075 . -811) 111221) ((-1075 . -496) 111173) ((-1075 . -436) 111124) ((-1075 . -606) 111072) ((-1075 . -362) 111056) ((-1075 . -46) 111028) ((-1075 . -37) 110877) ((-1075 . -682) 110726) ((-1075 . -275) 110657) ((-1075 . -533) 110588) ((-1075 . -110) 110417) ((-1075 . -1010) 110260) ((-1075 . -163) 110171) ((-1075 . -141) 110150) ((-1075 . -139) 110129) ((-1075 . -613) 110054) ((-1075 . -129) T) ((-1075 . -25) T) ((-1075 . -100) T) ((-1075 . -583) 110036) ((-1075 . -1052) T) ((-1075 . -23) T) ((-1075 . -21) T) ((-1075 . -1004) T) ((-1075 . -1011) T) ((-1075 . -1063) T) ((-1075 . -691) T) ((-1075 . -397) 110020) ((-1075 . -311) 109992) ((-1075 . -294) 109979) ((-1075 . -584) 109727) ((-1070 . -525) T) ((-1070 . -1164) T) ((-1070 . -1099) T) ((-1070 . -995) 109709) ((-1070 . -584) 109624) ((-1070 . -977) T) ((-1070 . -845) 109606) ((-1070 . -809) T) ((-1070 . -761) T) ((-1070 . -758) T) ((-1070 . -811) T) ((-1070 . -756) T) ((-1070 . -755) T) ((-1070 . -784) T) ((-1070 . -606) 109588) ((-1070 . -880) T) ((-1070 . -533) T) ((-1070 . -275) T) ((-1070 . -163) T) ((-1070 . -682) 109575) ((-1070 . -1010) 109562) ((-1070 . -110) 109547) ((-1070 . -37) 109534) ((-1070 . -436) T) ((-1070 . -292) T) ((-1070 . -219) T) ((-1070 . -137) T) ((-1070 . -1004) T) ((-1070 . -1011) T) ((-1070 . -1063) T) ((-1070 . -691) T) ((-1070 . -21) T) ((-1070 . -23) T) ((-1070 . -1052) T) ((-1070 . -583) 109516) ((-1070 . -100) T) ((-1070 . -25) T) ((-1070 . -129) T) ((-1070 . -613) 109503) ((-1070 . -141) T) ((-1070 . -627) T) ((-1070 . -785) T) ((-1066 . -1052) T) ((-1066 . -583) 109485) ((-1066 . -100) T) ((-1064 . -224) 109464) ((-1064 . -1213) 109434) ((-1064 . -755) 109413) ((-1064 . -809) 109392) ((-1064 . -761) 109343) ((-1064 . -758) 109294) ((-1064 . -811) 109245) ((-1064 . -756) 109196) ((-1064 . -757) 109175) ((-1064 . -273) 109152) ((-1064 . -271) 109129) ((-1064 . -472) 109113) ((-1064 . -496) 109046) ((-1064 . -294) 108984) ((-1064 . -1159) T) ((-1064 . -33) T) ((-1064 . -574) 108961) ((-1064 . -995) 108790) ((-1064 . -397) 108759) ((-1064 . -606) 108665) ((-1064 . -362) 108634) ((-1064 . -353) 108613) ((-1064 . -219) 108565) ((-1064 . -859) 108497) ((-1064 . -217) 108466) ((-1064 . -110) 108356) ((-1064 . -1010) 108253) ((-1064 . -163) 108232) ((-1064 . -583) 107963) ((-1064 . -682) 107905) ((-1064 . -613) 107753) ((-1064 . -129) 107623) ((-1064 . -23) 107493) ((-1064 . -21) 107403) ((-1064 . -1004) 107333) ((-1064 . -1011) 107263) ((-1064 . -1063) 107173) ((-1064 . -691) 107083) ((-1064 . -37) 107053) ((-1064 . -1052) 106843) ((-1064 . -100) 106633) ((-1064 . -25) 106484) ((-1057 . -381) T) ((-1057 . -1159) T) ((-1057 . -583) 106466) ((-1056 . -1055) 106430) ((-1056 . -100) T) ((-1056 . -583) 106412) ((-1056 . -1052) T) ((-1054 . -1055) 106364) ((-1054 . -100) T) ((-1054 . -583) 106346) ((-1054 . -1052) T) ((-1053 . -353) T) ((-1053 . -100) T) ((-1053 . -583) 106328) ((-1053 . -1052) T) ((-1048 . -411) 106312) ((-1048 . -1050) 106296) ((-1048 . -353) 106275) ((-1048 . -221) 106259) ((-1048 . -584) 106220) ((-1048 . -145) 106204) ((-1048 . -472) 106188) ((-1048 . -100) T) ((-1048 . -1052) T) ((-1048 . -496) 106121) ((-1048 . -294) 106059) ((-1048 . -583) 106041) ((-1048 . -1159) T) ((-1048 . -33) T) ((-1048 . -105) 106025) ((-1048 . -215) 106009) ((-1044 . -1159) T) ((-1044 . -1052) 105987) ((-1044 . -583) 105954) ((-1044 . -100) 105932) ((-1043 . -1035) T) ((-1043 . -583) 105898) ((-1043 . -1052) T) ((-1043 . -100) T) ((-1043 . -91) T) ((-1041 . -1046) 105882) ((-1041 . -1159) T) ((-1041 . -1052) 105860) ((-1041 . -583) 105827) ((-1041 . -100) 105805) ((-1041 . -1047) 105763) ((-1040 . -251) 105747) ((-1040 . -995) 105731) ((-1040 . -1052) T) ((-1040 . -583) 105713) ((-1040 . -100) T) ((-1040 . -811) T) ((-1039 . -238) 105650) ((-1039 . -995) 105479) ((-1039 . -584) NIL) ((-1039 . -311) 105440) ((-1039 . -397) 105424) ((-1039 . -37) 105273) ((-1039 . -110) 105102) ((-1039 . -1010) 104945) ((-1039 . -613) 104870) ((-1039 . -682) 104719) ((-1039 . -139) 104698) ((-1039 . -141) 104677) ((-1039 . -163) 104588) ((-1039 . -533) 104519) ((-1039 . -275) 104450) ((-1039 . -46) 104411) ((-1039 . -362) 104395) ((-1039 . -606) 104343) ((-1039 . -436) 104294) ((-1039 . -496) 104161) ((-1039 . -811) 104140) ((-1039 . -859) 104075) ((-1039 . -845) NIL) ((-1039 . -869) 104054) ((-1039 . -1164) 104033) ((-1039 . -909) 103978) ((-1039 . -294) 103965) ((-1039 . -219) 103944) ((-1039 . -129) T) ((-1039 . -25) T) ((-1039 . -100) T) ((-1039 . -583) 103926) ((-1039 . -1052) T) ((-1039 . -23) T) ((-1039 . -21) T) ((-1039 . -691) T) ((-1039 . -1063) T) ((-1039 . -1011) T) ((-1039 . -1004) T) ((-1039 . -217) 103910) ((-1037 . -583) 103892) ((-1033 . -811) T) ((-1033 . -100) T) ((-1033 . -583) 103874) ((-1033 . -1052) T) ((-1030 . -689) 103853) ((-1030 . -995) 103751) ((-1030 . -397) 103735) ((-1030 . -606) 103683) ((-1030 . -362) 103667) ((-1030 . -355) 103646) ((-1030 . -141) 103625) ((-1030 . -682) 103493) ((-1030 . -613) 103403) ((-1030 . -1010) 103313) ((-1030 . -110) 103209) ((-1030 . -37) 103077) ((-1030 . -395) 103056) ((-1030 . -387) 103035) ((-1030 . -139) 102986) ((-1030 . -1099) 102965) ((-1030 . -335) 102944) ((-1030 . -353) 102895) ((-1030 . -229) 102846) ((-1030 . -275) 102797) ((-1030 . -292) 102748) ((-1030 . -436) 102699) ((-1030 . -533) 102650) ((-1030 . -880) 102601) ((-1030 . -1164) 102552) ((-1030 . -348) 102503) ((-1030 . -219) 102428) ((-1030 . -859) 102361) ((-1030 . -217) 102331) ((-1030 . -584) 102315) ((-1030 . -21) T) ((-1030 . -23) T) ((-1030 . -1052) T) ((-1030 . -583) 102297) ((-1030 . -100) T) ((-1030 . -25) T) ((-1030 . -129) T) ((-1030 . -1004) T) ((-1030 . -1011) T) ((-1030 . -1063) T) ((-1030 . -691) T) ((-1030 . -163) T) ((-1028 . -1052) T) ((-1028 . -583) 102279) ((-1028 . -100) T) ((-1028 . -271) 102258) ((-1027 . -1052) T) ((-1027 . -583) 102240) ((-1027 . -100) T) ((-1026 . -1052) T) ((-1026 . -583) 102222) ((-1026 . -100) T) ((-1026 . -271) 102201) ((-1026 . -995) 102178) ((-1019 . -1035) T) ((-1019 . -583) 102144) ((-1019 . -1052) T) ((-1019 . -100) T) ((-1019 . -91) T) ((-1016 . -1136) 102119) ((-1016 . -215) 102065) ((-1016 . -105) 102011) ((-1016 . -294) 101862) ((-1016 . -496) 101706) ((-1016 . -472) 101637) ((-1016 . -145) 101583) ((-1016 . -584) NIL) ((-1016 . -221) 101529) ((-1016 . -580) 101504) ((-1016 . -273) 101479) ((-1016 . -271) 101454) ((-1016 . -100) T) ((-1016 . -1052) T) ((-1016 . -583) 101436) ((-1016 . -1159) T) ((-1016 . -33) T) ((-1016 . -574) 101411) ((-1015 . -525) T) ((-1015 . -1164) T) ((-1015 . -1099) T) ((-1015 . -995) 101393) ((-1015 . -584) 101308) ((-1015 . -977) T) ((-1015 . -845) 101290) ((-1015 . -809) T) ((-1015 . -761) T) ((-1015 . -758) T) ((-1015 . -811) T) ((-1015 . -756) T) ((-1015 . -755) T) ((-1015 . -784) T) ((-1015 . -606) 101272) ((-1015 . -880) T) ((-1015 . -533) T) ((-1015 . -275) T) ((-1015 . -163) T) ((-1015 . -682) 101259) ((-1015 . -1010) 101246) ((-1015 . -110) 101231) ((-1015 . -37) 101218) ((-1015 . -436) T) ((-1015 . -292) T) ((-1015 . -219) T) ((-1015 . -137) T) ((-1015 . -1004) T) ((-1015 . -1011) T) ((-1015 . -1063) T) ((-1015 . -691) T) ((-1015 . -21) T) ((-1015 . -23) T) ((-1015 . -1052) T) ((-1015 . -583) 101200) ((-1015 . -100) T) ((-1015 . -25) T) ((-1015 . -129) T) ((-1015 . -613) 101187) ((-1015 . -141) T) ((-1014 . -1021) 101166) ((-1014 . -100) T) ((-1014 . -583) 101148) ((-1014 . -1052) T) ((-1008 . -1007) 101088) ((-1008 . -682) 101030) ((-1008 . -33) T) ((-1008 . -1159) T) ((-1008 . -294) 100968) ((-1008 . -496) 100901) ((-1008 . -472) 100885) ((-1008 . -613) 100869) ((-1008 . -129) T) ((-1008 . -25) T) ((-1008 . -100) T) ((-1008 . -583) 100831) ((-1008 . -1052) T) ((-1008 . -23) T) ((-1008 . -21) T) ((-1008 . -1010) 100815) ((-1008 . -110) 100794) ((-1008 . -1213) 100764) ((-1008 . -584) 100725) ((-1001 . -1024) 100654) ((-1001 . -935) 100583) ((-1001 . -584) 100525) ((-1001 . -472) 100490) ((-1001 . -100) T) ((-1001 . -1052) T) ((-1001 . -496) 100391) ((-1001 . -294) 100299) ((-1001 . -583) 100242) ((-1001 . -1159) T) ((-1001 . -33) T) ((-1001 . -145) 100207) ((-1001 . -1154) 100136) ((-993 . -1035) T) ((-993 . -583) 100102) ((-993 . -1052) T) ((-993 . -100) T) ((-993 . -91) T) ((-992 . -1136) 100077) ((-992 . -215) 100023) ((-992 . -105) 99969) ((-992 . -294) 99820) ((-992 . -496) 99664) ((-992 . -472) 99595) ((-992 . -145) 99541) ((-992 . -584) NIL) ((-992 . -221) 99487) ((-992 . -580) 99462) ((-992 . -273) 99437) ((-992 . -271) 99412) ((-992 . -100) T) ((-992 . -1052) T) ((-992 . -583) 99394) ((-992 . -1159) T) ((-992 . -33) T) ((-992 . -574) 99369) ((-991 . -163) T) ((-991 . -691) T) ((-991 . -1063) T) ((-991 . -1011) T) ((-991 . -1004) T) ((-991 . -613) 99343) ((-991 . -129) T) ((-991 . -25) T) ((-991 . -100) T) ((-991 . -583) 99325) ((-991 . -1052) T) ((-991 . -23) T) ((-991 . -21) T) ((-991 . -1010) 99299) ((-991 . -110) 99266) ((-991 . -37) 99250) ((-991 . -682) 99234) ((-984 . -1024) 99203) ((-984 . -935) 99172) ((-984 . -584) 99133) ((-984 . -472) 99117) ((-984 . -100) T) ((-984 . -1052) T) ((-984 . -496) 99050) ((-984 . -294) 98988) ((-984 . -583) 98950) ((-984 . -1159) T) ((-984 . -33) T) ((-984 . -145) 98934) ((-984 . -1154) 98903) ((-983 . -1159) T) ((-983 . -1052) 98881) ((-983 . -583) 98848) ((-983 . -100) 98826) ((-981 . -970) T) ((-981 . -960) T) ((-981 . -755) T) ((-981 . -756) T) ((-981 . -811) T) ((-981 . -758) T) ((-981 . -761) T) ((-981 . -809) T) ((-981 . -995) 98708) ((-981 . -397) 98670) ((-981 . -229) T) ((-981 . -275) T) ((-981 . -292) T) ((-981 . -436) T) ((-981 . -37) 98607) ((-981 . -682) 98544) ((-981 . -533) T) ((-981 . -880) T) ((-981 . -1164) T) ((-981 . -348) T) ((-981 . -110) 98460) ((-981 . -1010) 98397) ((-981 . -163) T) ((-981 . -141) T) ((-981 . -613) 98334) ((-981 . -129) T) ((-981 . -25) T) ((-981 . -100) T) ((-981 . -583) 98316) ((-981 . -1052) T) ((-981 . -23) T) ((-981 . -21) T) ((-981 . -1004) T) ((-981 . -1011) T) ((-981 . -1063) T) ((-981 . -691) T) ((-962 . -950) 98298) ((-962 . -1099) T) ((-962 . -995) 98258) ((-962 . -584) 98188) ((-962 . -977) T) ((-962 . -869) NIL) ((-962 . -843) 98170) ((-962 . -809) T) ((-962 . -761) T) ((-962 . -758) T) ((-962 . -811) T) ((-962 . -756) T) ((-962 . -755) T) ((-962 . -784) T) ((-962 . -845) 98152) ((-962 . -1159) T) ((-962 . -385) 98134) ((-962 . -606) 98116) ((-962 . -362) 98098) ((-962 . -271) NIL) ((-962 . -294) NIL) ((-962 . -496) NIL) ((-962 . -323) 98080) ((-962 . -229) T) ((-962 . -110) 98014) ((-962 . -1010) 97964) ((-962 . -275) T) ((-962 . -682) 97914) ((-962 . -613) 97864) ((-962 . -37) 97814) ((-962 . -292) T) ((-962 . -436) T) ((-962 . -163) T) ((-962 . -533) T) ((-962 . -880) T) ((-962 . -1164) T) ((-962 . -348) T) ((-962 . -219) T) ((-962 . -859) NIL) ((-962 . -217) 97796) ((-962 . -141) T) ((-962 . -139) NIL) ((-962 . -129) T) ((-962 . -25) T) ((-962 . -100) T) ((-962 . -583) 97778) ((-962 . -1052) T) ((-962 . -23) T) ((-962 . -21) T) ((-962 . -1004) T) ((-962 . -1011) T) ((-962 . -1063) T) ((-962 . -691) T) ((-961 . -327) 97752) ((-961 . -163) T) ((-961 . -691) T) ((-961 . -1063) T) ((-961 . -1011) T) ((-961 . -1004) T) ((-961 . -613) 97697) ((-961 . -129) T) ((-961 . -25) T) ((-961 . -100) T) ((-961 . -583) 97679) ((-961 . -1052) T) ((-961 . -23) T) ((-961 . -21) T) ((-961 . -1010) 97624) ((-961 . -110) 97553) ((-961 . -584) 97537) ((-961 . -217) 97514) ((-961 . -859) 97466) ((-961 . -219) 97438) ((-961 . -348) T) ((-961 . -1164) T) ((-961 . -880) T) ((-961 . -533) T) ((-961 . -682) 97383) ((-961 . -37) 97328) ((-961 . -436) T) ((-961 . -292) T) ((-961 . -275) T) ((-961 . -229) T) ((-961 . -353) NIL) ((-961 . -335) NIL) ((-961 . -1099) NIL) ((-961 . -139) 97300) ((-961 . -387) NIL) ((-961 . -395) 97272) ((-961 . -141) 97244) ((-961 . -355) 97216) ((-961 . -362) 97193) ((-961 . -606) 97132) ((-961 . -397) 97109) ((-961 . -995) 96999) ((-961 . -689) 96971) ((-958 . -953) 96955) ((-958 . -472) 96939) ((-958 . -100) 96917) ((-958 . -1052) 96895) ((-958 . -496) 96828) ((-958 . -294) 96766) ((-958 . -583) 96698) ((-958 . -1159) T) ((-958 . -33) T) ((-958 . -105) 96682) ((-954 . -956) 96666) ((-954 . -811) 96645) ((-954 . -995) 96543) ((-954 . -397) 96527) ((-954 . -606) 96475) ((-954 . -362) 96459) ((-954 . -271) 96417) ((-954 . -294) 96382) ((-954 . -496) 96294) ((-954 . -323) 96278) ((-954 . -37) 96226) ((-954 . -110) 96108) ((-954 . -1010) 96004) ((-954 . -613) 95942) ((-954 . -682) 95890) ((-954 . -275) 95841) ((-954 . -229) 95820) ((-954 . -219) 95799) ((-954 . -859) 95758) ((-954 . -217) 95742) ((-954 . -584) 95703) ((-954 . -141) 95682) ((-954 . -139) 95661) ((-954 . -129) T) ((-954 . -25) T) ((-954 . -100) T) ((-954 . -583) 95643) ((-954 . -1052) T) ((-954 . -23) T) ((-954 . -21) T) ((-954 . -1004) T) ((-954 . -1011) T) ((-954 . -1063) T) ((-954 . -691) T) ((-952 . -21) T) ((-952 . -23) T) ((-952 . -1052) T) ((-952 . -583) 95625) ((-952 . -100) T) ((-952 . -25) T) ((-952 . -129) T) ((-948 . -583) 95607) ((-945 . -1052) T) ((-945 . -583) 95589) ((-945 . -100) T) ((-930 . -761) T) ((-930 . -758) T) ((-930 . -811) T) ((-930 . -756) T) ((-930 . -23) T) ((-930 . -1052) T) ((-930 . -583) 95571) ((-930 . -100) T) ((-930 . -25) T) ((-930 . -129) T) ((-930 . -584) 95546) ((-929 . -1035) T) ((-929 . -583) 95512) ((-929 . -1052) T) ((-929 . -100) T) ((-929 . -91) T) ((-925 . -926) T) ((-925 . -583) 95473) ((-924 . -583) 95455) ((-923 . -1052) T) ((-923 . -583) 95437) ((-923 . -100) T) ((-923 . -353) 95390) ((-923 . -691) 95289) ((-923 . -1063) 95188) ((-923 . -23) 94999) ((-923 . -25) 94810) ((-923 . -129) 94665) ((-923 . -457) 94618) ((-923 . -21) 94573) ((-923 . -757) 94526) ((-923 . -756) 94479) ((-923 . -811) 94378) ((-923 . -758) 94331) ((-923 . -761) 94284) ((-917 . -19) 94268) ((-917 . -616) 94252) ((-917 . -273) 94229) ((-917 . -271) 94206) ((-917 . -574) 94183) ((-917 . -584) 94144) ((-917 . -472) 94128) ((-917 . -100) 94078) ((-917 . -1052) 94028) ((-917 . -496) 93961) ((-917 . -294) 93899) ((-917 . -583) 93811) ((-917 . -1159) T) ((-917 . -33) T) ((-917 . -145) 93795) ((-917 . -811) 93774) ((-917 . -357) 93758) ((-915 . -311) 93737) ((-915 . -995) 93635) ((-915 . -397) 93619) ((-915 . -37) 93516) ((-915 . -613) 93441) ((-915 . -691) T) ((-915 . -1063) T) ((-915 . -1011) T) ((-915 . -1004) T) ((-915 . -110) 93310) ((-915 . -1010) 93193) ((-915 . -21) T) ((-915 . -23) T) ((-915 . -1052) T) ((-915 . -583) 93175) ((-915 . -100) T) ((-915 . -25) T) ((-915 . -129) T) ((-915 . -682) 93072) ((-915 . -139) 93051) ((-915 . -141) 93030) ((-915 . -163) 92981) ((-915 . -533) 92960) ((-915 . -275) 92939) ((-915 . -46) 92918) ((-913 . -1052) T) ((-913 . -583) 92884) ((-913 . -100) T) ((-905 . -909) 92845) ((-905 . -995) 92727) ((-905 . -1164) 92706) ((-905 . -869) 92685) ((-905 . -845) 92610) ((-905 . -859) 92591) ((-905 . -811) 92570) ((-905 . -496) 92517) ((-905 . -436) 92468) ((-905 . -606) 92416) ((-905 . -362) 92400) ((-905 . -46) 92369) ((-905 . -37) 92218) ((-905 . -682) 92067) ((-905 . -275) 91998) ((-905 . -533) 91929) ((-905 . -110) 91758) ((-905 . -1010) 91601) ((-905 . -163) 91512) ((-905 . -141) 91491) ((-905 . -139) 91470) ((-905 . -613) 91395) ((-905 . -129) T) ((-905 . -25) T) ((-905 . -100) T) ((-905 . -583) 91377) ((-905 . -1052) T) ((-905 . -23) T) ((-905 . -21) T) ((-905 . -1004) T) ((-905 . -1011) T) ((-905 . -1063) T) ((-905 . -691) T) ((-905 . -397) 91361) ((-905 . -311) 91330) ((-905 . -294) 91317) ((-905 . -584) 91178) ((-902 . -939) 91162) ((-902 . -19) 91146) ((-902 . -616) 91130) ((-902 . -273) 91107) ((-902 . -271) 91084) ((-902 . -574) 91061) ((-902 . -584) 91022) ((-902 . -472) 91006) ((-902 . -100) 90956) ((-902 . -1052) 90906) ((-902 . -496) 90839) ((-902 . -294) 90777) ((-902 . -583) 90689) ((-902 . -1159) T) ((-902 . -33) T) ((-902 . -145) 90673) ((-902 . -811) 90652) ((-902 . -357) 90636) ((-902 . -1204) 90620) ((-886 . -933) T) ((-886 . -583) 90602) ((-884 . -914) T) ((-884 . -583) 90584) ((-878 . -758) T) ((-878 . -811) T) ((-878 . -1052) T) ((-878 . -583) 90566) ((-878 . -100) T) ((-878 . -25) T) ((-878 . -691) T) ((-878 . -1063) T) ((-873 . -348) T) ((-873 . -1164) T) ((-873 . -880) T) ((-873 . -533) T) ((-873 . -163) T) ((-873 . -682) 90518) ((-873 . -37) 90470) ((-873 . -436) T) ((-873 . -292) T) ((-873 . -613) 90422) ((-873 . -691) T) ((-873 . -1063) T) ((-873 . -1011) T) ((-873 . -1004) T) ((-873 . -110) 90360) ((-873 . -1010) 90312) ((-873 . -21) T) ((-873 . -23) T) ((-873 . -1052) T) ((-873 . -583) 90294) ((-873 . -100) T) ((-873 . -25) T) ((-873 . -129) T) ((-873 . -275) T) ((-873 . -229) T) ((-865 . -335) T) ((-865 . -1099) T) ((-865 . -353) T) ((-865 . -139) T) ((-865 . -348) T) ((-865 . -1164) T) ((-865 . -880) T) ((-865 . -533) T) ((-865 . -163) T) ((-865 . -682) 90259) ((-865 . -37) 90224) ((-865 . -436) T) ((-865 . -292) T) ((-865 . -110) 90180) ((-865 . -1010) 90145) ((-865 . -613) 90110) ((-865 . -275) T) ((-865 . -229) T) ((-865 . -387) T) ((-865 . -1004) T) ((-865 . -1011) T) ((-865 . -1063) T) ((-865 . -691) T) ((-865 . -21) T) ((-865 . -23) T) ((-865 . -1052) T) ((-865 . -583) 90092) ((-865 . -100) T) ((-865 . -25) T) ((-865 . -129) T) ((-865 . -219) T) ((-865 . -314) 90079) ((-865 . -141) 90061) ((-865 . -995) 90048) ((-865 . -1213) 90035) ((-865 . -1223) 90022) ((-865 . -584) 90004) ((-864 . -1052) T) ((-864 . -583) 89986) ((-864 . -100) T) ((-861 . -863) 89970) ((-861 . -811) 89921) ((-861 . -691) T) ((-861 . -1052) T) ((-861 . -583) 89903) ((-861 . -100) T) ((-861 . -1063) T) ((-861 . -457) T) ((-860 . -118) 89887) ((-860 . -472) 89871) ((-860 . -100) 89849) ((-860 . -1052) 89827) ((-860 . -496) 89760) ((-860 . -294) 89698) ((-860 . -583) 89630) ((-860 . -1159) T) ((-860 . -33) T) ((-860 . -968) 89614) ((-857 . -1052) T) ((-857 . -583) 89596) ((-857 . -100) T) ((-852 . -811) T) ((-852 . -100) T) ((-852 . -583) 89578) ((-852 . -1052) T) ((-852 . -995) 89555) ((-849 . -1052) T) ((-849 . -583) 89537) ((-849 . -100) T) ((-849 . -995) 89505) ((-847 . -1052) T) ((-847 . -583) 89487) ((-847 . -100) T) ((-844 . -1052) T) ((-844 . -583) 89469) ((-844 . -100) T) ((-833 . -1052) T) ((-833 . -583) 89451) ((-833 . -100) T) ((-832 . -1159) T) ((-832 . -583) 89323) ((-832 . -1052) 89274) ((-832 . -100) 89225) ((-831 . -950) 89209) ((-831 . -1099) 89187) ((-831 . -995) 89055) ((-831 . -584) 88863) ((-831 . -977) 88842) ((-831 . -869) 88821) ((-831 . -843) 88805) ((-831 . -809) 88784) ((-831 . -761) 88763) ((-831 . -758) 88742) ((-831 . -811) 88693) ((-831 . -756) 88672) ((-831 . -755) 88651) ((-831 . -784) 88630) ((-831 . -845) 88555) ((-831 . -1159) T) ((-831 . -385) 88539) ((-831 . -606) 88487) ((-831 . -362) 88471) ((-831 . -271) 88429) ((-831 . -294) 88394) ((-831 . -496) 88306) ((-831 . -323) 88290) ((-831 . -229) T) ((-831 . -110) 88228) ((-831 . -1010) 88180) ((-831 . -275) T) ((-831 . -682) 88132) ((-831 . -613) 88084) ((-831 . -37) 88036) ((-831 . -292) T) ((-831 . -436) T) ((-831 . -163) T) ((-831 . -533) T) ((-831 . -880) T) ((-831 . -1164) T) ((-831 . -348) T) ((-831 . -219) 88015) ((-831 . -859) 87974) ((-831 . -217) 87958) ((-831 . -141) 87937) ((-831 . -139) 87916) ((-831 . -129) T) ((-831 . -25) T) ((-831 . -100) T) ((-831 . -583) 87898) ((-831 . -1052) T) ((-831 . -23) T) ((-831 . -21) T) ((-831 . -1004) T) ((-831 . -1011) T) ((-831 . -1063) T) ((-831 . -691) T) ((-830 . -950) 87875) ((-830 . -1099) NIL) ((-830 . -995) 87852) ((-830 . -584) NIL) ((-830 . -977) NIL) ((-830 . -869) NIL) ((-830 . -843) 87829) ((-830 . -809) NIL) ((-830 . -761) NIL) ((-830 . -758) NIL) ((-830 . -811) NIL) ((-830 . -756) NIL) ((-830 . -755) NIL) ((-830 . -784) NIL) ((-830 . -845) NIL) ((-830 . -1159) T) ((-830 . -385) 87806) ((-830 . -606) 87783) ((-830 . -362) 87760) ((-830 . -271) 87711) ((-830 . -294) 87668) ((-830 . -496) 87576) ((-830 . -323) 87553) ((-830 . -229) T) ((-830 . -110) 87482) ((-830 . -1010) 87427) ((-830 . -275) T) ((-830 . -682) 87372) ((-830 . -613) 87317) ((-830 . -37) 87262) ((-830 . -292) T) ((-830 . -436) T) ((-830 . -163) T) ((-830 . -533) T) ((-830 . -880) T) ((-830 . -1164) T) ((-830 . -348) T) ((-830 . -219) NIL) ((-830 . -859) NIL) ((-830 . -217) 87239) ((-830 . -141) T) ((-830 . -139) NIL) ((-830 . -129) T) ((-830 . -25) T) ((-830 . -100) T) ((-830 . -583) 87221) ((-830 . -1052) T) ((-830 . -23) T) ((-830 . -21) T) ((-830 . -1004) T) ((-830 . -1011) T) ((-830 . -1063) T) ((-830 . -691) T) ((-828 . -829) 87205) ((-828 . -880) T) ((-828 . -533) T) ((-828 . -275) T) ((-828 . -163) T) ((-828 . -682) 87192) ((-828 . -1010) 87179) ((-828 . -110) 87164) ((-828 . -37) 87151) ((-828 . -436) T) ((-828 . -292) T) ((-828 . -1004) T) ((-828 . -1011) T) ((-828 . -1063) T) ((-828 . -691) T) ((-828 . -21) T) ((-828 . -23) T) ((-828 . -1052) T) ((-828 . -583) 87133) ((-828 . -100) T) ((-828 . -25) T) ((-828 . -129) T) ((-828 . -613) 87120) ((-828 . -141) T) ((-825 . -1004) T) ((-825 . -1011) T) ((-825 . -1063) T) ((-825 . -691) T) ((-825 . -21) T) ((-825 . -23) T) ((-825 . -1052) T) ((-825 . -583) 87102) ((-825 . -100) T) ((-825 . -25) T) ((-825 . -129) T) ((-825 . -613) 87062) ((-825 . -37) 87032) ((-825 . -110) 86997) ((-825 . -1010) 86967) ((-825 . -682) 86937) ((-824 . -805) T) ((-824 . -811) T) ((-824 . -1052) T) ((-824 . -583) 86919) ((-824 . -100) T) ((-824 . -353) T) ((-824 . -584) 86841) ((-823 . -1052) T) ((-823 . -583) 86823) ((-823 . -100) T) ((-819 . -811) T) ((-819 . -100) T) ((-819 . -583) 86805) ((-819 . -1052) T) ((-816 . -813) 86789) ((-816 . -995) 86687) ((-816 . -397) 86671) ((-816 . -682) 86641) ((-816 . -613) 86615) ((-816 . -129) T) ((-816 . -25) T) ((-816 . -100) T) ((-816 . -583) 86597) ((-816 . -1052) T) ((-816 . -23) T) ((-816 . -21) T) ((-816 . -1010) 86581) ((-816 . -110) 86560) ((-816 . -1004) T) ((-816 . -1011) T) ((-816 . -1063) T) ((-816 . -691) T) ((-816 . -37) 86530) ((-815 . -813) 86514) ((-815 . -995) 86412) ((-815 . -397) 86396) ((-815 . -682) 86366) ((-815 . -613) 86340) ((-815 . -129) T) ((-815 . -25) T) ((-815 . -100) T) ((-815 . -583) 86322) ((-815 . -1052) T) ((-815 . -23) T) ((-815 . -21) T) ((-815 . -1010) 86306) ((-815 . -110) 86285) ((-815 . -1004) T) ((-815 . -1011) T) ((-815 . -1063) T) ((-815 . -691) T) ((-815 . -37) 86255) ((-803 . -1052) T) ((-803 . -583) 86237) ((-803 . -100) T) ((-803 . -397) 86221) ((-803 . -995) 86119) ((-803 . -21) 86071) ((-803 . -23) 86023) ((-803 . -25) 85975) ((-803 . -129) 85927) ((-803 . -809) 85906) ((-803 . -613) 85879) ((-803 . -1011) 85858) ((-803 . -1004) 85837) ((-803 . -761) 85816) ((-803 . -758) 85795) ((-803 . -811) 85774) ((-803 . -756) 85753) ((-803 . -755) 85732) ((-803 . -1063) 85711) ((-803 . -691) 85690) ((-802 . -1052) T) ((-802 . -583) 85672) ((-802 . -100) T) ((-798 . -1004) T) ((-798 . -1011) T) ((-798 . -1063) T) ((-798 . -691) T) ((-798 . -21) T) ((-798 . -23) T) ((-798 . -1052) T) ((-798 . -583) 85654) ((-798 . -100) T) ((-798 . -25) T) ((-798 . -129) T) ((-798 . -613) 85614) ((-798 . -995) 85583) ((-798 . -271) 85562) ((-798 . -141) 85541) ((-798 . -139) 85520) ((-798 . -37) 85490) ((-798 . -110) 85455) ((-798 . -1010) 85425) ((-798 . -682) 85395) ((-796 . -1052) T) ((-796 . -583) 85377) ((-796 . -100) T) ((-796 . -397) 85361) ((-796 . -995) 85259) ((-796 . -21) 85211) ((-796 . -23) 85163) ((-796 . -25) 85115) ((-796 . -129) 85067) ((-796 . -809) 85046) ((-796 . -613) 85019) ((-796 . -1011) 84998) ((-796 . -1004) 84977) ((-796 . -761) 84956) ((-796 . -758) 84935) ((-796 . -811) 84914) ((-796 . -756) 84893) ((-796 . -755) 84872) ((-796 . -1063) 84851) ((-796 . -691) 84830) ((-792 . -673) 84814) ((-792 . -682) 84784) ((-792 . -613) 84758) ((-792 . -129) T) ((-792 . -25) T) ((-792 . -100) T) ((-792 . -583) 84740) ((-792 . -1052) T) ((-792 . -23) T) ((-792 . -21) T) ((-792 . -1010) 84724) ((-792 . -110) 84703) ((-792 . -1004) T) ((-792 . -1011) T) ((-792 . -1063) T) ((-792 . -691) T) ((-792 . -37) 84673) ((-792 . -219) 84652) ((-790 . -1052) T) ((-790 . -583) 84634) ((-790 . -100) T) ((-789 . -1052) T) ((-789 . -583) 84616) ((-789 . -100) T) ((-788 . -1052) T) ((-788 . -583) 84598) ((-788 . -100) T) ((-783 . -807) T) ((-783 . -811) T) ((-783 . -818) T) ((-783 . -1063) T) ((-783 . -100) T) ((-783 . -583) 84580) ((-783 . -1052) T) ((-783 . -691) T) ((-783 . -995) 84564) ((-782 . -251) 84548) ((-782 . -995) 84532) ((-782 . -1052) T) ((-782 . -583) 84514) ((-782 . -100) T) ((-782 . -811) T) ((-781 . -110) 84456) ((-781 . -1010) 84407) ((-781 . -21) T) ((-781 . -23) T) ((-781 . -1052) T) ((-781 . -583) 84389) ((-781 . -100) T) ((-781 . -25) T) ((-781 . -129) T) ((-781 . -613) 84340) ((-781 . -219) T) ((-781 . -691) T) ((-781 . -1063) T) ((-781 . -1011) T) ((-781 . -1004) T) ((-781 . -348) 84319) ((-781 . -1164) 84298) ((-781 . -880) 84277) ((-781 . -533) 84256) ((-781 . -163) 84235) ((-781 . -682) 84177) ((-781 . -37) 84119) ((-781 . -436) 84098) ((-781 . -292) 84077) ((-781 . -275) 84056) ((-781 . -229) 84035) ((-780 . -238) 83974) ((-780 . -995) 83804) ((-780 . -584) NIL) ((-780 . -311) 83766) ((-780 . -397) 83750) ((-780 . -37) 83599) ((-780 . -110) 83428) ((-780 . -1010) 83271) ((-780 . -613) 83196) ((-780 . -682) 83045) ((-780 . -139) 83024) ((-780 . -141) 83003) ((-780 . -163) 82914) ((-780 . -533) 82845) ((-780 . -275) 82776) ((-780 . -46) 82738) ((-780 . -362) 82722) ((-780 . -606) 82670) ((-780 . -436) 82621) ((-780 . -496) 82489) ((-780 . -811) 82468) ((-780 . -859) 82404) ((-780 . -845) NIL) ((-780 . -869) 82383) ((-780 . -1164) 82362) ((-780 . -909) 82309) ((-780 . -294) 82296) ((-780 . -219) 82275) ((-780 . -129) T) ((-780 . -25) T) ((-780 . -100) T) ((-780 . -583) 82257) ((-780 . -1052) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -691) T) ((-780 . -1063) T) ((-780 . -1011) T) ((-780 . -1004) T) ((-780 . -217) 82241) ((-779 . -224) 82220) ((-779 . -1213) 82190) ((-779 . -755) 82169) ((-779 . -809) 82148) ((-779 . -761) 82099) ((-779 . -758) 82050) ((-779 . -811) 82001) ((-779 . -756) 81952) ((-779 . -757) 81931) ((-779 . -273) 81908) ((-779 . -271) 81885) ((-779 . -472) 81869) ((-779 . -496) 81802) ((-779 . -294) 81740) ((-779 . -1159) T) ((-779 . -33) T) ((-779 . -574) 81717) ((-779 . -995) 81546) ((-779 . -397) 81515) ((-779 . -606) 81421) ((-779 . -362) 81390) ((-779 . -353) 81369) ((-779 . -219) 81321) ((-779 . -859) 81253) ((-779 . -217) 81222) ((-779 . -110) 81112) ((-779 . -1010) 81009) ((-779 . -163) 80988) ((-779 . -583) 80719) ((-779 . -682) 80661) ((-779 . -613) 80509) ((-779 . -129) 80379) ((-779 . -23) 80249) ((-779 . -21) 80159) ((-779 . -1004) 80089) ((-779 . -1011) 80019) ((-779 . -1063) 79929) ((-779 . -691) 79839) ((-779 . -37) 79809) ((-779 . -1052) 79599) ((-779 . -100) 79389) ((-779 . -25) 79240) ((-772 . -1052) T) ((-772 . -583) 79222) ((-772 . -100) T) ((-762 . -760) 79206) ((-762 . -811) 79185) ((-762 . -995) 78972) ((-762 . -397) 78936) ((-762 . -271) 78894) ((-762 . -294) 78859) ((-762 . -496) 78771) ((-762 . -323) 78755) ((-762 . -353) 78734) ((-762 . -584) 78695) ((-762 . -141) 78674) ((-762 . -139) 78653) ((-762 . -682) 78637) ((-762 . -613) 78611) ((-762 . -129) T) ((-762 . -25) T) ((-762 . -100) T) ((-762 . -583) 78593) ((-762 . -1052) T) ((-762 . -23) T) ((-762 . -21) T) ((-762 . -1010) 78577) ((-762 . -110) 78556) ((-762 . -1004) T) ((-762 . -1011) T) ((-762 . -1063) T) ((-762 . -691) T) ((-762 . -37) 78540) ((-745 . -1181) 78524) ((-745 . -1099) 78502) ((-745 . -584) NIL) ((-745 . -294) 78489) ((-745 . -496) 78436) ((-745 . -311) 78413) ((-745 . -995) 78274) ((-745 . -397) 78258) ((-745 . -37) 78087) ((-745 . -110) 77896) ((-745 . -1010) 77719) ((-745 . -613) 77644) ((-745 . -682) 77473) ((-745 . -139) 77452) ((-745 . -141) 77431) ((-745 . -46) 77408) ((-745 . -362) 77392) ((-745 . -606) 77340) ((-745 . -811) 77319) ((-745 . -859) 77262) ((-745 . -845) NIL) ((-745 . -869) 77241) ((-745 . -1164) 77220) ((-745 . -909) 77189) ((-745 . -880) 77168) ((-745 . -533) 77079) ((-745 . -275) 76990) ((-745 . -163) 76881) ((-745 . -436) 76812) ((-745 . -292) 76791) ((-745 . -271) 76718) ((-745 . -219) T) ((-745 . -129) T) ((-745 . -25) T) ((-745 . -100) T) ((-745 . -583) 76679) ((-745 . -1052) T) ((-745 . -23) T) ((-745 . -21) T) ((-745 . -691) T) ((-745 . -1063) T) ((-745 . -1011) T) ((-745 . -1004) T) ((-745 . -217) 76663) ((-744 . -1018) 76630) ((-744 . -584) 76265) ((-744 . -294) 76252) ((-744 . -496) 76204) ((-744 . -311) 76176) ((-744 . -995) 76035) ((-744 . -397) 76019) ((-744 . -37) 75868) ((-744 . -613) 75793) ((-744 . -691) T) ((-744 . -1063) T) ((-744 . -1011) T) ((-744 . -1004) T) ((-744 . -110) 75622) ((-744 . -1010) 75465) ((-744 . -21) T) ((-744 . -23) T) ((-744 . -1052) T) ((-744 . -583) 75379) ((-744 . -100) T) ((-744 . -25) T) ((-744 . -129) T) ((-744 . -682) 75228) ((-744 . -139) 75207) ((-744 . -141) 75186) ((-744 . -163) 75097) ((-744 . -533) 75028) ((-744 . -275) 74959) ((-744 . -46) 74931) ((-744 . -362) 74915) ((-744 . -606) 74863) ((-744 . -436) 74814) ((-744 . -811) 74793) ((-744 . -859) 74777) ((-744 . -845) 74636) ((-744 . -869) 74615) ((-744 . -1164) 74594) ((-744 . -909) 74561) ((-737 . -1052) T) ((-737 . -583) 74543) ((-737 . -100) T) ((-735 . -757) T) ((-735 . -129) T) ((-735 . -25) T) ((-735 . -100) T) ((-735 . -583) 74525) ((-735 . -1052) T) ((-735 . -23) T) ((-735 . -756) T) ((-735 . -811) T) ((-735 . -758) T) ((-735 . -761) T) ((-735 . -691) T) ((-735 . -1063) T) ((-733 . -1052) T) ((-733 . -583) 74507) ((-733 . -100) T) ((-701 . -702) 74491) ((-701 . -1050) 74475) ((-701 . -221) 74459) ((-701 . -584) 74420) ((-701 . -145) 74404) ((-701 . -472) 74388) ((-701 . -100) T) ((-701 . -1052) T) ((-701 . -496) 74321) ((-701 . -294) 74259) ((-701 . -583) 74241) ((-701 . -1159) T) ((-701 . -33) T) ((-701 . -105) 74225) ((-701 . -659) 74209) ((-700 . -1004) T) ((-700 . -1011) T) ((-700 . -1063) T) ((-700 . -691) T) ((-700 . -21) T) ((-700 . -23) T) ((-700 . -1052) T) ((-700 . -583) 74191) ((-700 . -100) T) ((-700 . -25) T) ((-700 . -129) T) ((-700 . -613) 74151) ((-700 . -995) 74122) ((-700 . -141) 74101) ((-700 . -139) 74080) ((-700 . -37) 74050) ((-700 . -110) 74015) ((-700 . -1010) 73985) ((-700 . -682) 73955) ((-700 . -353) 73908) ((-696 . -909) 73861) ((-696 . -995) 73739) ((-696 . -1164) 73718) ((-696 . -869) 73697) ((-696 . -845) NIL) ((-696 . -859) 73674) ((-696 . -811) 73653) ((-696 . -496) 73596) ((-696 . -436) 73547) ((-696 . -606) 73495) ((-696 . -362) 73479) ((-696 . -46) 73444) ((-696 . -37) 73293) ((-696 . -682) 73142) ((-696 . -275) 73073) ((-696 . -533) 73004) ((-696 . -110) 72833) ((-696 . -1010) 72676) ((-696 . -163) 72587) ((-696 . -141) 72566) ((-696 . -139) 72545) ((-696 . -613) 72470) ((-696 . -129) T) ((-696 . -25) T) ((-696 . -100) T) ((-696 . -583) 72452) ((-696 . -1052) T) ((-696 . -23) T) ((-696 . -21) T) ((-696 . -1004) T) ((-696 . -1011) T) ((-696 . -1063) T) ((-696 . -691) T) ((-696 . -397) 72436) ((-696 . -311) 72401) ((-696 . -294) 72388) ((-696 . -584) 72249) ((-683 . -457) T) ((-683 . -1063) T) ((-683 . -100) T) ((-683 . -583) 72231) ((-683 . -1052) T) ((-683 . -691) T) ((-680 . -1004) T) ((-680 . -1011) T) ((-680 . -1063) T) ((-680 . -691) T) ((-680 . -21) T) ((-680 . -23) T) ((-680 . -1052) T) ((-680 . -583) 72213) ((-680 . -100) T) ((-680 . -25) T) ((-680 . -129) T) ((-680 . -613) 72200) ((-679 . -1004) T) ((-679 . -1011) T) ((-679 . -1063) T) ((-679 . -691) T) ((-679 . -21) T) ((-679 . -23) T) ((-679 . -1052) T) ((-679 . -583) 72182) ((-679 . -100) T) ((-679 . -25) T) ((-679 . -129) T) ((-679 . -613) 72142) ((-679 . -995) 72111) ((-679 . -271) 72090) ((-679 . -141) 72069) ((-679 . -139) 72048) ((-679 . -37) 72018) ((-679 . -110) 71983) ((-679 . -1010) 71953) ((-679 . -682) 71923) ((-678 . -811) T) ((-678 . -100) T) ((-678 . -583) 71905) ((-678 . -1052) T) ((-677 . -1181) 71889) ((-677 . -1099) 71867) ((-677 . -584) NIL) ((-677 . -294) 71854) ((-677 . -496) 71801) ((-677 . -311) 71778) ((-677 . -995) 71660) ((-677 . -397) 71644) ((-677 . -37) 71473) ((-677 . -110) 71282) ((-677 . -1010) 71105) ((-677 . -613) 71030) ((-677 . -682) 70859) ((-677 . -139) 70838) ((-677 . -141) 70817) ((-677 . -46) 70794) ((-677 . -362) 70778) ((-677 . -606) 70726) ((-677 . -811) 70705) ((-677 . -859) 70648) ((-677 . -845) NIL) ((-677 . -869) 70627) ((-677 . -1164) 70606) ((-677 . -909) 70575) ((-677 . -880) 70554) ((-677 . -533) 70465) ((-677 . -275) 70376) ((-677 . -163) 70267) ((-677 . -436) 70198) ((-677 . -292) 70177) ((-677 . -271) 70104) ((-677 . -219) T) ((-677 . -129) T) ((-677 . -25) T) ((-677 . -100) T) ((-677 . -583) 70086) ((-677 . -1052) T) ((-677 . -23) T) ((-677 . -21) T) ((-677 . -691) T) ((-677 . -1063) T) ((-677 . -1011) T) ((-677 . -1004) T) ((-677 . -217) 70070) ((-677 . -353) 70049) ((-676 . -348) T) ((-676 . -1164) T) ((-676 . -880) T) ((-676 . -533) T) ((-676 . -163) T) ((-676 . -682) 70014) ((-676 . -37) 69979) ((-676 . -436) T) ((-676 . -292) T) ((-676 . -613) 69944) ((-676 . -691) T) ((-676 . -1063) T) ((-676 . -1011) T) ((-676 . -1004) T) ((-676 . -110) 69900) ((-676 . -1010) 69865) ((-676 . -21) T) ((-676 . -23) T) ((-676 . -1052) T) ((-676 . -583) 69847) ((-676 . -100) T) ((-676 . -25) T) ((-676 . -129) T) ((-676 . -275) T) ((-676 . -229) T) ((-675 . -1052) T) ((-675 . -583) 69829) ((-675 . -100) T) ((-667 . -130) T) ((-667 . -1052) T) ((-667 . -583) 69798) ((-667 . -100) T) ((-667 . -811) T) ((-665 . -372) T) ((-665 . -995) 69780) ((-665 . -811) T) ((-665 . -37) 69767) ((-665 . -691) T) ((-665 . -1063) T) ((-665 . -1011) T) ((-665 . -1004) T) ((-665 . -110) 69752) ((-665 . -1010) 69739) ((-665 . -21) T) ((-665 . -23) T) ((-665 . -1052) T) ((-665 . -583) 69721) ((-665 . -100) T) ((-665 . -25) T) ((-665 . -129) T) ((-665 . -613) 69708) ((-665 . -682) 69695) ((-665 . -163) T) ((-665 . -275) T) ((-665 . -533) T) ((-665 . -525) T) ((-665 . -1164) T) ((-665 . -1099) T) ((-665 . -584) 69610) ((-665 . -977) T) ((-665 . -845) 69592) ((-665 . -809) T) ((-665 . -761) T) ((-665 . -758) T) ((-665 . -756) T) ((-665 . -755) T) ((-665 . -784) T) ((-665 . -606) 69574) ((-665 . -880) T) ((-665 . -436) T) ((-665 . -292) T) ((-665 . -219) T) ((-665 . -137) T) ((-665 . -141) T) ((-663 . -389) T) ((-663 . -141) T) ((-663 . -613) 69539) ((-663 . -129) T) ((-663 . -25) T) ((-663 . -100) T) ((-663 . -583) 69521) ((-663 . -1052) T) ((-663 . -23) T) ((-663 . -21) T) ((-663 . -691) T) ((-663 . -1063) T) ((-663 . -1011) T) ((-663 . -1004) T) ((-663 . -584) 69466) ((-663 . -348) T) ((-663 . -1164) T) ((-663 . -880) T) ((-663 . -533) T) ((-663 . -163) T) ((-663 . -682) 69431) ((-663 . -37) 69396) ((-663 . -436) T) ((-663 . -292) T) ((-663 . -110) 69352) ((-663 . -1010) 69317) ((-663 . -275) T) ((-663 . -229) T) ((-663 . -809) T) ((-663 . -761) T) ((-663 . -758) T) ((-663 . -811) T) ((-663 . -756) T) ((-663 . -755) T) ((-663 . -845) 69299) ((-663 . -960) T) ((-663 . -977) T) ((-663 . -995) 69244) ((-663 . -1013) T) ((-663 . -372) T) ((-658 . -372) T) ((-658 . -995) 69189) ((-658 . -811) T) ((-658 . -37) 69139) ((-658 . -691) T) ((-658 . -1063) T) ((-658 . -1011) T) ((-658 . -1004) T) ((-658 . -110) 69073) ((-658 . -1010) 69023) ((-658 . -21) T) ((-658 . -23) T) ((-658 . -1052) T) ((-658 . -583) 69005) ((-658 . -100) T) ((-658 . -25) T) ((-658 . -129) T) ((-658 . -613) 68955) ((-658 . -682) 68905) ((-658 . -163) T) ((-658 . -275) T) ((-658 . -533) T) ((-658 . -157) 68887) ((-658 . -34) NIL) ((-658 . -93) NIL) ((-658 . -269) NIL) ((-658 . -475) NIL) ((-658 . -1148) NIL) ((-658 . -1145) NIL) ((-658 . -960) NIL) ((-658 . -869) NIL) ((-658 . -584) 68795) ((-658 . -843) 68777) ((-658 . -353) NIL) ((-658 . -335) NIL) ((-658 . -1099) NIL) ((-658 . -387) NIL) ((-658 . -395) 68744) ((-658 . -355) 68711) ((-658 . -689) 68678) ((-658 . -397) 68660) ((-658 . -845) 68642) ((-658 . -1159) T) ((-658 . -385) 68624) ((-658 . -606) 68606) ((-658 . -362) 68588) ((-658 . -271) NIL) ((-658 . -294) NIL) ((-658 . -496) NIL) ((-658 . -323) 68570) ((-658 . -229) T) ((-658 . -1164) T) ((-658 . -348) T) ((-658 . -880) T) ((-658 . -436) T) ((-658 . -292) T) ((-658 . -219) NIL) ((-658 . -859) NIL) ((-658 . -217) 68552) ((-658 . -141) T) ((-658 . -139) NIL) ((-655 . -1201) T) ((-655 . -583) 68534) ((-653 . -650) 68492) ((-653 . -472) 68476) ((-653 . -100) 68454) ((-653 . -1052) 68432) ((-653 . -496) 68365) ((-653 . -294) 68303) ((-653 . -583) 68235) ((-653 . -1159) T) ((-653 . -33) T) ((-653 . -55) 68193) ((-653 . -584) 68154) ((-645 . -1035) T) ((-645 . -583) 68104) ((-645 . -1052) T) ((-645 . -100) T) ((-645 . -91) T) ((-641 . -811) T) ((-641 . -100) T) ((-641 . -583) 68086) ((-641 . -1052) T) ((-641 . -995) 68070) ((-640 . -472) 68054) ((-640 . -100) 68032) ((-640 . -1052) 68010) ((-640 . -496) 67943) ((-640 . -294) 67881) ((-640 . -583) 67813) ((-640 . -1159) T) ((-640 . -33) T) ((-637 . -811) T) ((-637 . -100) T) ((-637 . -583) 67795) ((-637 . -1052) T) ((-637 . -995) 67779) ((-636 . -1035) T) ((-636 . -583) 67745) ((-636 . -1052) T) ((-636 . -100) T) ((-636 . -91) T) ((-635 . -1073) 67690) ((-635 . -472) 67674) ((-635 . -496) 67607) ((-635 . -294) 67545) ((-635 . -1159) T) ((-635 . -33) T) ((-635 . -1007) 67485) ((-635 . -995) 67383) ((-635 . -397) 67367) ((-635 . -606) 67315) ((-635 . -362) 67299) ((-635 . -219) 67278) ((-635 . -859) 67237) ((-635 . -217) 67221) ((-635 . -682) 67205) ((-635 . -613) 67179) ((-635 . -129) T) ((-635 . -25) T) ((-635 . -100) T) ((-635 . -583) 67141) ((-635 . -1052) T) ((-635 . -23) T) ((-635 . -21) T) ((-635 . -1010) 67125) ((-635 . -110) 67104) ((-635 . -1004) T) ((-635 . -1011) T) ((-635 . -1063) T) ((-635 . -691) T) ((-635 . -37) 67064) ((-635 . -403) 67048) ((-635 . -709) 67032) ((-635 . -685) T) ((-635 . -726) T) ((-635 . -352) 67016) ((-629 . -359) 66995) ((-629 . -682) 66979) ((-629 . -613) 66963) ((-629 . -129) T) ((-629 . -25) T) ((-629 . -100) T) ((-629 . -583) 66945) ((-629 . -1052) T) ((-629 . -23) T) ((-629 . -21) T) ((-629 . -1010) 66929) ((-629 . -110) 66908) ((-629 . -602) 66892) ((-629 . -369) 66864) ((-629 . -995) 66841) ((-621 . -623) 66825) ((-621 . -37) 66795) ((-621 . -613) 66769) ((-621 . -691) T) ((-621 . -1063) T) ((-621 . -1011) T) ((-621 . -1004) T) ((-621 . -110) 66748) ((-621 . -1010) 66732) ((-621 . -21) T) ((-621 . -23) T) ((-621 . -1052) T) ((-621 . -583) 66714) ((-621 . -100) T) ((-621 . -25) T) ((-621 . -129) T) ((-621 . -682) 66684) ((-621 . -397) 66668) ((-621 . -995) 66566) ((-621 . -813) 66550) ((-621 . -271) 66511) ((-620 . -623) 66495) ((-620 . -37) 66465) ((-620 . -613) 66439) ((-620 . -691) T) ((-620 . -1063) T) ((-620 . -1011) T) ((-620 . -1004) T) ((-620 . -110) 66418) ((-620 . -1010) 66402) ((-620 . -21) T) ((-620 . -23) T) ((-620 . -1052) T) ((-620 . -583) 66384) ((-620 . -100) T) ((-620 . -25) T) ((-620 . -129) T) ((-620 . -682) 66354) ((-620 . -397) 66338) ((-620 . -995) 66236) ((-620 . -813) 66220) ((-620 . -271) 66199) ((-619 . -623) 66183) ((-619 . -37) 66153) ((-619 . -613) 66127) ((-619 . -691) T) ((-619 . -1063) T) ((-619 . -1011) T) ((-619 . -1004) T) ((-619 . -110) 66106) ((-619 . -1010) 66090) ((-619 . -21) T) ((-619 . -23) T) ((-619 . -1052) T) ((-619 . -583) 66072) ((-619 . -100) T) ((-619 . -25) T) ((-619 . -129) T) ((-619 . -682) 66042) ((-619 . -397) 66026) ((-619 . -995) 65924) ((-619 . -813) 65908) ((-619 . -271) 65887) ((-617 . -682) 65871) ((-617 . -613) 65855) ((-617 . -129) T) ((-617 . -25) T) ((-617 . -100) T) ((-617 . -583) 65837) ((-617 . -1052) T) ((-617 . -23) T) ((-617 . -21) T) ((-617 . -1010) 65821) ((-617 . -110) 65800) ((-617 . -755) 65779) ((-617 . -756) 65758) ((-617 . -811) 65737) ((-617 . -758) 65716) ((-617 . -761) 65695) ((-614 . -1052) T) ((-614 . -583) 65677) ((-614 . -100) T) ((-614 . -995) 65661) ((-612 . -659) 65645) ((-612 . -105) 65629) ((-612 . -33) T) ((-612 . -1159) T) ((-612 . -583) 65561) ((-612 . -294) 65499) ((-612 . -496) 65432) ((-612 . -1052) 65410) ((-612 . -100) 65388) ((-612 . -472) 65372) ((-612 . -145) 65356) ((-612 . -584) 65317) ((-612 . -221) 65301) ((-611 . -1035) T) ((-611 . -583) 65254) ((-611 . -1052) T) ((-611 . -100) T) ((-611 . -91) T) ((-607 . -631) 65238) ((-607 . -1194) 65222) ((-607 . -968) 65206) ((-607 . -1097) 65190) ((-607 . -811) 65169) ((-607 . -357) 65153) ((-607 . -616) 65137) ((-607 . -273) 65114) ((-607 . -271) 65091) ((-607 . -574) 65068) ((-607 . -584) 65029) ((-607 . -472) 65013) ((-607 . -100) 64963) ((-607 . -1052) 64913) ((-607 . -496) 64846) ((-607 . -294) 64784) ((-607 . -583) 64696) ((-607 . -1159) T) ((-607 . -33) T) ((-607 . -145) 64680) ((-607 . -267) 64664) ((-607 . -785) 64643) ((-600 . -709) 64627) ((-600 . -685) T) ((-600 . -726) T) ((-600 . -110) 64606) ((-600 . -1010) 64590) ((-600 . -21) T) ((-600 . -23) T) ((-600 . -1052) T) ((-600 . -583) 64559) ((-600 . -100) T) ((-600 . -25) T) ((-600 . -129) T) ((-600 . -613) 64543) ((-600 . -682) 64527) ((-600 . -403) 64492) ((-600 . -352) 64424) ((-599 . -1136) 64399) ((-599 . -215) 64345) ((-599 . -105) 64291) ((-599 . -294) 64142) ((-599 . -496) 63986) ((-599 . -472) 63917) ((-599 . -145) 63863) ((-599 . -584) NIL) ((-599 . -221) 63809) ((-599 . -580) 63784) ((-599 . -273) 63759) ((-599 . -271) 63734) ((-599 . -100) T) ((-599 . -1052) T) ((-599 . -583) 63716) ((-599 . -1159) T) ((-599 . -33) T) ((-599 . -574) 63691) ((-594 . -457) T) ((-594 . -1063) T) ((-594 . -100) T) ((-594 . -583) 63673) ((-594 . -1052) T) ((-594 . -691) T) ((-593 . -1035) T) ((-593 . -583) 63639) ((-593 . -1052) T) ((-593 . -100) T) ((-593 . -91) T) ((-590 . -217) 63623) ((-590 . -859) 63582) ((-590 . -1004) T) ((-590 . -1011) T) ((-590 . -1063) T) ((-590 . -691) T) ((-590 . -21) T) ((-590 . -23) T) ((-590 . -1052) T) ((-590 . -583) 63564) ((-590 . -100) T) ((-590 . -25) T) ((-590 . -129) T) ((-590 . -613) 63551) ((-590 . -219) 63530) ((-590 . -533) T) ((-590 . -275) T) ((-590 . -163) T) ((-590 . -682) 63517) ((-590 . -1010) 63504) ((-590 . -110) 63489) ((-590 . -37) 63476) ((-590 . -584) 63453) ((-590 . -397) 63437) ((-590 . -995) 63322) ((-590 . -141) 63301) ((-590 . -139) 63280) ((-590 . -292) 63259) ((-590 . -436) 63238) ((-590 . -880) 63217) ((-586 . -37) 63201) ((-586 . -613) 63175) ((-586 . -691) T) ((-586 . -1063) T) ((-586 . -1011) T) ((-586 . -1004) T) ((-586 . -110) 63154) ((-586 . -1010) 63138) ((-586 . -21) T) ((-586 . -23) T) ((-586 . -1052) T) ((-586 . -583) 63120) ((-586 . -100) T) ((-586 . -25) T) ((-586 . -129) T) ((-586 . -682) 63104) ((-586 . -809) 63083) ((-586 . -761) 63062) ((-586 . -758) 63041) ((-586 . -811) 63020) ((-586 . -756) 62999) ((-586 . -755) 62978) ((-581 . -130) T) ((-581 . -1052) T) ((-581 . -583) 62960) ((-581 . -100) T) ((-581 . -811) T) ((-581 . -843) 62944) ((-581 . -584) 62805) ((-578 . -350) 62745) ((-578 . -100) T) ((-578 . -583) 62727) ((-578 . -1052) T) ((-578 . -1136) 62703) ((-578 . -215) 62650) ((-578 . -105) 62597) ((-578 . -294) 62392) ((-578 . -496) 62175) ((-578 . -472) 62109) ((-578 . -145) 62056) ((-578 . -584) NIL) ((-578 . -221) 62003) ((-578 . -580) 61979) ((-578 . -273) 61955) ((-578 . -271) 61931) ((-578 . -1159) T) ((-578 . -33) T) ((-578 . -574) 61907) ((-577 . -709) 61891) ((-577 . -685) T) ((-577 . -726) T) ((-577 . -110) 61870) ((-577 . -1010) 61854) ((-577 . -21) T) ((-577 . -23) T) ((-577 . -1052) T) ((-577 . -583) 61823) ((-577 . -100) T) ((-577 . -25) T) ((-577 . -129) T) ((-577 . -613) 61807) ((-577 . -682) 61791) ((-577 . -403) 61756) ((-577 . -352) 61688) ((-576 . -1035) T) ((-576 . -583) 61638) ((-576 . -1052) T) ((-576 . -100) T) ((-576 . -91) T) ((-575 . -583) 61605) ((-572 . -1204) 61589) ((-572 . -357) 61573) ((-572 . -811) 61552) ((-572 . -145) 61536) ((-572 . -33) T) ((-572 . -1159) T) ((-572 . -583) 61448) ((-572 . -294) 61386) ((-572 . -496) 61319) ((-572 . -1052) 61269) ((-572 . -100) 61219) ((-572 . -472) 61203) ((-572 . -584) 61164) ((-572 . -574) 61141) ((-572 . -271) 61118) ((-572 . -273) 61095) ((-572 . -616) 61079) ((-572 . -19) 61063) ((-571 . -583) 61045) ((-567 . -1004) T) ((-567 . -1011) T) ((-567 . -1063) T) ((-567 . -691) T) ((-567 . -21) T) ((-567 . -23) T) ((-567 . -1052) T) ((-567 . -583) 61027) ((-567 . -100) T) ((-567 . -25) T) ((-567 . -129) T) ((-567 . -613) 61014) ((-567 . -533) 60993) ((-567 . -275) 60972) ((-567 . -163) 60951) ((-567 . -682) 60924) ((-567 . -1010) 60897) ((-567 . -110) 60868) ((-567 . -37) 60841) ((-566 . -1184) 60818) ((-566 . -46) 60795) ((-566 . -37) 60692) ((-566 . -682) 60589) ((-566 . -275) 60568) ((-566 . -533) 60547) ((-566 . -110) 60416) ((-566 . -1010) 60299) ((-566 . -163) 60250) ((-566 . -141) 60229) ((-566 . -139) 60208) ((-566 . -613) 60133) ((-566 . -932) 60102) ((-566 . -859) 60015) ((-566 . -271) 60000) ((-566 . -1004) T) ((-566 . -1011) T) ((-566 . -1063) T) ((-566 . -691) T) ((-566 . -21) T) ((-566 . -23) T) ((-566 . -1052) T) ((-566 . -583) 59982) ((-566 . -100) T) ((-566 . -25) T) ((-566 . -129) T) ((-566 . -219) 59941) ((-564 . -1092) T) ((-564 . -357) 59923) ((-564 . -811) T) ((-564 . -145) 59905) ((-564 . -33) T) ((-564 . -1159) T) ((-564 . -583) 59887) ((-564 . -294) NIL) ((-564 . -496) NIL) ((-564 . -1052) T) ((-564 . -100) T) ((-564 . -472) 59869) ((-564 . -584) NIL) ((-564 . -574) 59844) ((-564 . -271) 59819) ((-564 . -273) 59794) ((-564 . -616) 59776) ((-564 . -19) 59758) ((-556 . -682) 59733) ((-556 . -613) 59708) ((-556 . -129) T) ((-556 . -25) T) ((-556 . -100) T) ((-556 . -583) 59690) ((-556 . -1052) T) ((-556 . -23) T) ((-556 . -21) T) ((-556 . -1010) 59665) ((-556 . -110) 59633) ((-556 . -995) 59617) ((-554 . -335) T) ((-554 . -1099) T) ((-554 . -353) T) ((-554 . -139) T) ((-554 . -348) T) ((-554 . -1164) T) ((-554 . -880) T) ((-554 . -533) T) ((-554 . -163) T) ((-554 . -682) 59582) ((-554 . -37) 59547) ((-554 . -436) T) ((-554 . -292) T) ((-554 . -110) 59503) ((-554 . -1010) 59468) ((-554 . -613) 59433) ((-554 . -275) T) ((-554 . -229) T) ((-554 . -387) T) ((-554 . -1004) T) ((-554 . -1011) T) ((-554 . -1063) T) ((-554 . -691) T) ((-554 . -21) T) ((-554 . -23) T) ((-554 . -1052) T) ((-554 . -583) 59415) ((-554 . -100) T) ((-554 . -25) T) ((-554 . -129) T) ((-554 . -219) T) ((-554 . -314) 59402) ((-554 . -141) 59384) ((-554 . -995) 59371) ((-554 . -1213) 59358) ((-554 . -1223) 59345) ((-554 . -584) 59327) ((-553 . -829) 59311) ((-553 . -880) T) ((-553 . -533) T) ((-553 . -275) T) ((-553 . -163) T) ((-553 . -682) 59298) ((-553 . -1010) 59285) ((-553 . -110) 59270) ((-553 . -37) 59257) ((-553 . -436) T) ((-553 . -292) T) ((-553 . -1004) T) ((-553 . -1011) T) ((-553 . -1063) T) ((-553 . -691) T) ((-553 . -21) T) ((-553 . -23) T) ((-553 . -1052) T) ((-553 . -583) 59239) ((-553 . -100) T) ((-553 . -25) T) ((-553 . -129) T) ((-553 . -613) 59226) ((-553 . -141) T) ((-547 . -531) 59210) ((-547 . -34) T) ((-547 . -93) T) ((-547 . -269) T) ((-547 . -475) T) ((-547 . -1148) T) ((-547 . -1145) T) ((-547 . -995) 59192) ((-547 . -960) T) ((-547 . -811) T) ((-547 . -533) T) ((-547 . -275) T) ((-547 . -163) T) ((-547 . -682) 59179) ((-547 . -613) 59166) ((-547 . -129) T) ((-547 . -25) T) ((-547 . -100) T) ((-547 . -583) 59148) ((-547 . -1052) T) ((-547 . -23) T) ((-547 . -21) T) ((-547 . -1010) 59135) ((-547 . -110) 59120) ((-547 . -1004) T) ((-547 . -1011) T) ((-547 . -1063) T) ((-547 . -691) T) ((-547 . -37) 59107) ((-547 . -436) T) ((-527 . -1136) 59086) ((-527 . -215) 59036) ((-527 . -105) 58986) ((-527 . -294) 58790) ((-527 . -496) 58582) ((-527 . -472) 58519) ((-527 . -145) 58469) ((-527 . -584) NIL) ((-527 . -221) 58419) ((-527 . -580) 58398) ((-527 . -273) 58377) ((-527 . -271) 58356) ((-527 . -100) T) ((-527 . -1052) T) ((-527 . -583) 58338) ((-527 . -1159) T) ((-527 . -33) T) ((-527 . -574) 58317) ((-526 . -525) T) ((-526 . -1164) T) ((-526 . -1099) T) ((-526 . -995) 58299) ((-526 . -584) 58198) ((-526 . -977) T) ((-526 . -845) 58180) ((-526 . -809) T) ((-526 . -761) T) ((-526 . -758) T) ((-526 . -811) T) ((-526 . -756) T) ((-526 . -755) T) ((-526 . -784) T) ((-526 . -606) 58162) ((-526 . -880) T) ((-526 . -533) T) ((-526 . -275) T) ((-526 . -163) T) ((-526 . -682) 58149) ((-526 . -1010) 58136) ((-526 . -110) 58121) ((-526 . -37) 58108) ((-526 . -436) T) ((-526 . -292) T) ((-526 . -219) T) ((-526 . -137) T) ((-526 . -1004) T) ((-526 . -1011) T) ((-526 . -1063) T) ((-526 . -691) T) ((-526 . -21) T) ((-526 . -23) T) ((-526 . -1052) T) ((-526 . -583) 58090) ((-526 . -100) T) ((-526 . -25) T) ((-526 . -129) T) ((-526 . -613) 58077) ((-526 . -141) T) ((-526 . -785) T) ((-515 . -1055) 58029) ((-515 . -100) T) ((-515 . -583) 58011) ((-515 . -1052) T) ((-515 . -584) 57992) ((-512 . -757) T) ((-512 . -129) T) ((-512 . -25) T) ((-512 . -100) T) ((-512 . -583) 57974) ((-512 . -1052) T) ((-512 . -23) T) ((-512 . -756) T) ((-512 . -811) T) ((-512 . -758) T) ((-512 . -761) T) ((-512 . -491) 57951) ((-507 . -1035) T) ((-507 . -583) 57917) ((-507 . -1052) T) ((-507 . -100) T) ((-507 . -91) T) ((-506 . -1035) T) ((-506 . -583) 57883) ((-506 . -1052) T) ((-506 . -100) T) ((-506 . -91) T) ((-505 . -650) 57833) ((-505 . -472) 57817) ((-505 . -100) 57795) ((-505 . -1052) 57773) ((-505 . -496) 57706) ((-505 . -294) 57644) ((-505 . -583) 57576) ((-505 . -1159) T) ((-505 . -33) T) ((-505 . -55) 57526) ((-502 . -631) 57510) ((-502 . -1194) 57494) ((-502 . -968) 57478) ((-502 . -1097) 57462) ((-502 . -811) 57441) ((-502 . -357) 57425) ((-502 . -616) 57409) ((-502 . -273) 57386) ((-502 . -271) 57363) ((-502 . -574) 57340) ((-502 . -584) 57301) ((-502 . -472) 57285) ((-502 . -100) 57235) ((-502 . -1052) 57185) ((-502 . -496) 57118) ((-502 . -294) 57056) ((-502 . -583) 56968) ((-502 . -1159) T) ((-502 . -33) T) ((-502 . -145) 56952) ((-502 . -267) 56936) ((-501 . -55) 56910) ((-501 . -33) T) ((-501 . -1159) T) ((-501 . -583) 56842) ((-501 . -294) 56780) ((-501 . -496) 56713) ((-501 . -1052) 56691) ((-501 . -100) 56669) ((-501 . -472) 56653) ((-500 . -314) 56630) ((-500 . -219) T) ((-500 . -353) T) ((-500 . -1099) T) ((-500 . -335) T) ((-500 . -141) 56612) ((-500 . -613) 56557) ((-500 . -129) T) ((-500 . -25) T) ((-500 . -100) T) ((-500 . -583) 56539) ((-500 . -1052) T) ((-500 . -23) T) ((-500 . -21) T) ((-500 . -691) T) ((-500 . -1063) T) ((-500 . -1011) T) ((-500 . -1004) T) ((-500 . -348) T) ((-500 . -1164) T) ((-500 . -880) T) ((-500 . -533) T) ((-500 . -163) T) ((-500 . -682) 56484) ((-500 . -37) 56449) ((-500 . -436) T) ((-500 . -292) T) ((-500 . -110) 56378) ((-500 . -1010) 56323) ((-500 . -275) T) ((-500 . -229) T) ((-500 . -387) T) ((-500 . -139) T) ((-500 . -995) 56300) ((-500 . -1213) 56277) ((-500 . -1223) 56254) ((-499 . -1035) T) ((-499 . -583) 56220) ((-499 . -1052) T) ((-499 . -100) T) ((-499 . -91) T) ((-498 . -19) 56204) ((-498 . -616) 56188) ((-498 . -273) 56165) ((-498 . -271) 56142) ((-498 . -574) 56119) ((-498 . -584) 56080) ((-498 . -472) 56064) ((-498 . -100) 56014) ((-498 . -1052) 55964) ((-498 . -496) 55897) ((-498 . -294) 55835) ((-498 . -583) 55747) ((-498 . -1159) T) ((-498 . -33) T) ((-498 . -145) 55731) ((-498 . -811) 55710) ((-498 . -357) 55694) ((-498 . -267) 55678) ((-497 . -308) 55657) ((-497 . -995) 55641) ((-497 . -23) T) ((-497 . -1052) T) ((-497 . -583) 55623) ((-497 . -100) T) ((-497 . -25) T) ((-497 . -129) T) ((-494 . -757) T) ((-494 . -129) T) ((-494 . -25) T) ((-494 . -100) T) ((-494 . -583) 55605) ((-494 . -1052) T) ((-494 . -23) T) ((-494 . -756) T) ((-494 . -811) T) ((-494 . -758) T) ((-494 . -761) T) ((-494 . -491) 55584) ((-493 . -756) T) ((-493 . -811) T) ((-493 . -758) T) ((-493 . -25) T) ((-493 . -100) T) ((-493 . -583) 55566) ((-493 . -1052) T) ((-493 . -23) T) ((-493 . -491) 55545) ((-492 . -491) 55524) ((-492 . -100) T) ((-492 . -583) 55506) ((-492 . -1052) T) ((-490 . -23) T) ((-490 . -1052) T) ((-490 . -583) 55488) ((-490 . -100) T) ((-490 . -25) T) ((-490 . -491) 55467) ((-489 . -21) T) ((-489 . -23) T) ((-489 . -1052) T) ((-489 . -583) 55449) ((-489 . -100) T) ((-489 . -25) T) ((-489 . -129) T) ((-489 . -491) 55428) ((-488 . -1035) T) ((-488 . -583) 55378) ((-488 . -1052) T) ((-488 . -100) T) ((-488 . -91) T) ((-486 . -1052) T) ((-486 . -583) 55360) ((-486 . -100) T) ((-484 . -811) T) ((-484 . -100) T) ((-484 . -583) 55342) ((-484 . -1052) T) ((-482 . -122) T) ((-482 . -357) 55324) ((-482 . -811) T) ((-482 . -145) 55306) ((-482 . -33) T) ((-482 . -1159) T) ((-482 . -583) 55288) ((-482 . -294) NIL) ((-482 . -496) NIL) ((-482 . -1052) T) ((-482 . -472) 55270) ((-482 . -584) 55252) ((-482 . -574) 55227) ((-482 . -271) 55202) ((-482 . -273) 55177) ((-482 . -616) 55159) ((-482 . -19) 55141) ((-482 . -100) T) ((-482 . -627) T) ((-479 . -55) 55091) ((-479 . -33) T) ((-479 . -1159) T) ((-479 . -583) 55023) ((-479 . -294) 54961) ((-479 . -496) 54894) ((-479 . -1052) 54872) ((-479 . -100) 54850) ((-479 . -472) 54834) ((-478 . -19) 54818) ((-478 . -616) 54802) ((-478 . -273) 54779) ((-478 . -271) 54756) ((-478 . -574) 54733) ((-478 . -584) 54694) ((-478 . -472) 54678) ((-478 . -100) 54628) ((-478 . -1052) 54578) ((-478 . -496) 54511) ((-478 . -294) 54449) ((-478 . -583) 54361) ((-478 . -1159) T) ((-478 . -33) T) ((-478 . -145) 54345) ((-478 . -811) 54324) ((-478 . -357) 54308) ((-477 . -283) T) ((-477 . -995) 54251) ((-477 . -1052) T) ((-477 . -583) 54233) ((-477 . -100) T) ((-477 . -811) T) ((-477 . -496) 54199) ((-477 . -294) 54186) ((-477 . -27) T) ((-477 . -960) T) ((-477 . -229) T) ((-477 . -110) 54142) ((-477 . -1010) 54107) ((-477 . -275) T) ((-477 . -682) 54072) ((-477 . -613) 54037) ((-477 . -129) T) ((-477 . -25) T) ((-477 . -23) T) ((-477 . -21) T) ((-477 . -1004) T) ((-477 . -1011) T) ((-477 . -1063) T) ((-477 . -691) T) ((-477 . -37) 54002) ((-477 . -292) T) ((-477 . -436) T) ((-477 . -163) T) ((-477 . -533) T) ((-477 . -880) T) ((-477 . -1164) T) ((-477 . -348) T) ((-477 . -606) 53962) ((-477 . -977) T) ((-477 . -584) 53907) ((-477 . -141) T) ((-477 . -219) T) ((-473 . -1052) T) ((-473 . -583) 53873) ((-473 . -100) T) ((-470 . -950) 53855) ((-470 . -1099) T) ((-470 . -995) 53815) ((-470 . -584) 53745) ((-470 . -977) T) ((-470 . -869) NIL) ((-470 . -843) 53727) ((-470 . -809) T) ((-470 . -761) T) ((-470 . -758) T) ((-470 . -811) T) ((-470 . -756) T) ((-470 . -755) T) ((-470 . -784) T) ((-470 . -845) 53709) ((-470 . -1159) T) ((-470 . -385) 53691) ((-470 . -606) 53673) ((-470 . -362) 53655) ((-470 . -271) NIL) ((-470 . -294) NIL) ((-470 . -496) NIL) ((-470 . -323) 53637) ((-470 . -229) T) ((-470 . -110) 53571) ((-470 . -1010) 53521) ((-470 . -275) T) ((-470 . -682) 53471) ((-470 . -613) 53421) ((-470 . -37) 53371) ((-470 . -292) T) ((-470 . -436) T) ((-470 . -163) T) ((-470 . -533) T) ((-470 . -880) T) ((-470 . -1164) T) ((-470 . -348) T) ((-470 . -219) T) ((-470 . -859) NIL) ((-470 . -217) 53353) ((-470 . -141) T) ((-470 . -139) NIL) ((-470 . -129) T) ((-470 . -25) T) ((-470 . -100) T) ((-470 . -583) 53335) ((-470 . -1052) T) ((-470 . -23) T) ((-470 . -21) T) ((-470 . -1004) T) ((-470 . -1011) T) ((-470 . -1063) T) ((-470 . -691) T) ((-468 . -321) 53304) ((-468 . -129) T) ((-468 . -25) T) ((-468 . -100) T) ((-468 . -583) 53286) ((-468 . -1052) T) ((-468 . -23) T) ((-468 . -21) T) ((-467 . -927) 53270) ((-467 . -472) 53254) ((-467 . -100) 53232) ((-467 . -1052) 53210) ((-467 . -496) 53143) ((-467 . -294) 53081) ((-467 . -583) 53013) ((-467 . -1159) T) ((-467 . -33) T) ((-467 . -105) 52997) ((-466 . -1035) T) ((-466 . -583) 52963) ((-466 . -1052) T) ((-466 . -100) T) ((-466 . -91) T) ((-465 . -224) 52942) ((-465 . -1213) 52912) ((-465 . -755) 52891) ((-465 . -809) 52870) ((-465 . -761) 52821) ((-465 . -758) 52772) ((-465 . -811) 52723) ((-465 . -756) 52674) ((-465 . -757) 52653) ((-465 . -273) 52630) ((-465 . -271) 52607) ((-465 . -472) 52591) ((-465 . -496) 52524) ((-465 . -294) 52462) ((-465 . -1159) T) ((-465 . -33) T) ((-465 . -574) 52439) ((-465 . -995) 52268) ((-465 . -397) 52237) ((-465 . -606) 52143) ((-465 . -362) 52112) ((-465 . -353) 52091) ((-465 . -219) 52043) ((-465 . -859) 51975) ((-465 . -217) 51944) ((-465 . -110) 51834) ((-465 . -1010) 51731) ((-465 . -163) 51710) ((-465 . -583) 51441) ((-465 . -682) 51383) ((-465 . -613) 51231) ((-465 . -129) 51101) ((-465 . -23) 50971) ((-465 . -21) 50881) ((-465 . -1004) 50811) ((-465 . -1011) 50741) ((-465 . -1063) 50651) ((-465 . -691) 50561) ((-465 . -37) 50531) ((-465 . -1052) 50321) ((-465 . -100) 50111) ((-465 . -25) 49962) ((-464 . -909) 49907) ((-464 . -995) 49785) ((-464 . -1164) 49764) ((-464 . -869) 49743) ((-464 . -845) NIL) ((-464 . -859) 49720) ((-464 . -811) 49699) ((-464 . -496) 49642) ((-464 . -436) 49593) ((-464 . -606) 49541) ((-464 . -362) 49525) ((-464 . -46) 49482) ((-464 . -37) 49331) ((-464 . -682) 49180) ((-464 . -275) 49111) ((-464 . -533) 49042) ((-464 . -110) 48871) ((-464 . -1010) 48714) ((-464 . -163) 48625) ((-464 . -141) 48604) ((-464 . -139) 48583) ((-464 . -613) 48508) ((-464 . -129) T) ((-464 . -25) T) ((-464 . -100) T) ((-464 . -583) 48490) ((-464 . -1052) T) ((-464 . -23) T) ((-464 . -21) T) ((-464 . -1004) T) ((-464 . -1011) T) ((-464 . -1063) T) ((-464 . -691) T) ((-464 . -397) 48474) ((-464 . -311) 48431) ((-464 . -294) 48418) ((-464 . -584) 48279) ((-462 . -1136) 48258) ((-462 . -215) 48208) ((-462 . -105) 48158) ((-462 . -294) 47962) ((-462 . -496) 47754) ((-462 . -472) 47691) ((-462 . -145) 47641) ((-462 . -584) NIL) ((-462 . -221) 47591) ((-462 . -580) 47570) ((-462 . -273) 47549) ((-462 . -271) 47528) ((-462 . -100) T) ((-462 . -1052) T) ((-462 . -583) 47510) ((-462 . -1159) T) ((-462 . -33) T) ((-462 . -574) 47489) ((-461 . -348) T) ((-461 . -1164) T) ((-461 . -880) T) ((-461 . -533) T) ((-461 . -163) T) ((-461 . -682) 47454) ((-461 . -37) 47419) ((-461 . -436) T) ((-461 . -292) T) ((-461 . -613) 47384) ((-461 . -691) T) ((-461 . -1063) T) ((-461 . -1011) T) ((-461 . -1004) T) ((-461 . -110) 47340) ((-461 . -1010) 47305) ((-461 . -21) T) ((-461 . -23) T) ((-461 . -1052) T) ((-461 . -583) 47257) ((-461 . -100) T) ((-461 . -25) T) ((-461 . -129) T) ((-461 . -275) T) ((-461 . -229) T) ((-461 . -141) T) ((-461 . -995) 47217) ((-461 . -977) T) ((-461 . -584) 47139) ((-460 . -1154) 47108) ((-460 . -583) 47070) ((-460 . -145) 47054) ((-460 . -33) T) ((-460 . -1159) T) ((-460 . -294) 46992) ((-460 . -496) 46925) ((-460 . -1052) T) ((-460 . -100) T) ((-460 . -472) 46909) ((-460 . -584) 46870) ((-460 . -935) 46839) ((-459 . -1136) 46818) ((-459 . -215) 46768) ((-459 . -105) 46718) ((-459 . -294) 46522) ((-459 . -496) 46314) ((-459 . -472) 46251) ((-459 . -145) 46201) ((-459 . -584) NIL) ((-459 . -221) 46151) ((-459 . -580) 46130) ((-459 . -273) 46109) ((-459 . -271) 46088) ((-459 . -100) T) ((-459 . -1052) T) ((-459 . -583) 46070) ((-459 . -1159) T) ((-459 . -33) T) ((-459 . -574) 46049) ((-458 . -1188) 46033) ((-458 . -219) 45985) ((-458 . -271) 45970) ((-458 . -859) 45876) ((-458 . -932) 45838) ((-458 . -37) 45679) ((-458 . -110) 45500) ((-458 . -1010) 45335) ((-458 . -613) 45232) ((-458 . -682) 45073) ((-458 . -139) 45052) ((-458 . -141) 45031) ((-458 . -46) 45001) ((-458 . -1184) 44971) ((-458 . -34) 44937) ((-458 . -93) 44903) ((-458 . -269) 44869) ((-458 . -475) 44835) ((-458 . -1148) 44801) ((-458 . -1145) 44767) ((-458 . -960) 44733) ((-458 . -229) 44712) ((-458 . -275) 44663) ((-458 . -129) T) ((-458 . -25) T) ((-458 . -100) T) ((-458 . -583) 44645) ((-458 . -1052) T) ((-458 . -23) T) ((-458 . -21) T) ((-458 . -1004) T) ((-458 . -1011) T) ((-458 . -1063) T) ((-458 . -691) T) ((-458 . -292) 44624) ((-458 . -436) 44603) ((-458 . -163) 44534) ((-458 . -533) 44485) ((-458 . -880) 44464) ((-458 . -1164) 44443) ((-458 . -348) 44422) ((-452 . -1052) T) ((-452 . -583) 44404) ((-452 . -100) T) ((-447 . -935) 44373) ((-447 . -584) 44334) ((-447 . -472) 44318) ((-447 . -100) T) ((-447 . -1052) T) ((-447 . -496) 44251) ((-447 . -294) 44189) ((-447 . -583) 44151) ((-447 . -1159) T) ((-447 . -33) T) ((-447 . -145) 44135) ((-445 . -682) 44106) ((-445 . -613) 44077) ((-445 . -129) T) ((-445 . -25) T) ((-445 . -100) T) ((-445 . -583) 44059) ((-445 . -1052) T) ((-445 . -23) T) ((-445 . -21) T) ((-445 . -1010) 44030) ((-445 . -110) 43991) ((-438 . -909) 43958) ((-438 . -995) 43836) ((-438 . -1164) 43815) ((-438 . -869) 43794) ((-438 . -845) NIL) ((-438 . -859) 43771) ((-438 . -811) 43750) ((-438 . -496) 43693) ((-438 . -436) 43644) ((-438 . -606) 43592) ((-438 . -362) 43576) ((-438 . -46) 43555) ((-438 . -37) 43404) ((-438 . -682) 43253) ((-438 . -275) 43184) ((-438 . -533) 43115) ((-438 . -110) 42944) ((-438 . -1010) 42787) ((-438 . -163) 42698) ((-438 . -141) 42677) ((-438 . -139) 42656) ((-438 . -613) 42581) ((-438 . -129) T) ((-438 . -25) T) ((-438 . -100) T) ((-438 . -583) 42563) ((-438 . -1052) T) ((-438 . -23) T) ((-438 . -21) T) ((-438 . -1004) T) ((-438 . -1011) T) ((-438 . -1063) T) ((-438 . -691) T) ((-438 . -397) 42547) ((-438 . -311) 42526) ((-438 . -294) 42513) ((-438 . -584) 42374) ((-437 . -403) 42344) ((-437 . -709) 42314) ((-437 . -685) T) ((-437 . -726) T) ((-437 . -110) 42277) ((-437 . -1010) 42247) ((-437 . -21) T) ((-437 . -23) T) ((-437 . -1052) T) ((-437 . -583) 42229) ((-437 . -100) T) ((-437 . -25) T) ((-437 . -129) T) ((-437 . -613) 42159) ((-437 . -682) 42129) ((-437 . -352) 42099) ((-423 . -1052) T) ((-423 . -583) 42081) ((-423 . -100) T) ((-422 . -350) 42055) ((-422 . -100) T) ((-422 . -583) 42037) ((-422 . -1052) T) ((-421 . -1052) T) ((-421 . -583) 42019) ((-421 . -100) T) ((-419 . -583) 42001) ((-414 . -37) 41985) ((-414 . -613) 41959) ((-414 . -691) T) ((-414 . -1063) T) ((-414 . -1011) T) ((-414 . -1004) T) ((-414 . -110) 41938) ((-414 . -1010) 41922) ((-414 . -21) T) ((-414 . -23) T) ((-414 . -1052) T) ((-414 . -583) 41904) ((-414 . -100) T) ((-414 . -25) T) ((-414 . -129) T) ((-414 . -682) 41888) ((-400 . -691) T) ((-400 . -1052) T) ((-400 . -583) 41870) ((-400 . -100) T) ((-400 . -1063) T) ((-398 . -457) T) ((-398 . -1063) T) ((-398 . -100) T) ((-398 . -583) 41852) ((-398 . -1052) T) ((-398 . -691) T) ((-392 . -950) 41836) ((-392 . -1099) 41814) ((-392 . -995) 41682) ((-392 . -584) 41490) ((-392 . -977) 41469) ((-392 . -869) 41448) ((-392 . -843) 41432) ((-392 . -809) 41411) ((-392 . -761) 41390) ((-392 . -758) 41369) ((-392 . -811) 41320) ((-392 . -756) 41299) ((-392 . -755) 41278) ((-392 . -784) 41257) ((-392 . -845) 41182) ((-392 . -1159) T) ((-392 . -385) 41166) ((-392 . -606) 41114) ((-392 . -362) 41098) ((-392 . -271) 41056) ((-392 . -294) 41021) ((-392 . -496) 40933) ((-392 . -323) 40917) ((-392 . -229) T) ((-392 . -110) 40855) ((-392 . -1010) 40807) ((-392 . -275) T) ((-392 . -682) 40759) ((-392 . -613) 40711) ((-392 . -37) 40663) ((-392 . -292) T) ((-392 . -436) T) ((-392 . -163) T) ((-392 . -533) T) ((-392 . -880) T) ((-392 . -1164) T) ((-392 . -348) T) ((-392 . -219) 40642) ((-392 . -859) 40601) ((-392 . -217) 40585) ((-392 . -141) 40564) ((-392 . -139) 40543) ((-392 . -129) T) ((-392 . -25) T) ((-392 . -100) T) ((-392 . -583) 40525) ((-392 . -1052) T) ((-392 . -23) T) ((-392 . -21) T) ((-392 . -1004) T) ((-392 . -1011) T) ((-392 . -1063) T) ((-392 . -691) T) ((-392 . -785) 40478) ((-390 . -533) T) ((-390 . -275) T) ((-390 . -163) T) ((-390 . -682) 40452) ((-390 . -613) 40426) ((-390 . -129) T) ((-390 . -25) T) ((-390 . -100) T) ((-390 . -583) 40408) ((-390 . -1052) T) ((-390 . -23) T) ((-390 . -21) T) ((-390 . -1010) 40382) ((-390 . -110) 40349) ((-390 . -1004) T) ((-390 . -1011) T) ((-390 . -1063) T) ((-390 . -691) T) ((-390 . -37) 40323) ((-390 . -217) 40307) ((-390 . -859) 40266) ((-390 . -219) 40245) ((-390 . -323) 40229) ((-390 . -496) 40071) ((-390 . -294) 40010) ((-390 . -271) 39938) ((-390 . -397) 39922) ((-390 . -995) 39820) ((-390 . -436) 39770) ((-390 . -977) 39749) ((-390 . -584) 39657) ((-390 . -1164) 39635) ((-384 . -1052) T) ((-384 . -583) 39617) ((-384 . -100) T) ((-384 . -584) 39594) ((-383 . -381) T) ((-383 . -1159) T) ((-383 . -583) 39576) ((-378 . -1052) T) ((-378 . -583) 39558) ((-378 . -100) T) ((-375 . -709) 39542) ((-375 . -685) T) ((-375 . -726) T) ((-375 . -110) 39521) ((-375 . -1010) 39505) ((-375 . -21) T) ((-375 . -23) T) ((-375 . -1052) T) ((-375 . -583) 39487) ((-375 . -100) T) ((-375 . -25) T) ((-375 . -129) T) ((-375 . -613) 39471) ((-375 . -682) 39455) ((-373 . -374) T) ((-373 . -100) T) ((-373 . -583) 39437) ((-373 . -1052) T) ((-371 . -691) T) ((-371 . -1052) T) ((-371 . -583) 39419) ((-371 . -100) T) ((-371 . -1063) T) ((-371 . -995) 39403) ((-371 . -811) 39382) ((-367 . -369) 39361) ((-367 . -995) 39345) ((-367 . -682) 39315) ((-367 . -613) 39299) ((-367 . -129) T) ((-367 . -25) T) ((-367 . -100) T) ((-367 . -583) 39281) ((-367 . -1052) T) ((-367 . -23) T) ((-367 . -21) T) ((-367 . -1010) 39265) ((-367 . -110) 39244) ((-366 . -110) 39223) ((-366 . -1010) 39207) ((-366 . -21) T) ((-366 . -23) T) ((-366 . -1052) T) ((-366 . -583) 39189) ((-366 . -100) T) ((-366 . -25) T) ((-366 . -129) T) ((-366 . -613) 39173) ((-366 . -491) 39152) ((-366 . -682) 39122) ((-363 . -389) T) ((-363 . -141) T) ((-363 . -613) 39087) ((-363 . -129) T) ((-363 . -25) T) ((-363 . -100) T) ((-363 . -583) 39054) ((-363 . -1052) T) ((-363 . -23) T) ((-363 . -21) T) ((-363 . -691) T) ((-363 . -1063) T) ((-363 . -1011) T) ((-363 . -1004) T) ((-363 . -584) 38968) ((-363 . -348) T) ((-363 . -1164) T) ((-363 . -880) T) ((-363 . -533) T) ((-363 . -163) T) ((-363 . -682) 38933) ((-363 . -37) 38898) ((-363 . -436) T) ((-363 . -292) T) ((-363 . -110) 38854) ((-363 . -1010) 38819) ((-363 . -275) T) ((-363 . -229) T) ((-363 . -809) T) ((-363 . -761) T) ((-363 . -758) T) ((-363 . -811) T) ((-363 . -756) T) ((-363 . -755) T) ((-363 . -845) 38801) ((-363 . -960) T) ((-363 . -977) T) ((-363 . -995) 38761) ((-363 . -1013) T) ((-363 . -219) T) ((-363 . -785) T) ((-363 . -1145) T) ((-363 . -1148) T) ((-363 . -475) T) ((-363 . -269) T) ((-363 . -93) T) ((-363 . -34) T) ((-349 . -350) 38738) ((-349 . -100) T) ((-349 . -583) 38720) ((-349 . -1052) T) ((-346 . -457) T) ((-346 . -1063) T) ((-346 . -100) T) ((-346 . -583) 38702) ((-346 . -1052) T) ((-346 . -691) T) ((-346 . -995) 38686) ((-344 . -314) 38670) ((-344 . -219) 38649) ((-344 . -353) 38628) ((-344 . -1099) 38607) ((-344 . -335) 38586) ((-344 . -141) 38565) ((-344 . -613) 38517) ((-344 . -129) T) ((-344 . -25) T) ((-344 . -100) T) ((-344 . -583) 38499) ((-344 . -1052) T) ((-344 . -23) T) ((-344 . -21) T) ((-344 . -691) T) ((-344 . -1063) T) ((-344 . -1011) T) ((-344 . -1004) T) ((-344 . -348) T) ((-344 . -1164) T) ((-344 . -880) T) ((-344 . -533) T) ((-344 . -163) T) ((-344 . -682) 38451) ((-344 . -37) 38416) ((-344 . -436) T) ((-344 . -292) T) ((-344 . -110) 38354) ((-344 . -1010) 38306) ((-344 . -275) T) ((-344 . -229) T) ((-344 . -387) 38257) ((-344 . -139) 38208) ((-344 . -995) 38192) ((-344 . -1213) 38176) ((-344 . -1223) 38160) ((-340 . -314) 38144) ((-340 . -219) 38123) ((-340 . -353) 38102) ((-340 . -1099) 38081) ((-340 . -335) 38060) ((-340 . -141) 38039) ((-340 . -613) 37991) ((-340 . -129) T) ((-340 . -25) T) ((-340 . -100) T) ((-340 . -583) 37973) ((-340 . -1052) T) ((-340 . -23) T) ((-340 . -21) T) ((-340 . -691) T) ((-340 . -1063) T) ((-340 . -1011) T) ((-340 . -1004) T) ((-340 . -348) T) ((-340 . -1164) T) ((-340 . -880) T) ((-340 . -533) T) ((-340 . -163) T) ((-340 . -682) 37925) ((-340 . -37) 37890) ((-340 . -436) T) ((-340 . -292) T) ((-340 . -110) 37828) ((-340 . -1010) 37780) ((-340 . -275) T) ((-340 . -229) T) ((-340 . -387) 37731) ((-340 . -139) 37682) ((-340 . -995) 37666) ((-340 . -1213) 37650) ((-340 . -1223) 37634) ((-339 . -314) 37618) ((-339 . -219) 37597) ((-339 . -353) 37576) ((-339 . -1099) 37555) ((-339 . -335) 37534) ((-339 . -141) 37513) ((-339 . -613) 37465) ((-339 . -129) T) ((-339 . -25) T) ((-339 . -100) T) ((-339 . -583) 37447) ((-339 . -1052) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -691) T) ((-339 . -1063) T) ((-339 . -1011) T) ((-339 . -1004) T) ((-339 . -348) T) ((-339 . -1164) T) ((-339 . -880) T) ((-339 . -533) T) ((-339 . -163) T) ((-339 . -682) 37399) ((-339 . -37) 37364) ((-339 . -436) T) ((-339 . -292) T) ((-339 . -110) 37302) ((-339 . -1010) 37254) ((-339 . -275) T) ((-339 . -229) T) ((-339 . -387) 37205) ((-339 . -139) 37156) ((-339 . -995) 37140) ((-339 . -1213) 37124) ((-339 . -1223) 37108) ((-338 . -314) 37092) ((-338 . -219) 37071) ((-338 . -353) 37050) ((-338 . -1099) 37029) ((-338 . -335) 37008) ((-338 . -141) 36987) ((-338 . -613) 36939) ((-338 . -129) T) ((-338 . -25) T) ((-338 . -100) T) ((-338 . -583) 36921) ((-338 . -1052) T) ((-338 . -23) T) ((-338 . -21) T) ((-338 . -691) T) ((-338 . -1063) T) ((-338 . -1011) T) ((-338 . -1004) T) ((-338 . -348) T) ((-338 . -1164) T) ((-338 . -880) T) ((-338 . -533) T) ((-338 . -163) T) ((-338 . -682) 36873) ((-338 . -37) 36838) ((-338 . -436) T) ((-338 . -292) T) ((-338 . -110) 36776) ((-338 . -1010) 36728) ((-338 . -275) T) ((-338 . -229) T) ((-338 . -387) 36679) ((-338 . -139) 36630) ((-338 . -995) 36614) ((-338 . -1213) 36598) ((-338 . -1223) 36582) ((-337 . -314) 36559) ((-337 . -219) T) ((-337 . -353) T) ((-337 . -1099) T) ((-337 . -335) T) ((-337 . -141) 36541) ((-337 . -613) 36486) ((-337 . -129) T) ((-337 . -25) T) ((-337 . -100) T) ((-337 . -583) 36468) ((-337 . -1052) T) ((-337 . -23) T) ((-337 . -21) T) ((-337 . -691) T) ((-337 . -1063) T) ((-337 . -1011) T) ((-337 . -1004) T) ((-337 . -348) T) ((-337 . -1164) T) ((-337 . -880) T) ((-337 . -533) T) ((-337 . -163) T) ((-337 . -682) 36413) ((-337 . -37) 36378) ((-337 . -436) T) ((-337 . -292) T) ((-337 . -110) 36307) ((-337 . -1010) 36252) ((-337 . -275) T) ((-337 . -229) T) ((-337 . -387) T) ((-337 . -139) T) ((-337 . -995) 36229) ((-337 . -1213) 36206) ((-337 . -1223) 36183) ((-331 . -314) 36167) ((-331 . -219) 36146) ((-331 . -353) 36125) ((-331 . -1099) 36104) ((-331 . -335) 36083) ((-331 . -141) 36062) ((-331 . -613) 36014) ((-331 . -129) T) ((-331 . -25) T) ((-331 . -100) T) ((-331 . -583) 35996) ((-331 . -1052) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -691) T) ((-331 . -1063) T) ((-331 . -1011) T) ((-331 . -1004) T) ((-331 . -348) T) ((-331 . -1164) T) ((-331 . -880) T) ((-331 . -533) T) ((-331 . -163) T) ((-331 . -682) 35948) ((-331 . -37) 35913) ((-331 . -436) T) ((-331 . -292) T) ((-331 . -110) 35851) ((-331 . -1010) 35803) ((-331 . -275) T) ((-331 . -229) T) ((-331 . -387) 35754) ((-331 . -139) 35705) ((-331 . -995) 35689) ((-331 . -1213) 35673) ((-331 . -1223) 35657) ((-330 . -314) 35641) ((-330 . -219) 35620) ((-330 . -353) 35599) ((-330 . -1099) 35578) ((-330 . -335) 35557) ((-330 . -141) 35536) ((-330 . -613) 35488) ((-330 . -129) T) ((-330 . -25) T) ((-330 . -100) T) ((-330 . -583) 35470) ((-330 . -1052) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -691) T) ((-330 . -1063) T) ((-330 . -1011) T) ((-330 . -1004) T) ((-330 . -348) T) ((-330 . -1164) T) ((-330 . -880) T) ((-330 . -533) T) ((-330 . -163) T) ((-330 . -682) 35422) ((-330 . -37) 35387) ((-330 . -436) T) ((-330 . -292) T) ((-330 . -110) 35325) ((-330 . -1010) 35277) ((-330 . -275) T) ((-330 . -229) T) ((-330 . -387) 35228) ((-330 . -139) 35179) ((-330 . -995) 35163) ((-330 . -1213) 35147) ((-330 . -1223) 35131) ((-329 . -314) 35108) ((-329 . -219) T) ((-329 . -353) T) ((-329 . -1099) T) ((-329 . -335) T) ((-329 . -141) 35090) ((-329 . -613) 35035) ((-329 . -129) T) ((-329 . -25) T) ((-329 . -100) T) ((-329 . -583) 35017) ((-329 . -1052) T) ((-329 . -23) T) ((-329 . -21) T) ((-329 . -691) T) ((-329 . -1063) T) ((-329 . -1011) T) ((-329 . -1004) T) ((-329 . -348) T) ((-329 . -1164) T) ((-329 . -880) T) ((-329 . -533) T) ((-329 . -163) T) ((-329 . -682) 34962) ((-329 . -37) 34927) ((-329 . -436) T) ((-329 . -292) T) ((-329 . -110) 34856) ((-329 . -1010) 34801) ((-329 . -275) T) ((-329 . -229) T) ((-329 . -387) T) ((-329 . -139) T) ((-329 . -995) 34778) ((-329 . -1213) 34755) ((-329 . -1223) 34732) ((-325 . -314) 34709) ((-325 . -219) T) ((-325 . -353) T) ((-325 . -1099) T) ((-325 . -335) T) ((-325 . -141) 34691) ((-325 . -613) 34636) ((-325 . -129) T) ((-325 . -25) T) ((-325 . -100) T) ((-325 . -583) 34618) ((-325 . -1052) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -691) T) ((-325 . -1063) T) ((-325 . -1011) T) ((-325 . -1004) T) ((-325 . -348) T) ((-325 . -1164) T) ((-325 . -880) T) ((-325 . -533) T) ((-325 . -163) T) ((-325 . -682) 34563) ((-325 . -37) 34528) ((-325 . -436) T) ((-325 . -292) T) ((-325 . -110) 34457) ((-325 . -1010) 34402) ((-325 . -275) T) ((-325 . -229) T) ((-325 . -387) T) ((-325 . -139) T) ((-325 . -995) 34379) ((-325 . -1213) 34356) ((-325 . -1223) 34333) ((-324 . -283) T) ((-324 . -995) 34300) ((-324 . -1052) T) ((-324 . -583) 34282) ((-324 . -100) T) ((-324 . -811) T) ((-324 . -496) 34248) ((-324 . -294) 34235) ((-324 . -37) 34219) ((-324 . -613) 34193) ((-324 . -691) T) ((-324 . -1063) T) ((-324 . -1011) T) ((-324 . -1004) T) ((-324 . -110) 34172) ((-324 . -1010) 34156) ((-324 . -21) T) ((-324 . -23) T) ((-324 . -25) T) ((-324 . -129) T) ((-324 . -682) 34140) ((-324 . -859) 34121) ((-318 . -321) 34090) ((-318 . -129) T) ((-318 . -25) T) ((-318 . -100) T) ((-318 . -583) 34072) ((-318 . -1052) T) ((-318 . -23) T) ((-318 . -21) T) ((-316 . -811) T) ((-316 . -100) T) ((-316 . -583) 34054) ((-316 . -1052) T) ((-315 . -1052) T) ((-315 . -583) 34036) ((-315 . -100) T) ((-312 . -19) 34020) ((-312 . -616) 34004) ((-312 . -273) 33981) ((-312 . -271) 33958) ((-312 . -574) 33935) ((-312 . -584) 33896) ((-312 . -472) 33880) ((-312 . -100) 33830) ((-312 . -1052) 33780) ((-312 . -496) 33713) ((-312 . -294) 33651) ((-312 . -583) 33563) ((-312 . -1159) T) ((-312 . -33) T) ((-312 . -145) 33547) ((-312 . -811) 33526) ((-312 . -357) 33510) ((-312 . -267) 33494) ((-309 . -308) 33471) ((-309 . -995) 33455) ((-309 . -23) T) ((-309 . -1052) T) ((-309 . -583) 33437) ((-309 . -100) T) ((-309 . -25) T) ((-309 . -129) T) ((-307 . -21) T) ((-307 . -23) T) ((-307 . -1052) T) ((-307 . -583) 33419) ((-307 . -100) T) ((-307 . -25) T) ((-307 . -129) T) ((-307 . -682) 33401) ((-307 . -613) 33383) ((-307 . -1010) 33365) ((-307 . -110) 33340) ((-307 . -308) 33317) ((-307 . -995) 33301) ((-307 . -811) 33280) ((-304 . -1188) 33264) ((-304 . -219) 33216) ((-304 . -271) 33201) ((-304 . -859) 33107) ((-304 . -932) 33069) ((-304 . -37) 32910) ((-304 . -110) 32731) ((-304 . -1010) 32566) ((-304 . -613) 32463) ((-304 . -682) 32304) ((-304 . -139) 32283) ((-304 . -141) 32262) ((-304 . -46) 32232) ((-304 . -1184) 32202) ((-304 . -34) 32168) ((-304 . -93) 32134) ((-304 . -269) 32100) ((-304 . -475) 32066) ((-304 . -1148) 32032) ((-304 . -1145) 31998) ((-304 . -960) 31964) ((-304 . -229) 31943) ((-304 . -275) 31894) ((-304 . -129) T) ((-304 . -25) T) ((-304 . -100) T) ((-304 . -583) 31876) ((-304 . -1052) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -1004) T) ((-304 . -1011) T) ((-304 . -1063) T) ((-304 . -691) T) ((-304 . -292) 31855) ((-304 . -436) 31834) ((-304 . -163) 31765) ((-304 . -533) 31716) ((-304 . -880) 31695) ((-304 . -1164) 31674) ((-304 . -348) 31653) ((-304 . -756) T) ((-304 . -811) T) ((-304 . -758) T) ((-299 . -406) 31637) ((-299 . -995) 31304) ((-299 . -584) 31165) ((-299 . -843) 31149) ((-299 . -859) 31115) ((-299 . -457) 31094) ((-299 . -397) 31078) ((-299 . -845) 31003) ((-299 . -1159) T) ((-299 . -385) 30987) ((-299 . -606) 30893) ((-299 . -362) 30862) ((-299 . -229) 30841) ((-299 . -110) 30737) ((-299 . -1010) 30647) ((-299 . -275) 30626) ((-299 . -682) 30536) ((-299 . -613) 30357) ((-299 . -37) 30267) ((-299 . -292) 30246) ((-299 . -436) 30225) ((-299 . -163) 30204) ((-299 . -533) 30183) ((-299 . -880) 30162) ((-299 . -1164) 30141) ((-299 . -348) 30120) ((-299 . -294) 30107) ((-299 . -496) 30073) ((-299 . -811) T) ((-299 . -283) T) ((-299 . -141) 30052) ((-299 . -139) 30031) ((-299 . -1004) 29921) ((-299 . -1011) 29811) ((-299 . -1063) 29660) ((-299 . -691) 29509) ((-299 . -129) 29380) ((-299 . -25) 29232) ((-299 . -100) T) ((-299 . -583) 29214) ((-299 . -1052) T) ((-299 . -23) 29066) ((-299 . -21) 28937) ((-299 . -29) 28907) ((-299 . -960) 28886) ((-299 . -27) 28865) ((-299 . -1145) 28844) ((-299 . -1148) 28823) ((-299 . -475) 28802) ((-299 . -269) 28781) ((-299 . -93) 28760) ((-299 . -34) 28739) ((-299 . -152) 28718) ((-299 . -137) 28697) ((-299 . -597) 28676) ((-299 . -919) 28655) ((-299 . -1087) 28634) ((-298 . -950) 28595) ((-298 . -1099) NIL) ((-298 . -995) 28525) ((-298 . -584) NIL) ((-298 . -977) NIL) ((-298 . -869) NIL) ((-298 . -843) 28486) ((-298 . -809) NIL) ((-298 . -761) NIL) ((-298 . -758) NIL) ((-298 . -811) NIL) ((-298 . -756) NIL) ((-298 . -755) NIL) ((-298 . -784) NIL) ((-298 . -845) NIL) ((-298 . -1159) T) ((-298 . -385) 28447) ((-298 . -606) 28408) ((-298 . -362) 28369) ((-298 . -271) 28304) ((-298 . -294) 28245) ((-298 . -496) 28137) ((-298 . -323) 28098) ((-298 . -229) T) ((-298 . -110) 28011) ((-298 . -1010) 27940) ((-298 . -275) T) ((-298 . -682) 27869) ((-298 . -613) 27798) ((-298 . -37) 27727) ((-298 . -292) T) ((-298 . -436) T) ((-298 . -163) T) ((-298 . -533) T) ((-298 . -880) T) ((-298 . -1164) T) ((-298 . -348) T) ((-298 . -219) NIL) ((-298 . -859) NIL) ((-298 . -217) 27688) ((-298 . -141) 27644) ((-298 . -139) 27600) ((-298 . -129) T) ((-298 . -25) T) ((-298 . -100) T) ((-298 . -583) 27582) ((-298 . -1052) T) ((-298 . -23) T) ((-298 . -21) T) ((-298 . -1004) T) ((-298 . -1011) T) ((-298 . -1063) T) ((-298 . -691) T) ((-297 . -1035) T) ((-297 . -583) 27548) ((-297 . -1052) T) ((-297 . -100) T) ((-297 . -91) T) ((-296 . -1052) T) ((-296 . -583) 27530) ((-296 . -100) T) ((-280 . -1136) 27509) ((-280 . -215) 27459) ((-280 . -105) 27409) ((-280 . -294) 27213) ((-280 . -496) 27005) ((-280 . -472) 26942) ((-280 . -145) 26892) ((-280 . -584) NIL) ((-280 . -221) 26842) ((-280 . -580) 26821) ((-280 . -273) 26800) ((-280 . -271) 26779) ((-280 . -100) T) ((-280 . -1052) T) ((-280 . -583) 26761) ((-280 . -1159) T) ((-280 . -33) T) ((-280 . -574) 26740) ((-278 . -1159) T) ((-278 . -496) 26689) ((-278 . -1052) 26471) ((-278 . -583) 26212) ((-278 . -100) 25994) ((-278 . -25) 25858) ((-278 . -21) 25741) ((-278 . -23) 25624) ((-278 . -129) 25507) ((-278 . -1063) 25388) ((-278 . -691) 25290) ((-278 . -457) 25269) ((-278 . -1004) 25211) ((-278 . -1011) 25153) ((-278 . -613) 25013) ((-278 . -110) 24929) ((-278 . -1010) 24850) ((-278 . -682) 24792) ((-278 . -859) 24751) ((-278 . -1213) 24721) ((-276 . -583) 24703) ((-274 . -292) T) ((-274 . -436) T) ((-274 . -37) 24690) ((-274 . -691) T) ((-274 . -1063) T) ((-274 . -1011) T) ((-274 . -1004) T) ((-274 . -110) 24675) ((-274 . -1010) 24662) ((-274 . -21) T) ((-274 . -23) T) ((-274 . -1052) T) ((-274 . -583) 24644) ((-274 . -100) T) ((-274 . -25) T) ((-274 . -129) T) ((-274 . -613) 24631) ((-274 . -682) 24618) ((-274 . -163) T) ((-274 . -275) T) ((-274 . -533) T) ((-274 . -880) T) ((-265 . -583) 24600) ((-264 . -942) 24584) ((-263 . -942) 24568) ((-260 . -811) T) ((-260 . -100) T) ((-260 . -583) 24550) ((-260 . -1052) T) ((-259 . -800) T) ((-259 . -100) T) ((-259 . -583) 24532) ((-259 . -1052) T) ((-258 . -800) T) ((-258 . -100) T) ((-258 . -583) 24514) ((-258 . -1052) T) ((-257 . -800) T) ((-257 . -100) T) ((-257 . -583) 24496) ((-257 . -1052) T) ((-256 . -800) T) ((-256 . -100) T) ((-256 . -583) 24478) ((-256 . -1052) T) ((-255 . -800) T) ((-255 . -100) T) ((-255 . -583) 24460) ((-255 . -1052) T) ((-254 . -800) T) ((-254 . -100) T) ((-254 . -583) 24442) ((-254 . -1052) T) ((-253 . -800) T) ((-253 . -100) T) ((-253 . -583) 24424) ((-253 . -1052) T) ((-249 . -238) 24386) ((-249 . -995) 24232) ((-249 . -584) 23980) ((-249 . -311) 23952) ((-249 . -397) 23936) ((-249 . -37) 23785) ((-249 . -110) 23614) ((-249 . -1010) 23457) ((-249 . -613) 23382) ((-249 . -682) 23231) ((-249 . -139) 23210) ((-249 . -141) 23189) ((-249 . -163) 23100) ((-249 . -533) 23031) ((-249 . -275) 22962) ((-249 . -46) 22934) ((-249 . -362) 22918) ((-249 . -606) 22866) ((-249 . -436) 22817) ((-249 . -496) 22702) ((-249 . -811) 22681) ((-249 . -859) 22627) ((-249 . -845) 22486) ((-249 . -869) 22465) ((-249 . -1164) 22444) ((-249 . -909) 22411) ((-249 . -294) 22398) ((-249 . -219) 22377) ((-249 . -129) T) ((-249 . -25) T) ((-249 . -100) T) ((-249 . -583) 22359) ((-249 . -1052) T) ((-249 . -23) T) ((-249 . -21) T) ((-249 . -691) T) ((-249 . -1063) T) ((-249 . -1011) T) ((-249 . -1004) T) ((-249 . -217) 22343) ((-246 . -1052) T) ((-246 . -583) 22325) ((-246 . -100) T) ((-236 . -224) 22304) ((-236 . -1213) 22274) ((-236 . -755) 22253) ((-236 . -809) 22232) ((-236 . -761) 22183) ((-236 . -758) 22134) ((-236 . -811) 22085) ((-236 . -756) 22036) ((-236 . -757) 22015) ((-236 . -273) 21992) ((-236 . -271) 21969) ((-236 . -472) 21953) ((-236 . -496) 21886) ((-236 . -294) 21824) ((-236 . -1159) T) ((-236 . -33) T) ((-236 . -574) 21801) ((-236 . -995) 21630) ((-236 . -397) 21599) ((-236 . -606) 21505) ((-236 . -362) 21474) ((-236 . -353) 21453) ((-236 . -219) 21405) ((-236 . -859) 21337) ((-236 . -217) 21306) ((-236 . -110) 21196) ((-236 . -1010) 21093) ((-236 . -163) 21072) ((-236 . -583) 21033) ((-236 . -682) 20975) ((-236 . -613) 20810) ((-236 . -129) T) ((-236 . -23) T) ((-236 . -21) T) ((-236 . -1004) 20740) ((-236 . -1011) 20670) ((-236 . -1063) 20580) ((-236 . -691) 20490) ((-236 . -37) 20460) ((-236 . -1052) T) ((-236 . -100) T) ((-236 . -25) T) ((-235 . -224) 20439) ((-235 . -1213) 20409) ((-235 . -755) 20388) ((-235 . -809) 20367) ((-235 . -761) 20318) ((-235 . -758) 20269) ((-235 . -811) 20220) ((-235 . -756) 20171) ((-235 . -757) 20150) ((-235 . -273) 20127) ((-235 . -271) 20104) ((-235 . -472) 20088) ((-235 . -496) 20021) ((-235 . -294) 19959) ((-235 . -1159) T) ((-235 . -33) T) ((-235 . -574) 19936) ((-235 . -995) 19765) ((-235 . -397) 19734) ((-235 . -606) 19640) ((-235 . -362) 19609) ((-235 . -353) 19588) ((-235 . -219) 19540) ((-235 . -859) 19472) ((-235 . -217) 19441) ((-235 . -110) 19331) ((-235 . -1010) 19228) ((-235 . -163) 19207) ((-235 . -583) 19168) ((-235 . -682) 19110) ((-235 . -613) 18932) ((-235 . -129) T) ((-235 . -23) T) ((-235 . -21) T) ((-235 . -1004) 18862) ((-235 . -1011) 18792) ((-235 . -1063) 18702) ((-235 . -691) 18612) ((-235 . -37) 18582) ((-235 . -1052) T) ((-235 . -100) T) ((-235 . -25) T) ((-234 . -1052) T) ((-234 . -583) 18564) ((-234 . -100) T) ((-233 . -909) 18509) ((-233 . -995) 18387) ((-233 . -1164) 18366) ((-233 . -869) 18345) ((-233 . -845) NIL) ((-233 . -859) 18322) ((-233 . -811) 18301) ((-233 . -496) 18244) ((-233 . -436) 18195) ((-233 . -606) 18143) ((-233 . -362) 18127) ((-233 . -46) 18084) ((-233 . -37) 17933) ((-233 . -682) 17782) ((-233 . -275) 17713) ((-233 . -533) 17644) ((-233 . -110) 17473) ((-233 . -1010) 17316) ((-233 . -163) 17227) ((-233 . -141) 17206) ((-233 . -139) 17185) ((-233 . -613) 17110) ((-233 . -129) T) ((-233 . -25) T) ((-233 . -100) T) ((-233 . -583) 17092) ((-233 . -1052) T) ((-233 . -23) T) ((-233 . -21) T) ((-233 . -1004) T) ((-233 . -1011) T) ((-233 . -1063) T) ((-233 . -691) T) ((-233 . -397) 17076) ((-233 . -311) 17033) ((-233 . -294) 17020) ((-233 . -584) 16881) ((-231 . -631) 16865) ((-231 . -1194) 16849) ((-231 . -968) 16833) ((-231 . -1097) 16817) ((-231 . -811) 16796) ((-231 . -357) 16780) ((-231 . -616) 16764) ((-231 . -273) 16741) ((-231 . -271) 16718) ((-231 . -574) 16695) ((-231 . -584) 16656) ((-231 . -472) 16640) ((-231 . -100) 16590) ((-231 . -1052) 16540) ((-231 . -496) 16473) ((-231 . -294) 16411) ((-231 . -583) 16323) ((-231 . -1159) T) ((-231 . -33) T) ((-231 . -145) 16307) ((-231 . -267) 16291) ((-225 . -224) 16270) ((-225 . -1213) 16240) ((-225 . -755) 16219) ((-225 . -809) 16198) ((-225 . -761) 16149) ((-225 . -758) 16100) ((-225 . -811) 16051) ((-225 . -756) 16002) ((-225 . -757) 15981) ((-225 . -273) 15958) ((-225 . -271) 15935) ((-225 . -472) 15919) ((-225 . -496) 15852) ((-225 . -294) 15790) ((-225 . -1159) T) ((-225 . -33) T) ((-225 . -574) 15767) ((-225 . -995) 15596) ((-225 . -397) 15565) ((-225 . -606) 15471) ((-225 . -362) 15440) ((-225 . -353) 15419) ((-225 . -219) 15371) ((-225 . -859) 15303) ((-225 . -217) 15272) ((-225 . -110) 15162) ((-225 . -1010) 15059) ((-225 . -163) 15038) ((-225 . -583) 14769) ((-225 . -682) 14711) ((-225 . -613) 14559) ((-225 . -129) 14429) ((-225 . -23) 14299) ((-225 . -21) 14209) ((-225 . -1004) 14139) ((-225 . -1011) 14069) ((-225 . -1063) 13979) ((-225 . -691) 13889) ((-225 . -37) 13859) ((-225 . -1052) 13649) ((-225 . -100) 13439) ((-225 . -25) 13290) ((-213 . -650) 13248) ((-213 . -472) 13232) ((-213 . -100) 13210) ((-213 . -1052) 13188) ((-213 . -496) 13121) ((-213 . -294) 13059) ((-213 . -583) 12991) ((-213 . -1159) T) ((-213 . -33) T) ((-213 . -55) 12949) ((-211 . -389) T) ((-211 . -141) T) ((-211 . -613) 12914) ((-211 . -129) T) ((-211 . -25) T) ((-211 . -100) T) ((-211 . -583) 12896) ((-211 . -1052) T) ((-211 . -23) T) ((-211 . -21) T) ((-211 . -691) T) ((-211 . -1063) T) ((-211 . -1011) T) ((-211 . -1004) T) ((-211 . -584) 12826) ((-211 . -348) T) ((-211 . -1164) T) ((-211 . -880) T) ((-211 . -533) T) ((-211 . -163) T) ((-211 . -682) 12791) ((-211 . -37) 12756) ((-211 . -436) T) ((-211 . -292) T) ((-211 . -110) 12712) ((-211 . -1010) 12677) ((-211 . -275) T) ((-211 . -229) T) ((-211 . -809) T) ((-211 . -761) T) ((-211 . -758) T) ((-211 . -811) T) ((-211 . -756) T) ((-211 . -755) T) ((-211 . -845) 12659) ((-211 . -960) T) ((-211 . -977) T) ((-211 . -995) 12619) ((-211 . -1013) T) ((-211 . -219) T) ((-211 . -785) T) ((-211 . -1145) T) ((-211 . -1148) T) ((-211 . -475) T) ((-211 . -269) T) ((-211 . -93) T) ((-211 . -34) T) ((-209 . -588) 12596) ((-209 . -613) 12563) ((-209 . -691) T) ((-209 . -1063) T) ((-209 . -1011) T) ((-209 . -1004) T) ((-209 . -21) T) ((-209 . -23) T) ((-209 . -1052) T) ((-209 . -583) 12545) ((-209 . -100) T) ((-209 . -25) T) ((-209 . -129) T) ((-209 . -995) 12522) ((-208 . -239) 12506) ((-208 . -1071) 12490) ((-208 . -105) 12474) ((-208 . -33) T) ((-208 . -1159) T) ((-208 . -583) 12406) ((-208 . -294) 12344) ((-208 . -496) 12277) ((-208 . -1052) 12255) ((-208 . -100) 12233) ((-208 . -472) 12217) ((-208 . -953) 12201) ((-204 . -950) 12183) ((-204 . -1099) T) ((-204 . -995) 12143) ((-204 . -584) 12073) ((-204 . -977) T) ((-204 . -869) NIL) ((-204 . -843) 12055) ((-204 . -809) T) ((-204 . -761) T) ((-204 . -758) T) ((-204 . -811) T) ((-204 . -756) T) ((-204 . -755) T) ((-204 . -784) T) ((-204 . -845) 12037) ((-204 . -1159) T) ((-204 . -385) 12019) ((-204 . -606) 12001) ((-204 . -362) 11983) ((-204 . -271) NIL) ((-204 . -294) NIL) ((-204 . -496) NIL) ((-204 . -323) 11965) ((-204 . -229) T) ((-204 . -110) 11899) ((-204 . -1010) 11849) ((-204 . -275) T) ((-204 . -682) 11799) ((-204 . -613) 11749) ((-204 . -37) 11699) ((-204 . -292) T) ((-204 . -436) T) ((-204 . -163) T) ((-204 . -533) T) ((-204 . -880) T) ((-204 . -1164) T) ((-204 . -348) T) ((-204 . -219) T) ((-204 . -859) NIL) ((-204 . -217) 11681) ((-204 . -141) T) ((-204 . -139) NIL) ((-204 . -129) T) ((-204 . -25) T) ((-204 . -100) T) ((-204 . -583) 11663) ((-204 . -1052) T) ((-204 . -23) T) ((-204 . -21) T) ((-204 . -1004) T) ((-204 . -1011) T) ((-204 . -1063) T) ((-204 . -691) T) ((-201 . -1052) T) ((-201 . -583) 11645) ((-201 . -100) T) ((-200 . -1052) T) ((-200 . -583) 11627) ((-200 . -100) T) ((-199 . -854) T) ((-199 . -100) T) ((-199 . -583) 11609) ((-199 . -1052) T) ((-198 . -854) T) ((-198 . -100) T) ((-198 . -583) 11591) ((-198 . -1052) T) ((-196 . -764) T) ((-196 . -100) T) ((-196 . -583) 11573) ((-196 . -1052) T) ((-195 . -764) T) ((-195 . -100) T) ((-195 . -583) 11555) ((-195 . -1052) T) ((-194 . -764) T) ((-194 . -100) T) ((-194 . -583) 11537) ((-194 . -1052) T) ((-193 . -764) T) ((-193 . -100) T) ((-193 . -583) 11519) ((-193 . -1052) T) ((-190 . -751) T) ((-190 . -100) T) ((-190 . -583) 11501) ((-190 . -1052) T) ((-189 . -751) T) ((-189 . -100) T) ((-189 . -583) 11483) ((-189 . -1052) T) ((-188 . -751) T) ((-188 . -100) T) ((-188 . -583) 11465) ((-188 . -1052) T) ((-187 . -751) T) ((-187 . -100) T) ((-187 . -583) 11447) ((-187 . -1052) T) ((-186 . -751) T) ((-186 . -100) T) ((-186 . -583) 11429) ((-186 . -1052) T) ((-185 . -751) T) ((-185 . -100) T) ((-185 . -583) 11411) ((-185 . -1052) T) ((-184 . -751) T) ((-184 . -100) T) ((-184 . -583) 11393) ((-184 . -1052) T) ((-183 . -751) T) ((-183 . -100) T) ((-183 . -583) 11375) ((-183 . -1052) T) ((-182 . -751) T) ((-182 . -100) T) ((-182 . -583) 11357) ((-182 . -1052) T) ((-181 . -751) T) ((-181 . -100) T) ((-181 . -583) 11339) ((-181 . -1052) T) ((-180 . -751) T) ((-180 . -100) T) ((-180 . -583) 11321) ((-180 . -1052) T) ((-174 . -1052) T) ((-174 . -583) 11303) ((-174 . -100) T) ((-171 . -1035) T) ((-171 . -583) 11269) ((-171 . -1052) T) ((-171 . -100) T) ((-171 . -91) T) ((-166 . -583) 11251) ((-165 . -37) 11183) ((-165 . -613) 11115) ((-165 . -691) T) ((-165 . -1063) T) ((-165 . -1011) T) ((-165 . -1004) T) ((-165 . -110) 11026) ((-165 . -1010) 10958) ((-165 . -21) T) ((-165 . -23) T) ((-165 . -1052) T) ((-165 . -583) 10940) ((-165 . -100) T) ((-165 . -25) T) ((-165 . -129) T) ((-165 . -682) 10872) ((-165 . -348) T) ((-165 . -1164) T) ((-165 . -880) T) ((-165 . -533) T) ((-165 . -163) T) ((-165 . -436) T) ((-165 . -292) T) ((-165 . -275) T) ((-165 . -229) T) ((-162 . -1052) T) ((-162 . -583) 10854) ((-162 . -100) T) ((-159 . -157) 10838) ((-159 . -34) 10816) ((-159 . -93) 10794) ((-159 . -269) 10772) ((-159 . -475) 10750) ((-159 . -1148) 10728) ((-159 . -1145) 10706) ((-159 . -960) 10658) ((-159 . -869) 10611) ((-159 . -584) 10373) ((-159 . -843) 10357) ((-159 . -811) 10336) ((-159 . -353) 10287) ((-159 . -335) 10266) ((-159 . -1099) 10245) ((-159 . -387) 10224) ((-159 . -395) 10195) ((-159 . -37) 10023) ((-159 . -110) 9919) ((-159 . -1010) 9829) ((-159 . -613) 9739) ((-159 . -682) 9567) ((-159 . -355) 9538) ((-159 . -689) 9509) ((-159 . -995) 9407) ((-159 . -397) 9391) ((-159 . -845) 9316) ((-159 . -1159) T) ((-159 . -385) 9300) ((-159 . -606) 9248) ((-159 . -362) 9232) ((-159 . -271) 9190) ((-159 . -294) 9155) ((-159 . -496) 9067) ((-159 . -323) 9051) ((-159 . -229) 9002) ((-159 . -1164) 8907) ((-159 . -348) 8858) ((-159 . -880) 8789) ((-159 . -533) 8700) ((-159 . -275) 8611) ((-159 . -436) 8542) ((-159 . -292) 8473) ((-159 . -219) 8424) ((-159 . -859) 8383) ((-159 . -217) 8367) ((-159 . -163) T) ((-159 . -141) 8346) ((-159 . -1004) T) ((-159 . -1011) T) ((-159 . -1063) T) ((-159 . -691) T) ((-159 . -21) T) ((-159 . -23) T) ((-159 . -1052) T) ((-159 . -583) 8328) ((-159 . -100) T) ((-159 . -25) T) ((-159 . -129) T) ((-159 . -139) 8279) ((-159 . -785) 8258) ((-153 . -1052) T) ((-153 . -583) 8240) ((-153 . -100) T) ((-149 . -25) T) ((-149 . -100) T) ((-149 . -583) 8222) ((-149 . -1052) T) ((-146 . -1004) T) ((-146 . -1011) T) ((-146 . -1063) T) ((-146 . -691) T) ((-146 . -21) T) ((-146 . -23) T) ((-146 . -1052) T) ((-146 . -583) 8204) ((-146 . -100) T) ((-146 . -25) T) ((-146 . -129) T) ((-146 . -613) 8178) ((-146 . -37) 8162) ((-146 . -110) 8141) ((-146 . -1010) 8125) ((-146 . -682) 8109) ((-146 . -1213) 8093) ((-138 . -805) T) ((-138 . -811) T) ((-138 . -1052) T) ((-138 . -583) 8075) ((-138 . -100) T) ((-138 . -353) T) ((-135 . -1052) T) ((-135 . -583) 8057) ((-135 . -100) T) ((-135 . -584) 8016) ((-135 . -411) 7998) ((-135 . -1050) 7980) ((-135 . -353) T) ((-135 . -221) 7962) ((-135 . -145) 7944) ((-135 . -472) 7926) ((-135 . -496) NIL) ((-135 . -294) NIL) ((-135 . -1159) T) ((-135 . -33) T) ((-135 . -105) 7908) ((-135 . -215) 7890) ((-134 . -583) 7872) ((-132 . -449) 7849) ((-132 . -995) 7833) ((-132 . -1052) T) ((-132 . -583) 7815) ((-132 . -100) T) ((-132 . -454) 7770) ((-131 . -811) T) ((-131 . -100) T) ((-131 . -583) 7752) ((-131 . -1052) T) ((-131 . -23) T) ((-131 . -25) T) ((-131 . -691) T) ((-131 . -1063) T) ((-131 . -995) 7734) ((-128 . -19) 7716) ((-128 . -616) 7698) ((-128 . -273) 7673) ((-128 . -271) 7648) ((-128 . -574) 7623) ((-128 . -584) NIL) ((-128 . -472) 7605) ((-128 . -100) T) ((-128 . -1052) T) ((-128 . -496) NIL) ((-128 . -294) NIL) ((-128 . -583) 7587) ((-128 . -1159) T) ((-128 . -33) T) ((-128 . -145) 7569) ((-128 . -811) T) ((-128 . -357) 7551) ((-127 . -811) T) ((-127 . -100) T) ((-127 . -583) 7518) ((-127 . -1052) T) ((-126 . -124) 7502) ((-126 . -968) 7486) ((-126 . -33) T) ((-126 . -1159) T) ((-126 . -583) 7418) ((-126 . -294) 7356) ((-126 . -496) 7289) ((-126 . -1052) 7267) ((-126 . -100) 7245) ((-126 . -472) 7229) ((-126 . -118) 7213) ((-125 . -124) 7197) ((-125 . -968) 7181) ((-125 . -33) T) ((-125 . -1159) T) ((-125 . -583) 7113) ((-125 . -294) 7051) ((-125 . -496) 6984) ((-125 . -1052) 6962) ((-125 . -100) 6940) ((-125 . -472) 6924) ((-125 . -118) 6908) ((-120 . -124) 6892) ((-120 . -968) 6876) ((-120 . -33) T) ((-120 . -1159) T) ((-120 . -583) 6808) ((-120 . -294) 6746) ((-120 . -496) 6679) ((-120 . -1052) 6657) ((-120 . -100) 6635) ((-120 . -472) 6619) ((-120 . -118) 6603) ((-116 . -950) 6580) ((-116 . -1099) NIL) ((-116 . -995) 6557) ((-116 . -584) NIL) ((-116 . -977) NIL) ((-116 . -869) NIL) ((-116 . -843) 6534) ((-116 . -809) NIL) ((-116 . -761) NIL) ((-116 . -758) NIL) ((-116 . -811) NIL) ((-116 . -756) NIL) ((-116 . -755) NIL) ((-116 . -784) NIL) ((-116 . -845) NIL) ((-116 . -1159) T) ((-116 . -385) 6511) ((-116 . -606) 6488) ((-116 . -362) 6465) ((-116 . -271) 6416) ((-116 . -294) 6373) ((-116 . -496) 6281) ((-116 . -323) 6258) ((-116 . -229) T) ((-116 . -110) 6187) ((-116 . -1010) 6132) ((-116 . -275) T) ((-116 . -682) 6077) ((-116 . -613) 6022) ((-116 . -37) 5967) ((-116 . -292) T) ((-116 . -436) T) ((-116 . -163) T) ((-116 . -533) T) ((-116 . -880) T) ((-116 . -1164) T) ((-116 . -348) T) ((-116 . -219) NIL) ((-116 . -859) NIL) ((-116 . -217) 5944) ((-116 . -141) T) ((-116 . -139) NIL) ((-116 . -129) T) ((-116 . -25) T) ((-116 . -100) T) ((-116 . -583) 5926) ((-116 . -1052) T) ((-116 . -23) T) ((-116 . -21) T) ((-116 . -1004) T) ((-116 . -1011) T) ((-116 . -1063) T) ((-116 . -691) T) ((-115 . -829) 5910) ((-115 . -880) T) ((-115 . -533) T) ((-115 . -275) T) ((-115 . -163) T) ((-115 . -682) 5897) ((-115 . -1010) 5884) ((-115 . -110) 5869) ((-115 . -37) 5856) ((-115 . -436) T) ((-115 . -292) T) ((-115 . -1004) T) ((-115 . -1011) T) ((-115 . -1063) T) ((-115 . -691) T) ((-115 . -21) T) ((-115 . -23) T) ((-115 . -1052) T) ((-115 . -583) 5838) ((-115 . -100) T) ((-115 . -25) T) ((-115 . -129) T) ((-115 . -613) 5825) ((-115 . -141) T) ((-112 . -811) T) ((-112 . -100) T) ((-112 . -583) 5807) ((-112 . -1052) T) ((-111 . -811) T) ((-111 . -100) T) ((-111 . -583) 5789) ((-111 . -1052) T) ((-111 . -353) T) ((-111 . -627) T) ((-111 . -926) T) ((-111 . -584) 5771) ((-109 . -122) T) ((-109 . -357) 5753) ((-109 . -811) T) ((-109 . -145) 5735) ((-109 . -33) T) ((-109 . -1159) T) ((-109 . -583) 5717) ((-109 . -294) NIL) ((-109 . -496) NIL) ((-109 . -1052) T) ((-109 . -472) 5699) ((-109 . -584) 5681) ((-109 . -574) 5656) ((-109 . -271) 5631) ((-109 . -273) 5606) ((-109 . -616) 5588) ((-109 . -19) 5570) ((-109 . -100) T) ((-109 . -627) T) ((-108 . -350) 5544) ((-108 . -100) T) ((-108 . -583) 5526) ((-108 . -1052) T) ((-107 . -583) 5508) ((-106 . -950) 5490) ((-106 . -1099) T) ((-106 . -995) 5450) ((-106 . -584) 5380) ((-106 . -977) T) ((-106 . -869) NIL) ((-106 . -843) 5362) ((-106 . -809) T) ((-106 . -761) T) ((-106 . -758) T) ((-106 . -811) T) ((-106 . -756) T) ((-106 . -755) T) ((-106 . -784) T) ((-106 . -845) 5344) ((-106 . -1159) T) ((-106 . -385) 5326) ((-106 . -606) 5308) ((-106 . -362) 5290) ((-106 . -271) NIL) ((-106 . -294) NIL) ((-106 . -496) NIL) ((-106 . -323) 5272) ((-106 . -229) T) ((-106 . -110) 5206) ((-106 . -1010) 5156) ((-106 . -275) T) ((-106 . -682) 5106) ((-106 . -613) 5056) ((-106 . -37) 5006) ((-106 . -292) T) ((-106 . -436) T) ((-106 . -163) T) ((-106 . -533) T) ((-106 . -880) T) ((-106 . -1164) T) ((-106 . -348) T) ((-106 . -219) T) ((-106 . -859) NIL) ((-106 . -217) 4988) ((-106 . -141) T) ((-106 . -139) NIL) ((-106 . -129) T) ((-106 . -25) T) ((-106 . -100) T) ((-106 . -583) 4970) ((-106 . -1052) T) ((-106 . -23) T) ((-106 . -21) T) ((-106 . -1004) T) ((-106 . -1011) T) ((-106 . -1063) T) ((-106 . -691) T) ((-103 . -1052) T) ((-103 . -583) 4952) ((-103 . -100) T) ((-101 . -124) 4936) ((-101 . -968) 4920) ((-101 . -33) T) ((-101 . -1159) T) ((-101 . -583) 4852) ((-101 . -294) 4790) ((-101 . -496) 4723) ((-101 . -1052) 4701) ((-101 . -100) 4679) ((-101 . -472) 4663) ((-101 . -118) 4647) ((-97 . -457) T) ((-97 . -1063) T) ((-97 . -100) T) ((-97 . -583) 4629) ((-97 . -1052) T) ((-97 . -691) T) ((-97 . -271) 4608) ((-95 . -1052) T) ((-95 . -583) 4590) ((-95 . -100) T) ((-94 . -1035) T) ((-94 . -583) 4556) ((-94 . -1052) T) ((-94 . -100) T) ((-94 . -91) T) ((-89 . -1071) 4540) ((-89 . -472) 4524) ((-89 . -100) 4502) ((-89 . -1052) 4480) ((-89 . -496) 4413) ((-89 . -294) 4351) ((-89 . -583) 4283) ((-89 . -1159) T) ((-89 . -33) T) ((-89 . -105) 4267) ((-87 . -382) T) ((-87 . -583) 4249) ((-87 . -1159) T) ((-87 . -381) T) ((-86 . -370) T) ((-86 . -583) 4231) ((-86 . -1159) T) ((-86 . -381) T) ((-85 . -424) T) ((-85 . -583) 4213) ((-85 . -1159) T) ((-85 . -381) T) ((-84 . -425) T) ((-84 . -583) 4195) ((-84 . -1159) T) ((-84 . -381) T) ((-83 . -370) T) ((-83 . -583) 4177) ((-83 . -1159) T) ((-83 . -381) T) ((-82 . -370) T) ((-82 . -583) 4159) ((-82 . -1159) T) ((-82 . -381) T) ((-81 . -425) T) ((-81 . -583) 4141) ((-81 . -1159) T) ((-81 . -381) T) ((-80 . -425) T) ((-80 . -583) 4123) ((-80 . -1159) T) ((-80 . -381) T) ((-79 . -425) T) ((-79 . -583) 4105) ((-79 . -1159) T) ((-79 . -381) T) ((-78 . -425) T) ((-78 . -583) 4087) ((-78 . -1159) T) ((-78 . -381) T) ((-77 . -425) T) ((-77 . -583) 4069) ((-77 . -1159) T) ((-77 . -381) T) ((-76 . -382) T) ((-76 . -583) 4051) ((-76 . -1159) T) ((-76 . -381) T) ((-75 . -425) T) ((-75 . -583) 4033) ((-75 . -1159) T) ((-75 . -381) T) ((-74 . -425) T) ((-74 . -583) 4015) ((-74 . -1159) T) ((-74 . -381) T) ((-73 . -382) T) ((-73 . -583) 3997) ((-73 . -1159) T) ((-73 . -381) T) ((-72 . -425) T) ((-72 . -583) 3979) ((-72 . -1159) T) ((-72 . -381) T) ((-71 . -368) T) ((-71 . -583) 3961) ((-71 . -1159) T) ((-71 . -381) T) ((-70 . -381) T) ((-70 . -1159) T) ((-70 . -583) 3943) ((-69 . -425) T) ((-69 . -583) 3925) ((-69 . -1159) T) ((-69 . -381) T) ((-68 . -368) T) ((-68 . -583) 3907) ((-68 . -1159) T) ((-68 . -381) T) ((-67 . -381) T) ((-67 . -1159) T) ((-67 . -583) 3889) ((-66 . -368) T) ((-66 . -583) 3871) ((-66 . -1159) T) ((-66 . -381) T) ((-65 . -368) T) ((-65 . -583) 3853) ((-65 . -1159) T) ((-65 . -381) T) ((-64 . -382) T) ((-64 . -583) 3835) ((-64 . -1159) T) ((-64 . -381) T) ((-63 . -370) T) ((-63 . -583) 3817) ((-63 . -1159) T) ((-63 . -381) T) ((-62 . -425) T) ((-62 . -583) 3799) ((-62 . -1159) T) ((-62 . -381) T) ((-61 . -381) T) ((-61 . -1159) T) ((-61 . -583) 3781) ((-60 . -425) T) ((-60 . -583) 3763) ((-60 . -1159) T) ((-60 . -381) T) ((-59 . -382) T) ((-59 . -583) 3745) ((-59 . -1159) T) ((-59 . -381) T) ((-58 . -55) 3707) ((-58 . -33) T) ((-58 . -1159) T) ((-58 . -583) 3639) ((-58 . -294) 3577) ((-58 . -496) 3510) ((-58 . -1052) 3488) ((-58 . -100) 3466) ((-58 . -472) 3450) ((-56 . -19) 3434) ((-56 . -616) 3418) ((-56 . -273) 3395) ((-56 . -271) 3372) ((-56 . -574) 3349) ((-56 . -584) 3310) ((-56 . -472) 3294) ((-56 . -100) 3244) ((-56 . -1052) 3194) ((-56 . -496) 3127) ((-56 . -294) 3065) ((-56 . -583) 2977) ((-56 . -1159) T) ((-56 . -33) T) ((-56 . -145) 2961) ((-56 . -811) 2940) ((-56 . -357) 2924) ((-50 . -1052) T) ((-50 . -583) 2906) ((-50 . -100) T) ((-49 . -588) 2890) ((-49 . -613) 2864) ((-49 . -691) T) ((-49 . -1063) T) ((-49 . -1011) T) ((-49 . -1004) T) ((-49 . -21) T) ((-49 . -23) T) ((-49 . -1052) T) ((-49 . -583) 2846) ((-49 . -100) T) ((-49 . -25) T) ((-49 . -129) T) ((-49 . -995) 2830) ((-48 . -1052) T) ((-48 . -583) 2812) ((-48 . -100) T) ((-47 . -283) T) ((-47 . -995) 2755) ((-47 . -1052) T) ((-47 . -583) 2737) ((-47 . -100) T) ((-47 . -811) T) ((-47 . -496) 2703) ((-47 . -294) 2690) ((-47 . -27) T) ((-47 . -960) T) ((-47 . -229) T) ((-47 . -110) 2646) ((-47 . -1010) 2611) ((-47 . -275) T) ((-47 . -682) 2576) ((-47 . -613) 2541) ((-47 . -129) T) ((-47 . -25) T) ((-47 . -23) T) ((-47 . -21) T) ((-47 . -1004) T) ((-47 . -1011) T) ((-47 . -1063) T) ((-47 . -691) T) ((-47 . -37) 2506) ((-47 . -292) T) ((-47 . -436) T) ((-47 . -163) T) ((-47 . -533) T) ((-47 . -880) T) ((-47 . -1164) T) ((-47 . -348) T) ((-47 . -606) 2466) ((-47 . -977) T) ((-47 . -584) 2411) ((-47 . -141) T) ((-47 . -219) T) ((-44 . -35) 2390) ((-44 . -574) 2315) ((-44 . -294) 2119) ((-44 . -496) 1911) ((-44 . -472) 1848) ((-44 . -271) 1773) ((-44 . -273) 1698) ((-44 . -580) 1677) ((-44 . -221) 1627) ((-44 . -105) 1577) ((-44 . -215) 1527) ((-44 . -1136) 1506) ((-44 . -267) 1456) ((-44 . -145) 1406) ((-44 . -33) T) ((-44 . -1159) T) ((-44 . -583) 1388) ((-44 . -1052) T) ((-44 . -100) T) ((-44 . -584) NIL) ((-44 . -616) 1338) ((-44 . -357) 1288) ((-44 . -811) NIL) ((-44 . -1097) 1238) ((-44 . -968) 1188) ((-44 . -1194) 1138) ((-44 . -631) 1088) ((-43 . -403) 1072) ((-43 . -709) 1056) ((-43 . -685) T) ((-43 . -726) T) ((-43 . -110) 1035) ((-43 . -1010) 1019) ((-43 . -21) T) ((-43 . -23) T) ((-43 . -1052) T) ((-43 . -583) 1001) ((-43 . -100) T) ((-43 . -25) T) ((-43 . -129) T) ((-43 . -613) 959) ((-43 . -682) 943) ((-43 . -352) 927) ((-39 . -327) 901) ((-39 . -163) T) ((-39 . -691) T) ((-39 . -1063) T) ((-39 . -1011) T) ((-39 . -1004) T) ((-39 . -613) 846) ((-39 . -129) T) ((-39 . -25) T) ((-39 . -100) T) ((-39 . -583) 828) ((-39 . -1052) T) ((-39 . -23) T) ((-39 . -21) T) ((-39 . -1010) 773) ((-39 . -110) 702) ((-39 . -584) 686) ((-39 . -217) 663) ((-39 . -859) 615) ((-39 . -219) 587) ((-39 . -348) T) ((-39 . -1164) T) ((-39 . -880) T) ((-39 . -533) T) ((-39 . -682) 532) ((-39 . -37) 477) ((-39 . -436) T) ((-39 . -292) T) ((-39 . -275) T) ((-39 . -229) T) ((-39 . -353) NIL) ((-39 . -335) NIL) ((-39 . -1099) NIL) ((-39 . -139) 449) ((-39 . -387) NIL) ((-39 . -395) 421) ((-39 . -141) 393) ((-39 . -355) 365) ((-39 . -362) 342) ((-39 . -606) 281) ((-39 . -397) 258) ((-39 . -995) 148) ((-39 . -689) 120) ((-30 . -914) T) ((-30 . -583) 102) ((0 . |EnumerationCategory|) T) ((0 . -583) 84) ((0 . -1052) T) ((0 . -100) T) ((-1 . -1052) T) ((-1 . -583) 66) ((-1 . -100) T) ((-2 . |RecordCategory|) T) ((-2 . -583) 48) ((-2 . -1052) T) ((-2 . -100) T) ((-3 . |UnionCategory|) T) ((-3 . -583) 30) ((-3 . -1052) T) ((-3 . -100) T))
\ No newline at end of file +(-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) +((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-226)) ((|#2| |#1|) |has| |#1| (-226)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-469 . -1063) T) ((-256 . -504) 144676) ((-240 . -504) 144619) ((-238 . -1063) 144569) ((-555 . -111) 144554) ((-520 . -23) T) ((-137 . -1063) T) ((-136 . -1063) T) ((-117 . -301) 144511) ((-132 . -1063) T) ((-470 . -504) 144303) ((-668 . -101) T) ((-1101 . -504) 144222) ((-382 . -130) T) ((-1231 . -945) 144191) ((-31 . -92) T) ((-581 . -480) 144175) ((-597 . -130) T) ((-793 . -817) T) ((-513 . -56) 144125) ((-58 . -504) 144058) ((-509 . -504) 143991) ((-410 . -869) 143950) ((-166 . -1016) T) ((-506 . -504) 143883) ((-487 . -504) 143816) ((-486 . -504) 143749) ((-773 . -1007) 143532) ((-673 . -38) 143497) ((-335 . -341) T) ((-1058 . -1057) 143481) ((-1058 . -1063) 143459) ((-166 . -236) 143410) ((-166 . -226) 143361) ((-1058 . -1059) 143319) ((-841 . -278) 143277) ((-218 . -769) T) ((-218 . -766) T) ((-668 . -276) NIL) ((-1110 . -1148) 143256) ((-399 . -961) 143240) ((-675 . -21) T) ((-675 . -25) T) ((-1233 . -622) 143214) ((-308 . -157) 143193) ((-308 . -141) 143172) ((-1110 . -106) 143122) ((-133 . -25) T) ((-40 . -224) 143099) ((-116 . -21) T) ((-116 . -25) T) ((-587 . -280) 143075) ((-466 . -280) 143054) ((-1191 . -1016) T) ((-826 . -1016) T) ((-773 . -330) 143038) ((-117 . -1111) NIL) ((-90 . -592) 142970) ((-468 . -130) T) ((-573 . -1172) T) ((-1191 . -318) 142947) ((-555 . -1016) T) ((-1191 . -226) T) ((-636 . -692) 142931) ((-927 . -280) 142908) ((-59 . -34) T) ((-1054 . -592) 142874) ((-1027 . -769) T) ((-1027 . -766) T) ((-790 . -701) T) ((-706 . -47) 142839) ((-599 . -38) 142826) ((-347 . -282) T) ((-344 . -282) T) ((-336 . -282) T) ((-256 . -282) 142757) ((-240 . -282) 142688) ((-1031 . -592) 142654) ((-1005 . -592) 142620) ((-993 . -101) T) ((-988 . -592) 142586) ((-405 . -701) T) ((-117 . -38) 142531) ((-602 . -592) 142497) ((-405 . -464) T) ((-474 . -592) 142463) ((-346 . -101) T) ((-211 . -592) 142429) ((-1166 . -1023) T) ((-686 . -1023) T) ((-1133 . -47) 142406) ((-1132 . -47) 142376) ((-1126 . -47) 142353) ((-1004 . -149) 142299) ((-879 . -282) T) ((-1088 . -47) 142271) ((-668 . -301) NIL) ((-505 . -592) 142253) ((-500 . -592) 142235) ((-498 . -592) 142217) ((-319 . -1063) 142167) ((-687 . -443) 142098) ((-48 . -101) T) ((-1202 . -278) 142083) ((-1181 . -278) 142003) ((-619 . -640) 141987) ((-619 . -625) 141971) ((-331 . -21) T) ((-331 . -25) T) ((-40 . -341) NIL) ((-171 . -21) T) ((-171 . -25) T) ((-619 . -365) 141955) ((-581 . -278) 141932) ((-584 . -592) 141899) ((-380 . -101) T) ((-1082 . -141) T) ((-126 . -592) 141831) ((-843 . -1063) T) ((-632 . -403) 141815) ((-689 . -592) 141797) ((-159 . -592) 141779) ((-154 . -592) 141761) ((-1233 . -701) T) ((-1065 . -34) T) ((-840 . -769) NIL) ((-840 . -766) NIL) ((-829 . -821) T) ((-706 . -855) NIL) ((-1242 . -130) T) ((-373 . -130) T) ((-873 . -101) T) ((-706 . -1007) 141637) ((-520 . -130) T) ((-1051 . -403) 141621) ((-969 . -480) 141605) ((-117 . -392) 141582) ((-1126 . -1172) 141561) ((-756 . -403) 141545) ((-754 . -403) 141529) ((-912 . -34) T) ((-668 . -1111) NIL) ((-243 . -622) 141364) ((-242 . -622) 141186) ((-791 . -889) 141165) ((-445 . -403) 141149) ((-581 . -19) 141133) ((-1106 . -1165) 141102) ((-1126 . -855) NIL) ((-1126 . -853) 141054) ((-581 . -583) 141031) ((-1158 . -592) 140963) ((-1134 . -592) 140945) ((-61 . -387) T) ((-1132 . -1007) 140880) ((-1126 . -1007) 140846) ((-668 . -38) 140796) ((-465 . -278) 140781) ((-706 . -369) 140765) ((-632 . -1023) T) ((-1202 . -971) 140731) ((-1181 . -971) 140697) ((-1028 . -1148) 140672) ((-841 . -593) 140480) ((-841 . -592) 140462) ((-1145 . -480) 140399) ((-410 . -991) 140378) ((-48 . -301) 140365) ((-1028 . -106) 140311) ((-470 . -480) 140248) ((-510 . -1172) T) ((-1126 . -330) 140200) ((-1101 . -480) 140171) ((-1126 . -369) 140123) ((-1051 . -1023) T) ((-429 . -101) T) ((-180 . -1063) T) ((-243 . -34) T) ((-242 . -34) T) ((-756 . -1023) T) ((-754 . -1023) T) ((-706 . -869) 140100) ((-445 . -1023) T) ((-58 . -480) 140084) ((-1003 . -1022) 140058) ((-509 . -480) 140042) ((-506 . -480) 140026) ((-487 . -480) 140010) ((-486 . -480) 139994) ((-238 . -504) 139927) ((-1003 . -111) 139894) ((-1133 . -869) 139807) ((-1132 . -869) 139713) ((-1126 . -869) 139546) ((-644 . -1075) T) ((-1088 . -869) 139530) ((-620 . -92) T) ((-346 . -1111) T) ((-314 . -1022) 139512) ((-243 . -765) 139491) ((-243 . -768) 139442) ((-243 . -767) 139421) ((-242 . -765) 139400) ((-242 . -768) 139351) ((-242 . -767) 139330) ((-31 . -592) 139296) ((-50 . -1023) T) ((-243 . -701) 139206) ((-242 . -701) 139116) ((-1166 . -1063) T) ((-644 . -23) T) ((-562 . -1023) T) ((-508 . -1023) T) ((-371 . -1022) 139081) ((-314 . -111) 139056) ((-72 . -375) T) ((-72 . -387) T) ((-993 . -38) 138993) ((-668 . -392) 138975) ((-98 . -101) T) ((-686 . -1063) T) ((-972 . -143) 138947) ((-972 . -145) 138919) ((-371 . -111) 138875) ((-311 . -1176) 138854) ((-465 . -971) 138820) ((-346 . -38) 138785) ((-40 . -362) 138757) ((-842 . -592) 138629) ((-127 . -125) 138613) ((-121 . -125) 138597) ((-808 . -1022) 138567) ((-807 . -21) 138519) ((-801 . -1022) 138503) ((-807 . -25) 138455) ((-311 . -540) 138406) ((-548 . -802) T) ((-233 . -1172) T) ((-808 . -111) 138371) ((-801 . -111) 138350) ((-1202 . -592) 138332) ((-1181 . -592) 138314) ((-1181 . -593) 137987) ((-1131 . -878) 137966) ((-1087 . -878) 137945) ((-48 . -38) 137910) ((-1240 . -1075) T) ((-581 . -592) 137822) ((-581 . -593) 137783) ((-1238 . -1075) T) ((-233 . -1007) 137610) ((-1131 . -622) 137535) ((-1087 . -622) 137460) ((-693 . -592) 137442) ((-825 . -622) 137416) ((-481 . -1063) T) ((-1240 . -23) T) ((-1238 . -23) T) ((-1003 . -1016) T) ((-1145 . -278) 137395) ((-166 . -360) 137346) ((-973 . -1172) T) ((-44 . -23) T) ((-470 . -278) 137325) ((-566 . -1063) T) ((-1106 . -1072) 137294) ((-1067 . -1066) 137246) ((-128 . -1172) T) ((-382 . -21) T) ((-382 . -25) T) ((-150 . -1075) T) ((-1246 . -101) T) ((-973 . -853) 137228) ((-973 . -855) 137210) ((-1166 . -692) 137107) ((-599 . -224) 137091) ((-597 . -21) T) ((-281 . -540) T) ((-597 . -25) T) ((-1152 . -1063) T) ((-686 . -692) 137056) ((-233 . -369) 137025) ((-973 . -1007) 136985) ((-371 . -1016) T) ((-216 . -1023) T) ((-117 . -224) 136962) ((-58 . -278) 136939) ((-150 . -23) T) ((-506 . -278) 136916) ((-319 . -504) 136849) ((-486 . -278) 136826) ((-371 . -236) T) ((-371 . -226) T) ((-808 . -1016) T) ((-801 . -1016) T) ((-687 . -918) 136795) ((-675 . -821) T) ((-465 . -592) 136777) ((-801 . -226) 136756) ((-133 . -821) T) ((-632 . -1063) T) ((-1145 . -583) 136735) ((-534 . -1148) 136714) ((-328 . -1063) T) ((-311 . -355) 136693) ((-399 . -145) 136672) ((-399 . -143) 136651) ((-933 . -1075) 136550) ((-233 . -869) 136482) ((-789 . -1075) 136392) ((-628 . -823) 136376) ((-470 . -583) 136355) ((-534 . -106) 136305) ((-973 . -369) 136287) ((-973 . -330) 136269) ((-96 . -1063) T) ((-933 . -23) 136080) ((-468 . -21) T) ((-468 . -25) T) ((-789 . -23) 135950) ((-1135 . -592) 135932) ((-58 . -19) 135916) ((-1135 . -593) 135838) ((-1131 . -701) T) ((-1087 . -701) T) ((-506 . -19) 135822) ((-486 . -19) 135806) ((-58 . -583) 135783) ((-1051 . -1063) T) ((-870 . -101) 135761) ((-825 . -701) T) ((-756 . -1063) T) ((-506 . -583) 135738) ((-486 . -583) 135715) ((-754 . -1063) T) ((-754 . -1030) 135682) ((-452 . -1063) T) ((-445 . -1063) T) ((-566 . -692) 135657) ((-623 . -1063) T) ((-973 . -869) NIL) ((-1210 . -47) 135634) ((-603 . -1075) T) ((-644 . -130) T) ((-1204 . -101) T) ((-1203 . -47) 135604) ((-1182 . -47) 135581) ((-1166 . -169) 135532) ((-1043 . -1176) 135483) ((-267 . -1063) T) ((-84 . -432) T) ((-84 . -387) T) ((-1132 . -299) 135462) ((-1126 . -299) 135441) ((-50 . -1063) T) ((-1043 . -540) 135392) ((-686 . -169) T) ((-575 . -47) 135369) ((-218 . -622) 135334) ((-562 . -1063) T) ((-508 . -1063) T) ((-351 . -1176) T) ((-345 . -1176) T) ((-337 . -1176) T) ((-478 . -794) T) ((-478 . -889) T) ((-311 . -1075) T) ((-107 . -1176) T) ((-331 . -821) T) ((-210 . -889) T) ((-210 . -794) T) ((-689 . -1022) 135304) ((-351 . -540) T) ((-345 . -540) T) ((-337 . -540) T) ((-107 . -540) T) ((-632 . -692) 135274) ((-1126 . -991) NIL) ((-311 . -23) T) ((-66 . -1172) T) ((-969 . -592) 135206) ((-668 . -224) 135188) ((-689 . -111) 135153) ((-619 . -34) T) ((-238 . -480) 135137) ((-1065 . -1061) 135121) ((-168 . -1063) T) ((-921 . -878) 135100) ((-472 . -878) 135079) ((-1246 . -1111) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-1240 . -130) T) ((-1238 . -130) T) ((-1051 . -692) 134928) ((-1027 . -622) 134915) ((-921 . -622) 134840) ((-756 . -692) 134669) ((-524 . -592) 134651) ((-524 . -593) 134632) ((-754 . -692) 134481) ((-1231 . -101) T) ((-1040 . -101) T) ((-373 . -25) T) ((-373 . -21) T) ((-472 . -622) 134406) ((-452 . -692) 134377) ((-445 . -692) 134226) ((-956 . -101) T) ((-1214 . -592) 134192) ((-1203 . -1007) 134127) ((-1182 . -1172) 134106) ((-712 . -101) T) ((-1182 . -855) NIL) ((-1182 . -853) 134058) ((-1145 . -593) NIL) ((-1145 . -592) 134040) ((-520 . -25) T) ((-1102 . -1085) 133985) ((-1013 . -1165) 133914) ((-870 . -301) 133852) ((-335 . -1023) T) ((-139 . -101) T) ((-44 . -130) T) ((-281 . -1075) T) ((-655 . -92) T) ((-650 . -92) T) ((-638 . -592) 133834) ((-620 . -592) 133787) ((-469 . -92) T) ((-347 . -592) 133769) ((-344 . -592) 133751) ((-336 . -592) 133733) ((-256 . -593) 133481) ((-256 . -592) 133463) ((-240 . -592) 133445) ((-240 . -593) 133306) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1182 . -1007) 133272) ((-1166 . -504) 133239) ((-1101 . -592) 133221) ((-793 . -828) T) ((-793 . -701) T) ((-581 . -280) 133198) ((-562 . -692) 133163) ((-470 . -593) NIL) ((-470 . -592) 133145) ((-508 . -692) 133090) ((-308 . -101) T) ((-305 . -101) T) ((-281 . -23) T) ((-150 . -130) T) ((-378 . -701) T) ((-841 . -1022) 133042) ((-879 . -592) 133024) ((-879 . -593) 133006) ((-841 . -111) 132944) ((-135 . -101) T) ((-114 . -101) T) ((-687 . -1194) 132928) ((-689 . -1016) T) ((-668 . -341) NIL) ((-509 . -592) 132860) ((-371 . -769) T) ((-216 . -1063) T) ((-371 . -766) T) ((-218 . -768) T) ((-218 . -765) T) ((-58 . -593) 132821) ((-58 . -592) 132733) ((-218 . -701) T) ((-506 . -593) 132694) ((-506 . -592) 132606) ((-487 . -592) 132538) ((-486 . -593) 132499) ((-486 . -592) 132411) ((-1043 . -355) 132362) ((-40 . -403) 132339) ((-76 . -1172) T) ((-840 . -878) NIL) ((-351 . -321) 132323) ((-351 . -355) T) ((-345 . -321) 132307) ((-345 . -355) T) ((-337 . -321) 132291) ((-337 . -355) T) ((-308 . -276) 132270) ((-107 . -355) T) ((-69 . -1172) T) ((-1182 . -330) 132222) ((-840 . -622) 132167) ((-1182 . -369) 132119) ((-933 . -130) 131974) ((-789 . -130) 131844) ((-927 . -625) 131828) ((-1051 . -169) 131739) ((-927 . -365) 131723) ((-1027 . -768) T) ((-1027 . -765) T) ((-756 . -169) 131614) ((-754 . -169) 131525) ((-790 . -47) 131487) ((-1027 . -701) T) ((-319 . -480) 131471) ((-921 . -701) T) ((-445 . -169) 131382) ((-238 . -278) 131359) ((-472 . -701) T) ((-1231 . -301) 131297) ((-1210 . -869) 131210) ((-1203 . -869) 131116) ((-1202 . -1022) 130951) ((-1182 . -869) 130784) ((-1181 . -1022) 130592) ((-1166 . -282) 130571) ((-1106 . -149) 130555) ((-1082 . -101) T) ((-1038 . -101) T) ((-896 . -924) T) ((-74 . -1172) T) ((-712 . -301) 130493) ((-166 . -878) 130446) ((-638 . -374) 130418) ((-30 . -924) T) ((-1 . -592) 130400) ((-1080 . -1063) T) ((-1043 . -23) T) ((-50 . -596) 130384) ((-1043 . -1075) T) ((-972 . -401) 130356) ((-575 . -869) 130269) ((-430 . -101) T) ((-139 . -301) NIL) ((-841 . -1016) T) ((-807 . -821) 130248) ((-80 . -1172) T) ((-686 . -282) T) ((-40 . -1023) T) ((-562 . -169) T) ((-508 . -169) T) ((-501 . -592) 130230) ((-166 . -622) 130140) ((-497 . -592) 130122) ((-343 . -145) 130104) ((-343 . -143) T) ((-351 . -1075) T) ((-345 . -1075) T) ((-337 . -1075) T) ((-973 . -299) T) ((-883 . -299) T) ((-841 . -236) T) ((-107 . -1075) T) ((-841 . -226) 130083) ((-1202 . -111) 129904) ((-1181 . -111) 129693) ((-238 . -1206) 129677) ((-548 . -819) T) ((-351 . -23) T) ((-346 . -341) T) ((-308 . -301) 129664) ((-305 . -301) 129605) ((-345 . -23) T) ((-311 . -130) T) ((-337 . -23) T) ((-973 . -991) T) ((-107 . -23) T) ((-238 . -583) 129582) ((-1204 . -38) 129474) ((-1191 . -878) 129453) ((-112 . -1063) T) ((-1004 . -101) T) ((-1191 . -622) 129378) ((-840 . -768) NIL) ((-826 . -622) 129352) ((-840 . -765) NIL) ((-790 . -855) NIL) ((-840 . -701) T) ((-1051 . -504) 129225) ((-756 . -504) 129172) ((-754 . -504) 129124) ((-555 . -622) 129111) ((-790 . -1007) 128939) ((-445 . -504) 128882) ((-380 . -381) T) ((-59 . -1172) T) ((-597 . -821) 128861) ((-490 . -635) T) ((-1106 . -945) 128830) ((-972 . -443) T) ((-673 . -819) T) ((-500 . -766) T) ((-465 . -1022) 128665) ((-335 . -1063) T) ((-305 . -1111) NIL) ((-281 . -130) T) ((-386 . -1063) T) ((-668 . -362) 128632) ((-839 . -1023) T) ((-216 . -596) 128609) ((-319 . -278) 128586) ((-465 . -111) 128407) ((-1202 . -1016) T) ((-1181 . -1016) T) ((-790 . -369) 128391) ((-166 . -701) T) ((-628 . -101) T) ((-1202 . -236) 128370) ((-1202 . -226) 128322) ((-1181 . -226) 128227) ((-1181 . -236) 128206) ((-972 . -394) NIL) ((-644 . -615) 128154) ((-308 . -38) 128064) ((-305 . -38) 127993) ((-68 . -592) 127975) ((-311 . -483) 127941) ((-1145 . -280) 127920) ((-1076 . -1075) 127830) ((-82 . -1172) T) ((-60 . -592) 127812) ((-470 . -280) 127791) ((-1233 . -1007) 127768) ((-1124 . -1063) T) ((-1076 . -23) 127638) ((-790 . -869) 127574) ((-1191 . -701) T) ((-1065 . -1172) T) ((-1051 . -282) 127505) ((-862 . -101) T) ((-756 . -282) 127416) ((-319 . -19) 127400) ((-58 . -280) 127377) ((-754 . -282) 127308) ((-826 . -701) T) ((-117 . -819) NIL) ((-506 . -280) 127285) ((-319 . -583) 127262) ((-486 . -280) 127239) ((-445 . -282) 127170) ((-1004 . -301) 127021) ((-555 . -701) T) ((-655 . -592) 126971) ((-650 . -592) 126937) ((-636 . -592) 126919) ((-469 . -592) 126885) ((-238 . -593) 126846) ((-238 . -592) 126758) ((-137 . -592) 126724) ((-136 . -592) 126690) ((-132 . -592) 126656) ((-1107 . -34) T) ((-912 . -1172) T) ((-335 . -692) 126601) ((-644 . -25) T) ((-644 . -21) T) ((-465 . -1016) T) ((-611 . -409) 126566) ((-586 . -409) 126531) ((-1082 . -1111) T) ((-562 . -282) T) ((-508 . -282) T) ((-1203 . -299) 126510) ((-465 . -226) 126462) ((-465 . -236) 126441) ((-1182 . -299) 126420) ((-1182 . -991) NIL) ((-1043 . -130) T) ((-841 . -769) 126399) ((-142 . -101) T) ((-40 . -1063) T) ((-841 . -766) 126378) ((-619 . -979) 126362) ((-561 . -1023) T) ((-548 . -1023) T) ((-485 . -1023) T) ((-399 . -443) T) ((-351 . -130) T) ((-308 . -392) 126346) ((-305 . -392) 126307) ((-345 . -130) T) ((-337 . -130) T) ((-1140 . -1063) T) ((-1082 . -38) 126294) ((-1058 . -592) 126261) ((-107 . -130) T) ((-923 . -1063) T) ((-890 . -1063) T) ((-745 . -1063) T) ((-646 . -1063) T) ((-496 . -1047) T) ((-675 . -145) T) ((-116 . -145) T) ((-1240 . -21) T) ((-1240 . -25) T) ((-1238 . -21) T) ((-1238 . -25) T) ((-638 . -1022) 126245) ((-520 . -821) T) ((-490 . -821) T) ((-347 . -1022) 126197) ((-344 . -1022) 126149) ((-336 . -1022) 126101) ((-243 . -1172) T) ((-242 . -1172) T) ((-256 . -1022) 125944) ((-240 . -1022) 125787) ((-638 . -111) 125766) ((-347 . -111) 125704) ((-344 . -111) 125642) ((-336 . -111) 125580) ((-256 . -111) 125409) ((-240 . -111) 125238) ((-791 . -1176) 125217) ((-599 . -403) 125201) ((-44 . -21) T) ((-44 . -25) T) ((-789 . -615) 125107) ((-791 . -540) 125086) ((-243 . -1007) 124913) ((-242 . -1007) 124740) ((-126 . -119) 124724) ((-879 . -1022) 124689) ((-673 . -1023) T) ((-687 . -101) T) ((-335 . -169) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -592) 124671) ((-879 . -111) 124627) ((-40 . -692) 124572) ((-839 . -1063) T) ((-319 . -593) 124533) ((-319 . -592) 124445) ((-1181 . -766) 124398) ((-1181 . -769) 124351) ((-243 . -369) 124320) ((-242 . -369) 124289) ((-628 . -38) 124259) ((-587 . -34) T) ((-473 . -1075) 124169) ((-466 . -34) T) ((-1076 . -130) 124039) ((-933 . -25) 123850) ((-843 . -592) 123832) ((-933 . -21) 123787) ((-789 . -21) 123697) ((-789 . -25) 123548) ((-599 . -1023) T) ((-1137 . -540) 123527) ((-1131 . -47) 123504) ((-347 . -1016) T) ((-344 . -1016) T) ((-473 . -23) 123374) ((-336 . -1016) T) ((-256 . -1016) T) ((-240 . -1016) T) ((-1087 . -47) 123346) ((-117 . -1023) T) ((-1003 . -622) 123320) ((-927 . -34) T) ((-347 . -226) 123299) ((-347 . -236) T) ((-344 . -226) 123278) ((-344 . -236) T) ((-240 . -318) 123235) ((-336 . -226) 123214) ((-336 . -236) T) ((-256 . -318) 123186) ((-256 . -226) 123165) ((-1116 . -149) 123149) ((-243 . -869) 123081) ((-242 . -869) 123013) ((-1045 . -821) T) ((-1185 . -1172) T) ((-406 . -1075) T) ((-1020 . -23) T) ((-879 . -1016) T) ((-314 . -622) 122995) ((-993 . -819) T) ((-1166 . -971) 122961) ((-1132 . -889) 122940) ((-1126 . -889) 122919) ((-879 . -236) T) ((-791 . -355) 122898) ((-377 . -23) T) ((-127 . -1063) 122876) ((-121 . -1063) 122854) ((-879 . -226) T) ((-1126 . -794) NIL) ((-371 . -622) 122819) ((-839 . -692) 122806) ((-1013 . -149) 122771) ((-40 . -169) T) ((-668 . -403) 122753) ((-687 . -301) 122740) ((-808 . -622) 122700) ((-801 . -622) 122674) ((-311 . -25) T) ((-311 . -21) T) ((-632 . -278) 122653) ((-561 . -1063) T) ((-548 . -1063) T) ((-485 . -1063) T) ((-238 . -280) 122630) ((-305 . -224) 122591) ((-1131 . -855) NIL) ((-1087 . -855) 122450) ((-129 . -821) T) ((-1131 . -1007) 122330) ((-1087 . -1007) 122213) ((-180 . -592) 122195) ((-825 . -1007) 122091) ((-756 . -278) 122018) ((-791 . -1075) T) ((-1003 . -701) T) ((-581 . -625) 122002) ((-1013 . -945) 121931) ((-968 . -101) T) ((-791 . -23) T) ((-687 . -1111) 121909) ((-668 . -1023) T) ((-581 . -365) 121893) ((-343 . -443) T) ((-335 . -282) T) ((-1219 . -1063) T) ((-241 . -1063) T) ((-391 . -101) T) ((-281 . -21) T) ((-281 . -25) T) ((-353 . -701) T) ((-685 . -1063) T) ((-673 . -1063) T) ((-353 . -464) T) ((-1166 . -592) 121875) ((-1131 . -369) 121859) ((-1087 . -369) 121843) ((-993 . -403) 121805) ((-139 . -222) 121787) ((-371 . -768) T) ((-371 . -765) T) ((-839 . -169) T) ((-371 . -701) T) ((-686 . -592) 121769) ((-687 . -38) 121598) ((-1218 . -1216) 121582) ((-343 . -394) T) ((-1218 . -1063) 121532) ((-561 . -692) 121519) ((-548 . -692) 121506) ((-485 . -692) 121471) ((-308 . -605) 121450) ((-808 . -701) T) ((-801 . -701) T) ((-619 . -1172) T) ((-1043 . -615) 121398) ((-1131 . -869) 121341) ((-1087 . -869) 121325) ((-636 . -1022) 121309) ((-107 . -615) 121291) ((-473 . -130) 121161) ((-1137 . -1075) T) ((-921 . -47) 121130) ((-599 . -1063) T) ((-636 . -111) 121109) ((-481 . -592) 121075) ((-319 . -280) 121052) ((-472 . -47) 121009) ((-1137 . -23) T) ((-117 . -1063) T) ((-102 . -101) 120987) ((-1230 . -1075) T) ((-1020 . -130) T) ((-993 . -1023) T) ((-793 . -1007) 120971) ((-972 . -699) 120943) ((-1230 . -23) T) ((-673 . -692) 120908) ((-566 . -592) 120890) ((-378 . -1007) 120874) ((-346 . -1023) T) ((-377 . -130) T) ((-316 . -1007) 120858) ((-218 . -855) 120840) ((-973 . -889) T) ((-90 . -34) T) ((-973 . -794) T) ((-883 . -889) T) ((-478 . -1176) T) ((-1152 . -592) 120822) ((-1068 . -1063) T) ((-210 . -1176) T) ((-968 . -301) 120787) ((-218 . -1007) 120747) ((-40 . -282) T) ((-1043 . -21) T) ((-1043 . -25) T) ((-1082 . -802) T) ((-478 . -540) T) ((-351 . -25) T) ((-210 . -540) T) ((-351 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-689 . -622) 120707) ((-337 . -25) T) ((-337 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1023) T) ((-561 . -169) T) ((-548 . -169) T) ((-485 . -169) T) ((-632 . -592) 120689) ((-712 . -711) 120673) ((-328 . -592) 120655) ((-67 . -375) T) ((-67 . -387) T) ((-1065 . -106) 120639) ((-1027 . -855) 120621) ((-921 . -855) 120546) ((-627 . -1075) T) ((-599 . -692) 120533) ((-472 . -855) NIL) ((-1106 . -101) T) ((-1027 . -1007) 120515) ((-96 . -592) 120497) ((-468 . -145) T) ((-921 . -1007) 120377) ((-117 . -692) 120322) ((-627 . -23) T) ((-472 . -1007) 120198) ((-1051 . -593) NIL) ((-1051 . -592) 120180) ((-756 . -593) NIL) ((-756 . -592) 120141) ((-754 . -593) 119775) ((-754 . -592) 119689) ((-1076 . -615) 119595) ((-452 . -592) 119577) ((-445 . -592) 119559) ((-445 . -593) 119420) ((-1004 . -222) 119366) ((-126 . -34) T) ((-791 . -130) T) ((-841 . -878) 119345) ((-623 . -592) 119327) ((-347 . -1237) 119311) ((-344 . -1237) 119295) ((-336 . -1237) 119279) ((-127 . -504) 119212) ((-121 . -504) 119145) ((-501 . -766) T) ((-501 . -769) T) ((-500 . -768) T) ((-102 . -301) 119083) ((-215 . -101) 119061) ((-668 . -1063) T) ((-673 . -169) T) ((-841 . -622) 119013) ((-64 . -376) T) ((-267 . -592) 118995) ((-64 . -387) T) ((-921 . -369) 118979) ((-839 . -282) T) ((-50 . -592) 118961) ((-968 . -38) 118909) ((-562 . -592) 118891) ((-472 . -369) 118875) ((-562 . -593) 118857) ((-508 . -592) 118839) ((-879 . -1237) 118826) ((-840 . -1172) T) ((-675 . -443) T) ((-485 . -504) 118792) ((-478 . -355) T) ((-347 . -360) 118771) ((-344 . -360) 118750) ((-336 . -360) 118729) ((-210 . -355) T) ((-689 . -701) T) ((-116 . -443) T) ((-1241 . -1232) 118713) ((-840 . -853) 118690) ((-840 . -855) NIL) ((-933 . -821) 118589) ((-789 . -821) 118540) ((-628 . -630) 118524) ((-1158 . -34) T) ((-168 . -592) 118506) ((-1076 . -21) 118416) ((-1076 . -25) 118267) ((-840 . -1007) 118244) ((-921 . -869) 118225) ((-1191 . -47) 118202) ((-879 . -360) T) ((-58 . -625) 118186) ((-506 . -625) 118170) ((-472 . -869) 118147) ((-70 . -432) T) ((-70 . -387) T) ((-486 . -625) 118131) ((-58 . -365) 118115) ((-599 . -169) T) ((-506 . -365) 118099) ((-486 . -365) 118083) ((-801 . -683) 118067) ((-1131 . -299) 118046) ((-1137 . -130) T) ((-117 . -169) T) ((-1106 . -301) 117984) ((-166 . -1172) T) ((-611 . -719) 117968) ((-586 . -719) 117952) ((-1230 . -130) T) ((-1203 . -889) 117931) ((-1182 . -889) 117910) ((-1182 . -794) NIL) ((-668 . -692) 117860) ((-1181 . -878) 117813) ((-993 . -1063) T) ((-840 . -369) 117790) ((-840 . -330) 117767) ((-874 . -1075) T) ((-166 . -853) 117751) ((-166 . -855) 117676) ((-478 . -1075) T) ((-346 . -1063) T) ((-210 . -1075) T) ((-75 . -432) T) ((-75 . -387) T) ((-166 . -1007) 117572) ((-311 . -821) T) ((-1218 . -504) 117505) ((-1202 . -622) 117402) ((-1181 . -622) 117272) ((-841 . -768) 117251) ((-841 . -765) 117230) ((-841 . -701) T) ((-478 . -23) T) ((-216 . -592) 117212) ((-171 . -443) T) ((-215 . -301) 117150) ((-85 . -432) T) ((-85 . -387) T) ((-210 . -23) T) ((-1242 . -1235) 117129) ((-561 . -282) T) ((-548 . -282) T) ((-651 . -1007) 117113) ((-485 . -282) T) ((-135 . -461) 117068) ((-48 . -1063) T) ((-687 . -224) 117052) ((-840 . -869) NIL) ((-1191 . -855) NIL) ((-858 . -101) T) ((-854 . -101) T) ((-380 . -1063) T) ((-166 . -369) 117036) ((-166 . -330) 117020) ((-1191 . -1007) 116900) ((-826 . -1007) 116796) ((-1102 . -101) T) ((-627 . -130) T) ((-117 . -504) 116704) ((-636 . -766) 116683) ((-636 . -769) 116662) ((-555 . -1007) 116644) ((-286 . -1225) 116614) ((-835 . -101) T) ((-932 . -540) 116593) ((-1166 . -1022) 116476) ((-473 . -615) 116382) ((-873 . -1063) T) ((-993 . -692) 116319) ((-686 . -1022) 116284) ((-581 . -34) T) ((-1107 . -1172) T) ((-1166 . -111) 116153) ((-465 . -622) 116050) ((-346 . -692) 115995) ((-166 . -869) 115954) ((-673 . -282) T) ((-668 . -169) T) ((-686 . -111) 115910) ((-1246 . -1023) T) ((-1191 . -369) 115894) ((-410 . -1176) 115872) ((-1080 . -592) 115854) ((-305 . -819) NIL) ((-410 . -540) T) ((-218 . -299) T) ((-1181 . -765) 115807) ((-1181 . -768) 115760) ((-1202 . -701) T) ((-1181 . -701) T) ((-48 . -692) 115725) ((-218 . -991) T) ((-343 . -1225) 115702) ((-1204 . -403) 115668) ((-693 . -701) T) ((-1191 . -869) 115611) ((-112 . -592) 115593) ((-112 . -593) 115575) ((-693 . -464) T) ((-473 . -21) 115485) ((-127 . -480) 115469) ((-121 . -480) 115453) ((-473 . -25) 115304) ((-599 . -282) T) ((-566 . -1022) 115279) ((-429 . -1063) T) ((-1027 . -299) T) ((-117 . -282) T) ((-1067 . -101) T) ((-972 . -101) T) ((-566 . -111) 115247) ((-1102 . -301) 115185) ((-1166 . -1016) T) ((-1027 . -991) T) ((-65 . -1172) T) ((-1020 . -25) T) ((-1020 . -21) T) ((-686 . -1016) T) ((-377 . -21) T) ((-377 . -25) T) ((-668 . -504) NIL) ((-993 . -169) T) ((-686 . -236) T) ((-1027 . -533) T) ((-496 . -101) T) ((-492 . -101) T) ((-346 . -169) T) ((-335 . -592) 115167) ((-386 . -592) 115149) ((-465 . -701) T) ((-1082 . -819) T) ((-861 . -1007) 115117) ((-107 . -821) T) ((-632 . -1022) 115101) ((-478 . -130) T) ((-1204 . -1023) T) ((-210 . -130) T) ((-1116 . -101) 115079) ((-98 . -1063) T) ((-238 . -640) 115063) ((-238 . -625) 115047) ((-632 . -111) 115026) ((-308 . -403) 115010) ((-238 . -365) 114994) ((-1119 . -228) 114941) ((-968 . -224) 114925) ((-73 . -1172) T) ((-48 . -169) T) ((-675 . -379) T) ((-675 . -141) T) ((-1241 . -101) T) ((-1051 . -1022) 114768) ((-256 . -878) 114747) ((-240 . -878) 114726) ((-756 . -1022) 114549) ((-754 . -1022) 114392) ((-587 . -1172) T) ((-1124 . -592) 114374) ((-1051 . -111) 114203) ((-1013 . -101) T) ((-466 . -1172) T) ((-452 . -1022) 114174) ((-445 . -1022) 114017) ((-638 . -622) 114001) ((-840 . -299) T) ((-756 . -111) 113810) ((-754 . -111) 113639) ((-347 . -622) 113591) ((-344 . -622) 113543) ((-336 . -622) 113495) ((-256 . -622) 113420) ((-240 . -622) 113345) ((-1118 . -821) T) ((-1052 . -1007) 113329) ((-452 . -111) 113290) ((-445 . -111) 113119) ((-1039 . -1007) 113096) ((-969 . -34) T) ((-935 . -592) 113057) ((-927 . -1172) T) ((-126 . -979) 113041) ((-932 . -1075) T) ((-840 . -991) NIL) ((-710 . -1075) T) ((-690 . -1075) T) ((-1218 . -480) 113025) ((-1102 . -38) 112985) ((-932 . -23) T) ((-814 . -101) T) ((-791 . -21) T) ((-791 . -25) T) ((-710 . -23) T) ((-690 . -23) T) ((-110 . -635) T) ((-879 . -622) 112950) ((-562 . -1022) 112915) ((-508 . -1022) 112860) ((-220 . -56) 112818) ((-444 . -23) T) ((-399 . -101) T) ((-255 . -101) T) ((-668 . -282) T) ((-835 . -38) 112788) ((-562 . -111) 112744) ((-508 . -111) 112673) ((-410 . -1075) T) ((-308 . -1023) 112563) ((-305 . -1023) T) ((-632 . -1016) T) ((-1246 . -1063) T) ((-166 . -299) 112494) ((-410 . -23) T) ((-40 . -592) 112476) ((-40 . -593) 112460) ((-107 . -961) 112442) ((-116 . -838) 112426) ((-48 . -504) 112392) ((-1158 . -979) 112376) ((-1140 . -592) 112358) ((-1145 . -34) T) ((-923 . -592) 112324) ((-890 . -592) 112306) ((-1076 . -821) 112257) ((-745 . -592) 112239) ((-646 . -592) 112221) ((-1116 . -301) 112159) ((-470 . -34) T) ((-1056 . -1172) T) ((-468 . -443) T) ((-1051 . -1016) T) ((-1101 . -34) T) ((-756 . -1016) T) ((-754 . -1016) T) ((-621 . -228) 112143) ((-608 . -228) 112089) ((-1191 . -299) 112068) ((-1051 . -318) 112029) ((-445 . -1016) T) ((-1137 . -21) T) ((-1051 . -226) 112008) ((-756 . -318) 111985) ((-756 . -226) T) ((-754 . -318) 111957) ((-706 . -1176) 111936) ((-319 . -625) 111920) ((-1137 . -25) T) ((-58 . -34) T) ((-509 . -34) T) ((-506 . -34) T) ((-445 . -318) 111899) ((-319 . -365) 111883) ((-487 . -34) T) ((-486 . -34) T) ((-972 . -1111) NIL) ((-611 . -101) T) ((-586 . -101) T) ((-706 . -540) 111814) ((-347 . -701) T) ((-344 . -701) T) ((-336 . -701) T) ((-256 . -701) T) ((-240 . -701) T) ((-1013 . -301) 111722) ((-870 . -1063) 111700) ((-50 . -1016) T) ((-1230 . -21) T) ((-1230 . -25) T) ((-1133 . -540) 111679) ((-1132 . -1176) 111658) ((-562 . -1016) T) ((-508 . -1016) T) ((-1126 . -1176) 111637) ((-353 . -1007) 111621) ((-314 . -1007) 111605) ((-993 . -282) T) ((-371 . -855) 111587) ((-1132 . -540) 111538) ((-1126 . -540) 111489) ((-972 . -38) 111434) ((-773 . -1075) T) ((-879 . -701) T) ((-562 . -236) T) ((-562 . -226) T) ((-508 . -226) T) ((-508 . -236) T) ((-1088 . -540) 111413) ((-346 . -282) T) ((-621 . -669) 111397) ((-371 . -1007) 111357) ((-1082 . -1023) T) ((-102 . -125) 111341) ((-773 . -23) T) ((-1218 . -278) 111318) ((-399 . -301) 111283) ((-1240 . -1235) 111259) ((-1238 . -1235) 111238) ((-1204 . -1063) T) ((-839 . -592) 111220) ((-808 . -1007) 111189) ((-196 . -761) T) ((-195 . -761) T) ((-194 . -761) T) ((-193 . -761) T) ((-192 . -761) T) ((-191 . -761) T) ((-190 . -761) T) ((-189 . -761) T) ((-188 . -761) T) ((-187 . -761) T) ((-485 . -971) T) ((-266 . -810) T) ((-265 . -810) T) ((-264 . -810) T) ((-263 . -810) T) ((-48 . -282) T) ((-262 . -810) T) ((-261 . -810) T) ((-260 . -810) T) ((-186 . -761) T) ((-591 . -821) T) ((-628 . -403) 111173) ((-110 . -821) T) ((-627 . -21) T) ((-627 . -25) T) ((-1241 . -38) 111143) ((-117 . -278) 111094) ((-1218 . -19) 111078) ((-1218 . -583) 111055) ((-1231 . -1063) T) ((-1040 . -1063) T) ((-956 . -1063) T) ((-932 . -130) T) ((-712 . -1063) T) ((-710 . -130) T) ((-690 . -130) T) ((-501 . -767) T) ((-399 . -1111) 111033) ((-444 . -130) T) ((-501 . -768) T) ((-216 . -1016) T) ((-286 . -101) 110815) ((-139 . -1063) T) ((-673 . -971) T) ((-90 . -1172) T) ((-127 . -592) 110747) ((-121 . -592) 110679) ((-1246 . -169) T) ((-1132 . -355) 110658) ((-1126 . -355) 110637) ((-308 . -1063) T) ((-410 . -130) T) ((-305 . -1063) T) ((-399 . -38) 110589) ((-1095 . -101) T) ((-1204 . -692) 110481) ((-628 . -1023) T) ((-311 . -143) 110460) ((-311 . -145) 110439) ((-135 . -1063) T) ((-114 . -1063) T) ((-829 . -101) T) ((-561 . -592) 110421) ((-548 . -593) 110320) ((-548 . -592) 110302) ((-485 . -592) 110284) ((-485 . -593) 110229) ((-476 . -23) T) ((-473 . -821) 110180) ((-478 . -615) 110162) ((-934 . -592) 110144) ((-210 . -615) 110126) ((-218 . -396) T) ((-636 . -622) 110110) ((-1131 . -889) 110089) ((-706 . -1075) T) ((-343 . -101) T) ((-1171 . -1047) T) ((-792 . -821) T) ((-706 . -23) T) ((-335 . -1022) 110034) ((-1118 . -1117) T) ((-1107 . -106) 110018) ((-1133 . -1075) T) ((-1132 . -1075) T) ((-505 . -1007) 110002) ((-1126 . -1075) T) ((-1088 . -1075) T) ((-335 . -111) 109931) ((-973 . -1176) T) ((-126 . -1172) T) ((-883 . -1176) T) ((-668 . -278) NIL) ((-1219 . -592) 109913) ((-1133 . -23) T) ((-1132 . -23) T) ((-1126 . -23) T) ((-973 . -540) T) ((-1102 . -224) 109897) ((-883 . -540) T) ((-1088 . -23) T) ((-241 . -592) 109879) ((-1038 . -1063) T) ((-773 . -130) T) ((-685 . -592) 109861) ((-308 . -692) 109771) ((-305 . -692) 109700) ((-673 . -592) 109682) ((-673 . -593) 109627) ((-399 . -392) 109611) ((-430 . -1063) T) ((-478 . -25) T) ((-478 . -21) T) ((-1082 . -1063) T) ((-210 . -25) T) ((-210 . -21) T) ((-687 . -403) 109595) ((-689 . -1007) 109564) ((-1218 . -592) 109476) ((-1218 . -593) 109437) ((-1204 . -169) T) ((-238 . -34) T) ((-895 . -943) T) ((-1158 . -1172) T) ((-636 . -765) 109416) ((-636 . -768) 109395) ((-390 . -387) T) ((-513 . -101) 109373) ((-1004 . -1063) T) ((-215 . -964) 109357) ((-494 . -101) T) ((-599 . -592) 109339) ((-45 . -821) NIL) ((-599 . -593) 109316) ((-1004 . -589) 109291) ((-870 . -504) 109224) ((-335 . -1016) T) ((-117 . -593) NIL) ((-117 . -592) 109206) ((-841 . -1172) T) ((-644 . -409) 109190) ((-644 . -1085) 109135) ((-490 . -149) 109117) ((-335 . -226) T) ((-335 . -236) T) ((-40 . -1022) 109062) ((-841 . -853) 109046) ((-841 . -855) 108971) ((-687 . -1023) T) ((-668 . -971) NIL) ((-3 . |UnionCategory|) T) ((-1202 . -47) 108941) ((-1181 . -47) 108918) ((-1101 . -979) 108889) ((-218 . -889) T) ((-40 . -111) 108818) ((-841 . -1007) 108682) ((-1082 . -692) 108669) ((-1068 . -592) 108651) ((-1043 . -145) 108630) ((-1043 . -143) 108581) ((-973 . -355) T) ((-311 . -1160) 108547) ((-371 . -299) T) ((-311 . -1157) 108513) ((-308 . -169) 108492) ((-305 . -169) T) ((-972 . -224) 108469) ((-883 . -355) T) ((-562 . -1237) 108456) ((-508 . -1237) 108433) ((-351 . -145) 108412) ((-351 . -143) 108363) ((-345 . -145) 108342) ((-345 . -143) 108293) ((-587 . -1148) 108269) ((-337 . -145) 108248) ((-337 . -143) 108199) ((-311 . -35) 108165) ((-466 . -1148) 108144) ((0 . |EnumerationCategory|) T) ((-311 . -94) 108110) ((-371 . -991) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -228) 108060) ((-628 . -1063) T) ((-587 . -106) 108007) ((-476 . -130) T) ((-466 . -106) 107957) ((-233 . -1075) 107867) ((-841 . -369) 107851) ((-841 . -330) 107835) ((-233 . -23) 107705) ((-1027 . -889) T) ((-1027 . -794) T) ((-562 . -360) T) ((-508 . -360) T) ((-343 . -1111) T) ((-319 . -34) T) ((-44 . -409) 107689) ((-842 . -1172) T) ((-382 . -719) 107673) ((-1231 . -504) 107606) ((-706 . -130) T) ((-1210 . -540) 107585) ((-1203 . -1176) 107564) ((-1203 . -540) 107515) ((-1182 . -1176) 107494) ((-303 . -1047) T) ((-1182 . -540) 107445) ((-712 . -504) 107378) ((-1181 . -1172) 107357) ((-1181 . -855) 107230) ((-862 . -1063) T) ((-142 . -815) T) ((-1181 . -853) 107200) ((-665 . -592) 107182) ((-1133 . -130) T) ((-513 . -301) 107120) ((-1132 . -130) T) ((-139 . -504) NIL) ((-1126 . -130) T) ((-1088 . -130) T) ((-993 . -971) T) ((-973 . -23) T) ((-343 . -38) 107085) ((-973 . -1075) T) ((-883 . -1075) T) ((-81 . -592) 107067) ((-40 . -1016) T) ((-839 . -1022) 107054) ((-972 . -341) NIL) ((-841 . -869) 107013) ((-675 . -101) T) ((-940 . -23) T) ((-581 . -1172) T) ((-883 . -23) T) ((-839 . -111) 106998) ((-419 . -1075) T) ((-465 . -47) 106968) ((-206 . -101) T) ((-133 . -101) T) ((-40 . -226) 106940) ((-40 . -236) T) ((-116 . -101) T) ((-576 . -540) 106919) ((-575 . -540) 106898) ((-668 . -592) 106880) ((-668 . -593) 106788) ((-308 . -504) 106754) ((-305 . -504) 106646) ((-1202 . -1007) 106630) ((-1181 . -1007) 106416) ((-968 . -403) 106400) ((-419 . -23) T) ((-1082 . -169) T) ((-1204 . -282) T) ((-628 . -692) 106370) ((-142 . -1063) T) ((-48 . -971) T) ((-399 . -224) 106354) ((-287 . -228) 106304) ((-840 . -889) T) ((-840 . -794) NIL) ((-834 . -821) T) ((-1181 . -330) 106274) ((-1181 . -369) 106244) ((-215 . -1083) 106228) ((-1218 . -280) 106205) ((-1166 . -622) 106130) ((-932 . -21) T) ((-932 . -25) T) ((-710 . -21) T) ((-710 . -25) T) ((-690 . -21) T) ((-690 . -25) T) ((-686 . -622) 106095) ((-444 . -21) T) ((-444 . -25) T) ((-331 . -101) T) ((-171 . -101) T) ((-968 . -1023) T) ((-839 . -1016) T) ((-748 . -101) T) ((-1203 . -355) 106074) ((-1202 . -869) 105980) ((-1182 . -355) 105959) ((-1181 . -869) 105810) ((-993 . -592) 105792) ((-399 . -802) 105745) ((-1133 . -483) 105711) ((-166 . -889) 105642) ((-1132 . -483) 105608) ((-1126 . -483) 105574) ((-687 . -1063) T) ((-1088 . -483) 105540) ((-561 . -1022) 105527) ((-548 . -1022) 105514) ((-485 . -1022) 105479) ((-308 . -282) 105458) ((-305 . -282) T) ((-346 . -592) 105440) ((-410 . -25) T) ((-410 . -21) T) ((-98 . -278) 105419) ((-561 . -111) 105404) ((-548 . -111) 105389) ((-485 . -111) 105345) ((-1135 . -855) 105312) ((-870 . -480) 105296) ((-48 . -592) 105278) ((-48 . -593) 105223) ((-233 . -130) 105093) ((-1191 . -889) 105072) ((-790 . -1176) 105051) ((-1004 . -504) 104895) ((-380 . -592) 104877) ((-790 . -540) 104808) ((-566 . -622) 104783) ((-256 . -47) 104755) ((-240 . -47) 104712) ((-520 . -499) 104689) ((-969 . -1172) T) ((-673 . -1022) 104654) ((-1210 . -1075) T) ((-1203 . -1075) T) ((-1182 . -1075) T) ((-972 . -362) 104626) ((-112 . -360) T) ((-465 . -869) 104532) ((-1210 . -23) T) ((-1203 . -23) T) ((-873 . -592) 104514) ((-90 . -106) 104498) ((-1166 . -701) T) ((-874 . -821) 104449) ((-675 . -1111) T) ((-673 . -111) 104405) ((-1182 . -23) T) ((-576 . -1075) T) ((-575 . -1075) T) ((-687 . -692) 104234) ((-686 . -701) T) ((-1082 . -282) T) ((-973 . -130) T) ((-478 . -821) T) ((-940 . -130) T) ((-883 . -130) T) ((-773 . -25) T) ((-210 . -821) T) ((-773 . -21) T) ((-561 . -1016) T) ((-548 . -1016) T) ((-485 . -1016) T) ((-576 . -23) T) ((-335 . -1237) 104211) ((-311 . -443) 104190) ((-331 . -301) 104177) ((-575 . -23) T) ((-419 . -130) T) ((-632 . -622) 104151) ((-238 . -979) 104135) ((-841 . -299) T) ((-1242 . -1232) 104119) ((-745 . -766) T) ((-745 . -769) T) ((-675 . -38) 104106) ((-548 . -226) T) ((-485 . -236) T) ((-485 . -226) T) ((-1110 . -228) 104056) ((-1051 . -878) 104035) ((-116 . -38) 104022) ((-202 . -774) T) ((-201 . -774) T) ((-200 . -774) T) ((-199 . -774) T) ((-841 . -991) 104001) ((-1231 . -480) 103985) ((-756 . -878) 103964) ((-754 . -878) 103943) ((-1145 . -1172) T) ((-445 . -878) 103922) ((-712 . -480) 103906) ((-1051 . -622) 103831) ((-756 . -622) 103756) ((-599 . -1022) 103743) ((-470 . -1172) T) ((-335 . -360) T) ((-139 . -480) 103725) ((-754 . -622) 103650) ((-1101 . -1172) T) ((-452 . -622) 103621) ((-256 . -855) 103480) ((-240 . -855) NIL) ((-117 . -1022) 103425) ((-445 . -622) 103350) ((-638 . -1007) 103327) ((-599 . -111) 103312) ((-347 . -1007) 103296) ((-344 . -1007) 103280) ((-336 . -1007) 103264) ((-256 . -1007) 103108) ((-240 . -1007) 102984) ((-117 . -111) 102913) ((-58 . -1172) T) ((-509 . -1172) T) ((-506 . -1172) T) ((-487 . -1172) T) ((-486 . -1172) T) ((-429 . -592) 102895) ((-426 . -592) 102877) ((-3 . -101) T) ((-996 . -1165) 102846) ((-807 . -101) T) ((-663 . -56) 102804) ((-673 . -1016) T) ((-50 . -622) 102778) ((-281 . -443) T) ((-467 . -1165) 102747) ((0 . -101) T) ((-562 . -622) 102712) ((-508 . -622) 102657) ((-49 . -101) T) ((-879 . -1007) 102644) ((-673 . -236) T) ((-1043 . -401) 102623) ((-706 . -615) 102571) ((-968 . -1063) T) ((-687 . -169) 102462) ((-478 . -961) 102444) ((-256 . -369) 102428) ((-240 . -369) 102412) ((-391 . -1063) T) ((-331 . -38) 102396) ((-995 . -101) 102374) ((-210 . -961) 102356) ((-171 . -38) 102288) ((-1202 . -299) 102267) ((-1181 . -299) 102246) ((-632 . -701) T) ((-98 . -592) 102228) ((-1126 . -615) 102180) ((-476 . -25) T) ((-476 . -21) T) ((-1181 . -991) 102133) ((-599 . -1016) T) ((-371 . -396) T) ((-382 . -101) T) ((-256 . -869) 102079) ((-240 . -869) 102056) ((-117 . -1016) T) ((-790 . -1075) T) ((-1051 . -701) T) ((-599 . -226) 102035) ((-597 . -101) T) ((-756 . -701) T) ((-754 . -701) T) ((-405 . -1075) T) ((-117 . -236) T) ((-40 . -360) NIL) ((-117 . -226) NIL) ((-445 . -701) T) ((-790 . -23) T) ((-706 . -25) T) ((-706 . -21) T) ((-677 . -821) T) ((-1040 . -278) 102014) ((-77 . -388) T) ((-77 . -387) T) ((-668 . -1022) 101964) ((-1210 . -130) T) ((-1203 . -130) T) ((-1182 . -130) T) ((-1102 . -403) 101948) ((-611 . -359) 101880) ((-586 . -359) 101812) ((-1116 . -1109) 101796) ((-102 . -1063) 101774) ((-1133 . -25) T) ((-1133 . -21) T) ((-1132 . -21) T) ((-968 . -692) 101722) ((-216 . -622) 101689) ((-668 . -111) 101623) ((-50 . -701) T) ((-1132 . -25) T) ((-343 . -341) T) ((-1126 . -21) T) ((-1043 . -443) 101574) ((-1126 . -25) T) ((-687 . -504) 101521) ((-562 . -701) T) ((-508 . -701) T) ((-1088 . -21) T) ((-1088 . -25) T) ((-576 . -130) T) ((-575 . -130) T) ((-351 . -443) T) ((-345 . -443) T) ((-337 . -443) T) ((-465 . -299) 101500) ((-305 . -278) 101435) ((-107 . -443) T) ((-78 . -432) T) ((-78 . -387) T) ((-468 . -101) T) ((-1246 . -592) 101417) ((-1246 . -593) 101399) ((-1043 . -394) 101378) ((-1004 . -480) 101309) ((-548 . -769) T) ((-548 . -766) T) ((-1028 . -228) 101255) ((-351 . -394) 101206) ((-345 . -394) 101157) ((-337 . -394) 101108) ((-1233 . -1075) T) ((-1233 . -23) T) ((-1220 . -101) T) ((-172 . -592) 101090) ((-1102 . -1023) T) ((-644 . -719) 101074) ((-1137 . -143) 101053) ((-1137 . -145) 101032) ((-1106 . -1063) T) ((-1106 . -1036) 101001) ((-68 . -1172) T) ((-993 . -1022) 100938) ((-835 . -1023) T) ((-233 . -615) 100844) ((-668 . -1016) T) ((-346 . -1022) 100789) ((-60 . -1172) T) ((-993 . -111) 100705) ((-870 . -592) 100637) ((-668 . -236) T) ((-668 . -226) NIL) ((-814 . -819) 100616) ((-673 . -769) T) ((-673 . -766) T) ((-972 . -403) 100593) ((-346 . -111) 100522) ((-371 . -889) T) ((-399 . -819) 100501) ((-687 . -282) 100412) ((-216 . -701) T) ((-1210 . -483) 100378) ((-1203 . -483) 100344) ((-1182 . -483) 100310) ((-308 . -971) 100289) ((-215 . -1063) 100267) ((-311 . -942) 100229) ((-104 . -101) T) ((-48 . -1022) 100194) ((-1242 . -101) T) ((-373 . -101) T) ((-48 . -111) 100150) ((-973 . -615) 100132) ((-1204 . -592) 100114) ((-520 . -101) T) ((-490 . -101) T) ((-1095 . -1096) 100098) ((-150 . -1225) 100082) ((-238 . -1172) T) ((-1171 . -101) T) ((-1131 . -1176) 100061) ((-1087 . -1176) 100040) ((-233 . -21) 99950) ((-233 . -25) 99801) ((-127 . -119) 99785) ((-121 . -119) 99769) ((-44 . -719) 99753) ((-1131 . -540) 99664) ((-1087 . -540) 99595) ((-1004 . -278) 99570) ((-963 . -1047) T) ((-790 . -130) T) ((-117 . -769) NIL) ((-117 . -766) NIL) ((-347 . -299) T) ((-344 . -299) T) ((-336 . -299) T) ((-1058 . -1172) T) ((-243 . -1075) 99480) ((-242 . -1075) 99390) ((-993 . -1016) T) ((-972 . -1023) T) ((-335 . -622) 99335) ((-597 . -38) 99319) ((-1231 . -592) 99281) ((-1231 . -593) 99242) ((-1040 . -592) 99224) ((-993 . -236) T) ((-346 . -1016) T) ((-789 . -1225) 99194) ((-243 . -23) T) ((-242 . -23) T) ((-956 . -592) 99176) ((-712 . -593) 99137) ((-712 . -592) 99119) ((-773 . -821) 99098) ((-968 . -504) 99010) ((-346 . -226) T) ((-346 . -236) T) ((-1119 . -149) 98957) ((-973 . -25) T) ((-139 . -593) 98916) ((-139 . -592) 98898) ((-879 . -299) T) ((-973 . -21) T) ((-940 . -25) T) ((-883 . -21) T) ((-883 . -25) T) ((-419 . -21) T) ((-419 . -25) T) ((-814 . -403) 98882) ((-48 . -1016) T) ((-1240 . -1232) 98866) ((-1238 . -1232) 98850) ((-1004 . -583) 98825) ((-308 . -593) 98686) ((-308 . -592) 98668) ((-305 . -593) NIL) ((-305 . -592) 98650) ((-48 . -236) T) ((-48 . -226) T) ((-628 . -278) 98611) ((-534 . -228) 98561) ((-135 . -592) 98543) ((-114 . -592) 98525) ((-468 . -38) 98490) ((-1242 . -1239) 98469) ((-1233 . -130) T) ((-1241 . -1023) T) ((-1045 . -101) T) ((-87 . -1172) T) ((-490 . -301) NIL) ((-969 . -106) 98453) ((-858 . -1063) T) ((-854 . -1063) T) ((-1218 . -625) 98437) ((-1218 . -365) 98421) ((-319 . -1172) T) ((-573 . -821) T) ((-1102 . -1063) T) ((-1102 . -1019) 98361) ((-102 . -504) 98294) ((-896 . -592) 98276) ((-335 . -701) T) ((-30 . -592) 98258) ((-835 . -1063) T) ((-814 . -1023) 98237) ((-40 . -622) 98182) ((-218 . -1176) T) ((-399 . -1023) T) ((-1118 . -149) 98164) ((-968 . -282) 98115) ((-218 . -540) T) ((-311 . -1199) 98099) ((-311 . -1196) 98069) ((-1145 . -1148) 98048) ((-1038 . -592) 98030) ((-621 . -149) 98014) ((-608 . -149) 97960) ((-1145 . -106) 97910) ((-470 . -1148) 97889) ((-478 . -145) T) ((-478 . -143) NIL) ((-1082 . -593) 97804) ((-430 . -592) 97786) ((-210 . -145) T) ((-210 . -143) NIL) ((-1082 . -592) 97768) ((-129 . -101) T) ((-52 . -101) T) ((-1182 . -615) 97720) ((-470 . -106) 97670) ((-962 . -23) T) ((-1242 . -38) 97640) ((-1131 . -1075) T) ((-1087 . -1075) T) ((-1027 . -1176) T) ((-303 . -101) T) ((-825 . -1075) T) ((-921 . -1176) 97619) ((-472 . -1176) 97598) ((-706 . -821) 97577) ((-1027 . -540) T) ((-921 . -540) 97508) ((-1131 . -23) T) ((-1087 . -23) T) ((-825 . -23) T) ((-472 . -540) 97439) ((-1102 . -692) 97371) ((-1106 . -504) 97304) ((-1004 . -593) NIL) ((-1004 . -592) 97286) ((-95 . -1047) T) ((-835 . -692) 97256) ((-1166 . -47) 97225) ((-243 . -130) T) ((-242 . -130) T) ((-1067 . -1063) T) ((-972 . -1063) T) ((-61 . -592) 97207) ((-1126 . -821) NIL) ((-993 . -766) T) ((-993 . -769) T) ((-1246 . -1022) 97194) ((-1246 . -111) 97179) ((-839 . -622) 97166) ((-1210 . -25) T) ((-1210 . -21) T) ((-1203 . -21) T) ((-1203 . -25) T) ((-1182 . -21) T) ((-1182 . -25) T) ((-996 . -149) 97150) ((-841 . -794) 97129) ((-841 . -889) T) ((-687 . -278) 97056) ((-576 . -21) T) ((-576 . -25) T) ((-575 . -21) T) ((-40 . -701) T) ((-215 . -504) 96989) ((-575 . -25) T) ((-467 . -149) 96973) ((-454 . -149) 96957) ((-890 . -768) T) ((-890 . -701) T) ((-745 . -767) T) ((-745 . -768) T) ((-496 . -1063) T) ((-492 . -1063) T) ((-745 . -701) T) ((-218 . -355) T) ((-1116 . -1063) 96935) ((-840 . -1176) T) ((-628 . -592) 96917) ((-840 . -540) T) ((-668 . -360) NIL) ((-351 . -1225) 96901) ((-644 . -101) T) ((-345 . -1225) 96885) ((-337 . -1225) 96869) ((-1241 . -1063) T) ((-510 . -821) 96848) ((-791 . -443) 96827) ((-1013 . -1063) T) ((-1013 . -1036) 96756) ((-996 . -945) 96725) ((-793 . -1075) T) ((-972 . -692) 96670) ((-378 . -1075) T) ((-467 . -945) 96639) ((-454 . -945) 96608) ((-110 . -149) 96590) ((-72 . -592) 96572) ((-862 . -592) 96554) ((-1043 . -699) 96533) ((-1246 . -1016) T) ((-790 . -615) 96481) ((-286 . -1023) 96423) ((-166 . -1176) 96328) ((-218 . -1075) T) ((-316 . -23) T) ((-1126 . -961) 96280) ((-814 . -1063) T) ((-1088 . -715) 96259) ((-1204 . -1022) 96164) ((-1202 . -889) 96143) ((-839 . -701) T) ((-166 . -540) 96054) ((-1181 . -889) 96033) ((-561 . -622) 96020) ((-399 . -1063) T) ((-548 . -622) 96007) ((-255 . -1063) T) ((-485 . -622) 95972) ((-218 . -23) T) ((-1181 . -794) 95925) ((-1240 . -101) T) ((-346 . -1237) 95902) ((-1238 . -101) T) ((-1204 . -111) 95794) ((-142 . -592) 95776) ((-962 . -130) T) ((-44 . -101) T) ((-233 . -821) 95727) ((-1191 . -1176) 95706) ((-102 . -480) 95690) ((-1241 . -692) 95660) ((-1051 . -47) 95621) ((-1027 . -1075) T) ((-921 . -1075) T) ((-127 . -34) T) ((-121 . -34) T) ((-756 . -47) 95598) ((-754 . -47) 95570) ((-1191 . -540) 95481) ((-346 . -360) T) ((-472 . -1075) T) ((-1131 . -130) T) ((-1087 . -130) T) ((-445 . -47) 95460) ((-840 . -355) T) ((-825 . -130) T) ((-150 . -101) T) ((-1027 . -23) T) ((-921 . -23) T) ((-555 . -540) T) ((-790 . -25) T) ((-790 . -21) T) ((-1102 . -504) 95393) ((-572 . -1047) T) ((-566 . -1007) 95377) ((-472 . -23) T) ((-343 . -1023) T) ((-1166 . -869) 95358) ((-644 . -301) 95296) ((-1076 . -1225) 95266) ((-673 . -622) 95231) ((-972 . -169) T) ((-932 . -143) 95210) ((-611 . -1063) T) ((-586 . -1063) T) ((-932 . -145) 95189) ((-973 . -821) T) ((-710 . -145) 95168) ((-710 . -143) 95147) ((-940 . -821) T) ((-465 . -889) 95126) ((-308 . -1022) 95036) ((-305 . -1022) 94965) ((-968 . -278) 94923) ((-399 . -692) 94875) ((-128 . -821) T) ((-675 . -819) T) ((-1204 . -1016) T) ((-308 . -111) 94771) ((-305 . -111) 94684) ((-933 . -101) T) ((-789 . -101) 94474) ((-687 . -593) NIL) ((-687 . -592) 94456) ((-632 . -1007) 94352) ((-1204 . -318) 94296) ((-1004 . -280) 94271) ((-561 . -701) T) ((-548 . -768) T) ((-166 . -355) 94222) ((-548 . -765) T) ((-548 . -701) T) ((-485 . -701) T) ((-1106 . -480) 94206) ((-1051 . -855) NIL) ((-840 . -1075) T) ((-117 . -878) NIL) ((-1240 . -1239) 94182) ((-1238 . -1239) 94161) ((-756 . -855) NIL) ((-754 . -855) 94020) ((-1233 . -25) T) ((-1233 . -21) T) ((-1169 . -101) 93998) ((-1069 . -387) T) ((-599 . -622) 93985) ((-445 . -855) NIL) ((-649 . -101) 93963) ((-1051 . -1007) 93790) ((-840 . -23) T) ((-756 . -1007) 93649) ((-754 . -1007) 93506) ((-117 . -622) 93451) ((-445 . -1007) 93327) ((-623 . -1007) 93311) ((-603 . -101) T) ((-215 . -480) 93295) ((-1218 . -34) T) ((-611 . -692) 93279) ((-586 . -692) 93263) ((-644 . -38) 93223) ((-311 . -101) T) ((-84 . -592) 93205) ((-50 . -1007) 93189) ((-1082 . -1022) 93176) ((-1051 . -369) 93160) ((-756 . -369) 93144) ((-59 . -56) 93106) ((-673 . -768) T) ((-673 . -765) T) ((-562 . -1007) 93093) ((-508 . -1007) 93070) ((-673 . -701) T) ((-316 . -130) T) ((-308 . -1016) 92960) ((-305 . -1016) T) ((-166 . -1075) T) ((-754 . -369) 92944) ((-45 . -149) 92894) ((-973 . -961) 92876) ((-445 . -369) 92860) ((-399 . -169) T) ((-308 . -236) 92839) ((-305 . -236) T) ((-305 . -226) NIL) ((-286 . -1063) 92621) ((-218 . -130) T) ((-1082 . -111) 92606) ((-166 . -23) T) ((-773 . -145) 92585) ((-773 . -143) 92564) ((-243 . -615) 92470) ((-242 . -615) 92376) ((-311 . -276) 92342) ((-1116 . -504) 92275) ((-1095 . -1063) T) ((-218 . -1025) T) ((-789 . -301) 92213) ((-1051 . -869) 92148) ((-756 . -869) 92091) ((-754 . -869) 92075) ((-1240 . -38) 92045) ((-1238 . -38) 92015) ((-1191 . -1075) T) ((-826 . -1075) T) ((-445 . -869) 91992) ((-829 . -1063) T) ((-1191 . -23) T) ((-555 . -1075) T) ((-826 . -23) T) ((-599 . -701) T) ((-347 . -889) T) ((-344 . -889) T) ((-281 . -101) T) ((-336 . -889) T) ((-1027 . -130) T) ((-939 . -1047) T) ((-921 . -130) T) ((-117 . -768) NIL) ((-117 . -765) NIL) ((-117 . -701) T) ((-668 . -878) NIL) ((-1013 . -504) 91893) ((-472 . -130) T) ((-555 . -23) T) ((-649 . -301) 91831) ((-611 . -736) T) ((-586 . -736) T) ((-1182 . -821) NIL) ((-972 . -282) T) ((-243 . -21) T) ((-668 . -622) 91781) ((-343 . -1063) T) ((-243 . -25) T) ((-242 . -21) T) ((-242 . -25) T) ((-150 . -38) 91765) ((-2 . -101) T) ((-879 . -889) T) ((-473 . -1225) 91735) ((-216 . -1007) 91712) ((-1082 . -1016) T) ((-686 . -299) T) ((-286 . -692) 91654) ((-675 . -1023) T) ((-478 . -443) T) ((-399 . -504) 91566) ((-210 . -443) T) ((-1082 . -226) T) ((-287 . -149) 91516) ((-968 . -593) 91477) ((-968 . -592) 91459) ((-958 . -592) 91441) ((-116 . -1023) T) ((-628 . -1022) 91425) ((-218 . -483) T) ((-391 . -592) 91407) ((-391 . -593) 91384) ((-1020 . -1225) 91354) ((-628 . -111) 91333) ((-1102 . -480) 91317) ((-789 . -38) 91287) ((-62 . -432) T) ((-62 . -387) T) ((-1119 . -101) T) ((-840 . -130) T) ((-475 . -101) 91265) ((-1246 . -360) T) ((-1043 . -101) T) ((-1026 . -101) T) ((-343 . -692) 91210) ((-706 . -145) 91189) ((-706 . -143) 91168) ((-993 . -622) 91105) ((-513 . -1063) 91083) ((-351 . -101) T) ((-345 . -101) T) ((-337 . -101) T) ((-107 . -101) T) ((-494 . -1063) T) ((-346 . -622) 91028) ((-1131 . -615) 90976) ((-1087 . -615) 90924) ((-377 . -499) 90903) ((-807 . -819) 90882) ((-371 . -1176) T) ((-668 . -701) T) ((-331 . -1023) T) ((-1182 . -961) 90834) ((-171 . -1023) T) ((-102 . -592) 90766) ((-1133 . -143) 90745) ((-1133 . -145) 90724) ((-371 . -540) T) ((-1132 . -145) 90703) ((-1132 . -143) 90682) ((-1126 . -143) 90589) ((-399 . -282) T) ((-1126 . -145) 90496) ((-1088 . -145) 90475) ((-1088 . -143) 90454) ((-311 . -38) 90295) ((-166 . -130) T) ((-305 . -769) NIL) ((-305 . -766) NIL) ((-628 . -1016) T) ((-48 . -622) 90260) ((-963 . -101) T) ((-962 . -21) T) ((-127 . -979) 90244) ((-121 . -979) 90228) ((-962 . -25) T) ((-870 . -119) 90212) ((-1118 . -101) T) ((-790 . -821) 90191) ((-1191 . -130) T) ((-1131 . -25) T) ((-1131 . -21) T) ((-826 . -130) T) ((-1087 . -25) T) ((-1087 . -21) T) ((-825 . -25) T) ((-825 . -21) T) ((-756 . -299) 90170) ((-621 . -101) 90148) ((-608 . -101) T) ((-1119 . -301) 89943) ((-555 . -130) T) ((-597 . -819) 89922) ((-1116 . -480) 89906) ((-1110 . -149) 89856) ((-1106 . -592) 89818) ((-1106 . -593) 89779) ((-993 . -765) T) ((-993 . -768) T) ((-993 . -701) T) ((-475 . -301) 89717) ((-444 . -409) 89687) ((-343 . -169) T) ((-281 . -38) 89674) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-261 . -101) T) ((-260 . -101) T) ((-335 . -1007) 89651) ((-205 . -101) T) ((-204 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-200 . -101) T) ((-199 . -101) T) ((-196 . -101) T) ((-195 . -101) T) ((-687 . -1022) 89474) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-187 . -101) T) ((-186 . -101) T) ((-346 . -701) T) ((-687 . -111) 89283) ((-644 . -224) 89267) ((-562 . -299) T) ((-508 . -299) T) ((-286 . -504) 89216) ((-107 . -301) NIL) ((-71 . -387) T) ((-1076 . -101) 89006) ((-807 . -403) 88990) ((-1082 . -769) T) ((-1082 . -766) T) ((-675 . -1063) T) ((-371 . -355) T) ((-166 . -483) 88968) ((-206 . -1063) T) ((-215 . -592) 88900) ((-133 . -1063) T) ((-116 . -1063) T) ((-48 . -701) T) ((-1013 . -480) 88865) ((-496 . -92) T) ((-139 . -417) 88847) ((-139 . -360) T) ((-996 . -101) T) ((-502 . -499) 88826) ((-467 . -101) T) ((-454 . -101) T) ((-1003 . -1075) T) ((-1133 . -35) 88792) ((-1133 . -94) 88758) ((-1133 . -1160) 88724) ((-1133 . -1157) 88690) ((-1118 . -301) NIL) ((-88 . -388) T) ((-88 . -387) T) ((-1043 . -1111) 88669) ((-1132 . -1157) 88635) ((-1132 . -1160) 88601) ((-1003 . -23) T) ((-1132 . -94) 88567) ((-555 . -483) T) ((-1132 . -35) 88533) ((-1126 . -1157) 88499) ((-1126 . -1160) 88465) ((-1126 . -94) 88431) ((-353 . -1075) T) ((-351 . -1111) 88410) ((-345 . -1111) 88389) ((-337 . -1111) 88368) ((-1126 . -35) 88334) ((-1088 . -35) 88300) ((-1088 . -94) 88266) ((-107 . -1111) T) ((-1088 . -1160) 88232) ((-807 . -1023) 88211) ((-621 . -301) 88149) ((-608 . -301) 88000) ((-1088 . -1157) 87966) ((-687 . -1016) T) ((-1027 . -615) 87948) ((-1043 . -38) 87816) ((-921 . -615) 87764) ((-973 . -145) T) ((-973 . -143) NIL) ((-371 . -1075) T) ((-316 . -25) T) ((-314 . -23) T) ((-912 . -821) 87743) ((-687 . -318) 87720) ((-472 . -615) 87668) ((-40 . -1007) 87556) ((-675 . -692) 87543) ((-687 . -226) T) ((-331 . -1063) T) ((-171 . -1063) T) ((-323 . -821) T) ((-410 . -443) 87493) ((-371 . -23) T) ((-351 . -38) 87458) ((-345 . -38) 87423) ((-337 . -38) 87388) ((-79 . -432) T) ((-79 . -387) T) ((-218 . -25) T) ((-218 . -21) T) ((-808 . -1075) T) ((-107 . -38) 87338) ((-801 . -1075) T) ((-748 . -1063) T) ((-116 . -692) 87325) ((-646 . -1007) 87309) ((-591 . -101) T) ((-808 . -23) T) ((-801 . -23) T) ((-1116 . -278) 87286) ((-1076 . -301) 87224) ((-1065 . -228) 87208) ((-63 . -388) T) ((-63 . -387) T) ((-110 . -101) T) ((-40 . -369) 87185) ((-95 . -101) T) ((-627 . -823) 87169) ((-1027 . -21) T) ((-1027 . -25) T) ((-789 . -224) 87138) ((-921 . -25) T) ((-921 . -21) T) ((-597 . -1023) T) ((-472 . -25) T) ((-472 . -21) T) ((-996 . -301) 87076) ((-858 . -592) 87058) ((-854 . -592) 87040) ((-243 . -821) 86991) ((-242 . -821) 86942) ((-513 . -504) 86875) ((-840 . -615) 86852) ((-467 . -301) 86790) ((-454 . -301) 86728) ((-343 . -282) T) ((-1116 . -1206) 86712) ((-1102 . -592) 86674) ((-1102 . -593) 86635) ((-1100 . -101) T) ((-968 . -1022) 86531) ((-40 . -869) 86483) ((-1116 . -583) 86460) ((-1246 . -622) 86447) ((-1028 . -149) 86393) ((-841 . -1176) T) ((-968 . -111) 86275) ((-331 . -692) 86259) ((-835 . -592) 86241) ((-171 . -692) 86173) ((-399 . -278) 86131) ((-841 . -540) T) ((-107 . -392) 86113) ((-83 . -376) T) ((-83 . -387) T) ((-675 . -169) T) ((-98 . -701) T) ((-473 . -101) 85903) ((-98 . -464) T) ((-116 . -169) T) ((-1076 . -38) 85873) ((-166 . -615) 85821) ((-1020 . -101) T) ((-840 . -25) T) ((-789 . -231) 85800) ((-840 . -21) T) ((-792 . -101) T) ((-406 . -101) T) ((-377 . -101) T) ((-110 . -301) NIL) ((-220 . -101) 85778) ((-127 . -1172) T) ((-121 . -1172) T) ((-1003 . -130) T) ((-644 . -359) 85762) ((-968 . -1016) T) ((-1191 . -615) 85710) ((-1067 . -592) 85692) ((-972 . -592) 85674) ((-505 . -23) T) ((-500 . -23) T) ((-335 . -299) T) ((-498 . -23) T) ((-314 . -130) T) ((-3 . -1063) T) ((-972 . -593) 85658) ((-968 . -236) 85637) ((-968 . -226) 85616) ((-1246 . -701) T) ((-1210 . -143) 85595) ((-807 . -1063) T) ((-1210 . -145) 85574) ((-1203 . -145) 85553) ((-1203 . -143) 85532) ((-1202 . -1176) 85511) ((-1182 . -143) 85418) ((-1182 . -145) 85325) ((-1181 . -1176) 85304) ((-371 . -130) T) ((-548 . -855) 85286) ((0 . -1063) T) ((-171 . -169) T) ((-166 . -21) T) ((-166 . -25) T) ((-49 . -1063) T) ((-1204 . -622) 85191) ((-1202 . -540) 85142) ((-689 . -1075) T) ((-1181 . -540) 85093) ((-548 . -1007) 85075) ((-575 . -145) 85054) ((-575 . -143) 85033) ((-485 . -1007) 84976) ((-86 . -376) T) ((-86 . -387) T) ((-841 . -355) T) ((-808 . -130) T) ((-801 . -130) T) ((-689 . -23) T) ((-496 . -592) 84926) ((-492 . -592) 84908) ((-1242 . -1023) T) ((-371 . -1025) T) ((-995 . -1063) 84886) ((-870 . -34) T) ((-473 . -301) 84824) ((-572 . -101) T) ((-1116 . -593) 84785) ((-1116 . -592) 84717) ((-1131 . -821) 84696) ((-45 . -101) T) ((-1087 . -821) 84675) ((-791 . -101) T) ((-1191 . -25) T) ((-1191 . -21) T) ((-826 . -25) T) ((-44 . -359) 84659) ((-826 . -21) T) ((-706 . -443) 84610) ((-1241 . -592) 84592) ((-1020 . -301) 84530) ((-585 . -1047) T) ((-645 . -1047) T) ((-555 . -25) T) ((-555 . -21) T) ((-382 . -1063) T) ((-177 . -1047) T) ((-158 . -1047) T) ((-153 . -1047) T) ((-597 . -1063) T) ((-673 . -855) 84512) ((-1218 . -1172) T) ((-220 . -301) 84450) ((-142 . -360) T) ((-1013 . -593) 84392) ((-1013 . -592) 84335) ((-305 . -878) NIL) ((-673 . -1007) 84280) ((-686 . -889) T) ((-465 . -1176) 84259) ((-1132 . -443) 84238) ((-1126 . -443) 84217) ((-322 . -101) T) ((-841 . -1075) T) ((-308 . -622) 84038) ((-305 . -622) 83967) ((-465 . -540) 83918) ((-331 . -504) 83884) ((-534 . -149) 83834) ((-40 . -299) T) ((-814 . -592) 83816) ((-675 . -282) T) ((-841 . -23) T) ((-371 . -483) T) ((-1043 . -224) 83786) ((-502 . -101) T) ((-399 . -593) 83594) ((-399 . -592) 83576) ((-255 . -592) 83558) ((-116 . -282) T) ((-1204 . -701) T) ((-1202 . -355) 83537) ((-1181 . -355) 83516) ((-1231 . -34) T) ((-117 . -1172) T) ((-107 . -224) 83498) ((-1137 . -101) T) ((-468 . -1063) T) ((-513 . -480) 83482) ((-712 . -34) T) ((-473 . -38) 83452) ((-139 . -34) T) ((-117 . -853) 83429) ((-117 . -855) NIL) ((-599 . -1007) 83312) ((-619 . -821) 83291) ((-1230 . -101) T) ((-287 . -101) T) ((-687 . -360) 83270) ((-117 . -1007) 83247) ((-382 . -692) 83231) ((-597 . -692) 83215) ((-45 . -301) 83019) ((-790 . -143) 82998) ((-790 . -145) 82977) ((-1241 . -374) 82956) ((-793 . -821) T) ((-1220 . -1063) T) ((-1119 . -222) 82903) ((-378 . -821) 82882) ((-1210 . -1160) 82848) ((-1210 . -1157) 82814) ((-1203 . -1157) 82780) ((-505 . -130) T) ((-1203 . -1160) 82746) ((-1182 . -1157) 82712) ((-1182 . -1160) 82678) ((-1210 . -35) 82644) ((-1210 . -94) 82610) ((-611 . -592) 82579) ((-586 . -592) 82548) ((-218 . -821) T) ((-1203 . -94) 82514) ((-1203 . -35) 82480) ((-1202 . -1075) T) ((-1082 . -622) 82467) ((-1182 . -94) 82433) ((-1181 . -1075) T) ((-573 . -149) 82415) ((-1043 . -341) 82394) ((-117 . -369) 82371) ((-117 . -330) 82348) ((-171 . -282) T) ((-1182 . -35) 82314) ((-839 . -299) T) ((-305 . -768) NIL) ((-305 . -765) NIL) ((-308 . -701) 82163) ((-305 . -701) T) ((-465 . -355) 82142) ((-351 . -341) 82121) ((-345 . -341) 82100) ((-337 . -341) 82079) ((-308 . -464) 82058) ((-1202 . -23) T) ((-1181 . -23) T) ((-693 . -1075) T) ((-689 . -130) T) ((-627 . -101) T) ((-468 . -692) 82023) ((-45 . -274) 81973) ((-104 . -1063) T) ((-67 . -592) 81955) ((-939 . -101) T) ((-834 . -101) T) ((-599 . -869) 81914) ((-1242 . -1063) T) ((-373 . -1063) T) ((-1171 . -1063) T) ((-81 . -1172) T) ((-1027 . -821) T) ((-921 . -821) 81893) ((-117 . -869) NIL) ((-756 . -889) 81872) ((-688 . -821) T) ((-520 . -1063) T) ((-490 . -1063) T) ((-347 . -1176) T) ((-344 . -1176) T) ((-336 . -1176) T) ((-256 . -1176) 81851) ((-240 . -1176) 81830) ((-1076 . -224) 81799) ((-472 . -821) 81778) ((-1102 . -1022) 81762) ((-382 . -736) T) ((-1118 . -802) T) ((-668 . -1172) T) ((-347 . -540) T) ((-344 . -540) T) ((-336 . -540) T) ((-256 . -540) 81693) ((-240 . -540) 81624) ((-515 . -1047) T) ((-1102 . -111) 81603) ((-444 . -719) 81573) ((-835 . -1022) 81543) ((-791 . -38) 81485) ((-668 . -853) 81467) ((-668 . -855) 81449) ((-287 . -301) 81253) ((-879 . -1176) T) ((-644 . -403) 81237) ((-835 . -111) 81202) ((-668 . -1007) 81147) ((-973 . -443) T) ((-879 . -540) T) ((-562 . -889) T) ((-465 . -1075) T) ((-508 . -889) T) ((-1116 . -280) 81124) ((-883 . -443) T) ((-64 . -592) 81106) ((-608 . -222) 81052) ((-465 . -23) T) ((-1082 . -768) T) ((-841 . -130) T) ((-1082 . -765) T) ((-1233 . -1235) 81031) ((-1082 . -701) T) ((-628 . -622) 81005) ((-286 . -592) 80746) ((-1004 . -34) T) ((-789 . -819) 80725) ((-561 . -299) T) ((-548 . -299) T) ((-485 . -299) T) ((-1242 . -692) 80695) ((-668 . -369) 80677) ((-668 . -330) 80659) ((-468 . -169) T) ((-373 . -692) 80629) ((-840 . -821) NIL) ((-548 . -991) T) ((-485 . -991) T) ((-1095 . -592) 80611) ((-1076 . -231) 80590) ((-207 . -101) T) ((-1110 . -101) T) ((-70 . -592) 80572) ((-1102 . -1016) T) ((-1137 . -38) 80469) ((-829 . -592) 80451) ((-548 . -533) T) ((-644 . -1023) T) ((-706 . -918) 80404) ((-1102 . -226) 80383) ((-1045 . -1063) T) ((-1003 . -25) T) ((-1003 . -21) T) ((-972 . -1022) 80328) ((-874 . -101) T) ((-835 . -1016) T) ((-668 . -869) NIL) ((-347 . -321) 80312) ((-347 . -355) T) ((-344 . -321) 80296) ((-344 . -355) T) ((-336 . -321) 80280) ((-336 . -355) T) ((-478 . -101) T) ((-1230 . -38) 80250) ((-513 . -661) 80200) ((-210 . -101) T) ((-993 . -1007) 80080) ((-972 . -111) 80009) ((-1133 . -942) 79978) ((-1132 . -942) 79940) ((-510 . -149) 79924) ((-1043 . -362) 79903) ((-343 . -592) 79885) ((-314 . -21) T) ((-346 . -1007) 79862) ((-314 . -25) T) ((-1126 . -942) 79831) ((-1088 . -942) 79798) ((-75 . -592) 79780) ((-673 . -299) T) ((-166 . -821) 79759) ((-879 . -355) T) ((-371 . -25) T) ((-371 . -21) T) ((-879 . -321) 79746) ((-85 . -592) 79728) ((-673 . -991) T) ((-651 . -821) T) ((-1202 . -130) T) ((-1181 . -130) T) ((-870 . -979) 79712) ((-808 . -21) T) ((-48 . -1007) 79655) ((-808 . -25) T) ((-801 . -25) T) ((-801 . -21) T) ((-1240 . -1023) T) ((-1238 . -1023) T) ((-628 . -701) T) ((-1241 . -1022) 79639) ((-1191 . -821) 79618) ((-789 . -403) 79587) ((-102 . -119) 79571) ((-129 . -1063) T) ((-52 . -1063) T) ((-895 . -592) 79553) ((-840 . -961) 79530) ((-797 . -101) T) ((-1241 . -111) 79509) ((-627 . -38) 79479) ((-555 . -821) T) ((-347 . -1075) T) ((-344 . -1075) T) ((-336 . -1075) T) ((-256 . -1075) T) ((-240 . -1075) T) ((-599 . -299) 79458) ((-1110 . -301) 79262) ((-514 . -1047) T) ((-303 . -1063) T) ((-638 . -23) T) ((-473 . -224) 79231) ((-150 . -1023) T) ((-347 . -23) T) ((-344 . -23) T) ((-336 . -23) T) ((-117 . -299) T) ((-256 . -23) T) ((-240 . -23) T) ((-972 . -1016) T) ((-687 . -878) 79210) ((-972 . -226) 79182) ((-972 . -236) T) ((-117 . -991) NIL) ((-879 . -1075) T) ((-1203 . -443) 79161) ((-1182 . -443) 79140) ((-513 . -592) 79072) ((-687 . -622) 78997) ((-399 . -1022) 78949) ((-494 . -592) 78931) ((-879 . -23) T) ((-478 . -301) NIL) ((-465 . -130) T) ((-210 . -301) NIL) ((-399 . -111) 78869) ((-789 . -1023) 78799) ((-712 . -1061) 78783) ((-1202 . -483) 78749) ((-1181 . -483) 78715) ((-468 . -282) T) ((-139 . -1061) 78697) ((-128 . -149) 78679) ((-1241 . -1016) T) ((-1028 . -101) T) ((-490 . -504) NIL) ((-677 . -101) T) ((-473 . -231) 78658) ((-1131 . -143) 78637) ((-1131 . -145) 78616) ((-1087 . -145) 78595) ((-1087 . -143) 78574) ((-611 . -1022) 78558) ((-586 . -1022) 78542) ((-644 . -1063) T) ((-644 . -1019) 78482) ((-1133 . -1209) 78466) ((-1133 . -1196) 78443) ((-478 . -1111) T) ((-1132 . -1201) 78404) ((-1132 . -1196) 78374) ((-1132 . -1199) 78358) ((-210 . -1111) T) ((-335 . -889) T) ((-792 . -258) 78342) ((-611 . -111) 78321) ((-586 . -111) 78300) ((-1126 . -1180) 78261) ((-814 . -1016) 78240) ((-1126 . -1196) 78217) ((-505 . -25) T) ((-485 . -294) T) ((-501 . -23) T) ((-500 . -25) T) ((-498 . -25) T) ((-497 . -23) T) ((-1126 . -1178) 78201) ((-399 . -1016) T) ((-311 . -1023) T) ((-668 . -299) T) ((-107 . -819) T) ((-399 . -236) T) ((-399 . -226) 78180) ((-687 . -701) T) ((-478 . -38) 78130) ((-210 . -38) 78080) ((-465 . -483) 78046) ((-1118 . -1104) T) ((-1064 . -101) T) ((-675 . -592) 78028) ((-675 . -593) 77943) ((-689 . -21) T) ((-689 . -25) T) ((-206 . -592) 77925) ((-133 . -592) 77907) ((-116 . -592) 77889) ((-154 . -25) T) ((-1240 . -1063) T) ((-841 . -615) 77837) ((-1238 . -1063) T) ((-932 . -101) T) ((-710 . -101) T) ((-690 . -101) T) ((-444 . -101) T) ((-790 . -443) 77788) ((-44 . -1063) T) ((-1052 . -821) T) ((-638 . -130) T) ((-1028 . -301) 77639) ((-644 . -692) 77623) ((-281 . -1023) T) ((-347 . -130) T) ((-344 . -130) T) ((-336 . -130) T) ((-256 . -130) T) ((-240 . -130) T) ((-410 . -101) T) ((-150 . -1063) T) ((-45 . -222) 77573) ((-927 . -821) 77552) ((-968 . -622) 77490) ((-233 . -1225) 77460) ((-993 . -299) T) ((-286 . -1022) 77381) ((-879 . -130) T) ((-40 . -889) T) ((-478 . -392) 77363) ((-346 . -299) T) ((-210 . -392) 77345) ((-1043 . -403) 77329) ((-286 . -111) 77245) ((-841 . -25) T) ((-841 . -21) T) ((-331 . -592) 77227) ((-1204 . -47) 77171) ((-218 . -145) T) ((-171 . -592) 77153) ((-1076 . -819) 77132) ((-748 . -592) 77114) ((-587 . -228) 77061) ((-466 . -228) 77011) ((-1240 . -692) 76981) ((-48 . -299) T) ((-1238 . -692) 76951) ((-933 . -1063) T) ((-789 . -1063) 76741) ((-304 . -101) T) ((-870 . -1172) T) ((-48 . -991) T) ((-1181 . -615) 76649) ((-663 . -101) 76627) ((-44 . -692) 76611) ((-534 . -101) T) ((-66 . -375) T) ((-66 . -387) T) ((-636 . -23) T) ((-644 . -736) T) ((-1169 . -1063) 76589) ((-343 . -1022) 76534) ((-649 . -1063) 76512) ((-1027 . -145) T) ((-921 . -145) 76491) ((-921 . -143) 76470) ((-773 . -101) T) ((-150 . -692) 76454) ((-472 . -145) 76433) ((-472 . -143) 76412) ((-343 . -111) 76341) ((-1043 . -1023) T) ((-314 . -821) 76320) ((-1210 . -942) 76289) ((-603 . -1063) T) ((-1203 . -942) 76251) ((-501 . -130) T) ((-497 . -130) T) ((-287 . -222) 76201) ((-351 . -1023) T) ((-345 . -1023) T) ((-337 . -1023) T) ((-286 . -1016) 76143) ((-1182 . -942) 76112) ((-371 . -821) T) ((-107 . -1023) T) ((-968 . -701) T) ((-839 . -889) T) ((-814 . -769) 76091) ((-814 . -766) 76070) ((-410 . -301) 76009) ((-459 . -101) T) ((-575 . -942) 75978) ((-311 . -1063) T) ((-399 . -769) 75957) ((-399 . -766) 75936) ((-490 . -480) 75918) ((-1204 . -1007) 75884) ((-1202 . -21) T) ((-1202 . -25) T) ((-1181 . -21) T) ((-1181 . -25) T) ((-789 . -692) 75826) ((-673 . -396) T) ((-585 . -101) T) ((-1231 . -1172) T) ((-1076 . -403) 75795) ((-972 . -360) NIL) ((-645 . -101) T) ((-177 . -101) T) ((-158 . -101) T) ((-153 . -101) T) ((-102 . -34) T) ((-712 . -1172) T) ((-44 . -736) T) ((-573 . -101) T) ((-76 . -388) T) ((-76 . -387) T) ((-627 . -630) 75779) ((-139 . -1172) T) ((-840 . -145) T) ((-840 . -143) NIL) ((-1171 . -92) T) ((-343 . -1016) T) ((-69 . -375) T) ((-69 . -387) T) ((-1125 . -101) T) ((-644 . -504) 75712) ((-663 . -301) 75650) ((-932 . -38) 75547) ((-710 . -38) 75517) ((-534 . -301) 75321) ((-308 . -1172) T) ((-343 . -226) T) ((-343 . -236) T) ((-305 . -1172) T) ((-281 . -1063) T) ((-1139 . -592) 75303) ((-686 . -1176) T) ((-1116 . -625) 75287) ((-1166 . -540) 75266) ((-686 . -540) T) ((-308 . -853) 75250) ((-308 . -855) 75175) ((-305 . -853) 75136) ((-305 . -855) NIL) ((-773 . -301) 75101) ((-311 . -692) 74942) ((-316 . -315) 74919) ((-476 . -101) T) ((-465 . -25) T) ((-465 . -21) T) ((-410 . -38) 74893) ((-308 . -1007) 74556) ((-218 . -1157) T) ((-218 . -1160) T) ((-3 . -592) 74538) ((-305 . -1007) 74468) ((-2 . -1063) T) ((-2 . |RecordCategory|) T) ((-807 . -592) 74450) ((-1076 . -1023) 74380) ((-561 . -889) T) ((-548 . -794) T) ((-548 . -889) T) ((-485 . -889) T) ((-135 . -1007) 74364) ((-218 . -94) T) ((-74 . -432) T) ((-74 . -387) T) ((0 . -592) 74346) ((-166 . -145) 74325) ((-166 . -143) 74276) ((-218 . -35) T) ((-49 . -592) 74258) ((-468 . -1023) T) ((-478 . -224) 74240) ((-475 . -937) 74224) ((-473 . -819) 74203) ((-210 . -224) 74185) ((-80 . -432) T) ((-80 . -387) T) ((-1106 . -34) T) ((-789 . -169) 74164) ((-706 . -101) T) ((-995 . -592) 74131) ((-490 . -278) 74106) ((-308 . -369) 74075) ((-305 . -369) 74036) ((-305 . -330) 73997) ((-1049 . -592) 73979) ((-790 . -918) 73926) ((-636 . -130) T) ((-1191 . -143) 73905) ((-1191 . -145) 73884) ((-1133 . -101) T) ((-1132 . -101) T) ((-1126 . -101) T) ((-1119 . -1063) T) ((-1088 . -101) T) ((-215 . -34) T) ((-281 . -692) 73871) ((-1119 . -589) 73847) ((-573 . -301) NIL) ((-475 . -1063) 73825) ((-382 . -592) 73807) ((-500 . -821) T) ((-1110 . -222) 73757) ((-1210 . -1209) 73741) ((-1210 . -1196) 73718) ((-1203 . -1201) 73679) ((-1203 . -1196) 73649) ((-1203 . -1199) 73633) ((-1182 . -1180) 73594) ((-1182 . -1196) 73571) ((-597 . -592) 73553) ((-1182 . -1178) 73537) ((-673 . -889) T) ((-1133 . -276) 73503) ((-1132 . -276) 73469) ((-1126 . -276) 73435) ((-1043 . -1063) T) ((-1026 . -1063) T) ((-48 . -294) T) ((-308 . -869) 73401) ((-305 . -869) NIL) ((-1026 . -1033) 73380) ((-1082 . -855) 73362) ((-773 . -38) 73346) ((-256 . -615) 73294) ((-240 . -615) 73242) ((-675 . -1022) 73229) ((-575 . -1196) 73206) ((-1088 . -276) 73172) ((-311 . -169) 73103) ((-351 . -1063) T) ((-345 . -1063) T) ((-337 . -1063) T) ((-490 . -19) 73085) ((-1082 . -1007) 73067) ((-1065 . -149) 73051) ((-107 . -1063) T) ((-116 . -1022) 73038) ((-686 . -355) T) ((-490 . -583) 73013) ((-675 . -111) 72998) ((-428 . -101) T) ((-45 . -1109) 72948) ((-116 . -111) 72933) ((-611 . -695) T) ((-586 . -695) T) ((-789 . -504) 72866) ((-1004 . -1172) T) ((-912 . -149) 72850) ((-515 . -101) T) ((-510 . -101) 72800) ((-1131 . -443) 72731) ((-1051 . -1176) 72710) ((-756 . -1176) 72689) ((-754 . -1176) 72668) ((-61 . -1172) T) ((-468 . -592) 72620) ((-468 . -593) 72542) ((-1118 . -1063) T) ((-1102 . -622) 72516) ((-1087 . -443) 72467) ((-1051 . -540) 72398) ((-473 . -403) 72367) ((-599 . -889) 72346) ((-445 . -1176) 72325) ((-963 . -1063) T) ((-756 . -540) 72236) ((-390 . -592) 72218) ((-754 . -540) 72149) ((-649 . -504) 72082) ((-706 . -301) 72069) ((-638 . -25) T) ((-638 . -21) T) ((-445 . -540) 72000) ((-117 . -889) T) ((-117 . -794) NIL) ((-347 . -25) T) ((-347 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-336 . -25) T) ((-336 . -21) T) ((-256 . -25) T) ((-256 . -21) T) ((-82 . -376) T) ((-82 . -387) T) ((-240 . -25) T) ((-240 . -21) T) ((-1220 . -592) 71982) ((-1166 . -1075) T) ((-1166 . -23) T) ((-1126 . -301) 71867) ((-1088 . -301) 71854) ((-1043 . -692) 71722) ((-835 . -622) 71682) ((-912 . -949) 71666) ((-879 . -21) T) ((-281 . -169) T) ((-879 . -25) T) ((-303 . -92) T) ((-841 . -821) 71617) ((-686 . -1075) T) ((-686 . -23) T) ((-621 . -1063) 71595) ((-608 . -589) 71570) ((-608 . -1063) T) ((-562 . -1176) T) ((-508 . -1176) T) ((-562 . -540) T) ((-508 . -540) T) ((-351 . -692) 71522) ((-345 . -692) 71474) ((-337 . -692) 71426) ((-331 . -1022) 71410) ((-171 . -111) 71321) ((-171 . -1022) 71253) ((-107 . -692) 71203) ((-331 . -111) 71182) ((-266 . -1063) T) ((-265 . -1063) T) ((-264 . -1063) T) ((-263 . -1063) T) ((-675 . -1016) T) ((-262 . -1063) T) ((-261 . -1063) T) ((-260 . -1063) T) ((-205 . -1063) T) ((-204 . -1063) T) ((-202 . -1063) T) ((-166 . -1160) 71160) ((-166 . -1157) 71138) ((-201 . -1063) T) ((-200 . -1063) T) ((-116 . -1016) T) ((-199 . -1063) T) ((-196 . -1063) T) ((-675 . -226) T) ((-195 . -1063) T) ((-194 . -1063) T) ((-193 . -1063) T) ((-192 . -1063) T) ((-191 . -1063) T) ((-190 . -1063) T) ((-189 . -1063) T) ((-188 . -1063) T) ((-187 . -1063) T) ((-186 . -1063) T) ((-233 . -101) 70928) ((-166 . -35) 70906) ((-166 . -94) 70884) ((-628 . -1007) 70780) ((-473 . -1023) 70710) ((-1076 . -1063) 70500) ((-1102 . -34) T) ((-644 . -480) 70484) ((-72 . -1172) T) ((-104 . -592) 70466) ((-1242 . -592) 70448) ((-373 . -592) 70430) ((-555 . -1160) T) ((-555 . -1157) T) ((-706 . -38) 70279) ((-520 . -592) 70261) ((-510 . -301) 70199) ((-490 . -592) 70181) ((-490 . -593) 70163) ((-1171 . -592) 70129) ((-1126 . -1111) NIL) ((-996 . -1036) 70098) ((-996 . -1063) T) ((-973 . -101) T) ((-940 . -101) T) ((-883 . -101) T) ((-862 . -1007) 70075) ((-1102 . -701) T) ((-972 . -622) 70020) ((-467 . -1063) T) ((-454 . -1063) T) ((-566 . -23) T) ((-555 . -35) T) ((-555 . -94) T) ((-419 . -101) T) ((-1028 . -222) 69966) ((-128 . -101) T) ((-1133 . -38) 69863) ((-835 . -701) T) ((-668 . -889) T) ((-501 . -25) T) ((-497 . -21) T) ((-497 . -25) T) ((-1132 . -38) 69704) ((-331 . -1016) T) ((-1126 . -38) 69500) ((-1043 . -169) T) ((-171 . -1016) T) ((-1088 . -38) 69397) ((-687 . -47) 69374) ((-351 . -169) T) ((-345 . -169) T) ((-509 . -56) 69348) ((-487 . -56) 69298) ((-343 . -1237) 69275) ((-218 . -443) T) ((-311 . -282) 69226) ((-337 . -169) T) ((-171 . -236) T) ((-1181 . -821) 69125) ((-107 . -169) T) ((-841 . -961) 69109) ((-632 . -1075) T) ((-562 . -355) T) ((-562 . -321) 69096) ((-508 . -321) 69073) ((-508 . -355) T) ((-308 . -299) 69052) ((-305 . -299) T) ((-581 . -821) 69031) ((-1076 . -692) 68973) ((-510 . -274) 68957) ((-632 . -23) T) ((-410 . -224) 68941) ((-305 . -991) NIL) ((-328 . -23) T) ((-102 . -979) 68925) ((-45 . -36) 68904) ((-591 . -1063) T) ((-343 . -360) T) ((-514 . -101) T) ((-485 . -27) T) ((-233 . -301) 68842) ((-1051 . -1075) T) ((-1241 . -622) 68816) ((-756 . -1075) T) ((-754 . -1075) T) ((-445 . -1075) T) ((-1027 . -443) T) ((-921 . -443) 68767) ((-110 . -1063) T) ((-1051 . -23) T) ((-791 . -1023) T) ((-756 . -23) T) ((-754 . -23) T) ((-472 . -443) 68718) ((-1119 . -504) 68501) ((-373 . -374) 68480) ((-1137 . -403) 68464) ((-452 . -23) T) ((-445 . -23) T) ((-95 . -1063) T) ((-475 . -504) 68397) ((-281 . -282) T) ((-1045 . -592) 68379) ((-399 . -878) 68358) ((-50 . -1075) T) ((-993 . -889) T) ((-972 . -701) T) ((-687 . -855) NIL) ((-562 . -1075) T) ((-508 . -1075) T) ((-814 . -622) 68331) ((-1166 . -130) T) ((-1126 . -392) 68283) ((-973 . -301) NIL) ((-789 . -480) 68267) ((-346 . -889) T) ((-1116 . -34) T) ((-399 . -622) 68219) ((-50 . -23) T) ((-686 . -130) T) ((-687 . -1007) 68099) ((-562 . -23) T) ((-107 . -504) NIL) ((-508 . -23) T) ((-166 . -401) 68070) ((-128 . -301) NIL) ((-1100 . -1063) T) ((-1233 . -1232) 68054) ((-675 . -769) T) ((-675 . -766) T) ((-1082 . -299) T) ((-371 . -145) T) ((-272 . -592) 68036) ((-1181 . -961) 68006) ((-48 . -889) T) ((-649 . -480) 67990) ((-243 . -1225) 67960) ((-242 . -1225) 67930) ((-1135 . -821) T) ((-1076 . -169) 67909) ((-1082 . -991) T) ((-1013 . -34) T) ((-808 . -145) 67888) ((-808 . -143) 67867) ((-712 . -106) 67851) ((-591 . -131) T) ((-473 . -1063) 67641) ((-1137 . -1023) T) ((-840 . -443) T) ((-84 . -1172) T) ((-233 . -38) 67611) ((-139 . -106) 67593) ((-687 . -369) 67577) ((-1082 . -533) T) ((-382 . -1022) 67561) ((-1241 . -701) T) ((-1131 . -918) 67530) ((-129 . -592) 67497) ((-52 . -592) 67479) ((-1087 . -918) 67446) ((-627 . -403) 67430) ((-1230 . -1023) T) ((-597 . -1022) 67414) ((-636 . -25) T) ((-636 . -21) T) ((-1118 . -504) NIL) ((-1210 . -101) T) ((-1203 . -101) T) ((-382 . -111) 67393) ((-215 . -246) 67377) ((-1182 . -101) T) ((-1020 . -1063) T) ((-973 . -1111) T) ((-1020 . -1019) 67317) ((-792 . -1063) T) ((-335 . -1176) T) ((-611 . -622) 67301) ((-597 . -111) 67280) ((-586 . -622) 67264) ((-576 . -101) T) ((-566 . -130) T) ((-575 . -101) T) ((-406 . -1063) T) ((-377 . -1063) T) ((-303 . -592) 67230) ((-220 . -1063) 67208) ((-621 . -504) 67141) ((-608 . -504) 66985) ((-807 . -1016) 66964) ((-619 . -149) 66948) ((-335 . -540) T) ((-687 . -869) 66891) ((-534 . -222) 66841) ((-1210 . -276) 66807) ((-1043 . -282) 66758) ((-478 . -819) T) ((-216 . -1075) T) ((-1203 . -276) 66724) ((-1182 . -276) 66690) ((-973 . -38) 66640) ((-210 . -819) T) ((-1166 . -483) 66606) ((-883 . -38) 66558) ((-814 . -768) 66537) ((-814 . -765) 66516) ((-814 . -701) 66495) ((-351 . -282) T) ((-345 . -282) T) ((-337 . -282) T) ((-166 . -443) 66426) ((-419 . -38) 66410) ((-107 . -282) T) ((-216 . -23) T) ((-399 . -768) 66389) ((-399 . -765) 66368) ((-399 . -701) T) ((-490 . -280) 66343) ((-468 . -1022) 66308) ((-632 . -130) T) ((-1076 . -504) 66241) ((-328 . -130) T) ((-166 . -394) 66220) ((-473 . -692) 66162) ((-789 . -278) 66139) ((-468 . -111) 66095) ((-627 . -1023) T) ((-1191 . -443) 66026) ((-1229 . -1047) T) ((-1228 . -1047) T) ((-1051 . -130) T) ((-256 . -821) 66005) ((-240 . -821) 65984) ((-756 . -130) T) ((-754 . -130) T) ((-555 . -443) T) ((-1020 . -692) 65926) ((-597 . -1016) T) ((-996 . -504) 65859) ((-572 . -1063) T) ((-452 . -130) T) ((-445 . -130) T) ((-45 . -1063) T) ((-377 . -692) 65829) ((-791 . -1063) T) ((-467 . -504) 65762) ((-454 . -504) 65695) ((-444 . -359) 65665) ((-45 . -589) 65644) ((-308 . -294) T) ((-644 . -592) 65606) ((-58 . -821) 65585) ((-1182 . -301) 65470) ((-973 . -392) 65452) ((-789 . -583) 65429) ((-506 . -821) 65408) ((-486 . -821) 65387) ((-40 . -1176) T) ((-968 . -1007) 65283) ((-50 . -130) T) ((-562 . -130) T) ((-508 . -130) T) ((-286 . -622) 65143) ((-335 . -321) 65120) ((-335 . -355) T) ((-314 . -315) 65097) ((-311 . -278) 65082) ((-40 . -540) T) ((-371 . -1157) T) ((-371 . -1160) T) ((-1004 . -1148) 65057) ((-1145 . -228) 65007) ((-1126 . -224) 64959) ((-322 . -1063) T) ((-371 . -94) T) ((-371 . -35) T) ((-1004 . -106) 64905) ((-468 . -1016) T) ((-470 . -228) 64855) ((-1119 . -480) 64789) ((-1242 . -1022) 64773) ((-373 . -1022) 64757) ((-468 . -236) T) ((-790 . -101) T) ((-689 . -145) 64736) ((-689 . -143) 64715) ((-475 . -480) 64699) ((-476 . -327) 64668) ((-1242 . -111) 64647) ((-502 . -1063) T) ((-473 . -169) 64626) ((-968 . -369) 64610) ((-405 . -101) T) ((-373 . -111) 64589) ((-968 . -330) 64573) ((-271 . -952) 64557) ((-270 . -952) 64541) ((-1240 . -592) 64523) ((-1238 . -592) 64505) ((-110 . -504) NIL) ((-1131 . -1194) 64489) ((-825 . -823) 64473) ((-1137 . -1063) T) ((-102 . -1172) T) ((-921 . -918) 64434) ((-791 . -692) 64376) ((-1182 . -1111) NIL) ((-472 . -918) 64321) ((-1027 . -141) T) ((-59 . -101) 64299) ((-44 . -592) 64281) ((-77 . -592) 64263) ((-343 . -622) 64208) ((-1230 . -1063) T) ((-501 . -821) T) ((-335 . -1075) T) ((-287 . -1063) T) ((-968 . -869) 64167) ((-287 . -589) 64146) ((-1210 . -38) 64043) ((-1203 . -38) 63884) ((-478 . -1023) T) ((-1182 . -38) 63680) ((-210 . -1023) T) ((-335 . -23) T) ((-150 . -592) 63662) ((-807 . -769) 63641) ((-807 . -766) 63620) ((-576 . -38) 63593) ((-575 . -38) 63490) ((-839 . -540) T) ((-216 . -130) T) ((-311 . -971) 63456) ((-78 . -592) 63438) ((-687 . -299) 63417) ((-286 . -701) 63319) ((-798 . -101) T) ((-834 . -815) T) ((-286 . -464) 63298) ((-1233 . -101) T) ((-40 . -355) T) ((-841 . -145) 63277) ((-841 . -143) 63256) ((-1118 . -480) 63238) ((-1242 . -1016) T) ((-473 . -504) 63171) ((-1106 . -1172) T) ((-933 . -592) 63153) ((-621 . -480) 63137) ((-608 . -480) 63068) ((-789 . -592) 62799) ((-48 . -27) T) ((-1137 . -692) 62696) ((-627 . -1063) T) ((-428 . -356) 62670) ((-1065 . -101) T) ((-790 . -301) 62657) ((-939 . -1063) T) ((-834 . -1063) T) ((-1238 . -374) 62629) ((-1020 . -504) 62562) ((-1119 . -278) 62538) ((-233 . -224) 62507) ((-1230 . -692) 62477) ((-963 . -92) T) ((-791 . -169) 62456) ((-220 . -504) 62389) ((-597 . -769) 62368) ((-597 . -766) 62347) ((-1169 . -592) 62259) ((-215 . -1172) T) ((-649 . -592) 62191) ((-1116 . -979) 62175) ((-343 . -701) T) ((-912 . -101) 62125) ((-1182 . -392) 62077) ((-1076 . -480) 62061) ((-59 . -301) 61999) ((-323 . -101) T) ((-1166 . -21) T) ((-1166 . -25) T) ((-40 . -1075) T) ((-686 . -21) T) ((-603 . -592) 61981) ((-505 . -315) 61960) ((-686 . -25) T) ((-107 . -278) NIL) ((-890 . -1075) T) ((-40 . -23) T) ((-745 . -1075) T) ((-548 . -1176) T) ((-485 . -1176) T) ((-311 . -592) 61942) ((-973 . -224) 61924) ((-166 . -163) 61908) ((-561 . -540) T) ((-548 . -540) T) ((-485 . -540) T) ((-745 . -23) T) ((-1202 . -145) 61887) ((-1119 . -583) 61863) ((-1202 . -143) 61842) ((-996 . -480) 61826) ((-1181 . -143) 61751) ((-1181 . -145) 61676) ((-1233 . -1239) 61655) ((-467 . -480) 61639) ((-454 . -480) 61623) ((-513 . -34) T) ((-627 . -692) 61593) ((-112 . -936) T) ((-636 . -821) 61572) ((-1137 . -169) 61523) ((-357 . -101) T) ((-233 . -231) 61502) ((-243 . -101) T) ((-242 . -101) T) ((-1191 . -918) 61471) ((-109 . -101) T) ((-238 . -821) 61450) ((-790 . -38) 61299) ((-45 . -504) 61091) ((-1118 . -278) 61066) ((-207 . -1063) T) ((-1110 . -1063) T) ((-1110 . -589) 61045) ((-566 . -25) T) ((-566 . -21) T) ((-1065 . -301) 60983) ((-932 . -403) 60967) ((-673 . -1176) T) ((-608 . -278) 60942) ((-1051 . -615) 60890) ((-756 . -615) 60838) ((-754 . -615) 60786) ((-335 . -130) T) ((-281 . -592) 60768) ((-673 . -540) T) ((-874 . -1063) T) ((-839 . -1075) T) ((-445 . -615) 60716) ((-874 . -872) 60700) ((-371 . -443) T) ((-478 . -1063) T) ((-675 . -622) 60687) ((-912 . -301) 60625) ((-210 . -1063) T) ((-308 . -889) 60604) ((-305 . -889) T) ((-305 . -794) NIL) ((-382 . -695) T) ((-839 . -23) T) ((-116 . -622) 60591) ((-465 . -143) 60570) ((-410 . -403) 60554) ((-465 . -145) 60533) ((-110 . -480) 60515) ((-2 . -592) 60497) ((-1118 . -19) 60479) ((-1118 . -583) 60454) ((-632 . -21) T) ((-632 . -25) T) ((-573 . -1104) T) ((-1076 . -278) 60431) ((-328 . -25) T) ((-328 . -21) T) ((-485 . -355) T) ((-1233 . -38) 60401) ((-1102 . -1172) T) ((-608 . -583) 60376) ((-1051 . -25) T) ((-1051 . -21) T) ((-520 . -766) T) ((-520 . -769) T) ((-117 . -1176) T) ((-932 . -1023) T) ((-599 . -540) T) ((-756 . -25) T) ((-756 . -21) T) ((-754 . -21) T) ((-754 . -25) T) ((-710 . -1023) T) ((-690 . -1023) T) ((-644 . -1022) 60360) ((-507 . -1047) T) ((-452 . -25) T) ((-117 . -540) T) ((-452 . -21) T) ((-445 . -25) T) ((-445 . -21) T) ((-1102 . -1007) 60256) ((-791 . -282) 60235) ((-797 . -1063) T) ((-935 . -936) T) ((-644 . -111) 60214) ((-287 . -504) 60006) ((-1240 . -1022) 59990) ((-1238 . -1022) 59974) ((-1202 . -1157) 59940) ((-243 . -301) 59878) ((-242 . -301) 59816) ((-1185 . -101) 59794) ((-1119 . -593) NIL) ((-1119 . -592) 59776) ((-1202 . -1160) 59742) ((-1182 . -224) 59694) ((-1181 . -1157) 59660) ((-95 . -92) T) ((-1181 . -1160) 59626) ((-1102 . -369) 59610) ((-1082 . -794) T) ((-1082 . -889) T) ((-1076 . -583) 59587) ((-1043 . -593) 59571) ((-475 . -592) 59503) ((-789 . -280) 59480) ((-587 . -149) 59427) ((-410 . -1023) T) ((-478 . -692) 59377) ((-473 . -480) 59361) ((-319 . -821) 59340) ((-331 . -622) 59314) ((-50 . -21) T) ((-50 . -25) T) ((-210 . -692) 59264) ((-166 . -699) 59235) ((-171 . -622) 59167) ((-562 . -21) T) ((-562 . -25) T) ((-508 . -25) T) ((-508 . -21) T) ((-466 . -149) 59117) ((-1043 . -592) 59099) ((-1026 . -592) 59081) ((-962 . -101) T) ((-832 . -101) T) ((-773 . -403) 59045) ((-40 . -130) T) ((-673 . -355) T) ((-205 . -864) T) ((-675 . -768) T) ((-675 . -765) T) ((-561 . -1075) T) ((-548 . -1075) T) ((-485 . -1075) T) ((-675 . -701) T) ((-351 . -592) 59027) ((-345 . -592) 59009) ((-337 . -592) 58991) ((-65 . -388) T) ((-65 . -387) T) ((-107 . -593) 58921) ((-107 . -592) 58903) ((-204 . -864) T) ((-927 . -149) 58887) ((-1202 . -94) 58853) ((-745 . -130) T) ((-133 . -701) T) ((-116 . -701) T) ((-1202 . -35) 58819) ((-1020 . -480) 58803) ((-561 . -23) T) ((-548 . -23) T) ((-485 . -23) T) ((-1181 . -94) 58769) ((-1181 . -35) 58735) ((-1131 . -101) T) ((-1087 . -101) T) ((-825 . -101) T) ((-220 . -480) 58719) ((-1240 . -111) 58698) ((-1238 . -111) 58677) ((-44 . -1022) 58661) ((-1191 . -1194) 58645) ((-826 . -823) 58629) ((-1137 . -282) 58608) ((-110 . -278) 58583) ((-1102 . -869) 58542) ((-44 . -111) 58521) ((-1140 . -1213) T) ((-644 . -1016) T) ((-1118 . -593) NIL) ((-1118 . -592) 58503) ((-1028 . -589) 58478) ((-1028 . -1063) T) ((-963 . -592) 58444) ((-73 . -432) T) ((-73 . -387) T) ((-644 . -226) 58423) ((-150 . -1022) 58407) ((-555 . -538) 58391) ((-347 . -145) 58370) ((-347 . -143) 58321) ((-344 . -145) 58300) ((-677 . -1063) T) ((-344 . -143) 58251) ((-336 . -145) 58230) ((-336 . -143) 58181) ((-256 . -143) 58160) ((-256 . -145) 58139) ((-243 . -38) 58109) ((-240 . -145) 58088) ((-117 . -355) T) ((-240 . -143) 58067) ((-242 . -38) 58037) ((-150 . -111) 58016) ((-972 . -1007) 57904) ((-1126 . -819) NIL) ((-668 . -1176) T) ((-773 . -1023) T) ((-673 . -1075) T) ((-1240 . -1016) T) ((-1238 . -1016) T) ((-1116 . -1172) T) ((-972 . -369) 57881) ((-879 . -143) T) ((-879 . -145) 57863) ((-839 . -130) T) ((-789 . -1022) 57760) ((-668 . -540) T) ((-673 . -23) T) ((-621 . -592) 57692) ((-621 . -593) 57653) ((-608 . -593) NIL) ((-608 . -592) 57635) ((-478 . -169) T) ((-216 . -21) T) ((-210 . -169) T) ((-216 . -25) T) ((-465 . -1160) 57601) ((-465 . -1157) 57567) ((-266 . -592) 57549) ((-265 . -592) 57531) ((-264 . -592) 57513) ((-263 . -592) 57495) ((-262 . -592) 57477) ((-490 . -625) 57459) ((-261 . -592) 57441) ((-331 . -701) T) ((-260 . -592) 57423) ((-110 . -19) 57405) ((-171 . -701) T) ((-490 . -365) 57387) ((-205 . -592) 57369) ((-510 . -1109) 57353) ((-490 . -123) T) ((-110 . -583) 57328) ((-204 . -592) 57310) ((-465 . -35) 57276) ((-465 . -94) 57242) ((-202 . -592) 57224) ((-201 . -592) 57206) ((-200 . -592) 57188) ((-199 . -592) 57170) ((-196 . -592) 57152) ((-195 . -592) 57134) ((-194 . -592) 57116) ((-193 . -592) 57098) ((-192 . -592) 57080) ((-191 . -592) 57062) ((-190 . -592) 57044) ((-524 . -1066) 56996) ((-189 . -592) 56978) ((-188 . -592) 56960) ((-45 . -480) 56897) ((-187 . -592) 56879) ((-186 . -592) 56861) ((-789 . -111) 56751) ((-619 . -101) 56701) ((-473 . -278) 56678) ((-1076 . -592) 56409) ((-1064 . -1063) T) ((-1013 . -1172) T) ((-599 . -1075) T) ((-1241 . -1007) 56393) ((-1131 . -301) 56380) ((-1087 . -301) 56367) ((-1054 . -1047) T) ((-1031 . -1047) T) ((-1005 . -1047) T) ((-988 . -1047) T) ((-117 . -1075) T) ((-793 . -101) T) ((-602 . -1047) T) ((-599 . -23) T) ((-1110 . -504) 56159) ((-474 . -1047) T) ((-972 . -869) 56111) ((-378 . -101) T) ((-316 . -101) T) ((-211 . -1047) T) ((-932 . -1063) T) ((-150 . -1016) T) ((-117 . -23) T) ((-706 . -403) 56095) ((-710 . -1063) T) ((-690 . -1063) T) ((-677 . -131) T) ((-444 . -1063) T) ((-399 . -1172) T) ((-308 . -422) 56079) ((-572 . -92) T) ((-996 . -593) 56040) ((-993 . -1176) T) ((-218 . -101) T) ((-996 . -592) 56002) ((-790 . -224) 55986) ((-993 . -540) T) ((-807 . -622) 55959) ((-346 . -1176) T) ((-467 . -592) 55921) ((-467 . -593) 55882) ((-454 . -593) 55843) ((-454 . -592) 55805) ((-399 . -853) 55789) ((-311 . -1022) 55624) ((-399 . -855) 55549) ((-814 . -1007) 55445) ((-478 . -504) NIL) ((-473 . -583) 55422) ((-346 . -540) T) ((-210 . -504) NIL) ((-841 . -443) T) ((-410 . -1063) T) ((-399 . -1007) 55286) ((-311 . -111) 55107) ((-668 . -355) T) ((-218 . -276) T) ((-48 . -1176) T) ((-789 . -1016) 55037) ((-561 . -130) T) ((-548 . -130) T) ((-485 . -130) T) ((-48 . -540) T) ((-1119 . -280) 55013) ((-1131 . -1111) 54991) ((-308 . -27) 54970) ((-1027 . -101) T) ((-789 . -226) 54922) ((-233 . -819) 54901) ((-921 . -101) T) ((-688 . -101) T) ((-287 . -480) 54838) ((-472 . -101) T) ((-706 . -1023) T) ((-591 . -592) 54820) ((-591 . -593) 54681) ((-399 . -369) 54665) ((-399 . -330) 54649) ((-1131 . -38) 54478) ((-1087 . -38) 54327) ((-825 . -38) 54297) ((-382 . -622) 54281) ((-619 . -301) 54219) ((-932 . -692) 54116) ((-710 . -692) 54086) ((-215 . -106) 54070) ((-45 . -278) 53995) ((-597 . -622) 53969) ((-304 . -1063) T) ((-281 . -1022) 53956) ((-110 . -592) 53938) ((-110 . -593) 53920) ((-444 . -692) 53890) ((-790 . -245) 53829) ((-663 . -1063) 53807) ((-534 . -1063) T) ((-1133 . -1023) T) ((-1132 . -1023) T) ((-1126 . -1023) T) ((-281 . -111) 53792) ((-1088 . -1023) T) ((-534 . -589) 53771) ((-95 . -592) 53737) ((-973 . -819) T) ((-220 . -661) 53695) ((-668 . -1075) T) ((-1166 . -715) 53671) ((-311 . -1016) T) ((-335 . -25) T) ((-335 . -21) T) ((-399 . -869) 53630) ((-67 . -1172) T) ((-807 . -768) 53609) ((-410 . -692) 53583) ((-773 . -1063) T) ((-807 . -765) 53562) ((-673 . -130) T) ((-687 . -889) 53541) ((-668 . -23) T) ((-478 . -282) T) ((-807 . -701) 53520) ((-311 . -226) 53472) ((-311 . -236) 53451) ((-210 . -282) T) ((-993 . -355) T) ((-1202 . -443) 53430) ((-1181 . -443) 53409) ((-346 . -321) 53386) ((-346 . -355) T) ((-1100 . -592) 53368) ((-45 . -1206) 53318) ((-840 . -101) T) ((-619 . -274) 53302) ((-673 . -1025) T) ((-1229 . -101) T) ((-468 . -622) 53267) ((-459 . -1063) T) ((-45 . -583) 53192) ((-1228 . -101) T) ((-1118 . -280) 53167) ((-40 . -615) 53106) ((-48 . -355) T) ((-1069 . -592) 53088) ((-1051 . -821) 53067) ((-608 . -280) 53042) ((-756 . -821) 53021) ((-754 . -821) 53000) ((-473 . -592) 52731) ((-233 . -403) 52700) ((-921 . -301) 52687) ((-445 . -821) 52666) ((-64 . -1172) T) ((-599 . -130) T) ((-472 . -301) 52653) ((-585 . -1063) T) ((-1028 . -504) 52497) ((-117 . -130) T) ((-645 . -1063) T) ((-281 . -1016) T) ((-177 . -1063) T) ((-158 . -1063) T) ((-153 . -1063) T) ((-444 . -736) T) ((-31 . -1047) T) ((-932 . -169) 52448) ((-939 . -92) T) ((-1043 . -1022) 52358) ((-597 . -768) 52337) ((-573 . -1063) T) ((-597 . -765) 52316) ((-597 . -701) T) ((-287 . -278) 52295) ((-286 . -1172) T) ((-1020 . -592) 52257) ((-1020 . -593) 52218) ((-993 . -1075) T) ((-166 . -101) T) ((-267 . -821) T) ((-1125 . -1063) T) ((-792 . -592) 52200) ((-1076 . -280) 52177) ((-1065 . -222) 52161) ((-972 . -299) T) ((-773 . -692) 52145) ((-351 . -1022) 52097) ((-346 . -1075) T) ((-345 . -1022) 52049) ((-406 . -592) 52031) ((-377 . -592) 52013) ((-337 . -1022) 51965) ((-220 . -592) 51897) ((-1043 . -111) 51793) ((-993 . -23) T) ((-107 . -1022) 51743) ((-867 . -101) T) ((-812 . -101) T) ((-782 . -101) T) ((-743 . -101) T) ((-651 . -101) T) ((-465 . -443) 51722) ((-410 . -169) T) ((-351 . -111) 51660) ((-345 . -111) 51598) ((-337 . -111) 51536) ((-243 . -224) 51505) ((-242 . -224) 51474) ((-346 . -23) T) ((-70 . -1172) T) ((-218 . -38) 51439) ((-107 . -111) 51373) ((-40 . -25) T) ((-40 . -21) T) ((-644 . -695) T) ((-166 . -276) 51351) ((-48 . -1075) T) ((-890 . -25) T) ((-745 . -25) T) ((-1110 . -480) 51288) ((-476 . -1063) T) ((-1242 . -622) 51262) ((-1191 . -101) T) ((-826 . -101) T) ((-233 . -1023) 51192) ((-1027 . -1111) T) ((-933 . -766) 51145) ((-373 . -622) 51129) ((-48 . -23) T) ((-933 . -769) 51082) ((-789 . -769) 51033) ((-789 . -766) 50984) ((-287 . -583) 50963) ((-468 . -701) T) ((-555 . -101) T) ((-840 . -301) 50920) ((-627 . -278) 50899) ((-112 . -635) T) ((-75 . -1172) T) ((-1027 . -38) 50886) ((-638 . -366) 50865) ((-921 . -38) 50714) ((-706 . -1063) T) ((-472 . -38) 50563) ((-85 . -1172) T) ((-555 . -276) T) ((-1182 . -819) NIL) ((-572 . -592) 50529) ((-1133 . -1063) T) ((-1132 . -1063) T) ((-1126 . -1063) T) ((-343 . -1007) 50506) ((-1043 . -1016) T) ((-973 . -1023) T) ((-45 . -592) 50488) ((-45 . -593) NIL) ((-883 . -1023) T) ((-791 . -592) 50470) ((-1107 . -101) 50448) ((-1043 . -236) 50399) ((-419 . -1023) T) ((-351 . -1016) T) ((-345 . -1016) T) ((-357 . -356) 50376) ((-337 . -1016) T) ((-243 . -231) 50355) ((-242 . -231) 50334) ((-109 . -356) 50308) ((-1043 . -226) 50233) ((-1088 . -1063) T) ((-286 . -869) 50192) ((-107 . -1016) T) ((-668 . -130) T) ((-410 . -504) 50034) ((-351 . -226) 50013) ((-351 . -236) T) ((-44 . -695) T) ((-345 . -226) 49992) ((-345 . -236) T) ((-337 . -226) 49971) ((-337 . -236) T) ((-166 . -301) 49936) ((-107 . -236) T) ((-107 . -226) T) ((-311 . -766) T) ((-839 . -21) T) ((-839 . -25) T) ((-399 . -299) T) ((-490 . -34) T) ((-110 . -280) 49911) ((-1076 . -1022) 49808) ((-840 . -1111) NIL) ((-322 . -592) 49790) ((-399 . -991) 49769) ((-1076 . -111) 49659) ((-665 . -1213) T) ((-428 . -1063) T) ((-1242 . -701) T) ((-62 . -592) 49641) ((-840 . -38) 49586) ((-513 . -1172) T) ((-581 . -149) 49570) ((-502 . -592) 49552) ((-1191 . -301) 49539) ((-706 . -692) 49388) ((-520 . -767) T) ((-520 . -768) T) ((-548 . -615) 49370) ((-485 . -615) 49330) ((-347 . -443) T) ((-344 . -443) T) ((-336 . -443) T) ((-256 . -443) 49281) ((-515 . -1063) T) ((-510 . -1063) 49231) ((-240 . -443) 49182) ((-1110 . -278) 49161) ((-1137 . -592) 49143) ((-663 . -504) 49076) ((-932 . -282) 49055) ((-534 . -504) 48847) ((-1131 . -224) 48831) ((-166 . -1111) 48810) ((-1230 . -592) 48792) ((-1133 . -692) 48689) ((-1132 . -692) 48530) ((-861 . -101) T) ((-1126 . -692) 48326) ((-1088 . -692) 48223) ((-1116 . -648) 48207) ((-347 . -394) 48158) ((-344 . -394) 48109) ((-336 . -394) 48060) ((-993 . -130) T) ((-773 . -504) 47972) ((-287 . -593) NIL) ((-287 . -592) 47954) ((-879 . -443) T) ((-933 . -360) 47907) ((-789 . -360) 47886) ((-500 . -499) 47865) ((-498 . -499) 47844) ((-478 . -278) NIL) ((-473 . -280) 47821) ((-410 . -282) T) ((-346 . -130) T) ((-210 . -278) NIL) ((-668 . -483) NIL) ((-98 . -1075) T) ((-166 . -38) 47649) ((-1202 . -942) 47611) ((-1107 . -301) 47549) ((-1181 . -942) 47518) ((-879 . -394) T) ((-1076 . -1016) 47448) ((-1204 . -540) T) ((-1110 . -583) 47427) ((-112 . -821) T) ((-1028 . -480) 47358) ((-561 . -21) T) ((-561 . -25) T) ((-548 . -21) T) ((-548 . -25) T) ((-485 . -25) T) ((-485 . -21) T) ((-1191 . -1111) 47336) ((-1076 . -226) 47288) ((-48 . -130) T) ((-1153 . -101) T) ((-233 . -1063) 47078) ((-840 . -392) 47055) ((-1052 . -101) T) ((-1039 . -101) T) ((-587 . -101) T) ((-466 . -101) T) ((-1191 . -38) 46884) ((-826 . -38) 46854) ((-706 . -169) 46765) ((-627 . -592) 46747) ((-620 . -1047) T) ((-555 . -38) 46734) ((-939 . -592) 46700) ((-927 . -101) 46650) ((-834 . -592) 46632) ((-834 . -593) 46554) ((-573 . -504) NIL) ((-1210 . -1023) T) ((-1203 . -1023) T) ((-1182 . -1023) T) ((-576 . -1023) T) ((-575 . -1023) T) ((-1246 . -1075) T) ((-1133 . -169) 46505) ((-1132 . -169) 46436) ((-1126 . -169) 46367) ((-1088 . -169) 46318) ((-973 . -1063) T) ((-940 . -1063) T) ((-883 . -1063) T) ((-1166 . -145) 46297) ((-773 . -771) 46281) ((-673 . -25) T) ((-673 . -21) T) ((-117 . -615) 46258) ((-675 . -855) 46240) ((-419 . -1063) T) ((-308 . -1176) 46219) ((-305 . -1176) T) ((-166 . -392) 46203) ((-1166 . -143) 46182) ((-465 . -942) 46144) ((-128 . -1063) T) ((-71 . -592) 46126) ((-107 . -769) T) ((-107 . -766) T) ((-308 . -540) 46105) ((-675 . -1007) 46087) ((-305 . -540) T) ((-1246 . -23) T) ((-133 . -1007) 46069) ((-473 . -1022) 45966) ((-45 . -280) 45891) ((-233 . -692) 45833) ((-507 . -101) T) ((-473 . -111) 45723) ((-1056 . -101) 45701) ((-1003 . -101) T) ((-619 . -802) 45680) ((-706 . -504) 45623) ((-1020 . -1022) 45607) ((-1028 . -278) 45582) ((-599 . -21) T) ((-599 . -25) T) ((-514 . -1063) T) ((-353 . -101) T) ((-314 . -101) T) ((-644 . -622) 45556) ((-377 . -1022) 45540) ((-1020 . -111) 45519) ((-790 . -403) 45503) ((-117 . -25) T) ((-88 . -592) 45485) ((-117 . -21) T) ((-587 . -301) 45280) ((-466 . -301) 45084) ((-1110 . -593) NIL) ((-377 . -111) 45063) ((-371 . -101) T) ((-207 . -592) 45045) ((-1110 . -592) 45027) ((-973 . -692) 44977) ((-1126 . -504) 44746) ((-883 . -692) 44698) ((-1088 . -504) 44668) ((-343 . -299) T) ((-1145 . -149) 44618) ((-927 . -301) 44556) ((-808 . -101) T) ((-419 . -692) 44540) ((-218 . -802) T) ((-801 . -101) T) ((-799 . -101) T) ((-470 . -149) 44490) ((-1202 . -1201) 44469) ((-1082 . -1176) T) ((-331 . -1007) 44436) ((-1202 . -1196) 44406) ((-1202 . -1199) 44390) ((-1181 . -1180) 44369) ((-79 . -592) 44351) ((-874 . -592) 44333) ((-1181 . -1196) 44310) ((-1082 . -540) T) ((-890 . -821) T) ((-745 . -821) T) ((-478 . -593) 44240) ((-478 . -592) 44222) ((-371 . -276) T) ((-646 . -821) T) ((-1181 . -1178) 44206) ((-1204 . -1075) T) ((-210 . -593) 44136) ((-210 . -592) 44118) ((-1028 . -583) 44093) ((-58 . -149) 44077) ((-506 . -149) 44061) ((-486 . -149) 44045) ((-351 . -1237) 44029) ((-345 . -1237) 44013) ((-337 . -1237) 43997) ((-308 . -355) 43976) ((-305 . -355) T) ((-473 . -1016) 43906) ((-668 . -615) 43888) ((-1240 . -622) 43862) ((-1238 . -622) 43836) ((-1204 . -23) T) ((-663 . -480) 43820) ((-63 . -592) 43802) ((-1076 . -769) 43753) ((-1076 . -766) 43704) ((-534 . -480) 43641) ((-644 . -34) T) ((-473 . -226) 43593) ((-287 . -280) 43572) ((-233 . -169) 43551) ((-790 . -1023) T) ((-44 . -622) 43509) ((-1043 . -360) 43460) ((-706 . -282) 43391) ((-510 . -504) 43324) ((-791 . -1022) 43275) ((-1051 . -143) 43254) ((-351 . -360) 43233) ((-345 . -360) 43212) ((-337 . -360) 43191) ((-1051 . -145) 43170) ((-840 . -224) 43147) ((-791 . -111) 43089) ((-756 . -143) 43068) ((-756 . -145) 43047) ((-256 . -918) 43014) ((-243 . -819) 42993) ((-240 . -918) 42938) ((-242 . -819) 42917) ((-754 . -143) 42896) ((-754 . -145) 42875) ((-150 . -622) 42849) ((-445 . -145) 42828) ((-445 . -143) 42807) ((-644 . -701) T) ((-797 . -592) 42789) ((-1210 . -1063) T) ((-1203 . -1063) T) ((-1182 . -1063) T) ((-1166 . -1160) 42755) ((-1166 . -1157) 42721) ((-1133 . -282) 42700) ((-1132 . -282) 42651) ((-1126 . -282) 42602) ((-1088 . -282) 42581) ((-331 . -869) 42562) ((-973 . -169) T) ((-883 . -169) T) ((-576 . -1063) T) ((-575 . -1063) T) ((-668 . -21) T) ((-668 . -25) T) ((-465 . -1199) 42546) ((-465 . -1196) 42516) ((-410 . -278) 42444) ((-308 . -1075) 42293) ((-305 . -1075) T) ((-1166 . -35) 42259) ((-1166 . -94) 42225) ((-83 . -592) 42207) ((-90 . -101) 42185) ((-1246 . -130) T) ((-562 . -143) T) ((-562 . -145) 42167) ((-508 . -145) 42149) ((-508 . -143) T) ((-308 . -23) 42001) ((-40 . -334) 41975) ((-305 . -23) T) ((-1118 . -625) 41957) ((-789 . -622) 41805) ((-1233 . -1023) T) ((-1118 . -365) 41787) ((-1054 . -101) T) ((-166 . -224) 41771) ((-1031 . -101) T) ((-1005 . -101) T) ((-988 . -101) T) ((-573 . -480) 41753) ((-602 . -101) T) ((-233 . -504) 41686) ((-474 . -101) T) ((-1240 . -701) T) ((-1238 . -701) T) ((-211 . -101) T) ((-1137 . -1022) 41569) ((-1137 . -111) 41438) ((-791 . -1016) T) ((-655 . -1047) T) ((-650 . -1047) T) ((-505 . -101) T) ((-500 . -101) T) ((-48 . -615) 41398) ((-498 . -101) T) ((-469 . -1047) T) ((-1230 . -1022) 41368) ((-137 . -1047) T) ((-136 . -1047) T) ((-132 . -1047) T) ((-1003 . -38) 41352) ((-791 . -226) T) ((-791 . -236) 41331) ((-1230 . -111) 41296) ((-534 . -278) 41275) ((-1210 . -692) 41172) ((-1203 . -692) 41013) ((-585 . -92) T) ((-1191 . -224) 40997) ((-1028 . -593) NIL) ((-1028 . -592) 40979) ((-645 . -92) T) ((-177 . -92) T) ((-158 . -92) T) ((-153 . -92) T) ((-1182 . -692) 40775) ((-972 . -889) T) ((-677 . -592) 40744) ((-150 . -701) T) ((-1076 . -360) 40723) ((-973 . -504) NIL) ((-243 . -403) 40692) ((-242 . -403) 40661) ((-993 . -25) T) ((-993 . -21) T) ((-576 . -692) 40634) ((-575 . -692) 40531) ((-773 . -278) 40489) ((-126 . -101) 40467) ((-807 . -1007) 40363) ((-166 . -802) 40342) ((-311 . -622) 40239) ((-789 . -34) T) ((-689 . -101) T) ((-1082 . -1075) T) ((-128 . -504) NIL) ((-995 . -1172) T) ((-371 . -38) 40204) ((-346 . -25) T) ((-346 . -21) T) ((-159 . -101) T) ((-154 . -101) T) ((-347 . -1225) 40188) ((-344 . -1225) 40172) ((-336 . -1225) 40156) ((-166 . -341) 40135) ((-548 . -821) T) ((-485 . -821) T) ((-1082 . -23) T) ((-86 . -592) 40117) ((-675 . -299) T) ((-808 . -38) 40087) ((-801 . -38) 40057) ((-1204 . -130) T) ((-1110 . -280) 40036) ((-933 . -767) 39989) ((-933 . -768) 39942) ((-789 . -765) 39921) ((-116 . -299) T) ((-90 . -301) 39859) ((-649 . -34) T) ((-534 . -583) 39838) ((-48 . -25) T) ((-48 . -21) T) ((-789 . -768) 39789) ((-789 . -767) 39768) ((-675 . -991) T) ((-627 . -1022) 39752) ((-933 . -701) 39651) ((-789 . -701) 39561) ((-933 . -464) 39514) ((-473 . -769) 39465) ((-473 . -766) 39416) ((-879 . -1225) 39403) ((-1137 . -1016) T) ((-627 . -111) 39382) ((-1137 . -318) 39359) ((-1158 . -101) 39337) ((-1064 . -592) 39319) ((-675 . -533) T) ((-790 . -1063) T) ((-1230 . -1016) T) ((-405 . -1063) T) ((-243 . -1023) 39249) ((-242 . -1023) 39179) ((-281 . -622) 39166) ((-573 . -278) 39141) ((-663 . -661) 39099) ((-932 . -592) 39081) ((-841 . -101) T) ((-710 . -592) 39063) ((-690 . -592) 39045) ((-1210 . -169) 38996) ((-1203 . -169) 38927) ((-1182 . -169) 38858) ((-673 . -821) T) ((-973 . -282) T) ((-444 . -592) 38840) ((-603 . -701) T) ((-59 . -1063) 38818) ((-238 . -149) 38802) ((-883 . -282) T) ((-993 . -981) T) ((-603 . -464) T) ((-687 . -1176) 38781) ((-576 . -169) 38760) ((-575 . -169) 38711) ((-1218 . -821) 38690) ((-687 . -540) 38601) ((-399 . -889) T) ((-399 . -794) 38580) ((-311 . -768) T) ((-311 . -701) T) ((-410 . -592) 38562) ((-410 . -593) 38470) ((-619 . -1109) 38454) ((-110 . -625) 38436) ((-171 . -299) T) ((-126 . -301) 38374) ((-110 . -365) 38356) ((-390 . -1172) T) ((-308 . -130) 38227) ((-305 . -130) T) ((-68 . -387) T) ((-110 . -123) T) ((-510 . -480) 38211) ((-628 . -1075) T) ((-573 . -19) 38193) ((-60 . -432) T) ((-60 . -387) T) ((-798 . -1063) T) ((-573 . -583) 38168) ((-468 . -1007) 38128) ((-627 . -1016) T) ((-628 . -23) T) ((-1233 . -1063) T) ((-31 . -101) T) ((-790 . -692) 37977) ((-117 . -821) NIL) ((-1131 . -403) 37961) ((-1087 . -403) 37945) ((-825 . -403) 37929) ((-842 . -101) 37880) ((-1202 . -101) T) ((-1182 . -504) 37649) ((-515 . -92) T) ((-1158 . -301) 37587) ((-304 . -592) 37569) ((-1181 . -101) T) ((-1065 . -1063) T) ((-1133 . -278) 37554) ((-1132 . -278) 37539) ((-281 . -701) T) ((-107 . -878) NIL) ((-663 . -592) 37471) ((-663 . -593) 37432) ((-1043 . -622) 37342) ((-580 . -592) 37324) ((-534 . -593) NIL) ((-534 . -592) 37306) ((-1126 . -278) 37154) ((-478 . -1022) 37104) ((-686 . -443) T) ((-501 . -499) 37083) ((-497 . -499) 37062) ((-210 . -1022) 37012) ((-351 . -622) 36964) ((-345 . -622) 36916) ((-218 . -819) T) ((-337 . -622) 36868) ((-581 . -101) 36818) ((-473 . -360) 36797) ((-107 . -622) 36747) ((-478 . -111) 36681) ((-233 . -480) 36665) ((-335 . -145) 36647) ((-335 . -143) T) ((-166 . -362) 36618) ((-912 . -1216) 36602) ((-210 . -111) 36536) ((-841 . -301) 36501) ((-912 . -1063) 36451) ((-773 . -593) 36412) ((-773 . -592) 36394) ((-693 . -101) T) ((-323 . -1063) T) ((-1082 . -130) T) ((-689 . -38) 36364) ((-308 . -483) 36343) ((-490 . -1172) T) ((-1202 . -276) 36309) ((-1181 . -276) 36275) ((-319 . -149) 36259) ((-1028 . -280) 36234) ((-1233 . -692) 36204) ((-1119 . -34) T) ((-1242 . -1007) 36181) ((-459 . -592) 36163) ((-475 . -34) T) ((-373 . -1007) 36147) ((-1131 . -1023) T) ((-1087 . -1023) T) ((-825 . -1023) T) ((-1027 . -819) T) ((-790 . -169) 36058) ((-510 . -278) 36035) ((-128 . -480) 36017) ((-117 . -961) 35994) ((-1210 . -282) 35973) ((-1203 . -282) 35924) ((-1153 . -356) 35898) ((-1052 . -258) 35882) ((-645 . -592) 35848) ((-585 . -592) 35798) ((-465 . -101) T) ((-177 . -592) 35764) ((-158 . -592) 35730) ((-357 . -1063) T) ((-243 . -1063) T) ((-242 . -1063) T) ((-153 . -592) 35696) ((-109 . -1063) T) ((-1182 . -282) 35647) ((-841 . -1111) 35625) ((-1133 . -971) 35591) ((-587 . -356) 35531) ((-1132 . -971) 35497) ((-587 . -222) 35444) ((-573 . -592) 35426) ((-573 . -593) NIL) ((-668 . -821) T) ((-466 . -222) 35376) ((-478 . -1016) T) ((-1126 . -971) 35342) ((-87 . -431) T) ((-87 . -387) T) ((-210 . -1016) T) ((-1088 . -971) 35308) ((-1043 . -701) T) ((-687 . -1075) T) ((-576 . -282) 35287) ((-575 . -282) 35266) ((-478 . -236) T) ((-478 . -226) T) ((-210 . -236) T) ((-210 . -226) T) ((-1125 . -592) 35248) ((-841 . -38) 35200) ((-351 . -701) T) ((-345 . -701) T) ((-337 . -701) T) ((-107 . -768) T) ((-107 . -765) T) ((-510 . -1206) 35184) ((-107 . -701) T) ((-687 . -23) T) ((-1246 . -25) T) ((-465 . -276) 35150) ((-1246 . -21) T) ((-1181 . -301) 35089) ((-1135 . -101) T) ((-40 . -143) 35061) ((-40 . -145) 35033) ((-510 . -583) 35010) ((-1076 . -622) 34858) ((-581 . -301) 34796) ((-45 . -625) 34746) ((-45 . -640) 34696) ((-45 . -365) 34646) ((-1118 . -34) T) ((-840 . -819) NIL) ((-628 . -130) T) ((-476 . -592) 34628) ((-233 . -278) 34605) ((-621 . -34) T) ((-608 . -34) T) ((-1051 . -443) 34556) ((-790 . -504) 34430) ((-756 . -443) 34361) ((-754 . -443) 34312) ((-445 . -443) 34263) ((-921 . -403) 34247) ((-706 . -592) 34229) ((-243 . -692) 34171) ((-242 . -692) 34113) ((-706 . -593) 33974) ((-472 . -403) 33958) ((-331 . -294) T) ((-514 . -92) T) ((-343 . -889) T) ((-969 . -101) 33936) ((-993 . -821) T) ((-59 . -504) 33869) ((-1181 . -1111) 33821) ((-973 . -278) NIL) ((-218 . -1023) T) ((-371 . -802) T) ((-1076 . -34) T) ((-1185 . -1057) 33805) ((-562 . -443) T) ((-508 . -443) T) ((-1185 . -1063) 33783) ((-1185 . -1059) 33740) ((-233 . -583) 33717) ((-1133 . -592) 33699) ((-1132 . -592) 33681) ((-1126 . -592) 33663) ((-1126 . -593) NIL) ((-1088 . -592) 33645) ((-128 . -278) 33620) ((-841 . -392) 33604) ((-524 . -101) T) ((-1202 . -38) 33445) ((-1181 . -38) 33259) ((-839 . -145) T) ((-562 . -394) T) ((-48 . -821) T) ((-508 . -394) T) ((-1214 . -101) T) ((-1204 . -21) T) ((-1204 . -25) T) ((-1076 . -765) 33238) ((-1076 . -768) 33189) ((-1076 . -767) 33168) ((-962 . -1063) T) ((-996 . -34) T) ((-832 . -1063) T) ((-1076 . -701) 33078) ((-638 . -101) T) ((-620 . -101) T) ((-534 . -280) 33057) ((-1145 . -101) T) ((-467 . -34) T) ((-454 . -34) T) ((-347 . -101) T) ((-344 . -101) T) ((-336 . -101) T) ((-256 . -101) T) ((-240 . -101) T) ((-468 . -299) T) ((-1027 . -1023) T) ((-921 . -1023) T) ((-308 . -615) 32963) ((-305 . -615) 32924) ((-472 . -1023) T) ((-470 . -101) T) ((-428 . -592) 32906) ((-1131 . -1063) T) ((-1087 . -1063) T) ((-825 . -1063) T) ((-1101 . -101) T) ((-790 . -282) 32837) ((-932 . -1022) 32720) ((-468 . -991) T) ((-128 . -19) 32702) ((-710 . -1022) 32672) ((-128 . -583) 32647) ((-444 . -1022) 32617) ((-1107 . -1083) 32601) ((-1065 . -504) 32534) ((-932 . -111) 32403) ((-879 . -101) T) ((-710 . -111) 32368) ((-515 . -592) 32334) ((-58 . -101) 32284) ((-510 . -593) 32245) ((-510 . -592) 32157) ((-509 . -101) 32135) ((-506 . -101) 32085) ((-487 . -101) 32063) ((-486 . -101) 32013) ((-444 . -111) 31976) ((-243 . -169) 31955) ((-242 . -169) 31934) ((-410 . -1022) 31908) ((-1166 . -942) 31870) ((-968 . -1075) T) ((-912 . -504) 31803) ((-478 . -769) T) ((-465 . -38) 31644) ((-410 . -111) 31611) ((-478 . -766) T) ((-969 . -301) 31549) ((-210 . -769) T) ((-210 . -766) T) ((-968 . -23) T) ((-687 . -130) T) ((-1181 . -392) 31519) ((-308 . -25) 31371) ((-166 . -403) 31355) ((-308 . -21) 31226) ((-305 . -25) T) ((-305 . -21) T) ((-834 . -360) T) ((-110 . -34) T) ((-473 . -622) 31074) ((-840 . -1023) T) ((-573 . -280) 31049) ((-561 . -145) T) ((-548 . -145) T) ((-485 . -145) T) ((-1131 . -692) 30878) ((-1087 . -692) 30727) ((-1082 . -615) 30709) ((-825 . -692) 30679) ((-644 . -1172) T) ((-1 . -101) T) ((-233 . -592) 30410) ((-1191 . -403) 30394) ((-1145 . -301) 30198) ((-932 . -1016) T) ((-710 . -1016) T) ((-690 . -1016) T) ((-619 . -1063) 30148) ((-1020 . -622) 30132) ((-826 . -403) 30116) ((-501 . -101) T) ((-497 . -101) T) ((-240 . -301) 30103) ((-256 . -301) 30090) ((-932 . -318) 30069) ((-377 . -622) 30053) ((-470 . -301) 29857) ((-243 . -504) 29790) ((-644 . -1007) 29686) ((-242 . -504) 29619) ((-1101 . -301) 29545) ((-793 . -1063) T) ((-773 . -1022) 29529) ((-1210 . -278) 29514) ((-1203 . -278) 29499) ((-1182 . -278) 29347) ((-378 . -1063) T) ((-316 . -1063) T) ((-410 . -1016) T) ((-166 . -1023) T) ((-58 . -301) 29285) ((-773 . -111) 29264) ((-575 . -278) 29249) ((-509 . -301) 29187) ((-506 . -301) 29125) ((-487 . -301) 29063) ((-486 . -301) 29001) ((-410 . -226) 28980) ((-473 . -34) T) ((-973 . -593) 28910) ((-218 . -1063) T) ((-973 . -592) 28892) ((-940 . -592) 28874) ((-940 . -593) 28849) ((-883 . -592) 28831) ((-673 . -145) T) ((-675 . -889) T) ((-675 . -794) T) ((-419 . -592) 28813) ((-1082 . -21) T) ((-128 . -593) NIL) ((-128 . -592) 28795) ((-1082 . -25) T) ((-644 . -369) 28779) ((-116 . -889) T) ((-841 . -224) 28763) ((-77 . -1172) T) ((-126 . -125) 28747) ((-1020 . -34) T) ((-1240 . -1007) 28721) ((-1238 . -1007) 28678) ((-1191 . -1023) T) ((-826 . -1023) T) ((-473 . -765) 28657) ((-347 . -1111) 28636) ((-344 . -1111) 28615) ((-336 . -1111) 28594) ((-473 . -768) 28545) ((-473 . -767) 28524) ((-220 . -34) T) ((-473 . -701) 28434) ((-59 . -480) 28418) ((-555 . -1023) T) ((-1131 . -169) 28309) ((-1087 . -169) 28220) ((-1027 . -1063) T) ((-1051 . -918) 28165) ((-921 . -1063) T) ((-791 . -622) 28116) ((-756 . -918) 28085) ((-688 . -1063) T) ((-754 . -918) 28052) ((-506 . -274) 28036) ((-644 . -869) 27995) ((-472 . -1063) T) ((-445 . -918) 27962) ((-78 . -1172) T) ((-347 . -38) 27927) ((-344 . -38) 27892) ((-336 . -38) 27857) ((-256 . -38) 27706) ((-240 . -38) 27555) ((-879 . -1111) T) ((-599 . -145) 27534) ((-599 . -143) 27513) ((-514 . -592) 27479) ((-117 . -145) T) ((-117 . -143) NIL) ((-406 . -701) T) ((-773 . -1016) T) ((-335 . -443) T) ((-1210 . -971) 27445) ((-1203 . -971) 27411) ((-1182 . -971) 27377) ((-879 . -38) 27342) ((-218 . -692) 27307) ((-311 . -47) 27277) ((-40 . -401) 27249) ((-138 . -592) 27231) ((-968 . -130) T) ((-789 . -1172) T) ((-171 . -889) T) ((-335 . -394) T) ((-510 . -280) 27208) ((-789 . -1007) 27035) ((-45 . -34) T) ((-655 . -101) T) ((-650 . -101) T) ((-636 . -101) T) ((-628 . -21) T) ((-628 . -25) T) ((-1181 . -224) 27005) ((-1065 . -480) 26989) ((-469 . -101) T) ((-649 . -1172) T) ((-238 . -101) 26939) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-840 . -1063) T) ((-1137 . -622) 26864) ((-1027 . -692) 26851) ((-706 . -1022) 26694) ((-1131 . -504) 26641) ((-921 . -692) 26490) ((-1087 . -504) 26442) ((-1229 . -1063) T) ((-1228 . -1063) T) ((-472 . -692) 26291) ((-66 . -592) 26273) ((-706 . -111) 26102) ((-912 . -480) 26086) ((-1230 . -622) 26046) ((-791 . -701) T) ((-1133 . -1022) 25929) ((-1132 . -1022) 25764) ((-1126 . -1022) 25554) ((-1088 . -1022) 25437) ((-972 . -1176) T) ((-1058 . -101) 25415) ((-789 . -369) 25384) ((-972 . -540) T) ((-1133 . -111) 25253) ((-1132 . -111) 25074) ((-1126 . -111) 24843) ((-1088 . -111) 24712) ((-1068 . -1066) 24676) ((-371 . -819) T) ((-1210 . -592) 24658) ((-1203 . -592) 24640) ((-1182 . -592) 24622) ((-1182 . -593) NIL) ((-233 . -280) 24599) ((-40 . -443) T) ((-218 . -169) T) ((-166 . -1063) T) ((-668 . -145) T) ((-668 . -143) NIL) ((-576 . -592) 24581) ((-575 . -592) 24563) ((-867 . -1063) T) ((-812 . -1063) T) ((-782 . -1063) T) ((-743 . -1063) T) ((-632 . -823) 24547) ((-651 . -1063) T) ((-789 . -869) 24479) ((-40 . -394) NIL) ((-1082 . -635) T) ((-840 . -692) 24424) ((-243 . -480) 24408) ((-242 . -480) 24392) ((-687 . -615) 24340) ((-627 . -622) 24314) ((-287 . -34) T) ((-706 . -1016) T) ((-562 . -1225) 24301) ((-508 . -1225) 24278) ((-1191 . -1063) T) ((-1131 . -282) 24189) ((-1087 . -282) 24120) ((-1027 . -169) T) ((-826 . -1063) T) ((-921 . -169) 24031) ((-756 . -1194) 24015) ((-619 . -504) 23948) ((-76 . -592) 23930) ((-706 . -318) 23895) ((-1137 . -701) T) ((-555 . -1063) T) ((-472 . -169) 23806) ((-238 . -301) 23744) ((-128 . -280) 23719) ((-1102 . -1075) T) ((-69 . -592) 23701) ((-1230 . -701) T) ((-1133 . -1016) T) ((-1132 . -1016) T) ((-319 . -101) 23651) ((-1126 . -1016) T) ((-1102 . -23) T) ((-1088 . -1016) T) ((-90 . -1083) 23635) ((-835 . -1075) T) ((-1133 . -226) 23594) ((-1132 . -236) 23573) ((-1132 . -226) 23525) ((-1126 . -226) 23412) ((-1126 . -236) 23391) ((-311 . -869) 23297) ((-835 . -23) T) ((-166 . -692) 23125) ((-399 . -1176) T) ((-1064 . -360) T) ((-993 . -145) T) ((-972 . -355) T) ((-839 . -443) T) ((-912 . -278) 23102) ((-308 . -821) T) ((-305 . -821) NIL) ((-843 . -101) T) ((-687 . -25) T) ((-399 . -540) T) ((-687 . -21) T) ((-346 . -145) 23084) ((-346 . -143) T) ((-1107 . -1063) 23062) ((-444 . -695) T) ((-74 . -592) 23044) ((-114 . -821) T) ((-238 . -274) 23028) ((-233 . -1022) 22925) ((-80 . -592) 22907) ((-710 . -360) 22860) ((-1135 . -802) T) ((-712 . -228) 22844) ((-1119 . -1172) T) ((-139 . -228) 22826) ((-233 . -111) 22716) ((-1191 . -692) 22545) ((-48 . -145) T) ((-840 . -169) T) ((-826 . -692) 22515) ((-475 . -1172) T) ((-921 . -504) 22462) ((-627 . -701) T) ((-555 . -692) 22449) ((-1003 . -1023) T) ((-472 . -504) 22392) ((-912 . -19) 22376) ((-912 . -583) 22353) ((-790 . -593) NIL) ((-790 . -592) 22335) ((-973 . -1022) 22285) ((-405 . -592) 22267) ((-243 . -278) 22244) ((-242 . -278) 22221) ((-478 . -878) NIL) ((-308 . -29) 22191) ((-107 . -1172) T) ((-972 . -1075) T) ((-210 . -878) NIL) ((-883 . -1022) 22143) ((-1043 . -1007) 22039) ((-973 . -111) 21973) ((-712 . -669) 21957) ((-256 . -224) 21941) ((-419 . -1022) 21925) ((-371 . -1023) T) ((-972 . -23) T) ((-883 . -111) 21863) ((-668 . -1160) NIL) ((-478 . -622) 21813) ((-107 . -853) 21795) ((-107 . -855) 21777) ((-668 . -1157) NIL) ((-210 . -622) 21727) ((-351 . -1007) 21711) ((-345 . -1007) 21695) ((-319 . -301) 21633) ((-337 . -1007) 21617) ((-218 . -282) T) ((-419 . -111) 21596) ((-59 . -592) 21528) ((-166 . -169) T) ((-1082 . -821) T) ((-107 . -1007) 21488) ((-861 . -1063) T) ((-808 . -1023) T) ((-801 . -1023) T) ((-668 . -35) NIL) ((-668 . -94) NIL) ((-305 . -961) 21449) ((-180 . -101) T) ((-561 . -443) T) ((-548 . -443) T) ((-485 . -443) T) ((-399 . -355) T) ((-233 . -1016) 21379) ((-1110 . -34) T) ((-468 . -889) T) ((-968 . -615) 21327) ((-243 . -583) 21304) ((-242 . -583) 21281) ((-1043 . -369) 21265) ((-840 . -504) 21173) ((-233 . -226) 21125) ((-1118 . -1172) T) ((-798 . -592) 21107) ((-1241 . -1075) T) ((-1233 . -592) 21089) ((-1191 . -169) 20980) ((-107 . -369) 20962) ((-107 . -330) 20944) ((-1027 . -282) T) ((-921 . -282) 20875) ((-773 . -360) 20854) ((-621 . -1172) T) ((-608 . -1172) T) ((-472 . -282) 20785) ((-555 . -169) T) ((-319 . -274) 20769) ((-1241 . -23) T) ((-1166 . -101) T) ((-1153 . -1063) T) ((-1052 . -1063) T) ((-1039 . -1063) T) ((-82 . -592) 20751) ((-686 . -101) T) ((-347 . -341) 20730) ((-587 . -1063) T) ((-344 . -341) 20709) ((-336 . -341) 20688) ((-466 . -1063) T) ((-1145 . -222) 20638) ((-256 . -245) 20600) ((-1102 . -130) T) ((-587 . -589) 20576) ((-1043 . -869) 20509) ((-973 . -1016) T) ((-883 . -1016) T) ((-466 . -589) 20488) ((-1126 . -766) NIL) ((-1126 . -769) NIL) ((-1065 . -593) 20449) ((-470 . -222) 20399) ((-1065 . -592) 20381) ((-973 . -236) T) ((-973 . -226) T) ((-419 . -1016) T) ((-927 . -1063) 20331) ((-883 . -236) T) ((-835 . -130) T) ((-673 . -443) T) ((-814 . -1075) 20310) ((-107 . -869) NIL) ((-1166 . -276) 20276) ((-841 . -819) 20255) ((-1076 . -1172) T) ((-874 . -701) T) ((-166 . -504) 20167) ((-968 . -25) T) ((-874 . -464) T) ((-399 . -1075) T) ((-478 . -768) T) ((-478 . -765) T) ((-879 . -341) T) ((-478 . -701) T) ((-210 . -768) T) ((-210 . -765) T) ((-968 . -21) T) ((-210 . -701) T) ((-814 . -23) 20119) ((-311 . -299) 20098) ((-1004 . -228) 20044) ((-399 . -23) T) ((-912 . -593) 20005) ((-912 . -592) 19917) ((-619 . -480) 19901) ((-45 . -979) 19851) ((-481 . -101) T) ((-323 . -592) 19833) ((-1076 . -1007) 19660) ((-573 . -625) 19642) ((-573 . -365) 19624) ((-335 . -1225) 19601) ((-996 . -1172) T) ((-840 . -282) T) ((-1191 . -504) 19548) ((-467 . -1172) T) ((-454 . -1172) T) ((-566 . -101) T) ((-1131 . -278) 19475) ((-599 . -443) 19454) ((-969 . -964) 19438) ((-1233 . -374) 19410) ((-507 . -1063) T) ((-117 . -443) T) ((-1152 . -101) T) ((-1056 . -1063) 19388) ((-1003 . -1063) T) ((-862 . -821) T) ((-343 . -1176) T) ((-1210 . -1022) 19271) ((-1076 . -369) 19240) ((-1203 . -1022) 19075) ((-1182 . -1022) 18865) ((-1210 . -111) 18734) ((-1203 . -111) 18555) ((-1182 . -111) 18324) ((-1166 . -301) 18311) ((-343 . -540) T) ((-357 . -592) 18293) ((-281 . -299) T) ((-576 . -1022) 18266) ((-575 . -1022) 18149) ((-353 . -1063) T) ((-314 . -1063) T) ((-243 . -592) 18110) ((-242 . -592) 18071) ((-972 . -130) T) ((-109 . -592) 18053) ((-611 . -23) T) ((-668 . -401) 18020) ((-586 . -23) T) ((-632 . -101) T) ((-576 . -111) 17991) ((-575 . -111) 17860) ((-371 . -1063) T) ((-328 . -101) T) ((-166 . -282) 17771) ((-1181 . -819) 17724) ((-689 . -1023) T) ((-1107 . -504) 17657) ((-1076 . -869) 17589) ((-808 . -1063) T) ((-801 . -1063) T) ((-799 . -1063) T) ((-96 . -101) T) ((-142 . -821) T) ((-591 . -853) 17573) ((-110 . -1172) T) ((-1051 . -101) T) ((-1028 . -34) T) ((-756 . -101) T) ((-754 . -101) T) ((-452 . -101) T) ((-445 . -101) T) ((-233 . -769) 17524) ((-233 . -766) 17475) ((-623 . -101) T) ((-1191 . -282) 17386) ((-638 . -610) 17370) ((-619 . -278) 17347) ((-1003 . -692) 17331) ((-555 . -282) T) ((-932 . -622) 17256) ((-1241 . -130) T) ((-710 . -622) 17216) ((-690 . -622) 17203) ((-267 . -101) T) ((-444 . -622) 17133) ((-50 . -101) T) ((-562 . -101) T) ((-508 . -101) T) ((-1210 . -1016) T) ((-1203 . -1016) T) ((-1182 . -1016) T) ((-1210 . -226) 17092) ((-314 . -692) 17074) ((-1203 . -236) 17053) ((-1203 . -226) 17005) ((-1182 . -226) 16892) ((-1182 . -236) 16871) ((-1166 . -38) 16768) ((-973 . -769) T) ((-576 . -1016) T) ((-575 . -1016) T) ((-973 . -766) T) ((-940 . -769) T) ((-940 . -766) T) ((-841 . -1023) T) ((-839 . -838) 16752) ((-108 . -592) 16734) ((-668 . -443) T) ((-371 . -692) 16699) ((-410 . -622) 16673) ((-687 . -821) 16652) ((-686 . -38) 16617) ((-575 . -226) 16576) ((-40 . -699) 16548) ((-343 . -321) 16525) ((-343 . -355) T) ((-1043 . -299) 16476) ((-286 . -1075) 16357) ((-1069 . -1172) T) ((-168 . -101) T) ((-1185 . -592) 16324) ((-814 . -130) 16276) ((-619 . -1206) 16260) ((-808 . -692) 16230) ((-801 . -692) 16200) ((-473 . -1172) T) ((-351 . -299) T) ((-345 . -299) T) ((-337 . -299) T) ((-619 . -583) 16177) ((-399 . -130) T) ((-510 . -640) 16161) ((-107 . -299) T) ((-286 . -23) 16044) ((-510 . -625) 16028) ((-668 . -394) NIL) ((-510 . -365) 16012) ((-283 . -592) 15994) ((-90 . -1063) 15972) ((-107 . -991) T) ((-548 . -141) T) ((-1218 . -149) 15956) ((-473 . -1007) 15783) ((-1204 . -143) 15744) ((-1204 . -145) 15705) ((-1020 . -1172) T) ((-962 . -592) 15687) ((-832 . -592) 15669) ((-790 . -1022) 15512) ((-1054 . -1063) T) ((-1051 . -301) 15499) ((-220 . -1172) T) ((-1031 . -1063) T) ((-1005 . -1063) T) ((-988 . -1063) T) ((-756 . -301) 15486) ((-754 . -301) 15473) ((-1229 . -92) T) ((-790 . -111) 15302) ((-1228 . -92) T) ((-602 . -1063) T) ((-1131 . -593) NIL) ((-1131 . -592) 15284) ((-445 . -301) 15271) ((-474 . -1063) T) ((-1087 . -592) 15253) ((-1087 . -593) 15001) ((-1003 . -169) T) ((-211 . -1063) T) ((-825 . -592) 14983) ((-912 . -280) 14960) ((-587 . -504) 14743) ((-792 . -1007) 14727) ((-466 . -504) 14519) ((-932 . -701) T) ((-710 . -701) T) ((-690 . -701) T) ((-343 . -1075) T) ((-1138 . -592) 14501) ((-216 . -101) T) ((-473 . -369) 14470) ((-505 . -1063) T) ((-500 . -1063) T) ((-498 . -1063) T) ((-773 . -622) 14444) ((-993 . -443) T) ((-927 . -504) 14377) ((-343 . -23) T) ((-611 . -130) T) ((-586 . -130) T) ((-346 . -443) T) ((-233 . -360) 14356) ((-371 . -169) T) ((-1202 . -1023) T) ((-1181 . -1023) T) ((-218 . -971) T) ((-673 . -379) T) ((-410 . -701) T) ((-675 . -1176) T) ((-1102 . -615) 14304) ((-561 . -838) 14288) ((-1119 . -1148) 14264) ((-675 . -540) T) ((-126 . -1063) 14242) ((-1233 . -1022) 14226) ((-689 . -1063) T) ((-473 . -869) 14158) ((-632 . -38) 14128) ((-346 . -394) T) ((-308 . -145) 14107) ((-308 . -143) 14086) ((-116 . -540) T) ((-305 . -145) 14042) ((-305 . -143) 13998) ((-48 . -443) T) ((-159 . -1063) T) ((-154 . -1063) T) ((-1119 . -106) 13945) ((-756 . -1111) 13923) ((-663 . -34) T) ((-1233 . -111) 13902) ((-534 . -34) T) ((-475 . -106) 13886) ((-243 . -280) 13863) ((-242 . -280) 13840) ((-840 . -278) 13791) ((-45 . -1172) T) ((-790 . -1016) T) ((-1137 . -47) 13768) ((-790 . -318) 13730) ((-1051 . -38) 13579) ((-790 . -226) 13558) ((-756 . -38) 13387) ((-754 . -38) 13236) ((-128 . -625) 13218) ((-445 . -38) 13067) ((-128 . -365) 13049) ((-1080 . -101) T) ((-619 . -593) 13010) ((-619 . -592) 12922) ((-562 . -1111) T) ((-508 . -1111) T) ((-1107 . -480) 12906) ((-1158 . -1063) 12884) ((-1102 . -25) T) ((-1102 . -21) T) ((-465 . -1023) T) ((-1182 . -766) NIL) ((-1182 . -769) NIL) ((-968 . -821) 12863) ((-793 . -592) 12845) ((-835 . -21) T) ((-835 . -25) T) ((-773 . -701) T) ((-171 . -1176) T) ((-562 . -38) 12810) ((-508 . -38) 12775) ((-378 . -592) 12757) ((-316 . -592) 12739) ((-166 . -278) 12697) ((-62 . -1172) T) ((-112 . -101) T) ((-841 . -1063) T) ((-171 . -540) T) ((-689 . -692) 12667) ((-286 . -130) 12550) ((-218 . -592) 12532) ((-218 . -593) 12462) ((-972 . -615) 12401) ((-1233 . -1016) T) ((-1082 . -145) T) ((-608 . -1148) 12376) ((-706 . -878) 12355) ((-573 . -34) T) ((-621 . -106) 12339) ((-608 . -106) 12285) ((-1191 . -278) 12212) ((-706 . -622) 12137) ((-287 . -1172) T) ((-1137 . -1007) 12033) ((-1126 . -878) NIL) ((-1027 . -593) 11948) ((-1027 . -592) 11930) ((-921 . -592) 11912) ((-335 . -101) T) ((-243 . -1022) 11809) ((-242 . -1022) 11706) ((-386 . -101) T) ((-31 . -1063) T) ((-921 . -593) 11567) ((-688 . -592) 11549) ((-1231 . -1165) 11518) ((-472 . -592) 11500) ((-472 . -593) 11361) ((-240 . -403) 11345) ((-256 . -403) 11329) ((-243 . -111) 11219) ((-242 . -111) 11109) ((-1133 . -622) 11034) ((-1132 . -622) 10931) ((-1126 . -622) 10783) ((-1088 . -622) 10708) ((-343 . -130) T) ((-81 . -432) T) ((-81 . -387) T) ((-972 . -25) T) ((-972 . -21) T) ((-842 . -1063) 10659) ((-841 . -692) 10611) ((-371 . -282) T) ((-166 . -971) 10563) ((-668 . -379) T) ((-968 . -966) 10547) ((-675 . -1075) T) ((-668 . -163) 10529) ((-1202 . -1063) T) ((-1181 . -1063) T) ((-308 . -1157) 10508) ((-308 . -1160) 10487) ((-1124 . -101) T) ((-308 . -928) 10466) ((-133 . -1075) T) ((-116 . -1075) T) ((-581 . -1216) 10450) ((-675 . -23) T) ((-581 . -1063) 10400) ((-90 . -504) 10333) ((-171 . -355) T) ((-308 . -94) 10312) ((-308 . -35) 10291) ((-587 . -480) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-693 . -1063) T) ((-466 . -480) 10162) ((-399 . -615) 10110) ((-627 . -1007) 10006) ((-927 . -480) 9990) ((-347 . -1023) T) ((-344 . -1023) T) ((-336 . -1023) T) ((-256 . -1023) T) ((-240 . -1023) T) ((-840 . -593) NIL) ((-840 . -592) 9972) ((-1241 . -21) T) ((-1229 . -592) 9938) ((-1228 . -592) 9904) ((-555 . -971) T) ((-706 . -701) T) ((-1241 . -25) T) ((-243 . -1016) 9834) ((-242 . -1016) 9764) ((-71 . -1172) T) ((-243 . -226) 9716) ((-242 . -226) 9668) ((-40 . -101) T) ((-879 . -1023) T) ((-1140 . -101) T) ((-1133 . -701) T) ((-1132 . -701) T) ((-1126 . -701) T) ((-1126 . -765) NIL) ((-1126 . -768) NIL) ((-923 . -101) T) ((-890 . -101) T) ((-1088 . -701) T) ((-745 . -101) T) ((-646 . -101) T) ((-465 . -1063) T) ((-331 . -1075) T) ((-171 . -1075) T) ((-311 . -889) 9647) ((-1202 . -692) 9488) ((-841 . -169) T) ((-1181 . -692) 9302) ((-814 . -21) 9254) ((-814 . -25) 9206) ((-238 . -1109) 9190) ((-126 . -504) 9123) ((-399 . -25) T) ((-399 . -21) T) ((-331 . -23) T) ((-166 . -593) 8891) ((-166 . -592) 8873) ((-171 . -23) T) ((-619 . -280) 8850) ((-510 . -34) T) ((-867 . -592) 8832) ((-88 . -1172) T) ((-812 . -592) 8814) ((-782 . -592) 8796) ((-743 . -592) 8778) ((-651 . -592) 8760) ((-233 . -622) 8608) ((-1135 . -1063) T) ((-1131 . -1022) 8431) ((-1110 . -1172) T) ((-1087 . -1022) 8274) ((-825 . -1022) 8258) ((-1131 . -111) 8067) ((-1087 . -111) 7896) ((-825 . -111) 7875) ((-1191 . -593) NIL) ((-1191 . -592) 7857) ((-335 . -1111) T) ((-826 . -592) 7839) ((-1039 . -278) 7818) ((-79 . -1172) T) ((-973 . -878) NIL) ((-587 . -278) 7794) ((-1158 . -504) 7727) ((-478 . -1172) T) ((-555 . -592) 7709) ((-466 . -278) 7688) ((-507 . -92) T) ((-210 . -1172) T) ((-1051 . -224) 7672) ((-281 . -889) T) ((-791 . -299) 7651) ((-839 . -101) T) ((-756 . -224) 7635) ((-973 . -622) 7585) ((-927 . -278) 7562) ((-883 . -622) 7514) ((-611 . -21) T) ((-611 . -25) T) ((-586 . -21) T) ((-335 . -38) 7479) ((-668 . -699) 7446) ((-478 . -853) 7428) ((-478 . -855) 7410) ((-465 . -692) 7251) ((-210 . -853) 7233) ((-63 . -1172) T) ((-210 . -855) 7215) ((-586 . -25) T) ((-419 . -622) 7189) ((-478 . -1007) 7149) ((-841 . -504) 7061) ((-210 . -1007) 7021) ((-233 . -34) T) ((-969 . -1063) 6999) ((-1202 . -169) 6930) ((-1181 . -169) 6861) ((-687 . -143) 6840) ((-687 . -145) 6819) ((-675 . -130) T) ((-135 . -456) 6796) ((-632 . -630) 6780) ((-1107 . -592) 6712) ((-116 . -130) T) ((-468 . -1176) T) ((-587 . -583) 6688) ((-466 . -583) 6667) ((-328 . -327) 6636) ((-524 . -1063) T) ((-468 . -540) T) ((-1131 . -1016) T) ((-1087 . -1016) T) ((-825 . -1016) T) ((-233 . -765) 6615) ((-233 . -768) 6566) ((-233 . -767) 6545) ((-1131 . -318) 6522) ((-233 . -701) 6432) ((-927 . -19) 6416) ((-478 . -369) 6398) ((-478 . -330) 6380) ((-1087 . -318) 6352) ((-346 . -1225) 6329) ((-210 . -369) 6311) ((-210 . -330) 6293) ((-927 . -583) 6270) ((-1131 . -226) T) ((-638 . -1063) T) ((-620 . -1063) T) ((-1214 . -1063) T) ((-1145 . -1063) T) ((-1051 . -245) 6207) ((-347 . -1063) T) ((-344 . -1063) T) ((-336 . -1063) T) ((-256 . -1063) T) ((-240 . -1063) T) ((-83 . -1172) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1145 . -589) 6142) ((-470 . -1063) T) ((-1101 . -1063) T) ((-470 . -589) 6121) ((-243 . -769) 6072) ((-243 . -766) 6023) ((-242 . -769) 5974) ((-40 . -1111) NIL) ((-242 . -766) 5925) ((-1043 . -889) 5876) ((-973 . -768) T) ((-973 . -765) T) ((-973 . -701) T) ((-940 . -768) T) ((-883 . -701) T) ((-90 . -480) 5860) ((-478 . -869) NIL) ((-879 . -1063) T) ((-218 . -1022) 5825) ((-841 . -282) T) ((-210 . -869) NIL) ((-807 . -1075) 5804) ((-58 . -1063) 5754) ((-509 . -1063) 5732) ((-506 . -1063) 5682) ((-487 . -1063) 5660) ((-486 . -1063) 5610) ((-561 . -101) T) ((-548 . -101) T) ((-485 . -101) T) ((-465 . -169) 5541) ((-351 . -889) T) ((-345 . -889) T) ((-337 . -889) T) ((-218 . -111) 5497) ((-807 . -23) 5449) ((-419 . -701) T) ((-107 . -889) T) ((-40 . -38) 5394) ((-107 . -794) T) ((-562 . -341) T) ((-508 . -341) T) ((-1181 . -504) 5254) ((-308 . -443) 5233) ((-305 . -443) T) ((-808 . -278) 5212) ((-331 . -130) T) ((-171 . -130) T) ((-286 . -25) 5076) ((-286 . -21) 4959) ((-45 . -1148) 4938) ((-65 . -592) 4920) ((-861 . -592) 4902) ((-581 . -504) 4835) ((-45 . -106) 4785) ((-1065 . -417) 4769) ((-1065 . -360) 4748) ((-1028 . -1172) T) ((-1027 . -1022) 4735) ((-921 . -1022) 4578) ((-472 . -1022) 4421) ((-638 . -692) 4405) ((-1027 . -111) 4390) ((-921 . -111) 4219) ((-468 . -355) T) ((-347 . -692) 4171) ((-344 . -692) 4123) ((-336 . -692) 4075) ((-256 . -692) 3924) ((-240 . -692) 3773) ((-1219 . -101) T) ((-1218 . -101) 3723) ((-1210 . -622) 3648) ((-1182 . -878) NIL) ((-912 . -625) 3632) ((-1054 . -92) T) ((-472 . -111) 3461) ((-1031 . -92) T) ((-1005 . -92) T) ((-912 . -365) 3445) ((-241 . -101) T) ((-988 . -92) T) ((-73 . -592) 3427) ((-932 . -47) 3406) ((-597 . -1075) T) ((-1 . -1063) T) ((-685 . -101) T) ((-673 . -101) T) ((-1203 . -622) 3303) ((-602 . -92) T) ((-1153 . -592) 3285) ((-1052 . -592) 3267) ((-126 . -480) 3251) ((-474 . -92) T) ((-1039 . -592) 3233) ((-382 . -23) T) ((-86 . -1172) T) ((-211 . -92) T) ((-1182 . -622) 3085) ((-879 . -692) 3050) ((-597 . -23) T) ((-587 . -592) 3032) ((-587 . -593) NIL) ((-466 . -593) NIL) ((-466 . -592) 3014) ((-501 . -1063) T) ((-497 . -1063) T) ((-343 . -25) T) ((-343 . -21) T) ((-127 . -301) 2952) ((-121 . -301) 2890) ((-576 . -622) 2877) ((-218 . -1016) T) ((-575 . -622) 2802) ((-371 . -971) T) ((-218 . -236) T) ((-218 . -226) T) ((-927 . -593) 2763) ((-927 . -592) 2675) ((-839 . -38) 2662) ((-1202 . -282) 2613) ((-1181 . -282) 2564) ((-1082 . -443) T) ((-492 . -821) T) ((-308 . -1099) 2543) ((-968 . -145) 2522) ((-968 . -143) 2501) ((-485 . -301) 2488) ((-287 . -1148) 2467) ((-468 . -1075) T) ((-840 . -1022) 2412) ((-599 . -101) T) ((-1158 . -480) 2396) ((-243 . -360) 2375) ((-242 . -360) 2354) ((-287 . -106) 2304) ((-1027 . -1016) T) ((-117 . -101) T) ((-921 . -1016) T) ((-840 . -111) 2233) ((-468 . -23) T) ((-472 . -1016) T) ((-1027 . -226) T) ((-921 . -318) 2202) ((-472 . -318) 2159) ((-347 . -169) T) ((-344 . -169) T) ((-336 . -169) T) ((-256 . -169) 2070) ((-240 . -169) 1981) ((-932 . -1007) 1877) ((-710 . -1007) 1848) ((-507 . -592) 1814) ((-1068 . -101) T) ((-1056 . -592) 1781) ((-1003 . -592) 1763) ((-1210 . -701) T) ((-1203 . -701) T) ((-1182 . -765) NIL) ((-166 . -1022) 1673) ((-1182 . -768) NIL) ((-879 . -169) T) ((-1182 . -701) T) ((-1231 . -149) 1657) ((-972 . -334) 1631) ((-969 . -504) 1564) ((-814 . -821) 1543) ((-548 . -1111) T) ((-465 . -282) 1494) ((-576 . -701) T) ((-353 . -592) 1476) ((-314 . -592) 1458) ((-410 . -1007) 1354) ((-575 . -701) T) ((-399 . -821) 1305) ((-166 . -111) 1201) ((-807 . -130) 1153) ((-712 . -149) 1137) ((-1218 . -301) 1075) ((-478 . -299) T) ((-371 . -592) 1042) ((-510 . -979) 1026) ((-371 . -593) 940) ((-210 . -299) T) ((-139 . -149) 922) ((-689 . -278) 901) ((-478 . -991) T) ((-561 . -38) 888) ((-548 . -38) 875) ((-485 . -38) 840) ((-210 . -991) T) ((-840 . -1016) T) ((-808 . -592) 822) ((-801 . -592) 804) ((-799 . -592) 786) ((-790 . -878) 765) ((-1242 . -1075) T) ((-1191 . -1022) 588) ((-826 . -1022) 572) ((-840 . -236) T) ((-840 . -226) NIL) ((-663 . -1172) T) ((-1242 . -23) T) ((-790 . -622) 497) ((-534 . -1172) T) ((-410 . -330) 481) ((-555 . -1022) 468) ((-1191 . -111) 277) ((-675 . -615) 259) ((-826 . -111) 238) ((-373 . -23) T) ((-1145 . -504) 30) ((-636 . -1063) T) ((-655 . -1063) T) ((-650 . -1063) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 36da215f..36084945 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,986 +1,1115 @@ -(30 . 3430368521) -(4313 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3430739783) +(4330 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| - |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| - |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| - |AlgebraicallyClosedField&| |AlgebraicallyClosedField| - |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| - |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| + |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| + |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| + |AbelianSemiGroup| |AlgebraicallyClosedField&| + |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| + |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst| + |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| - |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| - |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| - |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| - |AnonymousFunction| |AntiSymm| |Any| |AnyFunctions1| - |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| - |TwoDimensionalArrayCategory| |OneDimensionalArray| - |OneDimensionalArrayFunctions2| |TwoDimensionalArray| |Asp1| |Asp10| |Asp12| - |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| - |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| - |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| + |Algebra| |AlgFactor| |AlgebraicFunctionField| + |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| + |AlgebraGivenByStructuralConstants| |AssociationList| + |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| + |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| + |ApplyUnivariateSkewPolynomial| |ApplyRules| + |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| + |OneDimensionalArrayFunctions2| |OneDimensionalArray| + |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| + |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| + |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| + |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean| - |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots| - |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| - |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| - |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |Byte| |ByteArray| |CancellationAbelianMonoid| |CachableSet| - |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| |Category| - |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| - |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| - |CharacteristicZero| |ChangeOfVariable| - |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| - |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| + |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| + |BalancedPAdicInteger| |BalancedPAdicRational| + |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| + |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| + |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| + |BinaryTree| |ByteArray| |Byte| |CancellationAbelianMonoid| + |CachableSet| |CapsuleAst| |CardinalNumber| + |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst| + |Category| |CharacterClass| |CommonDenominator| + |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| + |CharacteristicPolynomialPackage| |CharacteristicZero| + |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| + |Collection&| |Collection| |CliffordAlgebra| + |TwoDimensionalPlotClipping| |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| - |CombinatorialOpsCategory| |Commutator| |CommonOperators| - |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| - |ComplexFactorization| |Complex| |ComplexFunctions2| |ComplexPattern| - |SubSpaceComponentProperty| |CommutativeRing| |Conduit| |ContinuedFraction| - |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| - |ComplexPatternMatch| |CRApackage| |CoerceAst| |ComplexRootFindingPackage| - |CyclicStreamTools| |ConstructorCall| |ComplexTrigonometricManipulations| - |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| - |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| - |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| - |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| - |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| - |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| - |d03fafAnnaType| |DataBuffer| |Database| |DoubleResultantPackage| - |DistinctDegreeFactorize| |DecimalExpansion| - |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| - |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| - |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| - |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| + |CombinatorialOpsCategory| |CommaAst| |Commutator| |CommonOperators| + |CommuteUnivariatePolynomialCategory| |ComplexCategory&| + |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| + |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| + |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| + |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| + |CRApackage| |CoerceAst| |ComplexRootFindingPackage| + |CyclicStreamTools| |ConstructorCall| + |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| + |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| + |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| + |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| + |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| + |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| + |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database| + |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| + |DefinitionAst| |ElementaryFunctionDefiniteIntegration| + |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| + |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| + |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| + |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| - |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| - |DirectProductCategory| |DirectProduct| |DirectProductFunctions2| - |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| - |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| + |DictionaryOperations| |DiophantineSolutionPackage| + |DirectProductCategory&| |DirectProductCategory| + |DirectProductFunctions2| |DirectProduct| |DisplayPackage| + |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| + |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| - |DequeueAggregate| |TopLevelDrawFunctions| - |TopLevelDrawFunctionsForCompiledFunctions| - |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| - |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| - |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial| + |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| + |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| + |DrawNumericHack| |TopLevelDrawFunctions| + |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| + |DrawOptionFunctions1| |DrawOption| + |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| - |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| + |ExtAlgBasis| |ElementaryFunction| + |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| - |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| - |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment| - |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| - |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| - |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| - |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| - |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| - |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| - |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2| - |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| - |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| - |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| - |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| - |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| - |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| - |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2| - |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| - |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| - |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| - |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| + |EllipticFunctionsUnivariateTaylorSeries| |Eltable| + |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| + |EntireRing| |Environment| |EigenPackage| |EquationFunctions2| + |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| + |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| + |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| + |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| + |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| + |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit| + |ExponentialExpansion| |ExpressionFunctions2| + |ExpressionToUnivariatePowerSeries| |Expression| + |ExpressionSpaceODESolver| |ExpressionTubePlot| + |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| + |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| + |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| + |FiniteAbelianMonoidRing| |FlexibleArray| + |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| + |FortranCode| |FourierComponent| |FortranCodePackage1| + |FiniteDivisorFunctions2| |FiniteDivisorCategory&| + |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| + |FullyEvalableOver| |FortranExpression| + |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| + |FunctionFieldCategory| |FiniteFieldCyclicGroup| + |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| - |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| - |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| - |FiniteFieldNormalBasisExtensionByPolynomial| - |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial| - |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| + |FiniteFieldHomomorphisms| |FiniteFieldCategory&| + |FiniteFieldCategory| |FunctionFieldIntegralBasis| + |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| + |FiniteFieldNormalBasisExtension| |FiniteField| + |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| + |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| - |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| - |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| - |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| - |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| - |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| - |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| - |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| - |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid| - |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| - |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat| - |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory| - |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion| - |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| - |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| - |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| - |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| - |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| + |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| + |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| + |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| + |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| + |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| + |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| + |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| + |FreeModuleCat| |FortranMatrixCategory| + |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| + |FortranMachineTypeCategory| |FileName| |FileNameCategory| + |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| + |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| + |FortranFunctionCategory| |FortranPackage| |FortranProgram| + |FullPartialFractionExpansion| |FullyPatternMatchable| + |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| + |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| + |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| + |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| + |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| - |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| - |FunctionSpace| |FunctionSpaceFunctions2| - |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| - |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2| - |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| + |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| + |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| + |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| + |FiniteSetAggregate&| |FiniteSetAggregate| + |FunctionSpaceComplexIntegration| |FourierSeries| + |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| - |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| - |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| - |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| - |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| - |GaussianFactorizationPackage| |GroebnerPackage| + |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| + |FortranType| |FunctionCalled| |FortranVectorCategory| + |FortranVectorFunctionCategory| |GaloisGroupFactorizer| + |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| + |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| - |GroebnerInternalPackage| |GcdDomain&| |GcdDomain| - |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| - |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| + |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| + |GenericNonAssociativeAlgebra| + |GeneralDistributedMultivariatePolynomial| |GenExEuclid| + |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| - |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| - |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| - |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| - |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| - |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| - |HomogeneousDirectProduct| |HeadAst| |Heap| |HyperellipticFiniteDivisor| - |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| - |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| + |GeneralModulePolynomial| |GosperSummationMethod| + |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| + |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| + |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| + |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable| + |HallBasis| |HomogeneousDistributedMultivariatePolynomial| + |HomogeneousDirectProduct| |HeadAst| |Heap| + |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| + |HomogeneousAggregate&| |HomogeneousAggregate| |Hostname| + |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| - |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| - |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| - |Identifier| |IndexedDirectProductAbelianGroup| - |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| - |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| - |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| - |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField| - |InnerIndexedTwoDimensionalArray| |IndexedList| - |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| - |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit| + |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| + |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| + |IdealDecompositionPackage| |Identifier| + |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| + |IndexedDirectProductCategory| + |IndexedDirectProductOrderedAbelianMonoid| + |IndexedDirectProductOrderedAbelianMonoidSup| + |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| + |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| + |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| + |InnerMatrixLinearAlgebraFunctions| + |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| + |InAst| |InputByteConduit&| |InputByteConduit| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| - |InnerNumericEigenPackage| |Infinity| |InputForm| |InputFormFunctions1| - |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| - |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| - |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| - |IntegerNumberSystem| |Integer| |InnerTable| |AlgebraicIntegration| - |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| - |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| + |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1| + |InputForm| |InfiniteProductCharacteristicZero| + |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| + |InfiniteProductFiniteField| |InfiniteProductPrimeField| + |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| + |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| + |IntervalCategory| |IntegralDomain&| |IntegralDomain| + |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| - |TranscendentalHermiteIntegration| |AnnaNumericalIntegrationPackage| - |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| - |IntegerRetractions| |RationalFunctionIntegration| |Interval| + |TranscendentalHermiteIntegration| |Integer| + |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| + |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| + |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| - |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit| - |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| - |IntegrationResult| |IntegrationResultFunctions2| - |IntegrationResultToFunction| |IntegerRoots| |IrredPolyOverFiniteField| - |IntegrationResultRFToFunction| |IrrRepSymNatPackage| - |InternalRationalUnivariateRepresentationPackage| |IndexedString| - |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| - |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| - |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| - |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| - |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| - |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo| - |Kovacic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform| - |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| - |LetAst| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction| - |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library| - |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage| - |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| - |List| |ListFunctions2| |ListToMap| |ListFunctions3| |Literal| - |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| - |LinearAggregate| |Localize| |ElementaryFunctionLODESolver| - |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| + |TranscendentalIntegration| |InverseLaplaceTransform| + |InputOutputByteConduit| |InnerPAdicInteger| |InnerPrimeField| + |InternalPrintPackage| |IntegrationResultToFunction| + |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| + |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| + |IrrRepSymNatPackage| + |InternalRationalUnivariateRepresentationPackage| |IsAst| + |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| + |InnerTaylorSeries| |InfiniteTupleFunctions2| + |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| + |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| + |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| + |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| + |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| + |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| + |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst| + |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| + |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| + |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| + |RationalFunctionLimitPackage| |LinearDependence| + |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| + |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule| + |ListMonoidOps| |LinearAggregate&| |LinearAggregate| + |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| - |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| + |LinearOrdinaryDifferentialOperator| + |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| - |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| - |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord| - |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| + |ListAggregate| |LinearSystemMatrixPackage1| + |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| + |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&| + |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1| - |MappingPackage2| |MappingPackage3| |MatrixCategory&| |MatrixCategory| - |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix| - |StorageEfficientMatrixOperations| |Maybe| |MultiVariableCalculusFunctions| - |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| - |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| - |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| - |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| + |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| + |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| + |Matrix| |StorageEfficientMatrixOperations| |Maybe| + |MultiVariableCalculusFunctions| |MatrixCommonDenominator| + |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| + |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| + |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| + |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| - |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| - |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| - |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| - |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| - |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| - |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| - |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| - |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| - |MultisetAggregate| |MoreSystemCommands| |MergeThing| - |MultivariateTaylorSeriesCategory| |MultivariateFactorize| - |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| + |MakeUnaryCompiledFunction| |MultivariateLifting| + |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| + |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| + |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| + |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| + |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| + |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| + |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| + |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| + |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| + |MultivariateFactorize| |MultivariateSquareFree| + |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| - |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| - |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| - |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| - |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| - |NumericComplexEigenPackage| |NumericContinuedFraction| - |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| - |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| - |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| - |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| - |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| - |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| - |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| - |Numeric| |NumberFormats| |NumericalIntegrationCategory| + |NagFittingPackage| |NagOptimisationPackage| + |NagMatrixOperationsPackage| |NagEigenPackage| + |NagLinearEquationSolvingPackage| |NagLapack| + |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| + |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| + |NonAssociativeRing| |NumericComplexEigenPackage| + |NumericContinuedFraction| |NonCommutativeOperatorDivision| + |NumberFieldIntegralBasis| |NumericalIntegrationProblem| + |NonLinearSolvePackage| |NonNegativeInteger| + |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| + |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| + |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| + |NewSparseUnivariatePolynomialFunctions2| + |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| + |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| + |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| - |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&| - |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion| - |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| - |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| - |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| - |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| - |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| - |OrderedDirectProduct| |OrderlyDifferentialPolynomial| - |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| - |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice| - |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath| - |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate| - |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2| - |Operator| |OperationsQuery| |NumericalOptimizationCategory| + |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| + |OrderedCancellationAbelianMonoid| |OctonionCategory&| + |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| + |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| + |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| + |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| + |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| + |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| + |SystemODESolver| |ODETools| |OrderedDirectProduct| + |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| + |OrderlyDifferentialVariable| |OrderedFreeMonoid| + |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| + |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| + |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| + |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| + |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| + |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| - |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| - |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| - |OrderedSet| |UnivariateSkewPolynomialCategory&| - |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| - |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| - |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts| - |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputForm| - |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| - |PadeApproximantPackage| |PAdicInteger| |PAdicIntegerCategory| |PAdicRational| - |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression| - |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| - |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser| - |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| - |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| - |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern| - |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| - |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| - |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| - |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| - |PendantTree| |Permutation| |Permanent| |PermutationCategory| - |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion| + |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| + |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| + |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| + |UnivariateSkewPolynomialCategory| + |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| + |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| + |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&| + |OutputByteConduit| |OutputForm| |OutputPackage| |OrderedVariableList| + |OrdinaryWeightedPolynomials| |PadeApproximants| + |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| + |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette| + |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| + |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| + |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2| + |ParametricSurface| |PartitionsAndPermutations| |Patternable| + |PatternMatchListResult| |PatternMatchable| |PatternMatch| + |PatternMatchResultFunctions2| |PatternMatchResult| + |PatternFunctions1| |PatternFunctions2| |Pattern| + |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| + |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| + |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| + |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| + |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| + |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| - |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| - |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| - |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions| - |PrincipalIdealDomain| |PolynomialInterpolation| - |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot| - |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions| - |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| + |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| + |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| + |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| + |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| + |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| + |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| + |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| + |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| - |AttachPredicates| |FunctionSpaceAttachPredicates| - |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| - |PolynomialNumberTheoryFunctions| |Point| |PolToPol| - |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2| - |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| - |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| - |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing| - |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2| - |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| - |PrintPackage| |Product| |Property| |PropositionalFormula| - |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence| - |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| - |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| - |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| - |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| - |PartialTranscendentalFunctions| |PushVariables| - |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| - |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&| - |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm| - |QueueAggregate| |Quaternion| |QuaternionCategory&| |QuaternionCategory| - |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| |RadicalCategory| - |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| + |FunctionSpaceAttachPredicates| |AttachPredicates| + |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| + |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| + |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| + |PolynomialToUnivariatePolynomial| |PolynomialCategory&| + |PolynomialCategory| |PolynomialCategoryQuotientFunctions| + |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| + |PortNumber| |PlottablePlaneCurveCategory| + |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| + |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| + |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| + |Property| |PropositionalFormula| |PropositionalLogic| + |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst| + |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| + |PlottableSpaceCurveCategory| |PolynomialSetCategory&| + |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| + |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| + |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| + |PushVariables| |PAdicWildFunctionFieldIntegralBasis| + |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| + |QueryEquation| |QuotientFieldCategoryFunctions2| + |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| + |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&| + |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| + |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| + |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| - |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| - |ElementaryRischDESystem| |TranscendentalRischDE| + |RecursiveAggregate| |RealClosedField&| |RealClosedField| + |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| - |RealConstant| |RealZeroPackage| |RealZeroPackageQ| |RealSolvePackage| - |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| - |RadicalEigenPackage| |RepresentationPackage1| |RepresentationPackage2| - |RepeatedDoubling| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| - |Result| |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| - |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| - |RationalFunctionFactorizer| |RegularChain| |RandomIntegerDistributions| - |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| - |RectangularMatrixCategory| |RectangularMatrix| - |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| - |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| - |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| + |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| + |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| + |RegularTriangularSet| |RepresentationPackage1| + |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| + |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| + |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| + |RandomFloatDistributions| |RationalFunctionFactor| + |RationalFunctionFactorizer| |RationalFunction| |RegularChain| + |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| + |RectangularMatrixCategory&| |RectangularMatrixCategory| + |RectangularMatrix| |RectangularMatrixCategoryFunctions2| + |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| + |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| + |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| - |RegularTriangularSetGcdPackage| |RewriteRule| |RuleCalled| |Ruleset| - |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| - |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| - |SingletonAsOrderedSet| |SpadSyntaxCategory&| |SpadSyntaxCategory| - |SortedCache| |Scope| |StructuralConstantsPackage| - |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Segment| - |SegmentFunctions2| |SegmentAst| |SegmentBinding| |SegmentBindingFunctions2| - |SegmentCategory| |SegmentExpansionCategory| |Set| |SetAggregate&| - |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| - |SExpression| |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| - |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| - |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| - |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| - |Signature| |ElementaryFunctionSign| |RationalFunctionSign| - |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| - |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| - |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| - |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| - |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| - |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadParser| - |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| - |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| - |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| - |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| - |StreamInfiniteProduct| |Stream| |StreamFunctions1| |StreamFunctions2| - |StreamFunctions3| |StringCategory| |String| |StringTable| - |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| - |StreamTranscendentalFunctionsNonCommutative| |SubResultantPackage| |SubSpace| + |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| + |RationalUnivariateRepresentationPackage| + |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| + |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| + |SpadSyntaxCategory&| |SpadSyntaxCategory| |SortedCache| |Scope| + |StructuralConstantsPackage| |SequentialDifferentialPolynomial| + |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst| + |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| + |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| + |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| + |SExpressionCategory| |SExpression| |SExpressionOf| + |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| + |SquareFreeRegularTriangularSetGcdPackage| + |SquareFreeRegularTriangularSetCategory| + |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| + |SplitHomogeneousDirectProduct| |SturmHabichtPackage| + |ElementaryFunctionSign| |RationalFunctionSign| |Signature| + |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| + |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| + |SmithNormalForm| |SparseMultivariatePolynomial| + |SparseMultivariateTaylorSeries| + |SquareFreeNormalizedTriangularSetCategory| + |PolynomialSolveByFormulas| |RadicalSolvePackage| + |TransSolvePackageService| |TransSolvePackage| |SortPackage| + |ThreeSpace| |ThreeSpaceCategory| |SpadParser| |SpecialOutputPackage| + |SpecialFunctionCategory| |SplittingNode| |SplittingTree| + |SquareMatrix| |StringAggregate&| |StringAggregate| + |SquareFreeRegularSetDecompositionPackage| + |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| + |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| + |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| + |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| + |StreamTranscendentalFunctionsNonCommutative| + |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| - |RationalFunctionSum| |SparseUnivariatePolynomial| - |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| - |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| - |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| - |SymbolTable| |Syntax| |SystemSolvePackage| |System| |TableauxBumpers| |Table| - |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate| - |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1| - |TextFile| |ToolsForSign| |TopLevelThreeSpace| - |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| + |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| + |SupFractionFactorizer| |SparseUnivariatePolynomial| + |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| + |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| + |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |System| + |TableauxBumpers| |Tableau| |Table| |TangentExpansions| + |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| + |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| + |TopLevelThreeSpace| |TranscendentalFunctionCategory&| + |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| - |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| - |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| - |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| - |UniqueFactorizationDomain&| |UniqueFactorizationDomain| - |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| + |TranscendentalManipulations| |TriangularSetCategory&| + |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| + |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering| + |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| + |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| - |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment| - |UniversalSegmentFunctions2| |UnivariatePolynomial| - |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| + |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| + |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| + |UnivariatePolynomialFunctions2| + |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| - |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&| - |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2| + |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| + |UnivariatePolynomialCategoryFunctions2| + |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| - |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| - |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| + |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| + |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| - |UnivariatePuiseuxSeriesConstructor| - |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| - |UnaryRecursiveAggregate| |UnivariateTaylorSeries| + |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| + |UnivariatePuiseuxSeriesWithExponentialSingularity| + |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| - |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver| - |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory| - |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport| - |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&| - |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| - |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| - |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&| - |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial| - |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| + |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| + |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable| + |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| + |TwoDimensionalViewport| |ThreeDimensionalViewport| + |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| + |VectorSpace| |WeierstrassPreparation| + |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst| + |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| + |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| + |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| + |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| - |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| - |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?| - |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| - |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| - |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| - |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus| - |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter| - |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid| - |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf| - |any| |applyRules| |localUnquote| |setColumn!| |setRow!| |oneDimensionalArray| - |associatedSystem| |uncouplingMatrices| |associatedEquations| |arrayStack| - |setButtonValue| |setAttributeButtonStep| |resetAttributeButtons| - |getButtonValue| |decrease| |increase| |morphism| |balancedFactorisation| - |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| |sylvesterMatrix| - |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| |bfEntry| |bfKeys| - |inspect| |extract!| |bag| |binding| |position!| |test| |false| |true| - |setProperties| |setProperty| |deleteProperty!| |has?| |input| |comparison| - |equality| |nary?| |unary?| |nullary?| |arity| |properties| |derivative| - |constantOperator| |constantOpIfCan| |integerBound| |setright!| |setleft!| - |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| - |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| - |bitior| |bitand| |byte| |subtractIfCan| |setPosition| - |generalizedContinuumHypothesisAssumed| - |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel| - |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |alphanumeric| - |alphabetic| |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| - |upperCase?| |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| - |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| - |find| |e| |clipParametric| |clipWithRanges| |numberOfHues| |blue| |green| - |yellow| |red| |iifact| |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow| - |factorial| |multinomial| |permutation| |stirling1| |stirling2| |summation| - |factorials| |mkcomm| |polarCoordinates| |complex| |imaginary| |solid| - |solid?| |denominators| |numerators| |convergents| |approximants| - |reducedForm| |partialQuotients| |partialDenominators| |partialNumerators| - |reducedContinuedFraction| |push| |bindings| |cartesian| |polar| |cylindrical| - |spherical| |parabolic| |parabolicCylindrical| |paraboloidal| - |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal| |bipolar| - |bipolarCylindrical| |toroidal| |conical| |modTree| |multiEuclideanTree| - |complexZeros| |divisorCascade| |graeffe| |pleskenSplit| - |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound| - |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry| - |arguments| |constructorName| |coerceP| |powerSum| |elementary| |alternating| - |cyclic| |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction| - |cyclotomicDecomposition| |cyclotomicFactorization| |rangeIsFinite| - |functionIsContinuousAtEndPoints| |functionIsOscillatory| |changeName| - |exprHasWeightCosWXorSinWX| |exprHasAlgebraicWeight| - |exprHasLogarithmicWeights| |combineFeatureCompatibility| |sparsityIF| - |stiffnessAndStabilityFactor| |stiffnessAndStabilityOfODEIF| |systemSizeIF| - |expenseOfEvaluationIF| |accuracyIF| |intermediateResultsIF| - |subscriptedVariables| |central?| |elliptic?| |doubleResultant| |distdfact| - |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?| |decimal| - |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?| - |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |doubleFloatFormat| - |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity| - |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength| - |setnext!| |setprevious!| |next| |previous| |datalist| - |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |separant| |initial| - |leader| |isobaric?| |weights| |differentialVariables| |extractBottom!| - |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue| - |makeObject| |recolor| |drawComplex| |drawComplexVectorField| |setRealSteps| - |setImagSteps| |setClipValue| |draw| |option?| |range| |colorFunction| - |curveColor| |pointColor| |clip| |clipBoolean| |style| |toScale| - |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| |space| - |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |finiteBound| - |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix| - |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes| - |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan| - |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| - |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| - |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?| - |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ| - |callForm?| |getIdentifier| |getConstant| |type| |select!| |delete!| |sn| |cn| - |dn| |sncndn| |qsetelt!| |categoryFrame| |currentEnv| |setProperties!| - |getProperties| |setProperty!| |getProperty| |scopes| |eigenvalues| - |eigenvector| |generalizedEigenvector| |generalizedEigenvectors| - |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero| - |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel| - |distribute| |subst| |functionIsFracPolynomial?| |problemPoints| |zerosOf| - |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| |ocf2ocdf| |socf2socdf| - |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| |numberOfOperations| |edf2efi| - |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| |vedf2vef| |df2st| |f2st| - |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| |measure2Result| - |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| |fi2df| |mat| |neglist| - |multiEuclidean| |extendedEuclidean| |euclideanSize| |sizeLess?| - |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| |tubePlot| - |exponentialOrder| |completeEval| |lowerPolynomial| |raisePolynomial| - |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt| - |pomopo!| |mapExponents| |linearAssociatedLog| |linearAssociatedOrder| - |linearAssociatedExp| |createNormalElement| |setLabelValue| |getCode| - |printCode| |code| |operation| |common| |printStatement| |save| |stop| |block| - |cond| |returns| |call| |comment| |continue| |goto| |repeatUntilLoop| - |whileLoop| |forLoop| |sin?| |zeroVector| |zeroSquareMatrix| - |identitySquareMatrix| |lSpaceBasis| |finiteBasis| |principal?| |divisor| - |useNagFunctions| |rationalPoints| |nonSingularModel| |algSplitSimple| - |hyperelliptic| |elliptic| |integralDerivationMatrix| |integralRepresents| - |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity| - |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix| - |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?| - |integralAtInfinity?| |integralBasisAtInfinity| |ramified?| - |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?| - |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus| - |getZechTable| |createZechTable| |createMultiplicationTable| - |createMultiplicationMatrix| |createLowComplexityTable| - |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement| - |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication| - |getMultiplicationMatrix| |getMultiplicationTable| |primitive?| - |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly| - |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly| - |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly| - |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly| - |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers| - |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open| - |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial| - |associatorDependence| |lieAlgebra?| |jordanAlgebra?| - |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?| - |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?| - |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?| - |antiCommutative?| |commutative?| |rightCharacteristicPolynomial| - |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace| - |someBasis| |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort| - |shellSort| |outputSpacing| |outputGeneral| |outputFixed| |outputFloating| - |exp1| |log10| |log2| |rationalApproximation| |relerror| |complexSolve| - |complexRoots| |realRoots| |leadingTerm| |writable?| |readable?| |exists?| - |extension| |directory| |filename| |shallowExpand| |deepExpand| - |clearFortranOutputStack| |showFortranOutputStack| |popFortranOutputStack| - |pushFortranOutputStack| |topFortranOutputStack| |setFormula!| |formula| - |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart| - |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision| - |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor| - |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |nilFactor| - |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module| - |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix| - |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents| - |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP| - |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality| - |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| - |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?| - |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| - |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| - |fortranDouble| |fortranReal| |external?| |scalarTypeOf| - |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine| - |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| - |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| - |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?| - |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| - |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm| - |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree| - |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle| - |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares| - |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis| - |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB| - |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD| - |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO| - |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm| - |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm| - |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm| - |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial| - |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial| - |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow| - |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build| - |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray| - |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits| - |putColorInfo| |appendPoint| |component| |ranges| |pointLists| - |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc| - |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact| - |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host| - |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!| - |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate| - |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay| - |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal| - |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?| - |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp| - |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength| - |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports| - |sequence| |iterationVar| |readBytes!| |readByteIfCan!| |setFieldInfo| |pol| - |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis| - |normalElement| |minimalPolynomial| |increment| |incrementBy| |charpol| - |solve1| |innerEigenvectors| |compile| |declare| |unparse| |flatten| |lambda| - |binary| |packageCall| |interpret| |innerSolve1| |innerSolve| |makeEq| - |modularGcdPrimitive| |modularGcd| |reduction| |signAround| |invmod| |powmod| - |mulmod| |submod| |addmod| |mask| |dec| |inc| |symmetricRemainder| - |positiveRemainder| |bit?| |algint| |algintegrate| |palgintegrate| - |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?| |inf| - |qinterval| |interval| |unit?| |associates?| |unitCanonical| |unitNormal| - |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate| |lfextlimint| - |BasicMethod| |PollardSmallFactor| |showTheFTable| |clearTheFTable| |fTable| - |showAttributes| |entry| |palgint0| |palgextint0| |palglimint0| |palgRDE0| - |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| |fibonacci| |harmonic| - |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors| - |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint| - |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate| - |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate| - |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax| - |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate| - |expintegrate| |tanintegrate| |primextendedint| |expextendedint| - |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac| - |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly| - |inverseLaplace| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer| - |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?| - |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand| - |complexIntegrate| |dimensionOfIrreducibleRepresentation| - |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh| - |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc| - |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos| - |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose| - |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG - |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?| - |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan| - |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |laplace| - |trailingCoefficient| |normalizeIfCan| |polCase| |distFact| |identification| - |LyndonCoordinates| |LyndonBasis| |zeroDimensional?| |fglmIfCan| |groebner| - |lexTriangular| |squareFreeLexTriangular| |belong?| |operator| |erf| |dilog| - |li| |Ci| |Si| |Ei| |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| - |coord| |anticoord| |intcompBasis| |choosemon| |transform| |pack!| |library| - |complexLimit| |limit| |linearlyDependent?| |linearDependence| |solveLinear| - |reducedSystem| |setDifference| |setIntersection| |setUnion| |append| |null| - |nil| |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| - |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm| - |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1| - |symmetricProduct| |symmetricPower| |directSum| - |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve| - |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?| - |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?| - |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D| - |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp| - |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| - |curryRight| |curryLeft| |constantRight| |constantLeft| |twist| - |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat| - |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!| - |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!| - |rightScalarTimes!| |times!| |power!| |nothing| |gradient| |divergence| - |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates| - |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod| - |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent| - |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal| - |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction| - |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction| - |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius| - |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index| - |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower| - |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom| - |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst| - |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference| - |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose| - |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf| - |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf| - |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf| - |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf| - |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf| - |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff| - |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf| - |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf| - |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf| - |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf| - |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef| - |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff| - |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf| - |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf| - |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf| - |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf| - |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf| - |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf| - |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf| - |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf| - |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf| - |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator| - |complexEigenvalues| |complexEigenvectors| |shift| |normalizedAssociate| - |normalize| |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp| - |characteristicPolynomial| |realEigenvalues| |realEigenvectors| - |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant| - |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB| - |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan| - |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces| - |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc| - |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal| - |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| - |imagi| |octon| |ODESolve| |constDsolve| |showTheIFTable| |clearTheIFTable| - |keys| |iFTable| |showIntensityFunctions| |expint| |diff| |algDsolve| - |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE| - |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve| - |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve| - |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters| - |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn| - |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP| - |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp| - |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp| - |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError| - |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString| - |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar| - |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr| - |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger| - |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType| - |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown| - |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?| - |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile| - |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?| - |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop| - |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |getDatabase| - |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?| - |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex| - |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder| - |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient| - |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide| - |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL| - |legendreP| |outputList| |writeBytes!| |writeByteIfCan!| |quo| |rem| |div| >= - > ~= |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| - |bracket| |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| - |presub| |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| - |infix?| |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| - |hspace| |superHeight| |subHeight| |height| |width| |messagePrint| |message| - |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| |digits| - |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark| - |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates| - |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult| - |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed| - |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| - |topPredicate| |setTopPredicate| |patternVariable| |withPredicates| - |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?| - |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |predicate| - |satisfy?| |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| - |PDESolve| |leftFactor| |rightFactorCandidate| |measure| D |ptree| - |coerceImages| |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition| - |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent| - |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints| - |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit| - |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base| - |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| - |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit| - |charthRoot| |conditionP| |solveLinearPolynomialEquation| - |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial| - |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix| - |doubleDisc| |polyred| |padicFraction| |padicallyExpand| - |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom| - |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup| - |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11| - |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup| - |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember| - |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime| - |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve| - |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond| - |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive| - |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints| - |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D| - |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D| - |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D| - |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert| - |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes| - |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor| - |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP| - |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy| - |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials| - |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt| - |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix| - |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print| - |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?| - |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?| - |notOperand| |not?| |variable?| |term| |term?| |and| |or| |implies| |equiv| - |merge!| |resultantEuclidean| |semiResultantEuclidean2| - |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean| - |semiIndiceSubResultantEuclidean| |degreeSubResultant| - |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean| - |lastSubResultantEuclidean| |semiLastSubResultantEuclidean| - |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2| - |semiSubResultantGcdEuclidean1| |discriminantEuclidean| - |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit| - |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard| - |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif| - |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?| - |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches| - |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder| - |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?| - |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect| - |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan| - |unprotectedRemoveRedundantFactors| |removeRedundantFactors| - |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?| - |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials| - |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?| - |linearPolynomials| |bivariate?| |bivariatePolynomials| - |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol| - |interReduce| |roughBasicSet| |crushedSet| - |rewriteSetByReducingWithParticularGenerators| - |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors| - |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents| - |removeRedundantFactorsInContents| |removeRedundantFactorsInPols| - |irreducibleFactors| |lazyIrreducibleFactors| - |removeIrreducibleRedundantFactors| |normalForm| |changeBase| - |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord| - |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan| - |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan| - |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan| - |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan| - |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup| - |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations| - |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator| - |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!| - |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue| - |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits| - |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?| - |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance| - |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial| - |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE| - |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |midpoint| |midpoints| - |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| = |setref| - |deref| |ref| |radicalEigenvectors| |radicalEigenvector| |radicalEigenvalues| - |eigenMatrix| |normalise| |gramschmidt| |orthonormalBasis| - |antisymmetricTensors| |createGenericMatrix| |symmetricTensors| - |tensorProduct| |permutationRepresentation| |completeEchelonBasis| - |createRandomElement| |cyclicSubmodule| |standardBasisOfCyclicSubmodule| - |areEquivalent?| |isAbsolutelyIrreducible?| |meatAxe| |scanOneDimSubspaces| - |double| |expt| |lift| |showArrayValues| |showScalarValues| |expression| - |solveRetract| |variables| |mainVariable| |univariate| |multivariate| - |uniform01| |normal01| |exponential1| |chiSquare1| |normal| |exponential| - |chiSquare| F |t| |factorFraction| |uniform| |binomial| |poisson| |geometric| - |ridHack1| |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column| - |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex| - |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix| - |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart| - |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right| - |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!| - |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold| - |selectMultiDimensionalRoutines| |selectNonFiniteRoutines| - |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines| - |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines| - |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent| - |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient| - |subResultantChain| |halfExtendedSubResultantGcd2| - |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!| - |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical| - |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide| - |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?| - |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial| - |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial| - |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |body| |iterators| - |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?| - |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit| - |invertibleSet| |invertible?| |invertibleElseSplit?| - |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?| - |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo| - |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant| - |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |quotedOperators| - |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create| |clearCache| - |cache| |enterInCache| |currentCategoryFrame| |currentScope| |pushNewContour| - |findBinding| |contours| |structuralConstants| |coordinates| |bounds| - |equation| |incr| |high| |low| |hi| |lo| BY |union| |subset?| - |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex| - |hash| |delta| |member?| |enumerate| |setOfMinN| |elements| - |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer| - |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?| - |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?| - |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?| - |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?| - |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?| - |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!| - |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!| - |stosePrepareSubResAlgo| |stoseInternalLastSubResultant| - |stoseIntegralLastSubResultant| |stoseLastSubResultant| - |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg| - |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet| - |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus| - |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition| - |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0| - |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence| - |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots| - |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature| - |Or| |And| |Not| |xor| |not| |min| |max| ~ |/\\| |\\/| |depth| |top| |pop!| - |push!| |minordet| |determinant| |diagonalProduct| |trace| |diagonal| - |diagonalMatrix| |scalarMatrix| |hermite| |completeHermite| |smith| - |completeSmith| |diophantineSystem| |csubst| |particularSolution| |mapSolve| - |linear| |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| - |aQuartic| |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| - |unvectorise| |bubbleSort!| |insertionSort!| |check| |objects| |lprop| - |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| - |closedCurve?| |closedCurve| |curve?| |curve| |point?| |enterPointData| - |composites| |components| |numberOfComposites| |numberOfComponents| - |create3Space| |parse| |outputAsFortran| |outputAsScript| |outputAsTex| |abs| - |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| - |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| |setStatus!| - |setCondition!| |setValue!| |copy| |status| |value| |empty?| |splitNodeOf!| - |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions| - |updateStatus!| |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| - |leftTrim| |trim| |split| |position| |replace| |match?| |match| |substring?| - |suffix?| |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| - |KrullNumber| |numberOfVariables| |algebraicDecompose| - |transcendentalDecompose| |internalDecompose| |decompose| |upDateBranches| - |printInfo| |preprocess| |internalZeroSetSplit| |internalAugment| |stack| - |possiblyInfinite?| |explicitlyFinite?| |nextItem| |init| |infiniteProduct| - |evenInfiniteProduct| |oddInfiniteProduct| |generalInfiniteProduct| - |filterUntil| |filterWhile| |generate| |showAll?| |showAllElements| |output| - |cons| |delay| |findCycle| |repeating?| |repeating| |exquo| |recip| |integers| - |oddintegers| |int| |mapmult| |deriv| |gderiv| |compose| |addiag| - |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| |power| |sincos| - |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| |cosh| |tanh| - |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| |acsch| - |subresultantVector| |primitivePart| |pointData| |parent| |level| - |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse| - |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2| - |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children| - |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct| |sum| - |outputForm| NOT AND EQ OR GE LE GT LT |sample| |list| |string| |argscript| - |superscript| |subscript| |script| |scripts| |scripted?| |name| |resetNew| - |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf| |printHeader| - |returnType!| |argumentList!| |endSubProgram| |currentSubProgram| - |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable| |symbolTable| - |printTypes| |newTypeLists| |typeLists| |externalList| |typeList| - |parametersOf| |fortranTypeOf| |declare!| |empty| |case| |compound?| - |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce| |solve| - |triangularSystems| |rootDirectory| |hostPlatform| |nativeModuleExtension| - |loadNativeModule| |bumprow| |bumptab| |bumptab1| |untab| |bat1| |bat| |tab1| - |tab| |lex| |slex| |inverse| |maxrow| |mr| |tableau| |listOfLists| |tanSum| - |tanAn| |tanNa| |table| |initTable!| |printInfo!| |startStats!| |printStats!| - |clearTable!| |usingTable?| |printingInfo?| |makingStats?| |extractIfCan| - |insert!| |interpretString| |stripCommentsAndBlanks| |setPrologue!| |setTex!| - |setEpilogue!| |prologue| |new| |tex| |epilogue| |display| |endOfFile?| - |readIfCan!| |readLineIfCan!| |readLine!| |writeLine!| |sign| |nonQsign| - |direction| |createThreeSpace| |pi| |cyclicParents| |cyclicEqual?| - |cyclicEntries| |cyclicCopy| |tree| |cyclic?| |cos| |cot| |csc| |sec| |sin| - |tan| |complexNormalize| |complexElementary| |trigs| |real| |imag| |real?| - |complexForm| |UpTriBddDenomInv| |LowTriBddDenomInv| |simplify| |htrigs| - |simplifyExp| |simplifyLog| |expandPower| |expandLog| |cos2sec| |cosh2sech| - |cot2trig| |coth2trigh| |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| - |sinh2csch| |tan2trig| |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| - |coth2tanh| |removeCosSq| |removeSinSq| |removeCoshSq| |removeSinhSq| - |expandTrigProducts| |fintegrate| |coefficient| |coHeight| |extendIfCan| - |algebraicVariables| |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| - |reduceByQuasiMonic| |collectQuasiMonic| |removeZero| |initiallyReduce| - |headReduce| |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| - |initiallyReduced?| |headReduced?| |stronglyReduced?| |reduced?| |normalized?| - |quasiComponent| |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| - |closed?| |open?| |setClosed| |tube| |point| |unitVector| |cosSinInfo| - |loopPoints| |select| |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| - |getOrder| |less?| |userOrdered?| |largest| |more?| |setVariableOrder| - |getVariableOrder| |resetVariableOrder| |prime?| |rationalFunction| - |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree| - |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator| - |clearDenominator| |splitDenominator| |monicRightFactorIfCan| - |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan| - |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce| - |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite| - |subResultantGcd| |resultant| |discriminant| |pseudoRemainder| |shiftLeft| - |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents| |unmakeSUP| - |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate| |order| - |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents| - |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm| - |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!| - |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail| - |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert| - |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange| - |differentiate| |univariatePolynomial| |integrate| ** |polynomial| - |multiplyCoefficients| |quoByVar| |coefficients| |series| |stFunc1| |stFunc2| - |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP - LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| |outerProduct| |dot| - - |zero| + |vector| |scan| |reduce| |graphCurves| |drawCurves| |update| |show| - |scale| |connect| |region| |points| |units| |getGraph| |putGraph| |graphs| - |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints| - |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface| - |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective| - |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes| - |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options| - |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault| - |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| - |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault| - |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults| - |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| - |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| - |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis| - |localIntegralBasis| |condition| |changeWeightLevel| |characteristicSerie| - |characteristicSet| |medialSet| |Hausdorff| |Frobenius| |transcendenceDegree| - |extensionDegree| |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| - |mirror| |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product| - |LiePolyIfCan| |trunc| |degree| / |quasiRegular| |quasiRegular?| |constant| - |constant?| |coef| |mindeg| |maxdeg| |#| |coerce| |map| |reductum| * - |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve| - |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?| - |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| - |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| + |Record| |Union| |f04axf| |mesh?| |setleaves!| |equality| + |createNormalElement| |trailingCoefficient| |rischDE| ~ |messagePrint| + |resetVariableOrder| |denominators| |zeroOf| |genericLeftNorm| + |f04faf| |mesh| |balancedBinaryTree| |setLabelValue| |normalizeIfCan| + |rischDEsys| |padecf| |prime?| |tail| |numerators| |rootsOf| + |genericLeftTrace| |f04jgf| |polygon?| |sylvesterMatrix| |getCode| + |open| |polCase| |monomRDE| |pade| |rationalFunction| |convergents| + |genericLeftMinimalPolynomial| |f04maf| |polygon| |char| + |bezoutMatrix| |printCode| |distFact| |baseRDE| |root| |taylorIfCan| + |approximants| |hexDigit?| |leftRankPolynomial| |f04mbf| + |closedCurve?| |bezoutResultant| |printStatement| |identification| + |polyRDE| |quotientByP| |removeZeroes| |escape| |reducedForm| + |generic| |f04mcf| |closedCurve| |printInfo| |bezoutDiscriminant| + |block| |LyndonCoordinates| |monomRDEsys| |moduloP| |taylorRep| + |partialQuotients| |ord| |rightUnits| |f04qaf| |curve?| |bfEntry| + |returns| |LyndonBasis| |baseRDEsys| |modulus| |factorSquareFree| + |partialDenominators| |mkIntegral| |leftUnits| |f07adf| |curve| + |float| |bfKeys| |goto| |zeroDimensional?| |weighted| |digits| + |henselFact| |partialNumerators| |compBound| |f07aef| |point?| + |inspect| |repeatUntilLoop| |fglmIfCan| |rdHack1| |generate| + |continuedFraction| |hasHi| |reducedContinuedFraction| |tablePow| + |f07fdf| |enterPointData| |extract!| |whileLoop| |groebner| |midpoint| + |light| |fmecg| |push| |solveid| |pi| |f07fef| |composites| |bag| + |forLoop| |incrementBy| |lexTriangular| |midpoints| |pastel| + |commonDenominator| |bindings| |testModulus| |infinity| |s01eaf| + |components| |sin?| |squareFreeLexTriangular| |mantissa| |realZeros| + |expand| |dark| |clearDenominator| |cartesian| |HenselLift| |s13aaf| + |numberOfComposites| |zeroVector| |belong?| |mainCharacterization| + |filterWhile| |getSyntaxFormsFromFile| |splitDenominator| |polar| + |completeHensel| |s13acf| |numberOfComponents| |zeroSquareMatrix| + |operator| |algebraicOf| |filterUntil| |surface| + |monicRightFactorIfCan| |cylindrical| |multMonom| |kernel| |s13adf| + |create3Space| |identitySquareMatrix| |Ci| |ReduceOrder| |select| + |coordinate| |rightFactorIfCan| |spherical| |draw| |build| |s14aaf| + |outputAsScript| |lSpaceBasis| |Si| |setref| F |partitions| + |leftFactorIfCan| |basisOfRightAnnihilator| |parabolic| |leadingIndex| + |s14abf| |level| |union| |outputAsTex| |finiteBasis| |Ei| |deref| + |conjugates| |monicDecomposeIfCan| |basisOfLeftNucleus| + |parabolicCylindrical| |leadingExponent| |optimize| |s14baf| |abs| + |principal?| |linGenPos| |ref| |shuffle| |monicCompleteDecompose| + |paraboloidal| |basisOfRightNucleus| |GospersMethod| |s15adf| |Beta| + |divisor| |groebgen| |radicalEigenvectors| |shufflein| |divideIfCan| + |basisOfMiddleNucleus| |ellipticCylindrical| |makeObject| + |nextSubsetGray| |s15aef| |digamma| |useNagFunctions| |options| + |totolex| |radicalEigenvector| |sequences| |noKaratsuba| + |prolateSpheroidal| |basisOfNucleus| |firstSubsetGray| |s17acf| + |polygamma| |rationalPoints| |minPol| |makeRecord| + |radicalEigenvalues| |permutations| |karatsubaOnce| |basisOfCenter| + |constantOpIfCan| |oblateSpheroidal| |clipPointsDefault| |coef| + |s17adf| |Gamma| |nonSingularModel| |computeBasis| |eigenMatrix| + |atoms| |karatsuba| |basisOfLeftNucloid| |bipolar| |integerBound| + |drawToScale| |s17aef| |besselJ| |algSplitSimple| |string| |coord| + |normalise| |makeResult| |separate| |bipolarCylindrical| |dom| + |adaptive| |s17aff| |besselY| NOT |hyperelliptic| |anticoord| + |gramschmidt| |is?| |pseudoDivide| |toroidal| |figureUnits| |s17agf| + |besselI| OR |elliptic| |intcompBasis| |orthonormalBasis| |Is| + |pseudoQuotient| |conical| |putColorInfo| |s17ahf| |besselK| AND + |integralDerivationMatrix| |choosemon| |antisymmetricTensors| + |addMatchRestricted| |composite| |appendPoint| |s17ajf| |airyAi| + |nary?| |integralRepresents| |transform| |createGenericMatrix| + |insertMatch| |subResultantGcd| |component| |s17akf| |airyBi| |unary?| + |integralCoordinates| |pack!| |symmetricTensors| |addMatch| + |resultant| |ranges| |s17dcf| |title| |subNode?| |yCoordinates| + |complexLimit| |tensorProduct| |getMatch| |discriminant| |pointLists| + |s17def| |infLex?| |setProperties| |limit| |permutationRepresentation| + |failed?| |pseudoRemainder| |basisOfRightNucloid| |makeGraphImage| + |s17dgf| |setEmpty!| |setProperty| |categoryFrame| + |linearlyDependent?| |completeEchelonBasis| |optpair| |shiftLeft| + |basisOfCentroid| |e| |graphImage| |s17dhf| |setStatus!| + |setProperties!| |linearDependence| |createRandomElement| + |getBadValues| |shiftRight| |groebSolve| |s17dlf| |setCondition!| + |getProperties| |solveLinear| |cyclicSubmodule| |resetBadValues| + |karatsubaDivide| |s18acf| |qualifier| |delta| |setValue!| + |setProperty!| |reducedSystem| |standardBasisOfCyclicSubmodule| + |hasTopPredicate?| |monicDivide| |fortranComplex| |li| |s18adf| + |mainExpression| |empty?| |getProperty| * |next| |duplicates?| + |areEquivalent?| |topPredicate| |divideExponents| |fortranLogical| + |s18aef| |splitNodeOf!| |scopes| |mapGen| |isAbsolutelyIrreducible?| + |rule| |setTopPredicate| |unmakeSUP| |nullary?| |fortranInteger| + |s18aff| |remove!| |eigenvalues| |patternVariable| |makeSUP| |arity| + |fortranDouble| |s18dcf| |subNodeOf?| |eigenvector| + |monomialIntegrate| |shade| |withPredicates| |vectorise| |fortranReal| + |s18def| |nodeOf?| |generalizedEigenvector| |monomialIntPoly| + |nthRootIfCan| |setPredicates| |extend| |entry| |external?| |s19aaf| + |updateStatus!| |generalizedEigenvectors| |inverseLaplace| |expIfCan| + |predicates| |truncate| |scalarTypeOf| |print| |eigenvectors| |iprint| + |logIfCan| |hasPredicate?| |order| |fortranCarriageReturn| |d02gaf| + |subCase?| |factorAndSplit| |elem?| |sinIfCan| |optional?| |terms| + |fortranLiteral| |d02gbf| |removeSuperfluousCases| |rightOne| + |notelem| |cosIfCan| |multiple?| |squareFreePart| |fortranLiteralLine| + |d02kef| |prepareDecompose| |leftOne| |logpart| |tanIfCan| + |processTemplate| |d02raf| |branchIfCan| |rightZero| |ratpart| + |cotIfCan| |OMreceive| |simplifyExp| |makeFR| |d03edf| + |startTableGcd!| |leftZero| |mkAnswer| |secIfCan| |OMsend| + |simplifyLog| |musserTrials| |d03eef| |stopTableGcd!| |true| |swap| + |perfectNthPower?| |cscIfCan| |OMserve| |expandPower| + |stopMusserTrials| |d03faf| |startTableInvSet!| |and| |minPoly| + |perfectNthRoot| |asinIfCan| |makeop| |expandLog| |comment| + |numberOfFactors| |e01baf| |stopTableInvSet!| |point| |freeOf?| + |approxNthRoot| |acosIfCan| |opeval| |cos2sec| |operation| + |modularFactor| |prefix| |e01bef| |stosePrepareSubResAlgo| |operators| + |perfectSquare?| |atanIfCan| |evaluateInverse| |cosh2sech| + |useSingleFactorBound?| |e01bff| |stoseInternalLastSubResultant| + |test| |mainKernel| |perfectSqrt| |acotIfCan| |evaluate| |cot2trig| + |useSingleFactorBound| |e01bgf| |stoseIntegralLastSubResultant| + |series| |distribute| |approxSqrt| |asecIfCan| |conjug| |coth2trigh| + |useEisensteinCriterion?| |e01bhf| |stoseLastSubResultant| + |functionIsFracPolynomial?| |generateIrredPoly| |acscIfCan| |adjoint| + |csc2sin| |useEisensteinCriterion| |e01daf| |stoseInvertible?sqfreg| + |problemPoints| |complexExpand| |sinhIfCan| |getDatabase| |csch2sinh| + |eisensteinIrreducible?| |e01saf| |stoseInvertibleSetsqfreg| |zerosOf| + |complexIntegrate| |coshIfCan| |numericalOptimization| |sec2cos| + |tryFunctionalDecomposition?| |e01sbf| |stoseInvertible?reg| SEGMENT + |min| |singularitiesOf| |dimensionOfIrreducibleRepresentation| + |tanhIfCan| |goodnessOfFit| |sech2cosh| |tryFunctionalDecomposition| + |e01sef| |stoseInvertibleSetreg| |radicalOfLeftTraceForm| + |polynomialZeros| |tower| |irreducibleRepresentation| |cothIfCan| + |whatInfinity| |sin2csc| |btwFact| |property| |e01sff| + |stoseInvertible?| |showTypeInOutput| |setright!| |f2df| |checkRur| + |sechIfCan| |infinite?| |sinh2csch| |beauzamyBound| |e02adf| + |stoseInvertibleSet| |setleft!| |ef2edf| |cAcsch| |finite?| + |cschIfCan| |tan2trig| |concat| |bombieriNorm| |e02aef| + |stoseSquareFreePart| |ocf2ocdf| |cAsech| |asinhIfCan| |pureLex| + |tanh2trigh| |rootBound| |units| |e02agf| |coleman| |socf2socdf| + |cAcoth| |acoshIfCan| |totalLex| |tan2cot| |singleFactorBound| + |e02ahf| |inverseColeman| |df2fi| |cAtanh| |complexNumeric| + |atanhIfCan| |reverseLex| |tanh2coth| |quadraticNorm| |e02ajf| + |listYoungTableaus| |edf2fi| |primitiveMonomials| |cAcosh| + |acothIfCan| |leftLcm| |cot2tan| |infinityNorm| |e02akf| + |makeYoungTableau| |kernels| |edf2df| |reductum| |cAsinh| |asechIfCan| + |rightExtendedGcd| |coth2tanh| |erf| |scaleRoots| |e02baf| + |nextColeman| |expenseOfEvaluation| |cCsch| |acschIfCan| |univariate| + |rightGcd| |removeCosSq| |code| |shiftRoots| |e02bbf| + |nextLatticePermutation| |numberOfOperations| |cSech| |pushdown| + |rightExactQuotient| |removeSinSq| |degreePartition| |e02bcf| + |nextPartition| |compile| |exquo| |edf2efi| |status| |cCoth| |pushup| + |rightRemainder| |removeCoshSq| |dilog| |factorOfDegree| |e02bdf| + |numberOfImproperPartitions| |div| |dfRange| |cTanh| + |reducedDiscriminant| |factor| |rightQuotient| |removeSinhSq| |sin| + |factorsOfDegree| |e02bef| |subSet| |quo| |dflist| |cCosh| + |idealSimplify| |sqrt| |rightLcm| |expandTrigProducts| |cos| + |pascalTriangle| |e02daf| |unrankImproperPartitions0| |df2mf| |parts| + |cSinh| |definingInequation| |real| |leftExtendedGcd| |fintegrate| + |tan| |rangePascalTriangle| |e02dcf| |unrankImproperPartitions1| + |ldf2vmf| |rem| |cAcsc| |definingEquations| |imag| |target| |leftGcd| + |coefficient| |cot| |sizePascalTriangle| |e02ddf| + |subresultantSequence| |leader| |directProduct| |edf2ef| |cAsec| + |setStatus| |leftExactQuotient| |coHeight| |sec| |fillPascalTriangle| + |e02def| |SturmHabichtSequence| |vedf2vef| |cAcot| |quasiAlgebraicSet| + |leftRemainder| |extendIfCan| |safeCeiling| |csc| |lhs| |second| + |e02dff| |SturmHabichtCoefficients| |df2st| |cAtan| |radicalSimplify| + |destruct| |leftQuotient| |algebraicVariables| BY |safeFloor| |asin| + |rhs| |third| |e02gaf| |SturmHabicht| |f2st| |cAcos| |denominator| + |monicLeftDivide| |zeroSetSplitIntoTriangularSystems| |acos| + |safetyMargin| |e02zaf| |countRealRoots| |ldf2lst| |cAsin| |numerator| + |monicRightDivide| |zeroSetSplit| |droot| |atan| |sumSquares| |delete| + |e04dgf| |SturmHabichtMultiple| |sdf2lst| |cCsc| |quadraticForm| + |leftDivide| |reduceByQuasiMonic| |iroot| |acot| |euclideanNormalForm| + |e04fdf| |countRealRootsMultiple| |node| |getlo| |cSec| |monomial| + |back| |rightDivide| |collectQuasiMonic| |size?| |asec| + |euclideanGroebner| |e04gcf| |pop!| |gethi| |cCot| |front| + |multivariate| |hermiteH| |removeZero| |eq?| |acsc| + |factorGroebnerBasis| |e04jaf| |push!| |datalist| |initial| + |outputMeasure| |cTan| |rotate!| |variables| |lift| |laguerreL| + |initiallyReduce| |doublyTransitive?| |sinh| |groebnerFactorize| + |e04mbf| |minordet| |measure2Result| |cCos| |dequeue!| |reduce| + |legendreP| |headReduce| |knownInfBasis| |cosh| |credPol| |e04naf| + |determinant| |att2Result| |cSin| |enqueue!| |writeBytes!| + |stronglyReduce| |tanh| |redPol| |e04ucf| |diagonalProduct| + |iflist2Result| |cLog| |quatern| |writeByteIfCan!| + |rewriteSetWithReduction| |rootSplit| |gbasis| |nothing| |coth| + |e04ycf| |top| |setelt| |diagonal| |pdf2ef| |cExp| |imagK| |width| + |blankSeparate| |autoReduced?| |ratDenom| |sech| |continue| |critT| + |f01brf| |diagonalMatrix| |rank| |pdf2df| |cRationalPower| |imagJ| + |taylor| |semicolonSeparate| |initiallyReduced?| |csch| |critM| + |f01bsf| |copy| |scalarMatrix| |rootKerSimp| |df2ef| |cPower| |imagI| + |laurent| |commaSeparate| |headReduced?| |asinh| |critB| |f01maf| + |hermite| |leftRank| |seriesToOutputForm| |conjugate| |puiseux| |pile| + |stronglyReduced?| |acosh| |log10| |critBonD| |f01mcf| + |completeHermite| |deleteProperty!| |finiteBound| |iCompose| |queue| + |match?| |paren| |reduced?| |bitand| |atanh| |critMTonD1| |f01qcf| + |autoCoerce| |smith| |has?| |sortConstraints| |taylorQuoByVar| |inv| + |nthRoot| |equation| |bracket| |normalized?| |acoth| |bitior| + |critMonD1| |f01qdf| |completeSmith| |sumOfSquares| |ground?| |iExquo| + |fractRadix| |optional| |prod| |quasiComponent| |asech| |f01qef| + |diophantineSystem| |lists| |splitLinear| |ground| |getStream| + |wholeRadix| |overlabel| |initials| |fracPart| |f01rcf| |csubst| + |simpleBounds?| |getRef| |leadingMonomial| |cycleRagits| |overbar| + |basicSet| |polyPart| |multiple| |f01rdf| |particularSolution| + |linearMatrix| |say| |makeSeries| |prefixRagits| |leadingCoefficient| + |prime| |infRittWu?| |fullPartialFraction| |applyQuote| |implies| + |f01ref| |mapSolve| |linearPart| |quote| |getCurve| |primeFrobenius| + |f02aaf| |quadratic| |nonLinearPart| |lfextlimint| + |rewriteIdealWithRemainder| = |supersub| |listLoops| |discreteLog| + |xor| |f02abf| |cubic| |quadratic?| |BasicMethod| + |rewriteIdealWithHeadRemainder| |presuper| |closed?| + |decreasePrecision| |ruleset| |f02adf| |quartic| |changeNameToObjf| + |PollardSmallFactor| |precision| |remainder| < |presub| |open?| + |increasePrecision| |optAttributes| |showTheFTable| |headRemainder| > + |super| |setClosed| |constructorName| |bits| |rightPower| + |algebraicCoefficients?| |Nul| |clearTheFTable| |reset| + |roughUnitIdeal?| <= |sub| |tube| |unitNormalize| |suchThat| + |derivationCoordinates| |purelyTranscendental?| |exponents| |fTable| + |roughEqualIdeals?| >= |rarrow| |unitVector| |unit| |one?| + |purelyAlgebraic?| |iisqrt2| |write| |palgint0| |roughSubIdeal?| + |flagFactor| |splitSquarefree| |prepareSubResAlgo| |name| |iisqrt3| + |save| |center| |palgextint0| |roughBase?| |OMputBVar| |bumptab| + |sqfrFactor| |normalDenom| |internalLastSubResultant| |body| |iiexp| + |palglimint0| |trivialIdeal?| + |OMputError| |bumptab1| |primeFactor| + |totalfract| |integralLastSubResultant| |iilog| |palgRDE0| + |collectUpper| - |OMputObject| |untab| |nthFlag| |pushdterm| + |toseLastSubResultant| |binding| |iisin| |palgLODE0| |collect| / + |OMputEndApp| |bat1| |nthExponent| |pushucoef| |toseInvertible?| + |characteristicSerie| |position!| |iicos| |chineseRemainder| + |collectUnder| |OMputEndAtp| |bat| |irreducibleFactor| |pushuconst| + |toseInvertibleSet| |constant| |characteristicSet| |iitan| |divisors| + |mainVariable?| |OMputEndAttr| |tab1| |nilFactor| |numberOfMonomials| + |toseSquareFreePart| |medialSet| |iicot| |eulerPhi| |mainVariables| + |OMputEndBind| |tab| |regularRepresentation| |members| + |quotedOperators| |Hausdorff| |iisec| |fibonacci| |removeSquaresIfCan| + |OMputEndBVar| |lex| |traceMatrix| |multiset| |rur| |clearCache| + |Frobenius| |any| |iicsc| |harmonic| + |unprotectedRemoveRedundantFactors| |OMputEndError| |slex| |randomLC| + |mergeDifference| |create| |transcendenceDegree| |iiasin| |jacobi| + |removeRedundantFactors| |OMputEndObject| |inverse| |minimize| + |squareFreePrim| |enterInCache| |extensionDegree| |iiacos| |retract| + |moebiusMu| |certainlySubVariety?| |OMputInteger| |maxrow| |module| + |compdegd| |currentCategoryFrame| |eq| |inGroundField?| |iiatan| + |numberOfDivisors| |insert| |possiblyNewVariety?| |OMputFloat| + |tableau| |rightRegularRepresentation| |iter| |univcase| + |currentScope| |transcendent?| |charClass| |iiacot| |sumOfDivisors| + |probablyZeroDim?| |OMputVariable| |listOfLists| + |leftRegularRepresentation| |consnewpol| |pushNewContour| |t| + |algebraic?| |iiasec| |sumOfKthPowerDivisors| |nil| + |selectPolynomials| |OMputString| |tanSum| |rightTraceMatrix| + |nsqfree| |findBinding| |sh| |iiacsc| |HermiteIntegrate| + |selectOrPolynomials| |OMputSymbol| |tanAn| |leftTraceMatrix| + |intChoose| |contours| |mirror| |iisinh| |palgint| Y + |selectAndPolynomials| |OMgetApp| |tanNa| |rightDiscriminant| + |coefChoose| |structuralConstants| |monomial?| |iicosh| |palgextint| + |quasiMonicPolynomials| |approximate| |OMgetAtp| |retractIfCan| + |initTable!| |binaryTree| |leftDiscriminant| |dec| |myDegree| + |coordinates| |rquo| |iitanh| |palglimint| |univariate?| |OMgetAttr| + |printInfo!| |byte| |represents| |normDeriv2| |bounds| |exp| |lquo| + |eval| |iicoth| |palgRDE| |univariatePolynomials| |OMgetBind| + |startStats!| |close| |mergeFactors| |plenaryPower| |high| |numer| + |mindegTerm| |iisech| |palgLODE| |linear?| |OMgetBVar| |printStats!| + |isMult| |c02aff| |low| |denom| |product| |iicsch| |splitConstant| + |linearPolynomials| |OMgetError| |clearTable!| |display| |exprToXXP| + |c02agf| |sort| |subset?| |kind| |LiePolyIfCan| |iiasinh| + |pmComplexintegrate| |bivariate?| |OMgetObject| |usingTable?| + |exprToUPS| |c05adf| |symmetricDifference| |trunc| |op| |iiacosh| + |pmintegrate| |bivariatePolynomials| |OMgetEndApp| |printingInfo?| + |exprToGenUPS| |c05nbf| |difference| |degree| |iiatanh| |infieldint| + |removeRoughlyRedundantFactorsInPols| |OMgetEndAtp| |makingStats?| + |localAbs| |c05pbf| |intersect| |quasiRegular| |properties| |iiacoth| + |extendedint| |removeRoughlyRedundantFactorsInPol| |OMgetEndAttr| + |extractIfCan| |universe| |ptree| |c06eaf| |part?| |quasiRegular?| + |showSummary| |translate| |iiasech| |limitedint| |interReduce| + |OMgetEndBind| |insert!| |map| |replace| |input| |complement| |c06ebf| + |random| |latex| |constant?| |iiacsch| |integerIfCan| |roughBasicSet| + |OMgetEndBVar| |interpretString| |library| |cardinality| |c06ecf| + |member?| |mindeg| |specialTrigs| |showAttributes| |internalIntegrate| + |crushedSet| |OMgetEndError| |stripCommentsAndBlanks| + |internalIntegrate0| |c06ekf| |enumerate| |maxdeg| |localReal?| + |infieldIntegrate| |rewriteSetByReducingWithParticularGenerators| + |OMgetEndObject| |setPrologue!| |makeCos| |c06fpf| |setOfMinN| + |RemainderList| |rischNormalize| |limitedIntegrate| + |rewriteIdealWithQuasiMonicGenerators| |OMgetInteger| |setTex!| + |makeSin| |c06fqf| |elements| |unexpand| |realElementary| + |extendedIntegrate| |OMgetFloat| |squareFreeFactors| |setEpilogue!| + |convert| |set| |iiGamma| |c06frf| |replaceKthElement| |triangSolve| + |validExponential| |varselect| |univariatePolynomialsGcds| + |OMgetVariable| |prologue| |iiabs| |c06fuf| |incrementKthElement| + |univariateSolve| |rootNormalize| |interpret| |kmax| + |removeRoughlyRedundantFactorsInContents| |OMgetString| |epilogue| + |bringDown| |c06gbf| |float?| |realSolve| |tanQ| |ksec| |OMgetSymbol| + |removeRedundantFactorsInContents| |endOfFile?| |position| |newReduc| + |c06gcf| |integer?| |positiveSolve| |callForm?| |vark| + |removeRedundantFactorsInPols| |OMgetType| |readIfCan!| |logical?| + |c06gqf| |symbol?| |squareFree| |getIdentifier| |removeConstantTerm| + |irreducibleFactors| |OMencodingBinary| |readLineIfCan!| |character?| + |c06gsf| |substring?| |string?| |linearlyDependentOverZ?| |rightRank| + |getConstant| |mkPrim| |void| |lazyIrreducibleFactors| + |OMencodingSGML| |readLine!| |doubleComplex?| |d01ajf| |list?| + |linearDependenceOverZ| |doubleRank| |select!| |intPatternMatch| + |removeIrreducibleRedundantFactors| |OMencodingXML| |writeLine!| + |currentEnv| |complex?| |d01akf| |suffix?| |pair?| + |solveLinearlyOverQ| |delete!| |primintegrate| |normalForm| + |OMencodingUnknown| |sign| |double?| |d01alf| |atom?| |sn| + |expintegrate| |changeBase| |omError| |nonQsign| |ffactor| |d01amf| + |prefix?| |null?| |dn| |tree| |tanintegrate| |companionBlocks| + |errorInfo| |direction| |show| |qfactor| |d01anf| |startTable!| + |sncndn| |primextendedint| |xCoord| |errorKind| |createThreeSpace| + |UP2ifCan| |d01apf| |stopTable!| |expextendedint| |yCoord| + |OMReadError?| |cyclicParents| |trace| |anfactor| |d01aqf| + |supDimElseRittWu?| |leadingBasisTerm| |primlimitedint| |zCoord| + |OMUnknownSymbol?| |cyclicEqual?| |fortranCharacter| |d01asf| + |algebraicSort| |ignore?| |expr| |explimitedint| |rCoord| + |OMUnknownCD?| |cyclicEntries| |fortranDoubleComplex| |d01bbf| + |moreAlgebraic?| |computeInt| |primextintfrac| |thetaCoord| + |OMParseError?| |cyclicCopy| |d01fcf| |infix?| |subTriSet?| + |checkForZero| |primlimintfrac| |phiCoord| |OMwrite| |cyclic?| + |rightMinimalPolynomial| |mask| |d01gaf| |subPolSet?| + |doubleFloatFormat| |primintfldpoly| |color| |po| |complexNormalize| + |leftMinimalPolynomial| |d01gbf| |internalSubPolSet?| |logGamma| + |variable| |expintfldpoly| |hue| |OMread| |complexElementary| + |associatorDependence| |d02bbf| |internalInfRittWu?| + |hypergeometric0F1| |iterators| |OMreadFile| |trigs| |lieAlgebra?| + |d02bhf| |internalSubQuasiComponent?| |rotatez| |iterationVar| + |primitiveElement| |OMreadStr| |real?| |jordanAlgebra?| |d02cjf| + |subQuasiComponent?| |rotatey| |readBytes!| |nextPrime| |OMlistCDs| + |complexForm| |noncommutativeJordanAlgebra?| |d02ejf| + |removeSuperfluousQuasiComponents| |rotatex| |readByteIfCan!| + |prevPrime| |OMlistSymbols| |UpTriBddDenomInv| |jordanAdmissible?| + |identity| |setFieldInfo| |primes| |OMsupportsCD?| |LowTriBddDenomInv| + |reverse| |lieAdmissible?| |fractionFreeGauss!| |selectODEIVPRoutines| + |rules| |dictionary| |pol| |selectsecond| |OMsupportsSymbol?| + |simplify| |jacobiIdentity?| |invertIfCan| |selectPDERoutines| |/\\| + |dioSolve| |xn| |selectfirst| |OMunhandledSymbol| |htrigs| + |powerAssociative?| |copy!| |selectOptimizationRoutines| |\\/| + |loadNativeModule| |newLine| |dAndcExp| |makeprod| |alternative?| + |plus!| |selectIntegrationRoutines| |copies| |repSq| |equivOperands| + |rombergo| |extractPoint| |error| |flexible?| |minus!| |routines| + |plusInfinity| |sayLength| |expPot| |equiv?| |simpsono| |traverse| + |assert| |rightAlternative?| |leftScalarTimes!| |mainSquareFreePart| + |minusInfinity| |setnext!| |qPot| |impliesOperands| |trapezoidalo| + |defineProperty| |leftAlternative?| |rightScalarTimes!| + |mainPrimitivePart| |setprevious!| |lookup| |implies?| |sup| + |closeComponent| |antiAssociative?| |lambda| |times!| |mainContent| + |padicFraction| |makeViewport2D| |shanksDiscLogAlgorithm| |normal?| + |imagE| |orOperands| |leaves| |modifyPoint| |associative?| |power!| + |primitivePart!| |padicallyExpand| |viewport2D| |reflect| |basis| + |or?| |imagk| |addPointLast| |antiCommutative?| |gradient| + |nextsubResultant2| |numberOfFractionalTerms| |getPickedPoints| + |reify| |normalElement| |andOperands| |imagj| |addPoint2| + |commutative?| |divergence| |LazardQuotient2| |nthFractionalTerm| + |colorDef| |separant| |condition| |minimalPolynomial| |and?| |imagi| + |addPoint| |type| |rightCharacteristicPolynomial| |laplacian| + |LazardQuotient| |firstNumer| |intensity| |digit| |isobaric?| + |increment| |notOperand| |octon| |merge| + |leftCharacteristicPolynomial| |hessian| |subResultantChain| + |firstDenom| |lighting| |weights| |charpol| |variable?| |ODESolve| + |deepCopy| |alphanumeric?| |rightNorm| |bandedHessian| + |halfExtendedSubResultantGcd2| |compactFraction| |clipSurface| + |differentialVariables| |solve1| |term| |constDsolve| |shallowCopy| + |lowerCase?| |leftNorm| |jacobian| |halfExtendedSubResultantGcd1| + |partialFraction| |showClipRegion| |extractBottom!| + |innerEigenvectors| |term?| |showTheIFTable| |numberOfChildren| + |upperCase?| |rightTrace| |bandedJacobian| |extendedSubResultantGcd| + |gcdPrimitive| |showRegion| |extractTop!| |unparse| |equiv| + |clearTheIFTable| |children| |alphabetic?| |leftTrace| |duplicates| + |exactQuotient!| |symmetricGroup| |hitherPlane| |insertBottom!| + |binary| |merge!| |iFTable| |child| |someBasis| |removeDuplicates!| + |shift| |exactQuotient| |alternatingGroup| |eyeDistance| |insertTop!| + |packageCall| |showIntensityFunctions| |resultantEuclidean| |birth| + |cons| |sort!| |linears| |primPartElseUnitCanonical!| |abelianGroup| + |perspective| |bottom!| |innerSolve1| |semiResultantEuclidean2| + |expint| |internal?| |copyInto!| |ddFact| |primPartElseUnitCanonical| + |cyclicGroup| |zoom| |top!| |innerSolve| |diff| + |semiResultantEuclidean1| |root?| |mr| |sorted?| |separateFactors| + |lazyResidueClass| |dihedralGroup| |rotate| |dequeue| |makeEq| + |indiceSubResultant| |algDsolve| |leaf?| |LiePoly| |exptMod| + |monicModulo| |mathieu11| |drawStyle| |recolor| |modularGcdPrimitive| + |indiceSubResultantEuclidean| |denomLODE| |outputForm| |quickSort| + |meshPar2Var| |lazyPseudoDivide| |mathieu12| |outlineRender| + |drawComplex| |modularGcd| |semiIndiceSubResultantEuclidean| + |indicialEquations| |sample| |heapSort| |meshFun2Var| + |lazyPremWithDefault| |mathieu22| |diagonals| |drawComplexVectorField| + |reduction| |indicialEquation| |degreeSubResultant| |argscript| + |source| |shellSort| |meshPar1Var| |lazyPquo| |depth| |mathieu23| + |axes| |setRealSteps| |lp| |signAround| |degreeSubResultantEuclidean| + |denomRicDE| |superscript| |outputSpacing| |ptFunc| |lazyPrem| + |mathieu24| |controlPanel| |setImagSteps| |invmod| + |semiDegreeSubResultantEuclidean| |leadingCoefficientRicDE| + |subscript| |outputGeneral| |varList| |minimumExponent| |pquo| + |janko2| |viewpoint| |setClipValue| |powmod| + |lastSubResultantEuclidean| |constantCoefficientRicDE| |scripted?| + |outputFixed| |maximumExponent| |prem| |rubiksGroup| |dimensions| + |option?| |null| |mulmod| |semiLastSubResultantEuclidean| |changeVar| + |resetNew| |outputFloating| |sum| |rowEch| |youngGroup| |supRittWu?| + |max| |resize| |bright| |range| |case| |submod| + |subResultantGcdEuclidean| |ratDsolve| |symFunc| |exp1| |rowEchLocal| + |RittWuCompare| |lexGroebner| |move| |colorFunction| |addmod| |Zero| + |categories| |semiSubResultantGcdEuclidean2| + |indicialEquationAtInfinity| |symbolTableOf| |log2| |rowEchelonLocal| + |mainMonomials| |totalGroebner| |modifyPointData| |curveColor| |One| + |symmetricRemainder| |semiSubResultantGcdEuclidean1| |reduceLODE| + |argumentListOf| |rationalApproximation| |normalizedDivide| + |mainCoefficients| |expressIdealMember| |subspace| |pointColor| + |positiveRemainder| |discriminantEuclidean| |singRicDE| |returnTypeOf| + |relerror| |maxint| |leastMonomial| |principalIdeal| |makeViewport3D| + |clip| |bit?| |semiDiscriminantEuclidean| |polyRicDE| |printHeader| + |complexSolve| |binaryFunction| |mainMonomial| |LagrangeInterpolation| + |viewport3D| |clipBoolean| |algint| |chainSubResultants| |ricDsolve| + |returnType!| |complexRoots| |makeFloatFunction| |quasiMonic?| |key| + |psolve| |viewDeltaYDefault| |style| |algintegrate| |schema| + |triangulate| |argumentList!| |realRoots| |unaryFunction| |monic?| + |wrregime| |viewDeltaXDefault| |toScale| |palgintegrate| |elt| GE + |resultantReduit| |solveInField| |endSubProgram| |leadingTerm| + |filename| |compiledFunction| |deepestInitial| |rdregime| + |viewZoomDefault| |pointColorPalette| |palginfieldint| GT + |resultantReduitEuclidean| |wronskianMatrix| |currentSubProgram| + |writable?| |corrPoly| |iteratedInitials| |not?| |bsolve| + |viewPhiDefault| |curveColorPalette| |bitLength| + |semiResultantReduitEuclidean| LE |length| |variationOfParameters| + |newSubProgram| |readable?| |lifting| |parse| |deepestTail| |dmp2rfi| + |viewThetaDefault| |var1Steps| |bitCoef| |divide| |predicate| LT + |scripts| |factors| |clearTheSymbolTable| |exists?| |plus| |lifting1| + |head| |se2rfi| |pointColorDefault| |var2Steps| |bitTruth| |Lazard| + |nthFactor| |showTheSymbolTable| |extension| |label| |exprex| |mdeg| + |pr2dmp| |lineColorDefault| |space| |contains?| |Lazard2| |nthExpon| + |printTypes| |shallowExpand| |coerceL| |mvar| |hasoln| + |axesColorDefault| |tubePoints| |inf| |nextsousResultant2| |overlap| + |newTypeLists| |complex| |deepExpand| |coerceS| |relativeApprox| + |ParCondList| |unitsColorDefault| |tubeRadius| |qinterval| |search| + |resultantnaif| |hcrf| |typeLists| |derivative| + |clearFortranOutputStack| |times| |frobenius| |rootOf| |redpps| + |pointSizeDefault| |weight| |interval| |resultantEuclideannaif| |hclf| + |externalList| |constantOperator| |showFortranOutputStack| + |computePowers| |allRootsOf| |B1solve| |viewPosDefault| |arguments| + |makeVariable| |unit?| |semiResultantEuclideannaif| |lexico| + |typeList| |directory| |topFortranOutputStack| |debug| |pow| + |definingPolynomial| |factorset| |viewSizeDefault| |associates?| + |pdct| |OMmakeConn| |parametersOf| |call| |setFormula!| D |An| + |positive?| |maxrank| |viewDefaults| |modTree| |parameters| + |unitCanonical| |powers| |OMcloseConn| |fortranTypeOf| + |checkPrecision| |linkToFortran| |list| |monom| |UnVectorise| + |negative?| |minrank| |viewWriteDefault| |multiEuclideanTree| + |unitNormal| |partition| |OMconnInDevice| |empty| |zero| + |setLegalFortranSourceExtensions| |car| |Vectorise| |zero?| |minset| + |viewWriteAvailable| |complexZeros| |ratPoly| |lfextendedint| + |complete| |OMconnOutDevice| |compound?| |unravel| |declare| |setPoly| + |cdr| |index| |augment| |nextSublist| |var1StepsDefault| + |divisorCascade| |rootPower| |lflimitedint| |arg1| |pole?| + |OMconnectTCP| |getOperands| |And| |inverseIntegralMatrixAtInfinity| + |common| |setDifference| |exponent| |lastSubResultant| |overset?| + |var2StepsDefault| |graeffe| |rootProduct| |lfinfieldint| |arg2| + |listBranches| |OMbindTCP| |getOperator| |Or| |leviCivitaSymbol| + |integralMatrixAtInfinity| |option| |setIntersection| |exQuo| + |lastSubResultantElseSplit| |ParCond| |tubePointsDefault| |rootSimp| + |pleskenSplit| |reindex| |lfintegrate| |triangular?| |rightTrim| + |OMopenFile| |nil?| |generalizedContinuumHypothesisAssumed| |Not| + |kroneckerDelta| |inverseIntegralMatrix| |setUnion| |moebius| |pair| + |invertibleSet| |redmat| |tubeRadiusDefault| |reciprocalPolynomial| + |alphanumeric| |leftTrim| |OMopenString| |conditions| |buildSyntax| + |integralMatrix| |generalizedContinuumHypothesisAssumed?| |apply| + |rightRecip| |invertible?| |regime| |dimension| |rootRadius| |testDim| + |setMinPoints| |OMclose| |match| |solve| |reduceBasisAtInfinity| + |init| |leftRecip| |invertibleElseSplit?| |sqfree| |crest| + |schwerpunkt| |genericPosition| |minPoints| |function| |OMsetEncoding| + |triangularSystems| |normalizeAtInfinity| |stop| |size| |leftPower| + |purelyAlgebraicLeadingMonomial?| |inconsistent?| |cfirst| + |setErrorBound| |lfunc| |parametric?| |OMputApp| |rootDirectory| + |complementaryBasis| |numFunEvals| |sts2stst| |startPolynomial| + |inHallBasis?| |plotPolar| |OMputAtp| |hostPlatform| |integral?| + |mapExpon| |meatAxe| |setAdaptive| |clikeUniv| |cycleElt| |reorder| + |debug3D| |OMputAttr| |nativeModuleExtension| |integralAtInfinity?| + |commutativeEquality| |first| |scanOneDimSubspaces| |adaptive?| + |weierstrass| |computeCycleLength| |headAst| |numFunEvals3D| + |OMputBind| |bumprow| |brillhartIrreducible?| + |integralBasisAtInfinity| |leftMult| |rest| |expt| + |setScreenResolution| |qqq| |computeCycleEntry| |heap| |setAdaptive3D| + |brillhartTrials| |ramified?| |substitute| |rightMult| + |showArrayValues| |screenResolution| |integralBasis| |coerceP| + |gcdprim| |adaptive3D?| |s19abf| |extractSplittingLeaf| + |removeDuplicates| |ramifiedAtInfinity?| |makeUnit| |showScalarValues| + |countable?| |setMaxPoints| |localIntegralBasis| |powerSum| + |gcdcofact| |s19acf| |setScreenResolution3D| |squareMatrix| |log| + |singular?| |linear| |reverse!| |solveRetract| |Aleph| |maxPoints| + |changeWeightLevel| |elementary| |gcdcofactprim| |screenResolution3D| + |s19adf| |transpose| |singularAtInfinity?| |makeMulti| |mainVariable| + |alternating| |lintgcd| |id| |setMaxPoints3D| |s20acf| |trim| + |branchPoint?| |makeTerm| |polynomial| |pattern| |uniform01| + |generic?| |BumInSepFFE| |cyclic| |hex| |maxPoints3D| |box| |s20adf| + |split| |branchPointAtInfinity?| |listOfMonoms| |normal01| |quoted?| + |multiplyExponents| |dihedral| |every?| |setMinPoints3D| |table| + |s21baf| |upperCase!| |rationalPoint?| |symmetricSquare| + |exponential1| |inR?| |laurentIfCan| |cap| |any?| |minPoints3D| |new| + |s21bbf| |upperCase| |lcm| |absolutelyIrreducible?| |factor1| + |chiSquare1| |isList| |laurentRep| |cup| |host| |tValues| |s21bcf| + |lowerCase!| |genus| |symmetricProduct| |message| |exponential| |isOp| + |rationalPower| |wreath| |trueEqual| |tRange| |s21bdf| |lowerCase| + |append| |getZechTable| |symmetricPower| |chiSquare| |satisfy?| + |dominantTerm| |SFunction| |factorList| |plot| |fortranCompilerName| + |KrullNumber| |comp| |gcd| |createZechTable| |directSum| + |factorFraction| |addBadValue| |limitPlus| |skewSFunction| + |listConjugateBases| |inc| |pointPlot| |fortranLinkerArgs| + |numberOfVariables| |false| |createMultiplicationTable| + |solveLinearPolynomialEquationByFractions| |uniform| |badValues| + |split!| |cyclotomicDecomposition| |matrixGcd| |calcRanges| + |aspFilename| |algebraicDecompose| |createMultiplicationMatrix| + |hasSolution?| |binomial| |retractable?| |setlast!| + |cyclotomicFactorization| |divideIfCan!| |fixPredicate| |dimensionsOf| + |transcendentalDecompose| |createLowComplexityTable| |linSolve| + |poisson| |ListOfTerms| |setrest!| |makeSketch| |rangeIsFinite| + |leastPower| |patternMatch| |restorePrecision| |internalDecompose| + |createLowComplexityNormalBasis| |LyndonWordsList| |geometric| + |PDESolve| |setfirst!| |inrootof| |functionIsContinuousAtEndPoints| + |idealiser| |antiCommutator| |patternMatchTimes| |stack| |decompose| + |#| |representationType| |LyndonWordsList1| |ridHack1| |leftFactor| + |cycleSplit!| |functionIsOscillatory| |idealiserMatrix| |bernoulli| + |commutator| |upDateBranches| |alphabetic| |createPrimitiveElement| + |lyndonIfCan| |interpolate| |rightFactorCandidate| |concat!| + |changeName| |moduleSum| |chebyshevT| |left| |associator| |preprocess| + |hexDigit| |tableForDiscreteLogarithm| |lyndon| |nullSpace| |dim| + |measure| |cycleTail| |exprHasWeightCosWXorSinWX| |mapUnivariate| + |chebyshevU| |right| |complexEigenvalues| |internalZeroSetSplit| + |factorsOfCyclicGroupSize| |lyndon?| |nullity| |coerceImages| + |cycleLength| |exprHasAlgebraicWeight| |mapUnivariateIfCan| + |cyclotomic| |complexEigenvectors| |internalAugment| + |sizeMultiplication| |numberOfComputedEntries| |rowEchelon| + |fixedPoints| |cycleEntry| |weakBiRank| |exprHasLogarithmicWeights| + |mapMatrixIfCan| |normalizedAssociate| |euler| |remove| + |possiblyInfinite?| |getMultiplicationMatrix| |numeric| |rst| |column| + |odd?| |invmultisect| |biRank| |combineFeatureCompatibility| + |mapBivariate| |fixedDivisor| |normalize| |explicitlyFinite?| |ravel| + |getMultiplicationTable| |radical| |frst| |row| |even?| |multisect| + |sparsityIF| |fullDisplay| |outputArgs| |laguerre| |last| |nextItem| + |reshape| |primitive?| |lazyEvaluate| |maxColIndex| ~= + |numberOfCycles| |revert| |assoc| |stiffnessAndStabilityFactor| + |relationsIdeal| |legendre| |normInvertible?| |infiniteProduct| + |numberOfIrreduciblePoly| |parseString| |lazy?| |minColIndex| |coerce| + |cyclePartition| |generalLambert| |stiffnessAndStabilityOfODEIF| + |saturate| |dmpToHdmp| |normFactors| |evenInfiniteProduct| + |numberOfPrimitivePoly| |explicitlyEmpty?| |maxRowIndex| |construct| + |coerceListOfPairs| |evenlambert| |systemSizeIF| |groebner?| + |hdmpToDmp| |npcoef| |oddInfiniteProduct| |numberOfNormalPoly| + |explicitEntries?| |minRowIndex| |coercePreimagesImages| |oddlambert| + |expenseOfEvaluationIF| |groebnerIdeal| |pToHdmp| |listexp| + |generalInfiniteProduct| |createIrreduciblePoly| |matrixDimensions| + |antisymmetric?| |listRepresentation| |lambert| |accuracyIF| |ideal| + |hdmpToP| |characteristicPolynomial| |showAll?| |update| + |createPrimitivePoly| |matrixConcat3D| |symmetric?| |permanent| + |lagrange| |outputList| |intermediateResultsIF| |leadingIdeal| + |dmpToP| |realEigenvalues| |showAllElements| |createNormalPoly| + |script| |setelt!| |diagonal?| |cycles| |univariatePolynomial| + |subscriptedVariables| |backOldPos| |pToDmp| |symbol| + |realEigenvectors| |delay| |createNormalPrimitivePoly| + |identityMatrix| |square?| |cycle| |integrate| |central?| ** + |generalPosition| |halfExtendedResultant2| |sylvesterSequence| + |expression| |matrix| |findCycle| |createPrimitiveNormalPoly| + |zeroMatrix| |rectangularMatrix| |initializeGroupForWordProblem| + |multiplyCoefficients| |basisOfCommutingElements| |elliptic?| + |quotient| |flatten| |sturmSequence| |integer| + |halfExtendedResultant1| |repeating?| |nextIrreduciblePoly| |tex| + |mappingAst| |characteristic| |movedPoints| |quoByVar| + |basisOfLeftAnnihilator| |digit?| |doubleResultant| |zeroDim?| + |boundOfCauchy| |extendedResultant| |repeating| |result| EQ + |nextPrimitivePoly| |nullary| |round| |symbolTable| |wordInGenerators| + |coefficients| |distdfact| |subst| |inRadical?| |subResultantsChain| + |sturmVariationsOf| |signature| |recip| |nextNormalPoly| |fixedPoint| + |fractionPart| |wordInStrongGenerators| |stFunc1| |separateDegrees| + |in?| |isQuotient| |lazyVariations| |lazyPseudoQuotient| |integers| + |cn| |nextNormalPrimitivePoly| |pushFortranOutputStack| |recur| + |wholePart| |orbits| |double| |stFunc2| |trace2PowMod| |element?| + |content| |lazyPseudoRemainder| |oddintegers| + |nextPrimitiveNormalPoly| |popFortranOutputStack| |const| |floor| + |orbit| |stFuncN| |tracePowMod| |zeroDimPrime?| |totalDegree| + |bernoulliB| |int| |leastAffineMultiple| |curry| |ceiling| + |outputAsFortran| |qelt| |permutationGroup| |fixedPointExquo| + |irreducible?| |zeroDimPrimary?| |minimumDegree| |eulerE| |mapmult| + |systemCommand| |reducedQPowers| |diag| |norm| + |wordsForStrongGenerators| |ode1| |decimal| |primaryDecomp| + |monomials| |numericIfCan| |deriv| |rootOfIrreduciblePoly| + |curryRight| |mightHaveRoots| |xRange| |strongGenerators| |ode2| + |innerint| |contract| |height| |isPlus| |complexNumericIfCan| |gderiv| + |write!| |curryLeft| |hash| |refine| |yRange| |generators| |ode| + |exteriorDifferential| |leadingSupport| |isTimes| |FormatArabic| + |compose| |objects| |read!| |normal| |count| |constantRight| |middle| + |zRange| |bivariateSLPEBR| |mpsode| |totalDifferential| |shrinkable| + |outerProduct| |isExpt| |ScanArabic| |addiag| |base| |not| |iomode| + |map!| |constantLeft| |roman| + |solveLinearPolynomialEquationByRecursion| |declare!| UP2UTS + |homogeneous?| |physicalLength!| |isPower| |FormatRoman| + |lazyIntegrate| |qsetelt!| |close!| |twist| |recoverAfterFail| + |factorByRecursion| UTS2UP |physicalLength| |rroot| |ScanRoman| |nlde| + |reopen!| |setsubMatrix!| |showTheRoutinesTable| + |factorSquareFreeByRecursion| LODO2FUN |radPoly| |flexibleArray| + |qroot| |ScanFloatIgnoreSpaces| |powern| |rightUnit| |subMatrix| + |deleteRoutine!| |randomR| RF2UTS |rootPoly| |cond| |elseBranch| + |froot| |ScanFloatIgnoreSpacesIfCan| |mapdiv| |noLinearFactor?| + |leftUnit| |swapColumns!| |getExplanations| |factorSFBRlcUnit| + |magnitude| |goodPoint| |thenBranch| |numericalIntegration| |nthr| + |lazyGintegrate| |brace| |insertRoot!| |swapRows!| |getMeasure| + |charthRoot| |cross| |chvar| |generalizedInverse| |port| |rk4| |power| + |fi2df| |vertConcat| |acsch| |changeMeasure| |conditionP| |dot| |find| + |imports| |firstUncouplingMatrix| |rk4a| |sincos| |mat| |horizConcat| + |changeThreshhold| |vector| |solveLinearPolynomialEquation| |scan| + |clipParametric| |sequence| |keys| |integral| |rk4qc| |sinhcosh| + |neglist| |squareTop| |selectMultiDimensionalRoutines| |differentiate| + |factorSquareFreePolynomial| |graphCurves| |clipWithRanges| |rk4f| + |subresultantVector| |value| |multiEuclidean| |elRow1!| + |selectNonFiniteRoutines| |factorPolynomial| |drawCurves| + |numberOfHues| |redPo| |aromberg| |primitivePart| |extendedEuclidean| + |binarySearchTree| |elRow2!| |selectSumOfSquaresRoutines| + |squareFreePolynomial| |scale| |blue| |hMonic| |previous| |asimpson| + |pointData| |euclideanSize| |nor| |elColumn2!| |selectFiniteRoutines| + |gcdPolynomial| |connect| |green| |updatF| |atrapezoidal| |parent| + |sizeLess?| |objectOf| |torsion?| |region| |yellow| |sPol| |romberg| + |extractProperty| |simplifyPower| GF2FG |fractRagits| |domainOf| + |torsionIfCan| |segment| |points| |red| |updatD| |subtractIfCan| + |simpson| |output| |extractClosed| |number?| FG2F |wholeRagits| + |applyRules| |getGoodPrime| |getGraph| |iifact| |minGbasis| + |setPosition| |trapezoidal| |extractIndex| |failed| |seriesSolve| F2FG + |radix| |localUnquote| |badNum| |putGraph| |iibinom| |lepol| + |constantToUnaryFunction| |explogs2trigs| |randnum| |setColumn!| |mix| + |graphs| |iiperm| |prinshINFO| |f02aef| |aLinear| |tubePlot| + |trigs2explogs| |reseed| |setRow!| |doubleDisc| |graphStates| |iipow| + |prindINFO| |f02aff| |aQuadratic| |exponentialOrder| |swap!| |seed| + |oneDimensionalArray| |polyred| |graphState| |iidsum| |fprindINFO| + |f02agf| |aCubic| |completeEval| |fill!| |generator| |rational| + |associatedSystem| |formula| |iidprod| |prinpolINFO| |f02ajf| + |aQuartic| |or| |uncouplingMatrices| |lowerPolynomial| |minIndex| + |rational?| |assign| |cosSinInfo| |ipow| |prinb| |f02akf| + |radicalSolve| |associatedEquations| |raisePolynomial| |maxIndex| + |rationalIfCan| |slash| |loopPoints| |factorial| |critpOrder| |f02awf| + |radicalRoots| |arrayStack| |normalDeriv| |entry?| |setvalue!| |over| + |generalTwoFactor| |multinomial| |makeCrit| |f02axf| |contractSolve| + |setButtonValue| |ran| |indices| |setchildren!| |zag| |generalSqFr| + |nrows| |permutation| |virtualDegree| |f02bbf| |decomposeFunc| + |setAttributeButtonStep| |highCommonTerms| |index?| |node?| |postfix| + |twoFactor| |ncols| |stirling1| |conditionsForIdempotents| |f02bjf| + |unvectorise| |resetAttributeButtons| |mapCoef| |entries| |child?| + |infix| |setOrder| |stirling2| |genericRightDiscriminant| |f02fjf| + |bubbleSort!| |getButtonValue| |nthCoef| |key?| |distance| |vconcat| + |getOrder| |summation| |obj| |genericRightTraceForm| |f02wef| + |insertionSort!| |decrease| |binomThmExpt| |symbolIfCan| |nodes| |lo| + |hconcat| |less?| |factorials| |genericLeftDiscriminant| |f02xef| + |fortran| |cache| |check| |increase| |pomopo!| |argument| |rename| + |incr| |rspace| |userOrdered?| |mkcomm| |genericLeftTraceForm| + |f04adf| |lprop| |morphism| |mapExponents| |constantKernel| |rename!| + |hi| |vspace| |largest| |polarCoordinates| |genericRightNorm| |f04arf| + |llprop| |balancedFactorisation| |linearAssociatedLog| |constantIfCan| + |mainValue| |hspace| |more?| |imaginary| |genericRightTrace| |f04asf| + |lllp| |mapDown!| |linearAssociatedOrder| |kovacic| + |mainDefiningPolynomial| |superHeight| |setVariableOrder| |nand| + |solid| |genericRightMinimalPolynomial| |f04atf| |lllip| |mapUp!| + |comparison| |linearAssociatedExp| |laplace| |mainForm| |subHeight| + |getVariableOrder| |binaryTournament| |solid?| |rightRankPolynomial| + |nil| |infinite| |arbitraryExponent| |approximate| |complex| + |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index bb14c2f3..e3c10a8d 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5070 +1,5122 @@ -(3141278 . 3430368541) -((-1824 (((-111) (-1 (-111) |#2| |#2|) $) 63) (((-111) $) NIL)) (-1822 (($ (-1 (-111) |#2| |#2|) $) 18) (($ $) NIL)) (-4106 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-1172 (-526)) |#2|) 34)) (-2346 (($ $) 59)) (-4161 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3738 (((-526) (-1 (-111) |#2|) $) 22) (((-526) |#2| $) NIL) (((-526) |#2| $ (-526)) 73)) (-2044 (((-607 |#2|) $) 13)) (-3832 (($ (-1 (-111) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2048 (($ (-1 |#2| |#2|) $) 29)) (-4275 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2351 (($ |#2| $ (-526)) NIL) (($ $ $ (-526)) 50)) (-1376 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 24)) (-2046 (((-111) (-1 (-111) |#2|) $) 21)) (-4118 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-526)) NIL) (($ $ (-1172 (-526))) 49)) (-2352 (($ $ (-526)) 56) (($ $ (-1172 (-526))) 55)) (-2045 (((-735) (-1 (-111) |#2|) $) 26) (((-735) |#2| $) NIL)) (-1823 (($ $ $ (-526)) 52)) (-3719 (($ $) 51)) (-3844 (($ (-607 |#2|)) 53)) (-4120 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-607 $)) 62)) (-4274 (((-823) $) 69)) (-2047 (((-111) (-1 (-111) |#2|) $) 20)) (-3353 (((-111) $ $) 72)) (-2985 (((-111) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3353 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -1823 (|#1| |#1| |#1| (-526))) (-15 -1824 ((-111) |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -4106 (|#2| |#1| (-1172 (-526)) |#2|)) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4106 (|#2| |#1| (-526) |#2|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2044 ((-607 |#2|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1|))) (-19 |#2|) (-1159)) (T -18)) -NIL -(-10 -8 (-15 -3353 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -1823 (|#1| |#1| |#1| (-526))) (-15 -1824 ((-111) |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -4106 (|#2| |#1| (-1172 (-526)) |#2|)) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4106 (|#2| |#1| (-526) |#2|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2044 ((-607 |#2|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-3738 (((-526) (-1 (-111) |#1|) $) 97) (((-526) |#1| $) 96 (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) 95 (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 83 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 85 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 82 (|has| |#1| (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-19 |#1|) (-134) (-1159)) (T -19)) -NIL -(-13 (-357 |t#1|) (-10 -7 (-6 -4311))) -(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-357 |#1|) . T) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-811) |has| |#1| (-811)) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1159) . T)) -((-1345 (((-3 $ "failed") $ $) 12)) (-4156 (($ $) NIL) (($ $ $) 9)) (* (($ (-878) $) NIL) (($ (-735) $) 16) (($ (-526) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -1345 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -1345 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20))) -(((-21) (-134)) (T -21)) -((-4156 (*1 *1 *1) (-4 *1 (-21))) (-4156 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-526))))) -(-13 (-129) (-10 -8 (-15 -4156 ($ $)) (-15 -4156 ($ $ $)) (-15 * ($ (-526) $)))) -(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-3502 (((-111) $) 10)) (-3855 (($) 15)) (* (($ (-878) $) 14) (($ (-735) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 -3855 (|#1|)) (-15 * (|#1| (-878) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 -3855 (|#1|)) (-15 * (|#1| (-878) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15))) -(((-23) (-134)) (T -23)) -((-2957 (*1 *1) (-4 *1 (-23))) (-3855 (*1 *1) (-4 *1 (-23))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-735))))) -(-13 (-25) (-10 -8 (-15 (-2957) ($) -4268) (-15 -3855 ($) -4268) (-15 -3502 ((-111) $)) (-15 * ($ (-735) $)))) -(((-25) . T) ((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((* (($ (-878) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-878) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-878) |#1|))) -((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13))) -(((-25) (-134)) (T -25)) -((-4158 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-878))))) -(-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)) (-15 * ($ (-878) $)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-1643 (((-607 $) (-905 $)) 29) (((-607 $) (-1117 $)) 16) (((-607 $) (-1117 $) (-1123)) 20)) (-1238 (($ (-905 $)) 27) (($ (-1117 $)) 11) (($ (-1117 $) (-1123)) 54)) (-1239 (((-607 $) (-905 $)) 30) (((-607 $) (-1117 $)) 18) (((-607 $) (-1117 $) (-1123)) 19)) (-3497 (($ (-905 $)) 28) (($ (-1117 $)) 13) (($ (-1117 $) (-1123)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1643 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1643 ((-607 |#1|) (-1117 |#1|))) (-15 -1643 ((-607 |#1|) (-905 |#1|))) (-15 -1238 (|#1| (-1117 |#1|) (-1123))) (-15 -1238 (|#1| (-1117 |#1|))) (-15 -1238 (|#1| (-905 |#1|))) (-15 -1239 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1239 ((-607 |#1|) (-1117 |#1|))) (-15 -1239 ((-607 |#1|) (-905 |#1|))) (-15 -3497 (|#1| (-1117 |#1|) (-1123))) (-15 -3497 (|#1| (-1117 |#1|))) (-15 -3497 (|#1| (-905 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1643 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1643 ((-607 |#1|) (-1117 |#1|))) (-15 -1643 ((-607 |#1|) (-905 |#1|))) (-15 -1238 (|#1| (-1117 |#1|) (-1123))) (-15 -1238 (|#1| (-1117 |#1|))) (-15 -1238 (|#1| (-905 |#1|))) (-15 -1239 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1239 ((-607 |#1|) (-1117 |#1|))) (-15 -1239 ((-607 |#1|) (-905 |#1|))) (-15 -3497 (|#1| (-1117 |#1|) (-1123))) (-15 -3497 (|#1| (-1117 |#1|))) (-15 -3497 (|#1| (-905 |#1|)))) -((-2865 (((-111) $ $) 7)) (-1643 (((-607 $) (-905 $)) 77) (((-607 $) (-1117 $)) 76) (((-607 $) (-1117 $) (-1123)) 75)) (-1238 (($ (-905 $)) 80) (($ (-1117 $)) 79) (($ (-1117 $) (-1123)) 78)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3337 (($ $) 89)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-1239 (((-607 $) (-905 $)) 83) (((-607 $) (-1117 $)) 82) (((-607 $) (-1117 $) (-1123)) 81)) (-3497 (($ (-905 $)) 86) (($ (-1117 $)) 85) (($ (-1117 $) (-1123)) 84)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 88)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66) (($ $ (-392 (-526))) 87)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) -(((-27) (-134)) (T -27)) -((-3497 (*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) (-3497 (*1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-27)))) (-3497 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-5 *3 (-1123)) (-4 *1 (-27)))) (-1239 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1239 (*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1239 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *1)) (-5 *4 (-1123)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-27)))) (-1238 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-5 *3 (-1123)) (-4 *1 (-27)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *1)) (-5 *4 (-1123)) (-4 *1 (-27)) (-5 *2 (-607 *1))))) -(-13 (-348) (-960) (-10 -8 (-15 -3497 ($ (-905 $))) (-15 -3497 ($ (-1117 $))) (-15 -3497 ($ (-1117 $) (-1123))) (-15 -1239 ((-607 $) (-905 $))) (-15 -1239 ((-607 $) (-1117 $))) (-15 -1239 ((-607 $) (-1117 $) (-1123))) (-15 -1238 ($ (-905 $))) (-15 -1238 ($ (-1117 $))) (-15 -1238 ($ (-1117 $) (-1123))) (-15 -1643 ((-607 $) (-905 $))) (-15 -1643 ((-607 $) (-1117 $))) (-15 -1643 ((-607 $) (-1117 $) (-1123))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-960) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) -((-1643 (((-607 $) (-905 $)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-1117 $) (-1123)) 50) (((-607 $) $) 19) (((-607 $) $ (-1123)) 41)) (-1238 (($ (-905 $)) NIL) (($ (-1117 $)) NIL) (($ (-1117 $) (-1123)) 52) (($ $) 17) (($ $ (-1123)) 37)) (-1239 (((-607 $) (-905 $)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-1117 $) (-1123)) 48) (((-607 $) $) 15) (((-607 $) $ (-1123)) 43)) (-3497 (($ (-905 $)) NIL) (($ (-1117 $)) NIL) (($ (-1117 $) (-1123)) NIL) (($ $) 12) (($ $ (-1123)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1643 ((-607 |#1|) |#1| (-1123))) (-15 -1238 (|#1| |#1| (-1123))) (-15 -1643 ((-607 |#1|) |#1|)) (-15 -1238 (|#1| |#1|)) (-15 -1239 ((-607 |#1|) |#1| (-1123))) (-15 -3497 (|#1| |#1| (-1123))) (-15 -1239 ((-607 |#1|) |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -1643 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1643 ((-607 |#1|) (-1117 |#1|))) (-15 -1643 ((-607 |#1|) (-905 |#1|))) (-15 -1238 (|#1| (-1117 |#1|) (-1123))) (-15 -1238 (|#1| (-1117 |#1|))) (-15 -1238 (|#1| (-905 |#1|))) (-15 -1239 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1239 ((-607 |#1|) (-1117 |#1|))) (-15 -1239 ((-607 |#1|) (-905 |#1|))) (-15 -3497 (|#1| (-1117 |#1|) (-1123))) (-15 -3497 (|#1| (-1117 |#1|))) (-15 -3497 (|#1| (-905 |#1|)))) (-29 |#2|) (-13 (-811) (-533))) (T -28)) -NIL -(-10 -8 (-15 -1643 ((-607 |#1|) |#1| (-1123))) (-15 -1238 (|#1| |#1| (-1123))) (-15 -1643 ((-607 |#1|) |#1|)) (-15 -1238 (|#1| |#1|)) (-15 -1239 ((-607 |#1|) |#1| (-1123))) (-15 -3497 (|#1| |#1| (-1123))) (-15 -1239 ((-607 |#1|) |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -1643 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1643 ((-607 |#1|) (-1117 |#1|))) (-15 -1643 ((-607 |#1|) (-905 |#1|))) (-15 -1238 (|#1| (-1117 |#1|) (-1123))) (-15 -1238 (|#1| (-1117 |#1|))) (-15 -1238 (|#1| (-905 |#1|))) (-15 -1239 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1239 ((-607 |#1|) (-1117 |#1|))) (-15 -1239 ((-607 |#1|) (-905 |#1|))) (-15 -3497 (|#1| (-1117 |#1|) (-1123))) (-15 -3497 (|#1| (-1117 |#1|))) (-15 -3497 (|#1| (-905 |#1|)))) -((-2865 (((-111) $ $) 7)) (-1643 (((-607 $) (-905 $)) 77) (((-607 $) (-1117 $)) 76) (((-607 $) (-1117 $) (-1123)) 75) (((-607 $) $) 123) (((-607 $) $ (-1123)) 121)) (-1238 (($ (-905 $)) 80) (($ (-1117 $)) 79) (($ (-1117 $) (-1123)) 78) (($ $) 124) (($ $ (-1123)) 122)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1123)) $) 198)) (-3386 (((-392 (-1117 $)) $ (-581 $)) 230 (|has| |#1| (-533)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1636 (((-607 (-581 $)) $) 161)) (-1345 (((-3 $ "failed") $ $) 19)) (-1640 (($ $ (-607 (-581 $)) (-607 $)) 151) (($ $ (-607 (-278 $))) 150) (($ $ (-278 $)) 149)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3337 (($ $) 89)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-1239 (((-607 $) (-905 $)) 83) (((-607 $) (-1117 $)) 82) (((-607 $) (-1117 $) (-1123)) 81) (((-607 $) $) 127) (((-607 $) $ (-1123)) 125)) (-3497 (($ (-905 $)) 86) (($ (-1117 $)) 85) (($ (-1117 $) (-1123)) 84) (($ $) 128) (($ $ (-1123)) 126)) (-3470 (((-3 (-905 |#1|) #1="failed") $) 248 (|has| |#1| (-1004))) (((-3 (-392 (-905 |#1|)) #1#) $) 232 (|has| |#1| (-533))) (((-3 |#1| #1#) $) 194) (((-3 (-526) #1#) $) 192 (|has| |#1| (-995 (-526)))) (((-3 (-1123) #1#) $) 185) (((-3 (-581 $) #1#) $) 136) (((-3 (-392 (-526)) #1#) $) 120 (-3850 (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526))))))) (-3469 (((-905 |#1|) $) 249 (|has| |#1| (-1004))) (((-392 (-905 |#1|)) $) 233 (|has| |#1| (-533))) ((|#1| $) 195) (((-526) $) 191 (|has| |#1| (-995 (-526)))) (((-1123) $) 186) (((-581 $) $) 137) (((-392 (-526)) $) 119 (-3850 (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526))))))) (-2861 (($ $ $) 53)) (-2331 (((-653 |#1|) (-653 $)) 238 (|has| |#1| (-1004))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 237 (|has| |#1| (-1004))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 118 (-3850 (-3155 (|has| |#1| (-1004)) (|has| |#1| (-606 (-526)))) (-3155 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (((-653 (-526)) (-653 $)) 117 (-3850 (-3155 (|has| |#1| (-1004)) (|has| |#1| (-606 (-526)))) (-3155 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 190 (|has| |#1| (-845 (-363)))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 189 (|has| |#1| (-845 (-526))))) (-2870 (($ (-607 $)) 155) (($ $) 154)) (-1635 (((-607 (-112)) $) 162)) (-2307 (((-112) (-112)) 163)) (-2471 (((-111) $) 30)) (-2973 (((-111) $) 183 (|has| $ (-995 (-526))))) (-3296 (($ $) 215 (|has| |#1| (-1004)))) (-3298 (((-1075 |#1| (-581 $)) $) 214 (|has| |#1| (-1004)))) (-3311 (($ $ (-526)) 88)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 50)) (-1633 (((-1117 $) (-581 $)) 180 (|has| $ (-1004)))) (-3637 (($ $ $) 134)) (-3638 (($ $ $) 133)) (-4275 (($ (-1 $ $) (-581 $)) 169)) (-1638 (((-3 (-581 $) "failed") $) 159)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-1637 (((-607 (-581 $)) $) 160)) (-2288 (($ (-112) (-607 $)) 168) (($ (-112) $) 167)) (-3123 (((-3 (-607 $) #3="failed") $) 209 (|has| |#1| (-1063)))) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) #3#) $) 218 (|has| |#1| (-1004)))) (-3122 (((-3 (-607 $) #3#) $) 211 (|has| |#1| (-25)))) (-1889 (((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) #3#) $) 212 (|has| |#1| (-25)))) (-3124 (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $ (-1123)) 217 (|has| |#1| (-1004))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $ (-112)) 216 (|has| |#1| (-1004))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $) 210 (|has| |#1| (-1063)))) (-2930 (((-111) $ (-1123)) 166) (((-111) $ (-112)) 165)) (-2703 (($ $) 67)) (-2900 (((-735) $) 158)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 196)) (-1891 ((|#1| $) 197)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1634 (((-111) $ (-1123)) 171) (((-111) $ $) 170)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-2974 (((-111) $) 182 (|has| $ (-995 (-526))))) (-4086 (($ $ (-1123) (-735) (-1 $ $)) 222 (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ (-607 $))) 221 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $)))) 220 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $))) 219 (|has| |#1| (-1004))) (($ $ (-607 (-112)) (-607 $) (-1123)) 208 (|has| |#1| (-584 (-515)))) (($ $ (-112) $ (-1123)) 207 (|has| |#1| (-584 (-515)))) (($ $) 206 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123))) 205 (|has| |#1| (-584 (-515)))) (($ $ (-1123)) 204 (|has| |#1| (-584 (-515)))) (($ $ (-112) (-1 $ $)) 179) (($ $ (-112) (-1 $ (-607 $))) 178) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) 177) (($ $ (-607 (-112)) (-607 (-1 $ $))) 176) (($ $ (-1123) (-1 $ $)) 175) (($ $ (-1123) (-1 $ (-607 $))) 174) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) 173) (($ $ (-607 (-1123)) (-607 (-1 $ $))) 172) (($ $ (-607 $) (-607 $)) 143) (($ $ $ $) 142) (($ $ (-278 $)) 141) (($ $ (-607 (-278 $))) 140) (($ $ (-607 (-581 $)) (-607 $)) 139) (($ $ (-581 $) $) 138)) (-1680 (((-735) $) 56)) (-4118 (($ (-112) (-607 $)) 148) (($ (-112) $ $ $ $) 147) (($ (-112) $ $ $) 146) (($ (-112) $ $) 145) (($ (-112) $) 144)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1639 (($ $ $) 157) (($ $) 156)) (-4129 (($ $ (-1123)) 246 (|has| |#1| (-1004))) (($ $ (-607 (-1123))) 245 (|has| |#1| (-1004))) (($ $ (-1123) (-735)) 244 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) 243 (|has| |#1| (-1004)))) (-3295 (($ $) 225 (|has| |#1| (-533)))) (-3297 (((-1075 |#1| (-581 $)) $) 224 (|has| |#1| (-533)))) (-3499 (($ $) 181 (|has| $ (-1004)))) (-4287 (((-515) $) 252 (|has| |#1| (-584 (-515)))) (($ (-390 $)) 223 (|has| |#1| (-533))) (((-849 (-363)) $) 188 (|has| |#1| (-584 (-849 (-363))))) (((-849 (-526)) $) 187 (|has| |#1| (-584 (-849 (-526)))))) (-3309 (($ $ $) 251 (|has| |#1| (-457)))) (-2655 (($ $ $) 250 (|has| |#1| (-457)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ (-905 |#1|)) 247 (|has| |#1| (-1004))) (($ (-392 (-905 |#1|))) 231 (|has| |#1| (-533))) (($ (-392 (-905 (-392 |#1|)))) 229 (|has| |#1| (-533))) (($ (-905 (-392 |#1|))) 228 (|has| |#1| (-533))) (($ (-392 |#1|)) 227 (|has| |#1| (-533))) (($ (-1075 |#1| (-581 $))) 213 (|has| |#1| (-1004))) (($ |#1|) 193) (($ (-1123)) 184) (($ (-581 $)) 135)) (-3002 (((-3 $ "failed") $) 236 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-2887 (($ (-607 $)) 153) (($ $) 152)) (-2306 (((-111) (-112)) 164)) (-2150 (((-111) $ $) 37)) (-1890 (($ (-1123) (-607 $)) 203) (($ (-1123) $ $ $ $) 202) (($ (-1123) $ $ $) 201) (($ (-1123) $ $) 200) (($ (-1123) $) 199)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1123)) 242 (|has| |#1| (-1004))) (($ $ (-607 (-1123))) 241 (|has| |#1| (-1004))) (($ $ (-1123) (-735)) 240 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) 239 (|has| |#1| (-1004)))) (-2863 (((-111) $ $) 131)) (-2864 (((-111) $ $) 130)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 132)) (-2985 (((-111) $ $) 129)) (-4265 (($ $ $) 62) (($ (-1075 |#1| (-581 $)) (-1075 |#1| (-581 $))) 226 (|has| |#1| (-533)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66) (($ $ (-392 (-526))) 87)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-163))) (($ |#1| $) 234 (|has| |#1| (-163))))) -(((-29 |#1|) (-134) (-13 (-811) (-533))) (T -29)) -((-3497 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-811) (-533))))) (-1239 (*1 *2 *1) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *3)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-811) (-533))))) (-1239 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *4)))) (-1238 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-811) (-533))))) (-1643 (*1 *2 *1) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *3)))) (-1238 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-811) (-533))))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-406 |t#1|) (-10 -8 (-15 -3497 ($ $)) (-15 -1239 ((-607 $) $)) (-15 -3497 ($ $ (-1123))) (-15 -1239 ((-607 $) $ (-1123))) (-15 -1238 ($ $)) (-15 -1643 ((-607 $) $)) (-15 -1238 ($ $ (-1123))) (-15 -1643 ((-607 $) $ (-1123))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) . T) ((-27) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 |#1| |#1|) |has| |#1| (-163)) ((-110 $ $) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526)))) ((-229) . T) ((-275) . T) ((-292) . T) ((-294 $) . T) ((-283) . T) ((-348) . T) ((-362 |#1|) |has| |#1| (-1004)) ((-385 |#1|) . T) ((-397 |#1|) . T) ((-406 |#1|) . T) ((-436) . T) ((-457) |has| |#1| (-457)) ((-496 (-581 $) $) . T) ((-496 $ $) . T) ((-533) . T) ((-613 #1#) . T) ((-613 |#1|) |has| |#1| (-163)) ((-613 $) . T) ((-606 (-526)) -12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) ((-606 |#1|) |has| |#1| (-1004)) ((-682 #1#) . T) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) . T) ((-691) . T) ((-811) . T) ((-859 (-1123)) |has| |#1| (-1004)) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-843 |#1|) . T) ((-880) . T) ((-960) . T) ((-995 (-392 (-526))) -3850 (|has| |#1| (-995 (-392 (-526)))) (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) ((-995 (-392 (-905 |#1|))) |has| |#1| (-533)) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 (-581 $)) . T) ((-995 (-905 |#1|)) |has| |#1| (-1004)) ((-995 (-1123)) . T) ((-995 |#1|) . T) ((-1010 #1#) . T) ((-1010 |#1|) |has| |#1| (-163)) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1159) . T) ((-1164) . T)) -((-3196 (((-1041 (-211)) $) NIL)) (-3197 (((-1041 (-211)) $) NIL)) (-3431 (($ $ (-211)) 125)) (-1240 (($ (-905 (-526)) (-1123) (-1123) (-1041 (-392 (-526))) (-1041 (-392 (-526)))) 83)) (-3198 (((-607 (-607 (-902 (-211)))) $) 137)) (-4274 (((-823) $) 149))) -(((-30) (-13 (-914) (-10 -8 (-15 -1240 ($ (-905 (-526)) (-1123) (-1123) (-1041 (-392 (-526))) (-1041 (-392 (-526))))) (-15 -3431 ($ $ (-211)))))) (T -30)) -((-1240 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-905 (-526))) (-5 *3 (-1123)) (-5 *4 (-1041 (-392 (-526)))) (-5 *1 (-30)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-30))))) -(-13 (-914) (-10 -8 (-15 -1240 ($ (-905 (-526)) (-1123) (-1123) (-1041 (-392 (-526))) (-1041 (-392 (-526))))) (-15 -3431 ($ $ (-211))))) -((-3497 ((|#2| (-1117 |#2|) (-1123)) 43)) (-2307 (((-112) (-112)) 56)) (-1633 (((-1117 |#2|) (-581 |#2|)) 133 (|has| |#1| (-995 (-526))))) (-1243 ((|#2| |#1| (-526)) 122 (|has| |#1| (-995 (-526))))) (-1241 ((|#2| (-1117 |#2|) |#2|) 30)) (-1242 (((-823) (-607 |#2|)) 85)) (-3499 ((|#2| |#2|) 129 (|has| |#1| (-995 (-526))))) (-2306 (((-111) (-112)) 18)) (** ((|#2| |#2| (-392 (-526))) 96 (|has| |#1| (-995 (-526)))))) -(((-31 |#1| |#2|) (-10 -7 (-15 -3497 (|#2| (-1117 |#2|) (-1123))) (-15 -2307 ((-112) (-112))) (-15 -2306 ((-111) (-112))) (-15 -1241 (|#2| (-1117 |#2|) |#2|)) (-15 -1242 ((-823) (-607 |#2|))) (IF (|has| |#1| (-995 (-526))) (PROGN (-15 ** (|#2| |#2| (-392 (-526)))) (-15 -1633 ((-1117 |#2|) (-581 |#2|))) (-15 -3499 (|#2| |#2|)) (-15 -1243 (|#2| |#1| (-526)))) |%noBranch|)) (-13 (-811) (-533)) (-406 |#1|)) (T -31)) -((-1243 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-995 *4)) (-4 *3 (-13 (-811) (-533))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-995 (-526))) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-31 *3 *2)) (-4 *2 (-406 *3)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-581 *5)) (-4 *5 (-406 *4)) (-4 *4 (-995 (-526))) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-1117 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-392 (-526))) (-4 *4 (-995 (-526))) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-823)) (-5 *1 (-31 *4 *5)))) (-1241 (*1 *2 *3 *2) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-31 *4 *2)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-31 *3 *4)) (-4 *4 (-406 *3)))) (-3497 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *2)) (-5 *4 (-1123)) (-4 *2 (-406 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-811) (-533)))))) -(-10 -7 (-15 -3497 (|#2| (-1117 |#2|) (-1123))) (-15 -2307 ((-112) (-112))) (-15 -2306 ((-111) (-112))) (-15 -1241 (|#2| (-1117 |#2|) |#2|)) (-15 -1242 ((-823) (-607 |#2|))) (IF (|has| |#1| (-995 (-526))) (PROGN (-15 ** (|#2| |#2| (-392 (-526)))) (-15 -1633 ((-1117 |#2|) (-581 |#2|))) (-15 -3499 (|#2| |#2|)) (-15 -1243 (|#2| |#1| (-526)))) |%noBranch|)) -((-1244 (((-111) $ (-735)) 16)) (-3855 (($) 10)) (-4041 (((-111) $ (-735)) 15)) (-4038 (((-111) $ (-735)) 14)) (-1245 (((-111) $ $) 8)) (-3722 (((-111) $) 13))) -(((-32 |#1|) (-10 -8 (-15 -3855 (|#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735))) (-15 -3722 ((-111) |#1|)) (-15 -1245 ((-111) |#1| |#1|))) (-33)) (T -32)) -NIL -(-10 -8 (-15 -3855 (|#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735))) (-15 -3722 ((-111) |#1|)) (-15 -1245 ((-111) |#1| |#1|))) -((-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-4041 (((-111) $ (-735)) 9)) (-4038 (((-111) $ (-735)) 10)) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3719 (($ $) 13)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-33) (-134)) (T -33)) -((-1245 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) (-3719 (*1 *1 *1) (-4 *1 (-33))) (-3887 (*1 *1) (-4 *1 (-33))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) (-4038 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) (-4041 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) (-1244 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) (-3855 (*1 *1) (-4 *1 (-33))) (-4273 (*1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-33)) (-5 *2 (-735))))) -(-13 (-1159) (-10 -8 (-15 -1245 ((-111) $ $)) (-15 -3719 ($ $)) (-15 -3887 ($)) (-15 -3722 ((-111) $)) (-15 -4038 ((-111) $ (-735))) (-15 -4041 ((-111) $ (-735))) (-15 -1244 ((-111) $ (-735))) (-15 -3855 ($) -4268) (IF (|has| $ (-6 -4310)) (-15 -4273 ((-735) $)) |%noBranch|))) -(((-1159) . T)) -((-3812 (($ $) 11)) (-3810 (($ $) 10)) (-3814 (($ $) 9)) (-3815 (($ $) 8)) (-3813 (($ $) 7)) (-3811 (($ $) 6))) -(((-34) (-134)) (T -34)) -((-3812 (*1 *1 *1) (-4 *1 (-34))) (-3810 (*1 *1 *1) (-4 *1 (-34))) (-3814 (*1 *1 *1) (-4 *1 (-34))) (-3815 (*1 *1 *1) (-4 *1 (-34))) (-3813 (*1 *1 *1) (-4 *1 (-34))) (-3811 (*1 *1 *1) (-4 *1 (-34)))) -(-13 (-10 -8 (-15 -3811 ($ $)) (-15 -3813 ($ $)) (-15 -3815 ($ $)) (-15 -3814 ($ $)) (-15 -3810 ($ $)) (-15 -3812 ($ $)))) -((-2865 (((-111) $ $) 19 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3721 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 125)) (-4113 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 148)) (-4115 (($ $) 146)) (-3919 (($) 72) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 71)) (-2276 (((-1211) $ |#1| |#1|) 99 (|has| $ (-6 -4311))) (((-1211) $ (-526) (-526)) 178 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 159 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 209) (((-111) $) 203 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-1822 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 200 (|has| $ (-6 -4311))) (($ $) 199 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-1244 (((-111) $ (-735)) 8)) (-3325 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 134 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 155 (|has| $ (-6 -4311)))) (-4104 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 157 (|has| $ (-6 -4311)))) (-4107 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 153 (|has| $ (-6 -4311)))) (-4106 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 189 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-1172 (-526)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 160 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #1="last" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 158 (|has| $ (-6 -4311))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #3="first" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 154 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #4="value" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 133 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 132 (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 45 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 216)) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 55 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 175 (|has| $ (-6 -4310)))) (-4114 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 147)) (-2285 (((-3 |#2| #5="failed") |#1| $) 61)) (-3855 (($) 7 T CONST)) (-2346 (($ $) 201 (|has| $ (-6 -4311)))) (-2347 (($ $) 211)) (-4117 (($ $ (-735)) 142) (($ $) 140)) (-2424 (($ $) 214 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1375 (($ $) 58 (-3850 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))) (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 46 (|has| $ (-6 -4310))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 220) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 215 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 54 (|has| $ (-6 -4310))) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 174 (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 56 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 53 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 52 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 176 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 173 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 172 (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 190 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) 88) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 188)) (-3761 (((-111) $) 192)) (-3738 (((-526) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 208) (((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 207 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) (((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 206 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 30 (|has| $ (-6 -4310))) (((-607 |#2|) $) 79 (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 114 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 123)) (-3327 (((-111) $ $) 131 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-3936 (($ (-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 169)) (-4041 (((-111) $ (-735)) 9)) (-2278 ((|#1| $) 96 (|has| |#1| (-811))) (((-526) $) 180 (|has| (-526) (-811)))) (-3637 (($ $ $) 198 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3159 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3832 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 29 (|has| $ (-6 -4310))) (((-607 |#2|) $) 80 (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 115 (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310)))) (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-2279 ((|#1| $) 95 (|has| |#1| (-811))) (((-526) $) 181 (|has| (-526) (-811)))) (-3638 (($ $ $) 197 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 34 (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4311))) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 110 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 109)) (-3856 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 225)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 128)) (-3841 (((-111) $) 124)) (-3554 (((-1106) $) 22 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-4116 (($ $ (-735)) 145) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 143)) (-2713 (((-607 |#1|) $) 63)) (-2286 (((-111) |#1| $) 64)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 39)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 40) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 219) (($ $ $ (-526)) 218)) (-2351 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 162) (($ $ $ (-526)) 161)) (-2281 (((-607 |#1|) $) 93) (((-607 (-526)) $) 183)) (-2282 (((-111) |#1| $) 92) (((-111) (-526) $) 184)) (-3555 (((-1070) $) 21 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-4119 ((|#2| $) 97 (|has| |#1| (-811))) (($ $ (-735)) 139) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 137)) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #6="failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 51) (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #6#) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 171)) (-2277 (($ $ |#2|) 98 (|has| $ (-6 -4311))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 179 (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 41)) (-3762 (((-111) $) 191)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 32 (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 112 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) 26 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 25 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 24 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 23 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 86 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 84 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) 83 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 121 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 120 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 119 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) 118 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 182 (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2283 (((-607 |#2|) $) 91) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 185)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 187) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 186) (($ $ (-1172 (-526))) 165) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #3#) 138) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #4#) 126)) (-3329 (((-526) $ $) 129)) (-1499 (($) 49) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 48)) (-1608 (($ $ (-526)) 222) (($ $ (-1172 (-526))) 221)) (-2352 (($ $ (-526)) 164) (($ $ (-1172 (-526))) 163)) (-3955 (((-111) $) 127)) (-4110 (($ $) 151)) (-4108 (($ $) 152 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 150)) (-4112 (($ $) 149)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 31 (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-735) |#2| $) 81 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 113 (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) 202 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515)))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 50) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 170)) (-4109 (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 224) (($ $ $) 223)) (-4120 (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 168) (($ (-607 $)) 167) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 136) (($ $ $) 135)) (-4274 (((-823) $) 18 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823)))))) (-3836 (((-607 $) $) 122)) (-3328 (((-111) $ $) 130 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 42)) (-1246 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") |#1| $) 108)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 33 (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 111 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 195 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2864 (((-111) $ $) 194 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3353 (((-111) $ $) 20 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2984 (((-111) $ $) 196 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2985 (((-111) $ $) 193 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-35 |#1| |#2|) (-134) (-1052) (-1052)) (T -35)) -((-1246 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-2 (|:| -4179 *3) (|:| -2164 *4)))))) -(-13 (-1136 |t#1| |t#2|) (-631 (-2 (|:| -4179 |t#1|) (|:| -2164 |t#2|))) (-10 -8 (-15 -1246 ((-3 (-2 (|:| -4179 |t#1|) (|:| -2164 |t#2|)) "failed") |t#1| $)))) -(((-33) . T) ((-105 #1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((-100) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) (|has| |#2| (-1052))) ((-583 (-823)) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-1052)) (|has| |#2| (-583 (-823)))) ((-145 #2=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((-584 (-515)) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))) ((-215 #1#) . T) ((-221 #1#) . T) ((-271 #3=(-526) #2#) . T) ((-271 |#1| |#2|) . T) ((-273 #3# #2#) . T) ((-273 |#1| |#2|) . T) ((-294 #2#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-267 #2#) . T) ((-357 #2#) . T) ((-472 #2#) . T) ((-472 |#2|) . T) ((-574 #3# #2#) . T) ((-574 |#1| |#2|) . T) ((-496 #2# #2#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-580 |#1| |#2|) . T) ((-616 #2#) . T) ((-631 #2#) . T) ((-811) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) ((-968 #2#) . T) ((-1052) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) (|has| |#2| (-1052))) ((-1097 #2#) . T) ((-1136 |#1| |#2|) . T) ((-1159) . T) ((-1194 #2#) . T)) -((-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) 10))) -(((-36 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-37 |#2|) (-163)) (T -36)) -NIL -(-10 -8 (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-37 |#1|) (-134) (-163)) (T -37)) -((-4274 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-163))))) -(-13 (-1004) (-682 |t#1|) (-10 -8 (-15 -4274 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) . T) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-3737 (((-390 |#1|) |#1|) 41)) (-4051 (((-390 |#1|) |#1|) 30) (((-390 |#1|) |#1| (-607 (-47))) 33)) (-1247 (((-111) |#1|) 56))) -(((-38 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1| (-607 (-47)))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3737 ((-390 |#1|) |#1|)) (-15 -1247 ((-111) |#1|))) (-1181 (-47))) (T -38)) -((-1247 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) (-3737 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-47))) (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47)))))) -(-10 -7 (-15 -4051 ((-390 |#1|) |#1| (-607 (-47)))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3737 ((-390 |#1|) |#1|)) (-15 -1247 ((-111) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1739 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| (-392 |#2|) (-348)))) (-2151 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-2149 (((-111) $) NIL (|has| (-392 |#2|) (-348)))) (-1877 (((-653 (-392 |#2|)) (-1205 $)) NIL) (((-653 (-392 |#2|))) NIL)) (-3649 (((-392 |#2|) $) NIL)) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-392 |#2|) (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-4286 (((-390 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1681 (((-111) $ $) NIL (|has| (-392 |#2|) (-348)))) (-3433 (((-735)) NIL (|has| (-392 |#2|) (-353)))) (-1753 (((-111)) NIL)) (-1752 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| (-392 |#2|) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-3 (-392 |#2|) #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| (-392 |#2|) (-995 (-526)))) (((-392 (-526)) $) NIL (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-392 |#2|) $) NIL)) (-1887 (($ (-1205 (-392 |#2|)) (-1205 $)) NIL) (($ (-1205 (-392 |#2|))) 57) (($ (-1205 |#2|) |#2|) 125)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-392 |#2|) (-335)))) (-2861 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-1876 (((-653 (-392 |#2|)) $ (-1205 $)) NIL) (((-653 (-392 |#2|)) $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-392 |#2|))) (|:| |vec| (-1205 (-392 |#2|)))) (-653 $) (-1205 $)) NIL) (((-653 (-392 |#2|)) (-653 $)) NIL)) (-1744 (((-1205 $) (-1205 $)) NIL)) (-4161 (($ |#3|) NIL) (((-3 $ "failed") (-392 |#3|)) NIL (|has| (-392 |#2|) (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-1731 (((-607 (-607 |#1|))) NIL (|has| |#1| (-353)))) (-1756 (((-111) |#1| |#1|) NIL)) (-3406 (((-878)) NIL)) (-3294 (($) NIL (|has| (-392 |#2|) (-353)))) (-1751 (((-111)) NIL)) (-1750 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-2860 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| (-392 |#2|) (-348)))) (-3817 (($ $) NIL)) (-3133 (($) NIL (|has| (-392 |#2|) (-335)))) (-1772 (((-111) $) NIL (|has| (-392 |#2|) (-335)))) (-1862 (($ $ (-735)) NIL (|has| (-392 |#2|) (-335))) (($ $) NIL (|has| (-392 |#2|) (-335)))) (-4045 (((-111) $) NIL (|has| (-392 |#2|) (-348)))) (-4090 (((-878) $) NIL (|has| (-392 |#2|) (-335))) (((-796 (-878)) $) NIL (|has| (-392 |#2|) (-335)))) (-2471 (((-111) $) NIL)) (-3696 (((-735)) NIL)) (-1745 (((-1205 $) (-1205 $)) 102)) (-3429 (((-392 |#2|) $) NIL)) (-1732 (((-607 (-905 |#1|)) (-1123)) NIL (|has| |#1| (-348)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-392 |#2|) (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| (-392 |#2|) (-348)))) (-2106 ((|#3| $) NIL (|has| (-392 |#2|) (-348)))) (-2102 (((-878) $) NIL (|has| (-392 |#2|) (-353)))) (-3379 ((|#3| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| (-392 |#2|) (-348))) (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-3554 (((-1106) $) NIL)) (-1248 (((-1211) (-735)) 79)) (-1740 (((-653 (-392 |#2|))) 51)) (-1742 (((-653 (-392 |#2|))) 44)) (-2703 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-1737 (($ (-1205 |#2|) |#2|) 126)) (-1741 (((-653 (-392 |#2|))) 45)) (-1743 (((-653 (-392 |#2|))) 43)) (-1736 (((-2 (|:| |num| (-653 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1738 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) 64)) (-1749 (((-1205 $)) 42)) (-4237 (((-1205 $)) 41)) (-1748 (((-111) $) NIL)) (-1747 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3764 (($) NIL (|has| (-392 |#2|) (-335)) CONST)) (-2461 (($ (-878)) NIL (|has| (-392 |#2|) (-353)))) (-1734 (((-3 |#2| #3="failed")) NIL)) (-3555 (((-1070) $) NIL)) (-1758 (((-735)) NIL)) (-2470 (($) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| (-392 |#2|) (-348)))) (-3457 (($ (-607 $)) NIL (|has| (-392 |#2|) (-348))) (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-392 |#2|) (-335)))) (-4051 (((-390 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-392 |#2|) (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| (-392 |#2|) (-348)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| (-392 |#2|) (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1680 (((-735) $) NIL (|has| (-392 |#2|) (-348)))) (-4118 ((|#1| $ |#1| |#1|) NIL)) (-1735 (((-3 |#2| #3#)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| (-392 |#2|) (-348)))) (-4076 (((-392 |#2|) (-1205 $)) NIL) (((-392 |#2|)) 39)) (-1863 (((-735) $) NIL (|has| (-392 |#2|) (-335))) (((-3 (-735) "failed") $ $) NIL (|has| (-392 |#2|) (-335)))) (-4129 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-2469 (((-653 (-392 |#2|)) (-1205 $) (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348)))) (-3499 ((|#3|) 50)) (-1766 (($) NIL (|has| (-392 |#2|) (-335)))) (-3537 (((-1205 (-392 |#2|)) $ (-1205 $)) NIL) (((-653 (-392 |#2|)) (-1205 $) (-1205 $)) NIL) (((-1205 (-392 |#2|)) $) 58) (((-653 (-392 |#2|)) (-1205 $)) 103)) (-4287 (((-1205 (-392 |#2|)) $) NIL) (($ (-1205 (-392 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-392 |#2|) (-335)))) (-1746 (((-1205 $) (-1205 $)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 |#2|)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-995 (-392 (-526)))))) (($ $) NIL (|has| (-392 |#2|) (-348)))) (-3002 (($ $) NIL (|has| (-392 |#2|) (-335))) (((-3 $ "failed") $) NIL (|has| (-392 |#2|) (-139)))) (-2667 ((|#3| $) NIL)) (-3423 (((-735)) NIL)) (-1755 (((-111)) 37)) (-1754 (((-111) |#1|) 49) (((-111) |#2|) 132)) (-2104 (((-1205 $)) 93)) (-2150 (((-111) $ $) NIL (|has| (-392 |#2|) (-348)))) (-1733 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1757 (((-111)) NIL)) (-2957 (($) 16 T CONST)) (-2964 (($) 26 T CONST)) (-2969 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| (-392 |#2|) (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 |#2|)) NIL) (($ (-392 |#2|) $) NIL) (($ (-392 (-526)) $) NIL (|has| (-392 |#2|) (-348))) (($ $ (-392 (-526))) NIL (|has| (-392 |#2|) (-348))))) -(((-39 |#1| |#2| |#3| |#4|) (-13 (-327 |#1| |#2| |#3|) (-10 -7 (-15 -1248 ((-1211) (-735))))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) |#3|) (T -39)) -((-1248 (*1 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-348)) (-4 *5 (-1181 *4)) (-5 *2 (-1211)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1181 (-392 *5))) (-14 *7 *6)))) -(-13 (-327 |#1| |#2| |#3|) (-10 -7 (-15 -1248 ((-1211) (-735))))) -((-1249 ((|#2| |#2|) 48)) (-1254 ((|#2| |#2|) 120 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-436)) (|has| |#1| (-811)) (|has| |#1| (-995 (-526)))))) (-1253 ((|#2| |#2|) 87 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-436)) (|has| |#1| (-811)) (|has| |#1| (-995 (-526)))))) (-1252 ((|#2| |#2|) 88 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-436)) (|has| |#1| (-811)) (|has| |#1| (-995 (-526)))))) (-1255 ((|#2| (-112) |#2| (-735)) 116 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-436)) (|has| |#1| (-811)) (|has| |#1| (-995 (-526)))))) (-1251 (((-1117 |#2|) |#2|) 45)) (-1250 ((|#2| |#2| (-607 (-581 |#2|))) 18) ((|#2| |#2| (-607 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-40 |#1| |#2|) (-10 -7 (-15 -1249 (|#2| |#2|)) (-15 -1250 (|#2| |#2|)) (-15 -1250 (|#2| |#2| |#2|)) (-15 -1250 (|#2| |#2| (-607 |#2|))) (-15 -1250 (|#2| |#2| (-607 (-581 |#2|)))) (-15 -1251 ((-1117 |#2|) |#2|)) (IF (|has| |#1| (-811)) (IF (|has| |#1| (-436)) (IF (|has| |#1| (-995 (-526))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -1252 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -1254 (|#2| |#2|)) (-15 -1255 (|#2| (-112) |#2| (-735)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-533) (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 |#1| (-581 $)) $)) (-15 -3297 ((-1075 |#1| (-581 $)) $)) (-15 -4274 ($ (-1075 |#1| (-581 $))))))) (T -40)) -((-1255 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-112)) (-5 *4 (-735)) (-4 *5 (-436)) (-4 *5 (-811)) (-4 *5 (-995 (-526))) (-4 *5 (-533)) (-5 *1 (-40 *5 *2)) (-4 *2 (-406 *5)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *5 (-581 $)) $)) (-15 -3297 ((-1075 *5 (-581 $)) $)) (-15 -4274 ($ (-1075 *5 (-581 $))))))))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1252 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1251 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-1117 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) (-15 -3297 ((-1075 *4 (-581 $)) $)) (-15 -4274 ($ (-1075 *4 (-581 $))))))))) (-1250 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-581 *2))) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) (-15 -3297 ((-1075 *4 (-581 $)) $)) (-15 -4274 ($ (-1075 *4 (-581 $))))))) (-4 *4 (-533)) (-5 *1 (-40 *4 *2)))) (-1250 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) (-15 -3297 ((-1075 *4 (-581 $)) $)) (-15 -4274 ($ (-1075 *4 (-581 $))))))) (-4 *4 (-533)) (-5 *1 (-40 *4 *2)))) (-1250 (*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1250 (*1 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1249 (*1 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) -(-10 -7 (-15 -1249 (|#2| |#2|)) (-15 -1250 (|#2| |#2|)) (-15 -1250 (|#2| |#2| |#2|)) (-15 -1250 (|#2| |#2| (-607 |#2|))) (-15 -1250 (|#2| |#2| (-607 (-581 |#2|)))) (-15 -1251 ((-1117 |#2|) |#2|)) (IF (|has| |#1| (-811)) (IF (|has| |#1| (-436)) (IF (|has| |#1| (-995 (-526))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -1252 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -1254 (|#2| |#2|)) (-15 -1255 (|#2| (-112) |#2| (-735)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-4051 (((-390 (-1117 |#3|)) (-1117 |#3|) (-607 (-47))) 23) (((-390 |#3|) |#3| (-607 (-47))) 19))) -(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -4051 ((-390 |#3|) |#3| (-607 (-47)))) (-15 -4051 ((-390 (-1117 |#3|)) (-1117 |#3|) (-607 (-47))))) (-811) (-757) (-909 (-47) |#2| |#1|)) (T -41)) -((-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-47))) (-4 *5 (-811)) (-4 *6 (-757)) (-4 *7 (-909 (-47) *6 *5)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-47))) (-4 *5 (-811)) (-4 *6 (-757)) (-5 *2 (-390 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-909 (-47) *6 *5))))) -(-10 -7 (-15 -4051 ((-390 |#3|) |#3| (-607 (-47)))) (-15 -4051 ((-390 (-1117 |#3|)) (-1117 |#3|) (-607 (-47))))) -((-1259 (((-735) |#2|) 65)) (-1257 (((-735) |#2|) 68)) (-1272 (((-607 |#2|)) 33)) (-1256 (((-735) |#2|) 67)) (-1258 (((-735) |#2|) 64)) (-1260 (((-735) |#2|) 66)) (-1270 (((-607 (-653 |#1|))) 60)) (-1265 (((-607 |#2|)) 55)) (-1263 (((-607 |#2|) |#2|) 43)) (-1267 (((-607 |#2|)) 57)) (-1266 (((-607 |#2|)) 56)) (-1269 (((-607 (-653 |#1|))) 48)) (-1264 (((-607 |#2|)) 54)) (-1262 (((-607 |#2|) |#2|) 42)) (-1261 (((-607 |#2|)) 50)) (-1271 (((-607 (-653 |#1|))) 61)) (-1268 (((-607 |#2|)) 59)) (-2104 (((-1205 |#2|) (-1205 |#2|)) 84 (|has| |#1| (-292))))) -(((-42 |#1| |#2|) (-10 -7 (-15 -1256 ((-735) |#2|)) (-15 -1257 ((-735) |#2|)) (-15 -1258 ((-735) |#2|)) (-15 -1259 ((-735) |#2|)) (-15 -1260 ((-735) |#2|)) (-15 -1261 ((-607 |#2|))) (-15 -1262 ((-607 |#2|) |#2|)) (-15 -1263 ((-607 |#2|) |#2|)) (-15 -1264 ((-607 |#2|))) (-15 -1265 ((-607 |#2|))) (-15 -1266 ((-607 |#2|))) (-15 -1267 ((-607 |#2|))) (-15 -1268 ((-607 |#2|))) (-15 -1269 ((-607 (-653 |#1|)))) (-15 -1270 ((-607 (-653 |#1|)))) (-15 -1271 ((-607 (-653 |#1|)))) (-15 -1272 ((-607 |#2|))) (IF (|has| |#1| (-292)) (-15 -2104 ((-1205 |#2|) (-1205 |#2|))) |%noBranch|)) (-533) (-403 |#1|)) (T -42)) -((-2104 (*1 *2 *2) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-403 *3)) (-4 *3 (-292)) (-4 *3 (-533)) (-5 *1 (-42 *3 *4)))) (-1272 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1271 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1270 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1269 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1268 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1267 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1266 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1265 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1264 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1263 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1262 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1261 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1258 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1257 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1256 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) -(-10 -7 (-15 -1256 ((-735) |#2|)) (-15 -1257 ((-735) |#2|)) (-15 -1258 ((-735) |#2|)) (-15 -1259 ((-735) |#2|)) (-15 -1260 ((-735) |#2|)) (-15 -1261 ((-607 |#2|))) (-15 -1262 ((-607 |#2|) |#2|)) (-15 -1263 ((-607 |#2|) |#2|)) (-15 -1264 ((-607 |#2|))) (-15 -1265 ((-607 |#2|))) (-15 -1266 ((-607 |#2|))) (-15 -1267 ((-607 |#2|))) (-15 -1268 ((-607 |#2|))) (-15 -1269 ((-607 (-653 |#1|)))) (-15 -1270 ((-607 (-653 |#1|)))) (-15 -1271 ((-607 (-653 |#1|)))) (-15 -1272 ((-607 |#2|))) (IF (|has| |#1| (-292)) (-15 -2104 ((-1205 |#2|) (-1205 |#2|))) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 |#1|)) (-1205 $)) NIL) (((-1205 (-653 |#1|))) 24)) (-1821 (((-1205 $)) 51)) (-3855 (($) NIL T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (|has| |#1| (-533)))) (-1795 (((-3 $ #1#)) NIL (|has| |#1| (-533)))) (-1883 (((-653 |#1|) (-1205 $)) NIL) (((-653 |#1|)) NIL)) (-1819 ((|#1| $) NIL)) (-1881 (((-653 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) $) NIL)) (-2465 (((-3 $ #1#) $) NIL (|has| |#1| (-533)))) (-1998 (((-1117 (-905 |#1|))) NIL (|has| |#1| (-348)))) (-2468 (($ $ (-878)) NIL)) (-1817 ((|#1| $) NIL)) (-1797 (((-1117 |#1|) $) NIL (|has| |#1| (-533)))) (-1885 ((|#1| (-1205 $)) NIL) ((|#1|) NIL)) (-1815 (((-1117 |#1|) $) NIL)) (-1809 (((-111)) 87)) (-1887 (($ (-1205 |#1|) (-1205 $)) NIL) (($ (-1205 |#1|)) NIL)) (-3781 (((-3 $ #1#) $) 14 (|has| |#1| (-533)))) (-3406 (((-878)) 52)) (-1806 (((-111)) NIL)) (-2493 (($ $ (-878)) NIL)) (-1802 (((-111)) NIL)) (-1800 (((-111)) NIL)) (-1804 (((-111)) 89)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (|has| |#1| (-533)))) (-1796 (((-3 $ #1#)) NIL (|has| |#1| (-533)))) (-1884 (((-653 |#1|) (-1205 $)) NIL) (((-653 |#1|)) NIL)) (-1820 ((|#1| $) NIL)) (-1882 (((-653 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) $) NIL)) (-2466 (((-3 $ #1#) $) NIL (|has| |#1| (-533)))) (-2002 (((-1117 (-905 |#1|))) NIL (|has| |#1| (-348)))) (-2467 (($ $ (-878)) NIL)) (-1818 ((|#1| $) NIL)) (-1798 (((-1117 |#1|) $) NIL (|has| |#1| (-533)))) (-1886 ((|#1| (-1205 $)) NIL) ((|#1|) NIL)) (-1816 (((-1117 |#1|) $) NIL)) (-1810 (((-111)) 86)) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) 93)) (-1803 (((-111)) 92)) (-1805 (((-111)) 94)) (-3555 (((-1070) $) NIL)) (-1808 (((-111)) 88)) (-4118 ((|#1| $ (-526)) 54)) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) NIL) (((-1205 |#1|) $) 28) (((-653 |#1|) (-1205 $)) NIL)) (-4287 (((-1205 |#1|) $) NIL) (($ (-1205 |#1|)) NIL)) (-1990 (((-607 (-905 |#1|)) (-1205 $)) NIL) (((-607 (-905 |#1|))) NIL)) (-2655 (($ $ $) NIL)) (-1814 (((-111)) 84)) (-4274 (((-823) $) 69) (($ (-1205 |#1|)) 22)) (-2104 (((-1205 $)) 45)) (-1799 (((-607 (-1205 |#1|))) NIL (|has| |#1| (-533)))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) 82)) (-2849 (($ (-653 |#1|) $) 18)) (-2654 (($ $ $) NIL)) (-1813 (((-111)) 85)) (-1811 (((-111)) 83)) (-1807 (((-111)) 81)) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1090 |#2| |#1|) $) 19))) -(((-43 |#1| |#2| |#3| |#4|) (-13 (-403 |#1|) (-613 (-1090 |#2| |#1|)) (-10 -8 (-15 -4274 ($ (-1205 |#1|))))) (-348) (-878) (-607 (-1123)) (-1205 (-653 |#1|))) (T -43)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-348)) (-14 *6 (-1205 (-653 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-878)) (-14 *5 (-607 (-1123)))))) -(-13 (-403 |#1|) (-613 (-1090 |#2| |#1|)) (-10 -8 (-15 -4274 ($ (-1205 |#1|))))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3721 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-4113 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-4115 (($ $) NIL)) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311))) (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (((-111) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-1822 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811))))) (-3209 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-3325 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) 27 (|has| $ (-6 -4311)))) (-4104 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-4107 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 29 (|has| $ (-6 -4311)))) (-4106 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-1172 (-526)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #1="last" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #3="first" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #4="value" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4114 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2285 (((-3 |#2| #5="failed") |#1| $) 37)) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-4117 (($ $ (-735)) NIL) (($ $) 24)) (-2424 (($ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-3738 (((-526) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) (((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 18 (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 18 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-3936 (($ (-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811))) (((-526) $) 32 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3159 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3832 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811))) (((-526) $) 34 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-3856 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) 42 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4116 (($ $ (-735)) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2713 (((-607 |#1|) $) 20)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2351 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 |#1|) $) NIL) (((-607 (-526)) $) NIL)) (-2282 (((-111) |#1| $) NIL) (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811))) (($ $ (-735)) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 23)) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #6="failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #6#) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3762 (((-111) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2283 (((-607 |#2|) $) NIL) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 17)) (-3722 (((-111) $) 16)) (-3887 (($) 13)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL) (($ $ (-1172 (-526))) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #3#) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #4#) NIL)) (-3329 (((-526) $ $) NIL)) (-1499 (($) 12) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-1608 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-3955 (((-111) $) NIL)) (-4110 (($ $) NIL)) (-4108 (($ $) NIL (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4109 (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL) (($ $ $) NIL)) (-4120 (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL) (($ (-607 $)) NIL) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 25) (($ $ $) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-1246 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") |#1| $) 44)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2984 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-4273 (((-735) $) 22 (|has| $ (-6 -4310))))) -(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1052) (-1052)) (T -44)) -NIL -(-35 |#1| |#2|) -((-4254 (((-111) $) 12)) (-4275 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-392 (-526)) $) 25) (($ $ (-392 (-526))) NIL))) -(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4254 ((-111) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-46 |#2| |#3|) (-1004) (-756)) (T -45)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4254 ((-111) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| |#2|) 59)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-4264 ((|#2| $) 62)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3999 ((|#1| $ |#2|) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-46 |#1| |#2|) (-134) (-1004) (-756)) (T -46)) -((-3487 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-3194 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-111)))) (-3193 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-348))))) -(-13 (-1004) (-110 |t#1| |t#1|) (-10 -8 (-15 -3487 (|t#1| $)) (-15 -3194 ($ $)) (-15 -4264 (|t#2| $)) (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (-15 -4254 ((-111) $)) (-15 -3193 ($ |t#1| |t#2|)) (-15 -4276 ($ $)) (-15 -3999 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-348)) (-15 -4265 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-6 (-163)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-533)) (-6 (-533)) |%noBranch|) (IF (|has| |t#1| (-37 (-392 (-526)))) (-6 (-37 (-392 (-526)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-275) |has| |#1| (-533)) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-1643 (((-607 $) (-1117 $) (-1123)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-905 $)) NIL)) (-1238 (($ (-1117 $) (-1123)) NIL) (($ (-1117 $)) NIL) (($ (-905 $)) NIL)) (-3502 (((-111) $) 11)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1636 (((-607 (-581 $)) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-1239 (((-607 $) (-1117 $) (-1123)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-905 $)) NIL)) (-3497 (($ (-1117 $) (-1123)) NIL) (($ (-1117 $)) NIL) (($ (-905 $)) NIL)) (-3470 (((-3 (-581 $) #1="failed") $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 (-392 (-526)) #1#) $) NIL)) (-3469 (((-581 $) $) NIL) (((-526) $) NIL) (((-392 (-526)) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-392 (-526)))) (|:| |vec| (-1205 (-392 (-526))))) (-653 $) (-1205 $)) NIL) (((-653 (-392 (-526))) (-653 $)) NIL)) (-4161 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2870 (($ $) NIL) (($ (-607 $)) NIL)) (-1635 (((-607 (-112)) $) NIL)) (-2307 (((-112) (-112)) NIL)) (-2471 (((-111) $) 14)) (-2973 (((-111) $) NIL (|has| $ (-995 (-526))))) (-3298 (((-1075 (-526) (-581 $)) $) NIL)) (-3311 (($ $ (-526)) NIL)) (-3429 (((-1117 $) (-1117 $) (-581 $)) NIL) (((-1117 $) (-1117 $) (-607 (-581 $))) NIL) (($ $ (-581 $)) NIL) (($ $ (-607 (-581 $))) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-1633 (((-1117 $) (-581 $)) NIL (|has| $ (-1004)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 $ $) (-581 $)) NIL)) (-1638 (((-3 (-581 $) "failed") $) NIL)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-1637 (((-607 (-581 $)) $) NIL)) (-2288 (($ (-112) $) NIL) (($ (-112) (-607 $)) NIL)) (-2930 (((-111) $ (-112)) NIL) (((-111) $ (-1123)) NIL)) (-2703 (($ $) NIL)) (-2900 (((-735) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-1634 (((-111) $ $) NIL) (((-111) $ (-1123)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1680 (((-735) $) NIL)) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-3297 (((-1075 (-526) (-581 $)) $) NIL)) (-3499 (($ $) NIL (|has| $ (-1004)))) (-4287 (((-363) $) NIL) (((-211) $) NIL) (((-159 (-363)) $) NIL)) (-4274 (((-823) $) NIL) (($ (-581 $)) NIL) (($ (-392 (-526))) NIL) (($ $) NIL) (($ (-526)) NIL) (($ (-1075 (-526) (-581 $))) NIL)) (-3423 (((-735)) NIL)) (-2887 (($ $) NIL) (($ (-607 $)) NIL)) (-2306 (((-111) (-112)) NIL)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 7 T CONST)) (-2964 (($) 12 T CONST)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 16)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $ $) 15) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-392 (-526))) NIL) (($ $ (-526)) NIL) (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ $ $) NIL) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL))) -(((-47) (-13 (-283) (-27) (-995 (-526)) (-995 (-392 (-526))) (-606 (-526)) (-977) (-606 (-392 (-526))) (-141) (-584 (-159 (-363))) (-219) (-10 -8 (-15 -4274 ($ (-1075 (-526) (-581 $)))) (-15 -3298 ((-1075 (-526) (-581 $)) $)) (-15 -3297 ((-1075 (-526) (-581 $)) $)) (-15 -4161 ($ $)) (-15 -3429 ((-1117 $) (-1117 $) (-581 $))) (-15 -3429 ((-1117 $) (-1117 $) (-607 (-581 $)))) (-15 -3429 ($ $ (-581 $))) (-15 -3429 ($ $ (-607 (-581 $))))))) (T -47)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) (-4161 (*1 *1 *1) (-5 *1 (-47))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-47))) (-5 *3 (-581 (-47))) (-5 *1 (-47)))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-47))) (-5 *3 (-607 (-581 (-47)))) (-5 *1 (-47)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-581 (-47))) (-5 *1 (-47)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-581 (-47)))) (-5 *1 (-47))))) -(-13 (-283) (-27) (-995 (-526)) (-995 (-392 (-526))) (-606 (-526)) (-977) (-606 (-392 (-526))) (-141) (-584 (-159 (-363))) (-219) (-10 -8 (-15 -4274 ($ (-1075 (-526) (-581 $)))) (-15 -3298 ((-1075 (-526) (-581 $)) $)) (-15 -3297 ((-1075 (-526) (-581 $)) $)) (-15 -4161 ($ $)) (-15 -3429 ((-1117 $) (-1117 $) (-581 $))) (-15 -3429 ((-1117 $) (-1117 $) (-607 (-581 $)))) (-15 -3429 ($ $ (-581 $))) (-15 -3429 ($ $ (-607 (-581 $)))))) -((-2865 (((-111) $ $) NIL)) (-2036 (((-607 (-1123)) $) 17)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 7)) (-3494 (((-1128) $) 18)) (-3353 (((-111) $ $) NIL))) -(((-48) (-13 (-1052) (-10 -8 (-15 -2036 ((-607 (-1123)) $)) (-15 -3494 ((-1128) $))))) (T -48)) -((-2036 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-48)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-48))))) -(-13 (-1052) (-10 -8 (-15 -2036 ((-607 (-1123)) $)) (-15 -3494 ((-1128) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 61)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2962 (((-111) $) 20)) (-3470 (((-3 |#1| "failed") $) 23)) (-3469 ((|#1| $) 24)) (-4276 (($ $) 28)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3487 ((|#1| $) 21)) (-1488 (($ $) 50)) (-3554 (((-1106) $) NIL)) (-1487 (((-111) $) 30)) (-3555 (((-1070) $) NIL)) (-2470 (($ (-735)) 48)) (-4260 (($ (-607 (-526))) 49)) (-4264 (((-735) $) 31)) (-4274 (((-823) $) 64) (($ (-526)) 45) (($ |#1|) 43)) (-3999 ((|#1| $ $) 19)) (-3423 (((-735)) 47)) (-2957 (($) 32 T CONST)) (-2964 (($) 14 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 40)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-49 |#1| |#2|) (-13 (-588 |#1|) (-995 |#1|) (-10 -8 (-15 -3487 (|#1| $)) (-15 -1488 ($ $)) (-15 -4276 ($ $)) (-15 -3999 (|#1| $ $)) (-15 -2470 ($ (-735))) (-15 -4260 ($ (-607 (-526)))) (-15 -1487 ((-111) $)) (-15 -2962 ((-111) $)) (-15 -4264 ((-735) $)) (-15 -4275 ($ (-1 |#1| |#1|) $)))) (-1004) (-607 (-1123))) (T -49)) -((-3487 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-49 *2 *3)) (-14 *3 (-607 (-1123))))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))))) (-3999 (*1 *2 *1 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-49 *2 *3)) (-14 *3 (-607 (-1123))))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-4260 (*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-49 *3 *4)) (-14 *4 (-607 (-1123)))))) -(-13 (-588 |#1|) (-995 |#1|) (-10 -8 (-15 -3487 (|#1| $)) (-15 -1488 ($ $)) (-15 -4276 ($ $)) (-15 -3999 (|#1| $ $)) (-15 -2470 ($ (-735))) (-15 -4260 ($ (-607 (-526)))) (-15 -1487 ((-111) $)) (-15 -2962 ((-111) $)) (-15 -4264 ((-735) $)) (-15 -4275 ($ (-1 |#1| |#1|) $)))) -((-2865 (((-111) $ $) NIL)) (-1273 (((-1106) (-111)) 25)) (-1276 (((-823) $) 24)) (-1274 (((-737) $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1277 (((-823) $) 16)) (-1275 (((-1054) $) 14)) (-4274 (((-823) $) 32)) (-1278 (($ (-1054) (-737)) 33)) (-3353 (((-111) $ $) 18))) -(((-50) (-13 (-1052) (-10 -8 (-15 -1278 ($ (-1054) (-737))) (-15 -1277 ((-823) $)) (-15 -1276 ((-823) $)) (-15 -1275 ((-1054) $)) (-15 -1274 ((-737) $)) (-15 -1273 ((-1106) (-111)))))) (T -50)) -((-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1054)) (-5 *3 (-737)) (-5 *1 (-50)))) (-1277 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-50)))) (-1276 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-50)))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-50)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-737)) (-5 *1 (-50)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1106)) (-5 *1 (-50))))) -(-13 (-1052) (-10 -8 (-15 -1278 ($ (-1054) (-737))) (-15 -1277 ((-823) $)) (-15 -1276 ((-823) $)) (-15 -1275 ((-1054) $)) (-15 -1274 ((-737) $)) (-15 -1273 ((-1106) (-111))))) -((-2962 (((-111) (-50)) 13)) (-3470 (((-3 |#1| "failed") (-50)) 21)) (-3469 ((|#1| (-50)) 22)) (-4274 (((-50) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -4274 ((-50) |#1|)) (-15 -3470 ((-3 |#1| "failed") (-50))) (-15 -2962 ((-111) (-50))) (-15 -3469 (|#1| (-50)))) (-1159)) (T -51)) -((-3469 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1159)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1159)))) (-3470 (*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1159)))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1159))))) -(-10 -7 (-15 -4274 ((-50) |#1|)) (-15 -3470 ((-3 |#1| "failed") (-50))) (-15 -2962 ((-111) (-50))) (-15 -3469 (|#1| (-50)))) -((-2849 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2849 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1004) (-613 |#1|) (-813 |#1|)) (T -52)) -((-2849 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-613 *5)) (-4 *5 (-1004)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-813 *5))))) -(-10 -7 (-15 -2849 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1280 ((|#3| |#3| (-607 (-1123))) 35)) (-1279 ((|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3| (-878)) 22) ((|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3|) 20))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1279 (|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3|)) (-15 -1279 (|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3| (-878))) (-15 -1280 (|#3| |#3| (-607 (-1123))))) (-1052) (-13 (-1004) (-845 |#1|) (-811) (-584 (-849 |#1|))) (-13 (-406 |#2|) (-845 |#1|) (-584 (-849 |#1|)))) (T -53)) -((-1280 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) (-1279 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-607 (-1026 *5 *6 *2))) (-5 *4 (-878)) (-4 *5 (-1052)) (-4 *6 (-13 (-1004) (-845 *5) (-811) (-584 (-849 *5)))) (-4 *2 (-13 (-406 *6) (-845 *5) (-584 (-849 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1279 (*1 *2 *3 *2) (-12 (-5 *3 (-607 (-1026 *4 *5 *2))) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))) (-5 *1 (-53 *4 *5 *2))))) -(-10 -7 (-15 -1279 (|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3|)) (-15 -1279 (|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3| (-878))) (-15 -1280 (|#3| |#3| (-607 (-1123))))) -((-1244 (((-111) $ (-735)) 23)) (-1282 (($ $ (-526) |#3|) 46)) (-1281 (($ $ (-526) |#4|) 50)) (-3409 ((|#3| $ (-526)) 59)) (-2044 (((-607 |#2|) $) 30)) (-4041 (((-111) $ (-735)) 25)) (-3557 (((-111) |#2| $) 54)) (-2048 (($ (-1 |#2| |#2|) $) 37)) (-4275 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-4038 (((-111) $ (-735)) 24)) (-2277 (($ $ |#2|) 34)) (-2046 (((-111) (-1 (-111) |#2|) $) 19)) (-4118 ((|#2| $ (-526) (-526)) NIL) ((|#2| $ (-526) (-526) |#2|) 27)) (-2045 (((-735) (-1 (-111) |#2|) $) 28) (((-735) |#2| $) 56)) (-3719 (($ $) 33)) (-3408 ((|#4| $ (-526)) 62)) (-4274 (((-823) $) 68)) (-2047 (((-111) (-1 (-111) |#2|) $) 18)) (-3353 (((-111) $ $) 53)) (-4273 (((-735) $) 26))) -(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1281 (|#1| |#1| (-526) |#4|)) (-15 -1282 (|#1| |#1| (-526) |#3|)) (-15 -2044 ((-607 |#2|) |#1|)) (-15 -3408 (|#4| |#1| (-526))) (-15 -3409 (|#3| |#1| (-526))) (-15 -4118 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526))) (-15 -2277 (|#1| |#1| |#2|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -3557 ((-111) |#2| |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735))) (-15 -3719 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1159) (-357 |#2|) (-357 |#2|)) (T -54)) -NIL -(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1281 (|#1| |#1| (-526) |#4|)) (-15 -1282 (|#1| |#1| (-526) |#3|)) (-15 -2044 ((-607 |#2|) |#1|)) (-15 -3408 (|#4| |#1| (-526))) (-15 -3409 (|#3| |#1| (-526))) (-15 -4118 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526))) (-15 -2277 (|#1| |#1| |#2|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -3557 ((-111) |#2| |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735))) (-15 -3719 (|#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) (-526) |#1|) 44)) (-1282 (($ $ (-526) |#2|) 42)) (-1281 (($ $ (-526) |#3|) 41)) (-3855 (($) 7 T CONST)) (-3409 ((|#2| $ (-526)) 46)) (-1613 ((|#1| $ (-526) (-526) |#1|) 43)) (-3410 ((|#1| $ (-526) (-526)) 48)) (-2044 (((-607 |#1|) $) 30)) (-3412 (((-735) $) 51)) (-3936 (($ (-735) (-735) |#1|) 57)) (-3411 (((-735) $) 50)) (-4041 (((-111) $ (-735)) 9)) (-3416 (((-526) $) 55)) (-3414 (((-526) $) 53)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3415 (((-526) $) 54)) (-3413 (((-526) $) 52)) (-2048 (($ (-1 |#1| |#1|) $) 34)) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) 56)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) (-526)) 49) ((|#1| $ (-526) (-526) |#1|) 47)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-3408 ((|#3| $ (-526)) 45)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-55 |#1| |#2| |#3|) (-134) (-1159) (-357 |t#1|) (-357 |t#1|)) (T -55)) -((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3936 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-735)) (-4 *3 (-1159)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2277 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1159)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-526)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-526)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-526)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-526)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-735)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-735)))) (-4118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-1159)))) (-3410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-3409 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) (-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-607 *3)))) (-4106 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-1613 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-1282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-526)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1159)) (-4 *3 (-357 *4)) (-4 *5 (-357 *4)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-526)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) (-4 *3 (-357 *4)))) (-2048 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4275 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4275 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) -(-13 (-472 |t#1|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -3936 ($ (-735) (-735) |t#1|)) (-15 -2277 ($ $ |t#1|)) (-15 -3416 ((-526) $)) (-15 -3415 ((-526) $)) (-15 -3414 ((-526) $)) (-15 -3413 ((-526) $)) (-15 -3412 ((-735) $)) (-15 -3411 ((-735) $)) (-15 -4118 (|t#1| $ (-526) (-526))) (-15 -3410 (|t#1| $ (-526) (-526))) (-15 -4118 (|t#1| $ (-526) (-526) |t#1|)) (-15 -3409 (|t#2| $ (-526))) (-15 -3408 (|t#3| $ (-526))) (-15 -2044 ((-607 |t#1|) $)) (-15 -4106 (|t#1| $ (-526) (-526) |t#1|)) (-15 -1613 (|t#1| $ (-526) (-526) |t#1|)) (-15 -1282 ($ $ (-526) |t#2|)) (-15 -1281 ($ $ (-526) |t#3|)) (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (-15 -2048 ($ (-1 |t#1| |t#1|) $)) (-15 -4275 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4275 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) 11 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-1283 (($ (-607 |#1|)) 13) (($ (-735) |#1|) 14)) (-3936 (($ (-735) |#1|) 9)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 7)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-56 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1283 ($ (-607 |#1|))) (-15 -1283 ($ (-735) |#1|)))) (-1159)) (T -56)) -((-1283 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-56 *3)))) (-1283 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *1 (-56 *3)) (-4 *3 (-1159))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1283 ($ (-607 |#1|))) (-15 -1283 ($ (-735) |#1|)))) -((-4160 (((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 16)) (-4161 ((|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 18)) (-4275 (((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)) 13))) -(((-57 |#1| |#2|) (-10 -7 (-15 -4160 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4275 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)))) (-1159) (-1159)) (T -57)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-57 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5))))) -(-10 -7 (-15 -4160 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4275 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL)) (-1282 (($ $ (-526) (-56 |#1|)) NIL)) (-1281 (($ $ (-526) (-56 |#1|)) NIL)) (-3855 (($) NIL T CONST)) (-3409 (((-56 |#1|) $ (-526)) NIL)) (-1613 ((|#1| $ (-526) (-526) |#1|) NIL)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3412 (((-735) $) NIL)) (-3936 (($ (-735) (-735) |#1|) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 (((-56 |#1|) $ (-526)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-58 |#1|) (-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4311))) (-1159)) (T -58)) -NIL -(-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4311))) -((-3470 (((-3 $ #1="failed") (-299 (-363))) 41) (((-3 $ #1#) (-299 (-526))) 46) (((-3 $ #1#) (-905 (-363))) 50) (((-3 $ #1#) (-905 (-526))) 54) (((-3 $ #1#) (-392 (-905 (-363)))) 36) (((-3 $ #1#) (-392 (-905 (-526)))) 29)) (-3469 (($ (-299 (-363))) 39) (($ (-299 (-526))) 44) (($ (-905 (-363))) 48) (($ (-905 (-526))) 52) (($ (-392 (-905 (-363)))) 34) (($ (-392 (-905 (-526)))) 26)) (-3699 (((-1211) $) 76)) (-4274 (((-823) $) 69) (($ (-607 (-315))) 61) (($ (-315)) 66) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 64) (($ (-324 (-3844 (QUOTE X)) (-3844) (-663))) 25))) -(((-59 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844 (QUOTE X)) (-3844) (-663)))))) (-1123)) (T -59)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844 (QUOTE X)) (-3844) (-663))) (-5 *1 (-59 *3)) (-14 *3 (-1123))))) -(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844 (QUOTE X)) (-3844) (-663)))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 74) (((-3 $ #1#) (-1205 (-299 (-526)))) 63) (((-3 $ #1#) (-1205 (-905 (-363)))) 94) (((-3 $ #1#) (-1205 (-905 (-526)))) 84) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 52) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 39)) (-3469 (($ (-1205 (-299 (-363)))) 70) (($ (-1205 (-299 (-526)))) 59) (($ (-1205 (-905 (-363)))) 90) (($ (-1205 (-905 (-526)))) 80) (($ (-1205 (-392 (-905 (-363))))) 48) (($ (-1205 (-392 (-905 (-526))))) 32)) (-3699 (((-1211) $) 120)) (-4274 (((-823) $) 113) (($ (-607 (-315))) 103) (($ (-315)) 97) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 101) (($ (-1205 (-324 (-3844 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3844) (-663)))) 31))) -(((-60 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3844) (-663))))))) (-1123)) (T -60)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3844) (-663)))) (-5 *1 (-60 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3844) (-663))))))) -((-3699 (((-1211) $) 53) (((-1211)) 54)) (-4274 (((-823) $) 50))) -(((-61 |#1|) (-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) (-1123)) (T -61)) -((-3699 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-61 *3)) (-14 *3 (-1123))))) -(-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 144) (((-3 $ #1#) (-1205 (-299 (-526)))) 134) (((-3 $ #1#) (-1205 (-905 (-363)))) 164) (((-3 $ #1#) (-1205 (-905 (-526)))) 154) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 123) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 111)) (-3469 (($ (-1205 (-299 (-363)))) 140) (($ (-1205 (-299 (-526)))) 130) (($ (-1205 (-905 (-363)))) 160) (($ (-1205 (-905 (-526)))) 150) (($ (-1205 (-392 (-905 (-363))))) 119) (($ (-1205 (-392 (-905 (-526))))) 104)) (-3699 (((-1211) $) 97)) (-4274 (((-823) $) 91) (($ (-607 (-315))) 29) (($ (-315)) 34) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 32) (($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663)))) 89))) -(((-62 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663))))))) (-1123)) (T -62)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663)))) (-5 *1 (-62 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-653 (-299 (-363)))) 109) (((-3 $ #1#) (-653 (-299 (-526)))) 97) (((-3 $ #1#) (-653 (-905 (-363)))) 131) (((-3 $ #1#) (-653 (-905 (-526)))) 120) (((-3 $ #1#) (-653 (-392 (-905 (-363))))) 85) (((-3 $ #1#) (-653 (-392 (-905 (-526))))) 71)) (-3469 (($ (-653 (-299 (-363)))) 105) (($ (-653 (-299 (-526)))) 93) (($ (-653 (-905 (-363)))) 127) (($ (-653 (-905 (-526)))) 116) (($ (-653 (-392 (-905 (-363))))) 81) (($ (-653 (-392 (-905 (-526))))) 64)) (-3699 (((-1211) $) 139)) (-4274 (((-823) $) 133) (($ (-607 (-315))) 28) (($ (-315)) 33) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 31) (($ (-653 (-324 (-3844) (-3844 (QUOTE X) (QUOTE HESS)) (-663)))) 54))) -(((-63 |#1|) (-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844) (-3844 (QUOTE X) (QUOTE HESS)) (-663))))))) (-1123)) (T -63)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-324 (-3844) (-3844 (QUOTE X) (QUOTE HESS)) (-663)))) (-5 *1 (-63 *3)) (-14 *3 (-1123))))) -(-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844) (-3844 (QUOTE X) (QUOTE HESS)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-299 (-363))) 59) (((-3 $ #1#) (-299 (-526))) 64) (((-3 $ #1#) (-905 (-363))) 68) (((-3 $ #1#) (-905 (-526))) 72) (((-3 $ #1#) (-392 (-905 (-363)))) 54) (((-3 $ #1#) (-392 (-905 (-526)))) 47)) (-3469 (($ (-299 (-363))) 57) (($ (-299 (-526))) 62) (($ (-905 (-363))) 66) (($ (-905 (-526))) 70) (($ (-392 (-905 (-363)))) 52) (($ (-392 (-905 (-526)))) 44)) (-3699 (((-1211) $) 81)) (-4274 (((-823) $) 75) (($ (-607 (-315))) 28) (($ (-315)) 33) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 31) (($ (-324 (-3844) (-3844 (QUOTE XC)) (-663))) 39))) -(((-64 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE XC)) (-663)))))) (-1123)) (T -64)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844) (-3844 (QUOTE XC)) (-663))) (-5 *1 (-64 *3)) (-14 *3 (-1123))))) -(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE XC)) (-663)))))) -((-3699 (((-1211) $) 63)) (-4274 (((-823) $) 57) (($ (-653 (-663))) 49) (($ (-607 (-315))) 48) (($ (-315)) 55) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 53))) -(((-65 |#1|) (-368) (-1123)) (T -65)) -NIL -(-368) -((-3699 (((-1211) $) 64)) (-4274 (((-823) $) 58) (($ (-653 (-663))) 50) (($ (-607 (-315))) 49) (($ (-315)) 52) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 55))) -(((-66 |#1|) (-368) (-1123)) (T -66)) -NIL -(-368) -((-3699 (((-1211) $) NIL) (((-1211)) 32)) (-4274 (((-823) $) NIL))) -(((-67 |#1|) (-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) (-1123)) (T -67)) -((-3699 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-67 *3)) (-14 *3 (-1123))))) -(-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) -((-3699 (((-1211) $) 73)) (-4274 (((-823) $) 67) (($ (-653 (-663))) 59) (($ (-607 (-315))) 61) (($ (-315)) 64) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 58))) -(((-68 |#1|) (-368) (-1123)) (T -68)) -NIL -(-368) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 103) (((-3 $ #1#) (-1205 (-299 (-526)))) 92) (((-3 $ #1#) (-1205 (-905 (-363)))) 123) (((-3 $ #1#) (-1205 (-905 (-526)))) 113) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 81) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 68)) (-3469 (($ (-1205 (-299 (-363)))) 99) (($ (-1205 (-299 (-526)))) 88) (($ (-1205 (-905 (-363)))) 119) (($ (-1205 (-905 (-526)))) 109) (($ (-1205 (-392 (-905 (-363))))) 77) (($ (-1205 (-392 (-905 (-526))))) 61)) (-3699 (((-1211) $) 136)) (-4274 (((-823) $) 130) (($ (-607 (-315))) 125) (($ (-315)) 128) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 53) (($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))) 54))) -(((-69 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))))))) (-1123)) (T -69)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))) (-5 *1 (-69 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))))))) -((-3699 (((-1211) $) 32) (((-1211)) 31)) (-4274 (((-823) $) 35))) -(((-70 |#1|) (-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) (-1123)) (T -70)) -((-3699 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-70 *3)) (-14 *3 (-1123))))) -(-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) -((-3699 (((-1211) $) 63)) (-4274 (((-823) $) 57) (($ (-653 (-663))) 49) (($ (-607 (-315))) 51) (($ (-315)) 54) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 48))) -(((-71 |#1|) (-368) (-1123)) (T -71)) -NIL -(-368) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 125) (((-3 $ #1#) (-1205 (-299 (-526)))) 115) (((-3 $ #1#) (-1205 (-905 (-363)))) 145) (((-3 $ #1#) (-1205 (-905 (-526)))) 135) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 105) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 93)) (-3469 (($ (-1205 (-299 (-363)))) 121) (($ (-1205 (-299 (-526)))) 111) (($ (-1205 (-905 (-363)))) 141) (($ (-1205 (-905 (-526)))) 131) (($ (-1205 (-392 (-905 (-363))))) 101) (($ (-1205 (-392 (-905 (-526))))) 86)) (-3699 (((-1211) $) 78)) (-4274 (((-823) $) 27) (($ (-607 (-315))) 68) (($ (-315)) 64) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 71) (($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) 65))) -(((-72 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) (-1123)) (T -72)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) (-5 *1 (-72 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-299 (-363))) 46) (((-3 $ #1#) (-299 (-526))) 51) (((-3 $ #1#) (-905 (-363))) 55) (((-3 $ #1#) (-905 (-526))) 59) (((-3 $ #1#) (-392 (-905 (-363)))) 41) (((-3 $ #1#) (-392 (-905 (-526)))) 34)) (-3469 (($ (-299 (-363))) 44) (($ (-299 (-526))) 49) (($ (-905 (-363))) 53) (($ (-905 (-526))) 57) (($ (-392 (-905 (-363)))) 39) (($ (-392 (-905 (-526)))) 31)) (-3699 (((-1211) $) 80)) (-4274 (((-823) $) 74) (($ (-607 (-315))) 66) (($ (-315)) 71) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 69) (($ (-324 (-3844) (-3844 (QUOTE X)) (-663))) 30))) -(((-73 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE X)) (-663)))))) (-1123)) (T -73)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844) (-3844 (QUOTE X)) (-663))) (-5 *1 (-73 *3)) (-14 *3 (-1123))))) -(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE X)) (-663)))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 130) (((-3 $ #1#) (-1205 (-299 (-526)))) 119) (((-3 $ #1#) (-1205 (-905 (-363)))) 150) (((-3 $ #1#) (-1205 (-905 (-526)))) 140) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 108) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 95)) (-3469 (($ (-1205 (-299 (-363)))) 126) (($ (-1205 (-299 (-526)))) 115) (($ (-1205 (-905 (-363)))) 146) (($ (-1205 (-905 (-526)))) 136) (($ (-1205 (-392 (-905 (-363))))) 104) (($ (-1205 (-392 (-905 (-526))))) 88)) (-3699 (((-1211) $) 79)) (-4274 (((-823) $) 71) (($ (-607 (-315))) NIL) (($ (-315)) NIL) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) NIL) (($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE EPS)) (-3844 (QUOTE -4281)) (-663)))) 66))) -(((-74 |#1| |#2| |#3|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE EPS)) (-3844 (QUOTE -4281)) (-663))))))) (-1123) (-1123) (-1123)) (T -74)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X) (QUOTE EPS)) (-3844 (QUOTE -4281)) (-663)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1123)) (-14 *4 (-1123)) (-14 *5 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE EPS)) (-3844 (QUOTE -4281)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 134) (((-3 $ #1#) (-1205 (-299 (-526)))) 123) (((-3 $ #1#) (-1205 (-905 (-363)))) 154) (((-3 $ #1#) (-1205 (-905 (-526)))) 144) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 112) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 99)) (-3469 (($ (-1205 (-299 (-363)))) 130) (($ (-1205 (-299 (-526)))) 119) (($ (-1205 (-905 (-363)))) 150) (($ (-1205 (-905 (-526)))) 140) (($ (-1205 (-392 (-905 (-363))))) 108) (($ (-1205 (-392 (-905 (-526))))) 92)) (-3699 (((-1211) $) 83)) (-4274 (((-823) $) 75) (($ (-607 (-315))) NIL) (($ (-315)) NIL) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) NIL) (($ (-1205 (-324 (-3844 (QUOTE EPS)) (-3844 (QUOTE YA) (QUOTE YB)) (-663)))) 70))) -(((-75 |#1| |#2| |#3|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE EPS)) (-3844 (QUOTE YA) (QUOTE YB)) (-663))))))) (-1123) (-1123) (-1123)) (T -75)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE EPS)) (-3844 (QUOTE YA) (QUOTE YB)) (-663)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1123)) (-14 *4 (-1123)) (-14 *5 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE EPS)) (-3844 (QUOTE YA) (QUOTE YB)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-299 (-363))) 82) (((-3 $ #1#) (-299 (-526))) 87) (((-3 $ #1#) (-905 (-363))) 91) (((-3 $ #1#) (-905 (-526))) 95) (((-3 $ #1#) (-392 (-905 (-363)))) 77) (((-3 $ #1#) (-392 (-905 (-526)))) 70)) (-3469 (($ (-299 (-363))) 80) (($ (-299 (-526))) 85) (($ (-905 (-363))) 89) (($ (-905 (-526))) 93) (($ (-392 (-905 (-363)))) 75) (($ (-392 (-905 (-526)))) 67)) (-3699 (((-1211) $) 62)) (-4274 (((-823) $) 50) (($ (-607 (-315))) 46) (($ (-315)) 56) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 54) (($ (-324 (-3844) (-3844 (QUOTE X)) (-663))) 47))) -(((-76 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE X)) (-663)))))) (-1123)) (T -76)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844) (-3844 (QUOTE X)) (-663))) (-5 *1 (-76 *3)) (-14 *3 (-1123))))) -(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE X)) (-663)))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 89) (((-3 $ #1#) (-1205 (-299 (-526)))) 78) (((-3 $ #1#) (-1205 (-905 (-363)))) 109) (((-3 $ #1#) (-1205 (-905 (-526)))) 99) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 67) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 54)) (-3469 (($ (-1205 (-299 (-363)))) 85) (($ (-1205 (-299 (-526)))) 74) (($ (-1205 (-905 (-363)))) 105) (($ (-1205 (-905 (-526)))) 95) (($ (-1205 (-392 (-905 (-363))))) 63) (($ (-1205 (-392 (-905 (-526))))) 47)) (-3699 (((-1211) $) 125)) (-4274 (((-823) $) 119) (($ (-607 (-315))) 112) (($ (-315)) 37) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 115) (($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663)))) 38))) -(((-77 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663))))))) (-1123)) (T -77)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663)))) (-5 *1 (-77 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 142) (((-3 $ #1#) (-1205 (-299 (-526)))) 132) (((-3 $ #1#) (-1205 (-905 (-363)))) 162) (((-3 $ #1#) (-1205 (-905 (-526)))) 152) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 122) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 110)) (-3469 (($ (-1205 (-299 (-363)))) 138) (($ (-1205 (-299 (-526)))) 128) (($ (-1205 (-905 (-363)))) 158) (($ (-1205 (-905 (-526)))) 148) (($ (-1205 (-392 (-905 (-363))))) 118) (($ (-1205 (-392 (-905 (-526))))) 103)) (-3699 (((-1211) $) 96)) (-4274 (((-823) $) 90) (($ (-607 (-315))) 81) (($ (-315)) 88) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 86) (($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) 82))) -(((-78 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) (-1123)) (T -78)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) (-5 *1 (-78 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 78) (((-3 $ #1#) (-1205 (-299 (-526)))) 67) (((-3 $ #1#) (-1205 (-905 (-363)))) 98) (((-3 $ #1#) (-1205 (-905 (-526)))) 88) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 56) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 43)) (-3469 (($ (-1205 (-299 (-363)))) 74) (($ (-1205 (-299 (-526)))) 63) (($ (-1205 (-905 (-363)))) 94) (($ (-1205 (-905 (-526)))) 84) (($ (-1205 (-392 (-905 (-363))))) 52) (($ (-1205 (-392 (-905 (-526))))) 36)) (-3699 (((-1211) $) 124)) (-4274 (((-823) $) 118) (($ (-607 (-315))) 109) (($ (-315)) 115) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 113) (($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) 35))) -(((-79 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) (-1123)) (T -79)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) (-5 *1 (-79 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 79) (((-3 $ #1#) (-1205 (-299 (-526)))) 68) (((-3 $ #1#) (-1205 (-905 (-363)))) 99) (((-3 $ #1#) (-1205 (-905 (-526)))) 89) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 57) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 44)) (-3469 (($ (-1205 (-299 (-363)))) 75) (($ (-1205 (-299 (-526)))) 64) (($ (-1205 (-905 (-363)))) 95) (($ (-1205 (-905 (-526)))) 85) (($ (-1205 (-392 (-905 (-363))))) 53) (($ (-1205 (-392 (-905 (-526))))) 37)) (-3699 (((-1211) $) 125)) (-4274 (((-823) $) 119) (($ (-607 (-315))) 110) (($ (-315)) 116) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 114) (($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))) 36))) -(((-80 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))))))) (-1123)) (T -80)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))) (-5 *1 (-80 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 95) (((-3 $ #1#) (-1205 (-299 (-526)))) 84) (((-3 $ #1#) (-1205 (-905 (-363)))) 115) (((-3 $ #1#) (-1205 (-905 (-526)))) 105) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 73) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 60)) (-3469 (($ (-1205 (-299 (-363)))) 91) (($ (-1205 (-299 (-526)))) 80) (($ (-1205 (-905 (-363)))) 111) (($ (-1205 (-905 (-526)))) 101) (($ (-1205 (-392 (-905 (-363))))) 69) (($ (-1205 (-392 (-905 (-526))))) 53)) (-3699 (((-1211) $) 45)) (-4274 (((-823) $) 39) (($ (-607 (-315))) 29) (($ (-315)) 32) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 35) (($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663)))) 30))) -(((-81 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663))))))) (-1123)) (T -81)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663)))) (-5 *1 (-81 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663))))))) -((-3470 (((-3 $ #1="failed") (-653 (-299 (-363)))) 115) (((-3 $ #1#) (-653 (-299 (-526)))) 104) (((-3 $ #1#) (-653 (-905 (-363)))) 137) (((-3 $ #1#) (-653 (-905 (-526)))) 126) (((-3 $ #1#) (-653 (-392 (-905 (-363))))) 93) (((-3 $ #1#) (-653 (-392 (-905 (-526))))) 80)) (-3469 (($ (-653 (-299 (-363)))) 111) (($ (-653 (-299 (-526)))) 100) (($ (-653 (-905 (-363)))) 133) (($ (-653 (-905 (-526)))) 122) (($ (-653 (-392 (-905 (-363))))) 89) (($ (-653 (-392 (-905 (-526))))) 73)) (-3699 (((-1211) $) 63)) (-4274 (((-823) $) 50) (($ (-607 (-315))) 57) (($ (-315)) 46) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 55) (($ (-653 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663)))) 47))) -(((-82 |#1|) (-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663))))))) (-1123)) (T -82)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663)))) (-5 *1 (-82 *3)) (-14 *3 (-1123))))) -(-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663))))))) -((-3470 (((-3 $ #1="failed") (-653 (-299 (-363)))) 112) (((-3 $ #1#) (-653 (-299 (-526)))) 100) (((-3 $ #1#) (-653 (-905 (-363)))) 134) (((-3 $ #1#) (-653 (-905 (-526)))) 123) (((-3 $ #1#) (-653 (-392 (-905 (-363))))) 88) (((-3 $ #1#) (-653 (-392 (-905 (-526))))) 74)) (-3469 (($ (-653 (-299 (-363)))) 108) (($ (-653 (-299 (-526)))) 96) (($ (-653 (-905 (-363)))) 130) (($ (-653 (-905 (-526)))) 119) (($ (-653 (-392 (-905 (-363))))) 84) (($ (-653 (-392 (-905 (-526))))) 67)) (-3699 (((-1211) $) 59)) (-4274 (((-823) $) 53) (($ (-607 (-315))) 47) (($ (-315)) 50) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 44) (($ (-653 (-324 (-3844 (QUOTE X)) (-3844) (-663)))) 45))) -(((-83 |#1|) (-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE X)) (-3844) (-663))))))) (-1123)) (T -83)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-324 (-3844 (QUOTE X)) (-3844) (-663)))) (-5 *1 (-83 *3)) (-14 *3 (-1123))))) -(-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE X)) (-3844) (-663))))))) -((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 104) (((-3 $ #1#) (-1205 (-299 (-526)))) 93) (((-3 $ #1#) (-1205 (-905 (-363)))) 124) (((-3 $ #1#) (-1205 (-905 (-526)))) 114) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 82) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 69)) (-3469 (($ (-1205 (-299 (-363)))) 100) (($ (-1205 (-299 (-526)))) 89) (($ (-1205 (-905 (-363)))) 120) (($ (-1205 (-905 (-526)))) 110) (($ (-1205 (-392 (-905 (-363))))) 78) (($ (-1205 (-392 (-905 (-526))))) 62)) (-3699 (((-1211) $) 46)) (-4274 (((-823) $) 40) (($ (-607 (-315))) 49) (($ (-315)) 36) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 52) (($ (-1205 (-324 (-3844 (QUOTE X)) (-3844) (-663)))) 37))) -(((-84 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844) (-663))))))) (-1123)) (T -84)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X)) (-3844) (-663)))) (-5 *1 (-84 *3)) (-14 *3 (-1123))))) -(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844) (-663))))))) -((-3699 (((-1211) $) 44)) (-4274 (((-823) $) 38) (($ (-1205 (-663))) 92) (($ (-607 (-315))) 30) (($ (-315)) 35) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 33))) -(((-85 |#1|) (-424) (-1123)) (T -85)) -NIL -(-424) -((-3470 (((-3 $ #1="failed") (-653 (-299 (-363)))) 113) (((-3 $ #1#) (-653 (-299 (-526)))) 101) (((-3 $ #1#) (-653 (-905 (-363)))) 135) (((-3 $ #1#) (-653 (-905 (-526)))) 124) (((-3 $ #1#) (-653 (-392 (-905 (-363))))) 89) (((-3 $ #1#) (-653 (-392 (-905 (-526))))) 75)) (-3469 (($ (-653 (-299 (-363)))) 109) (($ (-653 (-299 (-526)))) 97) (($ (-653 (-905 (-363)))) 131) (($ (-653 (-905 (-526)))) 120) (($ (-653 (-392 (-905 (-363))))) 85) (($ (-653 (-392 (-905 (-526))))) 68)) (-3699 (((-1211) $) 59)) (-4274 (((-823) $) 53) (($ (-607 (-315))) 43) (($ (-315)) 50) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 48) (($ (-653 (-324 (-3844 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3844) (-663)))) 44))) -(((-86 |#1|) (-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3844) (-663))))))) (-1123)) (T -86)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-324 (-3844 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3844) (-663)))) (-5 *1 (-86 *3)) (-14 *3 (-1123))))) -(-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3844) (-663))))))) -((-3470 (((-3 $ #1="failed") (-299 (-363))) 47) (((-3 $ #1#) (-299 (-526))) 52) (((-3 $ #1#) (-905 (-363))) 56) (((-3 $ #1#) (-905 (-526))) 60) (((-3 $ #1#) (-392 (-905 (-363)))) 42) (((-3 $ #1#) (-392 (-905 (-526)))) 35)) (-3469 (($ (-299 (-363))) 45) (($ (-299 (-526))) 50) (($ (-905 (-363))) 54) (($ (-905 (-526))) 58) (($ (-392 (-905 (-363)))) 40) (($ (-392 (-905 (-526)))) 32)) (-3699 (((-1211) $) 90)) (-4274 (((-823) $) 84) (($ (-607 (-315))) 78) (($ (-315)) 81) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 76) (($ (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))) 31))) -(((-87 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))))) (-1123)) (T -87)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))) (-5 *1 (-87 *3)) (-14 *3 (-1123))))) -(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))))) -((-1285 (((-1205 (-653 |#1|)) (-653 |#1|)) 54)) (-1284 (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 (-607 (-878))))) |#2| (-878)) 44)) (-1286 (((-2 (|:| |minor| (-607 (-878))) (|:| -3578 |#2|) (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 |#2|))) |#2| (-878)) 65 (|has| |#1| (-348))))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1284 ((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 (-607 (-878))))) |#2| (-878))) (-15 -1285 ((-1205 (-653 |#1|)) (-653 |#1|))) (IF (|has| |#1| (-348)) (-15 -1286 ((-2 (|:| |minor| (-607 (-878))) (|:| -3578 |#2|) (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 |#2|))) |#2| (-878))) |%noBranch|)) (-533) (-623 |#1|)) (T -88)) -((-1286 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |minor| (-607 (-878))) (|:| -3578 *3) (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-878)) (-4 *3 (-623 *5)))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-653 *4)) (-4 *5 (-623 *4)))) (-1284 (*1 *2 *3 *4) (-12 (-4 *5 (-533)) (-5 *2 (-2 (|:| -1676 (-653 *5)) (|:| |vec| (-1205 (-607 (-878)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-878)) (-4 *3 (-623 *5))))) -(-10 -7 (-15 -1284 ((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 (-607 (-878))))) |#2| (-878))) (-15 -1285 ((-1205 (-653 |#1|)) (-653 |#1|))) (IF (|has| |#1| (-348)) (-15 -1286 ((-2 (|:| |minor| (-607 (-878))) (|:| -3578 |#2|) (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 |#2|))) |#2| (-878))) |%noBranch|)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3643 ((|#1| $) 35)) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3645 ((|#1| |#1| $) 30)) (-3644 ((|#1| $) 28)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) NIL)) (-3929 (($ |#1| $) 31)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1307 ((|#1| $) 29)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 16)) (-3887 (($) 39)) (-3642 (((-735) $) 26)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 15)) (-4274 (((-823) $) 25 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) NIL)) (-1287 (($ (-607 |#1|)) 37)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 13 (|has| |#1| (-1052)))) (-4273 (((-735) $) 10 (|has| $ (-6 -4310))))) -(((-89 |#1|) (-13 (-1071 |#1|) (-10 -8 (-15 -1287 ($ (-607 |#1|))))) (-1052)) (T -89)) -((-1287 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-89 *3))))) -(-13 (-1071 |#1|) (-10 -8 (-15 -1287 ($ (-607 |#1|))))) -((-4274 (((-823) $) 12) (((-1128) $) 8))) -(((-90 |#1|) (-10 -8 (-15 -4274 ((-1128) |#1|)) (-15 -4274 ((-823) |#1|))) (-91)) (T -90)) -NIL -(-10 -8 (-15 -4274 ((-1128) |#1|)) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (((-1128) $) 14)) (-3353 (((-111) $ $) 6))) -(((-91) (-134)) (T -91)) -NIL -(-13 (-1052) (-583 (-1128))) -(((-100) . T) ((-583 (-823)) . T) ((-583 (-1128)) . T) ((-1052) . T)) -((-3802 (($ $) 10)) (-3803 (($ $) 12))) -(((-92 |#1|) (-10 -8 (-15 -3803 (|#1| |#1|)) (-15 -3802 (|#1| |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -3803 (|#1| |#1|)) (-15 -3802 (|#1| |#1|))) -((-3800 (($ $) 11)) (-3798 (($ $) 10)) (-3802 (($ $) 9)) (-3803 (($ $) 8)) (-3801 (($ $) 7)) (-3799 (($ $) 6))) -(((-93) (-134)) (T -93)) -((-3800 (*1 *1 *1) (-4 *1 (-93))) (-3798 (*1 *1 *1) (-4 *1 (-93))) (-3802 (*1 *1 *1) (-4 *1 (-93))) (-3803 (*1 *1 *1) (-4 *1 (-93))) (-3801 (*1 *1 *1) (-4 *1 (-93))) (-3799 (*1 *1 *1) (-4 *1 (-93)))) -(-13 (-10 -8 (-15 -3799 ($ $)) (-15 -3801 ($ $)) (-15 -3803 ($ $)) (-15 -3802 ($ $)) (-15 -3798 ($ $)) (-15 -3800 ($ $)))) -((-2865 (((-111) $ $) NIL)) (-3864 (((-1128) $) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-94) (-13 (-1035) (-10 -8 (-15 -3864 ((-1128) $))))) (T -94)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-94))))) -(-13 (-1035) (-10 -8 (-15 -3864 ((-1128) $)))) -((-2865 (((-111) $ $) NIL)) (-1288 (((-363) (-1106) (-363)) 42) (((-363) (-1106) (-1106) (-363)) 41)) (-1289 (((-363) (-363)) 33)) (-1290 (((-1211)) 36)) (-3554 (((-1106) $) NIL)) (-1293 (((-363) (-1106) (-1106)) 46) (((-363) (-1106)) 48)) (-3555 (((-1070) $) NIL)) (-1291 (((-363) (-1106) (-1106)) 47)) (-1292 (((-363) (-1106) (-1106)) 49) (((-363) (-1106)) 50)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-95) (-13 (-1052) (-10 -7 (-15 -1293 ((-363) (-1106) (-1106))) (-15 -1293 ((-363) (-1106))) (-15 -1292 ((-363) (-1106) (-1106))) (-15 -1292 ((-363) (-1106))) (-15 -1291 ((-363) (-1106) (-1106))) (-15 -1290 ((-1211))) (-15 -1289 ((-363) (-363))) (-15 -1288 ((-363) (-1106) (-363))) (-15 -1288 ((-363) (-1106) (-1106) (-363))) (-6 -4310)))) (T -95)) -((-1293 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1292 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1291 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1290 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-95)))) (-1289 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-95)))) (-1288 (*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1106)) (-5 *1 (-95)))) (-1288 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1106)) (-5 *1 (-95))))) -(-13 (-1052) (-10 -7 (-15 -1293 ((-363) (-1106) (-1106))) (-15 -1293 ((-363) (-1106))) (-15 -1292 ((-363) (-1106) (-1106))) (-15 -1292 ((-363) (-1106))) (-15 -1291 ((-363) (-1106) (-1106))) (-15 -1290 ((-1211))) (-15 -1289 ((-363) (-363))) (-15 -1288 ((-363) (-1106) (-363))) (-15 -1288 ((-363) (-1106) (-1106) (-363))) (-6 -4310))) -NIL -(((-96) (-134)) (T -96)) -NIL -(-13 (-10 -7 (-6 -4310) (-6 (-4312 "*")) (-6 -4311) (-6 -4307) (-6 -4305) (-6 -4304) (-6 -4303) (-6 -4308) (-6 -4302) (-6 -4301) (-6 -4300) (-6 -4299) (-6 -4298) (-6 -4306) (-6 -4309) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4297))) -((-2865 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-1294 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-526))) 22)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 14)) (-3555 (((-1070) $) NIL)) (-4118 ((|#1| $ |#1|) 11)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 20)) (-2964 (($) 8 T CONST)) (-3353 (((-111) $ $) 10)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) 28) (($ $ (-735)) NIL) (($ $ (-526)) 16)) (* (($ $ $) 29))) -(((-97 |#1|) (-13 (-457) (-271 |#1| |#1|) (-10 -8 (-15 -1294 ($ (-1 |#1| |#1|))) (-15 -1294 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1294 ($ (-1 |#1| |#1| (-526)))))) (-1004)) (T -97)) -((-1294 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-97 *3)))) (-1294 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-97 *3)))) (-1294 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-526))) (-4 *3 (-1004)) (-5 *1 (-97 *3))))) -(-13 (-457) (-271 |#1| |#1|) (-10 -8 (-15 -1294 ($ (-1 |#1| |#1|))) (-15 -1294 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1294 ($ (-1 |#1| |#1| (-526)))))) -((-1295 (((-390 |#2|) |#2| (-607 |#2|)) 10) (((-390 |#2|) |#2| |#2|) 11))) -(((-98 |#1| |#2|) (-10 -7 (-15 -1295 ((-390 |#2|) |#2| |#2|)) (-15 -1295 ((-390 |#2|) |#2| (-607 |#2|)))) (-13 (-436) (-141)) (-1181 |#1|)) (T -98)) -((-1295 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-13 (-436) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-98 *5 *3)))) (-1295 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-436) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-98 *4 *3)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -1295 ((-390 |#2|) |#2| |#2|)) (-15 -1295 ((-390 |#2|) |#2| (-607 |#2|)))) -((-2865 (((-111) $ $) 10))) -(((-99 |#1|) (-10 -8 (-15 -2865 ((-111) |#1| |#1|))) (-100)) (T -99)) -NIL -(-10 -8 (-15 -2865 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3353 (((-111) $ $) 6))) -(((-100) (-134)) (T -100)) -((-2865 (*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) (-3353 (*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111))))) -(-13 (-10 -8 (-15 -3353 ((-111) $ $)) (-15 -2865 ((-111) $ $)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) 13 (|has| $ (-6 -4311)))) (-1330 (($ $ $) NIL (|has| $ (-6 -4311)))) (-1331 (($ $ $) NIL (|has| $ (-6 -4311)))) (-1298 (($ $ (-607 |#1|)) 15)) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 11)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) 17)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1297 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1296 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-607 |#1|) |#1| |#1| |#1|)) 35)) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) 10)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) 12)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 9)) (-3887 (($) 16)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1299 (($ (-735) |#1|) 19)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-101 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -1299 ($ (-735) |#1|)) (-15 -1298 ($ $ (-607 |#1|))) (-15 -1297 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1297 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1296 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1296 ($ $ |#1| (-1 (-607 |#1|) |#1| |#1| |#1|))))) (-1052)) (T -101)) -((-1299 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *1 (-101 *3)) (-4 *3 (-1052)))) (-1298 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-101 *3)))) (-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-101 *2)) (-4 *2 (-1052)))) (-1297 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-101 *3)))) (-1296 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-101 *2)))) (-1296 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-607 *2) *2 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-101 *2))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -1299 ($ (-735) |#1|)) (-15 -1298 ($ $ (-607 |#1|))) (-15 -1297 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1297 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1296 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1296 ($ $ |#1| (-1 (-607 |#1|) |#1| |#1| |#1|))))) -((-1300 ((|#3| |#2| |#2|) 29)) (-1302 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4312 #1="*"))))) (-1301 ((|#3| |#2| |#2|) 30)) (-1303 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4312 #1#)))))) -(((-102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1300 (|#3| |#2| |#2|)) (-15 -1301 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4312 "*"))) (PROGN (-15 -1302 (|#1| |#2| |#2|)) (-15 -1303 (|#1| |#2|))) |%noBranch|)) (-1004) (-1181 |#1|) (-650 |#1| |#4| |#5|) (-357 |#1|) (-357 |#1|)) (T -102)) -((-1303 (*1 *2 *3) (-12 (|has| *2 (-6 (-4312 #1="*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) (-4 *2 (-1004)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1181 *2)) (-4 *4 (-650 *2 *5 *6)))) (-1302 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4312 #1#))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) (-4 *2 (-1004)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1181 *2)) (-4 *4 (-650 *2 *5 *6)))) (-1301 (*1 *2 *3 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-650 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1181 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)))) (-1300 (*1 *2 *3 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-650 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1181 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4))))) -(-10 -7 (-15 -1300 (|#3| |#2| |#2|)) (-15 -1301 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4312 "*"))) (PROGN (-15 -1302 (|#1| |#2| |#2|)) (-15 -1303 (|#1| |#2|))) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-1305 (((-607 (-1123))) 33)) (-1304 (((-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) (|:| |singularities| (-1101 (-211)))) (-1123)) 35)) (-3353 (((-111) $ $) NIL))) -(((-103) (-13 (-1052) (-10 -7 (-15 -1305 ((-607 (-1123)))) (-15 -1304 ((-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) (|:| |singularities| (-1101 (-211)))) (-1123))) (-6 -4310)))) (T -103)) -((-1305 (*1 *2) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-103)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) (|:| |singularities| (-1101 (-211))))) (-5 *1 (-103))))) -(-13 (-1052) (-10 -7 (-15 -1305 ((-607 (-1123)))) (-15 -1304 ((-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) (|:| |singularities| (-1101 (-211)))) (-1123))) (-6 -4310))) -((-1308 (($ (-607 |#2|)) 11))) -(((-104 |#1| |#2|) (-10 -8 (-15 -1308 (|#1| (-607 |#2|)))) (-105 |#2|) (-1159)) (T -104)) -NIL -(-10 -8 (-15 -1308 (|#1| (-607 |#2|)))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-105 |#1|) (-134) (-1159)) (T -105)) -((-1308 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-105 *3)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159)))) (-3929 (*1 *1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159)))) (-1306 (*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159))))) -(-13 (-472 |t#1|) (-10 -8 (-6 -4311) (-15 -1308 ($ (-607 |t#1|))) (-15 -1307 (|t#1| $)) (-15 -3929 ($ |t#1| $)) (-15 -1306 (|t#1| $)))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-526) $) NIL (|has| (-526) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-526) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-526) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-526) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-526) (-995 (-526))))) (-3469 (((-526) $) NIL) (((-1123) $) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-526) (-995 (-526)))) (((-526) $) NIL (|has| (-526) (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-526) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-526) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-526) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-526) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-526) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-526) (-1099)))) (-3501 (((-111) $) NIL (|has| (-526) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-526) (-811)))) (-4275 (($ (-1 (-526) (-526)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-526) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-526) (-292))) (((-392 (-526)) $) NIL)) (-3427 (((-526) $) NIL (|has| (-526) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-526)) (-607 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-526) (-526)) NIL (|has| (-526) (-294 (-526)))) (($ $ (-278 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-278 (-526)))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-1123)) (-607 (-526))) NIL (|has| (-526) (-496 (-1123) (-526)))) (($ $ (-1123) (-526)) NIL (|has| (-526) (-496 (-1123) (-526))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-526)) NIL (|has| (-526) (-271 (-526) (-526))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-526) $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| (-526) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-526) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-526) (-584 (-515)))) (((-363) $) NIL (|has| (-526) (-977))) (((-211) $) NIL (|has| (-526) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-526) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 8) (($ (-526)) NIL) (($ (-1123)) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL) (((-962 2) $) 10)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-526) (-869))) (|has| (-526) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-526) $) NIL (|has| (-526) (-525)))) (-2117 (($ (-392 (-526))) 9)) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-526) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-526) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-526) (-811)))) (-4265 (($ $ $) NIL) (($ (-526) (-526)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-526) $) NIL) (($ $ (-526)) NIL))) -(((-106) (-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 2) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -2117 ($ (-392 (-526))))))) (T -106)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-962 2)) (-5 *1 (-106)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106))))) -(-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 2) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -2117 ($ (-392 (-526)))))) -((-1325 (((-607 (-924)) $) 14)) (-3864 (((-1123) $) 10)) (-4274 (((-823) $) 23)) (-1309 (($ (-1123) (-607 (-924))) 15))) -(((-107) (-13 (-583 (-823)) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -1325 ((-607 (-924)) $)) (-15 -1309 ($ (-1123) (-607 (-924))))))) (T -107)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-107)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-607 (-924))) (-5 *1 (-107)))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-924))) (-5 *1 (-107))))) -(-13 (-583 (-823)) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -1325 ((-607 (-924)) $)) (-15 -1309 ($ (-1123) (-607 (-924)))))) -((-2865 (((-111) $ $) NIL)) (-1789 (((-1070) $ (-1070)) 24)) (-1793 (($ $ (-1106)) 17)) (-3941 (((-3 (-1070) "failed") $) 23)) (-1790 (((-1070) $) 21)) (-1310 (((-1070) $ (-1070)) 26)) (-3738 (((-1070) $) 25)) (-1794 (($ (-373)) NIL) (($ (-373) (-1106)) 16)) (-3864 (((-373) $) NIL)) (-3554 (((-1106) $) NIL)) (-1791 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-1792 (($ $) 18)) (-3353 (((-111) $ $) NIL))) -(((-108) (-13 (-350 (-373) (-1070)) (-10 -8 (-15 -3941 ((-3 (-1070) "failed") $)) (-15 -3738 ((-1070) $)) (-15 -1310 ((-1070) $ (-1070)))))) (T -108)) -((-3941 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-108)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) (-1310 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-108))))) -(-13 (-350 (-373) (-1070)) (-10 -8 (-15 -3941 ((-3 (-1070) "failed") $)) (-15 -3738 ((-1070) $)) (-15 -1310 ((-1070) $ (-1070))))) -((-2865 (((-111) $ $) NIL)) (-3639 (($ $) NIL)) (-3635 (($ $ $) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| (-111) (-811))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-111) (-811)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4311)))) (-3209 (($ $) NIL (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-111) $ (-1172 (-526)) (-111)) NIL (|has| $ (-6 -4311))) (((-111) $ (-526) (-111)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-3725 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-4161 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-1613 (((-111) $ (-526) (-111)) NIL (|has| $ (-6 -4311)))) (-3410 (((-111) $ (-526)) NIL)) (-3738 (((-526) (-111) $ (-526)) NIL (|has| (-111) (-1052))) (((-526) (-111) $) NIL (|has| (-111) (-1052))) (((-526) (-1 (-111) (-111)) $) NIL)) (-2044 (((-607 (-111)) $) NIL (|has| $ (-6 -4310)))) (-3156 (($ $ $) NIL)) (-3636 (($ $) NIL)) (-1337 (($ $ $) NIL)) (-3936 (($ (-735) (-111)) 8)) (-1338 (($ $ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL)) (-3832 (($ $ $) NIL (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-2480 (((-607 (-111)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL)) (-2048 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-111) (-111) (-111)) $ $) NIL) (($ (-1 (-111) (-111)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ (-111) $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-111) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-2277 (($ $ (-111)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-111)) (-607 (-111))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-278 (-111))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-607 (-278 (-111)))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2283 (((-607 (-111)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (($ $ (-1172 (-526))) NIL) (((-111) $ (-526)) NIL) (((-111) $ (-526) (-111)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2045 (((-735) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052)))) (((-735) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-111) (-584 (-515))))) (-3844 (($ (-607 (-111))) NIL)) (-4120 (($ (-607 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-4274 (((-823) $) NIL)) (-1866 (($ (-735) (-111)) 9)) (-2047 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-3155 (($ $ $) NIL)) (-3641 (($ $ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-3640 (($ $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-109) (-13 (-122) (-10 -8 (-15 -1866 ($ (-735) (-111)))))) (T -109)) -((-1866 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-111)) (-5 *1 (-109))))) -(-13 (-122) (-10 -8 (-15 -1866 ($ (-735) (-111))))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-110 |#1| |#2|) (-134) (-1004) (-1004)) (T -110)) -NIL -(-13 (-613 |t#1|) (-1010 |t#2|) (-10 -7 (-6 -4305) (-6 -4304))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-1010 |#2|) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3639 (($ $) 10)) (-3635 (($ $ $) 15)) (-1313 (($) 7 T CONST)) (-1311 (($ $) 6)) (-3433 (((-735)) 24)) (-3294 (($) 30)) (-3156 (($ $ $) 13)) (-3636 (($ $) 9)) (-1337 (($ $ $) 16)) (-1338 (($ $ $) 17)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2102 (((-878) $) 29)) (-3554 (((-1106) $) NIL)) (-2461 (($ (-878)) 28)) (-3157 (($ $ $) 20)) (-3555 (((-1070) $) NIL)) (-1312 (($) 8 T CONST)) (-3158 (($ $ $) 21)) (-4287 (((-515) $) 36)) (-4274 (((-823) $) 39)) (-3155 (($ $ $) 11)) (-3641 (($ $ $) 14)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 19)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 22)) (-3640 (($ $ $) 12))) -(((-111) (-13 (-811) (-353) (-627) (-926) (-584 (-515)) (-10 -8 (-15 -1313 ($) -4268) (-15 -1312 ($) -4268) (-15 -3635 ($ $ $)) (-15 -1338 ($ $ $)) (-15 -1337 ($ $ $)) (-15 -1311 ($ $))))) (T -111)) -((-1313 (*1 *1) (-5 *1 (-111))) (-1312 (*1 *1) (-5 *1 (-111))) (-3635 (*1 *1 *1 *1) (-5 *1 (-111))) (-1338 (*1 *1 *1 *1) (-5 *1 (-111))) (-1337 (*1 *1 *1 *1) (-5 *1 (-111))) (-1311 (*1 *1 *1) (-5 *1 (-111)))) -(-13 (-811) (-353) (-627) (-926) (-584 (-515)) (-10 -8 (-15 -1313 ($) -4268) (-15 -1312 ($) -4268) (-15 -3635 ($ $ $)) (-15 -1338 ($ $ $)) (-15 -1337 ($ $ $)) (-15 -1311 ($ $)))) -((-2865 (((-111) $ $) NIL)) (-1553 (((-735) $) 72) (($ $ (-735)) 30)) (-1322 (((-111) $) 32)) (-1315 (($ $ (-1106) (-737)) 26)) (-1314 (($ $ (-44 (-1106) (-737))) 15)) (-3141 (((-3 (-737) "failed") $ (-1106)) 25)) (-1325 (((-44 (-1106) (-737)) $) 14)) (-2307 (($ (-1123)) 17) (($ (-1123) (-735)) 22)) (-1323 (((-111) $) 31)) (-1321 (((-111) $) 33)) (-3864 (((-1123) $) 8)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2930 (((-111) $ (-1123)) 10)) (-1318 (($ $ (-1 (-515) (-607 (-515)))) 52) (((-3 (-1 (-515) (-607 (-515))) "failed") $) 56)) (-3555 (((-1070) $) NIL)) (-1317 (((-111) $ (-1106)) 29)) (-1320 (($ $ (-1 (-111) $ $)) 35)) (-3939 (((-3 (-1 (-823) (-607 (-823))) "failed") $) 54) (($ $ (-1 (-823) (-607 (-823)))) 41) (($ $ (-1 (-823) (-823))) 43)) (-1316 (($ $ (-1106)) 45)) (-3719 (($ $) 63)) (-1319 (($ $ (-1 (-111) $ $)) 36)) (-4274 (((-823) $) 48)) (-3092 (($ $ (-1106)) 27)) (-1324 (((-3 (-735) "failed") $) 58)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 71)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 79))) -(((-112) (-13 (-811) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -1325 ((-44 (-1106) (-737)) $)) (-15 -3719 ($ $)) (-15 -2307 ($ (-1123))) (-15 -2307 ($ (-1123) (-735))) (-15 -1324 ((-3 (-735) "failed") $)) (-15 -1323 ((-111) $)) (-15 -1322 ((-111) $)) (-15 -1321 ((-111) $)) (-15 -1553 ((-735) $)) (-15 -1553 ($ $ (-735))) (-15 -1320 ($ $ (-1 (-111) $ $))) (-15 -1319 ($ $ (-1 (-111) $ $))) (-15 -3939 ((-3 (-1 (-823) (-607 (-823))) "failed") $)) (-15 -3939 ($ $ (-1 (-823) (-607 (-823))))) (-15 -3939 ($ $ (-1 (-823) (-823)))) (-15 -1318 ($ $ (-1 (-515) (-607 (-515))))) (-15 -1318 ((-3 (-1 (-515) (-607 (-515))) "failed") $)) (-15 -2930 ((-111) $ (-1123))) (-15 -1317 ((-111) $ (-1106))) (-15 -3092 ($ $ (-1106))) (-15 -1316 ($ $ (-1106))) (-15 -3141 ((-3 (-737) "failed") $ (-1106))) (-15 -1315 ($ $ (-1106) (-737))) (-15 -1314 ($ $ (-44 (-1106) (-737))))))) (T -112)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-112)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-44 (-1106) (-737))) (-5 *1 (-112)))) (-3719 (*1 *1 *1) (-5 *1 (-112))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-112)))) (-2307 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *1 (-112)))) (-1324 (*1 *2 *1) (|partial| -12 (-5 *2 (-735)) (-5 *1 (-112)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-112)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-112)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-112) (-112))) (-5 *1 (-112)))) (-1319 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-112) (-112))) (-5 *1 (-112)))) (-3939 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-823) (-607 (-823)))) (-5 *1 (-112)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-823) (-607 (-823)))) (-5 *1 (-112)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-823) (-823))) (-5 *1 (-112)))) (-1318 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-515) (-607 (-515)))) (-5 *1 (-112)))) (-1318 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-515) (-607 (-515)))) (-5 *1 (-112)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-111)) (-5 *1 (-112)))) (-1317 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-112)))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-112)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-112)))) (-3141 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1106)) (-5 *2 (-737)) (-5 *1 (-112)))) (-1315 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-737)) (-5 *1 (-112)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1106) (-737))) (-5 *1 (-112))))) -(-13 (-811) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -1325 ((-44 (-1106) (-737)) $)) (-15 -3719 ($ $)) (-15 -2307 ($ (-1123))) (-15 -2307 ($ (-1123) (-735))) (-15 -1324 ((-3 (-735) "failed") $)) (-15 -1323 ((-111) $)) (-15 -1322 ((-111) $)) (-15 -1321 ((-111) $)) (-15 -1553 ((-735) $)) (-15 -1553 ($ $ (-735))) (-15 -1320 ($ $ (-1 (-111) $ $))) (-15 -1319 ($ $ (-1 (-111) $ $))) (-15 -3939 ((-3 (-1 (-823) (-607 (-823))) "failed") $)) (-15 -3939 ($ $ (-1 (-823) (-607 (-823))))) (-15 -3939 ($ $ (-1 (-823) (-823)))) (-15 -1318 ($ $ (-1 (-515) (-607 (-515))))) (-15 -1318 ((-3 (-1 (-515) (-607 (-515))) "failed") $)) (-15 -2930 ((-111) $ (-1123))) (-15 -1317 ((-111) $ (-1106))) (-15 -3092 ($ $ (-1106))) (-15 -1316 ($ $ (-1106))) (-15 -3141 ((-3 (-737) "failed") $ (-1106))) (-15 -1315 ($ $ (-1106) (-737))) (-15 -1314 ($ $ (-44 (-1106) (-737)))))) -((-2821 (((-3 (-1 |#1| (-607 |#1|)) "failed") (-112)) 19) (((-112) (-112) (-1 |#1| |#1|)) 13) (((-112) (-112) (-1 |#1| (-607 |#1|))) 11) (((-3 |#1| "failed") (-112) (-607 |#1|)) 21)) (-1326 (((-3 (-607 (-1 |#1| (-607 |#1|))) "failed") (-112)) 25) (((-112) (-112) (-1 |#1| |#1|)) 30) (((-112) (-112) (-607 (-1 |#1| (-607 |#1|)))) 26)) (-1327 (((-112) |#1|) 56 (|has| |#1| (-811)))) (-1328 (((-3 |#1| "failed") (-112)) 50 (|has| |#1| (-811))))) -(((-113 |#1|) (-10 -7 (-15 -2821 ((-3 |#1| "failed") (-112) (-607 |#1|))) (-15 -2821 ((-112) (-112) (-1 |#1| (-607 |#1|)))) (-15 -2821 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2821 ((-3 (-1 |#1| (-607 |#1|)) "failed") (-112))) (-15 -1326 ((-112) (-112) (-607 (-1 |#1| (-607 |#1|))))) (-15 -1326 ((-112) (-112) (-1 |#1| |#1|))) (-15 -1326 ((-3 (-607 (-1 |#1| (-607 |#1|))) "failed") (-112))) (IF (|has| |#1| (-811)) (PROGN (-15 -1327 ((-112) |#1|)) (-15 -1328 ((-3 |#1| "failed") (-112)))) |%noBranch|)) (-1052)) (T -113)) -((-1328 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1052)) (-4 *2 (-811)) (-5 *1 (-113 *2)))) (-1327 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-113 *3)) (-4 *3 (-811)) (-4 *3 (-1052)))) (-1326 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-607 (-1 *4 (-607 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1052)))) (-1326 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) (-1326 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 (-1 *4 (-607 *4)))) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) (-2821 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-607 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1052)))) (-2821 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) (-2821 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-607 *4))) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) (-2821 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-607 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1052))))) -(-10 -7 (-15 -2821 ((-3 |#1| "failed") (-112) (-607 |#1|))) (-15 -2821 ((-112) (-112) (-1 |#1| (-607 |#1|)))) (-15 -2821 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2821 ((-3 (-1 |#1| (-607 |#1|)) "failed") (-112))) (-15 -1326 ((-112) (-112) (-607 (-1 |#1| (-607 |#1|))))) (-15 -1326 ((-112) (-112) (-1 |#1| |#1|))) (-15 -1326 ((-3 (-607 (-1 |#1| (-607 |#1|))) "failed") (-112))) (IF (|has| |#1| (-811)) (PROGN (-15 -1327 ((-112) |#1|)) (-15 -1328 ((-3 |#1| "failed") (-112)))) |%noBranch|)) -((-1329 (((-526) |#2|) 37))) -(((-114 |#1| |#2|) (-10 -7 (-15 -1329 ((-526) |#2|))) (-13 (-348) (-995 (-392 (-526)))) (-1181 |#1|)) (T -114)) -((-1329 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-995 (-392 *2)))) (-5 *2 (-526)) (-5 *1 (-114 *4 *3)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -1329 ((-526) |#2|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $ (-526)) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2906 (($ (-1117 (-526)) (-526)) NIL)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2907 (($ $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4090 (((-735) $) NIL)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 (((-526)) NIL)) (-2908 (((-526) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4087 (($ $ (-526)) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2910 (((-1101 (-526)) $) NIL)) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-4088 (((-526) $ (-526)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL))) -(((-115 |#1|) (-829 |#1|) (-526)) (T -115)) -NIL -(-829 |#1|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-115 |#1|) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-115 |#1|) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-115 |#1|) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-115 |#1|) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-115 |#1|) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-115 |#1|) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-115 |#1|) (-995 (-526))))) (-3469 (((-115 |#1|) $) NIL) (((-1123) $) NIL (|has| (-115 |#1|) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-115 |#1|) (-995 (-526)))) (((-526) $) NIL (|has| (-115 |#1|) (-995 (-526))))) (-4049 (($ $) NIL) (($ (-526) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-115 |#1|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-115 |#1|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-115 |#1|))) (|:| |vec| (-1205 (-115 |#1|)))) (-653 $) (-1205 $)) NIL) (((-653 (-115 |#1|)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-115 |#1|) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-115 |#1|) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-115 |#1|) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-115 |#1|) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-115 |#1|) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-115 |#1|) (-1099)))) (-3501 (((-111) $) NIL (|has| (-115 |#1|) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-115 |#1|) (-811)))) (-3638 (($ $ $) NIL (|has| (-115 |#1|) (-811)))) (-4275 (($ (-1 (-115 |#1|) (-115 |#1|)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-115 |#1|) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-115 |#1|) (-292)))) (-3427 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-115 |#1|) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-115 |#1|) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-115 |#1|)) (-607 (-115 |#1|))) NIL (|has| (-115 |#1|) (-294 (-115 |#1|)))) (($ $ (-115 |#1|) (-115 |#1|)) NIL (|has| (-115 |#1|) (-294 (-115 |#1|)))) (($ $ (-278 (-115 |#1|))) NIL (|has| (-115 |#1|) (-294 (-115 |#1|)))) (($ $ (-607 (-278 (-115 |#1|)))) NIL (|has| (-115 |#1|) (-294 (-115 |#1|)))) (($ $ (-607 (-1123)) (-607 (-115 |#1|))) NIL (|has| (-115 |#1|) (-496 (-1123) (-115 |#1|)))) (($ $ (-1123) (-115 |#1|)) NIL (|has| (-115 |#1|) (-496 (-1123) (-115 |#1|))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-115 |#1|)) NIL (|has| (-115 |#1|) (-271 (-115 |#1|) (-115 |#1|))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-115 |#1|) (-219))) (($ $ (-735)) NIL (|has| (-115 |#1|) (-219))) (($ $ (-1123)) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-735)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-115 |#1|) $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| (-115 |#1|) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-115 |#1|) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-115 |#1|) (-584 (-515)))) (((-363) $) NIL (|has| (-115 |#1|) (-977))) (((-211) $) NIL (|has| (-115 |#1|) (-977)))) (-2911 (((-165 (-392 (-526))) $) NIL)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-115 |#1|) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-115 |#1|)) NIL) (($ (-1123)) NIL (|has| (-115 |#1|) (-995 (-1123))))) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-115 |#1|) (-869))) (|has| (-115 |#1|) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-525)))) (-2150 (((-111) $ $) NIL)) (-4088 (((-392 (-526)) $ (-526)) NIL)) (-3702 (($ $) NIL (|has| (-115 |#1|) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-115 |#1|) (-219))) (($ $ (-735)) NIL (|has| (-115 |#1|) (-219))) (($ $ (-1123)) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-735)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-115 |#1|) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-115 |#1|) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-115 |#1|) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-115 |#1|) (-811)))) (-4265 (($ $ $) NIL) (($ (-115 |#1|) (-115 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-115 |#1|) $) NIL) (($ $ (-115 |#1|)) NIL))) -(((-116 |#1|) (-13 (-950 (-115 |#1|)) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) (-526)) (T -116)) -((-4088 (*1 *2 *1 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-526)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-116 *3)) (-14 *3 (-526)))) (-4049 (*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-526)))) (-4049 (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-116 *3)) (-14 *3 *2)))) -(-13 (-950 (-115 |#1|)) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) -((-4106 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3331 (((-607 $) $) 27)) (-3327 (((-111) $ $) 32)) (-3557 (((-111) |#2| $) 36)) (-3330 (((-607 |#2|) $) 22)) (-3841 (((-111) $) 16)) (-4118 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3955 (((-111) $) 45)) (-4274 (((-823) $) 41)) (-3836 (((-607 $) $) 28)) (-3353 (((-111) $ $) 34)) (-4273 (((-735) $) 43))) -(((-117 |#1| |#2|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4106 (|#1| |#1| "right" |#1|)) (-15 -4106 (|#1| |#1| "left" |#1|)) (-15 -4118 (|#1| |#1| "right")) (-15 -4118 (|#1| |#1| "left")) (-15 -4106 (|#2| |#1| #1="value" |#2|)) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3330 ((-607 |#2|) |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -3557 ((-111) |#2| |#1|)) (-15 -4273 ((-735) |#1|))) (-118 |#2|) (-1159)) (T -117)) -NIL -(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4106 (|#1| |#1| "right" |#1|)) (-15 -4106 (|#1| |#1| "left" |#1|)) (-15 -4118 (|#1| |#1| "right")) (-15 -4118 (|#1| |#1| "left")) (-15 -4106 (|#2| |#1| #1="value" |#2|)) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3330 ((-607 |#2|) |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -3557 ((-111) |#2| |#1|)) (-15 -4273 ((-735) |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-1330 (($ $ $) 52 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 54 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) (($ $ "left" $) 55 (|has| $ (-6 -4311))) (($ $ "right" $) 53 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-3434 (($ $) 57)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3435 (($ $) 59)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-118 |#1|) (-134) (-1159)) (T -118)) -((-3435 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1159)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1159)))) (-3434 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1159)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1159)))) (-4106 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4311)) (-4 *1 (-118 *3)) (-4 *3 (-1159)))) (-1331 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-118 *2)) (-4 *2 (-1159)))) (-4106 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4311)) (-4 *1 (-118 *3)) (-4 *3 (-1159)))) (-1330 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-118 *2)) (-4 *2 (-1159))))) -(-13 (-968 |t#1|) (-10 -8 (-15 -3435 ($ $)) (-15 -4118 ($ $ "left")) (-15 -3434 ($ $)) (-15 -4118 ($ $ "right")) (IF (|has| $ (-6 -4311)) (PROGN (-15 -4106 ($ $ "left" $)) (-15 -1331 ($ $ $)) (-15 -4106 ($ $ "right" $)) (-15 -1330 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-1334 (((-111) |#1|) 24)) (-1333 (((-735) (-735)) 23) (((-735)) 22)) (-1332 (((-111) |#1| (-111)) 25) (((-111) |#1|) 26))) -(((-119 |#1|) (-10 -7 (-15 -1332 ((-111) |#1|)) (-15 -1332 ((-111) |#1| (-111))) (-15 -1333 ((-735))) (-15 -1333 ((-735) (-735))) (-15 -1334 ((-111) |#1|))) (-1181 (-526))) (T -119)) -((-1334 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) (-1333 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) (-1332 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) (-1332 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526)))))) -(-10 -7 (-15 -1332 ((-111) |#1|)) (-15 -1332 ((-111) |#1| (-111))) (-15 -1333 ((-735))) (-15 -1333 ((-735) (-735))) (-15 -1334 ((-111) |#1|))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 15)) (-3737 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-1330 (($ $ $) 18 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 20 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 17)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) 23)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) 19)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1335 (($ |#1| $) 24)) (-3929 (($ |#1| $) 10)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 14)) (-3887 (($) 8)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1336 (($ (-607 |#1|)) 12)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-120 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -1336 ($ (-607 |#1|))) (-15 -3929 ($ |#1| $)) (-15 -1335 ($ |#1| $)) (-15 -3737 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-811)) (T -120)) -((-1336 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-120 *3)))) (-3929 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-811)))) (-1335 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-811)))) (-3737 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) (-5 *1 (-120 *3)) (-4 *3 (-811))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -1336 ($ (-607 |#1|))) (-15 -3929 ($ |#1| $)) (-15 -1335 ($ |#1| $)) (-15 -3737 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3639 (($ $) 13)) (-3636 (($ $) 11)) (-1337 (($ $ $) 23)) (-1338 (($ $ $) 21)) (-3641 (($ $ $) 19)) (-3640 (($ $ $) 17))) -(((-121 |#1|) (-10 -8 (-15 -1337 (|#1| |#1| |#1|)) (-15 -1338 (|#1| |#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3641 (|#1| |#1| |#1|))) (-122)) (T -121)) -NIL -(-10 -8 (-15 -1337 (|#1| |#1| |#1|)) (-15 -1338 (|#1| |#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3641 (|#1| |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3639 (($ $) 103)) (-3635 (($ $ $) 25)) (-2276 (((-1211) $ (-526) (-526)) 66 (|has| $ (-6 -4311)))) (-1824 (((-111) $) 98 (|has| (-111) (-811))) (((-111) (-1 (-111) (-111) (-111)) $) 92)) (-1822 (($ $) 102 (-12 (|has| (-111) (-811)) (|has| $ (-6 -4311)))) (($ (-1 (-111) (-111) (-111)) $) 101 (|has| $ (-6 -4311)))) (-3209 (($ $) 97 (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $) 91)) (-1244 (((-111) $ (-735)) 37)) (-4106 (((-111) $ (-1172 (-526)) (-111)) 88 (|has| $ (-6 -4311))) (((-111) $ (-526) (-111)) 54 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-111)) $) 71 (|has| $ (-6 -4310)))) (-3855 (($) 38 T CONST)) (-2346 (($ $) 100 (|has| $ (-6 -4311)))) (-2347 (($ $) 90)) (-1375 (($ $) 68 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-1 (-111) (-111)) $) 72 (|has| $ (-6 -4310))) (($ (-111) $) 69 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310))))) (-4161 (((-111) (-1 (-111) (-111) (-111)) $) 74 (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) 73 (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) 70 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310))))) (-1613 (((-111) $ (-526) (-111)) 53 (|has| $ (-6 -4311)))) (-3410 (((-111) $ (-526)) 55)) (-3738 (((-526) (-111) $ (-526)) 95 (|has| (-111) (-1052))) (((-526) (-111) $) 94 (|has| (-111) (-1052))) (((-526) (-1 (-111) (-111)) $) 93)) (-2044 (((-607 (-111)) $) 45 (|has| $ (-6 -4310)))) (-3156 (($ $ $) 26)) (-3636 (($ $) 30)) (-1337 (($ $ $) 28)) (-3936 (($ (-735) (-111)) 77)) (-1338 (($ $ $) 29)) (-4041 (((-111) $ (-735)) 36)) (-2278 (((-526) $) 63 (|has| (-526) (-811)))) (-3637 (($ $ $) 13)) (-3832 (($ $ $) 96 (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $ $) 89)) (-2480 (((-607 (-111)) $) 46 (|has| $ (-6 -4310)))) (-3557 (((-111) (-111) $) 48 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 62 (|has| (-526) (-811)))) (-3638 (($ $ $) 14)) (-2048 (($ (-1 (-111) (-111)) $) 41 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-111) (-111) (-111)) $ $) 82) (($ (-1 (-111) (-111)) $) 40)) (-4038 (((-111) $ (-735)) 35)) (-3554 (((-1106) $) 9)) (-2351 (($ $ $ (-526)) 87) (($ (-111) $ (-526)) 86)) (-2281 (((-607 (-526)) $) 60)) (-2282 (((-111) (-526) $) 59)) (-3555 (((-1070) $) 10)) (-4119 (((-111) $) 64 (|has| (-526) (-811)))) (-1376 (((-3 (-111) "failed") (-1 (-111) (-111)) $) 75)) (-2277 (($ $ (-111)) 65 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-111)) $) 43 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-111)) (-607 (-111))) 52 (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-111) (-111)) 51 (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-278 (-111))) 50 (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-607 (-278 (-111)))) 49 (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))))) (-1245 (((-111) $ $) 31)) (-2280 (((-111) (-111) $) 61 (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2283 (((-607 (-111)) $) 58)) (-3722 (((-111) $) 34)) (-3887 (($) 33)) (-4118 (($ $ (-1172 (-526))) 83) (((-111) $ (-526)) 57) (((-111) $ (-526) (-111)) 56)) (-2352 (($ $ (-1172 (-526))) 85) (($ $ (-526)) 84)) (-2045 (((-735) (-111) $) 47 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) (-111)) $) 44 (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) 99 (|has| $ (-6 -4311)))) (-3719 (($ $) 32)) (-4287 (((-515) $) 67 (|has| (-111) (-584 (-515))))) (-3844 (($ (-607 (-111))) 76)) (-4120 (($ (-607 $)) 81) (($ $ $) 80) (($ (-111) $) 79) (($ $ (-111)) 78)) (-4274 (((-823) $) 11)) (-2047 (((-111) (-1 (-111) (-111)) $) 42 (|has| $ (-6 -4310)))) (-3155 (($ $ $) 27)) (-3641 (($ $ $) 105)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-3640 (($ $ $) 104)) (-4273 (((-735) $) 39 (|has| $ (-6 -4310))))) -(((-122) (-134)) (T -122)) -((-3636 (*1 *1 *1) (-4 *1 (-122))) (-1338 (*1 *1 *1 *1) (-4 *1 (-122))) (-1337 (*1 *1 *1 *1) (-4 *1 (-122))) (-3155 (*1 *1 *1 *1) (-4 *1 (-122))) (-3156 (*1 *1 *1 *1) (-4 *1 (-122))) (-3635 (*1 *1 *1 *1) (-4 *1 (-122)))) -(-13 (-811) (-627) (-19 (-111)) (-10 -8 (-15 -3636 ($ $)) (-15 -1338 ($ $ $)) (-15 -1337 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3635 ($ $ $)))) -(((-33) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 #1=(-111)) . T) ((-584 (-515)) |has| (-111) (-584 (-515))) ((-271 #2=(-526) #1#) . T) ((-273 #2# #1#) . T) ((-294 #1#) -12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))) ((-357 #1#) . T) ((-472 #1#) . T) ((-574 #2# #1#) . T) ((-496 #1# #1#) -12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))) ((-616 #1#) . T) ((-627) . T) ((-19 #1#) . T) ((-811) . T) ((-1052) . T) ((-1159) . T)) -((-2048 (($ (-1 |#2| |#2|) $) 22)) (-3719 (($ $) 16)) (-4273 (((-735) $) 24))) -(((-123 |#1| |#2|) (-10 -8 (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -3719 (|#1| |#1|))) (-124 |#2|) (-1052)) (T -123)) -NIL -(-10 -8 (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -3719 (|#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-1330 (($ $ $) 52 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 54 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) (($ $ #2="left" $) 55 (|has| $ (-6 -4311))) (($ $ #3="right" $) 53 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-3434 (($ $) 57)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) 60)) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3435 (($ $) 59)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-124 |#1|) (-134) (-1052)) (T -124)) -((-1339 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1052))))) -(-13 (-118 |t#1|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -1339 ($ $ |t#1| $)))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-118 |#1|) . T) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 15)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) 19 (|has| $ (-6 -4311)))) (-1330 (($ $ $) 20 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 18 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 21)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3929 (($ |#1| $) 10)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 14)) (-3887 (($) 8)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 17)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1340 (($ (-607 |#1|)) 12)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-125 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4311) (-15 -1340 ($ (-607 |#1|))) (-15 -3929 ($ |#1| $)))) (-811)) (T -125)) -((-1340 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-125 *3)))) (-3929 (*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-811))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4311) (-15 -1340 ($ (-607 |#1|))) (-15 -3929 ($ |#1| $)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 24)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) 26 (|has| $ (-6 -4311)))) (-1330 (($ $ $) 30 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 28 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 20)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) 15)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) 19)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) 21)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 18)) (-3887 (($) 11)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1341 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 10 (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-126 |#1|) (-13 (-124 |#1|) (-10 -8 (-15 -1341 ($ |#1|)) (-15 -1341 ($ $ |#1| $)))) (-1052)) (T -126)) -((-1341 (*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1052)))) (-1341 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1052))))) -(-13 (-124 |#1|) (-10 -8 (-15 -1341 ($ |#1|)) (-15 -1341 ($ $ |#1| $)))) -((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 12) (((-735) $) 9) (($ (-735)) 8)) (-1344 (($ (-735)) 7)) (-1342 (($ $ $) 16)) (-1343 (($ $ $) 15)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 14))) -(((-127) (-13 (-811) (-583 (-735)) (-10 -8 (-15 -1344 ($ (-735))) (-15 -4274 ($ (-735))) (-15 -1343 ($ $ $)) (-15 -1342 ($ $ $))))) (T -127)) -((-1344 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-127)))) (-1343 (*1 *1 *1 *1) (-5 *1 (-127))) (-1342 (*1 *1 *1 *1) (-5 *1 (-127)))) -(-13 (-811) (-583 (-735)) (-10 -8 (-15 -1344 ($ (-735))) (-15 -4274 ($ (-735))) (-15 -1343 ($ $ $)) (-15 -1342 ($ $ $)))) -((-2865 (((-111) $ $) NIL (|has| (-127) (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) (-127) (-127)) $) NIL) (((-111) $) NIL (|has| (-127) (-811)))) (-1822 (($ (-1 (-111) (-127) (-127)) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-127) (-811))))) (-3209 (($ (-1 (-111) (-127) (-127)) $) NIL) (($ $) NIL (|has| (-127) (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-127) $ (-526) (-127)) NIL (|has| $ (-6 -4311))) (((-127) $ (-1172 (-526)) (-127)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052))))) (-3725 (($ (-127) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052)))) (($ (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-127) (-1 (-127) (-127) (-127)) $ (-127) (-127)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052)))) (((-127) (-1 (-127) (-127) (-127)) $ (-127)) NIL (|has| $ (-6 -4310))) (((-127) (-1 (-127) (-127) (-127)) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-127) $ (-526) (-127)) NIL (|has| $ (-6 -4311)))) (-3410 (((-127) $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) (-127)) $) NIL) (((-526) (-127) $) NIL (|has| (-127) (-1052))) (((-526) (-127) $ (-526)) NIL (|has| (-127) (-1052)))) (-2044 (((-607 (-127)) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-127)) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| (-127) (-811)))) (-3832 (($ (-1 (-111) (-127) (-127)) $ $) NIL) (($ $ $) NIL (|has| (-127) (-811)))) (-2480 (((-607 (-127)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-127) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-127) (-811)))) (-2048 (($ (-1 (-127) (-127)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-127) (-127)) $) NIL) (($ (-1 (-127) (-127) (-127)) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| (-127) (-1052)))) (-2351 (($ (-127) $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| (-127) (-1052)))) (-4119 (((-127) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-127) "failed") (-1 (-111) (-127)) $) NIL)) (-2277 (($ $ (-127)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-127)))) NIL (-12 (|has| (-127) (-294 (-127))) (|has| (-127) (-1052)))) (($ $ (-278 (-127))) NIL (-12 (|has| (-127) (-294 (-127))) (|has| (-127) (-1052)))) (($ $ (-127) (-127)) NIL (-12 (|has| (-127) (-294 (-127))) (|has| (-127) (-1052)))) (($ $ (-607 (-127)) (-607 (-127))) NIL (-12 (|has| (-127) (-294 (-127))) (|has| (-127) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-127) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052))))) (-2283 (((-607 (-127)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-127) $ (-526) (-127)) NIL) (((-127) $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310))) (((-735) (-127) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-127) (-584 (-515))))) (-3844 (($ (-607 (-127))) NIL)) (-4120 (($ $ (-127)) NIL) (($ (-127) $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| (-127) (-583 (-823))))) (-2047 (((-111) (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| (-127) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-127) (-811)))) (-3353 (((-111) $ $) NIL (|has| (-127) (-1052)))) (-2984 (((-111) $ $) NIL (|has| (-127) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-127) (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-128) (-19 (-127))) (T -128)) -NIL -(-19 (-127)) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15))) -(((-129) (-134)) (T -129)) -((-1345 (*1 *1 *1 *1) (|partial| -4 *1 (-129)))) -(-13 (-23) (-10 -8 (-15 -1345 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 7)) (-1346 (((-1211) $ (-735)) 19)) (-3738 (((-735) $) 20)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) -(((-130) (-134)) (T -130)) -((-3738 (*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-735)))) (-1346 (*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-735)) (-5 *2 (-1211))))) -(-13 (-811) (-10 -8 (-15 -3738 ((-735) $)) (-15 -1346 ((-1211) $ (-735))))) -(((-100) . T) ((-583 (-823)) . T) ((-811) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 34)) (-3502 (((-111) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-735) "failed") $) 40)) (-3469 (((-735) $) 38)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) 27)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1348 (((-111)) 41)) (-1347 (((-111) (-111)) 43)) (-2830 (((-111) $) 24)) (-1349 (((-111) $) 37)) (-4274 (((-823) $) 22) (($ (-735)) 14)) (-2957 (($) 12 T CONST)) (-2964 (($) 11 T CONST)) (-1350 (($ (-735)) 15)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 25)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 26)) (-4156 (((-3 $ "failed") $ $) 30)) (-4158 (($ $ $) 28)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL) (($ $ $) 36)) (* (($ (-735) $) 33) (($ (-878) $) NIL) (($ $ $) 31))) -(((-131) (-13 (-811) (-23) (-691) (-995 (-735)) (-10 -8 (-6 (-4312 "*")) (-15 -4156 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1350 ($ (-735))) (-15 -2830 ((-111) $)) (-15 -1349 ((-111) $)) (-15 -1348 ((-111))) (-15 -1347 ((-111) (-111)))))) (T -131)) -((-4156 (*1 *1 *1 *1) (|partial| -5 *1 (-131))) (** (*1 *1 *1 *1) (-5 *1 (-131))) (-1350 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-131)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-1348 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-1347 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) -(-13 (-811) (-23) (-691) (-995 (-735)) (-10 -8 (-6 (-4312 "*")) (-15 -4156 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1350 ($ (-735))) (-15 -2830 ((-111) $)) (-15 -1349 ((-111) $)) (-15 -1348 ((-111))) (-15 -1347 ((-111) (-111))))) -((-2865 (((-111) $ $) NIL)) (-1351 (($ (-607 |#3|)) 40)) (-3733 (($ $) 99) (($ $ (-526) (-526)) 98)) (-3855 (($) 17)) (-3470 (((-3 |#3| "failed") $) 60)) (-3469 ((|#3| $) NIL)) (-1355 (($ $ (-607 (-526))) 100)) (-1352 (((-607 |#3|) $) 36)) (-3406 (((-735) $) 44)) (-4261 (($ $ $) 93)) (-1353 (($) 43)) (-3554 (((-1106) $) NIL)) (-1354 (($) 16)) (-3555 (((-1070) $) NIL)) (-4118 ((|#3| $) 46) ((|#3| $ (-526)) 47) ((|#3| $ (-526) (-526)) 48) ((|#3| $ (-526) (-526) (-526)) 49) ((|#3| $ (-526) (-526) (-526) (-526)) 50) ((|#3| $ (-607 (-526))) 52)) (-4264 (((-735) $) 45)) (-2081 (($ $ (-526) $ (-526)) 94) (($ $ (-526) (-526)) 96)) (-4274 (((-823) $) 67) (($ |#3|) 68) (($ (-225 |#2| |#3|)) 75) (($ (-1090 |#2| |#3|)) 78) (($ (-607 |#3|)) 53) (($ (-607 $)) 58)) (-2957 (($) 69 T CONST)) (-2964 (($) 70 T CONST)) (-3353 (((-111) $ $) 80)) (-4156 (($ $) 86) (($ $ $) 84)) (-4158 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-526)) 89) (($ (-526) $) 88) (($ $ $) 95))) -(((-132 |#1| |#2| |#3|) (-13 (-449 |#3| (-735)) (-454 (-526) (-735)) (-10 -8 (-15 -4274 ($ (-225 |#2| |#3|))) (-15 -4274 ($ (-1090 |#2| |#3|))) (-15 -4274 ($ (-607 |#3|))) (-15 -4274 ($ (-607 $))) (-15 -3406 ((-735) $)) (-15 -4118 (|#3| $)) (-15 -4118 (|#3| $ (-526))) (-15 -4118 (|#3| $ (-526) (-526))) (-15 -4118 (|#3| $ (-526) (-526) (-526))) (-15 -4118 (|#3| $ (-526) (-526) (-526) (-526))) (-15 -4118 (|#3| $ (-607 (-526)))) (-15 -4261 ($ $ $)) (-15 * ($ $ $)) (-15 -2081 ($ $ (-526) $ (-526))) (-15 -2081 ($ $ (-526) (-526))) (-15 -3733 ($ $)) (-15 -3733 ($ $ (-526) (-526))) (-15 -1355 ($ $ (-607 (-526)))) (-15 -1354 ($)) (-15 -1353 ($)) (-15 -1352 ((-607 |#3|) $)) (-15 -1351 ($ (-607 |#3|))) (-15 -3855 ($)))) (-526) (-735) (-163)) (T -132)) -((-4261 (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-225 *4 *5)) (-14 *4 (-735)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1090 *4 *5)) (-14 *4 (-735)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *5)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)) (-4 *5 (-163)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 *2) (-4 *5 (-163)))) (-4118 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-526)) (-14 *4 (-735)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-735)))) (-4118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-735)))) (-4118 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-735)))) (-4118 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-735)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-607 (-526))) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 (-526)) (-14 *5 (-735)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-2081 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) (-4 *5 (-163)))) (-2081 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) (-4 *5 (-163)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-3733 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) (-4 *5 (-163)))) (-1355 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)) (-4 *5 (-163)))) (-1354 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-1353 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-607 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)) (-4 *5 (-163)))) (-1351 (*1 *1 *2) (-12 (-5 *2 (-607 *5)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)))) (-3855 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163))))) -(-13 (-449 |#3| (-735)) (-454 (-526) (-735)) (-10 -8 (-15 -4274 ($ (-225 |#2| |#3|))) (-15 -4274 ($ (-1090 |#2| |#3|))) (-15 -4274 ($ (-607 |#3|))) (-15 -4274 ($ (-607 $))) (-15 -3406 ((-735) $)) (-15 -4118 (|#3| $)) (-15 -4118 (|#3| $ (-526))) (-15 -4118 (|#3| $ (-526) (-526))) (-15 -4118 (|#3| $ (-526) (-526) (-526))) (-15 -4118 (|#3| $ (-526) (-526) (-526) (-526))) (-15 -4118 (|#3| $ (-607 (-526)))) (-15 -4261 ($ $ $)) (-15 * ($ $ $)) (-15 -2081 ($ $ (-526) $ (-526))) (-15 -2081 ($ $ (-526) (-526))) (-15 -3733 ($ $)) (-15 -3733 ($ $ (-526) (-526))) (-15 -1355 ($ $ (-607 (-526)))) (-15 -1354 ($)) (-15 -1353 ($)) (-15 -1352 ((-607 |#3|) $)) (-15 -1351 ($ (-607 |#3|))) (-15 -3855 ($)))) -((-2474 (((-132 |#1| |#2| |#4|) (-607 |#4|) (-132 |#1| |#2| |#3|)) 14)) (-4275 (((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)) 18))) -(((-133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2474 ((-132 |#1| |#2| |#4|) (-607 |#4|) (-132 |#1| |#2| |#3|))) (-15 -4275 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) (-526) (-735) (-163) (-163)) (T -133)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-526)) (-14 *6 (-735)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) (-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-526)) (-14 *6 (-735)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8))))) -(-10 -7 (-15 -2474 ((-132 |#1| |#2| |#4|) (-607 |#4|) (-132 |#1| |#2| |#3|))) (-15 -4275 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) -((-4274 (((-823) $) 7))) -(((-134) (-583 (-823))) (T -134)) -NIL -(-583 (-823)) -((-2865 (((-111) $ $) NIL)) (-3746 (($) 15 T CONST)) (-1897 (($) NIL (|has| (-138) (-353)))) (-3546 (($ $ $) 17) (($ $ (-138)) NIL) (($ (-138) $) NIL)) (-3548 (($ $ $) NIL)) (-3547 (((-111) $ $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| (-138) (-353)))) (-3551 (($) NIL) (($ (-607 (-138))) NIL)) (-1607 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3724 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310))) (($ (-138) $) 51 (|has| $ (-6 -4310)))) (-3725 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310))) (($ (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3294 (($) NIL (|has| (-138) (-353)))) (-2044 (((-607 (-138)) $) 60 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3637 (((-138) $) NIL (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) 26 (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3638 (((-138) $) NIL (|has| (-138) (-811)))) (-2048 (($ (-1 (-138) (-138)) $) 59 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) 55)) (-3748 (($) 16 T CONST)) (-2102 (((-878) $) NIL (|has| (-138) (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3550 (($ $ $) 29)) (-1306 (((-138) $) 52)) (-3929 (($ (-138) $) 50)) (-2461 (($ (-878)) NIL (|has| (-138) (-353)))) (-1358 (($) 14 T CONST)) (-3555 (((-1070) $) NIL)) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-1307 (((-138) $) 53)) (-2046 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-138)) (-607 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-278 (-138)))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 48)) (-1359 (($) 13 T CONST)) (-3549 (($ $ $) 31) (($ $ (-138)) NIL)) (-1499 (($ (-607 (-138))) NIL) (($) NIL)) (-2045 (((-735) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (((-735) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-1106) $) 36) (((-515) $) NIL (|has| (-138) (-584 (-515)))) (((-607 (-138)) $) 34)) (-3844 (($ (-607 (-138))) NIL)) (-1898 (($ $) 32 (|has| (-138) (-353)))) (-4274 (((-823) $) 46)) (-1360 (($ (-1106)) 12) (($ (-607 (-138))) 43)) (-1899 (((-735) $) NIL)) (-3552 (($) 49) (($ (-607 (-138))) NIL)) (-1308 (($ (-607 (-138))) NIL)) (-2047 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-1356 (($) 19 T CONST)) (-1357 (($) 18 T CONST)) (-3353 (((-111) $ $) 22)) (-4273 (((-735) $) 47 (|has| $ (-6 -4310))))) -(((-135) (-13 (-1052) (-584 (-1106)) (-411 (-138)) (-584 (-607 (-138))) (-10 -8 (-15 -1360 ($ (-1106))) (-15 -1360 ($ (-607 (-138)))) (-15 -1359 ($) -4268) (-15 -1358 ($) -4268) (-15 -3746 ($) -4268) (-15 -3748 ($) -4268) (-15 -1357 ($) -4268) (-15 -1356 ($) -4268)))) (T -135)) -((-1360 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-135)))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-607 (-138))) (-5 *1 (-135)))) (-1359 (*1 *1) (-5 *1 (-135))) (-1358 (*1 *1) (-5 *1 (-135))) (-3746 (*1 *1) (-5 *1 (-135))) (-3748 (*1 *1) (-5 *1 (-135))) (-1357 (*1 *1) (-5 *1 (-135))) (-1356 (*1 *1) (-5 *1 (-135)))) -(-13 (-1052) (-584 (-1106)) (-411 (-138)) (-584 (-607 (-138))) (-10 -8 (-15 -1360 ($ (-1106))) (-15 -1360 ($ (-607 (-138)))) (-15 -1359 ($) -4268) (-15 -1358 ($) -4268) (-15 -3746 ($) -4268) (-15 -3748 ($) -4268) (-15 -1357 ($) -4268) (-15 -1356 ($) -4268))) -((-4060 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4058 ((|#1| |#3|) 9)) (-4059 ((|#3| |#3|) 15))) -(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -4058 (|#1| |#3|)) (-15 -4059 (|#3| |#3|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-533) (-950 |#1|) (-357 |#2|)) (T -136)) -((-4060 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-357 *5)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-533)) (-4 *4 (-950 *3)) (-5 *1 (-136 *3 *4 *2)) (-4 *2 (-357 *4)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-357 *4))))) -(-10 -7 (-15 -4058 (|#1| |#3|)) (-15 -4059 (|#3| |#3|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1394 (($ $ $) 8)) (-1392 (($ $) 7)) (-3399 (($ $ $) 6))) -(((-137) (-134)) (T -137)) -((-1394 (*1 *1 *1 *1) (-4 *1 (-137))) (-1392 (*1 *1 *1) (-4 *1 (-137))) (-3399 (*1 *1 *1 *1) (-4 *1 (-137)))) -(-13 (-10 -8 (-15 -3399 ($ $ $)) (-15 -1392 ($ $)) (-15 -1394 ($ $ $)))) -((-2865 (((-111) $ $) NIL)) (-1363 (((-111) $) 30)) (-3746 (($ $) 43)) (-1549 (($) 17)) (-3433 (((-735)) 10)) (-3294 (($) 16)) (-2876 (($) 18)) (-1369 (((-735) $) 14)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-1362 (((-111) $) 32)) (-3748 (($ $) 44)) (-2102 (((-878) $) 15)) (-3554 (((-1106) $) 38)) (-2461 (($ (-878)) 13)) (-1365 (((-111) $) 28)) (-3555 (((-1070) $) NIL)) (-1367 (($) 19)) (-1366 (((-111) $) 26)) (-4274 (((-823) $) 21)) (-1368 (($ (-735)) 11) (($ (-1106)) 42)) (-1361 (((-111) $) 36)) (-1364 (((-111) $) 34)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 7)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 8))) -(((-138) (-13 (-805) (-10 -8 (-15 -1369 ((-735) $)) (-15 -1368 ($ (-735))) (-15 -1368 ($ (-1106))) (-15 -1549 ($)) (-15 -2876 ($)) (-15 -1367 ($)) (-15 -3746 ($ $)) (-15 -3748 ($ $)) (-15 -1366 ((-111) $)) (-15 -1365 ((-111) $)) (-15 -1364 ((-111) $)) (-15 -1363 ((-111) $)) (-15 -1362 ((-111) $)) (-15 -1361 ((-111) $))))) (T -138)) -((-1369 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-138)))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-138)))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-138)))) (-1549 (*1 *1) (-5 *1 (-138))) (-2876 (*1 *1) (-5 *1 (-138))) (-1367 (*1 *1) (-5 *1 (-138))) (-3746 (*1 *1 *1) (-5 *1 (-138))) (-3748 (*1 *1 *1) (-5 *1 (-138))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(-13 (-805) (-10 -8 (-15 -1369 ((-735) $)) (-15 -1368 ($ (-735))) (-15 -1368 ($ (-1106))) (-15 -1549 ($)) (-15 -2876 ($)) (-15 -1367 ($)) (-15 -3746 ($ $)) (-15 -3748 ($ $)) (-15 -1366 ((-111) $)) (-15 -1365 ((-111) $)) (-15 -1364 ((-111) $)) (-15 -1363 ((-111) $)) (-15 -1362 ((-111) $)) (-15 -1361 ((-111) $)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3002 (((-3 $ "failed") $) 33)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-139) (-134)) (T -139)) -((-3002 (*1 *1 *1) (|partial| -4 *1 (-139)))) -(-13 (-1004) (-10 -8 (-15 -3002 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2667 ((|#1| (-653 |#1|) |#1|) 19))) -(((-140 |#1|) (-10 -7 (-15 -2667 (|#1| (-653 |#1|) |#1|))) (-163)) (T -140)) -((-2667 (*1 *2 *3 *2) (-12 (-5 *3 (-653 *2)) (-4 *2 (-163)) (-5 *1 (-140 *2))))) -(-10 -7 (-15 -2667 (|#1| (-653 |#1|) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-141) (-134)) (T -141)) -NIL -(-13 (-1004)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-1372 (((-2 (|:| -2462 (-735)) (|:| -4270 (-392 |#2|)) (|:| |radicand| |#2|)) (-392 |#2|) (-735)) 70)) (-1371 (((-3 (-2 (|:| |radicand| (-392 |#2|)) (|:| |deg| (-735))) "failed") |#3|) 52)) (-1370 (((-2 (|:| -4270 (-392 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1373 ((|#1| |#3| |#3|) 40)) (-4086 ((|#3| |#3| (-392 |#2|) (-392 |#2|)) 19)) (-1374 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| |deg| (-735))) |#3| |#3|) 49))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-2 (|:| -4270 (-392 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1371 ((-3 (-2 (|:| |radicand| (-392 |#2|)) (|:| |deg| (-735))) "failed") |#3|)) (-15 -1372 ((-2 (|:| -2462 (-735)) (|:| -4270 (-392 |#2|)) (|:| |radicand| |#2|)) (-392 |#2|) (-735))) (-15 -1373 (|#1| |#3| |#3|)) (-15 -4086 (|#3| |#3| (-392 |#2|) (-392 |#2|))) (-15 -1374 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| |deg| (-735))) |#3| |#3|))) (-1164) (-1181 |#1|) (-1181 (-392 |#2|))) (T -142)) -((-1374 (*1 *2 *3 *3) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-392 *5)) (|:| |c2| (-392 *5)) (|:| |deg| (-735)))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5))))) (-4086 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-392 *5)) (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-5 *1 (-142 *4 *5 *2)) (-4 *2 (-1181 *3)))) (-1373 (*1 *2 *3 *3) (-12 (-4 *4 (-1181 *2)) (-4 *2 (-1164)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-1181 (-392 *4))))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-392 *6)) (-4 *5 (-1164)) (-4 *6 (-1181 *5)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| *6))) (-5 *1 (-142 *5 *6 *7)) (-5 *4 (-735)) (-4 *7 (-1181 *3)))) (-1371 (*1 *2 *3) (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| |radicand| (-392 *5)) (|:| |deg| (-735)))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5))))) (-1370 (*1 *2 *3) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -4270 (-392 *5)) (|:| |poly| *3))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5)))))) -(-10 -7 (-15 -1370 ((-2 (|:| -4270 (-392 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1371 ((-3 (-2 (|:| |radicand| (-392 |#2|)) (|:| |deg| (-735))) "failed") |#3|)) (-15 -1372 ((-2 (|:| -2462 (-735)) (|:| -4270 (-392 |#2|)) (|:| |radicand| |#2|)) (-392 |#2|) (-735))) (-15 -1373 (|#1| |#3| |#3|)) (-15 -4086 (|#3| |#3| (-392 |#2|) (-392 |#2|))) (-15 -1374 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| |deg| (-735))) |#3| |#3|))) -((-3004 (((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|)) 32))) -(((-143 |#1| |#2|) (-10 -7 (-15 -3004 ((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|)))) (-525) (-157 |#1|)) (T -143)) -((-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *5))) (-5 *3 (-1117 *5)) (-4 *5 (-157 *4)) (-4 *4 (-525)) (-5 *1 (-143 *4 *5))))) -(-10 -7 (-15 -3004 ((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|)))) -((-4032 (($ (-1 (-111) |#2|) $) 29)) (-1375 (($ $) 36)) (-3725 (($ (-1 (-111) |#2|) $) 27) (($ |#2| $) 32)) (-4161 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1376 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 19)) (-2046 (((-111) (-1 (-111) |#2|) $) 16)) (-2045 (((-735) (-1 (-111) |#2|) $) 14) (((-735) |#2| $) NIL)) (-2047 (((-111) (-1 (-111) |#2|) $) 15)) (-4273 (((-735) $) 11))) -(((-144 |#1| |#2|) (-10 -8 (-15 -1375 (|#1| |#1|)) (-15 -3725 (|#1| |#2| |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4032 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3725 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|))) (-145 |#2|) (-1159)) (T -144)) -NIL -(-10 -8 (-15 -1375 (|#1| |#1|)) (-15 -3725 (|#1| |#2| |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4032 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3725 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-4032 (($ (-1 (-111) |#1|) $) 44 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 41 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310))) (($ |#1| $) 42 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 48)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 40 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 49)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-145 |#1|) (-134) (-1159)) (T -145)) -((-3844 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-145 *3)))) (-1376 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-145 *2)) (-4 *2 (-1159)))) (-4161 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)))) (-4161 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)))) (-3725 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *3)) (-4 *3 (-1159)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *3)) (-4 *3 (-1159)))) (-4161 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1052)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)))) (-3725 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) (-1375 (*1 *1 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)) (-4 *2 (-1052))))) -(-13 (-472 |t#1|) (-10 -8 (-15 -3844 ($ (-607 |t#1|))) (-15 -1376 ((-3 |t#1| "failed") (-1 (-111) |t#1|) $)) (IF (|has| $ (-6 -4310)) (PROGN (-15 -4161 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4161 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3725 ($ (-1 (-111) |t#1|) $)) (-15 -4032 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -4161 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3725 ($ |t#1| $)) (-15 -1375 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) 86)) (-2471 (((-111) $) NIL)) (-3193 (($ |#2| (-607 (-878))) 56)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1377 (($ (-878)) 47)) (-4230 (((-131)) 23)) (-4274 (((-823) $) 69) (($ (-526)) 45) (($ |#2|) 46)) (-3999 ((|#2| $ (-607 (-878))) 59)) (-3423 (((-735)) 20)) (-2957 (($) 40 T CONST)) (-2964 (($) 43 T CONST)) (-3353 (((-111) $ $) 26)) (-4265 (($ $ |#2|) NIL)) (-4156 (($ $) 34) (($ $ $) 32)) (-4158 (($ $ $) 30)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-146 |#1| |#2| |#3|) (-13 (-1004) (-37 |#2|) (-1213 |#2|) (-10 -8 (-15 -1377 ($ (-878))) (-15 -3193 ($ |#2| (-607 (-878)))) (-15 -3999 (|#2| $ (-607 (-878)))) (-15 -3781 ((-3 $ "failed") $)))) (-878) (-348) (-952 |#1| |#2|)) (T -146)) -((-3781 (*1 *1 *1) (|partial| -12 (-5 *1 (-146 *2 *3 *4)) (-14 *2 (-878)) (-4 *3 (-348)) (-14 *4 (-952 *2 *3)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-146 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-348)) (-14 *5 (-952 *3 *4)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-878))) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-878)) (-4 *2 (-348)) (-14 *5 (-952 *4 *2)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-607 (-878))) (-4 *2 (-348)) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-878)) (-14 *5 (-952 *4 *2))))) -(-13 (-1004) (-37 |#2|) (-1213 |#2|) (-10 -8 (-15 -1377 ($ (-878))) (-15 -3193 ($ |#2| (-607 (-878)))) (-15 -3999 (|#2| $ (-607 (-878)))) (-15 -3781 ((-3 $ "failed") $)))) -((-1379 (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211)))) (-211) (-211) (-211) (-211)) 38)) (-1378 (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526))) 63) (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884)) 64)) (-1541 (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211))))) 67) (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-902 (-211)))) 66) (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526))) 58) (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884)) 59))) -(((-147) (-10 -7 (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526)))) (-15 -1378 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884))) (-15 -1378 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526)))) (-15 -1379 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211)))) (-211) (-211) (-211) (-211))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-902 (-211))))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211)))))))) (T -147)) -((-1541 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)) (-5 *3 (-607 (-607 (-902 (-211))))))) (-1541 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)) (-5 *3 (-607 (-902 (-211)))))) (-1379 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-211)) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 *4)))) (|:| |xValues| (-1041 *4)) (|:| |yValues| (-1041 *4)))) (-5 *1 (-147)) (-5 *3 (-607 (-607 (-902 *4)))))) (-1378 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884)) (-5 *4 (-392 (-526))) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)))) (-1541 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884)) (-5 *4 (-392 (-526))) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147))))) -(-10 -7 (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526)))) (-15 -1378 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884))) (-15 -1378 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526)))) (-15 -1379 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211)))) (-211) (-211) (-211) (-211))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-902 (-211))))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211))))))) -((-1432 (((-607 (-159 |#2|)) |#1| |#2|) 45))) -(((-148 |#1| |#2|) (-10 -7 (-15 -1432 ((-607 (-159 |#2|)) |#1| |#2|))) (-1181 (-159 (-526))) (-13 (-348) (-809))) (T -148)) -((-1432 (*1 *2 *3 *4) (-12 (-5 *2 (-607 (-159 *4))) (-5 *1 (-148 *3 *4)) (-4 *3 (-1181 (-159 (-526)))) (-4 *4 (-13 (-348) (-809)))))) -(-10 -7 (-15 -1432 ((-607 (-159 |#2|)) |#1| |#2|))) -((-2865 (((-111) $ $) NIL)) (-1383 (($) 15)) (-1384 (($) 14)) (-1380 (((-878)) 22)) (-3554 (((-1106) $) NIL)) (-3256 (((-526) $) 19)) (-3555 (((-1070) $) NIL)) (-1382 (($) 16)) (-3255 (($ (-526)) 23)) (-4274 (((-823) $) 29)) (-1381 (($) 17)) (-3353 (((-111) $ $) 13)) (-4158 (($ $ $) 11)) (* (($ (-878) $) 21) (($ (-211) $) 8))) -(((-149) (-13 (-25) (-10 -8 (-15 * ($ (-878) $)) (-15 * ($ (-211) $)) (-15 -4158 ($ $ $)) (-15 -1384 ($)) (-15 -1383 ($)) (-15 -1382 ($)) (-15 -1381 ($)) (-15 -3256 ((-526) $)) (-15 -1380 ((-878))) (-15 -3255 ($ (-526)))))) (T -149)) -((-4158 (*1 *1 *1 *1) (-5 *1 (-149))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-149)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-149)))) (-1384 (*1 *1) (-5 *1 (-149))) (-1383 (*1 *1) (-5 *1 (-149))) (-1382 (*1 *1) (-5 *1 (-149))) (-1381 (*1 *1) (-5 *1 (-149))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-149)))) (-1380 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-149)))) (-3255 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-149))))) -(-13 (-25) (-10 -8 (-15 * ($ (-878) $)) (-15 * ($ (-211) $)) (-15 -4158 ($ $ $)) (-15 -1384 ($)) (-15 -1383 ($)) (-15 -1382 ($)) (-15 -1381 ($)) (-15 -3256 ((-526) $)) (-15 -1380 ((-878))) (-15 -3255 ($ (-526))))) -((-1397 ((|#2| |#2| (-1044 |#2|)) 88) ((|#2| |#2| (-1123)) 68)) (-4261 ((|#2| |#2| (-1044 |#2|)) 87) ((|#2| |#2| (-1123)) 67)) (-1394 ((|#2| |#2| |#2|) 27)) (-2307 (((-112) (-112)) 99)) (-1391 ((|#2| (-607 |#2|)) 117)) (-1388 ((|#2| (-607 |#2|)) 135)) (-1387 ((|#2| (-607 |#2|)) 125)) (-1385 ((|#2| |#2|) 123)) (-1389 ((|#2| (-607 |#2|)) 111)) (-1390 ((|#2| (-607 |#2|)) 112)) (-1386 ((|#2| (-607 |#2|)) 133)) (-1398 ((|#2| |#2| (-1123)) 56) ((|#2| |#2|) 55)) (-1392 ((|#2| |#2|) 23)) (-3399 ((|#2| |#2| |#2|) 26)) (-2306 (((-111) (-112)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-150 |#1| |#2|) (-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -3399 (|#2| |#2| |#2|)) (-15 -1394 (|#2| |#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1398 (|#2| |#2| (-1123))) (-15 -1397 (|#2| |#2| (-1123))) (-15 -1397 (|#2| |#2| (-1044 |#2|))) (-15 -4261 (|#2| |#2| (-1123))) (-15 -4261 (|#2| |#2| (-1044 |#2|))) (-15 -1385 (|#2| |#2|)) (-15 -1386 (|#2| (-607 |#2|))) (-15 -1387 (|#2| (-607 |#2|))) (-15 -1388 (|#2| (-607 |#2|))) (-15 -1389 (|#2| (-607 |#2|))) (-15 -1390 (|#2| (-607 |#2|))) (-15 -1391 (|#2| (-607 |#2|)))) (-13 (-811) (-533)) (-406 |#1|)) (T -150)) -((-1391 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-4261 (*1 *2 *2 *3) (-12 (-5 *3 (-1044 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)))) (-4261 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) (-4 *2 (-406 *4)))) (-1397 (*1 *2 *2 *3) (-12 (-5 *3 (-1044 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)))) (-1397 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) (-4 *2 (-406 *4)))) (-1398 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) (-4 *2 (-406 *4)))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-1392 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-1394 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-3399 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *4)) (-4 *4 (-406 *3)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-150 *4 *5)) (-4 *5 (-406 *4))))) -(-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -3399 (|#2| |#2| |#2|)) (-15 -1394 (|#2| |#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1398 (|#2| |#2| (-1123))) (-15 -1397 (|#2| |#2| (-1123))) (-15 -1397 (|#2| |#2| (-1044 |#2|))) (-15 -4261 (|#2| |#2| (-1123))) (-15 -4261 (|#2| |#2| (-1044 |#2|))) (-15 -1385 (|#2| |#2|)) (-15 -1386 (|#2| (-607 |#2|))) (-15 -1387 (|#2| (-607 |#2|))) (-15 -1388 (|#2| (-607 |#2|))) (-15 -1389 (|#2| (-607 |#2|))) (-15 -1390 (|#2| (-607 |#2|))) (-15 -1391 (|#2| (-607 |#2|)))) -((-1396 ((|#1| |#1| |#1|) 53)) (-1395 ((|#1| |#1| |#1|) 50)) (-1394 ((|#1| |#1| |#1|) 44)) (-3190 ((|#1| |#1|) 35)) (-1393 ((|#1| |#1| (-607 |#1|)) 43)) (-1392 ((|#1| |#1|) 37)) (-3399 ((|#1| |#1| |#1|) 40))) -(((-151 |#1|) (-10 -7 (-15 -3399 (|#1| |#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1393 (|#1| |#1| (-607 |#1|))) (-15 -3190 (|#1| |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|))) (-525)) (T -151)) -((-1396 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-1395 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-1394 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-3190 (*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-1393 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-525)) (-5 *1 (-151 *2)))) (-1392 (*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-3399 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) -(-10 -7 (-15 -3399 (|#1| |#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1393 (|#1| |#1| (-607 |#1|))) (-15 -3190 (|#1| |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|))) -((-1397 (($ $ (-1123)) 12) (($ $ (-1044 $)) 11)) (-4261 (($ $ (-1123)) 10) (($ $ (-1044 $)) 9)) (-1394 (($ $ $) 8)) (-1398 (($ $) 14) (($ $ (-1123)) 13)) (-1392 (($ $) 7)) (-3399 (($ $ $) 6))) -(((-152) (-134)) (T -152)) -((-1398 (*1 *1 *1) (-4 *1 (-152))) (-1398 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) (-1397 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-152)))) (-4261 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) (-4261 (*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-152))))) -(-13 (-137) (-10 -8 (-15 -1398 ($ $)) (-15 -1398 ($ $ (-1123))) (-15 -1397 ($ $ (-1123))) (-15 -1397 ($ $ (-1044 $))) (-15 -4261 ($ $ (-1123))) (-15 -4261 ($ $ (-1044 $))))) -(((-137) . T)) -((-2865 (((-111) $ $) NIL)) (-1399 (($ (-526)) 13) (($ $ $) 14)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 17)) (-3353 (((-111) $ $) 9))) -(((-153) (-13 (-1052) (-10 -8 (-15 -1399 ($ (-526))) (-15 -1399 ($ $ $))))) (T -153)) -((-1399 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-153)))) (-1399 (*1 *1 *1 *1) (-5 *1 (-153)))) -(-13 (-1052) (-10 -8 (-15 -1399 ($ (-526))) (-15 -1399 ($ $ $)))) -((-2307 (((-112) (-1123)) 97))) -(((-154) (-10 -7 (-15 -2307 ((-112) (-1123))))) (T -154)) -((-2307 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-112)) (-5 *1 (-154))))) -(-10 -7 (-15 -2307 ((-112) (-1123)))) -((-1631 ((|#3| |#3|) 19))) -(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -1631 (|#3| |#3|))) (-1004) (-1181 |#1|) (-1181 |#2|)) (T -155)) -((-1631 (*1 *2 *2) (-12 (-4 *3 (-1004)) (-4 *4 (-1181 *3)) (-5 *1 (-155 *3 *4 *2)) (-4 *2 (-1181 *4))))) -(-10 -7 (-15 -1631 (|#3| |#3|))) -((-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 217)) (-3649 ((|#2| $) 96)) (-3806 (($ $) 247)) (-3961 (($ $) 241)) (-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 40)) (-3804 (($ $) 245)) (-3960 (($ $) 239)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#2| $) 139)) (-2861 (($ $ $) 222)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 155) (((-653 |#2|) (-653 $)) 149)) (-4161 (($ (-1117 |#2|)) 119) (((-3 $ "failed") (-392 (-1117 |#2|))) NIL)) (-3781 (((-3 $ "failed") $) 209)) (-3324 (((-3 (-392 (-526)) "failed") $) 199)) (-3323 (((-111) $) 194)) (-3322 (((-392 (-526)) $) 197)) (-3406 (((-878)) 89)) (-2860 (($ $ $) 224)) (-1400 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3949 (($) 236)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 186) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 191)) (-3429 ((|#2| $) 94)) (-2106 (((-1117 |#2|) $) 121)) (-4275 (($ (-1 |#2| |#2|) $) 102)) (-4259 (($ $) 238)) (-3379 (((-1117 |#2|) $) 120)) (-2703 (($ $) 202)) (-1402 (($) 97)) (-3005 (((-390 (-1117 $)) (-1117 $)) 88)) (-3006 (((-390 (-1117 $)) (-1117 $)) 57)) (-3780 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4260 (($ $) 237)) (-1680 (((-735) $) 219)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 229)) (-4076 ((|#2| (-1205 $)) NIL) ((|#2|) 91)) (-4129 (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-3499 (((-1117 |#2|)) 114)) (-3805 (($ $) 246)) (-3956 (($ $) 240)) (-3537 (((-1205 |#2|) $ (-1205 $)) 128) (((-653 |#2|) (-1205 $) (-1205 $)) NIL) (((-1205 |#2|) $) 110) (((-653 |#2|) (-1205 $)) NIL)) (-4287 (((-1205 |#2|) $) NIL) (($ (-1205 |#2|)) NIL) (((-1117 |#2|) $) NIL) (($ (-1117 |#2|)) NIL) (((-849 (-526)) $) 177) (((-849 (-363)) $) 181) (((-159 (-363)) $) 167) (((-159 (-211)) $) 162) (((-515) $) 173)) (-3309 (($ $) 98)) (-4274 (((-823) $) 138) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-392 (-526))) NIL) (($ $) NIL)) (-2667 (((-1117 |#2|) $) 23)) (-3423 (((-735)) 100)) (-3812 (($ $) 250)) (-3800 (($ $) 244)) (-3810 (($ $) 248)) (-3798 (($ $) 242)) (-2289 ((|#2| $) 233)) (-3811 (($ $) 249)) (-3799 (($ $) 243)) (-3702 (($ $) 157)) (-3353 (((-111) $ $) 104)) (-2985 (((-111) $ $) 193)) (-4156 (($ $) 106) (($ $ $) NIL)) (-4158 (($ $ $) 105)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-392 (-526))) 267) (($ $ $) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL))) -(((-156 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4274 (|#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -1680 ((-735) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-159 (-211)) |#1|)) (-15 -4287 ((-159 (-363)) |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3949 (|#1|)) (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -1400 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -3702 (|#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3309 (|#1| |#1|)) (-15 -1402 (|#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4161 ((-3 |#1| "failed") (-392 (-1117 |#2|)))) (-15 -3379 ((-1117 |#2|) |#1|)) (-15 -4287 (|#1| (-1117 |#2|))) (-15 -4161 (|#1| (-1117 |#2|))) (-15 -3499 ((-1117 |#2|))) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 ((-1117 |#2|) |#1|)) (-15 -4076 (|#2|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -2106 ((-1117 |#2|) |#1|)) (-15 -2667 ((-1117 |#2|) |#1|)) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -3429 (|#2| |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3406 ((-878))) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 ** (|#1| |#1| (-735))) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-157 |#2|) (-163)) (T -156)) -((-3423 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) (-3406 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-878)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) (-4076 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-156 *3 *2)) (-4 *3 (-157 *2)))) (-3499 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1117 *4)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4))))) -(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4274 (|#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -1680 ((-735) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-159 (-211)) |#1|)) (-15 -4287 ((-159 (-363)) |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3949 (|#1|)) (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -1400 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -3702 (|#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3309 (|#1| |#1|)) (-15 -1402 (|#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4161 ((-3 |#1| "failed") (-392 (-1117 |#2|)))) (-15 -3379 ((-1117 |#2|) |#1|)) (-15 -4287 (|#1| (-1117 |#2|))) (-15 -4161 (|#1| (-1117 |#2|))) (-15 -3499 ((-1117 |#2|))) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 ((-1117 |#2|) |#1|)) (-15 -4076 (|#2|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -2106 ((-1117 |#2|) |#1|)) (-15 -2667 ((-1117 |#2|) |#1|)) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -3429 (|#2| |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3406 ((-878))) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 ** (|#1| |#1| (-735))) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 91 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-2151 (($ $) 92 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-2149 (((-111) $) 94 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-1877 (((-653 |#1|) (-1205 $)) 44) (((-653 |#1|)) 59)) (-3649 ((|#1| $) 50)) (-3806 (($ $) 225 (|has| |#1| (-1145)))) (-3961 (($ $) 208 (|has| |#1| (-1145)))) (-1767 (((-1132 (-878) (-735)) (-526)) 144 (|has| |#1| (-335)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 239 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-4093 (($ $) 111 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-4286 (((-390 $) $) 112 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-3337 (($ $) 238 (-12 (|has| |#1| (-960)) (|has| |#1| (-1145))))) (-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 242 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-1681 (((-111) $ $) 102 (|has| |#1| (-292)))) (-3433 (((-735)) 85 (|has| |#1| (-353)))) (-3804 (($ $) 224 (|has| |#1| (-1145)))) (-3960 (($ $) 209 (|has| |#1| (-1145)))) (-3808 (($ $) 223 (|has| |#1| (-1145)))) (-3959 (($ $) 210 (|has| |#1| (-1145)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 166 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 164 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 163)) (-3469 (((-526) $) 167 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 165 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 162)) (-1887 (($ (-1205 |#1|) (-1205 $)) 46) (($ (-1205 |#1|)) 62)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-335)))) (-2861 (($ $ $) 106 (|has| |#1| (-292)))) (-1876 (((-653 |#1|) $ (-1205 $)) 51) (((-653 |#1|) $) 57)) (-2331 (((-653 (-526)) (-653 $)) 161 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 160 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 159) (((-653 |#1|) (-653 $)) 158)) (-4161 (($ (-1117 |#1|)) 155) (((-3 $ "failed") (-392 (-1117 |#1|))) 152 (|has| |#1| (-348)))) (-3781 (((-3 $ "failed") $) 32)) (-3965 ((|#1| $) 250)) (-3324 (((-3 (-392 (-526)) "failed") $) 243 (|has| |#1| (-525)))) (-3323 (((-111) $) 245 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 244 (|has| |#1| (-525)))) (-3406 (((-878)) 52)) (-3294 (($) 88 (|has| |#1| (-353)))) (-2860 (($ $ $) 105 (|has| |#1| (-292)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 100 (|has| |#1| (-292)))) (-3133 (($) 146 (|has| |#1| (-335)))) (-1772 (((-111) $) 147 (|has| |#1| (-335)))) (-1862 (($ $ (-735)) 138 (|has| |#1| (-335))) (($ $) 137 (|has| |#1| (-335)))) (-4045 (((-111) $) 113 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-1400 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1013)) (|has| |#1| (-1145))))) (-3949 (($) 235 (|has| |#1| (-1145)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 258 (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 257 (|has| |#1| (-845 (-363))))) (-4090 (((-878) $) 149 (|has| |#1| (-335))) (((-796 (-878)) $) 135 (|has| |#1| (-335)))) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 237 (-12 (|has| |#1| (-960)) (|has| |#1| (-1145))))) (-3429 ((|#1| $) 49)) (-3763 (((-3 $ "failed") $) 139 (|has| |#1| (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 109 (|has| |#1| (-292)))) (-2106 (((-1117 |#1|) $) 42 (|has| |#1| (-348)))) (-3637 (($ $ $) 204 (|has| |#1| (-811)))) (-3638 (($ $ $) 203 (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) 259)) (-2102 (((-878) $) 87 (|has| |#1| (-353)))) (-4259 (($ $) 232 (|has| |#1| (-1145)))) (-3379 (((-1117 |#1|) $) 153)) (-1989 (($ (-607 $)) 98 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (($ $ $) 97 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 114 (|has| |#1| (-348)))) (-3764 (($) 140 (|has| |#1| (-335)) CONST)) (-2461 (($ (-878)) 86 (|has| |#1| (-353)))) (-1402 (($) 254)) (-3966 ((|#1| $) 251)) (-3555 (((-1070) $) 10)) (-2470 (($) 157)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 99 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3457 (($ (-607 $)) 96 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (($ $ $) 95 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 143 (|has| |#1| (-335)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 241 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-3006 (((-390 (-1117 $)) (-1117 $)) 240 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-4051 (((-390 $) $) 110 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-292))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 107 (|has| |#1| (-292)))) (-3780 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 90 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 101 (|has| |#1| (-292)))) (-4260 (($ $) 233 (|has| |#1| (-1145)))) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 265 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 263 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 262 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 261 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) 260 (|has| |#1| (-496 (-1123) |#1|)))) (-1680 (((-735) $) 103 (|has| |#1| (-292)))) (-4118 (($ $ |#1|) 266 (|has| |#1| (-271 |#1| |#1|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 104 (|has| |#1| (-292)))) (-4076 ((|#1| (-1205 $)) 45) ((|#1|) 58)) (-1863 (((-735) $) 148 (|has| |#1| (-335))) (((-3 (-735) "failed") $ $) 136 (|has| |#1| (-335)))) (-4129 (($ $ (-1 |#1| |#1|) (-735)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-607 (-1123)) (-607 (-735))) 127 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 128 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 129 (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 130 (|has| |#1| (-859 (-1123)))) (($ $ (-735)) 132 (-3850 (-3155 (|has| |#1| (-348)) (|has| |#1| (-219))) (|has| |#1| (-219)) (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))))) (($ $) 134 (-3850 (-3155 (|has| |#1| (-348)) (|has| |#1| (-219))) (|has| |#1| (-219)) (-3155 (|has| |#1| (-219)) (|has| |#1| (-348)))))) (-2469 (((-653 |#1|) (-1205 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-348)))) (-3499 (((-1117 |#1|)) 156)) (-3809 (($ $) 222 (|has| |#1| (-1145)))) (-3958 (($ $) 211 (|has| |#1| (-1145)))) (-1766 (($) 145 (|has| |#1| (-335)))) (-3807 (($ $) 221 (|has| |#1| (-1145)))) (-3957 (($ $) 212 (|has| |#1| (-1145)))) (-3805 (($ $) 220 (|has| |#1| (-1145)))) (-3956 (($ $) 213 (|has| |#1| (-1145)))) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) 47) (((-1205 |#1|) $) 64) (((-653 |#1|) (-1205 $)) 63)) (-4287 (((-1205 |#1|) $) 61) (($ (-1205 |#1|)) 60) (((-1117 |#1|) $) 168) (($ (-1117 |#1|)) 154) (((-849 (-526)) $) 256 (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) 255 (|has| |#1| (-584 (-849 (-363))))) (((-159 (-363)) $) 207 (|has| |#1| (-977))) (((-159 (-211)) $) 206 (|has| |#1| (-977))) (((-515) $) 205 (|has| |#1| (-584 (-515))))) (-3309 (($ $) 253)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 142 (-3850 (-3155 (|has| $ (-139)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))) (|has| |#1| (-335))))) (-1401 (($ |#1| |#1|) 252)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35) (($ (-392 (-526))) 84 (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526)))))) (($ $) 89 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3002 (($ $) 141 (|has| |#1| (-335))) (((-3 $ "failed") $) 41 (-3850 (-3155 (|has| $ (-139)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))) (|has| |#1| (-139))))) (-2667 (((-1117 |#1|) $) 43)) (-3423 (((-735)) 28)) (-2104 (((-1205 $)) 65)) (-3812 (($ $) 231 (|has| |#1| (-1145)))) (-3800 (($ $) 219 (|has| |#1| (-1145)))) (-2150 (((-111) $ $) 93 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3810 (($ $) 230 (|has| |#1| (-1145)))) (-3798 (($ $) 218 (|has| |#1| (-1145)))) (-3814 (($ $) 229 (|has| |#1| (-1145)))) (-3802 (($ $) 217 (|has| |#1| (-1145)))) (-2289 ((|#1| $) 247 (|has| |#1| (-1145)))) (-3815 (($ $) 228 (|has| |#1| (-1145)))) (-3803 (($ $) 216 (|has| |#1| (-1145)))) (-3813 (($ $) 227 (|has| |#1| (-1145)))) (-3801 (($ $) 215 (|has| |#1| (-1145)))) (-3811 (($ $) 226 (|has| |#1| (-1145)))) (-3799 (($ $) 214 (|has| |#1| (-1145)))) (-3702 (($ $) 248 (|has| |#1| (-1013)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 |#1| |#1|) (-735)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-607 (-1123)) (-607 (-735))) 123 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 124 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 125 (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 126 (|has| |#1| (-859 (-1123)))) (($ $ (-735)) 131 (-3850 (-3155 (|has| |#1| (-348)) (|has| |#1| (-219))) (|has| |#1| (-219)) (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))))) (($ $) 133 (-3850 (-3155 (|has| |#1| (-348)) (|has| |#1| (-219))) (|has| |#1| (-219)) (-3155 (|has| |#1| (-219)) (|has| |#1| (-348)))))) (-2863 (((-111) $ $) 201 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 200 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 202 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 199 (|has| |#1| (-811)))) (-4265 (($ $ $) 118 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-392 (-526))) 236 (-12 (|has| |#1| (-960)) (|has| |#1| (-1145)))) (($ $ $) 234 (|has| |#1| (-1145))) (($ $ (-526)) 115 (|has| |#1| (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-392 (-526)) $) 117 (|has| |#1| (-348))) (($ $ (-392 (-526))) 116 (|has| |#1| (-348))))) -(((-157 |#1|) (-134) (-163)) (T -157)) -((-3429 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-1402 (*1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-1401 (*1 *1 *2 *2) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) (-3702 (*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1145)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-1013)) (-4 *3 (-1145)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526)))))) -(-13 (-689 |t#1| (-1117 |t#1|)) (-397 |t#1|) (-217 |t#1|) (-323 |t#1|) (-385 |t#1|) (-843 |t#1|) (-362 |t#1|) (-163) (-10 -8 (-6 -1401) (-15 -1402 ($)) (-15 -3309 ($ $)) (-15 -1401 ($ |t#1| |t#1|)) (-15 -3966 (|t#1| $)) (-15 -3965 (|t#1| $)) (-15 -3429 (|t#1| $)) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-6 (-533)) (-15 -3780 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-292)) (-6 (-292)) |%noBranch|) (IF (|has| |t#1| (-6 -4309)) (-6 -4309) |%noBranch|) (IF (|has| |t#1| (-6 -4306)) (-6 -4306) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-977)) (PROGN (-6 (-584 (-159 (-211)))) (-6 (-584 (-159 (-363))))) |%noBranch|) (IF (|has| |t#1| (-1013)) (-15 -3702 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1145)) (PROGN (-6 (-1145)) (-15 -2289 (|t#1| $)) (IF (|has| |t#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-15 -1400 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-869)) (IF (|has| |t#1| (-292)) (-6 (-869)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-37 |#1|) . T) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-34) |has| |#1| (-1145)) ((-93) |has| |#1| (-1145)) ((-100) . T) ((-110 #1# #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| |#1| (-335)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 (-159 (-211))) |has| |#1| (-977)) ((-584 (-159 (-363))) |has| |#1| (-977)) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526)))) ((-584 #2=(-1117 |#1|)) . T) ((-217 |#1|) . T) ((-219) -3850 (|has| |#1| (-335)) (|has| |#1| (-219))) ((-229) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-269) |has| |#1| (-1145)) ((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-292) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-348) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-387) |has| |#1| (-335)) ((-353) -3850 (|has| |#1| (-335)) (|has| |#1| (-353))) ((-335) |has| |#1| (-335)) ((-355 |#1| #2#) . T) ((-395 |#1| #2#) . T) ((-323 |#1|) . T) ((-362 |#1|) . T) ((-385 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-475) |has| |#1| (-1145)) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|)) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-613 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-682 |#1|) . T) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-689 |#1| #2#) . T) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-843 |#1|) . T) ((-869) -12 (|has| |#1| (-292)) (|has| |#1| (-869))) ((-880) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-960) -12 (|has| |#1| (-960)) (|has| |#1| (-1145))) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-335)) ((-1145) |has| |#1| (-1145)) ((-1148) |has| |#1| (-1145)) ((-1159) . T) ((-1164) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) -((-4051 (((-390 |#2|) |#2|) 63))) -(((-158 |#1| |#2|) (-10 -7 (-15 -4051 ((-390 |#2|) |#2|))) (-292) (-1181 (-159 |#1|))) (T -158)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-158 *4 *3)) (-4 *3 (-1181 (-159 *4)))))) -(-10 -7 (-15 -4051 ((-390 |#2|) |#2|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 33)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-2151 (($ $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-2149 (((-111) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-1877 (((-653 |#1|) (-1205 $)) NIL) (((-653 |#1|)) NIL)) (-3649 ((|#1| $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-1145)))) (-3961 (($ $) NIL (|has| |#1| (-1145)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-4093 (($ $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-4286 (((-390 $) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-3337 (($ $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1145))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-292)))) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3804 (($ $) NIL (|has| |#1| (-1145)))) (-3960 (($ $) NIL (|has| |#1| (-1145)))) (-3808 (($ $) NIL (|has| |#1| (-1145)))) (-3959 (($ $) NIL (|has| |#1| (-1145)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|) (-1205 $)) NIL) (($ (-1205 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-335)))) (-2861 (($ $ $) NIL (|has| |#1| (-292)))) (-1876 (((-653 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-4161 (($ (-1117 |#1|)) NIL) (((-3 $ "failed") (-392 (-1117 |#1|))) NIL (|has| |#1| (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-3965 ((|#1| $) 13)) (-3324 (((-3 (-392 (-526)) #3="failed") $) NIL (|has| |#1| (-525)))) (-3323 (((-111) $) NIL (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) NIL (|has| |#1| (-525)))) (-3406 (((-878)) NIL)) (-3294 (($) NIL (|has| |#1| (-353)))) (-2860 (($ $ $) NIL (|has| |#1| (-292)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-292)))) (-3133 (($) NIL (|has| |#1| (-335)))) (-1772 (((-111) $) NIL (|has| |#1| (-335)))) (-1862 (($ $ (-735)) NIL (|has| |#1| (-335))) (($ $) NIL (|has| |#1| (-335)))) (-4045 (((-111) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-1400 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1145))))) (-3949 (($) NIL (|has| |#1| (-1145)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| |#1| (-845 (-363))))) (-4090 (((-878) $) NIL (|has| |#1| (-335))) (((-796 (-878)) $) NIL (|has| |#1| (-335)))) (-2471 (((-111) $) 35)) (-3311 (($ $ (-526)) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1145))))) (-3429 ((|#1| $) 46)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-335)))) (-1678 (((-3 (-607 $) #4="failed") (-607 $) $) NIL (|has| |#1| (-292)))) (-2106 (((-1117 |#1|) $) NIL (|has| |#1| (-348)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-4259 (($ $) NIL (|has| |#1| (-1145)))) (-3379 (((-1117 |#1|) $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-292))) (($ $ $) NIL (|has| |#1| (-292)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-3764 (($) NIL (|has| |#1| (-335)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-1402 (($) NIL)) (-3966 ((|#1| $) 15)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-292)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-292))) (($ $ $) NIL (|has| |#1| (-292)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-335)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-4051 (((-390 $) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-292))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-292)))) (-3780 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 47 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-292)))) (-4260 (($ $) NIL (|has| |#1| (-1145)))) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|)))) (-1680 (((-735) $) NIL (|has| |#1| (-292)))) (-4118 (($ $ |#1|) NIL (|has| |#1| (-271 |#1| |#1|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-292)))) (-4076 ((|#1| (-1205 $)) NIL) ((|#1|) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-335))) (((-3 (-735) "failed") $ $) NIL (|has| |#1| (-335)))) (-4129 (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $) NIL (|has| |#1| (-219)))) (-2469 (((-653 |#1|) (-1205 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-348)))) (-3499 (((-1117 |#1|)) NIL)) (-3809 (($ $) NIL (|has| |#1| (-1145)))) (-3958 (($ $) NIL (|has| |#1| (-1145)))) (-1766 (($) NIL (|has| |#1| (-335)))) (-3807 (($ $) NIL (|has| |#1| (-1145)))) (-3957 (($ $) NIL (|has| |#1| (-1145)))) (-3805 (($ $) NIL (|has| |#1| (-1145)))) (-3956 (($ $) NIL (|has| |#1| (-1145)))) (-3537 (((-1205 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) (-1205 $) (-1205 $)) NIL) (((-1205 |#1|) $) NIL) (((-653 |#1|) (-1205 $)) NIL)) (-4287 (((-1205 |#1|) $) NIL) (($ (-1205 |#1|)) NIL) (((-1117 |#1|) $) NIL) (($ (-1117 |#1|)) NIL) (((-849 (-526)) $) NIL (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| |#1| (-584 (-849 (-363))))) (((-159 (-363)) $) NIL (|has| |#1| (-977))) (((-159 (-211)) $) NIL (|has| |#1| (-977))) (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3309 (($ $) 45)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-335))))) (-1401 (($ |#1| |#1|) 37)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) 36) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-3002 (($ $) NIL (|has| |#1| (-335))) (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-2667 (((-1117 |#1|) $) NIL)) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL)) (-3812 (($ $) NIL (|has| |#1| (-1145)))) (-3800 (($ $) NIL (|has| |#1| (-1145)))) (-2150 (((-111) $ $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-3810 (($ $) NIL (|has| |#1| (-1145)))) (-3798 (($ $) NIL (|has| |#1| (-1145)))) (-3814 (($ $) NIL (|has| |#1| (-1145)))) (-3802 (($ $) NIL (|has| |#1| (-1145)))) (-2289 ((|#1| $) NIL (|has| |#1| (-1145)))) (-3815 (($ $) NIL (|has| |#1| (-1145)))) (-3803 (($ $) NIL (|has| |#1| (-1145)))) (-3813 (($ $) NIL (|has| |#1| (-1145)))) (-3801 (($ $) NIL (|has| |#1| (-1145)))) (-3811 (($ $) NIL (|has| |#1| (-1145)))) (-3799 (($ $) NIL (|has| |#1| (-1145)))) (-3702 (($ $) NIL (|has| |#1| (-1013)))) (-2957 (($) 28 T CONST)) (-2964 (($) 30 T CONST)) (-2803 (((-1106) $) 23 (|has| |#1| (-785))) (((-1106) $ (-111)) 25 (|has| |#1| (-785))) (((-1211) (-787) $) 26 (|has| |#1| (-785))) (((-1211) (-787) $ (-111)) 27 (|has| |#1| (-785)))) (-2969 (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $) NIL (|has| |#1| (-219)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 39)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-392 (-526))) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1145)))) (($ $ $) NIL (|has| |#1| (-1145))) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-348))) (($ $ (-392 (-526))) NIL (|has| |#1| (-348))))) -(((-159 |#1|) (-13 (-157 |#1|) (-10 -7 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|))) (-163)) (T -159)) -NIL -(-13 (-157 |#1|) (-10 -7 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|))) -((-4275 (((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)) 14))) -(((-160 |#1| |#2|) (-10 -7 (-15 -4275 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) (-163) (-163)) (T -160)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-5 *2 (-159 *6)) (-5 *1 (-160 *5 *6))))) -(-10 -7 (-15 -4275 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) -((-4287 (((-849 |#1|) |#3|) 22))) -(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -4287 ((-849 |#1|) |#3|))) (-1052) (-13 (-584 (-849 |#1|)) (-163)) (-157 |#2|)) (T -161)) -((-4287 (*1 *2 *3) (-12 (-4 *5 (-13 (-584 *2) (-163))) (-5 *2 (-849 *4)) (-5 *1 (-161 *4 *5 *3)) (-4 *4 (-1052)) (-4 *3 (-157 *5))))) -(-10 -7 (-15 -4287 ((-849 |#1|) |#3|))) -((-2865 (((-111) $ $) NIL)) (-1404 (((-111) $) 9)) (-1403 (((-111) $ (-111)) 11)) (-3936 (($) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3719 (($ $) 13)) (-4274 (((-823) $) 17)) (-4024 (((-111) $) 8)) (-4180 (((-111) $ (-111)) 10)) (-3353 (((-111) $ $) NIL))) -(((-162) (-13 (-1052) (-10 -8 (-15 -3936 ($)) (-15 -4024 ((-111) $)) (-15 -1404 ((-111) $)) (-15 -4180 ((-111) $ (-111))) (-15 -1403 ((-111) $ (-111))) (-15 -3719 ($ $))))) (T -162)) -((-3936 (*1 *1) (-5 *1 (-162))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-4180 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-1403 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-3719 (*1 *1 *1) (-5 *1 (-162)))) -(-13 (-1052) (-10 -8 (-15 -3936 ($)) (-15 -4024 ((-111) $)) (-15 -1404 ((-111) $)) (-15 -4180 ((-111) $ (-111))) (-15 -1403 ((-111) $ (-111))) (-15 -3719 ($ $)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-163) (-134)) (T -163)) -NIL -(-13 (-1004) (-110 $ $) (-10 -7 (-6 (-4312 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-1792 (($ $) 6))) -(((-164) (-134)) (T -164)) -((-1792 (*1 *1 *1) (-4 *1 (-164)))) -(-13 (-10 -8 (-15 -1792 ($ $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 ((|#1| $) 75)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL)) (-1409 (($ $) 19)) (-1413 (($ |#1| (-1101 |#1|)) 48)) (-3781 (((-3 $ "failed") $) 117)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-1410 (((-1101 |#1|) $) 82)) (-1412 (((-1101 |#1|) $) 79)) (-1411 (((-1101 |#1|) $) 80)) (-2471 (((-111) $) NIL)) (-1406 (((-1101 |#1|) $) 88)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-4087 (($ $ (-526)) 91)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1405 (((-1101 |#1|) $) 89)) (-1407 (((-1101 (-392 |#1|)) $) 14)) (-2911 (($ (-392 |#1|)) 17) (($ |#1| (-1101 |#1|) (-1101 |#1|)) 38)) (-3191 (($ $) 93)) (-4274 (((-823) $) 127) (($ (-526)) 51) (($ |#1|) 52) (($ (-392 |#1|)) 36) (($ (-392 (-526))) NIL) (($ $) NIL)) (-3423 (((-735)) 64)) (-2150 (((-111) $ $) NIL)) (-1408 (((-1101 (-392 |#1|)) $) 18)) (-2957 (($) 25 T CONST)) (-2964 (($) 28 T CONST)) (-3353 (((-111) $ $) 35)) (-4265 (($ $ $) 115)) (-4156 (($ $) 106) (($ $ $) 103)) (-4158 (($ $ $) 101)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-392 |#1|) $) 111) (($ $ (-392 |#1|)) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL))) -(((-165 |#1|) (-13 (-37 |#1|) (-37 (-392 |#1|)) (-348) (-10 -8 (-15 -2911 ($ (-392 |#1|))) (-15 -2911 ($ |#1| (-1101 |#1|) (-1101 |#1|))) (-15 -1413 ($ |#1| (-1101 |#1|))) (-15 -1412 ((-1101 |#1|) $)) (-15 -1411 ((-1101 |#1|) $)) (-15 -1410 ((-1101 |#1|) $)) (-15 -3426 (|#1| $)) (-15 -1409 ($ $)) (-15 -1408 ((-1101 (-392 |#1|)) $)) (-15 -1407 ((-1101 (-392 |#1|)) $)) (-15 -1406 ((-1101 |#1|) $)) (-15 -1405 ((-1101 |#1|) $)) (-15 -4087 ($ $ (-526))) (-15 -3191 ($ $)))) (-292)) (T -165)) -((-2911 (*1 *1 *2) (-12 (-5 *2 (-392 *3)) (-4 *3 (-292)) (-5 *1 (-165 *3)))) (-2911 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-292)) (-5 *1 (-165 *2)))) (-1413 (*1 *1 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-292)) (-5 *1 (-165 *2)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-3426 (*1 *2 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292)))) (-1409 (*1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1101 (-392 *3))) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1101 (-392 *3))) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-3191 (*1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292))))) -(-13 (-37 |#1|) (-37 (-392 |#1|)) (-348) (-10 -8 (-15 -2911 ($ (-392 |#1|))) (-15 -2911 ($ |#1| (-1101 |#1|) (-1101 |#1|))) (-15 -1413 ($ |#1| (-1101 |#1|))) (-15 -1412 ((-1101 |#1|) $)) (-15 -1411 ((-1101 |#1|) $)) (-15 -1410 ((-1101 |#1|) $)) (-15 -3426 (|#1| $)) (-15 -1409 ($ $)) (-15 -1408 ((-1101 (-392 |#1|)) $)) (-15 -1407 ((-1101 (-392 |#1|)) $)) (-15 -1406 ((-1101 |#1|) $)) (-15 -1405 ((-1101 |#1|) $)) (-15 -4087 ($ $ (-526))) (-15 -3191 ($ $)))) -((-1414 (($ (-107) $) 13)) (-3534 (((-3 (-107) "failed") (-1123) $) 12)) (-4274 (((-823) $) 16)) (-1415 (((-607 (-107)) $) 8))) -(((-166) (-13 (-583 (-823)) (-10 -8 (-15 -1415 ((-607 (-107)) $)) (-15 -1414 ($ (-107) $)) (-15 -3534 ((-3 (-107) "failed") (-1123) $))))) (T -166)) -((-1415 (*1 *2 *1) (-12 (-5 *2 (-607 (-107))) (-5 *1 (-166)))) (-1414 (*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-166)))) (-3534 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-107)) (-5 *1 (-166))))) -(-13 (-583 (-823)) (-10 -8 (-15 -1415 ((-607 (-107)) $)) (-15 -1414 ($ (-107) $)) (-15 -3534 ((-3 (-107) "failed") (-1123) $)))) -((-1428 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 40)) (-1419 (((-902 |#1|) (-902 |#1|)) 19)) (-1424 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 36)) (-1417 (((-902 |#1|) (-902 |#1|)) 17)) (-1422 (((-902 |#1|) (-902 |#1|)) 25)) (-1421 (((-902 |#1|) (-902 |#1|)) 24)) (-1420 (((-902 |#1|) (-902 |#1|)) 23)) (-1425 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 37)) (-1423 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 35)) (-1735 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 34)) (-1418 (((-902 |#1|) (-902 |#1|)) 18)) (-1429 (((-1 (-902 |#1|) (-902 |#1|)) |#1| |#1|) 43)) (-1416 (((-902 |#1|) (-902 |#1|)) 8)) (-1427 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 39)) (-1426 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 38))) -(((-167 |#1|) (-10 -7 (-15 -1416 ((-902 |#1|) (-902 |#1|))) (-15 -1417 ((-902 |#1|) (-902 |#1|))) (-15 -1418 ((-902 |#1|) (-902 |#1|))) (-15 -1419 ((-902 |#1|) (-902 |#1|))) (-15 -1420 ((-902 |#1|) (-902 |#1|))) (-15 -1421 ((-902 |#1|) (-902 |#1|))) (-15 -1422 ((-902 |#1|) (-902 |#1|))) (-15 -1735 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1423 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1424 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1425 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1426 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1427 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1428 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1429 ((-1 (-902 |#1|) (-902 |#1|)) |#1| |#1|))) (-13 (-348) (-1145) (-960))) (T -167)) -((-1429 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1428 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1427 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1426 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1425 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1424 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1423 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1735 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1422 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1420 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1419 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1417 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1416 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3))))) -(-10 -7 (-15 -1416 ((-902 |#1|) (-902 |#1|))) (-15 -1417 ((-902 |#1|) (-902 |#1|))) (-15 -1418 ((-902 |#1|) (-902 |#1|))) (-15 -1419 ((-902 |#1|) (-902 |#1|))) (-15 -1420 ((-902 |#1|) (-902 |#1|))) (-15 -1421 ((-902 |#1|) (-902 |#1|))) (-15 -1422 ((-902 |#1|) (-902 |#1|))) (-15 -1735 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1423 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1424 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1425 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1426 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1427 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1428 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1429 ((-1 (-902 |#1|) (-902 |#1|)) |#1| |#1|))) -((-2667 ((|#2| |#3|) 27))) -(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2667 (|#2| |#3|))) (-163) (-1181 |#1|) (-689 |#1| |#2|)) (T -168)) -((-2667 (*1 *2 *3) (-12 (-4 *4 (-163)) (-4 *2 (-1181 *4)) (-5 *1 (-168 *4 *2 *3)) (-4 *3 (-689 *4 *2))))) -(-10 -7 (-15 -2667 (|#2| |#3|))) -((-3096 (((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)) 47 (|has| (-905 |#2|) (-845 |#1|))))) -(((-169 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-905 |#2|) (-845 |#1|)) (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))) |%noBranch|)) (-1052) (-13 (-845 |#1|) (-163)) (-157 |#2|)) (T -169)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *3)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *3 (-157 *6)) (-4 (-905 *6) (-845 *5)) (-4 *6 (-13 (-845 *5) (-163))) (-5 *1 (-169 *5 *6 *3))))) -(-10 -7 (IF (|has| (-905 |#2|) (-845 |#1|)) (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))) |%noBranch|)) -((-1431 (((-607 |#1|) (-607 |#1|) |#1|) 38)) (-1430 (((-607 |#1|) |#1| (-607 |#1|)) 19)) (-2170 (((-607 |#1|) (-607 (-607 |#1|)) (-607 |#1|)) 33) ((|#1| (-607 |#1|) (-607 |#1|)) 31))) -(((-170 |#1|) (-10 -7 (-15 -1430 ((-607 |#1|) |#1| (-607 |#1|))) (-15 -2170 (|#1| (-607 |#1|) (-607 |#1|))) (-15 -2170 ((-607 |#1|) (-607 (-607 |#1|)) (-607 |#1|))) (-15 -1431 ((-607 |#1|) (-607 |#1|) |#1|))) (-292)) (T -170)) -((-1431 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *3)) (-4 *3 (-292)) (-5 *1 (-170 *3)))) (-2170 (*1 *2 *3 *2) (-12 (-5 *3 (-607 (-607 *4))) (-5 *2 (-607 *4)) (-4 *4 (-292)) (-5 *1 (-170 *4)))) (-2170 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-170 *2)) (-4 *2 (-292)))) (-1430 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-292)) (-5 *1 (-170 *3))))) -(-10 -7 (-15 -1430 ((-607 |#1|) |#1| (-607 |#1|))) (-15 -2170 (|#1| (-607 |#1|) (-607 |#1|))) (-15 -2170 ((-607 |#1|) (-607 (-607 |#1|)) (-607 |#1|))) (-15 -1431 ((-607 |#1|) (-607 |#1|) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3630 (((-1160) $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3382 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-171) (-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)) (-15 -3630 ((-1160) $))))) (T -171)) -((-3382 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-171)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-171))))) -(-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)) (-15 -3630 ((-1160) $)))) -((-1440 (((-2 (|:| |start| |#2|) (|:| -2736 (-390 |#2|))) |#2|) 61)) (-1439 ((|#1| |#1|) 54)) (-1438 (((-159 |#1|) |#2|) 84)) (-1437 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1436 ((|#2| |#2|) 83)) (-1435 (((-390 |#2|) |#2| |#1|) 113) (((-390 |#2|) |#2| |#1| (-111)) 81)) (-3429 ((|#1| |#2|) 112)) (-1434 ((|#2| |#2|) 119)) (-4051 (((-390 |#2|) |#2|) 134) (((-390 |#2|) |#2| |#1|) 32) (((-390 |#2|) |#2| |#1| (-111)) 133)) (-1433 (((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2|) 132) (((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2| (-111)) 76)) (-1432 (((-607 (-159 |#1|)) |#2| |#1|) 40) (((-607 (-159 |#1|)) |#2|) 41))) -(((-172 |#1| |#2|) (-10 -7 (-15 -1432 ((-607 (-159 |#1|)) |#2|)) (-15 -1432 ((-607 (-159 |#1|)) |#2| |#1|)) (-15 -1433 ((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2| (-111))) (-15 -1433 ((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2|)) (-15 -4051 ((-390 |#2|) |#2| |#1| (-111))) (-15 -4051 ((-390 |#2|) |#2| |#1|)) (-15 -4051 ((-390 |#2|) |#2|)) (-15 -1434 (|#2| |#2|)) (-15 -3429 (|#1| |#2|)) (-15 -1435 ((-390 |#2|) |#2| |#1| (-111))) (-15 -1435 ((-390 |#2|) |#2| |#1|)) (-15 -1436 (|#2| |#2|)) (-15 -1437 (|#1| |#2| |#1|)) (-15 -1437 (|#1| |#2|)) (-15 -1438 ((-159 |#1|) |#2|)) (-15 -1439 (|#1| |#1|)) (-15 -1440 ((-2 (|:| |start| |#2|) (|:| -2736 (-390 |#2|))) |#2|))) (-13 (-348) (-809)) (-1181 (-159 |#1|))) (T -172)) -((-1440 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-2 (|:| |start| *3) (|:| -2736 (-390 *3)))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1439 (*1 *2 *2) (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) (-4 *3 (-1181 (-159 *2))))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-159 *4)) (-5 *1 (-172 *4 *3)) (-4 *4 (-13 (-348) (-809))) (-4 *3 (-1181 *2)))) (-1437 (*1 *2 *3) (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) (-4 *3 (-1181 (-159 *2))))) (-1437 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) (-4 *3 (-1181 (-159 *2))))) (-1436 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-809))) (-5 *1 (-172 *3 *2)) (-4 *2 (-1181 (-159 *3))))) (-1435 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-3429 (*1 *2 *3) (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) (-4 *3 (-1181 (-159 *2))))) (-1434 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-809))) (-5 *1 (-172 *3 *2)) (-4 *2 (-1181 (-159 *3))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-4051 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1433 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-2 (|:| -2736 (-607 *3)) (|:| -1632 *4)))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1433 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-348) (-809))) (-5 *2 (-607 (-2 (|:| -2736 (-607 *3)) (|:| -1632 *5)))) (-5 *1 (-172 *5 *3)) (-4 *3 (-1181 (-159 *5))))) (-1432 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-159 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1432 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-159 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4)))))) -(-10 -7 (-15 -1432 ((-607 (-159 |#1|)) |#2|)) (-15 -1432 ((-607 (-159 |#1|)) |#2| |#1|)) (-15 -1433 ((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2| (-111))) (-15 -1433 ((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2|)) (-15 -4051 ((-390 |#2|) |#2| |#1| (-111))) (-15 -4051 ((-390 |#2|) |#2| |#1|)) (-15 -4051 ((-390 |#2|) |#2|)) (-15 -1434 (|#2| |#2|)) (-15 -3429 (|#1| |#2|)) (-15 -1435 ((-390 |#2|) |#2| |#1| (-111))) (-15 -1435 ((-390 |#2|) |#2| |#1|)) (-15 -1436 (|#2| |#2|)) (-15 -1437 (|#1| |#2| |#1|)) (-15 -1437 (|#1| |#2|)) (-15 -1438 ((-159 |#1|) |#2|)) (-15 -1439 (|#1| |#1|)) (-15 -1440 ((-2 (|:| |start| |#2|) (|:| -2736 (-390 |#2|))) |#2|))) -((-1441 (((-3 |#2| "failed") |#2|) 14)) (-1442 (((-735) |#2|) 16)) (-1443 ((|#2| |#2| |#2|) 18))) -(((-173 |#1| |#2|) (-10 -7 (-15 -1441 ((-3 |#2| "failed") |#2|)) (-15 -1442 ((-735) |#2|)) (-15 -1443 (|#2| |#2| |#2|))) (-1159) (-639 |#1|)) (T -173)) -((-1443 (*1 *2 *2 *2) (-12 (-4 *3 (-1159)) (-5 *1 (-173 *3 *2)) (-4 *2 (-639 *3)))) (-1442 (*1 *2 *3) (-12 (-4 *4 (-1159)) (-5 *2 (-735)) (-5 *1 (-173 *4 *3)) (-4 *3 (-639 *4)))) (-1441 (*1 *2 *2) (|partial| -12 (-4 *3 (-1159)) (-5 *1 (-173 *3 *2)) (-4 *2 (-639 *3))))) -(-10 -7 (-15 -1441 ((-3 |#2| "failed") |#2|)) (-15 -1442 ((-735) |#2|)) (-15 -1443 (|#2| |#2| |#2|))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1445 (((-1123) $) 10)) (-4274 (((-823) $) 17)) (-1444 (((-607 (-1128)) $) 12)) (-3353 (((-111) $ $) 15))) -(((-174) (-13 (-1052) (-10 -8 (-15 -1445 ((-1123) $)) (-15 -1444 ((-607 (-1128)) $))))) (T -174)) -((-1445 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-174)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-174))))) -(-13 (-1052) (-10 -8 (-15 -1445 ((-1123) $)) (-15 -1444 ((-607 (-1128)) $)))) -((-3964 ((|#2| |#2|) 28)) (-3967 (((-111) |#2|) 19)) (-3965 (((-299 |#1|) |#2|) 12)) (-3966 (((-299 |#1|) |#2|) 14)) (-3962 ((|#2| |#2| (-1123)) 68) ((|#2| |#2|) 69)) (-3968 (((-159 (-299 |#1|)) |#2|) 10)) (-3963 ((|#2| |#2| (-1123)) 65) ((|#2| |#2|) 59))) -(((-175 |#1| |#2|) (-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3962 (|#2| |#2| (-1123))) (-15 -3963 (|#2| |#2|)) (-15 -3963 (|#2| |#2| (-1123))) (-15 -3965 ((-299 |#1|) |#2|)) (-15 -3966 ((-299 |#1|) |#2|)) (-15 -3967 ((-111) |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -3968 ((-159 (-299 |#1|)) |#2|))) (-13 (-533) (-811) (-995 (-526))) (-13 (-27) (-1145) (-406 (-159 |#1|)))) (T -175)) -((-3968 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-159 (-299 *4))) (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-111)) (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3966 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-299 *4)) (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-299 *4)) (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3963 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) (-3962 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3962 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3))))))) -(-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3962 (|#2| |#2| (-1123))) (-15 -3963 (|#2| |#2|)) (-15 -3963 (|#2| |#2| (-1123))) (-15 -3965 ((-299 |#1|) |#2|)) (-15 -3966 ((-299 |#1|) |#2|)) (-15 -3967 ((-111) |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -3968 ((-159 (-299 |#1|)) |#2|))) -((-1446 (((-1205 (-653 (-905 |#1|))) (-1205 (-653 |#1|))) 24)) (-4274 (((-1205 (-653 (-392 (-905 |#1|)))) (-1205 (-653 |#1|))) 33))) -(((-176 |#1|) (-10 -7 (-15 -1446 ((-1205 (-653 (-905 |#1|))) (-1205 (-653 |#1|)))) (-15 -4274 ((-1205 (-653 (-392 (-905 |#1|)))) (-1205 (-653 |#1|))))) (-163)) (T -176)) -((-4274 (*1 *2 *3) (-12 (-5 *3 (-1205 (-653 *4))) (-4 *4 (-163)) (-5 *2 (-1205 (-653 (-392 (-905 *4))))) (-5 *1 (-176 *4)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-1205 (-653 *4))) (-4 *4 (-163)) (-5 *2 (-1205 (-653 (-905 *4)))) (-5 *1 (-176 *4))))) -(-10 -7 (-15 -1446 ((-1205 (-653 (-905 |#1|))) (-1205 (-653 |#1|)))) (-15 -4274 ((-1205 (-653 (-392 (-905 |#1|)))) (-1205 (-653 |#1|))))) -((-1454 (((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526)))) 66)) (-1456 (((-1125 (-392 (-526))) (-607 (-526)) (-607 (-526))) 75)) (-1447 (((-1125 (-392 (-526))) (-526)) 40)) (-4173 (((-1125 (-392 (-526))) (-526)) 52)) (-4086 (((-392 (-526)) (-1125 (-392 (-526)))) 62)) (-1448 (((-1125 (-392 (-526))) (-526)) 32)) (-1451 (((-1125 (-392 (-526))) (-526)) 48)) (-1450 (((-1125 (-392 (-526))) (-526)) 46)) (-1453 (((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526)))) 60)) (-3191 (((-1125 (-392 (-526))) (-526)) 25)) (-1452 (((-392 (-526)) (-1125 (-392 (-526))) (-1125 (-392 (-526)))) 64)) (-1449 (((-1125 (-392 (-526))) (-526)) 30)) (-1455 (((-1125 (-392 (-526))) (-607 (-526))) 72))) -(((-177) (-10 -7 (-15 -3191 ((-1125 (-392 (-526))) (-526))) (-15 -1447 ((-1125 (-392 (-526))) (-526))) (-15 -1448 ((-1125 (-392 (-526))) (-526))) (-15 -1449 ((-1125 (-392 (-526))) (-526))) (-15 -1450 ((-1125 (-392 (-526))) (-526))) (-15 -1451 ((-1125 (-392 (-526))) (-526))) (-15 -4173 ((-1125 (-392 (-526))) (-526))) (-15 -1452 ((-392 (-526)) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -1453 ((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -4086 ((-392 (-526)) (-1125 (-392 (-526))))) (-15 -1454 ((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -1455 ((-1125 (-392 (-526))) (-607 (-526)))) (-15 -1456 ((-1125 (-392 (-526))) (-607 (-526)) (-607 (-526)))))) (T -177)) -((-1456 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)))) (-1454 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-1125 (-392 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-177)))) (-1453 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)))) (-1452 (*1 *2 *3 *3) (-12 (-5 *3 (-1125 (-392 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-177)))) (-4173 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1451 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1449 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1448 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-3191 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) -(-10 -7 (-15 -3191 ((-1125 (-392 (-526))) (-526))) (-15 -1447 ((-1125 (-392 (-526))) (-526))) (-15 -1448 ((-1125 (-392 (-526))) (-526))) (-15 -1449 ((-1125 (-392 (-526))) (-526))) (-15 -1450 ((-1125 (-392 (-526))) (-526))) (-15 -1451 ((-1125 (-392 (-526))) (-526))) (-15 -4173 ((-1125 (-392 (-526))) (-526))) (-15 -1452 ((-392 (-526)) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -1453 ((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -4086 ((-392 (-526)) (-1125 (-392 (-526))))) (-15 -1454 ((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -1455 ((-1125 (-392 (-526))) (-607 (-526)))) (-15 -1456 ((-1125 (-392 (-526))) (-607 (-526)) (-607 (-526))))) -((-1458 (((-390 (-1117 (-526))) (-526)) 28)) (-1457 (((-607 (-1117 (-526))) (-526)) 23)) (-3101 (((-1117 (-526)) (-526)) 21))) -(((-178) (-10 -7 (-15 -1457 ((-607 (-1117 (-526))) (-526))) (-15 -3101 ((-1117 (-526)) (-526))) (-15 -1458 ((-390 (-1117 (-526))) (-526))))) (T -178)) -((-1458 (*1 *2 *3) (-12 (-5 *2 (-390 (-1117 (-526)))) (-5 *1 (-178)) (-5 *3 (-526)))) (-3101 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-178)) (-5 *3 (-526)))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-607 (-1117 (-526)))) (-5 *1 (-178)) (-5 *3 (-526))))) -(-10 -7 (-15 -1457 ((-607 (-1117 (-526))) (-526))) (-15 -3101 ((-1117 (-526)) (-526))) (-15 -1458 ((-390 (-1117 (-526))) (-526)))) -((-1644 (((-1101 (-211)) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 105)) (-1665 (((-607 (-1106)) (-1101 (-211))) NIL)) (-1459 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 81)) (-1642 (((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211)))) NIL)) (-1664 (((-607 (-1106)) (-607 (-211))) NIL)) (-1666 (((-211) (-1041 (-803 (-211)))) 24)) (-1667 (((-211) (-1041 (-803 (-211)))) 25)) (-1461 (((-363) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 98)) (-1460 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 42)) (-1662 (((-1106) (-211)) NIL)) (-2868 (((-1106) (-607 (-1106))) 20)) (-1462 (((-992) (-1123) (-1123) (-992)) 13))) -(((-179) (-10 -7 (-15 -1459 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1460 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -1461 ((-363) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1642 ((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))) (-15 -2868 ((-1106) (-607 (-1106)))) (-15 -1462 ((-992) (-1123) (-1123) (-992))))) (T -179)) -((-1462 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-992)) (-5 *3 (-1123)) (-5 *1 (-179)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-179)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-179)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-179)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-179)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-179)))) (-1642 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-179)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-179)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-179)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-179)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-179)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-179))))) -(-10 -7 (-15 -1459 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1460 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -1461 ((-363) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1642 ((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))) (-15 -2868 ((-1106) (-607 (-1106)))) (-15 -1462 ((-992) (-1123) (-1123) (-992)))) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 55) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 32) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-180) (-751)) (T -180)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 60) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 41) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-181) (-751)) (T -181)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 69) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 40) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-182) (-751)) (T -182)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 56) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 34) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-183) (-751)) (T -183)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 67) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 38) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-184) (-751)) (T -184)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 73) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 36) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-185) (-751)) (T -185)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 80) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 44) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-186) (-751)) (T -186)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 70) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 40) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-187) (-751)) (T -187)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 66)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 32)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-188) (-751)) (T -188)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 63)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 34)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-189) (-751)) (T -189)) -NIL -(-751) -((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 90) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 78) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-190) (-751)) (T -190)) -NIL -(-751) -((-1463 (((-3 (-2 (|:| -2805 (-112)) (|:| |w| (-211))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 85)) (-1465 (((-526) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 42)) (-1464 (((-3 (-607 (-211)) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 73))) -(((-191) (-10 -7 (-15 -1463 ((-3 (-2 (|:| -2805 (-112)) (|:| |w| (-211))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1464 ((-3 (-607 (-211)) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1465 ((-526) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (T -191)) -((-1465 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-526)) (-5 *1 (-191)))) (-1464 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-191)))) (-1463 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| -2805 (-112)) (|:| |w| (-211)))) (-5 *1 (-191))))) -(-10 -7 (-15 -1463 ((-3 (-2 (|:| -2805 (-112)) (|:| |w| (-211))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1464 ((-3 (-607 (-211)) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1465 ((-526) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) -((-1470 (((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 39)) (-1469 (((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 130)) (-1468 (((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-653 (-299 (-211)))) 89)) (-1467 (((-363) (-653 (-299 (-211)))) 113)) (-2421 (((-653 (-299 (-211))) (-1205 (-299 (-211))) (-607 (-1123))) 110)) (-1473 (((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 30)) (-1471 (((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 43)) (-4086 (((-653 (-299 (-211))) (-653 (-299 (-211))) (-607 (-1123)) (-1205 (-299 (-211)))) 102)) (-1466 (((-363) (-363) (-607 (-363))) 107) (((-363) (-363) (-363)) 105)) (-1472 (((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 36))) -(((-192) (-10 -7 (-15 -1466 ((-363) (-363) (-363))) (-15 -1466 ((-363) (-363) (-607 (-363)))) (-15 -1467 ((-363) (-653 (-299 (-211))))) (-15 -2421 ((-653 (-299 (-211))) (-1205 (-299 (-211))) (-607 (-1123)))) (-15 -4086 ((-653 (-299 (-211))) (-653 (-299 (-211))) (-607 (-1123)) (-1205 (-299 (-211))))) (-15 -1468 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-653 (-299 (-211))))) (-15 -1469 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1470 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1471 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1472 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1473 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (T -192)) -((-1473 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) (-5 *1 (-192)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-653 (-299 (-211)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) (-5 *1 (-192)))) (-4086 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-653 (-299 (-211)))) (-5 *3 (-607 (-1123))) (-5 *4 (-1205 (-299 (-211)))) (-5 *1 (-192)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *4 (-607 (-1123))) (-5 *2 (-653 (-299 (-211)))) (-5 *1 (-192)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-653 (-299 (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1466 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-363))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1466 (*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-192))))) -(-10 -7 (-15 -1466 ((-363) (-363) (-363))) (-15 -1466 ((-363) (-363) (-607 (-363)))) (-15 -1467 ((-363) (-653 (-299 (-211))))) (-15 -2421 ((-653 (-299 (-211))) (-1205 (-299 (-211))) (-607 (-1123)))) (-15 -4086 ((-653 (-299 (-211))) (-653 (-299 (-211))) (-607 (-1123)) (-1205 (-299 (-211))))) (-15 -1468 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-653 (-299 (-211))))) (-15 -1469 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1470 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1471 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1472 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1473 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) -((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 41)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 64)) (-3353 (((-111) $ $) NIL))) -(((-193) (-764)) (T -193)) -NIL -(-764) -((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 41)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 62)) (-3353 (((-111) $ $) NIL))) -(((-194) (-764)) (T -194)) -NIL -(-764) -((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 40)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 66)) (-3353 (((-111) $ $) NIL))) -(((-195) (-764)) (T -195)) -NIL -(-764) -((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 46)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 75)) (-3353 (((-111) $ $) NIL))) -(((-196) (-764)) (T -196)) -NIL -(-764) -((-4251 (((-607 (-1123)) (-1123) (-735)) 23)) (-1474 (((-299 (-211)) (-299 (-211))) 31)) (-1476 (((-111) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 74)) (-1475 (((-111) (-211) (-211) (-607 (-299 (-211)))) 45))) -(((-197) (-10 -7 (-15 -4251 ((-607 (-1123)) (-1123) (-735))) (-15 -1474 ((-299 (-211)) (-299 (-211)))) (-15 -1475 ((-111) (-211) (-211) (-607 (-299 (-211))))) (-15 -1476 ((-111) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))))) (T -197)) -((-1476 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *2 (-111)) (-5 *1 (-197)))) (-1475 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-607 (-299 (-211)))) (-5 *3 (-211)) (-5 *2 (-111)) (-5 *1 (-197)))) (-1474 (*1 *2 *2) (-12 (-5 *2 (-299 (-211))) (-5 *1 (-197)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-5 *2 (-607 (-1123))) (-5 *1 (-197)) (-5 *3 (-1123))))) -(-10 -7 (-15 -4251 ((-607 (-1123)) (-1123) (-735))) (-15 -1474 ((-299 (-211)) (-299 (-211)))) (-15 -1475 ((-111) (-211) (-211) (-607 (-299 (-211))))) (-15 -1476 ((-111) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))))) -((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 26)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2965 (((-992) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 57)) (-3353 (((-111) $ $) NIL))) -(((-198) (-854)) (T -198)) -NIL -(-854) -((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 21)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2965 (((-992) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) NIL)) (-3353 (((-111) $ $) NIL))) -(((-199) (-854)) (T -199)) -NIL -(-854) -((-2865 (((-111) $ $) NIL)) (-4106 ((|#2| $ (-735) |#2|) 11)) (-3936 (($) 8)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4118 ((|#2| $ (-735)) 10)) (-4274 (((-823) $) 18)) (-3353 (((-111) $ $) 13))) -(((-200 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -3936 ($)) (-15 -4118 (|#2| $ (-735))) (-15 -4106 (|#2| $ (-735) |#2|)))) (-878) (-1052)) (T -200)) -((-3936 (*1 *1) (-12 (-5 *1 (-200 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1052)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *2 (-1052)) (-5 *1 (-200 *4 *2)) (-14 *4 (-878)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-200 *4 *2)) (-14 *4 (-878)) (-4 *2 (-1052))))) -(-13 (-1052) (-10 -8 (-15 -3936 ($)) (-15 -4118 (|#2| $ (-735))) (-15 -4106 (|#2| $ (-735) |#2|)))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2063 (((-1211) $) 36) (((-1211) $ (-878) (-878)) 38)) (-4118 (($ $ (-948)) 19) (((-231 (-1106)) $ (-1123)) 15)) (-3939 (((-1211) $) 34)) (-4274 (((-823) $) 31) (($ (-607 |#1|)) 8)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $ $) 27)) (-4158 (($ $ $) 22))) -(((-201 |#1|) (-13 (-1052) (-10 -8 (-15 -4118 ($ $ (-948))) (-15 -4118 ((-231 (-1106)) $ (-1123))) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4274 ($ (-607 |#1|))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $)) (-15 -2063 ((-1211) $ (-878) (-878))))) (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))) (T -201)) -((-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-201 *3)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-231 (-1106))) (-5 *1 (-201 *4)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ *3)) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))))) (-4158 (*1 *1 *1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))))) (-4156 (*1 *1 *1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))) (-5 *1 (-201 *3)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-201 *3)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) (-15 -2063 (*2 $))))))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-201 *3)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) (-15 -2063 (*2 $))))))) (-2063 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-201 *4)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) (-15 -2063 (*2 $)))))))) -(-13 (-1052) (-10 -8 (-15 -4118 ($ $ (-948))) (-15 -4118 ((-231 (-1106)) $ (-1123))) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4274 ($ (-607 |#1|))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $)) (-15 -2063 ((-1211) $ (-878) (-878))))) -((-1477 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-202 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#2| |#4| (-1 |#2| |#2|)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -202)) -((-1477 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-348)) (-4 *6 (-1181 (-392 *2))) (-4 *2 (-1181 *5)) (-5 *1 (-202 *5 *2 *6 *3)) (-4 *3 (-327 *5 *2 *6))))) -(-10 -7 (-15 -1477 (|#2| |#4| (-1 |#2| |#2|)))) -((-1481 ((|#2| |#2| (-735) |#2|) 42)) (-1480 ((|#2| |#2| (-735) |#2|) 38)) (-2427 (((-607 |#2|) (-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|)))) 57)) (-1479 (((-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))) |#2|) 53)) (-1482 (((-111) |#2|) 50)) (-4052 (((-390 |#2|) |#2|) 77)) (-4051 (((-390 |#2|) |#2|) 76)) (-2428 ((|#2| |#2| (-735) |#2|) 36)) (-1478 (((-2 (|:| |cont| |#1|) (|:| -2736 (-607 (-2 (|:| |irr| |#2|) (|:| -2456 (-526)))))) |#2| (-111)) 69))) -(((-203 |#1| |#2|) (-10 -7 (-15 -4051 ((-390 |#2|) |#2|)) (-15 -4052 ((-390 |#2|) |#2|)) (-15 -1478 ((-2 (|:| |cont| |#1|) (|:| -2736 (-607 (-2 (|:| |irr| |#2|) (|:| -2456 (-526)))))) |#2| (-111))) (-15 -1479 ((-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))) |#2|)) (-15 -2427 ((-607 |#2|) (-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))))) (-15 -2428 (|#2| |#2| (-735) |#2|)) (-15 -1480 (|#2| |#2| (-735) |#2|)) (-15 -1481 (|#2| |#2| (-735) |#2|)) (-15 -1482 ((-111) |#2|))) (-335) (-1181 |#1|)) (T -203)) -((-1482 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4)))) (-1481 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4)))) (-1480 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4)))) (-2428 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| |deg| (-735)) (|:| -2872 *5)))) (-4 *5 (-1181 *4)) (-4 *4 (-335)) (-5 *2 (-607 *5)) (-5 *1 (-203 *4 *5)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-607 (-2 (|:| |deg| (-735)) (|:| -2872 *3)))) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4)))) (-1478 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-335)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) (-5 *1 (-203 *5 *3)) (-4 *3 (-1181 *5)))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4)))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -4051 ((-390 |#2|) |#2|)) (-15 -4052 ((-390 |#2|) |#2|)) (-15 -1478 ((-2 (|:| |cont| |#1|) (|:| -2736 (-607 (-2 (|:| |irr| |#2|) (|:| -2456 (-526)))))) |#2| (-111))) (-15 -1479 ((-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))) |#2|)) (-15 -2427 ((-607 |#2|) (-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))))) (-15 -2428 (|#2| |#2| (-735) |#2|)) (-15 -1480 (|#2| |#2| (-735) |#2|)) (-15 -1481 (|#2| |#2| (-735) |#2|)) (-15 -1482 ((-111) |#2|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-526) $) NIL (|has| (-526) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-526) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-526) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-526) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-526) (-995 (-526))))) (-3469 (((-526) $) NIL) (((-1123) $) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-526) (-995 (-526)))) (((-526) $) NIL (|has| (-526) (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-526) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-526) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-526) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-526) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-526) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-526) (-1099)))) (-3501 (((-111) $) NIL (|has| (-526) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-526) (-811)))) (-4275 (($ (-1 (-526) (-526)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-526) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-526) (-292))) (((-392 (-526)) $) NIL)) (-3427 (((-526) $) NIL (|has| (-526) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-526)) (-607 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-526) (-526)) NIL (|has| (-526) (-294 (-526)))) (($ $ (-278 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-278 (-526)))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-1123)) (-607 (-526))) NIL (|has| (-526) (-496 (-1123) (-526)))) (($ $ (-1123) (-526)) NIL (|has| (-526) (-496 (-1123) (-526))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-526)) NIL (|has| (-526) (-271 (-526) (-526))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-526) $) NIL)) (-1483 (($ (-392 (-526))) 9)) (-4287 (((-849 (-526)) $) NIL (|has| (-526) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-526) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-526) (-584 (-515)))) (((-363) $) NIL (|has| (-526) (-977))) (((-211) $) NIL (|has| (-526) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-526) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 8) (($ (-526)) NIL) (($ (-1123)) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL) (((-962 10) $) 10)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-526) (-869))) (|has| (-526) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-526) $) NIL (|has| (-526) (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-526) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-526) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-526) (-811)))) (-4265 (($ $ $) NIL) (($ (-526) (-526)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-526) $) NIL) (($ $ (-526)) NIL))) -(((-204) (-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 10) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -1483 ($ (-392 (-526))))))) (T -204)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-962 10)) (-5 *1 (-204)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204))))) -(-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 10) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -1483 ($ (-392 (-526)))))) -((-4131 (((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1044 (-803 |#2|)) (-1106)) 28) (((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1044 (-803 |#2|))) 24)) (-1484 (((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1123) (-803 |#2|) (-803 |#2|) (-111)) 17))) -(((-205 |#1| |#2|) (-10 -7 (-15 -4131 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1044 (-803 |#2|)))) (-15 -4131 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1044 (-803 |#2|)) (-1106))) (-15 -1484 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1123) (-803 |#2|) (-803 |#2|) (-111)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-919) (-29 |#1|))) (T -205)) -((-1484 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1123)) (-5 *6 (-111)) (-4 *7 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-4 *3 (-13 (-1145) (-919) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-205 *7 *3)) (-5 *5 (-803 *3)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1044 (-803 *3))) (-5 *5 (-1106)) (-4 *3 (-13 (-1145) (-919) (-29 *6))) (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-205 *6 *3)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-803 *3))) (-4 *3 (-13 (-1145) (-919) (-29 *5))) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-205 *5 *3))))) -(-10 -7 (-15 -4131 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1044 (-803 |#2|)))) (-15 -4131 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1044 (-803 |#2|)) (-1106))) (-15 -1484 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1123) (-803 |#2|) (-803 |#2|) (-111)))) -((-4131 (((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))) (-1106)) 46) (((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|))))) 43) (((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))) (-1106)) 47) (((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|)))) 20))) -(((-206 |#1|) (-10 -7 (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))) (-1106))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))) (-1106)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (T -206)) -((-4131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1044 (-803 (-392 (-905 *6))))) (-5 *5 (-1106)) (-5 *3 (-392 (-905 *6))) (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 (-299 *6))) (|:| |f2| (-607 (-803 (-299 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-206 *6)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-803 (-392 (-905 *5))))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 (-299 *5))) (|:| |f2| (-607 (-803 (-299 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-206 *5)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-392 (-905 *6))) (-5 *4 (-1044 (-803 (-299 *6)))) (-5 *5 (-1106)) (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 (-299 *6))) (|:| |f2| (-607 (-803 (-299 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-206 *6)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1044 (-803 (-299 *5)))) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 (-299 *5))) (|:| |f2| (-607 (-803 (-299 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-206 *5))))) -(-10 -7 (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))) (-1106))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))) (-1106)))) -((-4161 (((-2 (|:| -2096 (-1117 |#1|)) (|:| |deg| (-878))) (-1117 |#1|)) 21)) (-4280 (((-607 (-299 |#2|)) (-299 |#2|) (-878)) 42))) -(((-207 |#1| |#2|) (-10 -7 (-15 -4161 ((-2 (|:| -2096 (-1117 |#1|)) (|:| |deg| (-878))) (-1117 |#1|))) (-15 -4280 ((-607 (-299 |#2|)) (-299 |#2|) (-878)))) (-1004) (-13 (-533) (-811))) (T -207)) -((-4280 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-4 *6 (-13 (-533) (-811))) (-5 *2 (-607 (-299 *6))) (-5 *1 (-207 *5 *6)) (-5 *3 (-299 *6)) (-4 *5 (-1004)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-2 (|:| -2096 (-1117 *4)) (|:| |deg| (-878)))) (-5 *1 (-207 *4 *5)) (-5 *3 (-1117 *4)) (-4 *5 (-13 (-533) (-811)))))) -(-10 -7 (-15 -4161 ((-2 (|:| -2096 (-1117 |#1|)) (|:| |deg| (-878))) (-1117 |#1|))) (-15 -4280 ((-607 (-299 |#2|)) (-299 |#2|) (-878)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1526 ((|#1| $) NIL)) (-3643 ((|#1| $) 25)) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3302 (($ $) NIL)) (-2346 (($ $) 31)) (-3645 ((|#1| |#1| $) NIL)) (-3644 ((|#1| $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-4152 (((-735) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) NIL)) (-1524 ((|#1| |#1| $) 28)) (-1523 ((|#1| |#1| $) 30)) (-3929 (($ |#1| $) NIL)) (-2900 (((-735) $) 27)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-3301 ((|#1| $) NIL)) (-1522 ((|#1| $) 26)) (-1521 ((|#1| $) 24)) (-1307 ((|#1| $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3304 ((|#1| |#1| $) NIL)) (-3722 (((-111) $) 9)) (-3887 (($) NIL)) (-3303 ((|#1| $) NIL)) (-1527 (($) NIL) (($ (-607 |#1|)) 16)) (-3642 (((-735) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-1525 ((|#1| $) 13)) (-1308 (($ (-607 |#1|)) NIL)) (-3300 ((|#1| $) NIL)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-208 |#1|) (-13 (-239 |#1|) (-10 -8 (-15 -1527 ($ (-607 |#1|))))) (-1052)) (T -208)) -((-1527 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-208 *3))))) -(-13 (-239 |#1|) (-10 -8 (-15 -1527 ($ (-607 |#1|))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1486 (($ (-299 |#1|)) 23)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2962 (((-111) $) NIL)) (-3470 (((-3 (-299 |#1|) "failed") $) NIL)) (-3469 (((-299 |#1|) $) NIL)) (-4276 (($ $) 31)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-4275 (($ (-1 (-299 |#1|) (-299 |#1|)) $) NIL)) (-3487 (((-299 |#1|) $) NIL)) (-1488 (($ $) 30)) (-3554 (((-1106) $) NIL)) (-1487 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($ (-735)) NIL)) (-1485 (($ $) 32)) (-4264 (((-526) $) NIL)) (-4274 (((-823) $) 57) (($ (-526)) NIL) (($ (-299 |#1|)) NIL)) (-3999 (((-299 |#1|) $ $) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) 25 T CONST)) (-2964 (($) 50 T CONST)) (-3353 (((-111) $ $) 28)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 19)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 24) (($ (-299 |#1|) $) 18))) -(((-209 |#1| |#2|) (-13 (-588 (-299 |#1|)) (-995 (-299 |#1|)) (-10 -8 (-15 -3487 ((-299 |#1|) $)) (-15 -1488 ($ $)) (-15 -4276 ($ $)) (-15 -3999 ((-299 |#1|) $ $)) (-15 -2470 ($ (-735))) (-15 -1487 ((-111) $)) (-15 -2962 ((-111) $)) (-15 -4264 ((-526) $)) (-15 -4275 ($ (-1 (-299 |#1|) (-299 |#1|)) $)) (-15 -1486 ($ (-299 |#1|))) (-15 -1485 ($ $)))) (-13 (-1004) (-811)) (-607 (-1123))) (T -209)) -((-3487 (*1 *2 *1) (-12 (-5 *2 (-299 *3)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) (-14 *3 (-607 (-1123))))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) (-14 *3 (-607 (-1123))))) (-3999 (*1 *2 *1 *1) (-12 (-5 *2 (-299 *3)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-299 *3) (-299 *3))) (-4 *3 (-13 (-1004) (-811))) (-5 *1 (-209 *3 *4)) (-14 *4 (-607 (-1123))))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-299 *3)) (-4 *3 (-13 (-1004) (-811))) (-5 *1 (-209 *3 *4)) (-14 *4 (-607 (-1123))))) (-1485 (*1 *1 *1) (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) (-14 *3 (-607 (-1123)))))) -(-13 (-588 (-299 |#1|)) (-995 (-299 |#1|)) (-10 -8 (-15 -3487 ((-299 |#1|) $)) (-15 -1488 ($ $)) (-15 -4276 ($ $)) (-15 -3999 ((-299 |#1|) $ $)) (-15 -2470 ($ (-735))) (-15 -1487 ((-111) $)) (-15 -2962 ((-111) $)) (-15 -4264 ((-526) $)) (-15 -4275 ($ (-1 (-299 |#1|) (-299 |#1|)) $)) (-15 -1486 ($ (-299 |#1|))) (-15 -1485 ($ $)))) -((-1489 (((-111) (-1106)) 22)) (-1490 (((-3 (-803 |#2|) "failed") (-581 |#2|) |#2| (-803 |#2|) (-803 |#2|) (-111)) 32)) (-1491 (((-3 (-111) "failed") (-1117 |#2|) (-803 |#2|) (-803 |#2|) (-111)) 73) (((-3 (-111) "failed") (-905 |#1|) (-1123) (-803 |#2|) (-803 |#2|) (-111)) 74))) -(((-210 |#1| |#2|) (-10 -7 (-15 -1489 ((-111) (-1106))) (-15 -1490 ((-3 (-803 |#2|) "failed") (-581 |#2|) |#2| (-803 |#2|) (-803 |#2|) (-111))) (-15 -1491 ((-3 (-111) "failed") (-905 |#1|) (-1123) (-803 |#2|) (-803 |#2|) (-111))) (-15 -1491 ((-3 (-111) "failed") (-1117 |#2|) (-803 |#2|) (-803 |#2|) (-111)))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-29 |#1|))) (T -210)) -((-1491 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1117 *6)) (-5 *4 (-803 *6)) (-4 *6 (-13 (-1145) (-29 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-210 *5 *6)))) (-1491 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-905 *6)) (-5 *4 (-1123)) (-5 *5 (-803 *7)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-4 *7 (-13 (-1145) (-29 *6))) (-5 *1 (-210 *6 *7)))) (-1490 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-803 *4)) (-5 *3 (-581 *4)) (-5 *5 (-111)) (-4 *4 (-13 (-1145) (-29 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-210 *6 *4)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-111)) (-5 *1 (-210 *4 *5)) (-4 *5 (-13 (-1145) (-29 *4)))))) -(-10 -7 (-15 -1489 ((-111) (-1106))) (-15 -1490 ((-3 (-803 |#2|) "failed") (-581 |#2|) |#2| (-803 |#2|) (-803 |#2|) (-111))) (-15 -1491 ((-3 (-111) "failed") (-905 |#1|) (-1123) (-803 |#2|) (-803 |#2|) (-111))) (-15 -1491 ((-3 (-111) "failed") (-1117 |#2|) (-803 |#2|) (-803 |#2|) (-111)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 89)) (-3426 (((-526) $) 99)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4089 (($ $) NIL)) (-3806 (($ $) 77)) (-3961 (($ $) 65)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) 56)) (-1681 (((-111) $ $) NIL)) (-3804 (($ $) 75)) (-3960 (($ $) 63)) (-3945 (((-526) $) 116)) (-3808 (($ $) 80)) (-3959 (($ $) 67)) (-3855 (($) NIL T CONST)) (-3424 (($ $) NIL)) (-3470 (((-3 (-526) #1="failed") $) 115) (((-3 (-392 (-526)) #1#) $) 112)) (-3469 (((-526) $) 113) (((-392 (-526)) $) 110)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) 92)) (-1836 (((-392 (-526)) $ (-735)) 108) (((-392 (-526)) $ (-735) (-735)) 107)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2435 (((-878)) 29) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-3500 (((-111) $) NIL)) (-3949 (($) 39)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL)) (-4090 (((-526) $) 35)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL)) (-3429 (($ $) NIL)) (-3501 (((-111) $) 88)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-3637 (($ $ $) 53) (($) 34 (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-3638 (($ $ $) 52) (($) 33 (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-2436 (((-526) $) 27)) (-1835 (($ $) 30)) (-1834 (($ $) 57)) (-4259 (($ $) 62)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-1865 (((-878) (-526)) NIL (|has| $ (-6 -4301)))) (-3555 (((-1070) $) NIL) (((-526) $) 90)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL)) (-3427 (($ $) NIL)) (-3566 (($ (-526) (-526)) NIL) (($ (-526) (-526) (-878)) 100)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2462 (((-526) $) 28)) (-1833 (($) 38)) (-4260 (($ $) 61)) (-1680 (((-735) $) NIL)) (-1492 (((-1106) (-1106)) 8)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2910 (((-878)) NIL) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-4129 (($ $ (-735)) NIL) (($ $) 93)) (-1864 (((-878) (-526)) NIL (|has| $ (-6 -4301)))) (-3809 (($ $) 78)) (-3958 (($ $) 68)) (-3807 (($ $) 79)) (-3957 (($ $) 66)) (-3805 (($ $) 76)) (-3956 (($ $) 64)) (-4287 (((-363) $) 104) (((-211) $) 101) (((-849 (-363)) $) NIL) (((-515) $) 45)) (-4274 (((-823) $) 42) (($ (-526)) 60) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-526)) 60) (($ (-392 (-526))) NIL)) (-3423 (((-735)) NIL)) (-3428 (($ $) NIL)) (-1866 (((-878)) 32) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-2994 (((-878)) 25)) (-3812 (($ $) 83)) (-3800 (($ $) 71) (($ $ $) 109)) (-2150 (((-111) $ $) NIL)) (-3810 (($ $) 81)) (-3798 (($ $) 69)) (-3814 (($ $) 86)) (-3802 (($ $) 74)) (-3815 (($ $) 84)) (-3803 (($ $) 72)) (-3813 (($ $) 85)) (-3801 (($ $) 73)) (-3811 (($ $) 82)) (-3799 (($ $) 70)) (-3702 (($ $) 117)) (-2957 (($) 36 T CONST)) (-2964 (($) 37 T CONST)) (-2803 (((-1106) $) 19) (((-1106) $ (-111)) 21) (((-1211) (-787) $) 22) (((-1211) (-787) $ (-111)) 23)) (-3706 (($ $) 96)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3703 (($ $ $) 98)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 54)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 46)) (-4265 (($ $ $) 87) (($ $ (-526)) 55)) (-4156 (($ $) 47) (($ $ $) 49)) (-4158 (($ $ $) 48)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 58) (($ $ (-392 (-526))) 129) (($ $ $) 59)) (* (($ (-878) $) 31) (($ (-735) $) NIL) (($ (-526) $) 51) (($ $ $) 50) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) -(((-211) (-13 (-389) (-219) (-785) (-1145) (-584 (-515)) (-10 -8 (-15 -4265 ($ $ (-526))) (-15 ** ($ $ $)) (-15 -1833 ($)) (-15 -3555 ((-526) $)) (-15 -1835 ($ $)) (-15 -1834 ($ $)) (-15 -3800 ($ $ $)) (-15 -3706 ($ $)) (-15 -3703 ($ $ $)) (-15 -1492 ((-1106) (-1106))) (-15 -1836 ((-392 (-526)) $ (-735))) (-15 -1836 ((-392 (-526)) $ (-735) (-735)))))) (T -211)) -((** (*1 *1 *1 *1) (-5 *1 (-211))) (-4265 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-211)))) (-1833 (*1 *1) (-5 *1 (-211))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-211)))) (-1835 (*1 *1 *1) (-5 *1 (-211))) (-1834 (*1 *1 *1) (-5 *1 (-211))) (-3800 (*1 *1 *1 *1) (-5 *1 (-211))) (-3706 (*1 *1 *1) (-5 *1 (-211))) (-3703 (*1 *1 *1 *1) (-5 *1 (-211))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-211)))) (-1836 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-211)))) (-1836 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-211))))) -(-13 (-389) (-219) (-785) (-1145) (-584 (-515)) (-10 -8 (-15 -4265 ($ $ (-526))) (-15 ** ($ $ $)) (-15 -1833 ($)) (-15 -3555 ((-526) $)) (-15 -1835 ($ $)) (-15 -1834 ($ $)) (-15 -3800 ($ $ $)) (-15 -3706 ($ $)) (-15 -3703 ($ $ $)) (-15 -1492 ((-1106) (-1106))) (-15 -1836 ((-392 (-526)) $ (-735))) (-15 -1836 ((-392 (-526)) $ (-735) (-735))))) -((-3705 (((-159 (-211)) (-735) (-159 (-211))) 11) (((-211) (-735) (-211)) 12)) (-1493 (((-159 (-211)) (-159 (-211))) 13) (((-211) (-211)) 14)) (-1494 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 19) (((-211) (-211) (-211)) 22)) (-3704 (((-159 (-211)) (-159 (-211))) 25) (((-211) (-211)) 24)) (-3708 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 43) (((-211) (-211) (-211)) 35)) (-3710 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 48) (((-211) (-211) (-211)) 45)) (-3707 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 15) (((-211) (-211) (-211)) 16)) (-3709 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 17) (((-211) (-211) (-211)) 18)) (-3712 (((-159 (-211)) (-159 (-211))) 60) (((-211) (-211)) 59)) (-3711 (((-211) (-211)) 54) (((-159 (-211)) (-159 (-211))) 58)) (-3706 (((-159 (-211)) (-159 (-211))) 8) (((-211) (-211)) 9)) (-3703 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 30) (((-211) (-211) (-211)) 26))) -(((-212) (-10 -7 (-15 -3706 ((-211) (-211))) (-15 -3706 ((-159 (-211)) (-159 (-211)))) (-15 -3703 ((-211) (-211) (-211))) (-15 -3703 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -1493 ((-211) (-211))) (-15 -1493 ((-159 (-211)) (-159 (-211)))) (-15 -3704 ((-211) (-211))) (-15 -3704 ((-159 (-211)) (-159 (-211)))) (-15 -3705 ((-211) (-735) (-211))) (-15 -3705 ((-159 (-211)) (-735) (-159 (-211)))) (-15 -3707 ((-211) (-211) (-211))) (-15 -3707 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3708 ((-211) (-211) (-211))) (-15 -3708 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3709 ((-211) (-211) (-211))) (-15 -3709 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3710 ((-211) (-211) (-211))) (-15 -3710 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3711 ((-159 (-211)) (-159 (-211)))) (-15 -3711 ((-211) (-211))) (-15 -3712 ((-211) (-211))) (-15 -3712 ((-159 (-211)) (-159 (-211)))) (-15 -1494 ((-211) (-211) (-211))) (-15 -1494 ((-159 (-211)) (-159 (-211)) (-159 (-211)))))) (T -212)) -((-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3710 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3710 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3709 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3709 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3708 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3708 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3707 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3707 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3705 (*1 *2 *3 *2) (-12 (-5 *2 (-159 (-211))) (-5 *3 (-735)) (-5 *1 (-212)))) (-3705 (*1 *2 *3 *2) (-12 (-5 *2 (-211)) (-5 *3 (-735)) (-5 *1 (-212)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212))))) -(-10 -7 (-15 -3706 ((-211) (-211))) (-15 -3706 ((-159 (-211)) (-159 (-211)))) (-15 -3703 ((-211) (-211) (-211))) (-15 -3703 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -1493 ((-211) (-211))) (-15 -1493 ((-159 (-211)) (-159 (-211)))) (-15 -3704 ((-211) (-211))) (-15 -3704 ((-159 (-211)) (-159 (-211)))) (-15 -3705 ((-211) (-735) (-211))) (-15 -3705 ((-159 (-211)) (-735) (-159 (-211)))) (-15 -3707 ((-211) (-211) (-211))) (-15 -3707 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3708 ((-211) (-211) (-211))) (-15 -3708 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3709 ((-211) (-211) (-211))) (-15 -3709 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3710 ((-211) (-211) (-211))) (-15 -3710 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3711 ((-159 (-211)) (-159 (-211)))) (-15 -3711 ((-211) (-211))) (-15 -3712 ((-211) (-211))) (-15 -3712 ((-159 (-211)) (-159 (-211)))) (-15 -1494 ((-211) (-211) (-211))) (-15 -1494 ((-159 (-211)) (-159 (-211)) (-159 (-211))))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735) (-735)) NIL)) (-2400 (($ $ $) NIL)) (-3733 (($ (-1205 |#1|)) NIL) (($ $) NIL)) (-4192 (($ |#1| |#1| |#1|) 32)) (-3418 (((-111) $) NIL)) (-2399 (($ $ (-526) (-526)) NIL)) (-2398 (($ $ (-526) (-526)) NIL)) (-2397 (($ $ (-526) (-526) (-526) (-526)) NIL)) (-2402 (($ $) NIL)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-2396 (($ $ (-526) (-526) $) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526)) $) NIL)) (-1282 (($ $ (-526) (-1205 |#1|)) NIL)) (-1281 (($ $ (-526) (-1205 |#1|)) NIL)) (-4166 (($ |#1| |#1| |#1|) 31)) (-3652 (($ (-735) |#1|) NIL)) (-3855 (($) NIL T CONST)) (-3407 (($ $) NIL (|has| |#1| (-292)))) (-3409 (((-1205 |#1|) $ (-526)) NIL)) (-1495 (($ |#1|) 30)) (-1496 (($ |#1|) 29)) (-1497 (($ |#1|) 28)) (-3406 (((-735) $) NIL (|has| |#1| (-533)))) (-1613 ((|#1| $ (-526) (-526) |#1|) NIL)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3405 (((-735) $) NIL (|has| |#1| (-533)))) (-3404 (((-607 (-1205 |#1|)) $) NIL (|has| |#1| (-533)))) (-3412 (((-735) $) NIL)) (-3936 (($ (-735) (-735) |#1|) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#1| $) NIL (|has| |#1| (-6 (-4312 #1="*"))))) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#1|))) 11)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3915 (((-607 (-607 |#1|)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3911 (((-3 $ #2="failed") $) NIL (|has| |#1| (-348)))) (-1498 (($) 12)) (-2401 (($ $ $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-3780 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-533)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526))) NIL)) (-3651 (($ (-607 |#1|)) NIL) (($ (-607 $)) NIL)) (-3419 (((-111) $) NIL)) (-3647 ((|#1| $) NIL (|has| |#1| (-6 (-4312 #1#))))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 (((-1205 |#1|) $ (-526)) NIL)) (-4274 (($ (-1205 |#1|)) NIL) (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-526) $) NIL) (((-1205 |#1|) $ (-1205 |#1|)) 15) (((-1205 |#1|) (-1205 |#1|) $) NIL) (((-902 |#1|) $ (-902 |#1|)) 20)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-213 |#1|) (-13 (-650 |#1| (-1205 |#1|) (-1205 |#1|)) (-10 -8 (-15 * ((-902 |#1|) $ (-902 |#1|))) (-15 -1498 ($)) (-15 -1497 ($ |#1|)) (-15 -1496 ($ |#1|)) (-15 -1495 ($ |#1|)) (-15 -4166 ($ |#1| |#1| |#1|)) (-15 -4192 ($ |#1| |#1| |#1|)))) (-13 (-348) (-1145))) (T -213)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145))) (-5 *1 (-213 *3)))) (-1498 (*1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-1497 (*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-1496 (*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-1495 (*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-4166 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-4192 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) -(-13 (-650 |#1| (-1205 |#1|) (-1205 |#1|)) (-10 -8 (-15 * ((-902 |#1|) $ (-902 |#1|))) (-15 -1498 ($)) (-15 -1497 ($ |#1|)) (-15 -1496 ($ |#1|)) (-15 -1495 ($ |#1|)) (-15 -4166 ($ |#1| |#1| |#1|)) (-15 -4192 ($ |#1| |#1| |#1|)))) -((-1607 (($ (-1 (-111) |#2|) $) 16)) (-3724 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 25)) (-1499 (($) NIL) (($ (-607 |#2|)) 11)) (-3353 (((-111) $ $) 23))) -(((-214 |#1| |#2|) (-10 -8 (-15 -1607 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -1499 (|#1| (-607 |#2|))) (-15 -1499 (|#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-215 |#2|) (-1052)) (T -214)) -NIL -(-10 -8 (-15 -1607 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -1499 (|#1| (-607 |#2|))) (-15 -1499 (|#1|)) (-15 -3353 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-215 |#1|) (-134) (-1052)) (T -215)) -NIL -(-13 (-221 |t#1|)) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-4129 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) 11) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) 19) (($ $ (-735)) NIL) (($ $) 16)) (-2969 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-735)) 14) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL))) -(((-216 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -2969 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2969 (|#1| |#1| (-1123))) (-15 -2969 (|#1| |#1| (-607 (-1123)))) (-15 -2969 (|#1| |#1| (-1123) (-735))) (-15 -2969 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2969 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -2969 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|)))) (-217 |#2|) (-1004)) (T -216)) -NIL -(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -2969 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2969 (|#1| |#1| (-1123))) (-15 -2969 (|#1| |#1| (-607 (-1123)))) (-15 -2969 (|#1| |#1| (-1123) (-735))) (-15 -2969 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2969 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -2969 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4129 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-735)) 49) (($ $ (-607 (-1123)) (-607 (-735))) 42 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 41 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 40 (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 39 (|has| |#1| (-859 (-1123)))) (($ $ (-735)) 37 (|has| |#1| (-219))) (($ $) 35 (|has| |#1| (-219)))) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-735)) 47) (($ $ (-607 (-1123)) (-607 (-735))) 46 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 45 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 44 (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 43 (|has| |#1| (-859 (-1123)))) (($ $ (-735)) 38 (|has| |#1| (-219))) (($ $) 36 (|has| |#1| (-219)))) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-217 |#1|) (-134) (-1004)) (T -217)) -((-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-217 *3)) (-4 *3 (-1004)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *1 (-217 *4)) (-4 *4 (-1004)))) (-2969 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-217 *3)) (-4 *3 (-1004)))) (-2969 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *1 (-217 *4)) (-4 *4 (-1004))))) -(-13 (-1004) (-10 -8 (-15 -4129 ($ $ (-1 |t#1| |t#1|))) (-15 -4129 ($ $ (-1 |t#1| |t#1|) (-735))) (-15 -2969 ($ $ (-1 |t#1| |t#1|))) (-15 -2969 ($ $ (-1 |t#1| |t#1|) (-735))) (IF (|has| |t#1| (-219)) (-6 (-219)) |%noBranch|) (IF (|has| |t#1| (-859 (-1123))) (-6 (-859 (-1123))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-219) |has| |#1| (-219)) ((-613 $) . T) ((-691) . T) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-4129 (($ $) NIL) (($ $ (-735)) 10)) (-2969 (($ $) 8) (($ $ (-735)) 12))) -(((-218 |#1|) (-10 -8 (-15 -2969 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-735))) (-15 -2969 (|#1| |#1|)) (-15 -4129 (|#1| |#1|))) (-219)) (T -218)) -NIL -(-10 -8 (-15 -2969 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-735))) (-15 -2969 (|#1| |#1|)) (-15 -4129 (|#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4129 (($ $) 36) (($ $ (-735)) 34)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $) 35) (($ $ (-735)) 33)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-219) (-134)) (T -219)) -((-4129 (*1 *1 *1) (-4 *1 (-219))) (-2969 (*1 *1 *1) (-4 *1 (-219))) (-4129 (*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-735)))) (-2969 (*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-735))))) -(-13 (-1004) (-10 -8 (-15 -4129 ($ $)) (-15 -2969 ($ $)) (-15 -4129 ($ $ (-735))) (-15 -2969 ($ $ (-735))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-1499 (($) 12) (($ (-607 |#2|)) NIL)) (-3719 (($ $) 14)) (-3844 (($ (-607 |#2|)) 10)) (-4274 (((-823) $) 21))) -(((-220 |#1| |#2|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -1499 (|#1| (-607 |#2|))) (-15 -1499 (|#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -3719 (|#1| |#1|))) (-221 |#2|) (-1052)) (T -220)) -NIL -(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -1499 (|#1| (-607 |#2|))) (-15 -1499 (|#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -3719 (|#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-221 |#1|) (-134) (-1052)) (T -221)) -((-1499 (*1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1052)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-221 *3)))) (-3724 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-221 *2)) (-4 *2 (-1052)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-221 *3)) (-4 *3 (-1052)))) (-1607 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-221 *3)) (-4 *3 (-1052))))) -(-13 (-105 |t#1|) (-145 |t#1|) (-10 -8 (-15 -1499 ($)) (-15 -1499 ($ (-607 |t#1|))) (IF (|has| $ (-6 -4310)) (PROGN (-15 -3724 ($ |t#1| $)) (-15 -3724 ($ (-1 (-111) |t#1|) $)) (-15 -1607 ($ (-1 (-111) |t#1|) $))) |%noBranch|))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-1500 (((-2 (|:| |varOrder| (-607 (-1123))) (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) (|:| |hom| (-607 (-1205 (-735))))) (-278 (-905 (-526)))) 27))) -(((-222) (-10 -7 (-15 -1500 ((-2 (|:| |varOrder| (-607 (-1123))) (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) (|:| |hom| (-607 (-1205 (-735))))) (-278 (-905 (-526))))))) (T -222)) -((-1500 (*1 *2 *3) (-12 (-5 *3 (-278 (-905 (-526)))) (-5 *2 (-2 (|:| |varOrder| (-607 (-1123))) (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) (|:| |hom| (-607 (-1205 (-735)))))) (-5 *1 (-222))))) -(-10 -7 (-15 -1500 ((-2 (|:| |varOrder| (-607 (-1123))) (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) (|:| |hom| (-607 (-1205 (-735))))) (-278 (-905 (-526)))))) -((-3433 (((-735)) 51)) (-2331 (((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 $) (-1205 $)) 49) (((-653 |#3|) (-653 $)) 41) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-4230 (((-131)) 57)) (-4129 (($ $ (-1 |#3| |#3|) (-735)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-4274 (((-1205 |#3|) $) NIL) (($ |#3|) NIL) (((-823) $) NIL) (($ (-526)) 12) (($ (-392 (-526))) NIL)) (-3423 (((-735)) 15)) (-4265 (($ $ |#3|) 54))) -(((-223 |#1| |#2| |#3|) (-10 -8 (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|)) (-15 -3423 ((-735))) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -4274 (|#1| |#3|)) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|) (-735))) (-15 -2331 ((-653 |#3|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 |#1|) (-1205 |#1|))) (-15 -3433 ((-735))) (-15 -4265 (|#1| |#1| |#3|)) (-15 -4230 ((-131))) (-15 -4274 ((-1205 |#3|) |#1|))) (-224 |#2| |#3|) (-735) (-1159)) (T -223)) -((-4230 (*1 *2) (-12 (-14 *4 (-735)) (-4 *5 (-1159)) (-5 *2 (-131)) (-5 *1 (-223 *3 *4 *5)) (-4 *3 (-224 *4 *5)))) (-3433 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1159)) (-5 *2 (-735)) (-5 *1 (-223 *3 *4 *5)) (-4 *3 (-224 *4 *5)))) (-3423 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1159)) (-5 *2 (-735)) (-5 *1 (-223 *3 *4 *5)) (-4 *3 (-224 *4 *5))))) -(-10 -8 (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|)) (-15 -3423 ((-735))) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -4274 (|#1| |#3|)) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|) (-735))) (-15 -2331 ((-653 |#3|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 |#1|) (-1205 |#1|))) (-15 -3433 ((-735))) (-15 -4265 (|#1| |#1| |#3|)) (-15 -4230 ((-131))) (-15 -4274 ((-1205 |#3|) |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#2| (-1052)))) (-3502 (((-111) $) 72 (|has| |#2| (-129)))) (-4029 (($ (-878)) 125 (|has| |#2| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-2702 (($ $ $) 121 (|has| |#2| (-757)))) (-1345 (((-3 $ "failed") $ $) 74 (|has| |#2| (-129)))) (-1244 (((-111) $ (-735)) 8)) (-3433 (((-735)) 107 (|has| |#2| (-353)))) (-3945 (((-526) $) 119 (|has| |#2| (-809)))) (-4106 ((|#2| $ (-526) |#2|) 52 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 67 (-3155 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-3 (-392 (-526)) #1#) $) 64 (-3155 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1052)))) (-3469 (((-526) $) 68 (-3155 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-392 (-526)) $) 65 (-3155 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) ((|#2| $) 60 (|has| |#2| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) 106 (-3155 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 105 (-3155 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 104 (|has| |#2| (-1004))) (((-653 |#2|) (-653 $)) 103 (|has| |#2| (-1004)))) (-3781 (((-3 $ "failed") $) 79 (|has| |#2| (-691)))) (-3294 (($) 110 (|has| |#2| (-353)))) (-1613 ((|#2| $ (-526) |#2|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ (-526)) 51)) (-3500 (((-111) $) 117 (|has| |#2| (-809)))) (-2044 (((-607 |#2|) $) 30 (|has| $ (-6 -4310)))) (-2471 (((-111) $) 81 (|has| |#2| (-691)))) (-3501 (((-111) $) 118 (|has| |#2| (-809)))) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 116 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-2480 (((-607 |#2|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 115 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-2048 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) 35)) (-2102 (((-878) $) 109 (|has| |#2| (-353)))) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#2| (-1052)))) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-2461 (($ (-878)) 108 (|has| |#2| (-353)))) (-3555 (((-1070) $) 21 (|has| |#2| (-1052)))) (-4119 ((|#2| $) 42 (|has| (-526) (-811)))) (-2277 (($ $ |#2|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) 26 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 25 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 23 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#2| $ (-526) |#2|) 50) ((|#2| $ (-526)) 49)) (-4155 ((|#2| $ $) 124 (|has| |#2| (-1004)))) (-1501 (($ (-1205 |#2|)) 126)) (-4230 (((-131)) 123 (|has| |#2| (-348)))) (-4129 (($ $) 98 (-3155 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) 96 (-3155 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) 94 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) 93 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) 92 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) 91 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) 84 (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1004)))) (-2045 (((-735) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4310))) (((-735) |#2| $) 28 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-1205 |#2|) $) 127) (($ (-526)) 66 (-3850 (-3155 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (|has| |#2| (-1004)))) (($ (-392 (-526))) 63 (-3155 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (($ |#2|) 62 (|has| |#2| (-1052))) (((-823) $) 18 (|has| |#2| (-583 (-823))))) (-3423 (((-735)) 102 (|has| |#2| (-1004)))) (-2047 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4310)))) (-3702 (($ $) 120 (|has| |#2| (-809)))) (-2957 (($) 71 (|has| |#2| (-129)) CONST)) (-2964 (($) 82 (|has| |#2| (-691)) CONST)) (-2969 (($ $) 97 (-3155 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) 95 (-3155 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) 90 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) 89 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) 88 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) 87 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) 86 (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1004)))) (-2863 (((-111) $ $) 113 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-2864 (((-111) $ $) 112 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-3353 (((-111) $ $) 20 (|has| |#2| (-1052)))) (-2984 (((-111) $ $) 114 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-2985 (((-111) $ $) 111 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-4265 (($ $ |#2|) 122 (|has| |#2| (-348)))) (-4156 (($ $ $) 100 (|has| |#2| (-1004))) (($ $) 99 (|has| |#2| (-1004)))) (-4158 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-735)) 80 (|has| |#2| (-691))) (($ $ (-878)) 77 (|has| |#2| (-691)))) (* (($ (-526) $) 101 (|has| |#2| (-1004))) (($ $ $) 78 (|has| |#2| (-691))) (($ $ |#2|) 76 (|has| |#2| (-691))) (($ |#2| $) 75 (|has| |#2| (-691))) (($ (-735) $) 73 (|has| |#2| (-129))) (($ (-878) $) 70 (|has| |#2| (-25)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-224 |#1| |#2|) (-134) (-735) (-1159)) (T -224)) -((-1501 (*1 *1 *2) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1159)) (-4 *1 (-224 *3 *4)))) (-4029 (*1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-224 *3 *4)) (-4 *4 (-1004)) (-4 *4 (-1159)))) (-4155 (*1 *2 *1 *1) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-1004)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-691))))) -(-13 (-574 (-526) |t#2|) (-583 (-1205 |t#2|)) (-10 -8 (-6 -4310) (-15 -1501 ($ (-1205 |t#2|))) (IF (|has| |t#2| (-1052)) (-6 (-397 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1004)) (PROGN (-6 (-110 |t#2| |t#2|)) (-6 (-217 |t#2|)) (-6 (-362 |t#2|)) (-15 -4029 ($ (-878))) (-15 -4155 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-129)) (-6 (-129)) |%noBranch|) (IF (|has| |t#2| (-691)) (PROGN (-6 (-691)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-353)) (-6 (-353)) |%noBranch|) (IF (|has| |t#2| (-163)) (PROGN (-6 (-37 |t#2|)) (-6 (-163))) |%noBranch|) (IF (|has| |t#2| (-6 -4307)) (-6 -4307) |%noBranch|) (IF (|has| |t#2| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-348)) (-6 (-1213 |t#2|)) |%noBranch|))) -(((-21) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-348)) (|has| |#2| (-163))) ((-23) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129))) ((-25) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) -3850 (|has| |#2| (-1052)) (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-691)) (|has| |#2| (-353)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-110 |#2| |#2|) -3850 (|has| |#2| (-1004)) (|has| |#2| (-348)) (|has| |#2| (-163))) ((-110 $ $) |has| |#2| (-163)) ((-129) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129))) ((-583 (-823)) -3850 (|has| |#2| (-1052)) (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-691)) (|has| |#2| (-353)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-583 (-823))) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-583 (-1205 |#2|)) . T) ((-163) |has| |#2| (-163)) ((-217 |#2|) |has| |#2| (-1004)) ((-219) -12 (|has| |#2| (-219)) (|has| |#2| (-1004))) ((-271 #1=(-526) |#2|) . T) ((-273 #1# |#2|) . T) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-353) |has| |#2| (-353)) ((-362 |#2|) |has| |#2| (-1004)) ((-397 |#2|) |has| |#2| (-1052)) ((-472 |#2|) . T) ((-574 #1# |#2|) . T) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-613 |#2|) -3850 (|has| |#2| (-1004)) (|has| |#2| (-348)) (|has| |#2| (-163))) ((-613 $) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-163))) ((-606 (-526)) -12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004))) ((-606 |#2|) |has| |#2| (-1004)) ((-682 |#2|) -3850 (|has| |#2| (-348)) (|has| |#2| (-163))) ((-691) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-691)) (|has| |#2| (-163))) ((-755) |has| |#2| (-809)) ((-756) -3850 (|has| |#2| (-809)) (|has| |#2| (-757))) ((-757) |has| |#2| (-757)) ((-758) -3850 (|has| |#2| (-809)) (|has| |#2| (-757))) ((-761) -3850 (|has| |#2| (-809)) (|has| |#2| (-757))) ((-809) |has| |#2| (-809)) ((-811) -3850 (|has| |#2| (-809)) (|has| |#2| (-757))) ((-859 (-1123)) -12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004))) ((-995 (-392 (-526))) -12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052))) ((-995 (-526)) -12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) ((-995 |#2|) |has| |#2| (-1052)) ((-1010 |#2|) -3850 (|has| |#2| (-1004)) (|has| |#2| (-348)) (|has| |#2| (-163))) ((-1010 $) |has| |#2| (-163)) ((-1004) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-163))) ((-1011) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-163))) ((-1063) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-691)) (|has| |#2| (-163))) ((-1052) -3850 (|has| |#2| (-1052)) (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-691)) (|has| |#2| (-353)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-1159) . T) ((-1213 |#2|) |has| |#2| (-348))) -((-2865 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-3502 (((-111) $) NIL (|has| |#2| (-129)))) (-4029 (($ (-878)) 56 (|has| |#2| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) 60 (|has| |#2| (-757)))) (-1345 (((-3 $ "failed") $ $) 49 (|has| |#2| (-129)))) (-1244 (((-111) $ (-735)) 17)) (-3433 (((-735)) NIL (|has| |#2| (-353)))) (-3945 (((-526) $) NIL (|has| |#2| (-809)))) (-4106 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1052)))) (-3469 (((-526) $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) ((|#2| $) 27 (|has| |#2| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL (|has| |#2| (-1004))) (((-653 |#2|) (-653 $)) NIL (|has| |#2| (-1004)))) (-3781 (((-3 $ "failed") $) 53 (|has| |#2| (-691)))) (-3294 (($) NIL (|has| |#2| (-353)))) (-1613 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ (-526)) 51)) (-3500 (((-111) $) NIL (|has| |#2| (-809)))) (-2044 (((-607 |#2|) $) 15 (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (|has| |#2| (-691)))) (-3501 (((-111) $) NIL (|has| |#2| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 20 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 (((-526) $) 50 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) 41)) (-2102 (((-878) $) NIL (|has| |#2| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#2| (-1052)))) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#2| (-353)))) (-3555 (((-1070) $) NIL (|has| |#2| (-1052)))) (-4119 ((|#2| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) 24 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-526)) 21)) (-4155 ((|#2| $ $) NIL (|has| |#2| (-1004)))) (-1501 (($ (-1205 |#2|)) 18)) (-4230 (((-131)) NIL (|has| |#2| (-348)))) (-4129 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#2|) $) 10) (($ (-526)) NIL (-3850 (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (|has| |#2| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (($ |#2|) 13 (|has| |#2| (-1052))) (((-823) $) NIL (|has| |#2| (-583 (-823))))) (-3423 (((-735)) NIL (|has| |#2| (-1004)))) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#2| (-809)))) (-2957 (($) 35 (|has| |#2| (-129)) CONST)) (-2964 (($) 38 (|has| |#2| (-691)) CONST)) (-2969 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-3353 (((-111) $ $) 26 (|has| |#2| (-1052)))) (-2984 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2985 (((-111) $ $) 58 (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $ $) NIL (|has| |#2| (-1004))) (($ $) NIL (|has| |#2| (-1004)))) (-4158 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-735)) NIL (|has| |#2| (-691))) (($ $ (-878)) NIL (|has| |#2| (-691)))) (* (($ (-526) $) NIL (|has| |#2| (-1004))) (($ $ $) 44 (|has| |#2| (-691))) (($ $ |#2|) 42 (|has| |#2| (-691))) (($ |#2| $) 43 (|has| |#2| (-691))) (($ (-735) $) NIL (|has| |#2| (-129))) (($ (-878) $) NIL (|has| |#2| (-25)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-225 |#1| |#2|) (-224 |#1| |#2|) (-735) (-1159)) (T -225)) -NIL -(-224 |#1| |#2|) -((-4160 (((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|) 21)) (-4161 ((|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|) 23)) (-4275 (((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)) 18))) -(((-226 |#1| |#2| |#3|) (-10 -7 (-15 -4160 ((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -4161 (|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -4275 ((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)))) (-735) (-1159) (-1159)) (T -226)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-225 *5 *6)) (-14 *5 (-735)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-5 *2 (-225 *5 *7)) (-5 *1 (-226 *5 *6 *7)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-225 *5 *6)) (-14 *5 (-735)) (-4 *6 (-1159)) (-4 *2 (-1159)) (-5 *1 (-226 *5 *6 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-225 *6 *7)) (-14 *6 (-735)) (-4 *7 (-1159)) (-4 *5 (-1159)) (-5 *2 (-225 *6 *5)) (-5 *1 (-226 *6 *7 *5))))) -(-10 -7 (-15 -4160 ((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -4161 (|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -4275 ((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)))) -((-1505 (((-526) (-607 (-1106))) 24) (((-526) (-1106)) 19)) (-1504 (((-1211) (-607 (-1106))) 29) (((-1211) (-1106)) 28)) (-1502 (((-1106)) 14)) (-1503 (((-1106) (-526) (-1106)) 16)) (-4091 (((-607 (-1106)) (-607 (-1106)) (-526) (-1106)) 25) (((-1106) (-1106) (-526) (-1106)) 23)) (-2915 (((-607 (-1106)) (-607 (-1106))) 13) (((-607 (-1106)) (-1106)) 11))) -(((-227) (-10 -7 (-15 -2915 ((-607 (-1106)) (-1106))) (-15 -2915 ((-607 (-1106)) (-607 (-1106)))) (-15 -1502 ((-1106))) (-15 -1503 ((-1106) (-526) (-1106))) (-15 -4091 ((-1106) (-1106) (-526) (-1106))) (-15 -4091 ((-607 (-1106)) (-607 (-1106)) (-526) (-1106))) (-15 -1504 ((-1211) (-1106))) (-15 -1504 ((-1211) (-607 (-1106)))) (-15 -1505 ((-526) (-1106))) (-15 -1505 ((-526) (-607 (-1106)))))) (T -227)) -((-1505 (*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-526)) (-5 *1 (-227)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-526)) (-5 *1 (-227)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1211)) (-5 *1 (-227)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-227)))) (-4091 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-607 (-1106))) (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *1 (-227)))) (-4091 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-227)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-227)))) (-1502 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-227)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-227)))) (-2915 (*1 *2 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-227)) (-5 *3 (-1106))))) -(-10 -7 (-15 -2915 ((-607 (-1106)) (-1106))) (-15 -2915 ((-607 (-1106)) (-607 (-1106)))) (-15 -1502 ((-1106))) (-15 -1503 ((-1106) (-526) (-1106))) (-15 -4091 ((-1106) (-1106) (-526) (-1106))) (-15 -4091 ((-607 (-1106)) (-607 (-1106)) (-526) (-1106))) (-15 -1504 ((-1211) (-1106))) (-15 -1504 ((-1211) (-607 (-1106)))) (-15 -1505 ((-526) (-1106))) (-15 -1505 ((-526) (-607 (-1106))))) -((** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 16)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ (-392 (-526)) $) 23) (($ $ (-392 (-526))) NIL))) -(((-228 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-526))) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-229)) (T -228)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-526))) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 37)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 41)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 38)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ (-392 (-526)) $) 40) (($ $ (-392 (-526))) 39))) -(((-229) (-134)) (T -229)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-526)))) (-2703 (*1 *1 *1) (-4 *1 (-229)))) -(-13 (-275) (-37 (-392 (-526))) (-10 -8 (-15 ** ($ $ (-526))) (-15 -2703 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-275) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-691) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4115 (($ $) 57)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-1507 (($ $ $) 53 (|has| $ (-6 -4311)))) (-1506 (($ $ $) 52 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-1509 (($ $) 56)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-1508 (($ $) 55)) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 59)) (-3491 (($ $) 58)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4109 (($ $ $) 54 (|has| $ (-6 -4311)))) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-230 |#1|) (-134) (-1159)) (T -230)) -((-4116 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-1509 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-4109 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-1507 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-1506 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159))))) -(-13 (-968 |t#1|) (-10 -8 (-15 -4116 (|t#1| $)) (-15 -3491 ($ $)) (-15 -4115 ($ $)) (-15 -1509 ($ $)) (-15 -1508 ($ $)) (IF (|has| $ (-6 -4311)) (PROGN (-15 -4109 ($ $ $)) (-15 -1507 ($ $ $)) (-15 -1506 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-4115 (($ $) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| |#1| (-811))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-3209 (($ $) 10 (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) NIL (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) NIL)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4114 ((|#1| $) NIL)) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-4117 (($ $) NIL) (($ $ (-735)) NIL)) (-2424 (($ $) NIL (|has| |#1| (-1052)))) (-1375 (($ $) 7 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) NIL)) (-3725 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-3738 (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052))) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) (-1 (-111) |#1|) $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3832 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3856 (($ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-4116 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-3929 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-3762 (((-111) $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1172 (-526))) NIL) ((|#1| $ (-526)) NIL) ((|#1| $ (-526) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-735) $ "count") 16)) (-3329 (((-526) $ $) NIL)) (-1608 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-1510 (($ (-607 |#1|)) 22)) (-3955 (((-111) $) NIL)) (-4110 (($ $) NIL)) (-4108 (($ $) NIL (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4109 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4120 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-607 $)) NIL) (($ $ |#1|) NIL)) (-4274 (($ (-607 |#1|)) 17) (((-607 |#1|) $) 18) (((-823) $) 21 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 14 (|has| $ (-6 -4310))))) -(((-231 |#1|) (-13 (-631 |#1|) (-10 -8 (-15 -4274 ($ (-607 |#1|))) (-15 -4274 ((-607 |#1|) $)) (-15 -1510 ($ (-607 |#1|))) (-15 -4118 ($ $ "unique")) (-15 -4118 ($ $ "sort")) (-15 -4118 ((-735) $ "count")))) (-811)) (T -231)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-231 *3)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-231 *3)) (-4 *3 (-811)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-231 *3)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-231 *3)) (-4 *3 (-811)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-231 *3)) (-4 *3 (-811)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-735)) (-5 *1 (-231 *4)) (-4 *4 (-811))))) -(-13 (-631 |#1|) (-10 -8 (-15 -4274 ($ (-607 |#1|))) (-15 -4274 ((-607 |#1|) $)) (-15 -1510 ($ (-607 |#1|))) (-15 -4118 ($ $ "unique")) (-15 -4118 ($ $ "sort")) (-15 -4118 ((-735) $ "count")))) -((-1511 (((-3 (-735) "failed") |#1| |#1| (-735)) 27))) -(((-232 |#1|) (-10 -7 (-15 -1511 ((-3 (-735) "failed") |#1| |#1| (-735)))) (-13 (-691) (-353) (-10 -7 (-15 ** (|#1| |#1| (-526)))))) (T -232)) -((-1511 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-735)) (-4 *3 (-13 (-691) (-353) (-10 -7 (-15 ** (*3 *3 (-526)))))) (-5 *1 (-232 *3))))) -(-10 -7 (-15 -1511 ((-3 (-735) "failed") |#1| |#1| (-735)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-824 |#1|)) $) NIL)) (-3386 (((-1117 $) $ (-824 |#1|)) NIL) (((-1117 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-824 |#1|))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-824 |#1|) #2#) $) NIL)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-824 |#1|) $) NIL)) (-4075 (($ $ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-2035 (($ $ (-607 (-526))) NIL)) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| (-225 (-4273 |#1|) (-735)) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#2|) (-824 |#1|)) NIL) (($ (-1117 $) (-824 |#1|)) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#2| (-225 (-4273 |#1|) (-735))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-824 |#1|)) NIL)) (-3120 (((-225 (-4273 |#1|) (-735)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 (-225 (-4273 |#1|) (-735)) (-225 (-4273 |#1|) (-735))) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-3385 (((-3 (-824 |#1|) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-824 |#1|)) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#2| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-824 |#1|) |#2|) NIL) (($ $ (-607 (-824 |#1|)) (-607 |#2|)) NIL) (($ $ (-824 |#1|) $) NIL) (($ $ (-607 (-824 |#1|)) (-607 $)) NIL)) (-4076 (($ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4264 (((-225 (-4273 |#1|) (-735)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-824 |#1|) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-824 |#1|)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#2| (-533)))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-225 (-4273 |#1|) (-735))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-233 |#1| |#2|) (-13 (-909 |#2| (-225 (-4273 |#1|) (-735)) (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) (-607 (-1123)) (-1004)) (T -233)) -((-2035 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-233 *3 *4)) (-14 *3 (-607 (-1123))) (-4 *4 (-1004))))) -(-13 (-909 |#2| (-225 (-4273 |#1|) (-735)) (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) -((-2865 (((-111) $ $) NIL)) (-1512 (((-1211) $) 15)) (-1514 (((-174) $) 9)) (-1513 (($ (-174)) 10)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 7)) (-3353 (((-111) $ $) 13))) -(((-234) (-13 (-1052) (-10 -8 (-15 -1514 ((-174) $)) (-15 -1513 ($ (-174))) (-15 -1512 ((-1211) $))))) (T -234)) -((-1514 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-234)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-174)) (-5 *1 (-234)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-234))))) -(-13 (-1052) (-10 -8 (-15 -1514 ((-174) $)) (-15 -1513 ($ (-174))) (-15 -1512 ((-1211) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4029 (($ (-878)) NIL (|has| |#4| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#4| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#4| (-353)))) (-3945 (((-526) $) NIL (|has| |#4| (-809)))) (-4106 ((|#4| $ (-526) |#4|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1052))) (((-3 (-526) #1#) $) NIL (-12 (|has| |#4| (-995 (-526))) (|has| |#4| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#4| (-995 (-392 (-526)))) (|has| |#4| (-1052))))) (-3469 ((|#4| $) NIL (|has| |#4| (-1052))) (((-526) $) NIL (-12 (|has| |#4| (-995 (-526))) (|has| |#4| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#4| (-995 (-392 (-526)))) (|has| |#4| (-1052))))) (-2331 (((-2 (|:| -1676 (-653 |#4|)) (|:| |vec| (-1205 |#4|))) (-653 $) (-1205 $)) NIL (|has| |#4| (-1004))) (((-653 |#4|) (-653 $)) NIL (|has| |#4| (-1004))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))))) (-3781 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))))) (-3294 (($) NIL (|has| |#4| (-353)))) (-1613 ((|#4| $ (-526) |#4|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#4| $ (-526)) NIL)) (-3500 (((-111) $) NIL (|has| |#4| (-809)))) (-2044 (((-607 |#4|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))))) (-3501 (((-111) $) NIL (|has| |#4| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-2480 (((-607 |#4|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-2048 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#4| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#4| (-353)))) (-3555 (((-1070) $) NIL)) (-4119 ((|#4| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#4|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2283 (((-607 |#4|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#4| $ (-526) |#4|) NIL) ((|#4| $ (-526)) 12)) (-4155 ((|#4| $ $) NIL (|has| |#4| (-1004)))) (-1501 (($ (-1205 |#4|)) NIL)) (-4230 (((-131)) NIL (|has| |#4| (-348)))) (-4129 (($ $ (-1 |#4| |#4|) (-735)) NIL (|has| |#4| (-1004))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#4| (-219)) (|has| |#4| (-1004)))) (($ $) NIL (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))))) (-2045 (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#4|) $) NIL) (((-823) $) NIL) (($ |#4|) NIL (|has| |#4| (-1052))) (($ (-526)) NIL (-3850 (-12 (|has| |#4| (-995 (-526))) (|has| |#4| (-1052))) (|has| |#4| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#4| (-995 (-392 (-526)))) (|has| |#4| (-1052))))) (-3423 (((-735)) NIL (|has| |#4| (-1004)))) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#4| (-809)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) CONST)) (-2969 (($ $ (-1 |#4| |#4|) (-735)) NIL (|has| |#4| (-1004))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#4| (-219)) (|has| |#4| (-1004)))) (($ $) NIL (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-2985 (((-111) $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-4265 (($ $ |#4|) NIL (|has| |#4| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004))))) (($ $ (-878)) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))))) (* (($ |#2| $) 14) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-691))) (($ |#4| $) NIL (|has| |#4| (-691))) (($ $ $) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-235 |#1| |#2| |#3| |#4|) (-13 (-224 |#1| |#4|) (-613 |#2|) (-613 |#3|)) (-878) (-1004) (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-613 |#2|)) (T -235)) -NIL -(-13 (-224 |#1| |#4|) (-613 |#2|) (-613 |#3|)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4029 (($ (-878)) NIL (|has| |#3| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#3| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#3| (-353)))) (-3945 (((-526) $) NIL (|has| |#3| (-809)))) (-4106 ((|#3| $ (-526) |#3|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1052))) (((-3 (-526) #1#) $) NIL (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052))))) (-3469 ((|#3| $) NIL (|has| |#3| (-1052))) (((-526) $) NIL (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052))))) (-2331 (((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 $) (-1205 $)) NIL (|has| |#3| (-1004))) (((-653 |#3|) (-653 $)) NIL (|has| |#3| (-1004))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))))) (-3781 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))))) (-3294 (($) NIL (|has| |#3| (-353)))) (-1613 ((|#3| $ (-526) |#3|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#3| $ (-526)) NIL)) (-3500 (((-111) $) NIL (|has| |#3| (-809)))) (-2044 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))))) (-3501 (((-111) $) NIL (|has| |#3| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2480 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2048 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#3| |#3|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#3| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#3| (-353)))) (-3555 (((-1070) $) NIL)) (-4119 ((|#3| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#3|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#3|))) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-607 |#3|) (-607 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-2283 (((-607 |#3|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#3| $ (-526) |#3|) NIL) ((|#3| $ (-526)) 11)) (-4155 ((|#3| $ $) NIL (|has| |#3| (-1004)))) (-1501 (($ (-1205 |#3|)) NIL)) (-4230 (((-131)) NIL (|has| |#3| (-348)))) (-4129 (($ $ (-1 |#3| |#3|) (-735)) NIL (|has| |#3| (-1004))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))))) (-2045 (((-735) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310))) (((-735) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#3|) $) NIL) (((-823) $) NIL) (($ |#3|) NIL (|has| |#3| (-1052))) (($ (-526)) NIL (-3850 (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052))) (|has| |#3| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052))))) (-3423 (((-735)) NIL (|has| |#3| (-1004)))) (-2047 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#3| (-809)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) CONST)) (-2969 (($ $ (-1 |#3| |#3|) (-735)) NIL (|has| |#3| (-1004))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2985 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-4265 (($ $ |#3|) NIL (|has| |#3| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004))))) (($ $ (-878)) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))))) (* (($ |#2| $) 13) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-691))) (($ |#3| $) NIL (|has| |#3| (-691))) (($ $ $) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-236 |#1| |#2| |#3|) (-13 (-224 |#1| |#3|) (-613 |#2|)) (-735) (-1004) (-613 |#2|)) (T -236)) -NIL -(-13 (-224 |#1| |#3|) (-613 |#2|)) -((-1519 (((-607 (-735)) $) 47) (((-607 (-735)) $ |#3|) 50)) (-1553 (((-735) $) 49) (((-735) $ |#3|) 52)) (-1515 (($ $) 65)) (-3470 (((-3 |#2| #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4090 (((-735) $ |#3|) 39) (((-735) $) 36)) (-1554 (((-1 $ (-735)) |#3|) 15) (((-1 $ (-735)) $) 77)) (-1517 ((|#4| $) 58)) (-1518 (((-111) $) 56)) (-1516 (($ $) 64)) (-4086 (($ $ (-607 (-278 $))) 97) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-607 |#4|) (-607 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-607 |#4|) (-607 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-607 |#3|) (-607 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-607 |#3|) (-607 |#2|)) 84)) (-4129 (($ $ |#4|) NIL) (($ $ (-607 |#4|)) NIL) (($ $ |#4| (-735)) NIL) (($ $ (-607 |#4|) (-607 (-735))) NIL) (($ $) NIL) (($ $ (-735)) NIL) (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1520 (((-607 |#3|) $) 75)) (-4264 ((|#5| $) NIL) (((-735) $ |#4|) NIL) (((-607 (-735)) $ (-607 |#4|)) NIL) (((-735) $ |#3|) 44)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-392 (-526))) NIL) (($ $) NIL))) -(((-237 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4086 (|#1| |#1| (-607 |#3|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#3| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#3|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#3| |#1|)) (-15 -1554 ((-1 |#1| (-735)) |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1516 (|#1| |#1|)) (-15 -1517 (|#4| |#1|)) (-15 -1518 ((-111) |#1|)) (-15 -1553 ((-735) |#1| |#3|)) (-15 -1519 ((-607 (-735)) |#1| |#3|)) (-15 -1553 ((-735) |#1|)) (-15 -1519 ((-607 (-735)) |#1|)) (-15 -4264 ((-735) |#1| |#3|)) (-15 -4090 ((-735) |#1|)) (-15 -4090 ((-735) |#1| |#3|)) (-15 -1520 ((-607 |#3|) |#1|)) (-15 -1554 ((-1 |#1| (-735)) |#3|)) (-15 -3470 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#3|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -4264 ((-607 (-735)) |#1| (-607 |#4|))) (-15 -4264 ((-735) |#1| |#4|)) (-15 -3470 ((-3 |#4| #1#) |#1|)) (-15 -4274 (|#1| |#4|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#4| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#4| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4264 (|#5| |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4129 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -4129 (|#1| |#1| |#4| (-735))) (-15 -4129 (|#1| |#1| (-607 |#4|))) (-15 -4129 (|#1| |#1| |#4|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-238 |#2| |#3| |#4| |#5|) (-1004) (-811) (-251 |#3|) (-757)) (T -237)) -NIL -(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4086 (|#1| |#1| (-607 |#3|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#3| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#3|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#3| |#1|)) (-15 -1554 ((-1 |#1| (-735)) |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1516 (|#1| |#1|)) (-15 -1517 (|#4| |#1|)) (-15 -1518 ((-111) |#1|)) (-15 -1553 ((-735) |#1| |#3|)) (-15 -1519 ((-607 (-735)) |#1| |#3|)) (-15 -1553 ((-735) |#1|)) (-15 -1519 ((-607 (-735)) |#1|)) (-15 -4264 ((-735) |#1| |#3|)) (-15 -4090 ((-735) |#1|)) (-15 -4090 ((-735) |#1| |#3|)) (-15 -1520 ((-607 |#3|) |#1|)) (-15 -1554 ((-1 |#1| (-735)) |#3|)) (-15 -3470 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#3|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -4264 ((-607 (-735)) |#1| (-607 |#4|))) (-15 -4264 ((-735) |#1| |#4|)) (-15 -3470 ((-3 |#4| #1#) |#1|)) (-15 -4274 (|#1| |#4|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#4| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#4| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4264 (|#5| |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4129 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -4129 (|#1| |#1| |#4| (-735))) (-15 -4129 (|#1| |#1| (-607 |#4|))) (-15 -4129 (|#1| |#1| |#4|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1519 (((-607 (-735)) $) 212) (((-607 (-735)) $ |#2|) 210)) (-1553 (((-735) $) 211) (((-735) $ |#2|) 209)) (-3384 (((-607 |#3|) $) 108)) (-3386 (((-1117 $) $ |#3|) 123) (((-1117 |#1|) $) 122)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85 (|has| |#1| (-533)))) (-2151 (($ $) 86 (|has| |#1| (-533)))) (-2149 (((-111) $) 88 (|has| |#1| (-533)))) (-3119 (((-735) $) 110) (((-735) $ (-607 |#3|)) 109)) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 98 (|has| |#1| (-869)))) (-4093 (($ $) 96 (|has| |#1| (-436)))) (-4286 (((-390 $) $) 95 (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 101 (|has| |#1| (-869)))) (-1515 (($ $) 205)) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 162) (((-3 (-392 (-526)) #2#) $) 160 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) 158 (|has| |#1| (-995 (-526)))) (((-3 |#3| #2#) $) 134) (((-3 |#2| #2#) $) 219)) (-3469 ((|#1| $) 163) (((-392 (-526)) $) 159 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 157 (|has| |#1| (-995 (-526)))) ((|#3| $) 133) ((|#2| $) 218)) (-4075 (($ $ $ |#3|) 106 (|has| |#1| (-163)))) (-4276 (($ $) 152)) (-2331 (((-653 (-526)) (-653 $)) 132 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 131 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 130) (((-653 |#1|) (-653 $)) 129)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 174 (|has| |#1| (-436))) (($ $ |#3|) 103 (|has| |#1| (-436)))) (-3118 (((-607 $) $) 107)) (-4045 (((-111) $) 94 (|has| |#1| (-869)))) (-1697 (($ $ |#1| |#4| $) 170)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 82 (-12 (|has| |#3| (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 81 (-12 (|has| |#3| (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ |#2|) 215) (((-735) $) 214)) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 167)) (-3387 (($ (-1117 |#1|) |#3|) 115) (($ (-1117 $) |#3|) 114)) (-3121 (((-607 $) $) 124)) (-4254 (((-111) $) 150)) (-3193 (($ |#1| |#4|) 151) (($ $ |#3| (-735)) 117) (($ $ (-607 |#3|) (-607 (-735))) 116)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) 118)) (-3120 ((|#4| $) 168) (((-735) $ |#3|) 120) (((-607 (-735)) $ (-607 |#3|)) 119)) (-3637 (($ $ $) 77 (|has| |#1| (-811)))) (-3638 (($ $ $) 76 (|has| |#1| (-811)))) (-1698 (($ (-1 |#4| |#4|) $) 169)) (-4275 (($ (-1 |#1| |#1|) $) 149)) (-1554 (((-1 $ (-735)) |#2|) 217) (((-1 $ (-735)) $) 204 (|has| |#1| (-219)))) (-3385 (((-3 |#3| #3="failed") $) 121)) (-3194 (($ $) 147)) (-3487 ((|#1| $) 146)) (-1517 ((|#3| $) 207)) (-1989 (($ (-607 $)) 92 (|has| |#1| (-436))) (($ $ $) 91 (|has| |#1| (-436)))) (-3554 (((-1106) $) 9)) (-1518 (((-111) $) 208)) (-3123 (((-3 (-607 $) #3#) $) 112)) (-3122 (((-3 (-607 $) #3#) $) 113)) (-3124 (((-3 (-2 (|:| |var| |#3|) (|:| -2462 (-735))) #3#) $) 111)) (-1516 (($ $) 206)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 164)) (-1891 ((|#1| $) 165)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 93 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) 90 (|has| |#1| (-436))) (($ $ $) 89 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 100 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 99 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 97 (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-607 $) (-607 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-607 |#3|) (-607 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-607 |#3|) (-607 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-219))) (($ $ (-607 |#2|) (-607 $)) 202 (|has| |#1| (-219))) (($ $ |#2| |#1|) 201 (|has| |#1| (-219))) (($ $ (-607 |#2|) (-607 |#1|)) 200 (|has| |#1| (-219)))) (-4076 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-4129 (($ $ |#3|) 40) (($ $ (-607 |#3|)) 39) (($ $ |#3| (-735)) 38) (($ $ (-607 |#3|) (-607 (-735))) 37) (($ $) 236 (|has| |#1| (-219))) (($ $ (-735)) 234 (|has| |#1| (-219))) (($ $ (-1123)) 232 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 231 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 230 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 229 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1520 (((-607 |#2|) $) 216)) (-4264 ((|#4| $) 148) (((-735) $ |#3|) 128) (((-607 (-735)) $ (-607 |#3|)) 127) (((-735) $ |#2|) 213)) (-4287 (((-849 (-363)) $) 80 (-12 (|has| |#3| (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) 79 (-12 (|has| |#3| (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) 78 (-12 (|has| |#3| (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) 173 (|has| |#1| (-436))) (($ $ |#3|) 104 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 102 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-392 (-526))) 70 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526)))))) (($ $) 83 (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) 166)) (-3999 ((|#1| $ |#4|) 153) (($ $ |#3| (-735)) 126) (($ $ (-607 |#3|) (-607 (-735))) 125)) (-3002 (((-3 $ #1#) $) 71 (-3850 (-3155 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 171 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 87 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ |#3|) 36) (($ $ (-607 |#3|)) 35) (($ $ |#3| (-735)) 34) (($ $ (-607 |#3|) (-607 (-735))) 33) (($ $) 235 (|has| |#1| (-219))) (($ $ (-735)) 233 (|has| |#1| (-219))) (($ $ (-1123)) 228 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 227 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 226 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 225 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2863 (((-111) $ $) 74 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 73 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 75 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 72 (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 154 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 156 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 155 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-238 |#1| |#2| |#3| |#4|) (-134) (-1004) (-811) (-251 |t#2|) (-757)) (T -238)) -((-1554 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-1 *1 (-735))) (-4 *1 (-238 *4 *3 *5 *6)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-607 *4)))) (-4090 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-735)))) (-4264 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-607 (-735))))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-735)))) (-1519 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-607 (-735))))) (-1553 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-111)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-4 *2 (-251 *4)))) (-1516 (*1 *1 *1) (-12 (-4 *1 (-238 *2 *3 *4 *5)) (-4 *2 (-1004)) (-4 *3 (-811)) (-4 *4 (-251 *3)) (-4 *5 (-757)))) (-1515 (*1 *1 *1) (-12 (-4 *1 (-238 *2 *3 *4 *5)) (-4 *2 (-1004)) (-4 *3 (-811)) (-4 *4 (-251 *3)) (-4 *5 (-757)))) (-1554 (*1 *2 *1) (-12 (-4 *3 (-219)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-1 *1 (-735))) (-4 *1 (-238 *3 *4 *5 *6))))) -(-13 (-909 |t#1| |t#4| |t#3|) (-217 |t#1|) (-995 |t#2|) (-10 -8 (-15 -1554 ((-1 $ (-735)) |t#2|)) (-15 -1520 ((-607 |t#2|) $)) (-15 -4090 ((-735) $ |t#2|)) (-15 -4090 ((-735) $)) (-15 -4264 ((-735) $ |t#2|)) (-15 -1519 ((-607 (-735)) $)) (-15 -1553 ((-735) $)) (-15 -1519 ((-607 (-735)) $ |t#2|)) (-15 -1553 ((-735) $ |t#2|)) (-15 -1518 ((-111) $)) (-15 -1517 (|t#3| $)) (-15 -1516 ($ $)) (-15 -1515 ($ $)) (IF (|has| |t#1| (-219)) (PROGN (-6 (-496 |t#2| |t#1|)) (-6 (-496 |t#2| $)) (-6 (-294 $)) (-15 -1554 ((-1 $ (-735)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-584 (-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526))))) ((-217 |#1|) . T) ((-219) |has| |#1| (-219)) ((-275) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-294 $) . T) ((-311 |#1| |#4|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-869)) (|has| |#1| (-436))) ((-496 |#2| |#1|) |has| |#1| (-219)) ((-496 |#2| $) |has| |#1| (-219)) ((-496 |#3| |#1|) . T) ((-496 |#3| $) . T) ((-496 $ $) . T) ((-533) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-859 |#3|) . T) ((-845 (-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))) ((-909 |#1| |#4| |#3|) . T) ((-869) |has| |#1| (-869)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-995 |#2|) . T) ((-995 |#3|) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) |has| |#1| (-869))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1526 ((|#1| $) 54)) (-3643 ((|#1| $) 44)) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-3302 (($ $) 60)) (-2346 (($ $) 48)) (-3645 ((|#1| |#1| $) 46)) (-3644 ((|#1| $) 45)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-4152 (((-735) $) 61)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-1524 ((|#1| |#1| $) 52)) (-1523 ((|#1| |#1| $) 51)) (-3929 (($ |#1| $) 40)) (-2900 (((-735) $) 55)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-3301 ((|#1| $) 62)) (-1522 ((|#1| $) 50)) (-1521 ((|#1| $) 49)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3304 ((|#1| |#1| $) 58)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3303 ((|#1| $) 59)) (-1527 (($) 57) (($ (-607 |#1|)) 56)) (-3642 (((-735) $) 43)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1525 ((|#1| $) 53)) (-1308 (($ (-607 |#1|)) 42)) (-3300 ((|#1| $) 63)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-239 |#1|) (-134) (-1159)) (T -239)) -((-1527 (*1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1527 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-239 *3)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1524 (*1 *2 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1523 (*1 *2 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-2346 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) -(-13 (-1071 |t#1|) (-953 |t#1|) (-10 -8 (-15 -1527 ($)) (-15 -1527 ($ (-607 |t#1|))) (-15 -2900 ((-735) $)) (-15 -1526 (|t#1| $)) (-15 -1525 (|t#1| $)) (-15 -1524 (|t#1| |t#1| $)) (-15 -1523 (|t#1| |t#1| $)) (-15 -1522 (|t#1| $)) (-15 -1521 (|t#1| $)) (-15 -2346 ($ $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-953 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1071 |#1|) . T) ((-1159) . T)) -((-1528 (((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363))) 71) (((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246))) 70) (((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363))) 61) (((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246))) 60) (((-1083 (-211)) (-838 |#1|) (-1044 (-363))) 52) (((-1083 (-211)) (-838 |#1|) (-1044 (-363)) (-607 (-246))) 51)) (-1535 (((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363))) 74) (((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246))) 73) (((-1209) |#1| (-1044 (-363)) (-1044 (-363))) 64) (((-1209) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246))) 63) (((-1209) (-838 |#1|) (-1044 (-363))) 56) (((-1209) (-838 |#1|) (-1044 (-363)) (-607 (-246))) 55) (((-1208) (-836 |#1|) (-1044 (-363))) 43) (((-1208) (-836 |#1|) (-1044 (-363)) (-607 (-246))) 42) (((-1208) |#1| (-1044 (-363))) 35) (((-1208) |#1| (-1044 (-363)) (-607 (-246))) 34))) -(((-240 |#1|) (-10 -7 (-15 -1535 ((-1208) |#1| (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) |#1| (-1044 (-363)))) (-15 -1535 ((-1208) (-836 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-836 |#1|) (-1044 (-363)))) (-15 -1535 ((-1209) (-838 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-838 |#1|) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) (-838 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-838 |#1|) (-1044 (-363)))) (-15 -1535 ((-1209) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) |#1| (-1044 (-363)) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)))) (-15 -1535 ((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363))))) (-13 (-584 (-515)) (-1052))) (T -240)) -((-1528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-841 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *5)))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-841 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *6)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-841 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *5)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-841 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *6)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1209)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1528 (*1 *2 *3 *4) (-12 (-5 *3 (-838 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *5)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *6)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-838 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *5)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *6)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-836 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1208)) (-5 *1 (-240 *5)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-836 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1208)) (-5 *1 (-240 *6)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1208)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052)))))) -(-10 -7 (-15 -1535 ((-1208) |#1| (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) |#1| (-1044 (-363)))) (-15 -1535 ((-1208) (-836 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-836 |#1|) (-1044 (-363)))) (-15 -1535 ((-1209) (-838 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-838 |#1|) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) (-838 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-838 |#1|) (-1044 (-363)))) (-15 -1535 ((-1209) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) |#1| (-1044 (-363)) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)))) (-15 -1535 ((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363))))) -((-1529 (((-1 (-902 (-211)) (-211) (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211) (-211))) 139)) (-1528 (((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363))) 160) (((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 158) (((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363))) 163) (((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 159) (((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363))) 150) (((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 149) (((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363))) 129) (((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246))) 127) (((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363))) 128) (((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246))) 125)) (-1535 (((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363))) 162) (((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 161) (((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363))) 165) (((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 164) (((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363))) 152) (((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 151) (((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363))) 135) (((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246))) 134) (((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363))) 133) (((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246))) 132) (((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363))) 100) (((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246))) 99) (((-1208) (-1 (-211) (-211)) (-1041 (-363))) 96) (((-1208) (-1 (-211) (-211)) (-1041 (-363)) (-607 (-246))) 95))) -(((-241) (-10 -7 (-15 -1535 ((-1208) (-1 (-211) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-1 (-211) (-211)) (-1041 (-363)))) (-15 -1535 ((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1535 ((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1535 ((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)))) (-15 -1529 ((-1 (-902 (-211)) (-211) (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211) (-211)))))) (T -241)) -((-1529 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211) (-211))) (-5 *3 (-1 (-211) (-211) (-211) (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4) (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-836 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1208)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-836 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1208)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-241))))) -(-10 -7 (-15 -1535 ((-1208) (-1 (-211) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-1 (-211) (-211)) (-1041 (-363)))) (-15 -1535 ((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1535 ((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1535 ((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)))) (-15 -1529 ((-1 (-902 (-211)) (-211) (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211) (-211))))) -((-1535 (((-1208) (-278 |#2|) (-1123) (-1123) (-607 (-246))) 96))) -(((-242 |#1| |#2|) (-10 -7 (-15 -1535 ((-1208) (-278 |#2|) (-1123) (-1123) (-607 (-246))))) (-13 (-533) (-811) (-995 (-526))) (-406 |#1|)) (T -242)) -((-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-1123)) (-5 *5 (-607 (-246))) (-4 *7 (-406 *6)) (-4 *6 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-1208)) (-5 *1 (-242 *6 *7))))) -(-10 -7 (-15 -1535 ((-1208) (-278 |#2|) (-1123) (-1123) (-607 (-246))))) -((-1532 (((-526) (-526)) 50)) (-1533 (((-526) (-526)) 51)) (-1534 (((-211) (-211)) 52)) (-1531 (((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211))) 49)) (-1530 (((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)) (-111)) 47))) -(((-243) (-10 -7 (-15 -1530 ((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)) (-111))) (-15 -1531 ((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)))) (-15 -1532 ((-526) (-526))) (-15 -1533 ((-526) (-526))) (-15 -1534 ((-211) (-211))))) (T -243)) -((-1534 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-243)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-243)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-243)))) (-1531 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-159 (-211)) (-159 (-211)))) (-5 *4 (-1041 (-211))) (-5 *2 (-1209)) (-5 *1 (-243)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-159 (-211)) (-159 (-211)))) (-5 *4 (-1041 (-211))) (-5 *5 (-111)) (-5 *2 (-1209)) (-5 *1 (-243))))) -(-10 -7 (-15 -1530 ((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)) (-111))) (-15 -1531 ((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)))) (-15 -1532 ((-526) (-526))) (-15 -1533 ((-526) (-526))) (-15 -1534 ((-211) (-211)))) -((-4274 (((-1044 (-363)) (-1044 (-299 |#1|))) 16))) -(((-244 |#1|) (-10 -7 (-15 -4274 ((-1044 (-363)) (-1044 (-299 |#1|))))) (-13 (-811) (-533) (-584 (-363)))) (T -244)) -((-4274 (*1 *2 *3) (-12 (-5 *3 (-1044 (-299 *4))) (-4 *4 (-13 (-811) (-533) (-584 (-363)))) (-5 *2 (-1044 (-363))) (-5 *1 (-244 *4))))) -(-10 -7 (-15 -4274 ((-1044 (-363)) (-1044 (-299 |#1|))))) -((-1535 (((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)) (-607 (-246))) 23) (((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211))) 24) (((-1208) (-607 (-902 (-211))) (-607 (-246))) 16) (((-1208) (-607 (-902 (-211)))) 17) (((-1208) (-607 (-211)) (-607 (-211)) (-607 (-246))) 20) (((-1208) (-607 (-211)) (-607 (-211))) 21))) -(((-245) (-10 -7 (-15 -1535 ((-1208) (-607 (-211)) (-607 (-211)))) (-15 -1535 ((-1208) (-607 (-211)) (-607 (-211)) (-607 (-246)))) (-15 -1535 ((-1208) (-607 (-902 (-211))))) (-15 -1535 ((-1208) (-607 (-902 (-211))) (-607 (-246)))) (-15 -1535 ((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)))) (-15 -1535 ((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)) (-607 (-246)))))) (T -245)) -((-1535 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-607 (-211))) (-5 *4 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-245)))) (-1535 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1209)) (-5 *1 (-245)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-245)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *2 (-1208)) (-5 *1 (-245)))) (-1535 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-607 (-211))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-245)))) (-1535 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1208)) (-5 *1 (-245))))) -(-10 -7 (-15 -1535 ((-1208) (-607 (-211)) (-607 (-211)))) (-15 -1535 ((-1208) (-607 (-211)) (-607 (-211)) (-607 (-246)))) (-15 -1535 ((-1208) (-607 (-902 (-211))))) (-15 -1535 ((-1208) (-607 (-902 (-211))) (-607 (-246)))) (-15 -1535 ((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)))) (-15 -1535 ((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)) (-607 (-246))))) -((-2865 (((-111) $ $) NIL)) (-4200 (($ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) 15)) (-1548 (($ (-878)) 76)) (-1547 (($ (-878)) 75)) (-1868 (($ (-607 (-363))) 82)) (-1551 (($ (-363)) 58)) (-1550 (($ (-878)) 77)) (-1544 (($ (-111)) 23)) (-4202 (($ (-1106)) 18)) (-1543 (($ (-1106)) 19)) (-1549 (($ (-1083 (-211))) 71)) (-2026 (($ (-607 (-1041 (-363)))) 67)) (-1537 (($ (-607 (-1041 (-363)))) 59) (($ (-607 (-1041 (-392 (-526))))) 66)) (-1540 (($ (-363)) 29) (($ (-833)) 33)) (-1536 (((-111) (-607 $) (-1123)) 91)) (-1552 (((-3 (-50) "failed") (-607 $) (-1123)) 93)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1539 (($ (-363)) 34) (($ (-833)) 35)) (-3537 (($ (-1 (-902 (-211)) (-902 (-211)))) 57)) (-2319 (($ (-1 (-902 (-211)) (-902 (-211)))) 78)) (-1538 (($ (-1 (-211) (-211))) 39) (($ (-1 (-211) (-211) (-211))) 43) (($ (-1 (-211) (-211) (-211) (-211))) 47)) (-4274 (((-823) $) 87)) (-1541 (($ (-111)) 24) (($ (-607 (-1041 (-363)))) 52)) (-2021 (($ (-111)) 25)) (-3353 (((-111) $ $) 89))) -(((-246) (-13 (-1052) (-10 -8 (-15 -2021 ($ (-111))) (-15 -1541 ($ (-111))) (-15 -4200 ($ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4202 ($ (-1106))) (-15 -1543 ($ (-1106))) (-15 -1544 ($ (-111))) (-15 -1541 ($ (-607 (-1041 (-363))))) (-15 -3537 ($ (-1 (-902 (-211)) (-902 (-211))))) (-15 -1540 ($ (-363))) (-15 -1540 ($ (-833))) (-15 -1539 ($ (-363))) (-15 -1539 ($ (-833))) (-15 -1538 ($ (-1 (-211) (-211)))) (-15 -1538 ($ (-1 (-211) (-211) (-211)))) (-15 -1538 ($ (-1 (-211) (-211) (-211) (-211)))) (-15 -1551 ($ (-363))) (-15 -1537 ($ (-607 (-1041 (-363))))) (-15 -1537 ($ (-607 (-1041 (-392 (-526)))))) (-15 -2026 ($ (-607 (-1041 (-363))))) (-15 -1549 ($ (-1083 (-211)))) (-15 -1547 ($ (-878))) (-15 -1548 ($ (-878))) (-15 -1550 ($ (-878))) (-15 -2319 ($ (-1 (-902 (-211)) (-902 (-211))))) (-15 -1868 ($ (-607 (-363)))) (-15 -1552 ((-3 (-50) "failed") (-607 $) (-1123))) (-15 -1536 ((-111) (-607 $) (-1123)))))) (T -246)) -((-2021 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) (-4200 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) (-5 *1 (-246)))) (-4202 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-246)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-246)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *1 (-246)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-246)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-246)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-246)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211) (-211))) (-5 *1 (-246)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211) (-211) (-211))) (-5 *1 (-246)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246)))) (-1537 (*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) (-1537 (*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-392 (-526))))) (-5 *1 (-246)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) (-1549 (*1 *1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-246)))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) (-1550 (*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *1 (-246)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-246)))) (-1552 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *2 (-50)) (-5 *1 (-246)))) (-1536 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *2 (-111)) (-5 *1 (-246))))) -(-13 (-1052) (-10 -8 (-15 -2021 ($ (-111))) (-15 -1541 ($ (-111))) (-15 -4200 ($ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4202 ($ (-1106))) (-15 -1543 ($ (-1106))) (-15 -1544 ($ (-111))) (-15 -1541 ($ (-607 (-1041 (-363))))) (-15 -3537 ($ (-1 (-902 (-211)) (-902 (-211))))) (-15 -1540 ($ (-363))) (-15 -1540 ($ (-833))) (-15 -1539 ($ (-363))) (-15 -1539 ($ (-833))) (-15 -1538 ($ (-1 (-211) (-211)))) (-15 -1538 ($ (-1 (-211) (-211) (-211)))) (-15 -1538 ($ (-1 (-211) (-211) (-211) (-211)))) (-15 -1551 ($ (-363))) (-15 -1537 ($ (-607 (-1041 (-363))))) (-15 -1537 ($ (-607 (-1041 (-392 (-526)))))) (-15 -2026 ($ (-607 (-1041 (-363))))) (-15 -1549 ($ (-1083 (-211)))) (-15 -1547 ($ (-878))) (-15 -1548 ($ (-878))) (-15 -1550 ($ (-878))) (-15 -2319 ($ (-1 (-902 (-211)) (-902 (-211))))) (-15 -1868 ($ (-607 (-363)))) (-15 -1552 ((-3 (-50) "failed") (-607 $) (-1123))) (-15 -1536 ((-111) (-607 $) (-1123))))) -((-4200 (((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) (-607 (-246)) (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) 26)) (-1548 (((-878) (-607 (-246)) (-878)) 53)) (-1547 (((-878) (-607 (-246)) (-878)) 52)) (-4170 (((-607 (-363)) (-607 (-246)) (-607 (-363))) 69)) (-1551 (((-363) (-607 (-246)) (-363)) 58)) (-1550 (((-878) (-607 (-246)) (-878)) 54)) (-1544 (((-111) (-607 (-246)) (-111)) 28)) (-4202 (((-1106) (-607 (-246)) (-1106)) 20)) (-1543 (((-1106) (-607 (-246)) (-1106)) 27)) (-1549 (((-1083 (-211)) (-607 (-246))) 47)) (-2026 (((-607 (-1041 (-363))) (-607 (-246)) (-607 (-1041 (-363)))) 41)) (-1545 (((-833) (-607 (-246)) (-833)) 33)) (-1546 (((-833) (-607 (-246)) (-833)) 34)) (-2319 (((-1 (-902 (-211)) (-902 (-211))) (-607 (-246)) (-1 (-902 (-211)) (-902 (-211)))) 64)) (-1542 (((-111) (-607 (-246)) (-111)) 16)) (-2021 (((-111) (-607 (-246)) (-111)) 15))) -(((-247) (-10 -7 (-15 -2021 ((-111) (-607 (-246)) (-111))) (-15 -1542 ((-111) (-607 (-246)) (-111))) (-15 -4200 ((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) (-607 (-246)) (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4202 ((-1106) (-607 (-246)) (-1106))) (-15 -1543 ((-1106) (-607 (-246)) (-1106))) (-15 -1544 ((-111) (-607 (-246)) (-111))) (-15 -1545 ((-833) (-607 (-246)) (-833))) (-15 -1546 ((-833) (-607 (-246)) (-833))) (-15 -2026 ((-607 (-1041 (-363))) (-607 (-246)) (-607 (-1041 (-363))))) (-15 -1547 ((-878) (-607 (-246)) (-878))) (-15 -1548 ((-878) (-607 (-246)) (-878))) (-15 -1549 ((-1083 (-211)) (-607 (-246)))) (-15 -1550 ((-878) (-607 (-246)) (-878))) (-15 -1551 ((-363) (-607 (-246)) (-363))) (-15 -2319 ((-1 (-902 (-211)) (-902 (-211))) (-607 (-246)) (-1 (-902 (-211)) (-902 (-211))))) (-15 -4170 ((-607 (-363)) (-607 (-246)) (-607 (-363)))))) (T -247)) -((-4170 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-363))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-2319 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1551 (*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1550 (*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-247)))) (-1548 (*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1547 (*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-2026 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1546 (*1 *2 *3 *2) (-12 (-5 *2 (-833)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1545 (*1 *2 *3 *2) (-12 (-5 *2 (-833)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1544 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1543 (*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-4202 (*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-4200 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1542 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(-10 -7 (-15 -2021 ((-111) (-607 (-246)) (-111))) (-15 -1542 ((-111) (-607 (-246)) (-111))) (-15 -4200 ((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) (-607 (-246)) (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4202 ((-1106) (-607 (-246)) (-1106))) (-15 -1543 ((-1106) (-607 (-246)) (-1106))) (-15 -1544 ((-111) (-607 (-246)) (-111))) (-15 -1545 ((-833) (-607 (-246)) (-833))) (-15 -1546 ((-833) (-607 (-246)) (-833))) (-15 -2026 ((-607 (-1041 (-363))) (-607 (-246)) (-607 (-1041 (-363))))) (-15 -1547 ((-878) (-607 (-246)) (-878))) (-15 -1548 ((-878) (-607 (-246)) (-878))) (-15 -1549 ((-1083 (-211)) (-607 (-246)))) (-15 -1550 ((-878) (-607 (-246)) (-878))) (-15 -1551 ((-363) (-607 (-246)) (-363))) (-15 -2319 ((-1 (-902 (-211)) (-902 (-211))) (-607 (-246)) (-1 (-902 (-211)) (-902 (-211))))) (-15 -4170 ((-607 (-363)) (-607 (-246)) (-607 (-363))))) -((-1552 (((-3 |#1| "failed") (-607 (-246)) (-1123)) 17))) -(((-248 |#1|) (-10 -7 (-15 -1552 ((-3 |#1| "failed") (-607 (-246)) (-1123)))) (-1159)) (T -248)) -((-1552 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *1 (-248 *2)) (-4 *2 (-1159))))) -(-10 -7 (-15 -1552 ((-3 |#1| "failed") (-607 (-246)) (-1123)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1519 (((-607 (-735)) $) NIL) (((-607 (-735)) $ |#2|) NIL)) (-1553 (((-735) $) NIL) (((-735) $ |#2|) NIL)) (-3384 (((-607 |#3|) $) NIL)) (-3386 (((-1117 $) $ |#3|) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 |#3|)) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1515 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1075 |#1| |#2|) #2#) $) 21)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1075 |#1| |#2|) $) NIL)) (-4075 (($ $ $ |#3|) NIL (|has| |#1| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ |#3|) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 |#3|) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))))) (-4090 (((-735) $ |#2|) NIL) (((-735) $) 10)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#1|) |#3|) NIL) (($ (-1117 $) |#3|) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 |#3|)) NIL) (($ $ |#3| (-735)) NIL) (($ $ (-607 |#3|) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) NIL)) (-3120 (((-512 |#3|) $) NIL) (((-735) $ |#3|) NIL) (((-607 (-735)) $ (-607 |#3|)) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 |#3|) (-512 |#3|)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1554 (((-1 $ (-735)) |#2|) NIL) (((-1 $ (-735)) $) NIL (|has| |#1| (-219)))) (-3385 (((-3 |#3| #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1517 ((|#3| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-1518 (((-111) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| |#3|) (|:| -2462 (-735))) #3#) $) NIL)) (-1516 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-607 |#3|) (-607 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-607 |#3|) (-607 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-219))) (($ $ (-607 |#2|) (-607 $)) NIL (|has| |#1| (-219))) (($ $ |#2| |#1|) NIL (|has| |#1| (-219))) (($ $ (-607 |#2|) (-607 |#1|)) NIL (|has| |#1| (-219)))) (-4076 (($ $ |#3|) NIL (|has| |#1| (-163)))) (-4129 (($ $ |#3|) NIL) (($ $ (-607 |#3|)) NIL) (($ $ |#3| (-735)) NIL) (($ $ (-607 |#3|) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1520 (((-607 |#2|) $) NIL)) (-4264 (((-512 |#3|) $) NIL) (((-735) $ |#3|) NIL) (((-607 (-735)) $ (-607 |#3|)) NIL) (((-735) $ |#2|) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ |#3|) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1075 |#1| |#2|)) 30) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 |#3|)) NIL) (($ $ |#3| (-735)) NIL) (($ $ (-607 |#3|) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ |#3|) NIL) (($ $ (-607 |#3|)) NIL) (($ $ |#3| (-735)) NIL) (($ $ (-607 |#3|) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-249 |#1| |#2| |#3|) (-13 (-238 |#1| |#2| |#3| (-512 |#3|)) (-995 (-1075 |#1| |#2|))) (-1004) (-811) (-251 |#2|)) (T -249)) -NIL -(-13 (-238 |#1| |#2| |#3| (-512 |#3|)) (-995 (-1075 |#1| |#2|))) -((-1553 (((-735) $) 30)) (-3470 (((-3 |#2| "failed") $) 17)) (-3469 ((|#2| $) 27)) (-4129 (($ $) 12) (($ $ (-735)) 15)) (-4274 (((-823) $) 26) (($ |#2|) 10)) (-3353 (((-111) $ $) 20)) (-2985 (((-111) $ $) 29))) -(((-250 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -1553 ((-735) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| "failed") |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-251 |#2|) (-811)) (T -250)) -NIL -(-10 -8 (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -1553 ((-735) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| "failed") |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-1553 (((-735) $) 22)) (-4150 ((|#1| $) 23)) (-3470 (((-3 |#1| "failed") $) 27)) (-3469 ((|#1| $) 26)) (-4090 (((-735) $) 24)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-1554 (($ |#1| (-735)) 25)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4129 (($ $) 21) (($ $ (-735)) 20)) (-4274 (((-823) $) 11) (($ |#1|) 28)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) -(((-251 |#1|) (-134) (-811)) (T -251)) -((-4274 (*1 *1 *2) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) (-1554 (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-251 *2)) (-4 *2 (-811)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-251 *3)) (-4 *3 (-811)) (-5 *2 (-735)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-251 *3)) (-4 *3 (-811)) (-5 *2 (-735)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-251 *3)) (-4 *3 (-811))))) -(-13 (-811) (-995 |t#1|) (-10 -8 (-15 -1554 ($ |t#1| (-735))) (-15 -4090 ((-735) $)) (-15 -4150 (|t#1| $)) (-15 -1553 ((-735) $)) (-15 -4129 ($ $)) (-15 -4129 ($ $ (-735))) (-15 -4274 ($ |t#1|)))) -(((-100) . T) ((-583 (-823)) . T) ((-811) . T) ((-995 |#1|) . T) ((-1052) . T)) -((-3384 (((-607 (-1123)) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 41)) (-4251 (((-607 (-1123)) (-299 (-211)) (-735)) 80)) (-1557 (((-3 (-299 (-211)) "failed") (-299 (-211))) 51)) (-1558 (((-299 (-211)) (-299 (-211))) 67)) (-1556 (((-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 26)) (-1559 (((-111) (-607 (-299 (-211)))) 84)) (-1563 (((-111) (-299 (-211))) 24)) (-1565 (((-607 (-1106)) (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) 106)) (-1562 (((-607 (-299 (-211))) (-607 (-299 (-211)))) 88)) (-1561 (((-607 (-299 (-211))) (-607 (-299 (-211)))) 86)) (-1560 (((-653 (-211)) (-607 (-299 (-211))) (-735)) 95)) (-3227 (((-111) (-299 (-211))) 20) (((-111) (-607 (-299 (-211)))) 85)) (-1555 (((-607 (-211)) (-607 (-803 (-211))) (-211)) 14)) (-1653 (((-363) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 101)) (-1564 (((-992) (-1123) (-992)) 34))) -(((-252) (-10 -7 (-15 -1555 ((-607 (-211)) (-607 (-803 (-211))) (-211))) (-15 -1556 ((-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -1557 ((-3 (-299 (-211)) "failed") (-299 (-211)))) (-15 -1558 ((-299 (-211)) (-299 (-211)))) (-15 -1559 ((-111) (-607 (-299 (-211))))) (-15 -3227 ((-111) (-607 (-299 (-211))))) (-15 -3227 ((-111) (-299 (-211)))) (-15 -1560 ((-653 (-211)) (-607 (-299 (-211))) (-735))) (-15 -1561 ((-607 (-299 (-211))) (-607 (-299 (-211))))) (-15 -1562 ((-607 (-299 (-211))) (-607 (-299 (-211))))) (-15 -1563 ((-111) (-299 (-211)))) (-15 -3384 ((-607 (-1123)) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -4251 ((-607 (-1123)) (-299 (-211)) (-735))) (-15 -1564 ((-992) (-1123) (-992))) (-15 -1653 ((-363) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -1565 ((-607 (-1106)) (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))))))) (T -252)) -((-1565 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) (-5 *2 (-607 (-1106))) (-5 *1 (-252)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *2 (-363)) (-5 *1 (-252)))) (-1564 (*1 *2 *3 *2) (-12 (-5 *2 (-992)) (-5 *3 (-1123)) (-5 *1 (-252)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-735)) (-5 *2 (-607 (-1123))) (-5 *1 (-252)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *2 (-607 (-1123))) (-5 *1 (-252)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-111)) (-5 *1 (-252)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-607 (-299 (-211)))) (-5 *1 (-252)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-607 (-299 (-211)))) (-5 *1 (-252)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *4 (-735)) (-5 *2 (-653 (-211))) (-5 *1 (-252)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-111)) (-5 *1 (-252)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *2 (-111)) (-5 *1 (-252)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *2 (-111)) (-5 *1 (-252)))) (-1558 (*1 *2 *2) (-12 (-5 *2 (-299 (-211))) (-5 *1 (-252)))) (-1557 (*1 *2 *2) (|partial| -12 (-5 *2 (-299 (-211))) (-5 *1 (-252)))) (-1556 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (-5 *1 (-252)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-803 (-211)))) (-5 *4 (-211)) (-5 *2 (-607 *4)) (-5 *1 (-252))))) -(-10 -7 (-15 -1555 ((-607 (-211)) (-607 (-803 (-211))) (-211))) (-15 -1556 ((-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -1557 ((-3 (-299 (-211)) "failed") (-299 (-211)))) (-15 -1558 ((-299 (-211)) (-299 (-211)))) (-15 -1559 ((-111) (-607 (-299 (-211))))) (-15 -3227 ((-111) (-607 (-299 (-211))))) (-15 -3227 ((-111) (-299 (-211)))) (-15 -1560 ((-653 (-211)) (-607 (-299 (-211))) (-735))) (-15 -1561 ((-607 (-299 (-211))) (-607 (-299 (-211))))) (-15 -1562 ((-607 (-299 (-211))) (-607 (-299 (-211))))) (-15 -1563 ((-111) (-299 (-211)))) (-15 -3384 ((-607 (-1123)) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -4251 ((-607 (-1123)) (-299 (-211)) (-735))) (-15 -1564 ((-992) (-1123) (-992))) (-15 -1653 ((-363) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -1565 ((-607 (-1106)) (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))))) -((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 44)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 26) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-253) (-800)) (T -253)) -NIL -(-800) -((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 58) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 54)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 34) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 36)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-254) (-800)) (T -254)) -NIL -(-800) -((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 76) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 73)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 44) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 55)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-255) (-800)) (T -255)) -NIL -(-800) -((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 50)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 31) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-256) (-800)) (T -256)) -NIL -(-800) -((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 50)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 28) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-257) (-800)) (T -257)) -NIL -(-800) -((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 73)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 28) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-258) (-800)) (T -258)) -NIL -(-800) -((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 77)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 25) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-259) (-800)) (T -259)) -NIL -(-800) -((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1567 (((-607 (-526)) $) 19)) (-4264 (((-735) $) 17)) (-4274 (((-823) $) 23) (($ (-607 (-526))) 15)) (-1566 (($ (-735)) 20)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 9)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 11))) -(((-260) (-13 (-811) (-10 -8 (-15 -4274 ($ (-607 (-526)))) (-15 -4264 ((-735) $)) (-15 -1567 ((-607 (-526)) $)) (-15 -1566 ($ (-735)))))) (T -260)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-260)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-260)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-260)))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-260))))) -(-13 (-811) (-10 -8 (-15 -4274 ($ (-607 (-526)))) (-15 -4264 ((-735) $)) (-15 -1567 ((-607 (-526)) $)) (-15 -1566 ($ (-735))))) -((-3806 ((|#2| |#2|) 77)) (-3961 ((|#2| |#2|) 65)) (-1596 (((-3 |#2| "failed") |#2| (-607 (-2 (|:| |func| |#2|) (|:| |pole| (-111))))) 116)) (-3804 ((|#2| |#2|) 75)) (-3960 ((|#2| |#2|) 63)) (-3808 ((|#2| |#2|) 79)) (-3959 ((|#2| |#2|) 67)) (-3949 ((|#2|) 46)) (-2307 (((-112) (-112)) 95)) (-4259 ((|#2| |#2|) 61)) (-1597 (((-111) |#2|) 134)) (-1586 ((|#2| |#2|) 181)) (-1574 ((|#2| |#2|) 157)) (-1569 ((|#2|) 59)) (-1568 ((|#2|) 58)) (-1584 ((|#2| |#2|) 177)) (-1572 ((|#2| |#2|) 153)) (-1588 ((|#2| |#2|) 185)) (-1576 ((|#2| |#2|) 161)) (-1571 ((|#2| |#2|) 149)) (-1570 ((|#2| |#2|) 151)) (-1589 ((|#2| |#2|) 187)) (-1577 ((|#2| |#2|) 163)) (-1587 ((|#2| |#2|) 183)) (-1575 ((|#2| |#2|) 159)) (-1585 ((|#2| |#2|) 179)) (-1573 ((|#2| |#2|) 155)) (-1592 ((|#2| |#2|) 193)) (-1580 ((|#2| |#2|) 169)) (-1590 ((|#2| |#2|) 189)) (-1578 ((|#2| |#2|) 165)) (-1594 ((|#2| |#2|) 197)) (-1582 ((|#2| |#2|) 173)) (-1595 ((|#2| |#2|) 199)) (-1583 ((|#2| |#2|) 175)) (-1593 ((|#2| |#2|) 195)) (-1581 ((|#2| |#2|) 171)) (-1591 ((|#2| |#2|) 191)) (-1579 ((|#2| |#2|) 167)) (-4260 ((|#2| |#2|) 62)) (-3809 ((|#2| |#2|) 80)) (-3958 ((|#2| |#2|) 68)) (-3807 ((|#2| |#2|) 78)) (-3957 ((|#2| |#2|) 66)) (-3805 ((|#2| |#2|) 76)) (-3956 ((|#2| |#2|) 64)) (-2306 (((-111) (-112)) 93)) (-3812 ((|#2| |#2|) 83)) (-3800 ((|#2| |#2|) 71)) (-3810 ((|#2| |#2|) 81)) (-3798 ((|#2| |#2|) 69)) (-3814 ((|#2| |#2|) 85)) (-3802 ((|#2| |#2|) 73)) (-3815 ((|#2| |#2|) 86)) (-3803 ((|#2| |#2|) 74)) (-3813 ((|#2| |#2|) 84)) (-3801 ((|#2| |#2|) 72)) (-3811 ((|#2| |#2|) 82)) (-3799 ((|#2| |#2|) 70))) -(((-261 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3957 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3949 (|#2|)) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1568 (|#2|)) (-15 -1569 (|#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1571 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1579 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1581 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 ((-3 |#2| "failed") |#2| (-607 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -1597 ((-111) |#2|))) (-13 (-811) (-533)) (-13 (-406 |#1|) (-960))) (T -261)) -((-1597 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-261 *4 *3)) (-4 *3 (-13 (-406 *4) (-960))))) (-1596 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-607 (-2 (|:| |func| *2) (|:| |pole| (-111))))) (-4 *2 (-13 (-406 *4) (-960))) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-261 *4 *2)))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1581 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1573 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1572 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1569 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) (-4 *3 (-13 (-811) (-533))))) (-1568 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) (-4 *3 (-13 (-811) (-533))))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *4)) (-4 *4 (-13 (-406 *3) (-960))))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-261 *4 *5)) (-4 *5 (-13 (-406 *4) (-960))))) (-3949 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) (-4 *3 (-13 (-811) (-533))))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960)))))) -(-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3957 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3949 (|#2|)) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1568 (|#2|)) (-15 -1569 (|#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1571 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1579 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1581 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 ((-3 |#2| "failed") |#2| (-607 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -1597 ((-111) |#2|))) -((-1600 (((-3 |#2| "failed") (-607 (-581 |#2|)) |#2| (-1123)) 135)) (-1602 ((|#2| (-392 (-526)) |#2|) 51)) (-1601 ((|#2| |#2| (-581 |#2|)) 128)) (-1598 (((-2 (|:| |func| |#2|) (|:| |kers| (-607 (-581 |#2|))) (|:| |vals| (-607 |#2|))) |#2| (-1123)) 127)) (-1599 ((|#2| |#2| (-1123)) 20) ((|#2| |#2|) 23)) (-2661 ((|#2| |#2| (-1123)) 141) ((|#2| |#2|) 139))) -(((-262 |#1| |#2|) (-10 -7 (-15 -2661 (|#2| |#2|)) (-15 -2661 (|#2| |#2| (-1123))) (-15 -1598 ((-2 (|:| |func| |#2|) (|:| |kers| (-607 (-581 |#2|))) (|:| |vals| (-607 |#2|))) |#2| (-1123))) (-15 -1599 (|#2| |#2|)) (-15 -1599 (|#2| |#2| (-1123))) (-15 -1600 ((-3 |#2| "failed") (-607 (-581 |#2|)) |#2| (-1123))) (-15 -1601 (|#2| |#2| (-581 |#2|))) (-15 -1602 (|#2| (-392 (-526)) |#2|))) (-13 (-533) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -262)) -((-1602 (*1 *2 *3 *2) (-12 (-5 *3 (-392 (-526))) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-1601 (*1 *2 *2 *3) (-12 (-5 *3 (-581 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)))) (-1600 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-607 (-581 *2))) (-5 *4 (-1123)) (-4 *2 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *5 *2)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-1598 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-607 (-581 *3))) (|:| |vals| (-607 *3)))) (-5 *1 (-262 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) -(-10 -7 (-15 -2661 (|#2| |#2|)) (-15 -2661 (|#2| |#2| (-1123))) (-15 -1598 ((-2 (|:| |func| |#2|) (|:| |kers| (-607 (-581 |#2|))) (|:| |vals| (-607 |#2|))) |#2| (-1123))) (-15 -1599 (|#2| |#2|)) (-15 -1599 (|#2| |#2| (-1123))) (-15 -1600 ((-3 |#2| "failed") (-607 (-581 |#2|)) |#2| (-1123))) (-15 -1601 (|#2| |#2| (-581 |#2|))) (-15 -1602 (|#2| (-392 (-526)) |#2|))) -((-3275 (((-3 |#3| #1="failed") |#3|) 110)) (-3806 ((|#3| |#3|) 131)) (-3263 (((-3 |#3| #1#) |#3|) 82)) (-3961 ((|#3| |#3|) 121)) (-3273 (((-3 |#3| #1#) |#3|) 58)) (-3804 ((|#3| |#3|) 129)) (-3261 (((-3 |#3| #1#) |#3|) 46)) (-3960 ((|#3| |#3|) 119)) (-3277 (((-3 |#3| #1#) |#3|) 112)) (-3808 ((|#3| |#3|) 133)) (-3265 (((-3 |#3| #1#) |#3|) 84)) (-3959 ((|#3| |#3|) 123)) (-3258 (((-3 |#3| #1#) |#3| (-735)) 36)) (-3260 (((-3 |#3| #1#) |#3|) 74)) (-4259 ((|#3| |#3|) 118)) (-3259 (((-3 |#3| #1#) |#3|) 44)) (-4260 ((|#3| |#3|) 117)) (-3278 (((-3 |#3| #1#) |#3|) 113)) (-3809 ((|#3| |#3|) 134)) (-3266 (((-3 |#3| #1#) |#3|) 85)) (-3958 ((|#3| |#3|) 124)) (-3276 (((-3 |#3| #1#) |#3|) 111)) (-3807 ((|#3| |#3|) 132)) (-3264 (((-3 |#3| #1#) |#3|) 83)) (-3957 ((|#3| |#3|) 122)) (-3274 (((-3 |#3| #1#) |#3|) 60)) (-3805 ((|#3| |#3|) 130)) (-3262 (((-3 |#3| #1#) |#3|) 48)) (-3956 ((|#3| |#3|) 120)) (-3281 (((-3 |#3| #1#) |#3|) 66)) (-3812 ((|#3| |#3|) 137)) (-3269 (((-3 |#3| #1#) |#3|) 104)) (-3800 ((|#3| |#3|) 142)) (-3279 (((-3 |#3| #1#) |#3|) 62)) (-3810 ((|#3| |#3|) 135)) (-3267 (((-3 |#3| #1#) |#3|) 50)) (-3798 ((|#3| |#3|) 125)) (-3283 (((-3 |#3| #1#) |#3|) 70)) (-3814 ((|#3| |#3|) 139)) (-3271 (((-3 |#3| #1#) |#3|) 54)) (-3802 ((|#3| |#3|) 127)) (-3284 (((-3 |#3| #1#) |#3|) 72)) (-3815 ((|#3| |#3|) 140)) (-3272 (((-3 |#3| #1#) |#3|) 56)) (-3803 ((|#3| |#3|) 128)) (-3282 (((-3 |#3| #1#) |#3|) 68)) (-3813 ((|#3| |#3|) 138)) (-3270 (((-3 |#3| #1#) |#3|) 107)) (-3801 ((|#3| |#3|) 143)) (-3280 (((-3 |#3| #1#) |#3|) 64)) (-3811 ((|#3| |#3|) 136)) (-3268 (((-3 |#3| #1#) |#3|) 52)) (-3799 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-392 (-526))) 40 (|has| |#1| (-348))))) -(((-263 |#1| |#2| |#3|) (-13 (-942 |#3|) (-10 -7 (IF (|has| |#1| (-348)) (-15 ** (|#3| |#3| (-392 (-526)))) |%noBranch|) (-15 -4260 (|#3| |#3|)) (-15 -4259 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3956 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3957 (|#3| |#3|)) (-15 -3959 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3804 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3806 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3812 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)))) (-37 (-392 (-526))) (-1198 |#1|) (-1169 |#1| |#2|)) (T -263)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-392 (-526))) (-4 *4 (-348)) (-4 *4 (-37 *3)) (-4 *5 (-1198 *4)) (-5 *1 (-263 *4 *5 *2)) (-4 *2 (-1169 *4 *5)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4))))) -(-13 (-942 |#3|) (-10 -7 (IF (|has| |#1| (-348)) (-15 ** (|#3| |#3| (-392 (-526)))) |%noBranch|) (-15 -4260 (|#3| |#3|)) (-15 -4259 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3956 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3957 (|#3| |#3|)) (-15 -3959 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3804 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3806 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3812 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)))) -((-3275 (((-3 |#3| #1="failed") |#3|) 66)) (-3806 ((|#3| |#3|) 129)) (-3263 (((-3 |#3| #1#) |#3|) 50)) (-3961 ((|#3| |#3|) 117)) (-3273 (((-3 |#3| #1#) |#3|) 62)) (-3804 ((|#3| |#3|) 127)) (-3261 (((-3 |#3| #1#) |#3|) 46)) (-3960 ((|#3| |#3|) 115)) (-3277 (((-3 |#3| #1#) |#3|) 70)) (-3808 ((|#3| |#3|) 131)) (-3265 (((-3 |#3| #1#) |#3|) 54)) (-3959 ((|#3| |#3|) 119)) (-3258 (((-3 |#3| #1#) |#3| (-735)) 35)) (-3260 (((-3 |#3| #1#) |#3|) 44)) (-4259 ((|#3| |#3|) 104)) (-3259 (((-3 |#3| #1#) |#3|) 42)) (-4260 ((|#3| |#3|) 114)) (-3278 (((-3 |#3| #1#) |#3|) 72)) (-3809 ((|#3| |#3|) 132)) (-3266 (((-3 |#3| #1#) |#3|) 56)) (-3958 ((|#3| |#3|) 120)) (-3276 (((-3 |#3| #1#) |#3|) 68)) (-3807 ((|#3| |#3|) 130)) (-3264 (((-3 |#3| #1#) |#3|) 52)) (-3957 ((|#3| |#3|) 118)) (-3274 (((-3 |#3| #1#) |#3|) 64)) (-3805 ((|#3| |#3|) 128)) (-3262 (((-3 |#3| #1#) |#3|) 48)) (-3956 ((|#3| |#3|) 116)) (-3281 (((-3 |#3| #1#) |#3|) 74)) (-3812 ((|#3| |#3|) 135)) (-3269 (((-3 |#3| #1#) |#3|) 58)) (-3800 ((|#3| |#3|) 123)) (-3279 (((-3 |#3| #1#) |#3|) 105)) (-3810 ((|#3| |#3|) 133)) (-3267 (((-3 |#3| #1#) |#3|) 94)) (-3798 ((|#3| |#3|) 121)) (-3283 (((-3 |#3| #1#) |#3|) 109)) (-3814 ((|#3| |#3|) 137)) (-3271 (((-3 |#3| #1#) |#3|) 101)) (-3802 ((|#3| |#3|) 125)) (-3284 (((-3 |#3| #1#) |#3|) 110)) (-3815 ((|#3| |#3|) 138)) (-3272 (((-3 |#3| #1#) |#3|) 103)) (-3803 ((|#3| |#3|) 126)) (-3282 (((-3 |#3| #1#) |#3|) 76)) (-3813 ((|#3| |#3|) 136)) (-3270 (((-3 |#3| #1#) |#3|) 60)) (-3801 ((|#3| |#3|) 124)) (-3280 (((-3 |#3| #1#) |#3|) 106)) (-3811 ((|#3| |#3|) 134)) (-3268 (((-3 |#3| #1#) |#3|) 97)) (-3799 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-392 (-526))) 40 (|has| |#1| (-348))))) -(((-264 |#1| |#2| |#3| |#4|) (-13 (-942 |#3|) (-10 -7 (IF (|has| |#1| (-348)) (-15 ** (|#3| |#3| (-392 (-526)))) |%noBranch|) (-15 -4260 (|#3| |#3|)) (-15 -4259 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3956 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3957 (|#3| |#3|)) (-15 -3959 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3804 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3806 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3812 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)))) (-37 (-392 (-526))) (-1167 |#1|) (-1190 |#1| |#2|) (-942 |#2|)) (T -264)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-392 (-526))) (-4 *4 (-348)) (-4 *4 (-37 *3)) (-4 *5 (-1167 *4)) (-5 *1 (-264 *4 *5 *2 *6)) (-4 *2 (-1190 *4 *5)) (-4 *6 (-942 *5)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4))))) -(-13 (-942 |#3|) (-10 -7 (IF (|has| |#1| (-348)) (-15 ** (|#3| |#3| (-392 (-526)))) |%noBranch|) (-15 -4260 (|#3| |#3|)) (-15 -4259 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3956 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3957 (|#3| |#3|)) (-15 -3959 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3804 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3806 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3812 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)))) -((-3152 (((-111) $) 19)) (-1606 (((-174) $) 7)) (-3891 (((-3 (-1123) "failed") $) 14)) (-3890 (((-3 (-607 $) "failed") $) NIL)) (-1604 (((-3 (-1123) "failed") $) 21)) (-1605 (((-3 (-1054) "failed") $) 17)) (-4269 (((-111) $) 15)) (-4274 (((-823) $) NIL)) (-1603 (((-111) $) 9))) -(((-265) (-13 (-583 (-823)) (-10 -8 (-15 -1606 ((-174) $)) (-15 -4269 ((-111) $)) (-15 -1605 ((-3 (-1054) "failed") $)) (-15 -3152 ((-111) $)) (-15 -1604 ((-3 (-1123) "failed") $)) (-15 -1603 ((-111) $)) (-15 -3891 ((-3 (-1123) "failed") $)) (-15 -3890 ((-3 (-607 $) "failed") $))))) (T -265)) -((-1606 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-265)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) (-1605 (*1 *2 *1) (|partial| -12 (-5 *2 (-1054)) (-5 *1 (-265)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) (-1604 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-265)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) (-3891 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-265)))) (-3890 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-265))) (-5 *1 (-265))))) -(-13 (-583 (-823)) (-10 -8 (-15 -1606 ((-174) $)) (-15 -4269 ((-111) $)) (-15 -1605 ((-3 (-1054) "failed") $)) (-15 -3152 ((-111) $)) (-15 -1604 ((-3 (-1123) "failed") $)) (-15 -1603 ((-111) $)) (-15 -3891 ((-3 (-1123) "failed") $)) (-15 -3890 ((-3 (-607 $) "failed") $)))) -((-4032 (($ (-1 (-111) |#2|) $) 24)) (-1375 (($ $) 36)) (-3724 (($ (-1 (-111) |#2|) $) NIL) (($ |#2| $) 34)) (-3725 (($ |#2| $) 32) (($ (-1 (-111) |#2|) $) 18)) (-3159 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2351 (($ |#2| $ (-526)) 20) (($ $ $ (-526)) 22)) (-2352 (($ $ (-526)) 11) (($ $ (-1172 (-526))) 14)) (-4109 (($ $ |#2|) 30) (($ $ $) NIL)) (-4120 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-607 $)) NIL))) -(((-266 |#1| |#2|) (-10 -8 (-15 -3159 (|#1| |#1| |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -3159 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4109 (|#1| |#1| |#1|)) (-15 -4109 (|#1| |#1| |#2|)) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -3725 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4032 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3725 (|#1| |#2| |#1|)) (-15 -1375 (|#1| |#1|))) (-267 |#2|) (-1159)) (T -266)) -NIL -(-10 -8 (-15 -3159 (|#1| |#1| |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -3159 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4109 (|#1| |#1| |#1|)) (-15 -4109 (|#1| |#1| |#2|)) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -3725 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4032 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3725 (|#1| |#2| |#1|)) (-15 -1375 (|#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) 85)) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2424 (($ $) 83 (|has| |#1| (-1052)))) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ (-1 (-111) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1052)))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3159 (($ (-1 (-111) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3929 (($ |#1| $ (-526)) 88) (($ $ $ (-526)) 87)) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-1608 (($ $ (-526)) 91) (($ $ (-1172 (-526))) 90)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4109 (($ $ |#1|) 93) (($ $ $) 92)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-267 |#1|) (-134) (-1159)) (T -267)) -((-4109 (*1 *1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)))) (-4109 (*1 *1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-3929 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-267 *2)) (-4 *2 (-1159)))) (-3929 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-3159 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-1607 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-3724 (*1 *1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-811))))) -(-13 (-616 |t#1|) (-10 -8 (-6 -4311) (-15 -4109 ($ $ |t#1|)) (-15 -4109 ($ $ $)) (-15 -1608 ($ $ (-526))) (-15 -1608 ($ $ (-1172 (-526)))) (-15 -3724 ($ (-1 (-111) |t#1|) $)) (-15 -3929 ($ |t#1| $ (-526))) (-15 -3929 ($ $ $ (-526))) (-15 -3159 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -1607 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -3724 ($ |t#1| $)) (-15 -2424 ($ $))) |%noBranch|) (IF (|has| |t#1| (-811)) (-15 -3159 ($ $ $)) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +(3159674 . 3430739805) +((-3001 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-2980 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2089 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-1185 (-548)) |#2|) 34)) (-3499 (($ $) 59)) (-2061 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2621 (((-548) (-1 (-112) |#2|) $) 22) (((-548) |#2| $) NIL) (((-548) |#2| $ (-548)) 73)) (-1934 (((-619 |#2|) $) 13)) (-2913 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3960 (($ (-1 |#2| |#2|) $) 29)) (-2540 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2387 (($ |#2| $ (-548)) NIL) (($ $ $ (-548)) 50)) (-4030 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-3537 (((-112) (-1 (-112) |#2|) $) 21)) (-3171 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-548)) NIL) (($ $ (-1185 (-548))) 49)) (-2008 (($ $ (-548)) 56) (($ $ (-1185 (-548))) 55)) (-3945 (((-745) (-1 (-112) |#2|) $) 26) (((-745) |#2| $) NIL)) (-2990 (($ $ $ (-548)) 52)) (-2113 (($ $) 51)) (-3754 (($ (-619 |#2|)) 53)) (-1831 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-619 $)) 62)) (-3743 (((-832) $) 69)) (-3548 (((-112) (-1 (-112) |#2|) $) 20)) (-2214 (((-112) $ $) 72)) (-2234 (((-112) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2214 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -2990 (|#1| |#1| |#1| (-548))) (-15 -3001 ((-112) |#1|)) (-15 -2913 (|#1| |#1| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2089 (|#2| |#1| (-1185 (-548)) |#2|)) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -2089 (|#2| |#1| (-548) |#2|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -1934 ((-619 |#2|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2113 (|#1| |#1|))) (-19 |#2|) (-1172)) (T -18)) +NIL +(-10 -8 (-15 -2214 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -2990 (|#1| |#1| |#1| (-548))) (-15 -3001 ((-112) |#1|)) (-15 -2913 (|#1| |#1| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2089 (|#2| |#1| (-1185 (-548)) |#2|)) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -2089 (|#2| |#1| (-548) |#2|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -1934 ((-619 |#2|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2113 (|#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-2621 (((-548) (-1 (-112) |#1|) $) 97) (((-548) |#1| $) 96 (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) 95 (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 82 (|has| |#1| (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-19 |#1|) (-138) (-1172)) (T -19)) +NIL +(-13 (-365 |t#1|) (-10 -7 (-6 -4328))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-365 |#1|) . T) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) +((-4104 (((-3 $ "failed") $ $) 12)) (-2299 (($ $) NIL) (($ $ $) 9)) (* (($ (-890) $) NIL) (($ (-745) $) 16) (($ (-548) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -4104 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -4104 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20))) +(((-21) (-138)) (T -21)) +((-2299 (*1 *1 *1) (-4 *1 (-21))) (-2299 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-548))))) +(-13 (-130) (-10 -8 (-15 -2299 ($ $)) (-15 -2299 ($ $ $)) (-15 * ($ (-548) $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3324 (((-112) $) 10)) (-3030 (($) 15)) (* (($ (-890) $) 14) (($ (-745) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 -3030 (|#1|)) (-15 * (|#1| (-890) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 -3030 (|#1|)) (-15 * (|#1| (-890) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15))) +(((-23) (-138)) (T -23)) +((-3107 (*1 *1) (-4 *1 (-23))) (-3030 (*1 *1) (-4 *1 (-23))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-745))))) +(-13 (-25) (-10 -8 (-15 (-3107) ($) -2325) (-15 -3030 ($) -2325) (-15 -3324 ((-112) $)) (-15 * ($ (-745) $)))) +(((-25) . T) ((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((* (($ (-890) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-890) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-890) |#1|))) +((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13))) +(((-25) (-138)) (T -25)) +((-2290 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890))))) +(-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)) (-15 * ($ (-890) $)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-1786 (((-619 $) (-921 $)) 29) (((-619 $) (-1131 $)) 16) (((-619 $) (-1131 $) (-1135)) 20)) (-1262 (($ (-921 $)) 27) (($ (-1131 $)) 11) (($ (-1131 $) (-1135)) 54)) (-1274 (((-619 $) (-921 $)) 30) (((-619 $) (-1131 $)) 18) (((-619 $) (-1131 $) (-1135)) 19)) (-3263 (($ (-921 $)) 28) (($ (-1131 $)) 13) (($ (-1131 $) (-1135)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1786 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1786 ((-619 |#1|) (-1131 |#1|))) (-15 -1786 ((-619 |#1|) (-921 |#1|))) (-15 -1262 (|#1| (-1131 |#1|) (-1135))) (-15 -1262 (|#1| (-1131 |#1|))) (-15 -1262 (|#1| (-921 |#1|))) (-15 -1274 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1274 ((-619 |#1|) (-1131 |#1|))) (-15 -1274 ((-619 |#1|) (-921 |#1|))) (-15 -3263 (|#1| (-1131 |#1|) (-1135))) (-15 -3263 (|#1| (-1131 |#1|))) (-15 -3263 (|#1| (-921 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1786 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1786 ((-619 |#1|) (-1131 |#1|))) (-15 -1786 ((-619 |#1|) (-921 |#1|))) (-15 -1262 (|#1| (-1131 |#1|) (-1135))) (-15 -1262 (|#1| (-1131 |#1|))) (-15 -1262 (|#1| (-921 |#1|))) (-15 -1274 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1274 ((-619 |#1|) (-1131 |#1|))) (-15 -1274 ((-619 |#1|) (-921 |#1|))) (-15 -3263 (|#1| (-1131 |#1|) (-1135))) (-15 -3263 (|#1| (-1131 |#1|))) (-15 -3263 (|#1| (-921 |#1|)))) +((-3730 (((-112) $ $) 7)) (-1786 (((-619 $) (-921 $)) 77) (((-619 $) (-1131 $)) 76) (((-619 $) (-1131 $) (-1135)) 75)) (-1262 (($ (-921 $)) 80) (($ (-1131 $)) 79) (($ (-1131 $) (-1135)) 78)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-1926 (($ $) 89)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1274 (((-619 $) (-921 $)) 83) (((-619 $) (-1131 $)) 82) (((-619 $) (-1131 $) (-1135)) 81)) (-3263 (($ (-921 $)) 86) (($ (-1131 $)) 85) (($ (-1131 $) (-1135)) 84)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 88)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66) (($ $ (-399 (-548))) 87)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) +(((-27) (-138)) (T -27)) +((-3263 (*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) (-3263 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1274 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) (-1262 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) (-5 *2 (-619 *1))))) +(-13 (-355) (-971) (-10 -8 (-15 -3263 ($ (-921 $))) (-15 -3263 ($ (-1131 $))) (-15 -3263 ($ (-1131 $) (-1135))) (-15 -1274 ((-619 $) (-921 $))) (-15 -1274 ((-619 $) (-1131 $))) (-15 -1274 ((-619 $) (-1131 $) (-1135))) (-15 -1262 ($ (-921 $))) (-15 -1262 ($ (-1131 $))) (-15 -1262 ($ (-1131 $) (-1135))) (-15 -1786 ((-619 $) (-921 $))) (-15 -1786 ((-619 $) (-1131 $))) (-15 -1786 ((-619 $) (-1131 $) (-1135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-971) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-1786 (((-619 $) (-921 $)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 $) (-1135)) 50) (((-619 $) $) 19) (((-619 $) $ (-1135)) 41)) (-1262 (($ (-921 $)) NIL) (($ (-1131 $)) NIL) (($ (-1131 $) (-1135)) 52) (($ $) 17) (($ $ (-1135)) 37)) (-1274 (((-619 $) (-921 $)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 $) (-1135)) 48) (((-619 $) $) 15) (((-619 $) $ (-1135)) 43)) (-3263 (($ (-921 $)) NIL) (($ (-1131 $)) NIL) (($ (-1131 $) (-1135)) NIL) (($ $) 12) (($ $ (-1135)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1786 ((-619 |#1|) |#1| (-1135))) (-15 -1262 (|#1| |#1| (-1135))) (-15 -1786 ((-619 |#1|) |#1|)) (-15 -1262 (|#1| |#1|)) (-15 -1274 ((-619 |#1|) |#1| (-1135))) (-15 -3263 (|#1| |#1| (-1135))) (-15 -1274 ((-619 |#1|) |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -1786 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1786 ((-619 |#1|) (-1131 |#1|))) (-15 -1786 ((-619 |#1|) (-921 |#1|))) (-15 -1262 (|#1| (-1131 |#1|) (-1135))) (-15 -1262 (|#1| (-1131 |#1|))) (-15 -1262 (|#1| (-921 |#1|))) (-15 -1274 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1274 ((-619 |#1|) (-1131 |#1|))) (-15 -1274 ((-619 |#1|) (-921 |#1|))) (-15 -3263 (|#1| (-1131 |#1|) (-1135))) (-15 -3263 (|#1| (-1131 |#1|))) (-15 -3263 (|#1| (-921 |#1|)))) (-29 |#2|) (-13 (-821) (-540))) (T -28)) +NIL +(-10 -8 (-15 -1786 ((-619 |#1|) |#1| (-1135))) (-15 -1262 (|#1| |#1| (-1135))) (-15 -1786 ((-619 |#1|) |#1|)) (-15 -1262 (|#1| |#1|)) (-15 -1274 ((-619 |#1|) |#1| (-1135))) (-15 -3263 (|#1| |#1| (-1135))) (-15 -1274 ((-619 |#1|) |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -1786 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1786 ((-619 |#1|) (-1131 |#1|))) (-15 -1786 ((-619 |#1|) (-921 |#1|))) (-15 -1262 (|#1| (-1131 |#1|) (-1135))) (-15 -1262 (|#1| (-1131 |#1|))) (-15 -1262 (|#1| (-921 |#1|))) (-15 -1274 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1274 ((-619 |#1|) (-1131 |#1|))) (-15 -1274 ((-619 |#1|) (-921 |#1|))) (-15 -3263 (|#1| (-1131 |#1|) (-1135))) (-15 -3263 (|#1| (-1131 |#1|))) (-15 -3263 (|#1| (-921 |#1|)))) +((-3730 (((-112) $ $) 7)) (-1786 (((-619 $) (-921 $)) 77) (((-619 $) (-1131 $)) 76) (((-619 $) (-1131 $) (-1135)) 75) (((-619 $) $) 123) (((-619 $) $ (-1135)) 121)) (-1262 (($ (-921 $)) 80) (($ (-1131 $)) 79) (($ (-1131 $) (-1135)) 78) (($ $) 124) (($ $ (-1135)) 122)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1135)) $) 198)) (-1884 (((-399 (-1131 $)) $ (-591 $)) 230 (|has| |#1| (-540)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-1806 (((-619 (-591 $)) $) 161)) (-4104 (((-3 $ "failed") $ $) 19)) (-3854 (($ $ (-619 (-591 $)) (-619 $)) 151) (($ $ (-619 (-286 $))) 150) (($ $ (-286 $)) 149)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-1926 (($ $) 89)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1274 (((-619 $) (-921 $)) 83) (((-619 $) (-1131 $)) 82) (((-619 $) (-1131 $) (-1135)) 81) (((-619 $) $) 127) (((-619 $) $ (-1135)) 125)) (-3263 (($ (-921 $)) 86) (($ (-1131 $)) 85) (($ (-1131 $) (-1135)) 84) (($ $) 128) (($ $ (-1135)) 126)) (-2441 (((-3 (-921 |#1|) "failed") $) 248 (|has| |#1| (-1016))) (((-3 (-399 (-921 |#1|)) "failed") $) 232 (|has| |#1| (-540))) (((-3 |#1| "failed") $) 194) (((-3 (-548) "failed") $) 192 (|has| |#1| (-1007 (-548)))) (((-3 (-1135) "failed") $) 185) (((-3 (-591 $) "failed") $) 136) (((-3 (-399 (-548)) "failed") $) 120 (-1524 (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548))))))) (-2375 (((-921 |#1|) $) 249 (|has| |#1| (-1016))) (((-399 (-921 |#1|)) $) 233 (|has| |#1| (-540))) ((|#1| $) 195) (((-548) $) 191 (|has| |#1| (-1007 (-548)))) (((-1135) $) 186) (((-591 $) $) 137) (((-399 (-548)) $) 119 (-1524 (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548))))))) (-1945 (($ $ $) 53)) (-1608 (((-663 |#1|) (-663 $)) 238 (|has| |#1| (-1016))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 237 (|has| |#1| (-1016))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 118 (-1524 (-1723 (|has| |#1| (-1016)) (|has| |#1| (-615 (-548)))) (-1723 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (((-663 (-548)) (-663 $)) 117 (-1524 (-1723 (|has| |#1| (-1016)) (|has| |#1| (-615 (-548)))) (-1723 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 190 (|has| |#1| (-855 (-371)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 189 (|has| |#1| (-855 (-548))))) (-2142 (($ (-619 $)) 155) (($ $) 154)) (-1744 (((-619 (-114)) $) 162)) (-1402 (((-114) (-114)) 163)) (-2266 (((-112) $) 30)) (-3705 (((-112) $) 183 (|has| $ (-1007 (-548))))) (-2002 (($ $) 215 (|has| |#1| (-1016)))) (-2470 (((-1087 |#1| (-591 $)) $) 214 (|has| |#1| (-1016)))) (-2154 (($ $ (-548)) 88)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1724 (((-1131 $) (-591 $)) 180 (|has| $ (-1016)))) (-1795 (($ $ $) 134)) (-3091 (($ $ $) 133)) (-2540 (($ (-1 $ $) (-591 $)) 169)) (-1753 (((-3 (-591 $) "failed") $) 159)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-1870 (((-619 (-591 $)) $) 160)) (-1409 (($ (-114) (-619 $)) 168) (($ (-114) $) 167)) (-3939 (((-3 (-619 $) "failed") $) 209 (|has| |#1| (-1075)))) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $) 218 (|has| |#1| (-1016)))) (-3927 (((-3 (-619 $) "failed") $) 211 (|has| |#1| (-25)))) (-2477 (((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3954 (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135)) 217 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114)) 216 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $) 210 (|has| |#1| (-1075)))) (-1518 (((-112) $ (-1135)) 166) (((-112) $ (-114)) 165)) (-2153 (($ $) 67)) (-3926 (((-745) $) 158)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 196)) (-2175 ((|#1| $) 197)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1734 (((-112) $ (-1135)) 171) (((-112) $ $) 170)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3718 (((-112) $) 182 (|has| $ (-1007 (-548))))) (-2460 (($ $ (-1135) (-745) (-1 $ $)) 222 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) 221 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 220 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 219 (|has| |#1| (-1016))) (($ $ (-619 (-114)) (-619 $) (-1135)) 208 (|has| |#1| (-593 (-524)))) (($ $ (-114) $ (-1135)) 207 (|has| |#1| (-593 (-524)))) (($ $) 206 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135))) 205 (|has| |#1| (-593 (-524)))) (($ $ (-1135)) 204 (|has| |#1| (-593 (-524)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-619 $))) 178) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 177) (($ $ (-619 (-114)) (-619 (-1 $ $))) 176) (($ $ (-1135) (-1 $ $)) 175) (($ $ (-1135) (-1 $ (-619 $))) 174) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 173) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 172) (($ $ (-619 $) (-619 $)) 143) (($ $ $ $) 142) (($ $ (-286 $)) 141) (($ $ (-619 (-286 $))) 140) (($ $ (-619 (-591 $)) (-619 $)) 139) (($ $ (-591 $) $) 138)) (-4077 (((-745) $) 56)) (-3171 (($ (-114) (-619 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-1762 (($ $ $) 157) (($ $) 156)) (-4050 (($ $ (-1135)) 246 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 245 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 244 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) 243 (|has| |#1| (-1016)))) (-1993 (($ $) 225 (|has| |#1| (-540)))) (-2480 (((-1087 |#1| (-591 $)) $) 224 (|has| |#1| (-540)))) (-3287 (($ $) 181 (|has| $ (-1016)))) (-2591 (((-524) $) 252 (|has| |#1| (-593 (-524)))) (($ (-410 $)) 223 (|has| |#1| (-540))) (((-861 (-371)) $) 188 (|has| |#1| (-593 (-861 (-371))))) (((-861 (-548)) $) 187 (|has| |#1| (-593 (-861 (-548)))))) (-2128 (($ $ $) 251 (|has| |#1| (-464)))) (-3652 (($ $ $) 250 (|has| |#1| (-464)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ (-921 |#1|)) 247 (|has| |#1| (-1016))) (($ (-399 (-921 |#1|))) 231 (|has| |#1| (-540))) (($ (-399 (-921 (-399 |#1|)))) 229 (|has| |#1| (-540))) (($ (-921 (-399 |#1|))) 228 (|has| |#1| (-540))) (($ (-399 |#1|)) 227 (|has| |#1| (-540))) (($ (-1087 |#1| (-591 $))) 213 (|has| |#1| (-1016))) (($ |#1|) 193) (($ (-1135)) 184) (($ (-591 $)) 135)) (-4017 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-3528 (($ (-619 $)) 153) (($ $) 152)) (-1392 (((-112) (-114)) 164)) (-3290 (((-112) $ $) 37)) (-2201 (($ (-1135) (-619 $)) 203) (($ (-1135) $ $ $ $) 202) (($ (-1135) $ $ $) 201) (($ (-1135) $ $) 200) (($ (-1135) $) 199)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1135)) 242 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 241 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 240 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) 239 (|has| |#1| (-1016)))) (-2262 (((-112) $ $) 131)) (-2241 (((-112) $ $) 130)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 132)) (-2234 (((-112) $ $) 129)) (-2309 (($ $ $) 62) (($ (-1087 |#1| (-591 $)) (-1087 |#1| (-591 $))) 226 (|has| |#1| (-540)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66) (($ $ (-399 (-548))) 87)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-169))) (($ |#1| $) 234 (|has| |#1| (-169))))) +(((-29 |#1|) (-138) (-13 (-821) (-540))) (T -29)) +((-3263 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-540))))) (-1274 (*1 *2 *1) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) (-3263 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-540))))) (-1274 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4)))) (-1262 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-540))))) (-1786 (*1 *2 *1) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) (-1262 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-540))))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-422 |t#1|) (-10 -8 (-15 -3263 ($ $)) (-15 -1274 ((-619 $) $)) (-15 -3263 ($ $ (-1135))) (-15 -1274 ((-619 $) $ (-1135))) (-15 -1262 ($ $)) (-15 -1786 ((-619 $) $)) (-15 -1262 ($ $ (-1135))) (-15 -1786 ((-619 $) $ (-1135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-169)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548)))) ((-236) . T) ((-282) . T) ((-299) . T) ((-301 $) . T) ((-294) . T) ((-355) . T) ((-369 |#1|) |has| |#1| (-1016)) ((-392 |#1|) . T) ((-403 |#1|) . T) ((-422 |#1|) . T) ((-443) . T) ((-464) |has| |#1| (-464)) ((-504 (-591 $) $) . T) ((-504 $ $) . T) ((-540) . T) ((-622 #0#) . T) ((-622 |#1|) |has| |#1| (-169)) ((-622 $) . T) ((-615 (-548)) -12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) ((-615 |#1|) |has| |#1| (-1016)) ((-692 #0#) . T) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-869 (-1135)) |has| |#1| (-1016)) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-853 |#1|) . T) ((-889) . T) ((-971) . T) ((-1007 (-399 (-548))) -1524 (|has| |#1| (-1007 (-399 (-548)))) (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) ((-1007 (-399 (-921 |#1|))) |has| |#1| (-540)) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 (-591 $)) . T) ((-1007 (-921 |#1|)) |has| |#1| (-1016)) ((-1007 (-1135)) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) |has| |#1| (-169)) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1172) . T) ((-1176) . T)) +((-3934 (((-1058 (-218)) $) NIL)) (-3921 (((-1058 (-218)) $) NIL)) (-3933 (($ $ (-218)) 125)) (-3625 (($ (-921 (-548)) (-1135) (-1135) (-1058 (-399 (-548))) (-1058 (-399 (-548)))) 83)) (-3360 (((-619 (-619 (-912 (-218)))) $) 137)) (-3743 (((-832) $) 149))) +(((-30) (-13 (-924) (-10 -8 (-15 -3625 ($ (-921 (-548)) (-1135) (-1135) (-1058 (-399 (-548))) (-1058 (-399 (-548))))) (-15 -3933 ($ $ (-218)))))) (T -30)) +((-3625 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-921 (-548))) (-5 *3 (-1135)) (-5 *4 (-1058 (-399 (-548)))) (-5 *1 (-30)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-30))))) +(-13 (-924) (-10 -8 (-15 -3625 ($ (-921 (-548)) (-1135) (-1135) (-1058 (-399 (-548))) (-1058 (-399 (-548))))) (-15 -3933 ($ $ (-218))))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 11)) (-3957 (((-1140) $) 9)) (-2214 (((-112) $ $) NIL))) +(((-31) (-13 (-1047) (-10 -8 (-15 -3957 ((-1140) $)) (-15 -2286 ((-1140) $))))) (T -31)) +((-3957 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31))))) +(-13 (-1047) (-10 -8 (-15 -3957 ((-1140) $)) (-15 -2286 ((-1140) $)))) +((-3263 ((|#2| (-1131 |#2|) (-1135)) 43)) (-1402 (((-114) (-114)) 56)) (-1724 (((-1131 |#2|) (-591 |#2|)) 133 (|has| |#1| (-1007 (-548))))) (-2016 ((|#2| |#1| (-548)) 122 (|has| |#1| (-1007 (-548))))) (-3636 ((|#2| (-1131 |#2|) |#2|) 30)) (-2005 (((-832) (-619 |#2|)) 85)) (-3287 ((|#2| |#2|) 129 (|has| |#1| (-1007 (-548))))) (-1392 (((-112) (-114)) 18)) (** ((|#2| |#2| (-399 (-548))) 96 (|has| |#1| (-1007 (-548)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3263 (|#2| (-1131 |#2|) (-1135))) (-15 -1402 ((-114) (-114))) (-15 -1392 ((-112) (-114))) (-15 -3636 (|#2| (-1131 |#2|) |#2|)) (-15 -2005 ((-832) (-619 |#2|))) (IF (|has| |#1| (-1007 (-548))) (PROGN (-15 ** (|#2| |#2| (-399 (-548)))) (-15 -1724 ((-1131 |#2|) (-591 |#2|))) (-15 -3287 (|#2| |#2|)) (-15 -2016 (|#2| |#1| (-548)))) |%noBranch|)) (-13 (-821) (-540)) (-422 |#1|)) (T -32)) +((-2016 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-4 *2 (-422 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1007 *4)) (-4 *3 (-13 (-821) (-540))))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-1007 (-548))) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-32 *3 *2)) (-4 *2 (-422 *3)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-422 *4)) (-4 *4 (-1007 (-548))) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-1131 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-399 (-548))) (-4 *4 (-1007 (-548))) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-32 *4 *2)) (-4 *2 (-422 *4)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-422 *4)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-832)) (-5 *1 (-32 *4 *5)))) (-3636 (*1 *2 *3 *2) (-12 (-5 *3 (-1131 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-32 *4 *2)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-422 *4)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-32 *3 *4)) (-4 *4 (-422 *3)))) (-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *2)) (-5 *4 (-1135)) (-4 *2 (-422 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-821) (-540)))))) +(-10 -7 (-15 -3263 (|#2| (-1131 |#2|) (-1135))) (-15 -1402 ((-114) (-114))) (-15 -1392 ((-112) (-114))) (-15 -3636 (|#2| (-1131 |#2|) |#2|)) (-15 -2005 ((-832) (-619 |#2|))) (IF (|has| |#1| (-1007 (-548))) (PROGN (-15 ** (|#2| |#2| (-399 (-548)))) (-15 -1724 ((-1131 |#2|) (-591 |#2|))) (-15 -3287 (|#2| |#2|)) (-15 -2016 (|#2| |#1| (-548)))) |%noBranch|)) +((-2028 (((-112) $ (-745)) 16)) (-3030 (($) 10)) (-4282 (((-112) $ (-745)) 15)) (-4248 (((-112) $ (-745)) 14)) (-2039 (((-112) $ $) 8)) (-1616 (((-112) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -3030 (|#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745))) (-15 -1616 ((-112) |#1|)) (-15 -2039 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3030 (|#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745))) (-15 -1616 ((-112) |#1|)) (-15 -2039 ((-112) |#1| |#1|))) +((-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-4282 (((-112) $ (-745)) 9)) (-4248 (((-112) $ (-745)) 10)) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2113 (($ $) 13)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-34) (-138)) (T -34)) +((-2039 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2113 (*1 *1 *1) (-4 *1 (-34))) (-3319 (*1 *1) (-4 *1 (-34))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4248 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-4282 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-2028 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-3030 (*1 *1) (-4 *1 (-34))) (-3643 (*1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-34)) (-5 *2 (-745))))) +(-13 (-1172) (-10 -8 (-15 -2039 ((-112) $ $)) (-15 -2113 ($ $)) (-15 -3319 ($)) (-15 -1616 ((-112) $)) (-15 -4248 ((-112) $ (-745))) (-15 -4282 ((-112) $ (-745))) (-15 -2028 ((-112) $ (-745))) (-15 -3030 ($) -2325) (IF (|has| $ (-6 -4327)) (-15 -3643 ((-745) $)) |%noBranch|))) +(((-1172) . T)) +((-2145 (($ $) 11)) (-2122 (($ $) 10)) (-2170 (($ $) 9)) (-4026 (($ $) 8)) (-2158 (($ $) 7)) (-2132 (($ $) 6))) +(((-35) (-138)) (T -35)) +((-2145 (*1 *1 *1) (-4 *1 (-35))) (-2122 (*1 *1 *1) (-4 *1 (-35))) (-2170 (*1 *1 *1) (-4 *1 (-35))) (-4026 (*1 *1 *1) (-4 *1 (-35))) (-2158 (*1 *1 *1) (-4 *1 (-35))) (-2132 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -2132 ($ $)) (-15 -2158 ($ $)) (-15 -4026 ($ $)) (-15 -2170 ($ $)) (-15 -2122 ($ $)) (-15 -2145 ($ $)))) +((-3730 (((-112) $ $) 19 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4056 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 125)) (-1988 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 148)) (-1272 (($ $) 146)) (-3539 (($) 72) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 71)) (-4149 (((-1223) $ |#1| |#1|) 99 (|has| $ (-6 -4328))) (((-1223) $ (-548) (-548)) 178 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 159 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2980 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 200 (|has| $ (-6 -4328))) (($ $) 199 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2028 (((-112) $ (-745)) 8)) (-4192 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 134 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 155 (|has| $ (-6 -4328)))) (-3614 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 157 (|has| $ (-6 -4328)))) (-3635 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 153 (|has| $ (-6 -4328)))) (-2089 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 189 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-1185 (-548)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 160 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "last" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 158 (|has| $ (-6 -4328))) (($ $ "rest" $) 156 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "first" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 154 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "value" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 133 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 132 (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 45 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 216)) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 55 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 175 (|has| $ (-6 -4327)))) (-1975 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 147)) (-3255 (((-3 |#2| "failed") |#1| $) 61)) (-3030 (($) 7 T CONST)) (-3499 (($ $) 201 (|has| $ (-6 -4328)))) (-2796 (($ $) 211)) (-3465 (($ $ (-745)) 142) (($ $) 140)) (-2969 (($ $) 214 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3484 (($ $) 58 (-1524 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))) (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 46 (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 220) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 215 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 54 (|has| $ (-6 -4327))) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 174 (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 56 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 53 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 52 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 176 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 173 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 172 (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 190 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) 88) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 188)) (-3700 (((-112) $) 192)) (-2621 (((-548) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 208) (((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 207 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) (((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 206 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 30 (|has| $ (-6 -4327))) (((-619 |#2|) $) 79 (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 114 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 123)) (-4213 (((-112) $ $) 131 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3550 (($ (-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 169)) (-4282 (((-112) $ (-745)) 9)) (-4171 ((|#1| $) 96 (|has| |#1| (-821))) (((-548) $) 180 (|has| (-548) (-821)))) (-1795 (($ $ $) 198 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2965 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2913 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 29 (|has| $ (-6 -4327))) (((-619 |#2|) $) 80 (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 115 (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327)))) (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-4181 ((|#1| $) 95 (|has| |#1| (-821))) (((-548) $) 181 (|has| (-548) (-821)))) (-3091 (($ $ $) 197 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 34 (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4328))) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 110 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 109)) (-3309 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 225)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 128)) (-3010 (((-112) $) 124)) (-2546 (((-1118) $) 22 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3724 (($ $ (-745)) 145) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 143)) (-4043 (((-619 |#1|) $) 63)) (-4233 (((-112) |#1| $) 64)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 39)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 40) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 219) (($ $ $ (-548)) 218)) (-2387 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 162) (($ $ $ (-548)) 161)) (-4201 (((-619 |#1|) $) 93) (((-619 (-548)) $) 183)) (-4212 (((-112) |#1| $) 92) (((-112) (-548) $) 184)) (-3932 (((-1082) $) 21 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3453 ((|#2| $) 97 (|has| |#1| (-821))) (($ $ (-745)) 139) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 137)) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 51) (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 171)) (-4159 (($ $ |#2|) 98 (|has| $ (-6 -4328))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 179 (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 41)) (-3712 (((-112) $) 191)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 32 (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 112 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) 26 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 25 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 24 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 23 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) 83 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 121 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 120 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 119 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) 118 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 182 (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4223 (((-619 |#2|) $) 91) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 185)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 187) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 186) (($ $ (-1185 (-548))) 165) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "first") 138) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "value") 126)) (-4234 (((-548) $ $) 129)) (-2801 (($) 49) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 48)) (-2668 (($ $ (-548)) 222) (($ $ (-1185 (-548))) 221)) (-2008 (($ $ (-548)) 164) (($ $ (-1185 (-548))) 163)) (-2740 (((-112) $) 127)) (-3672 (($ $) 151)) (-3648 (($ $) 152 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 150)) (-3693 (($ $) 149)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 31 (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-745) |#2| $) 81 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 113 (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) 202 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524)))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 50) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 170)) (-3659 (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 224) (($ $ $) 223)) (-1831 (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 168) (($ (-619 $)) 167) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 136) (($ $ $) 135)) (-3743 (((-832) $) 18 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))))) (-2956 (((-619 $) $) 122)) (-4224 (((-112) $ $) 130 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 42)) (-3733 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") |#1| $) 108)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 33 (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 111 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 195 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2241 (((-112) $ $) 194 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2214 (((-112) $ $) 20 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-2252 (((-112) $ $) 196 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2234 (((-112) $ $) 193 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-36 |#1| |#2|) (-138) (-1063) (-1063)) (T -36)) +((-3733 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-2 (|:| -3156 *3) (|:| -1657 *4)))))) +(-13 (-1148 |t#1| |t#2|) (-640 (-2 (|:| -3156 |t#1|) (|:| -1657 |t#2|))) (-10 -8 (-15 -3733 ((-3 (-2 (|:| -3156 |t#1|) (|:| -1657 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((-101) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821))) ((-592 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-592 (-832))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))) ((-149 #1=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((-593 (-524)) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))) ((-222 #0#) . T) ((-228 #0#) . T) ((-278 #2=(-548) #1#) . T) ((-278 |#1| |#2|) . T) ((-280 #2# #1#) . T) ((-280 |#1| |#2|) . T) ((-301 #1#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-274 #1#) . T) ((-365 #1#) . T) ((-480 #1#) . T) ((-480 |#2|) . T) ((-583 #2# #1#) . T) ((-583 |#1| |#2|) . T) ((-504 #1# #1#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-589 |#1| |#2|) . T) ((-625 #1#) . T) ((-640 #1#) . T) ((-821) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)) ((-979 #1#) . T) ((-1063) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821))) ((-1109 #1#) . T) ((-1148 |#1| |#2|) . T) ((-1172) . T) ((-1206 #1#) . T)) +((-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-38 |#2|) (-169)) (T -37)) +NIL +(-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-38 |#1|) (-138) (-169)) (T -38)) +((-3743 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169))))) +(-13 (-1016) (-692 |t#1|) (-10 -8 (-15 -3743 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3530 (((-410 |#1|) |#1|) 41)) (-1915 (((-410 |#1|) |#1|) 30) (((-410 |#1|) |#1| (-619 (-48))) 33)) (-2053 (((-112) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1| (-619 (-48)))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -3530 ((-410 |#1|) |#1|)) (-15 -2053 ((-112) |#1|))) (-1194 (-48))) (T -39)) +((-2053 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-3530 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48)))))) +(-10 -7 (-15 -1915 ((-410 |#1|) |#1| (-619 (-48)))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -3530 ((-410 |#1|) |#1|)) (-15 -2053 ((-112) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-1562 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| (-399 |#2|) (-355)))) (-3303 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-3279 (((-112) $) NIL (|has| (-399 |#2|) (-355)))) (-2350 (((-663 (-399 |#2|)) (-1218 $)) NIL) (((-663 (-399 |#2|))) NIL)) (-2707 (((-399 |#2|) $) NIL)) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-399 |#2|) (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-2634 (((-410 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4087 (((-112) $ $) NIL (|has| (-399 |#2|) (-355)))) (-3423 (((-745)) NIL (|has| (-399 |#2|) (-360)))) (-3509 (((-112)) NIL)) (-3497 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| (-399 |#2|) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-3 (-399 |#2|) "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| (-399 |#2|) (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-399 |#2|) $) NIL)) (-2455 (($ (-1218 (-399 |#2|)) (-1218 $)) NIL) (($ (-1218 (-399 |#2|))) 57) (($ (-1218 |#2|) |#2|) 125)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-399 |#2|) (-341)))) (-1945 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2341 (((-663 (-399 |#2|)) $ (-1218 $)) NIL) (((-663 (-399 |#2|)) $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-399 |#2|))) (|:| |vec| (-1218 (-399 |#2|)))) (-663 $) (-1218 $)) NIL) (((-663 (-399 |#2|)) (-663 $)) NIL)) (-3409 (((-1218 $) (-1218 $)) NIL)) (-2061 (($ |#3|) NIL) (((-3 $ "failed") (-399 |#3|)) NIL (|has| (-399 |#2|) (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-1479 (((-619 (-619 |#1|))) NIL (|has| |#1| (-360)))) (-3542 (((-112) |#1| |#1|) NIL)) (-2103 (((-890)) NIL)) (-2545 (($) NIL (|has| (-399 |#2|) (-360)))) (-3485 (((-112)) NIL)) (-3473 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1922 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| (-399 |#2|) (-355)))) (-4065 (($ $) NIL)) (-2771 (($) NIL (|has| (-399 |#2|) (-341)))) (-3727 (((-112) $) NIL (|has| (-399 |#2|) (-341)))) (-2208 (($ $ (-745)) NIL (|has| (-399 |#2|) (-341))) (($ $) NIL (|has| (-399 |#2|) (-341)))) (-1271 (((-112) $) NIL (|has| (-399 |#2|) (-355)))) (-1672 (((-890) $) NIL (|has| (-399 |#2|) (-341))) (((-807 (-890)) $) NIL (|has| (-399 |#2|) (-341)))) (-2266 (((-112) $) NIL)) (-1400 (((-745)) NIL)) (-3421 (((-1218 $) (-1218 $)) 102)) (-3910 (((-399 |#2|) $) NIL)) (-1492 (((-619 (-921 |#1|)) (-1135)) NIL (|has| |#1| (-355)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-399 |#2|) (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-399 |#2|) (-355)))) (-2898 ((|#3| $) NIL (|has| (-399 |#2|) (-355)))) (-2855 (((-890) $) NIL (|has| (-399 |#2|) (-360)))) (-2050 ((|#3| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| (-399 |#2|) (-355))) (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2546 (((-1118) $) NIL)) (-2064 (((-1223) (-745)) 79)) (-3349 (((-663 (-399 |#2|))) 51)) (-3383 (((-663 (-399 |#2|))) 44)) (-2153 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-1544 (($ (-1218 |#2|) |#2|) 126)) (-3365 (((-663 (-399 |#2|))) 45)) (-3396 (((-663 (-399 |#2|))) 43)) (-1535 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1553 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 64)) (-3463 (((-1218 $)) 42)) (-3478 (((-1218 $)) 41)) (-3451 (((-112) $) NIL)) (-3441 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3410 (($) NIL (|has| (-399 |#2|) (-341)) CONST)) (-3337 (($ (-890)) NIL (|has| (-399 |#2|) (-360)))) (-1515 (((-3 |#2| "failed")) NIL)) (-3932 (((-1082) $) NIL)) (-3564 (((-745)) NIL)) (-4160 (($) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-399 |#2|) (-355)))) (-3587 (($ (-619 $)) NIL (|has| (-399 |#2|) (-355))) (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-399 |#2|) (-341)))) (-1915 (((-410 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-399 |#2|) (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| (-399 |#2|) (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4077 (((-745) $) NIL (|has| (-399 |#2|) (-355)))) (-3171 ((|#1| $ |#1| |#1|) NIL)) (-1525 (((-3 |#2| "failed")) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1566 (((-399 |#2|) (-1218 $)) NIL) (((-399 |#2|)) 39)) (-2217 (((-745) $) NIL (|has| (-399 |#2|) (-341))) (((-3 (-745) "failed") $ $) NIL (|has| (-399 |#2|) (-341)))) (-4050 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2257 (((-663 (-399 |#2|)) (-1218 $) (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355)))) (-3287 ((|#3|) 50)) (-3655 (($) NIL (|has| (-399 |#2|) (-341)))) (-2447 (((-1218 (-399 |#2|)) $ (-1218 $)) NIL) (((-663 (-399 |#2|)) (-1218 $) (-1218 $)) NIL) (((-1218 (-399 |#2|)) $) 58) (((-663 (-399 |#2|)) (-1218 $)) 103)) (-2591 (((-1218 (-399 |#2|)) $) NIL) (($ (-1218 (-399 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-399 |#2|) (-341)))) (-3433 (((-1218 $) (-1218 $)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 |#2|)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| (-399 |#2|) (-1007 (-399 (-548)))) (|has| (-399 |#2|) (-355)))) (($ $) NIL (|has| (-399 |#2|) (-355)))) (-4017 (($ $) NIL (|has| (-399 |#2|) (-341))) (((-3 $ "failed") $) NIL (|has| (-399 |#2|) (-143)))) (-3780 ((|#3| $) NIL)) (-3835 (((-745)) NIL)) (-3531 (((-112)) 37)) (-3518 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2877 (((-1218 $)) 93)) (-3290 (((-112) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1503 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3554 (((-112)) NIL)) (-3107 (($) 16 T CONST)) (-3118 (($) 26 T CONST)) (-3296 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| (-399 |#2|) (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 |#2|)) NIL) (($ (-399 |#2|) $) NIL) (($ (-399 (-548)) $) NIL (|has| (-399 |#2|) (-355))) (($ $ (-399 (-548))) NIL (|has| (-399 |#2|) (-355))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3|) (-10 -7 (-15 -2064 ((-1223) (-745))))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) |#3|) (T -40)) +((-2064 (*1 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-355)) (-4 *5 (-1194 *4)) (-5 *2 (-1223)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1194 (-399 *5))) (-14 *7 *6)))) +(-13 (-334 |#1| |#2| |#3|) (-10 -7 (-15 -2064 ((-1223) (-745))))) +((-2083 ((|#2| |#2|) 48)) (-3372 ((|#2| |#2|) 120 (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-443)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-548)))))) (-3357 ((|#2| |#2|) 87 (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-443)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-548)))))) (-3342 ((|#2| |#2|) 88 (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-443)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-548)))))) (-2115 ((|#2| (-114) |#2| (-745)) 116 (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-443)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-548)))))) (-3328 (((-1131 |#2|) |#2|) 45)) (-2097 ((|#2| |#2| (-619 (-591 |#2|))) 18) ((|#2| |#2| (-619 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2083 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2097 (|#2| |#2| |#2|)) (-15 -2097 (|#2| |#2| (-619 |#2|))) (-15 -2097 (|#2| |#2| (-619 (-591 |#2|)))) (-15 -3328 ((-1131 |#2|) |#2|)) (IF (|has| |#1| (-821)) (IF (|has| |#1| (-443)) (IF (|has| |#1| (-1007 (-548))) (IF (|has| |#2| (-422 |#1|)) (PROGN (-15 -3342 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -3372 (|#2| |#2|)) (-15 -2115 (|#2| (-114) |#2| (-745)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-540) (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 |#1| (-591 $)) $)) (-15 -2480 ((-1087 |#1| (-591 $)) $)) (-15 -3743 ($ (-1087 |#1| (-591 $))))))) (T -41)) +((-2115 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-745)) (-4 *5 (-443)) (-4 *5 (-821)) (-4 *5 (-1007 (-548))) (-4 *5 (-540)) (-5 *1 (-41 *5 *2)) (-4 *2 (-422 *5)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *5 (-591 $)) $)) (-15 -2480 ((-1087 *5 (-591 $)) $)) (-15 -3743 ($ (-1087 *5 (-591 $))))))))) (-3372 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-3342 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-1131 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) (-15 -2480 ((-1087 *4 (-591 $)) $)) (-15 -3743 ($ (-1087 *4 (-591 $))))))))) (-2097 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-591 *2))) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) (-15 -2480 ((-1087 *4 (-591 $)) $)) (-15 -3743 ($ (-1087 *4 (-591 $))))))) (-4 *4 (-540)) (-5 *1 (-41 *4 *2)))) (-2097 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) (-15 -2480 ((-1087 *4 (-591 $)) $)) (-15 -3743 ($ (-1087 *4 (-591 $))))))) (-4 *4 (-540)) (-5 *1 (-41 *4 *2)))) (-2097 (*1 *2 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-2083 (*1 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) +(-10 -7 (-15 -2083 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2097 (|#2| |#2| |#2|)) (-15 -2097 (|#2| |#2| (-619 |#2|))) (-15 -2097 (|#2| |#2| (-619 (-591 |#2|)))) (-15 -3328 ((-1131 |#2|) |#2|)) (IF (|has| |#1| (-821)) (IF (|has| |#1| (-443)) (IF (|has| |#1| (-1007 (-548))) (IF (|has| |#2| (-422 |#1|)) (PROGN (-15 -3342 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -3372 (|#2| |#2|)) (-15 -2115 (|#2| (-114) |#2| (-745)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1915 (((-410 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))) 23) (((-410 |#3|) |#3| (-619 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-410 |#3|) |#3| (-619 (-48)))) (-15 -1915 ((-410 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))))) (-821) (-767) (-918 (-48) |#2| |#1|)) (T -42)) +((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *7 (-918 (-48) *6 *5)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *2 (-410 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-918 (-48) *6 *5))))) +(-10 -7 (-15 -1915 ((-410 |#3|) |#3| (-619 (-48)))) (-15 -1915 ((-410 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))))) +((-3694 (((-745) |#2|) 65)) (-2645 (((-745) |#2|) 68)) (-1804 (((-619 |#2|)) 33)) (-2126 (((-745) |#2|) 67)) (-2656 (((-745) |#2|) 64)) (-3707 (((-745) |#2|) 66)) (-1575 (((-619 (-663 |#1|))) 60)) (-1453 (((-619 |#2|)) 55)) (-1429 (((-619 |#2|) |#2|) 43)) (-1475 (((-619 |#2|)) 57)) (-1462 (((-619 |#2|)) 56)) (-1497 (((-619 (-663 |#1|))) 48)) (-1441 (((-619 |#2|)) 54)) (-3838 (((-619 |#2|) |#2|) 42)) (-3824 (((-619 |#2|)) 50)) (-1585 (((-619 (-663 |#1|))) 61)) (-1485 (((-619 |#2|)) 59)) (-2877 (((-1218 |#2|) (-1218 |#2|)) 84 (|has| |#1| (-299))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2126 ((-745) |#2|)) (-15 -2645 ((-745) |#2|)) (-15 -2656 ((-745) |#2|)) (-15 -3694 ((-745) |#2|)) (-15 -3707 ((-745) |#2|)) (-15 -3824 ((-619 |#2|))) (-15 -3838 ((-619 |#2|) |#2|)) (-15 -1429 ((-619 |#2|) |#2|)) (-15 -1441 ((-619 |#2|))) (-15 -1453 ((-619 |#2|))) (-15 -1462 ((-619 |#2|))) (-15 -1475 ((-619 |#2|))) (-15 -1485 ((-619 |#2|))) (-15 -1497 ((-619 (-663 |#1|)))) (-15 -1575 ((-619 (-663 |#1|)))) (-15 -1585 ((-619 (-663 |#1|)))) (-15 -1804 ((-619 |#2|))) (IF (|has| |#1| (-299)) (-15 -2877 ((-1218 |#2|) (-1218 |#2|))) |%noBranch|)) (-540) (-409 |#1|)) (T -43)) +((-2877 (*1 *2 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-409 *3)) (-4 *3 (-299)) (-4 *3 (-540)) (-5 *1 (-43 *3 *4)))) (-1804 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1585 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1575 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1497 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1485 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1475 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1462 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1453 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1441 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1429 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-3824 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-3707 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-2656 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-2645 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-2126 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4))))) +(-10 -7 (-15 -2126 ((-745) |#2|)) (-15 -2645 ((-745) |#2|)) (-15 -2656 ((-745) |#2|)) (-15 -3694 ((-745) |#2|)) (-15 -3707 ((-745) |#2|)) (-15 -3824 ((-619 |#2|))) (-15 -3838 ((-619 |#2|) |#2|)) (-15 -1429 ((-619 |#2|) |#2|)) (-15 -1441 ((-619 |#2|))) (-15 -1453 ((-619 |#2|))) (-15 -1462 ((-619 |#2|))) (-15 -1475 ((-619 |#2|))) (-15 -1485 ((-619 |#2|))) (-15 -1497 ((-619 (-663 |#1|)))) (-15 -1575 ((-619 (-663 |#1|)))) (-15 -1585 ((-619 (-663 |#1|)))) (-15 -1804 ((-619 |#2|))) (IF (|has| |#1| (-299)) (-15 -2877 ((-1218 |#2|) (-1218 |#2|))) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 |#1|)) (-1218 $)) NIL) (((-1218 (-663 |#1|))) 24)) (-2968 (((-1218 $)) 51)) (-3030 (($) NIL T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (|has| |#1| (-540)))) (-3991 (((-3 $ "failed")) NIL (|has| |#1| (-540)))) (-2413 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-2947 ((|#1| $) NIL)) (-2391 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-3399 (((-3 $ "failed") $) NIL (|has| |#1| (-540)))) (-4307 (((-1131 (-921 |#1|))) NIL (|has| |#1| (-355)))) (-2246 (($ $ (-890)) NIL)) (-2925 ((|#1| $) NIL)) (-2741 (((-1131 |#1|) $) NIL (|has| |#1| (-540)))) (-2432 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-2903 (((-1131 |#1|) $) NIL)) (-2842 (((-112)) 87)) (-2455 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) NIL)) (-3859 (((-3 $ "failed") $) 14 (|has| |#1| (-540)))) (-2103 (((-890)) 52)) (-2815 (((-112)) NIL)) (-2468 (($ $ (-890)) NIL)) (-2782 (((-112)) NIL)) (-2766 (((-112)) NIL)) (-2797 (((-112)) 89)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (|has| |#1| (-540)))) (-4003 (((-3 $ "failed")) NIL (|has| |#1| (-540)))) (-2422 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-2958 ((|#1| $) NIL)) (-2402 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-3411 (((-3 $ "failed") $) NIL (|has| |#1| (-540)))) (-1298 (((-1131 (-921 |#1|))) NIL (|has| |#1| (-355)))) (-3424 (($ $ (-890)) NIL)) (-2936 ((|#1| $) NIL)) (-2750 (((-1131 |#1|) $) NIL (|has| |#1| (-540)))) (-2444 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-2914 (((-1131 |#1|) $) NIL)) (-2851 (((-112)) 86)) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) 93)) (-2790 (((-112)) 92)) (-2806 (((-112)) 94)) (-3932 (((-1082) $) NIL)) (-2832 (((-112)) 88)) (-3171 ((|#1| $ (-548)) 54)) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) 28) (((-663 |#1|) (-1218 $)) NIL)) (-2591 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL)) (-4218 (((-619 (-921 |#1|)) (-1218 $)) NIL) (((-619 (-921 |#1|))) NIL)) (-3652 (($ $ $) NIL)) (-2891 (((-112)) 84)) (-3743 (((-832) $) 69) (($ (-1218 |#1|)) 22)) (-2877 (((-1218 $)) 45)) (-2759 (((-619 (-1218 |#1|))) NIL (|has| |#1| (-540)))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) 82)) (-3398 (($ (-663 |#1|) $) 18)) (-3639 (($ $ $) NIL)) (-2881 (((-112)) 85)) (-2859 (((-112)) 83)) (-2823 (((-112)) 81)) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1102 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-409 |#1|) (-622 (-1102 |#2| |#1|)) (-10 -8 (-15 -3743 ($ (-1218 |#1|))))) (-355) (-890) (-619 (-1135)) (-1218 (-663 |#1|))) (T -44)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-355)) (-14 *6 (-1218 (-663 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135)))))) +(-13 (-409 |#1|) (-622 (-1102 |#2| |#1|)) (-10 -8 (-15 -3743 ($ (-1218 |#1|))))) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4056 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-1988 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-1272 (($ $) NIL)) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328))) (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2980 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821))))) (-2490 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-4192 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) 27 (|has| $ (-6 -4328)))) (-3614 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-3635 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 29 (|has| $ (-6 -4328)))) (-2089 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-1185 (-548)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "last" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328))) (($ $ "rest" $) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "first" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "value" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1975 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3255 (((-3 |#2| "failed") |#1| $) 37)) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3465 (($ $ (-745)) NIL) (($ $) 24)) (-2969 (($ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-2621 (((-548) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) (((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 18 (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 18 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3550 (($ (-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821))) (((-548) $) 32 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2965 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2913 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821))) (((-548) $) 34 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-3309 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) 42 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3724 (($ $ (-745)) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4043 (((-619 |#1|) $) 20)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-2387 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 |#1|) $) NIL) (((-619 (-548)) $) NIL)) (-4212 (((-112) |#1| $) NIL) (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821))) (($ $ (-745)) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 23)) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3712 (((-112) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4223 (((-619 |#2|) $) NIL) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 17)) (-1616 (((-112) $) 16)) (-3319 (($) 13)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL) (($ $ (-1185 (-548))) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "first") NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "value") NIL)) (-4234 (((-548) $ $) NIL)) (-2801 (($) 12) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-2668 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2740 (((-112) $) NIL)) (-3672 (($ $) NIL)) (-3648 (($ $) NIL (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3659 (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL) (($ $ $) NIL)) (-1831 (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL) (($ (-619 $)) NIL) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 25) (($ $ $) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3733 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") |#1| $) 44)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-2252 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-3643 (((-745) $) 22 (|has| $ (-6 -4327))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1063) (-1063)) (T -45)) +NIL +(-36 |#1| |#2|) +((-2435 (((-112) $) 12)) (-2540 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-399 (-548)) $) 25) (($ $ (-399 (-548))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2435 ((-112) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-47 |#2| |#3|) (-1016) (-766)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2435 ((-112) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| |#2|) 59)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-2512 ((|#2| $) 62)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1951 ((|#1| $ |#2|) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-47 |#1| |#2|) (-138) (-1016) (-766)) (T -47)) +((-2197 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2185 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-112)))) (-2024 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-1951 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-355))))) +(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (-15 -2197 (|t#1| $)) (-15 -2185 ($ $)) (-15 -2512 (|t#2| $)) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -2435 ((-112) $)) (-15 -2024 ($ |t#1| |t#2|)) (-15 -1872 ($ $)) (-15 -1951 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-355)) (-15 -2309 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-6 (-169)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-540)) (-6 (-540)) |%noBranch|) (IF (|has| |t#1| (-38 (-399 (-548)))) (-6 (-38 (-399 (-548)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-282) |has| |#1| (-540)) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-1786 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-1262 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-3324 (((-112) $) 11)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1806 (((-619 (-591 $)) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1274 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-3263 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-2441 (((-3 (-591 $) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL)) (-2375 (((-591 $) $) NIL) (((-548) $) NIL) (((-399 (-548)) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-399 (-548)))) (|:| |vec| (-1218 (-399 (-548))))) (-663 $) (-1218 $)) NIL) (((-663 (-399 (-548))) (-663 $)) NIL)) (-2061 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2142 (($ $) NIL) (($ (-619 $)) NIL)) (-1744 (((-619 (-114)) $) NIL)) (-1402 (((-114) (-114)) NIL)) (-2266 (((-112) $) 14)) (-3705 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2470 (((-1087 (-548) (-591 $)) $) NIL)) (-2154 (($ $ (-548)) NIL)) (-3910 (((-1131 $) (-1131 $) (-591 $)) NIL) (((-1131 $) (-1131 $) (-619 (-591 $))) NIL) (($ $ (-591 $)) NIL) (($ $ (-619 (-591 $))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1724 (((-1131 $) (-591 $)) NIL (|has| $ (-1016)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 $ $) (-591 $)) NIL)) (-1753 (((-3 (-591 $) "failed") $) NIL)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-1870 (((-619 (-591 $)) $) NIL)) (-1409 (($ (-114) $) NIL) (($ (-114) (-619 $)) NIL)) (-1518 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-2153 (($ $) NIL)) (-3926 (((-745) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1734 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4077 (((-745) $) NIL)) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1762 (($ $) NIL) (($ $ $) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2480 (((-1087 (-548) (-591 $)) $) NIL)) (-3287 (($ $) NIL (|has| $ (-1016)))) (-2591 (((-371) $) NIL) (((-218) $) NIL) (((-166 (-371)) $) NIL)) (-3743 (((-832) $) NIL) (($ (-591 $)) NIL) (($ (-399 (-548))) NIL) (($ $) NIL) (($ (-548)) NIL) (($ (-1087 (-548) (-591 $))) NIL)) (-3835 (((-745)) NIL)) (-3528 (($ $) NIL) (($ (-619 $)) NIL)) (-1392 (((-112) (-114)) NIL)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 7 T CONST)) (-3118 (($) 12 T CONST)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 16)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $ $) 15) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-399 (-548))) NIL) (($ $ (-548)) NIL) (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ $ $) NIL) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) +(((-48) (-13 (-294) (-27) (-1007 (-548)) (-1007 (-399 (-548))) (-615 (-548)) (-991) (-615 (-399 (-548))) (-145) (-593 (-166 (-371))) (-226) (-10 -8 (-15 -3743 ($ (-1087 (-548) (-591 $)))) (-15 -2470 ((-1087 (-548) (-591 $)) $)) (-15 -2480 ((-1087 (-548) (-591 $)) $)) (-15 -2061 ($ $)) (-15 -3910 ((-1131 $) (-1131 $) (-591 $))) (-15 -3910 ((-1131 $) (-1131 $) (-619 (-591 $)))) (-15 -3910 ($ $ (-591 $))) (-15 -3910 ($ $ (-619 (-591 $))))))) (T -48)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) (-2061 (*1 *1 *1) (-5 *1 (-48))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-591 (-48))) (-5 *1 (-48)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-619 (-591 (-48)))) (-5 *1 (-48)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-48))) (-5 *1 (-48)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-591 (-48)))) (-5 *1 (-48))))) +(-13 (-294) (-27) (-1007 (-548)) (-1007 (-399 (-548))) (-615 (-548)) (-991) (-615 (-399 (-548))) (-145) (-593 (-166 (-371))) (-226) (-10 -8 (-15 -3743 ($ (-1087 (-548) (-591 $)))) (-15 -2470 ((-1087 (-548) (-591 $)) $)) (-15 -2480 ((-1087 (-548) (-591 $)) $)) (-15 -2061 ($ $)) (-15 -3910 ((-1131 $) (-1131 $) (-591 $))) (-15 -3910 ((-1131 $) (-1131 $) (-619 (-591 $)))) (-15 -3910 ($ $ (-591 $))) (-15 -3910 ($ $ (-619 (-591 $)))))) +((-3730 (((-112) $ $) NIL)) (-3302 (((-619 (-1135)) $) 17)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 7)) (-2286 (((-1140) $) 18)) (-2214 (((-112) $ $) NIL))) +(((-49) (-13 (-1063) (-10 -8 (-15 -3302 ((-619 (-1135)) $)) (-15 -2286 ((-1140) $))))) (T -49)) +((-3302 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-49)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-49))))) +(-13 (-1063) (-10 -8 (-15 -3302 ((-619 (-1135)) $)) (-15 -2286 ((-1140) $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 61)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3613 (((-112) $) 20)) (-2441 (((-3 |#1| "failed") $) 23)) (-2375 ((|#1| $) 24)) (-1872 (($ $) 28)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2197 ((|#1| $) 21)) (-2711 (($ $) 50)) (-2546 (((-1118) $) NIL)) (-3966 (((-112) $) 30)) (-3932 (((-1082) $) NIL)) (-4160 (($ (-745)) 48)) (-2458 (($ (-619 (-548))) 49)) (-2512 (((-745) $) 31)) (-3743 (((-832) $) 64) (($ (-548)) 45) (($ |#1|) 43)) (-1951 ((|#1| $ $) 19)) (-3835 (((-745)) 47)) (-3107 (($) 32 T CONST)) (-3118 (($) 14 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-596 |#1|) (-1007 |#1|) (-10 -8 (-15 -2197 (|#1| $)) (-15 -2711 ($ $)) (-15 -1872 ($ $)) (-15 -1951 (|#1| $ $)) (-15 -4160 ($ (-745))) (-15 -2458 ($ (-619 (-548)))) (-15 -3966 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -2512 ((-745) $)) (-15 -2540 ($ (-1 |#1| |#1|) $)))) (-1016) (-619 (-1135))) (T -50)) +((-2197 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) (-2711 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) (-1951 (*1 *2 *1 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-50 *3 *4)) (-14 *4 (-619 (-1135)))))) +(-13 (-596 |#1|) (-1007 |#1|) (-10 -8 (-15 -2197 (|#1| $)) (-15 -2711 ($ $)) (-15 -1872 ($ $)) (-15 -1951 (|#1| $ $)) (-15 -4160 ($ (-745))) (-15 -2458 ($ (-619 (-548)))) (-15 -3966 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -2512 ((-745) $)) (-15 -2540 ($ (-1 |#1| |#1|) $)))) +((-3613 (((-112) (-52)) 13)) (-2441 (((-3 |#1| "failed") (-52)) 21)) (-2375 ((|#1| (-52)) 22)) (-3743 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -3743 ((-52) |#1|)) (-15 -2441 ((-3 |#1| "failed") (-52))) (-15 -3613 ((-112) (-52))) (-15 -2375 (|#1| (-52)))) (-1172)) (T -51)) +((-2375 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1172)))) (-2441 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1172))))) +(-10 -7 (-15 -3743 ((-52) |#1|)) (-15 -2441 ((-3 |#1| "failed") (-52))) (-15 -3613 ((-112) (-52))) (-15 -2375 (|#1| (-52)))) +((-3730 (((-112) $ $) NIL)) (-1815 (((-1118) (-112)) 25)) (-4088 (((-832) $) 24)) (-4238 (((-748) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4098 (((-832) $) 16)) (-1510 (((-1067) $) 14)) (-3743 (((-832) $) 32)) (-2355 (($ (-1067) (-748)) 33)) (-2214 (((-112) $ $) 18))) +(((-52) (-13 (-1063) (-10 -8 (-15 -2355 ($ (-1067) (-748))) (-15 -4098 ((-832) $)) (-15 -4088 ((-832) $)) (-15 -1510 ((-1067) $)) (-15 -4238 ((-748) $)) (-15 -1815 ((-1118) (-112)))))) (T -52)) +((-2355 (*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-748)) (-5 *1 (-52)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-52)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-748)) (-5 *1 (-52)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1118)) (-5 *1 (-52))))) +(-13 (-1063) (-10 -8 (-15 -2355 ($ (-1067) (-748))) (-15 -4098 ((-832) $)) (-15 -4088 ((-832) $)) (-15 -1510 ((-1067) $)) (-15 -4238 ((-748) $)) (-15 -1815 ((-1118) (-112))))) +((-3398 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3398 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1016) (-622 |#1|) (-823 |#1|)) (T -53)) +((-3398 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-622 *5)) (-4 *5 (-1016)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-823 *5))))) +(-10 -7 (-15 -3398 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-4123 ((|#3| |#3| (-619 (-1135))) 35)) (-4111 ((|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890)) 22) ((|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4111 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|)) (-15 -4111 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890))) (-15 -4123 (|#3| |#3| (-619 (-1135))))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-593 (-861 |#1|))) (-13 (-422 |#2|) (-855 |#1|) (-593 (-861 |#1|)))) (T -54)) +((-4123 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) (-4111 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-619 (-1039 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1063)) (-4 *6 (-13 (-1016) (-855 *5) (-821) (-593 (-861 *5)))) (-4 *2 (-13 (-422 *6) (-855 *5) (-593 (-861 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4111 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-1039 *4 *5 *2))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -4111 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|)) (-15 -4111 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890))) (-15 -4123 (|#3| |#3| (-619 (-1135))))) +((-2028 (((-112) $ (-745)) 23)) (-4141 (($ $ (-548) |#3|) 46)) (-4131 (($ $ (-548) |#4|) 50)) (-3717 ((|#3| $ (-548)) 59)) (-1934 (((-619 |#2|) $) 30)) (-4282 (((-112) $ (-745)) 25)) (-2556 (((-112) |#2| $) 54)) (-3960 (($ (-1 |#2| |#2|) $) 37)) (-2540 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-4248 (((-112) $ (-745)) 24)) (-4159 (($ $ |#2|) 34)) (-3537 (((-112) (-1 (-112) |#2|) $) 19)) (-3171 ((|#2| $ (-548) (-548)) NIL) ((|#2| $ (-548) (-548) |#2|) 27)) (-3945 (((-745) (-1 (-112) |#2|) $) 28) (((-745) |#2| $) 56)) (-2113 (($ $) 33)) (-3704 ((|#4| $ (-548)) 62)) (-3743 (((-832) $) 68)) (-3548 (((-112) (-1 (-112) |#2|) $) 18)) (-2214 (((-112) $ $) 53)) (-3643 (((-745) $) 26))) +(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4131 (|#1| |#1| (-548) |#4|)) (-15 -4141 (|#1| |#1| (-548) |#3|)) (-15 -1934 ((-619 |#2|) |#1|)) (-15 -3704 (|#4| |#1| (-548))) (-15 -3717 (|#3| |#1| (-548))) (-15 -3171 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548))) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745))) (-15 -2113 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1172) (-365 |#2|) (-365 |#2|)) (T -55)) +NIL +(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4131 (|#1| |#1| (-548) |#4|)) (-15 -4141 (|#1| |#1| (-548) |#3|)) (-15 -1934 ((-619 |#2|) |#1|)) (-15 -3704 (|#4| |#1| (-548))) (-15 -3717 (|#3| |#1| (-548))) (-15 -3171 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548))) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745))) (-15 -2113 (|#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) (-548) |#1|) 44)) (-4141 (($ $ (-548) |#2|) 42)) (-4131 (($ $ (-548) |#3|) 41)) (-3030 (($) 7 T CONST)) (-3717 ((|#2| $ (-548)) 46)) (-3971 ((|#1| $ (-548) (-548) |#1|) 43)) (-3899 ((|#1| $ (-548) (-548)) 48)) (-1934 (((-619 |#1|) $) 30)) (-4205 (((-745) $) 51)) (-3550 (($ (-745) (-745) |#1|) 57)) (-4216 (((-745) $) 50)) (-4282 (((-112) $ (-745)) 9)) (-3764 (((-548) $) 55)) (-3742 (((-548) $) 53)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3753 (((-548) $) 54)) (-3729 (((-548) $) 52)) (-3960 (($ (-1 |#1| |#1|) $) 34)) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) 56)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) (-548)) 49) ((|#1| $ (-548) (-548) |#1|) 47)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3704 ((|#3| $ (-548)) 45)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-56 |#1| |#2| |#3|) (-138) (-1172) (-365 |t#1|) (-365 |t#1|)) (T -56)) +((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3550 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-745)) (-4 *3 (-1172)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4159 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1172)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-548)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-548)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-548)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-548)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-745)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-745)))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1172)))) (-3899 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1172)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-3704 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1172)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-619 *3)))) (-2089 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-3971 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-4141 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-548)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1172)) (-4 *3 (-365 *4)) (-4 *5 (-365 *4)))) (-4131 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-548)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1172)) (-4 *5 (-365 *4)) (-4 *3 (-365 *4)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2540 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) +(-13 (-480 |t#1|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -3550 ($ (-745) (-745) |t#1|)) (-15 -4159 ($ $ |t#1|)) (-15 -3764 ((-548) $)) (-15 -3753 ((-548) $)) (-15 -3742 ((-548) $)) (-15 -3729 ((-548) $)) (-15 -4205 ((-745) $)) (-15 -4216 ((-745) $)) (-15 -3171 (|t#1| $ (-548) (-548))) (-15 -3899 (|t#1| $ (-548) (-548))) (-15 -3171 (|t#1| $ (-548) (-548) |t#1|)) (-15 -3717 (|t#2| $ (-548))) (-15 -3704 (|t#3| $ (-548))) (-15 -1934 ((-619 |t#1|) $)) (-15 -2089 (|t#1| $ (-548) (-548) |t#1|)) (-15 -3971 (|t#1| $ (-548) (-548) |t#1|)) (-15 -4141 ($ $ (-548) |t#2|)) (-15 -4131 ($ $ (-548) |t#3|)) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -2540 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2540 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-4040 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2061 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-2540 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) +(((-57 |#1| |#2|) (-10 -7 (-15 -4040 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2540 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1172) (-1172)) (T -57)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-57 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) +(-10 -7 (-15 -4040 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2540 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) 11 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4151 (($ (-619 |#1|)) 13) (($ (-745) |#1|) 14)) (-3550 (($ (-745) |#1|) 9)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 7)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4151 ($ (-619 |#1|))) (-15 -4151 ($ (-745) |#1|)))) (-1172)) (T -58)) +((-4151 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-58 *3)))) (-4151 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-58 *3)) (-4 *3 (-1172))))) +(-13 (-19 |#1|) (-10 -8 (-15 -4151 ($ (-619 |#1|))) (-15 -4151 ($ (-745) |#1|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL)) (-4141 (($ $ (-548) (-58 |#1|)) NIL)) (-4131 (($ $ (-548) (-58 |#1|)) NIL)) (-3030 (($) NIL T CONST)) (-3717 (((-58 |#1|) $ (-548)) NIL)) (-3971 ((|#1| $ (-548) (-548) |#1|) NIL)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-4205 (((-745) $) NIL)) (-3550 (($ (-745) (-745) |#1|) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 (((-58 |#1|) $ (-548)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4328))) (-1172)) (T -59)) +NIL +(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4328))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 74) (((-3 $ "failed") (-1218 (-308 (-548)))) 63) (((-3 $ "failed") (-1218 (-921 (-371)))) 94) (((-3 $ "failed") (-1218 (-921 (-548)))) 84) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 52) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 39)) (-2375 (($ (-1218 (-308 (-371)))) 70) (($ (-1218 (-308 (-548)))) 59) (($ (-1218 (-921 (-371)))) 90) (($ (-1218 (-921 (-548)))) 80) (($ (-1218 (-399 (-921 (-371))))) 48) (($ (-1218 (-399 (-921 (-548))))) 32)) (-3898 (((-1223) $) 120)) (-3743 (((-832) $) 113) (($ (-619 (-322))) 103) (($ (-322)) 97) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 101) (($ (-1218 (-331 (-3754 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3754) (-673)))) 31))) +(((-60 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3754) (-673))))))) (-1135)) (T -60)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3754) (-673)))) (-5 *1 (-60 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3754) (-673))))))) +((-3898 (((-1223) $) 53) (((-1223)) 54)) (-3743 (((-832) $) 50))) +(((-61 |#1|) (-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) (-1135)) (T -61)) +((-3898 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-61 *3)) (-14 *3 (-1135))))) +(-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 144) (((-3 $ "failed") (-1218 (-308 (-548)))) 134) (((-3 $ "failed") (-1218 (-921 (-371)))) 164) (((-3 $ "failed") (-1218 (-921 (-548)))) 154) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 123) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 111)) (-2375 (($ (-1218 (-308 (-371)))) 140) (($ (-1218 (-308 (-548)))) 130) (($ (-1218 (-921 (-371)))) 160) (($ (-1218 (-921 (-548)))) 150) (($ (-1218 (-399 (-921 (-371))))) 119) (($ (-1218 (-399 (-921 (-548))))) 104)) (-3898 (((-1223) $) 97)) (-3743 (((-832) $) 91) (($ (-619 (-322))) 29) (($ (-322)) 34) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 32) (($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673)))) 89))) +(((-62 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673))))))) (-1135)) (T -62)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673)))) (-5 *1 (-62 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673))))))) +((-2441 (((-3 $ "failed") (-308 (-371))) 41) (((-3 $ "failed") (-308 (-548))) 46) (((-3 $ "failed") (-921 (-371))) 50) (((-3 $ "failed") (-921 (-548))) 54) (((-3 $ "failed") (-399 (-921 (-371)))) 36) (((-3 $ "failed") (-399 (-921 (-548)))) 29)) (-2375 (($ (-308 (-371))) 39) (($ (-308 (-548))) 44) (($ (-921 (-371))) 48) (($ (-921 (-548))) 52) (($ (-399 (-921 (-371)))) 34) (($ (-399 (-921 (-548)))) 26)) (-3898 (((-1223) $) 76)) (-3743 (((-832) $) 69) (($ (-619 (-322))) 61) (($ (-322)) 66) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 64) (($ (-331 (-3754 (QUOTE X)) (-3754) (-673))) 25))) +(((-63 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754 (QUOTE X)) (-3754) (-673)))))) (-1135)) (T -63)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754 (QUOTE X)) (-3754) (-673))) (-5 *1 (-63 *3)) (-14 *3 (-1135))))) +(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754 (QUOTE X)) (-3754) (-673)))))) +((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 109) (((-3 $ "failed") (-663 (-308 (-548)))) 97) (((-3 $ "failed") (-663 (-921 (-371)))) 131) (((-3 $ "failed") (-663 (-921 (-548)))) 120) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 85) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 71)) (-2375 (($ (-663 (-308 (-371)))) 105) (($ (-663 (-308 (-548)))) 93) (($ (-663 (-921 (-371)))) 127) (($ (-663 (-921 (-548)))) 116) (($ (-663 (-399 (-921 (-371))))) 81) (($ (-663 (-399 (-921 (-548))))) 64)) (-3898 (((-1223) $) 139)) (-3743 (((-832) $) 133) (($ (-619 (-322))) 28) (($ (-322)) 33) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 31) (($ (-663 (-331 (-3754) (-3754 (QUOTE X) (QUOTE HESS)) (-673)))) 54))) +(((-64 |#1|) (-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754) (-3754 (QUOTE X) (QUOTE HESS)) (-673))))))) (-1135)) (T -64)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-331 (-3754) (-3754 (QUOTE X) (QUOTE HESS)) (-673)))) (-5 *1 (-64 *3)) (-14 *3 (-1135))))) +(-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754) (-3754 (QUOTE X) (QUOTE HESS)) (-673))))))) +((-2441 (((-3 $ "failed") (-308 (-371))) 59) (((-3 $ "failed") (-308 (-548))) 64) (((-3 $ "failed") (-921 (-371))) 68) (((-3 $ "failed") (-921 (-548))) 72) (((-3 $ "failed") (-399 (-921 (-371)))) 54) (((-3 $ "failed") (-399 (-921 (-548)))) 47)) (-2375 (($ (-308 (-371))) 57) (($ (-308 (-548))) 62) (($ (-921 (-371))) 66) (($ (-921 (-548))) 70) (($ (-399 (-921 (-371)))) 52) (($ (-399 (-921 (-548)))) 44)) (-3898 (((-1223) $) 81)) (-3743 (((-832) $) 75) (($ (-619 (-322))) 28) (($ (-322)) 33) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 31) (($ (-331 (-3754) (-3754 (QUOTE XC)) (-673))) 39))) +(((-65 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE XC)) (-673)))))) (-1135)) (T -65)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754) (-3754 (QUOTE XC)) (-673))) (-5 *1 (-65 *3)) (-14 *3 (-1135))))) +(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE XC)) (-673)))))) +((-3898 (((-1223) $) 63)) (-3743 (((-832) $) 57) (($ (-663 (-673))) 49) (($ (-619 (-322))) 48) (($ (-322)) 55) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 53))) +(((-66 |#1|) (-375) (-1135)) (T -66)) +NIL +(-375) +((-3898 (((-1223) $) 64)) (-3743 (((-832) $) 58) (($ (-663 (-673))) 50) (($ (-619 (-322))) 49) (($ (-322)) 52) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 55))) +(((-67 |#1|) (-375) (-1135)) (T -67)) +NIL +(-375) +((-3898 (((-1223) $) NIL) (((-1223)) 32)) (-3743 (((-832) $) NIL))) +(((-68 |#1|) (-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) (-1135)) (T -68)) +((-3898 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-68 *3)) (-14 *3 (-1135))))) +(-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) +((-3898 (((-1223) $) 73)) (-3743 (((-832) $) 67) (($ (-663 (-673))) 59) (($ (-619 (-322))) 61) (($ (-322)) 64) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 58))) +(((-69 |#1|) (-375) (-1135)) (T -69)) +NIL +(-375) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 103) (((-3 $ "failed") (-1218 (-308 (-548)))) 92) (((-3 $ "failed") (-1218 (-921 (-371)))) 123) (((-3 $ "failed") (-1218 (-921 (-548)))) 113) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 81) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 68)) (-2375 (($ (-1218 (-308 (-371)))) 99) (($ (-1218 (-308 (-548)))) 88) (($ (-1218 (-921 (-371)))) 119) (($ (-1218 (-921 (-548)))) 109) (($ (-1218 (-399 (-921 (-371))))) 77) (($ (-1218 (-399 (-921 (-548))))) 61)) (-3898 (((-1223) $) 136)) (-3743 (((-832) $) 130) (($ (-619 (-322))) 125) (($ (-322)) 128) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 53) (($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))) 54))) +(((-70 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))))))) (-1135)) (T -70)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))) (-5 *1 (-70 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))))))) +((-3898 (((-1223) $) 32) (((-1223)) 31)) (-3743 (((-832) $) 35))) +(((-71 |#1|) (-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) (-1135)) (T -71)) +((-3898 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-71 *3)) (-14 *3 (-1135))))) +(-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) +((-3898 (((-1223) $) 63)) (-3743 (((-832) $) 57) (($ (-663 (-673))) 49) (($ (-619 (-322))) 51) (($ (-322)) 54) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 48))) +(((-72 |#1|) (-375) (-1135)) (T -72)) +NIL +(-375) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 125) (((-3 $ "failed") (-1218 (-308 (-548)))) 115) (((-3 $ "failed") (-1218 (-921 (-371)))) 145) (((-3 $ "failed") (-1218 (-921 (-548)))) 135) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 105) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 93)) (-2375 (($ (-1218 (-308 (-371)))) 121) (($ (-1218 (-308 (-548)))) 111) (($ (-1218 (-921 (-371)))) 141) (($ (-1218 (-921 (-548)))) 131) (($ (-1218 (-399 (-921 (-371))))) 101) (($ (-1218 (-399 (-921 (-548))))) 86)) (-3898 (((-1223) $) 78)) (-3743 (((-832) $) 27) (($ (-619 (-322))) 68) (($ (-322)) 64) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 71) (($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) 65))) +(((-73 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) (-1135)) (T -73)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) (-5 *1 (-73 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 130) (((-3 $ "failed") (-1218 (-308 (-548)))) 119) (((-3 $ "failed") (-1218 (-921 (-371)))) 150) (((-3 $ "failed") (-1218 (-921 (-548)))) 140) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 108) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 95)) (-2375 (($ (-1218 (-308 (-371)))) 126) (($ (-1218 (-308 (-548)))) 115) (($ (-1218 (-921 (-371)))) 146) (($ (-1218 (-921 (-548)))) 136) (($ (-1218 (-399 (-921 (-371))))) 104) (($ (-1218 (-399 (-921 (-548))))) 88)) (-3898 (((-1223) $) 79)) (-3743 (((-832) $) 71) (($ (-619 (-322))) NIL) (($ (-322)) NIL) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) NIL) (($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE EPS)) (-3754 (QUOTE -2428)) (-673)))) 66))) +(((-74 |#1| |#2| |#3|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE EPS)) (-3754 (QUOTE -2428)) (-673))))))) (-1135) (-1135) (-1135)) (T -74)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X) (QUOTE EPS)) (-3754 (QUOTE -2428)) (-673)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) (-14 *5 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE EPS)) (-3754 (QUOTE -2428)) (-673))))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 134) (((-3 $ "failed") (-1218 (-308 (-548)))) 123) (((-3 $ "failed") (-1218 (-921 (-371)))) 154) (((-3 $ "failed") (-1218 (-921 (-548)))) 144) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 112) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 99)) (-2375 (($ (-1218 (-308 (-371)))) 130) (($ (-1218 (-308 (-548)))) 119) (($ (-1218 (-921 (-371)))) 150) (($ (-1218 (-921 (-548)))) 140) (($ (-1218 (-399 (-921 (-371))))) 108) (($ (-1218 (-399 (-921 (-548))))) 92)) (-3898 (((-1223) $) 83)) (-3743 (((-832) $) 75) (($ (-619 (-322))) NIL) (($ (-322)) NIL) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) NIL) (($ (-1218 (-331 (-3754 (QUOTE EPS)) (-3754 (QUOTE YA) (QUOTE YB)) (-673)))) 70))) +(((-75 |#1| |#2| |#3|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE EPS)) (-3754 (QUOTE YA) (QUOTE YB)) (-673))))))) (-1135) (-1135) (-1135)) (T -75)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE EPS)) (-3754 (QUOTE YA) (QUOTE YB)) (-673)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) (-14 *5 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE EPS)) (-3754 (QUOTE YA) (QUOTE YB)) (-673))))))) +((-2441 (((-3 $ "failed") (-308 (-371))) 82) (((-3 $ "failed") (-308 (-548))) 87) (((-3 $ "failed") (-921 (-371))) 91) (((-3 $ "failed") (-921 (-548))) 95) (((-3 $ "failed") (-399 (-921 (-371)))) 77) (((-3 $ "failed") (-399 (-921 (-548)))) 70)) (-2375 (($ (-308 (-371))) 80) (($ (-308 (-548))) 85) (($ (-921 (-371))) 89) (($ (-921 (-548))) 93) (($ (-399 (-921 (-371)))) 75) (($ (-399 (-921 (-548)))) 67)) (-3898 (((-1223) $) 62)) (-3743 (((-832) $) 50) (($ (-619 (-322))) 46) (($ (-322)) 56) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 54) (($ (-331 (-3754) (-3754 (QUOTE X)) (-673))) 47))) +(((-76 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE X)) (-673)))))) (-1135)) (T -76)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754) (-3754 (QUOTE X)) (-673))) (-5 *1 (-76 *3)) (-14 *3 (-1135))))) +(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE X)) (-673)))))) +((-2441 (((-3 $ "failed") (-308 (-371))) 46) (((-3 $ "failed") (-308 (-548))) 51) (((-3 $ "failed") (-921 (-371))) 55) (((-3 $ "failed") (-921 (-548))) 59) (((-3 $ "failed") (-399 (-921 (-371)))) 41) (((-3 $ "failed") (-399 (-921 (-548)))) 34)) (-2375 (($ (-308 (-371))) 44) (($ (-308 (-548))) 49) (($ (-921 (-371))) 53) (($ (-921 (-548))) 57) (($ (-399 (-921 (-371)))) 39) (($ (-399 (-921 (-548)))) 31)) (-3898 (((-1223) $) 80)) (-3743 (((-832) $) 74) (($ (-619 (-322))) 66) (($ (-322)) 71) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 69) (($ (-331 (-3754) (-3754 (QUOTE X)) (-673))) 30))) +(((-77 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE X)) (-673)))))) (-1135)) (T -77)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754) (-3754 (QUOTE X)) (-673))) (-5 *1 (-77 *3)) (-14 *3 (-1135))))) +(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE X)) (-673)))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 89) (((-3 $ "failed") (-1218 (-308 (-548)))) 78) (((-3 $ "failed") (-1218 (-921 (-371)))) 109) (((-3 $ "failed") (-1218 (-921 (-548)))) 99) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 67) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 54)) (-2375 (($ (-1218 (-308 (-371)))) 85) (($ (-1218 (-308 (-548)))) 74) (($ (-1218 (-921 (-371)))) 105) (($ (-1218 (-921 (-548)))) 95) (($ (-1218 (-399 (-921 (-371))))) 63) (($ (-1218 (-399 (-921 (-548))))) 47)) (-3898 (((-1223) $) 125)) (-3743 (((-832) $) 119) (($ (-619 (-322))) 112) (($ (-322)) 37) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 115) (($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673)))) 38))) +(((-78 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673))))))) (-1135)) (T -78)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673)))) (-5 *1 (-78 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673))))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 142) (((-3 $ "failed") (-1218 (-308 (-548)))) 132) (((-3 $ "failed") (-1218 (-921 (-371)))) 162) (((-3 $ "failed") (-1218 (-921 (-548)))) 152) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 122) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 110)) (-2375 (($ (-1218 (-308 (-371)))) 138) (($ (-1218 (-308 (-548)))) 128) (($ (-1218 (-921 (-371)))) 158) (($ (-1218 (-921 (-548)))) 148) (($ (-1218 (-399 (-921 (-371))))) 118) (($ (-1218 (-399 (-921 (-548))))) 103)) (-3898 (((-1223) $) 96)) (-3743 (((-832) $) 90) (($ (-619 (-322))) 81) (($ (-322)) 88) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 86) (($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) 82))) +(((-79 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) (-1135)) (T -79)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) (-5 *1 (-79 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 78) (((-3 $ "failed") (-1218 (-308 (-548)))) 67) (((-3 $ "failed") (-1218 (-921 (-371)))) 98) (((-3 $ "failed") (-1218 (-921 (-548)))) 88) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 56) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 43)) (-2375 (($ (-1218 (-308 (-371)))) 74) (($ (-1218 (-308 (-548)))) 63) (($ (-1218 (-921 (-371)))) 94) (($ (-1218 (-921 (-548)))) 84) (($ (-1218 (-399 (-921 (-371))))) 52) (($ (-1218 (-399 (-921 (-548))))) 36)) (-3898 (((-1223) $) 124)) (-3743 (((-832) $) 118) (($ (-619 (-322))) 109) (($ (-322)) 115) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 113) (($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) 35))) +(((-80 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) (-1135)) (T -80)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) (-5 *1 (-80 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 95) (((-3 $ "failed") (-1218 (-308 (-548)))) 84) (((-3 $ "failed") (-1218 (-921 (-371)))) 115) (((-3 $ "failed") (-1218 (-921 (-548)))) 105) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 73) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 60)) (-2375 (($ (-1218 (-308 (-371)))) 91) (($ (-1218 (-308 (-548)))) 80) (($ (-1218 (-921 (-371)))) 111) (($ (-1218 (-921 (-548)))) 101) (($ (-1218 (-399 (-921 (-371))))) 69) (($ (-1218 (-399 (-921 (-548))))) 53)) (-3898 (((-1223) $) 45)) (-3743 (((-832) $) 39) (($ (-619 (-322))) 29) (($ (-322)) 32) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 35) (($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673)))) 30))) +(((-81 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673))))))) (-1135)) (T -81)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673)))) (-5 *1 (-81 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673))))))) +((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 115) (((-3 $ "failed") (-663 (-308 (-548)))) 104) (((-3 $ "failed") (-663 (-921 (-371)))) 137) (((-3 $ "failed") (-663 (-921 (-548)))) 126) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 93) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 80)) (-2375 (($ (-663 (-308 (-371)))) 111) (($ (-663 (-308 (-548)))) 100) (($ (-663 (-921 (-371)))) 133) (($ (-663 (-921 (-548)))) 122) (($ (-663 (-399 (-921 (-371))))) 89) (($ (-663 (-399 (-921 (-548))))) 73)) (-3898 (((-1223) $) 63)) (-3743 (((-832) $) 50) (($ (-619 (-322))) 57) (($ (-322)) 46) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 55) (($ (-663 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673)))) 47))) +(((-82 |#1|) (-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673))))))) (-1135)) (T -82)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673)))) (-5 *1 (-82 *3)) (-14 *3 (-1135))))) +(-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673))))))) +((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 112) (((-3 $ "failed") (-663 (-308 (-548)))) 100) (((-3 $ "failed") (-663 (-921 (-371)))) 134) (((-3 $ "failed") (-663 (-921 (-548)))) 123) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 88) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 74)) (-2375 (($ (-663 (-308 (-371)))) 108) (($ (-663 (-308 (-548)))) 96) (($ (-663 (-921 (-371)))) 130) (($ (-663 (-921 (-548)))) 119) (($ (-663 (-399 (-921 (-371))))) 84) (($ (-663 (-399 (-921 (-548))))) 67)) (-3898 (((-1223) $) 59)) (-3743 (((-832) $) 53) (($ (-619 (-322))) 47) (($ (-322)) 50) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 44) (($ (-663 (-331 (-3754 (QUOTE X)) (-3754) (-673)))) 45))) +(((-83 |#1|) (-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE X)) (-3754) (-673))))))) (-1135)) (T -83)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-331 (-3754 (QUOTE X)) (-3754) (-673)))) (-5 *1 (-83 *3)) (-14 *3 (-1135))))) +(-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE X)) (-3754) (-673))))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 104) (((-3 $ "failed") (-1218 (-308 (-548)))) 93) (((-3 $ "failed") (-1218 (-921 (-371)))) 124) (((-3 $ "failed") (-1218 (-921 (-548)))) 114) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 82) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 69)) (-2375 (($ (-1218 (-308 (-371)))) 100) (($ (-1218 (-308 (-548)))) 89) (($ (-1218 (-921 (-371)))) 120) (($ (-1218 (-921 (-548)))) 110) (($ (-1218 (-399 (-921 (-371))))) 78) (($ (-1218 (-399 (-921 (-548))))) 62)) (-3898 (((-1223) $) 46)) (-3743 (((-832) $) 40) (($ (-619 (-322))) 49) (($ (-322)) 36) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 52) (($ (-1218 (-331 (-3754 (QUOTE X)) (-3754) (-673)))) 37))) +(((-84 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754) (-673))))))) (-1135)) (T -84)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X)) (-3754) (-673)))) (-5 *1 (-84 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754) (-673))))))) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 79) (((-3 $ "failed") (-1218 (-308 (-548)))) 68) (((-3 $ "failed") (-1218 (-921 (-371)))) 99) (((-3 $ "failed") (-1218 (-921 (-548)))) 89) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 57) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 44)) (-2375 (($ (-1218 (-308 (-371)))) 75) (($ (-1218 (-308 (-548)))) 64) (($ (-1218 (-921 (-371)))) 95) (($ (-1218 (-921 (-548)))) 85) (($ (-1218 (-399 (-921 (-371))))) 53) (($ (-1218 (-399 (-921 (-548))))) 37)) (-3898 (((-1223) $) 125)) (-3743 (((-832) $) 119) (($ (-619 (-322))) 110) (($ (-322)) 116) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 114) (($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))) 36))) +(((-85 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))))))) (-1135)) (T -85)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))) (-5 *1 (-85 *3)) (-14 *3 (-1135))))) +(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))))))) +((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 113) (((-3 $ "failed") (-663 (-308 (-548)))) 101) (((-3 $ "failed") (-663 (-921 (-371)))) 135) (((-3 $ "failed") (-663 (-921 (-548)))) 124) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 89) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 75)) (-2375 (($ (-663 (-308 (-371)))) 109) (($ (-663 (-308 (-548)))) 97) (($ (-663 (-921 (-371)))) 131) (($ (-663 (-921 (-548)))) 120) (($ (-663 (-399 (-921 (-371))))) 85) (($ (-663 (-399 (-921 (-548))))) 68)) (-3898 (((-1223) $) 59)) (-3743 (((-832) $) 53) (($ (-619 (-322))) 43) (($ (-322)) 50) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 48) (($ (-663 (-331 (-3754 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3754) (-673)))) 44))) +(((-86 |#1|) (-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3754) (-673))))))) (-1135)) (T -86)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-331 (-3754 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3754) (-673)))) (-5 *1 (-86 *3)) (-14 *3 (-1135))))) +(-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3754) (-673))))))) +((-3898 (((-1223) $) 44)) (-3743 (((-832) $) 38) (($ (-1218 (-673))) 92) (($ (-619 (-322))) 30) (($ (-322)) 35) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 33))) +(((-87 |#1|) (-431) (-1135)) (T -87)) +NIL +(-431) +((-2441 (((-3 $ "failed") (-308 (-371))) 47) (((-3 $ "failed") (-308 (-548))) 52) (((-3 $ "failed") (-921 (-371))) 56) (((-3 $ "failed") (-921 (-548))) 60) (((-3 $ "failed") (-399 (-921 (-371)))) 42) (((-3 $ "failed") (-399 (-921 (-548)))) 35)) (-2375 (($ (-308 (-371))) 45) (($ (-308 (-548))) 50) (($ (-921 (-371))) 54) (($ (-921 (-548))) 58) (($ (-399 (-921 (-371)))) 40) (($ (-399 (-921 (-548)))) 32)) (-3898 (((-1223) $) 90)) (-3743 (((-832) $) 84) (($ (-619 (-322))) 78) (($ (-322)) 81) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 76) (($ (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))) 31))) +(((-88 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))))) (-1135)) (T -88)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))) (-5 *1 (-88 *3)) (-14 *3 (-1135))))) +(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))))) +((-4169 (((-1218 (-663 |#1|)) (-663 |#1|)) 54)) (-4162 (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890)) 44)) (-4179 (((-2 (|:| |minor| (-619 (-890))) (|:| -2383 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890)) 65 (|has| |#1| (-355))))) +(((-89 |#1| |#2|) (-10 -7 (-15 -4162 ((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890))) (-15 -4169 ((-1218 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-355)) (-15 -4179 ((-2 (|:| |minor| (-619 (-890))) (|:| -2383 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890))) |%noBranch|)) (-540) (-630 |#1|)) (T -89)) +((-4179 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |minor| (-619 (-890))) (|:| -2383 *3) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-663 *4)) (-4 *5 (-630 *4)))) (-4162 (*1 *2 *3 *4) (-12 (-4 *5 (-540)) (-5 *2 (-2 (|:| -4035 (-663 *5)) (|:| |vec| (-1218 (-619 (-890)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) +(-10 -7 (-15 -4162 ((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890))) (-15 -4169 ((-1218 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-355)) (-15 -4179 ((-2 (|:| |minor| (-619 (-890))) (|:| -2383 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890))) |%noBranch|)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2088 ((|#1| $) 35)) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-2043 ((|#1| |#1| $) 30)) (-2032 ((|#1| $) 28)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) NIL)) (-2539 (($ |#1| $) 31)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1357 ((|#1| $) 29)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 16)) (-3319 (($) 39)) (-3045 (((-745) $) 26)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 15)) (-3743 (((-832) $) 25 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) NIL)) (-4189 (($ (-619 |#1|)) 37)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 13 (|has| |#1| (-1063)))) (-3643 (((-745) $) 10 (|has| $ (-6 -4327))))) +(((-90 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -4189 ($ (-619 |#1|))))) (-1063)) (T -90)) +((-4189 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-90 *3))))) +(-13 (-1083 |#1|) (-10 -8 (-15 -4189 ($ (-619 |#1|))))) +((-3743 (((-832) $) 12) (((-1140) $) 8))) +(((-91 |#1|) (-10 -8 (-15 -3743 ((-1140) |#1|)) (-15 -3743 ((-832) |#1|))) (-92)) (T -91)) +NIL +(-10 -8 (-15 -3743 ((-1140) |#1|)) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (((-1140) $) 14)) (-2214 (((-112) $ $) 6))) +(((-92) (-138)) (T -92)) +NIL +(-13 (-1063) (-592 (-1140))) +(((-101) . T) ((-592 (-832)) . T) ((-592 (-1140)) . T) ((-1063) . T)) +((-2029 (($ $) 10)) (-2040 (($ $) 12))) +(((-93 |#1|) (-10 -8 (-15 -2040 (|#1| |#1|)) (-15 -2029 (|#1| |#1|))) (-94)) (T -93)) +NIL +(-10 -8 (-15 -2040 (|#1| |#1|)) (-15 -2029 (|#1| |#1|))) +((-2006 (($ $) 11)) (-1986 (($ $) 10)) (-2029 (($ $) 9)) (-2040 (($ $) 8)) (-2017 (($ $) 7)) (-1996 (($ $) 6))) +(((-94) (-138)) (T -94)) +((-2006 (*1 *1 *1) (-4 *1 (-94))) (-1986 (*1 *1 *1) (-4 *1 (-94))) (-2029 (*1 *1 *1) (-4 *1 (-94))) (-2040 (*1 *1 *1) (-4 *1 (-94))) (-2017 (*1 *1 *1) (-4 *1 (-94))) (-1996 (*1 *1 *1) (-4 *1 (-94)))) +(-13 (-10 -8 (-15 -1996 ($ $)) (-15 -2017 ($ $)) (-15 -2040 ($ $)) (-15 -2029 ($ $)) (-15 -1986 ($ $)) (-15 -2006 ($ $)))) +((-3730 (((-112) $ $) NIL)) (-2275 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-95) (-13 (-1047) (-10 -8 (-15 -2275 ((-1140) $))))) (T -95)) +((-2275 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-95))))) +(-13 (-1047) (-10 -8 (-15 -2275 ((-1140) $)))) +((-3730 (((-112) $ $) NIL)) (-4199 (((-371) (-1118) (-371)) 42) (((-371) (-1118) (-1118) (-371)) 41)) (-4210 (((-371) (-371)) 33)) (-4221 (((-1223)) 36)) (-2546 (((-1118) $) NIL)) (-4255 (((-371) (-1118) (-1118)) 46) (((-371) (-1118)) 48)) (-3932 (((-1082) $) NIL)) (-4231 (((-371) (-1118) (-1118)) 47)) (-4242 (((-371) (-1118) (-1118)) 49) (((-371) (-1118)) 50)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-96) (-13 (-1063) (-10 -7 (-15 -4255 ((-371) (-1118) (-1118))) (-15 -4255 ((-371) (-1118))) (-15 -4242 ((-371) (-1118) (-1118))) (-15 -4242 ((-371) (-1118))) (-15 -4231 ((-371) (-1118) (-1118))) (-15 -4221 ((-1223))) (-15 -4210 ((-371) (-371))) (-15 -4199 ((-371) (-1118) (-371))) (-15 -4199 ((-371) (-1118) (-1118) (-371))) (-6 -4327)))) (T -96)) +((-4255 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4242 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4231 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4221 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-96)))) (-4210 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96)))) (-4199 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1118)) (-5 *1 (-96)))) (-4199 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1118)) (-5 *1 (-96))))) +(-13 (-1063) (-10 -7 (-15 -4255 ((-371) (-1118) (-1118))) (-15 -4255 ((-371) (-1118))) (-15 -4242 ((-371) (-1118) (-1118))) (-15 -4242 ((-371) (-1118))) (-15 -4231 ((-371) (-1118) (-1118))) (-15 -4221 ((-1223))) (-15 -4210 ((-371) (-371))) (-15 -4199 ((-371) (-1118) (-371))) (-15 -4199 ((-371) (-1118) (-1118) (-371))) (-6 -4327))) +NIL +(((-97) (-138)) (T -97)) +NIL +(-13 (-10 -7 (-6 -4327) (-6 (-4329 "*")) (-6 -4328) (-6 -4324) (-6 -4322) (-6 -4321) (-6 -4320) (-6 -4325) (-6 -4319) (-6 -4318) (-6 -4317) (-6 -4316) (-6 -4315) (-6 -4323) (-6 -4326) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4314))) +((-3730 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-4266 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-548))) 22)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 14)) (-3932 (((-1082) $) NIL)) (-3171 ((|#1| $ |#1|) 11)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 20)) (-3118 (($) 8 T CONST)) (-2214 (((-112) $ $) 10)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) 27) (($ $ (-745)) NIL) (($ $ (-548)) 16)) (* (($ $ $) 28))) +(((-98 |#1|) (-13 (-464) (-278 |#1| |#1|) (-10 -8 (-15 -4266 ($ (-1 |#1| |#1|))) (-15 -4266 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4266 ($ (-1 |#1| |#1| (-548)))))) (-1016)) (T -98)) +((-4266 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-4266 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-548))) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) +(-13 (-464) (-278 |#1| |#1|) (-10 -8 (-15 -4266 ($ (-1 |#1| |#1|))) (-15 -4266 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4266 ($ (-1 |#1| |#1| (-548)))))) +((-4277 (((-410 |#2|) |#2| (-619 |#2|)) 10) (((-410 |#2|) |#2| |#2|) 11))) +(((-99 |#1| |#2|) (-10 -7 (-15 -4277 ((-410 |#2|) |#2| |#2|)) (-15 -4277 ((-410 |#2|) |#2| (-619 |#2|)))) (-13 (-443) (-145)) (-1194 |#1|)) (T -99)) +((-4277 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-13 (-443) (-145))) (-5 *2 (-410 *3)) (-5 *1 (-99 *5 *3)))) (-4277 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-443) (-145))) (-5 *2 (-410 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -4277 ((-410 |#2|) |#2| |#2|)) (-15 -4277 ((-410 |#2|) |#2| (-619 |#2|)))) +((-3730 (((-112) $ $) 10))) +(((-100 |#1|) (-10 -8 (-15 -3730 ((-112) |#1| |#1|))) (-101)) (T -100)) +NIL +(-10 -8 (-15 -3730 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-2214 (((-112) $ $) 6))) +(((-101) (-138)) (T -101)) +((-3730 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2214 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2214 ((-112) $ $)) (-15 -3730 ((-112) $ $)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) 13 (|has| $ (-6 -4328)))) (-1816 (($ $ $) NIL (|has| $ (-6 -4328)))) (-1825 (($ $ $) NIL (|has| $ (-6 -4328)))) (-1253 (($ $ (-619 |#1|)) 15)) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 11)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) 17)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4298 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4287 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|)) 35)) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) 10)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) 12)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 9)) (-3319 (($) 16)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1266 (($ (-745) |#1|) 19)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -1266 ($ (-745) |#1|)) (-15 -1253 ($ $ (-619 |#1|))) (-15 -4298 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4298 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4287 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4287 ($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|))))) (-1063)) (T -102)) +((-1266 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-102 *3)) (-4 *3 (-1063)))) (-1253 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1063)))) (-4298 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) (-4287 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2)))) (-4287 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-619 *2) *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -1266 ($ (-745) |#1|)) (-15 -1253 ($ $ (-619 |#1|))) (-15 -4298 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4298 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4287 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4287 ($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|))))) +((-1278 ((|#3| |#2| |#2|) 29)) (-1301 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4329 "*"))))) (-1290 ((|#3| |#2| |#2|) 30)) (-1313 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4329 "*")))))) +(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1278 (|#3| |#2| |#2|)) (-15 -1290 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4329 "*"))) (PROGN (-15 -1301 (|#1| |#2| |#2|)) (-15 -1313 (|#1| |#2|))) |%noBranch|)) (-1016) (-1194 |#1|) (-661 |#1| |#4| |#5|) (-365 |#1|) (-365 |#1|)) (T -103)) +((-1313 (*1 *2 *3) (-12 (|has| *2 (-6 (-4329 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) (-4 *4 (-661 *2 *5 *6)))) (-1301 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4329 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) (-4 *4 (-661 *2 *5 *6)))) (-1290 (*1 *2 *3 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))) (-1278 (*1 *2 *3 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) +(-10 -7 (-15 -1278 (|#3| |#2| |#2|)) (-15 -1290 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4329 "*"))) (PROGN (-15 -1301 (|#1| |#2| |#2|)) (-15 -1313 (|#1| |#2|))) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-1336 (((-619 (-1135))) 33)) (-1324 (((-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) (|:| |singularities| (-1116 (-218)))) (-1135)) 35)) (-2214 (((-112) $ $) NIL))) +(((-104) (-13 (-1063) (-10 -7 (-15 -1336 ((-619 (-1135)))) (-15 -1324 ((-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) (|:| |singularities| (-1116 (-218)))) (-1135))) (-6 -4327)))) (T -104)) +((-1336 (*1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-104)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) (|:| |singularities| (-1116 (-218))))) (-5 *1 (-104))))) +(-13 (-1063) (-10 -7 (-15 -1336 ((-619 (-1135)))) (-15 -1324 ((-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) (|:| |singularities| (-1116 (-218)))) (-1135))) (-6 -4327))) +((-1368 (($ (-619 |#2|)) 11))) +(((-105 |#1| |#2|) (-10 -8 (-15 -1368 (|#1| (-619 |#2|)))) (-106 |#2|) (-1172)) (T -105)) +NIL +(-10 -8 (-15 -1368 (|#1| (-619 |#2|)))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-106 |#1|) (-138) (-1172)) (T -106)) +((-1368 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-106 *3)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) (-2539 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) (-1346 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) +(-13 (-480 |t#1|) (-10 -8 (-6 -4328) (-15 -1368 ($ (-619 |t#1|))) (-15 -1357 (|t#1| $)) (-15 -2539 ($ |t#1| $)) (-15 -1346 (|t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-548) $) NIL (|has| (-548) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-548) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-548) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-548) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-548) (-1007 (-548))))) (-2375 (((-548) $) NIL) (((-1135) $) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-548) (-1007 (-548)))) (((-548) $) NIL (|has| (-548) (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-548) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-548) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-548) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-548) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-548) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-548) (-1111)))) (-3312 (((-112) $) NIL (|has| (-548) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-548) (-821)))) (-2540 (($ (-1 (-548) (-548)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-548) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-548) (-299))) (((-399 (-548)) $) NIL)) (-3887 (((-548) $) NIL (|has| (-548) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-548)) (-619 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-548) (-548)) NIL (|has| (-548) (-301 (-548)))) (($ $ (-286 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-286 (-548)))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-1135)) (-619 (-548))) NIL (|has| (-548) (-504 (-1135) (-548)))) (($ $ (-1135) (-548)) NIL (|has| (-548) (-504 (-1135) (-548))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-548)) NIL (|has| (-548) (-278 (-548) (-548))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-548) $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| (-548) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-548) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-548) (-593 (-524)))) (((-371) $) NIL (|has| (-548) (-991))) (((-218) $) NIL (|has| (-548) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-548) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 8) (($ (-548)) NIL) (($ (-1135)) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL) (((-973 2) $) 10)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-548) (-878))) (|has| (-548) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-548) $) NIL (|has| (-548) (-533)))) (-2964 (($ (-399 (-548))) 9)) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-548) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2309 (($ $ $) NIL) (($ (-548) (-548)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-548) $) NIL) (($ $ (-548)) NIL))) +(((-107) (-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 2) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -2964 ($ (-399 (-548))))))) (T -107)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-973 2)) (-5 *1 (-107)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107))))) +(-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 2) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -2964 ($ (-399 (-548)))))) +((-2522 (((-619 (-934)) $) 14)) (-2275 (((-1135) $) 10)) (-3743 (((-832) $) 23)) (-2305 (($ (-1135) (-619 (-934))) 15))) +(((-108) (-13 (-592 (-832)) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -2522 ((-619 (-934)) $)) (-15 -2305 ($ (-1135) (-619 (-934))))))) (T -108)) +((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-108)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-619 (-934))) (-5 *1 (-108)))) (-2305 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-108))))) +(-13 (-592 (-832)) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -2522 ((-619 (-934)) $)) (-15 -2305 ($ (-1135) (-619 (-934)))))) +((-3730 (((-112) $ $) NIL)) (-3930 (((-1082) $ (-1082)) 24)) (-3981 (($ $ (-1118)) 17)) (-2630 (((-3 (-1082) "failed") $) 23)) (-3943 (((-1082) $) 21)) (-2316 (((-1082) $ (-1082)) 26)) (-2621 (((-1082) $) 25)) (-1280 (($ (-380)) NIL) (($ (-380) (-1118)) 16)) (-2275 (((-380) $) NIL)) (-2546 (((-1118) $) NIL)) (-3959 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3972 (($ $) 18)) (-2214 (((-112) $ $) NIL))) +(((-109) (-13 (-356 (-380) (-1082)) (-10 -8 (-15 -2630 ((-3 (-1082) "failed") $)) (-15 -2621 ((-1082) $)) (-15 -2316 ((-1082) $ (-1082)))))) (T -109)) +((-2630 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-109)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-109)))) (-2316 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-109))))) +(-13 (-356 (-380) (-1082)) (-10 -8 (-15 -2630 ((-3 (-1082) "failed") $)) (-15 -2621 ((-1082) $)) (-15 -2316 ((-1082) $ (-1082))))) +((-3730 (((-112) $ $) NIL)) (-1258 (($ $) NIL)) (-2218 (($ $ $) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-821)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2490 (($ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-112) $ (-1185 (-548)) (-112)) NIL (|has| $ (-6 -4328))) (((-112) $ (-548) (-112)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-3699 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-2061 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-3971 (((-112) $ (-548) (-112)) NIL (|has| $ (-6 -4328)))) (-3899 (((-112) $ (-548)) NIL)) (-2621 (((-548) (-112) $ (-548)) NIL (|has| (-112) (-1063))) (((-548) (-112) $) NIL (|has| (-112) (-1063))) (((-548) (-1 (-112) (-112)) $) NIL)) (-1934 (((-619 (-112)) $) NIL (|has| $ (-6 -4327)))) (-4168 (($ $ $) NIL)) (-3958 (($ $) NIL)) (-4078 (($ $ $) NIL)) (-3550 (($ (-745) (-112)) 8)) (-4293 (($ $ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL)) (-2913 (($ $ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2342 (((-619 (-112)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL)) (-3960 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ (-112) $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-112) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4159 (($ $ (-112)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-112)) (-619 (-112))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-286 (-112)))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4223 (((-619 (-112)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (($ $ (-1185 (-548))) NIL) (((-112) $ (-548)) NIL) (((-112) $ (-548) (-112)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-3945 (((-745) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063)))) (((-745) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-112) (-593 (-524))))) (-3754 (($ (-619 (-112))) NIL)) (-1831 (($ (-619 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3743 (((-832) $) NIL)) (-2245 (($ (-745) (-112)) 9)) (-3548 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-1723 (($ $ $) NIL)) (-2818 (($ $ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2809 (($ $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-110) (-13 (-123) (-10 -8 (-15 -2245 ($ (-745) (-112)))))) (T -110)) +((-2245 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -2245 ($ (-745) (-112))))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-138) (-1016) (-1016)) (T -111)) +NIL +(-13 (-622 |t#1|) (-1022 |t#2|) (-10 -7 (-6 -4322) (-6 -4321))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-1022 |#2|) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-1258 (($ $) 10)) (-2218 (($ $ $) 15)) (-1714 (($) 7 T CONST)) (-1752 (($ $) 6)) (-3423 (((-745)) 24)) (-2545 (($) 30)) (-4168 (($ $ $) 13)) (-3958 (($ $) 9)) (-4078 (($ $ $) 16)) (-4293 (($ $ $) 17)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2855 (((-890) $) 29)) (-2546 (((-1118) $) NIL)) (-3337 (($ (-890)) 28)) (-2202 (($ $ $) 20)) (-3932 (((-1082) $) NIL)) (-3599 (($) 8 T CONST)) (-2954 (($ $ $) 21)) (-2591 (((-524) $) 36)) (-3743 (((-832) $) 39)) (-1723 (($ $ $) 11)) (-2818 (($ $ $) 14)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 19)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 22)) (-2809 (($ $ $) 12))) +(((-112) (-13 (-821) (-360) (-635) (-936) (-593 (-524)) (-10 -8 (-15 -1714 ($) -2325) (-15 -3599 ($) -2325) (-15 -2218 ($ $ $)) (-15 -4293 ($ $ $)) (-15 -4078 ($ $ $)) (-15 -1752 ($ $))))) (T -112)) +((-1714 (*1 *1) (-5 *1 (-112))) (-3599 (*1 *1) (-5 *1 (-112))) (-2218 (*1 *1 *1 *1) (-5 *1 (-112))) (-4293 (*1 *1 *1 *1) (-5 *1 (-112))) (-4078 (*1 *1 *1 *1) (-5 *1 (-112))) (-1752 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-821) (-360) (-635) (-936) (-593 (-524)) (-10 -8 (-15 -1714 ($) -2325) (-15 -3599 ($) -2325) (-15 -2218 ($ $ $)) (-15 -4293 ($ $ $)) (-15 -4078 ($ $ $)) (-15 -1752 ($ $)))) +((-1756 (((-3 (-1 |#1| (-619 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-619 |#1|))) 11) (((-3 |#1| "failed") (-114) (-619 |#1|)) 21)) (-3259 (((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-619 (-1 |#1| (-619 |#1|)))) 26)) (-3271 (((-114) |#1|) 56 (|has| |#1| (-821)))) (-1486 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-821))))) +(((-113 |#1|) (-10 -7 (-15 -1756 ((-3 |#1| "failed") (-114) (-619 |#1|))) (-15 -1756 ((-114) (-114) (-1 |#1| (-619 |#1|)))) (-15 -1756 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1756 ((-3 (-1 |#1| (-619 |#1|)) "failed") (-114))) (-15 -3259 ((-114) (-114) (-619 (-1 |#1| (-619 |#1|))))) (-15 -3259 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3259 ((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114))) (IF (|has| |#1| (-821)) (PROGN (-15 -3271 ((-114) |#1|)) (-15 -1486 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1063)) (T -113)) +((-1486 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1063)) (-4 *2 (-821)) (-5 *1 (-113 *2)))) (-3271 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))) (-3259 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-1 *4 (-619 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1063)))) (-3259 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-3259 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-1 *4 (-619 *4)))) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1756 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-619 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1063)))) (-1756 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1756 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-619 *4))) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-619 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1063))))) +(-10 -7 (-15 -1756 ((-3 |#1| "failed") (-114) (-619 |#1|))) (-15 -1756 ((-114) (-114) (-1 |#1| (-619 |#1|)))) (-15 -1756 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1756 ((-3 (-1 |#1| (-619 |#1|)) "failed") (-114))) (-15 -3259 ((-114) (-114) (-619 (-1 |#1| (-619 |#1|))))) (-15 -3259 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3259 ((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114))) (IF (|has| |#1| (-821)) (PROGN (-15 -3271 ((-114) |#1|)) (-15 -1486 ((-3 |#1| "failed") (-114)))) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-3266 (((-745) $) 72) (($ $ (-745)) 30)) (-1552 (((-112) $) 32)) (-1579 (($ $ (-1118) (-748)) 26)) (-1570 (($ $ (-45 (-1118) (-748))) 15)) (-1812 (((-3 (-748) "failed") $ (-1118)) 25)) (-2522 (((-45 (-1118) (-748)) $) 14)) (-1402 (($ (-1135)) 17) (($ (-1135) (-745)) 22)) (-1633 (((-112) $) 31)) (-1543 (((-112) $) 33)) (-2275 (((-1135) $) 8)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-1518 (((-112) $ (-1135)) 10)) (-2542 (($ $ (-1 (-524) (-619 (-524)))) 52) (((-3 (-1 (-524) (-619 (-524))) "failed") $) 56)) (-3932 (((-1082) $) NIL)) (-2150 (((-112) $ (-1118)) 29)) (-1254 (($ $ (-1 (-112) $ $)) 35)) (-2487 (((-3 (-1 (-832) (-619 (-832))) "failed") $) 54) (($ $ (-1 (-832) (-619 (-832)))) 41) (($ $ (-1 (-832) (-832))) 43)) (-2137 (($ $ (-1118)) 45)) (-2113 (($ $) 63)) (-4299 (($ $ (-1 (-112) $ $)) 36)) (-3743 (((-832) $) 48)) (-2841 (($ $ (-1118)) 27)) (-1640 (((-3 (-745) "failed") $) 58)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 71)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 79))) +(((-114) (-13 (-821) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -2522 ((-45 (-1118) (-748)) $)) (-15 -2113 ($ $)) (-15 -1402 ($ (-1135))) (-15 -1402 ($ (-1135) (-745))) (-15 -1640 ((-3 (-745) "failed") $)) (-15 -1633 ((-112) $)) (-15 -1552 ((-112) $)) (-15 -1543 ((-112) $)) (-15 -3266 ((-745) $)) (-15 -3266 ($ $ (-745))) (-15 -1254 ($ $ (-1 (-112) $ $))) (-15 -4299 ($ $ (-1 (-112) $ $))) (-15 -2487 ((-3 (-1 (-832) (-619 (-832))) "failed") $)) (-15 -2487 ($ $ (-1 (-832) (-619 (-832))))) (-15 -2487 ($ $ (-1 (-832) (-832)))) (-15 -2542 ($ $ (-1 (-524) (-619 (-524))))) (-15 -2542 ((-3 (-1 (-524) (-619 (-524))) "failed") $)) (-15 -1518 ((-112) $ (-1135))) (-15 -2150 ((-112) $ (-1118))) (-15 -2841 ($ $ (-1118))) (-15 -2137 ($ $ (-1118))) (-15 -1812 ((-3 (-748) "failed") $ (-1118))) (-15 -1579 ($ $ (-1118) (-748))) (-15 -1570 ($ $ (-45 (-1118) (-748))))))) (T -114)) +((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114)))) (-2113 (*1 *1 *1) (-5 *1 (-114))) (-1402 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) (-1402 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *1 (-114)))) (-1640 (*1 *2 *1) (|partial| -12 (-5 *2 (-745)) (-5 *1 (-114)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4299 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2487 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) (-2487 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) (-2487 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-832))) (-5 *1 (-114)))) (-2542 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-524) (-619 (-524)))) (-5 *1 (-114)))) (-2542 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-524) (-619 (-524)))) (-5 *1 (-114)))) (-1518 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2150 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2841 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114)))) (-1812 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-748)) (-5 *1 (-114)))) (-1579 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-748)) (-5 *1 (-114)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114))))) +(-13 (-821) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -2522 ((-45 (-1118) (-748)) $)) (-15 -2113 ($ $)) (-15 -1402 ($ (-1135))) (-15 -1402 ($ (-1135) (-745))) (-15 -1640 ((-3 (-745) "failed") $)) (-15 -1633 ((-112) $)) (-15 -1552 ((-112) $)) (-15 -1543 ((-112) $)) (-15 -3266 ((-745) $)) (-15 -3266 ($ $ (-745))) (-15 -1254 ($ $ (-1 (-112) $ $))) (-15 -4299 ($ $ (-1 (-112) $ $))) (-15 -2487 ((-3 (-1 (-832) (-619 (-832))) "failed") $)) (-15 -2487 ($ $ (-1 (-832) (-619 (-832))))) (-15 -2487 ($ $ (-1 (-832) (-832)))) (-15 -2542 ($ $ (-1 (-524) (-619 (-524))))) (-15 -2542 ((-3 (-1 (-524) (-619 (-524))) "failed") $)) (-15 -1518 ((-112) $ (-1135))) (-15 -2150 ((-112) $ (-1118))) (-15 -2841 ($ $ (-1118))) (-15 -2137 ($ $ (-1118))) (-15 -1812 ((-3 (-748) "failed") $ (-1118))) (-15 -1579 ($ $ (-1118) (-748))) (-15 -1570 ($ $ (-45 (-1118) (-748)))))) +((-1499 (((-548) |#2|) 37))) +(((-115 |#1| |#2|) (-10 -7 (-15 -1499 ((-548) |#2|))) (-13 (-355) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -115)) +((-1499 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-1007 (-399 *2)))) (-5 *2 (-548)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -1499 ((-548) |#2|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $ (-548)) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1294 (($ (-1131 (-548)) (-548)) NIL)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1305 (($ $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1672 (((-745) $) NIL)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 (((-548)) NIL)) (-1317 (((-548) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1656 (($ $ (-548)) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1340 (((-1116 (-548)) $) NIL)) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-2439 (((-548) $ (-548)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-838 |#1|) (-548)) (T -116)) +NIL +(-838 |#1|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-116 |#1|) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-548))))) (-2375 (((-116 |#1|) $) NIL) (((-1135) $) NIL (|has| (-116 |#1|) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-116 |#1|) (-1007 (-548)))) (((-548) $) NIL (|has| (-116 |#1|) (-1007 (-548))))) (-1306 (($ $) NIL) (($ (-548) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-116 |#1|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-116 |#1|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-116 |#1|))) (|:| |vec| (-1218 (-116 |#1|)))) (-663 $) (-1218 $)) NIL) (((-663 (-116 |#1|)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-116 |#1|) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-116 |#1|) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-116 |#1|) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-116 |#1|) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-116 |#1|) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1111)))) (-3312 (((-112) $) NIL (|has| (-116 |#1|) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-116 |#1|) (-821)))) (-3091 (($ $ $) NIL (|has| (-116 |#1|) (-821)))) (-2540 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-116 |#1|) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-116 |#1|) (-299)))) (-3887 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-116 |#1|)) (-619 (-116 |#1|))) NIL (|has| (-116 |#1|) (-301 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-301 (-116 |#1|)))) (($ $ (-286 (-116 |#1|))) NIL (|has| (-116 |#1|) (-301 (-116 |#1|)))) (($ $ (-619 (-286 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-301 (-116 |#1|)))) (($ $ (-619 (-1135)) (-619 (-116 |#1|))) NIL (|has| (-116 |#1|) (-504 (-1135) (-116 |#1|)))) (($ $ (-1135) (-116 |#1|)) NIL (|has| (-116 |#1|) (-504 (-1135) (-116 |#1|))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-278 (-116 |#1|) (-116 |#1|))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-116 |#1|) (-226))) (($ $ (-745)) NIL (|has| (-116 |#1|) (-226))) (($ $ (-1135)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-745)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-116 |#1|) $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| (-116 |#1|) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-116 |#1|) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-116 |#1|) (-593 (-524)))) (((-371) $) NIL (|has| (-116 |#1|) (-991))) (((-218) $) NIL (|has| (-116 |#1|) (-991)))) (-1351 (((-171 (-399 (-548))) $) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-116 |#1|)) NIL) (($ (-1135)) NIL (|has| (-116 |#1|) (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-878))) (|has| (-116 |#1|) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-533)))) (-3290 (((-112) $ $) NIL)) (-2439 (((-399 (-548)) $ (-548)) NIL)) (-1446 (($ $) NIL (|has| (-116 |#1|) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-116 |#1|) (-226))) (($ $ (-745)) NIL (|has| (-116 |#1|) (-226))) (($ $ (-1135)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-745)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2309 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-961 (-116 |#1|)) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) (-548)) (T -117)) +((-2439 (*1 *2 *1 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-548)))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-117 *3)) (-14 *3 (-548)))) (-1306 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-548)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-961 (-116 |#1|)) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) +((-2089 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-4245 (((-619 $) $) 27)) (-4213 (((-112) $ $) 32)) (-2556 (((-112) |#2| $) 36)) (-2869 (((-619 |#2|) $) 22)) (-3010 (((-112) $) 16)) (-3171 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2740 (((-112) $) 45)) (-3743 (((-832) $) 41)) (-2956 (((-619 $) $) 28)) (-2214 (((-112) $ $) 34)) (-3643 (((-745) $) 43))) +(((-118 |#1| |#2|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2089 (|#1| |#1| "right" |#1|)) (-15 -2089 (|#1| |#1| "left" |#1|)) (-15 -3171 (|#1| |#1| "right")) (-15 -3171 (|#1| |#1| "left")) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4213 ((-112) |#1| |#1|)) (-15 -2869 ((-619 |#2|) |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3643 ((-745) |#1|))) (-119 |#2|) (-1172)) (T -118)) +NIL +(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2089 (|#1| |#1| "right" |#1|)) (-15 -2089 (|#1| |#1| "left" |#1|)) (-15 -3171 (|#1| |#1| "right")) (-15 -3171 (|#1| |#1| "left")) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4213 ((-112) |#1| |#1|)) (-15 -2869 ((-619 |#2|) |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3643 ((-745) |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-1816 (($ $ $) 52 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 54 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) (($ $ "left" $) 55 (|has| $ (-6 -4328))) (($ $ "right" $) 53 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-3676 (($ $) 57)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-3663 (($ $) 59)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-119 |#1|) (-138) (-1172)) (T -119)) +((-3663 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-3676 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-2089 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4328)) (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-1825 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-2089 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4328)) (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-1816 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) +(-13 (-979 |t#1|) (-10 -8 (-15 -3663 ($ $)) (-15 -3171 ($ $ "left")) (-15 -3676 ($ $)) (-15 -3171 ($ $ "right")) (IF (|has| $ (-6 -4328)) (PROGN (-15 -2089 ($ $ "left" $)) (-15 -1825 ($ $ $)) (-15 -2089 ($ $ "right" $)) (-15 -1816 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-4002 (((-112) |#1|) 24)) (-3472 (((-745) (-745)) 23) (((-745)) 22)) (-3462 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) +(((-120 |#1|) (-10 -7 (-15 -3462 ((-112) |#1|)) (-15 -3462 ((-112) |#1| (-112))) (-15 -3472 ((-745))) (-15 -3472 ((-745) (-745))) (-15 -4002 ((-112) |#1|))) (-1194 (-548))) (T -120)) +((-4002 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) (-3472 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) (-3462 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) (-3462 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548)))))) +(-10 -7 (-15 -3462 ((-112) |#1|)) (-15 -3462 ((-112) |#1| (-112))) (-15 -3472 ((-745))) (-15 -3472 ((-745) (-745))) (-15 -4002 ((-112) |#1|))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 15)) (-3530 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-1816 (($ $ $) 18 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 20 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 17)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) 23)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) 19)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-4014 (($ |#1| $) 24)) (-2539 (($ |#1| $) 10)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 14)) (-3319 (($) 8)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4067 (($ (-619 |#1|)) 12)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -4067 ($ (-619 |#1|))) (-15 -2539 ($ |#1| $)) (-15 -4014 ($ |#1| $)) (-15 -3530 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-821)) (T -121)) +((-4067 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-121 *3)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) (-4014 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) (-3530 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-821))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -4067 ($ (-619 |#1|))) (-15 -2539 ($ |#1| $)) (-15 -4014 ($ |#1| $)) (-15 -3530 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-1258 (($ $) 13)) (-3958 (($ $) 11)) (-4078 (($ $ $) 23)) (-4293 (($ $ $) 21)) (-2818 (($ $ $) 19)) (-2809 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -4078 (|#1| |#1| |#1|)) (-15 -4293 (|#1| |#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -2809 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -4078 (|#1| |#1| |#1|)) (-15 -4293 (|#1| |#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -2809 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-1258 (($ $) 103)) (-2218 (($ $ $) 25)) (-4149 (((-1223) $ (-548) (-548)) 66 (|has| $ (-6 -4328)))) (-3001 (((-112) $) 98 (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2980 (($ $) 102 (-12 (|has| (-112) (-821)) (|has| $ (-6 -4328)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4328)))) (-2490 (($ $) 97 (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2028 (((-112) $ (-745)) 37)) (-2089 (((-112) $ (-1185 (-548)) (-112)) 88 (|has| $ (-6 -4328))) (((-112) $ (-548) (-112)) 54 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4327)))) (-3030 (($) 38 T CONST)) (-3499 (($ $) 100 (|has| $ (-6 -4328)))) (-2796 (($ $) 90)) (-3484 (($ $) 68 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4327))) (($ (-112) $) 69 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327))))) (-2061 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327))))) (-3971 (((-112) $ (-548) (-112)) 53 (|has| $ (-6 -4328)))) (-3899 (((-112) $ (-548)) 55)) (-2621 (((-548) (-112) $ (-548)) 95 (|has| (-112) (-1063))) (((-548) (-112) $) 94 (|has| (-112) (-1063))) (((-548) (-1 (-112) (-112)) $) 93)) (-1934 (((-619 (-112)) $) 45 (|has| $ (-6 -4327)))) (-4168 (($ $ $) 26)) (-3958 (($ $) 30)) (-4078 (($ $ $) 28)) (-3550 (($ (-745) (-112)) 77)) (-4293 (($ $ $) 29)) (-4282 (((-112) $ (-745)) 36)) (-4171 (((-548) $) 63 (|has| (-548) (-821)))) (-1795 (($ $ $) 13)) (-2913 (($ $ $) 96 (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2342 (((-619 (-112)) $) 46 (|has| $ (-6 -4327)))) (-2556 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 62 (|has| (-548) (-821)))) (-3091 (($ $ $) 14)) (-3960 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4248 (((-112) $ (-745)) 35)) (-2546 (((-1118) $) 9)) (-2387 (($ $ $ (-548)) 87) (($ (-112) $ (-548)) 86)) (-4201 (((-619 (-548)) $) 60)) (-4212 (((-112) (-548) $) 59)) (-3932 (((-1082) $) 10)) (-3453 (((-112) $) 64 (|has| (-548) (-821)))) (-4030 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-4159 (($ $ (-112)) 65 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-112)) (-619 (-112))) 52 (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-286 (-112))) 50 (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-286 (-112)))) 49 (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))))) (-2039 (((-112) $ $) 31)) (-4191 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4223 (((-619 (-112)) $) 58)) (-1616 (((-112) $) 34)) (-3319 (($) 33)) (-3171 (($ $ (-1185 (-548))) 83) (((-112) $ (-548)) 57) (((-112) $ (-548) (-112)) 56)) (-2008 (($ $ (-1185 (-548))) 85) (($ $ (-548)) 84)) (-3945 (((-745) (-112) $) 47 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) 99 (|has| $ (-6 -4328)))) (-2113 (($ $) 32)) (-2591 (((-524) $) 67 (|has| (-112) (-593 (-524))))) (-3754 (($ (-619 (-112))) 76)) (-1831 (($ (-619 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3743 (((-832) $) 11)) (-3548 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4327)))) (-1723 (($ $ $) 27)) (-2818 (($ $ $) 105)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2809 (($ $ $) 104)) (-3643 (((-745) $) 39 (|has| $ (-6 -4327))))) +(((-123) (-138)) (T -123)) +((-3958 (*1 *1 *1) (-4 *1 (-123))) (-4293 (*1 *1 *1 *1) (-4 *1 (-123))) (-4078 (*1 *1 *1 *1) (-4 *1 (-123))) (-1723 (*1 *1 *1 *1) (-4 *1 (-123))) (-4168 (*1 *1 *1 *1) (-4 *1 (-123))) (-2218 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-821) (-635) (-19 (-112)) (-10 -8 (-15 -3958 ($ $)) (-15 -4293 ($ $ $)) (-15 -4078 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -2218 ($ $ $)))) +(((-34) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 #0=(-112)) . T) ((-593 (-524)) |has| (-112) (-593 (-524))) ((-278 #1=(-548) #0#) . T) ((-280 #1# #0#) . T) ((-301 #0#) -12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))) ((-365 #0#) . T) ((-480 #0#) . T) ((-583 #1# #0#) . T) ((-504 #0# #0#) -12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))) ((-625 #0#) . T) ((-635) . T) ((-19 #0#) . T) ((-821) . T) ((-1063) . T) ((-1172) . T)) +((-3960 (($ (-1 |#2| |#2|) $) 22)) (-2113 (($ $) 16)) (-3643 (((-745) $) 24))) +(((-124 |#1| |#2|) (-10 -8 (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2113 (|#1| |#1|))) (-125 |#2|) (-1063)) (T -124)) +NIL +(-10 -8 (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2113 (|#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-1816 (($ $ $) 52 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 54 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) (($ $ "left" $) 55 (|has| $ (-6 -4328))) (($ $ "right" $) 53 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-3676 (($ $) 57)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) 60)) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-3663 (($ $) 59)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-125 |#1|) (-138) (-1063)) (T -125)) +((-2021 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1063))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -2021 ($ $ |t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-119 |#1|) . T) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 15)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) 19 (|has| $ (-6 -4328)))) (-1816 (($ $ $) 20 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 18 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 21)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2539 (($ |#1| $) 10)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 14)) (-3319 (($) 8)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 17)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4305 (($ (-619 |#1|)) 12)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4328) (-15 -4305 ($ (-619 |#1|))) (-15 -2539 ($ |#1| $)))) (-821)) (T -126)) +((-4305 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-126 *3)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-821))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4328) (-15 -4305 ($ (-619 |#1|))) (-15 -2539 ($ |#1| $)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 24)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) 26 (|has| $ (-6 -4328)))) (-1816 (($ $ $) 30 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 28 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 20)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) 15)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) 19)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) 21)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 18)) (-3319 (($) 11)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2443 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 10 (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2443 ($ |#1|)) (-15 -2443 ($ $ |#1| $)))) (-1063)) (T -127)) +((-2443 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))) (-2443 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063))))) +(-13 (-125 |#1|) (-10 -8 (-15 -2443 ($ |#1|)) (-15 -2443 ($ $ |#1| $)))) +((-3730 (((-112) $ $) NIL (|has| (-129) (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-821)))) (-2980 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-129) (-821))))) (-2490 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-129) $ (-548) (-129)) NIL (|has| $ (-6 -4328))) (((-129) $ (-1185 (-548)) (-129)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063))))) (-3699 (($ (-129) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4327))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-129) $ (-548) (-129)) NIL (|has| $ (-6 -4328)))) (-3899 (((-129) $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) (-129)) $) NIL) (((-548) (-129) $) NIL (|has| (-129) (-1063))) (((-548) (-129) $ (-548)) NIL (|has| (-129) (-1063)))) (-1934 (((-619 (-129)) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-129)) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| (-129) (-821)))) (-2913 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-821)))) (-2342 (((-619 (-129)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-129) (-821)))) (-3960 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| (-129) (-1063)))) (-2387 (($ (-129) $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| (-129) (-1063)))) (-3453 (((-129) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-4159 (($ $ (-129)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-129)))) NIL (-12 (|has| (-129) (-301 (-129))) (|has| (-129) (-1063)))) (($ $ (-286 (-129))) NIL (-12 (|has| (-129) (-301 (-129))) (|has| (-129) (-1063)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-301 (-129))) (|has| (-129) (-1063)))) (($ $ (-619 (-129)) (-619 (-129))) NIL (-12 (|has| (-129) (-301 (-129))) (|has| (-129) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063))))) (-4223 (((-619 (-129)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-129) $ (-548) (-129)) NIL) (((-129) $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327))) (((-745) (-129) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-129) (-593 (-524))))) (-3754 (($ (-619 (-129))) NIL)) (-1831 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| (-129) (-592 (-832))))) (-3548 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2214 (((-112) $ $) NIL (|has| (-129) (-1063)))) (-2252 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-129) (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-128) (-19 (-129))) (T -128)) +NIL +(-19 (-129)) +((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 12) (((-745) $) 9) (($ (-745)) 8)) (-2454 (($ (-745)) 7)) (-2159 (($ $ $) 16)) (-2144 (($ $ $) 15)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 14))) +(((-129) (-13 (-821) (-592 (-745)) (-10 -8 (-15 -2454 ($ (-745))) (-15 -3743 ($ (-745))) (-15 -2144 ($ $ $)) (-15 -2159 ($ $ $))))) (T -129)) +((-2454 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) (-2144 (*1 *1 *1 *1) (-5 *1 (-129))) (-2159 (*1 *1 *1 *1) (-5 *1 (-129)))) +(-13 (-821) (-592 (-745)) (-10 -8 (-15 -2454 ($ (-745))) (-15 -3743 ($ (-745))) (-15 -2144 ($ $ $)) (-15 -2159 ($ $ $)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15))) +(((-130) (-138)) (T -130)) +((-4104 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(-13 (-23) (-10 -8 (-15 -4104 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 7)) (-4116 (((-1223) $ (-745)) 19)) (-2621 (((-745) $) 20)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) +(((-131) (-138)) (T -131)) +((-2621 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-745)))) (-4116 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-745)) (-5 *2 (-1223))))) +(-13 (-821) (-10 -8 (-15 -2621 ((-745) $)) (-15 -4116 ((-1223) $ (-745))))) +(((-101) . T) ((-592 (-832)) . T) ((-821) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-619 (-1140)) $) 10)) (-2214 (((-112) $ $) NIL))) +(((-132) (-13 (-1047) (-10 -8 (-15 -2286 ((-619 (-1140)) $))))) (T -132)) +((-2286 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-132))))) +(-13 (-1047) (-10 -8 (-15 -2286 ((-619 (-1140)) $)))) +((-3730 (((-112) $ $) 34)) (-3324 (((-112) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-745) "failed") $) 40)) (-2375 (((-745) $) 38)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) 27)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3397 (((-112)) 41)) (-3380 (((-112) (-112)) 43)) (-1828 (((-112) $) 24)) (-3488 (((-112) $) 37)) (-3743 (((-832) $) 22) (($ (-745)) 14)) (-3107 (($) 11 T CONST)) (-3118 (($) 12 T CONST)) (-3501 (($ (-745)) 15)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 25)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 26)) (-2299 (((-3 $ "failed") $ $) 30)) (-2290 (($ $ $) 28)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL) (($ $ $) 36)) (* (($ (-745) $) 33) (($ (-890) $) NIL) (($ $ $) 31))) +(((-133) (-13 (-821) (-23) (-701) (-1007 (-745)) (-10 -8 (-6 (-4329 "*")) (-15 -2299 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3501 ($ (-745))) (-15 -1828 ((-112) $)) (-15 -3488 ((-112) $)) (-15 -3397 ((-112))) (-15 -3380 ((-112) (-112)))))) (T -133)) +((-2299 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-133)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3397 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(-13 (-821) (-23) (-701) (-1007 (-745)) (-10 -8 (-6 (-4329 "*")) (-15 -2299 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3501 ($ (-745))) (-15 -1828 ((-112) $)) (-15 -3488 ((-112) $)) (-15 -3397 ((-112))) (-15 -3380 ((-112) (-112))))) +((-3726 (((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2540 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) +(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2540 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-548) (-745) (-169) (-169)) (T -134)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-548)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-548)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) +(-10 -7 (-15 -3726 ((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2540 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) +((-3730 (((-112) $ $) NIL)) (-3333 (($ (-619 |#3|)) 40)) (-3508 (($ $) 99) (($ $ (-548) (-548)) 98)) (-3030 (($) 17)) (-2441 (((-3 |#3| "failed") $) 60)) (-2375 ((|#3| $) NIL)) (-3374 (($ $ (-619 (-548))) 100)) (-3713 (((-619 |#3|) $) 36)) (-2103 (((-745) $) 44)) (-2481 (($ $ $) 93)) (-3364 (($) 43)) (-2546 (((-1118) $) NIL)) (-3382 (($) 16)) (-3932 (((-1082) $) NIL)) (-3171 ((|#3| $) 46) ((|#3| $ (-548)) 47) ((|#3| $ (-548) (-548)) 48) ((|#3| $ (-548) (-548) (-548)) 49) ((|#3| $ (-548) (-548) (-548) (-548)) 50) ((|#3| $ (-619 (-548))) 52)) (-2512 (((-745) $) 45)) (-3925 (($ $ (-548) $ (-548)) 94) (($ $ (-548) (-548)) 96)) (-3743 (((-832) $) 67) (($ |#3|) 68) (($ (-233 |#2| |#3|)) 75) (($ (-1102 |#2| |#3|)) 78) (($ (-619 |#3|)) 53) (($ (-619 $)) 58)) (-3107 (($) 69 T CONST)) (-3118 (($) 70 T CONST)) (-2214 (((-112) $ $) 80)) (-2299 (($ $) 86) (($ $ $) 84)) (-2290 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-548)) 89) (($ (-548) $) 88) (($ $ $) 95))) +(((-135 |#1| |#2| |#3|) (-13 (-456 |#3| (-745)) (-461 (-548) (-745)) (-10 -8 (-15 -3743 ($ (-233 |#2| |#3|))) (-15 -3743 ($ (-1102 |#2| |#3|))) (-15 -3743 ($ (-619 |#3|))) (-15 -3743 ($ (-619 $))) (-15 -2103 ((-745) $)) (-15 -3171 (|#3| $)) (-15 -3171 (|#3| $ (-548))) (-15 -3171 (|#3| $ (-548) (-548))) (-15 -3171 (|#3| $ (-548) (-548) (-548))) (-15 -3171 (|#3| $ (-548) (-548) (-548) (-548))) (-15 -3171 (|#3| $ (-619 (-548)))) (-15 -2481 ($ $ $)) (-15 * ($ $ $)) (-15 -3925 ($ $ (-548) $ (-548))) (-15 -3925 ($ $ (-548) (-548))) (-15 -3508 ($ $)) (-15 -3508 ($ $ (-548) (-548))) (-15 -3374 ($ $ (-619 (-548)))) (-15 -3382 ($)) (-15 -3364 ($)) (-15 -3713 ((-619 |#3|) $)) (-15 -3333 ($ (-619 |#3|))) (-15 -3030 ($)))) (-548) (-745) (-169)) (T -135)) +((-2481 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1102 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)) (-4 *5 (-169)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 *2) (-4 *5 (-169)))) (-3171 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-548)) (-14 *4 (-745)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3171 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3171 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-548))) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-548)) (-14 *5 (-745)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3925 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-3925 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3508 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3382 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3364 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-619 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)))) (-3030 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169))))) +(-13 (-456 |#3| (-745)) (-461 (-548) (-745)) (-10 -8 (-15 -3743 ($ (-233 |#2| |#3|))) (-15 -3743 ($ (-1102 |#2| |#3|))) (-15 -3743 ($ (-619 |#3|))) (-15 -3743 ($ (-619 $))) (-15 -2103 ((-745) $)) (-15 -3171 (|#3| $)) (-15 -3171 (|#3| $ (-548))) (-15 -3171 (|#3| $ (-548) (-548))) (-15 -3171 (|#3| $ (-548) (-548) (-548))) (-15 -3171 (|#3| $ (-548) (-548) (-548) (-548))) (-15 -3171 (|#3| $ (-619 (-548)))) (-15 -2481 ($ $ $)) (-15 * ($ $ $)) (-15 -3925 ($ $ (-548) $ (-548))) (-15 -3925 ($ $ (-548) (-548))) (-15 -3508 ($ $)) (-15 -3508 ($ $ (-548) (-548))) (-15 -3374 ($ $ (-619 (-548)))) (-15 -3382 ($)) (-15 -3364 ($)) (-15 -3713 ((-619 |#3|) $)) (-15 -3333 ($ (-619 |#3|))) (-15 -3030 ($)))) +((-3730 (((-112) $ $) NIL)) (-1987 (((-1140) $) 11)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-136) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $))))) (T -136)) +((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136))))) +(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $)))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-2492 (((-1135) $) 11)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-619 (-1140)) $) 13)) (-2214 (((-112) $ $) NIL))) +(((-137) (-13 (-1047) (-10 -8 (-15 -2492 ((-1135) $)) (-15 -2286 ((-619 (-1140)) $))))) (T -137)) +((-2492 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-137))))) +(-13 (-1047) (-10 -8 (-15 -2492 ((-1135) $)) (-15 -2286 ((-619 (-1140)) $)))) +((-3743 (((-832) $) 7))) +(((-138) (-592 (-832))) (T -138)) +NIL +(-592 (-832)) +((-3730 (((-112) $ $) NIL)) (-3552 (($) 15 T CONST)) (-2528 (($) NIL (|has| (-142) (-360)))) (-1434 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-2501 (($ $ $) NIL)) (-2491 (((-112) $ $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| (-142) (-360)))) (-2592 (($) NIL) (($ (-619 (-142))) NIL)) (-2657 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-1636 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327))) (($ (-142) $) 51 (|has| $ (-6 -4327)))) (-3699 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-2545 (($) NIL (|has| (-142) (-360)))) (-1934 (((-619 (-142)) $) 60 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-1795 (((-142) $) NIL (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-3091 (((-142) $) NIL (|has| (-142) (-821)))) (-3960 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) 55)) (-3574 (($) 16 T CONST)) (-2855 (((-890) $) NIL (|has| (-142) (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2520 (($ $ $) 29)) (-1346 (((-142) $) 52)) (-2539 (($ (-142) $) 50)) (-3337 (($ (-890)) NIL (|has| (-142) (-360)))) (-3666 (($) 14 T CONST)) (-3932 (((-1082) $) NIL)) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1357 (((-142) $) 53)) (-3537 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-286 (-142)))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 48)) (-2908 (($) 13 T CONST)) (-2511 (($ $ $) 31) (($ $ (-142)) NIL)) (-2801 (($ (-619 (-142))) NIL) (($) NIL)) (-3945 (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-1118) $) 36) (((-524) $) NIL (|has| (-142) (-593 (-524)))) (((-619 (-142)) $) 34)) (-3754 (($ (-619 (-142))) NIL)) (-2543 (($ $) 32 (|has| (-142) (-360)))) (-3743 (((-832) $) 46)) (-2396 (($ (-1118)) 12) (($ (-619 (-142))) 43)) (-2554 (((-745) $) NIL)) (-4013 (($) 49) (($ (-619 (-142))) NIL)) (-1368 (($ (-619 (-142))) NIL)) (-3548 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3391 (($) 19 T CONST)) (-3654 (($) 18 T CONST)) (-2214 (((-112) $ $) 22)) (-3643 (((-745) $) 47 (|has| $ (-6 -4327))))) +(((-139) (-13 (-1063) (-593 (-1118)) (-417 (-142)) (-593 (-619 (-142))) (-10 -8 (-15 -2396 ($ (-1118))) (-15 -2396 ($ (-619 (-142)))) (-15 -2908 ($) -2325) (-15 -3666 ($) -2325) (-15 -3552 ($) -2325) (-15 -3574 ($) -2325) (-15 -3654 ($) -2325) (-15 -3391 ($) -2325)))) (T -139)) +((-2396 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-139)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-619 (-142))) (-5 *1 (-139)))) (-2908 (*1 *1) (-5 *1 (-139))) (-3666 (*1 *1) (-5 *1 (-139))) (-3552 (*1 *1) (-5 *1 (-139))) (-3574 (*1 *1) (-5 *1 (-139))) (-3654 (*1 *1) (-5 *1 (-139))) (-3391 (*1 *1) (-5 *1 (-139)))) +(-13 (-1063) (-593 (-1118)) (-417 (-142)) (-593 (-619 (-142))) (-10 -8 (-15 -2396 ($ (-1118))) (-15 -2396 ($ (-619 (-142)))) (-15 -2908 ($) -2325) (-15 -3666 ($) -2325) (-15 -3552 ($) -2325) (-15 -3574 ($) -2325) (-15 -3654 ($) -2325) (-15 -3391 ($) -2325))) +((-1396 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1374 ((|#1| |#3|) 9)) (-1386 ((|#3| |#3|) 15))) +(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -1374 (|#1| |#3|)) (-15 -1386 (|#3| |#3|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-540) (-961 |#1|) (-365 |#2|)) (T -140)) +((-1396 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-365 *5)))) (-1386 (*1 *2 *2) (-12 (-4 *3 (-540)) (-4 *4 (-961 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-365 *4)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-365 *4))))) +(-10 -7 (-15 -1374 (|#1| |#3|)) (-15 -1386 (|#3| |#3|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4206 (($ $ $) 8)) (-4185 (($ $) 7)) (-3612 (($ $ $) 6))) +(((-141) (-138)) (T -141)) +((-4206 (*1 *1 *1 *1) (-4 *1 (-141))) (-4185 (*1 *1 *1) (-4 *1 (-141))) (-3612 (*1 *1 *1 *1) (-4 *1 (-141)))) +(-13 (-10 -8 (-15 -3612 ($ $ $)) (-15 -4185 ($ $)) (-15 -4206 ($ $ $)))) +((-3730 (((-112) $ $) NIL)) (-2946 (((-112) $) 30)) (-3552 (($ $) 43)) (-3232 (($) 17)) (-3423 (((-745)) 10)) (-2545 (($) 16)) (-2206 (($) 18)) (-1320 (((-745) $) 14)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2935 (((-112) $) 32)) (-3574 (($ $) 44)) (-2855 (((-890) $) 15)) (-2546 (((-1118) $) 38)) (-3337 (($ (-890)) 13)) (-1297 (((-112) $) 28)) (-3932 (((-1082) $) NIL)) (-1307 (($) 19)) (-3839 (((-112) $) 26)) (-3743 (((-832) $) 21)) (-1289 (($ (-745)) 11) (($ (-1118)) 42)) (-2924 (((-112) $) 36)) (-2957 (((-112) $) 34)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 7)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 8))) +(((-142) (-13 (-815) (-10 -8 (-15 -1320 ((-745) $)) (-15 -1289 ($ (-745))) (-15 -1289 ($ (-1118))) (-15 -3232 ($)) (-15 -2206 ($)) (-15 -1307 ($)) (-15 -3552 ($ $)) (-15 -3574 ($ $)) (-15 -3839 ((-112) $)) (-15 -1297 ((-112) $)) (-15 -2957 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -2924 ((-112) $))))) (T -142)) +((-1320 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-142)))) (-1289 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-142)))) (-1289 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-142)))) (-3232 (*1 *1) (-5 *1 (-142))) (-2206 (*1 *1) (-5 *1 (-142))) (-1307 (*1 *1) (-5 *1 (-142))) (-3552 (*1 *1 *1) (-5 *1 (-142))) (-3574 (*1 *1 *1) (-5 *1 (-142))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(-13 (-815) (-10 -8 (-15 -1320 ((-745) $)) (-15 -1289 ($ (-745))) (-15 -1289 ($ (-1118))) (-15 -3232 ($)) (-15 -2206 ($)) (-15 -1307 ($)) (-15 -3552 ($ $)) (-15 -3574 ($ $)) (-15 -3839 ((-112) $)) (-15 -1297 ((-112) $)) (-15 -2957 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -2924 ((-112) $)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-4017 (((-3 $ "failed") $) 33)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-143) (-138)) (T -143)) +((-4017 (*1 *1 *1) (|partial| -4 *1 (-143)))) +(-13 (-1016) (-10 -8 (-15 -4017 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3780 ((|#1| (-663 |#1|) |#1|) 19))) +(((-144 |#1|) (-10 -7 (-15 -3780 (|#1| (-663 |#1|) |#1|))) (-169)) (T -144)) +((-3780 (*1 *2 *3 *2) (-12 (-5 *3 (-663 *2)) (-4 *2 (-169)) (-5 *1 (-144 *2))))) +(-10 -7 (-15 -3780 (|#1| (-663 |#1|) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-145) (-138)) (T -145)) +NIL +(-13 (-1016)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3996 (((-2 (|:| -3352 (-745)) (|:| -1489 (-399 |#2|)) (|:| |radicand| |#2|)) (-399 |#2|) (-745)) 70)) (-3986 (((-3 (-2 (|:| |radicand| (-399 |#2|)) (|:| |deg| (-745))) "failed") |#3|) 52)) (-1331 (((-2 (|:| -1489 (-399 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4008 ((|#1| |#3| |#3|) 40)) (-2460 ((|#3| |#3| (-399 |#2|) (-399 |#2|)) 19)) (-4019 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| |deg| (-745))) |#3| |#3|) 49))) +(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1331 ((-2 (|:| -1489 (-399 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3986 ((-3 (-2 (|:| |radicand| (-399 |#2|)) (|:| |deg| (-745))) "failed") |#3|)) (-15 -3996 ((-2 (|:| -3352 (-745)) (|:| -1489 (-399 |#2|)) (|:| |radicand| |#2|)) (-399 |#2|) (-745))) (-15 -4008 (|#1| |#3| |#3|)) (-15 -2460 (|#3| |#3| (-399 |#2|) (-399 |#2|))) (-15 -4019 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| |deg| (-745))) |#3| |#3|))) (-1176) (-1194 |#1|) (-1194 (-399 |#2|))) (T -146)) +((-4019 (*1 *2 *3 *3) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-399 *5)) (|:| |c2| (-399 *5)) (|:| |deg| (-745)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5))))) (-2460 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-399 *5)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1194 *3)))) (-4008 (*1 *2 *3 *3) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-1176)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1194 (-399 *4))))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *6)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-745)) (-4 *7 (-1194 *3)))) (-3986 (*1 *2 *3) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |radicand| (-399 *5)) (|:| |deg| (-745)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5))))) (-1331 (*1 *2 *3) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -1489 (-399 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5)))))) +(-10 -7 (-15 -1331 ((-2 (|:| -1489 (-399 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3986 ((-3 (-2 (|:| |radicand| (-399 |#2|)) (|:| |deg| (-745))) "failed") |#3|)) (-15 -3996 ((-2 (|:| -3352 (-745)) (|:| -1489 (-399 |#2|)) (|:| |radicand| |#2|)) (-399 |#2|) (-745))) (-15 -4008 (|#1| |#3| |#3|)) (-15 -2460 (|#3| |#3| (-399 |#2|) (-399 |#2|))) (-15 -4019 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| |deg| (-745))) |#3| |#3|))) +((-4039 (((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)) 32))) +(((-147 |#1| |#2|) (-10 -7 (-15 -4039 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)))) (-533) (-163 |#1|)) (T -147)) +((-4039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) (-4 *5 (-163 *4)) (-4 *4 (-533)) (-5 *1 (-147 *4 *5))))) +(-10 -7 (-15 -4039 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)))) +((-1415 (($ (-1 (-112) |#2|) $) 29)) (-3484 (($ $) 36)) (-3699 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2061 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4030 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-3537 (((-112) (-1 (-112) |#2|) $) 16)) (-3945 (((-745) (-1 (-112) |#2|) $) 14) (((-745) |#2| $) NIL)) (-3548 (((-112) (-1 (-112) |#2|) $) 15)) (-3643 (((-745) $) 11))) +(((-148 |#1| |#2|) (-10 -8 (-15 -3484 (|#1| |#1|)) (-15 -3699 (|#1| |#2| |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3699 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|))) (-149 |#2|) (-1172)) (T -148)) +NIL +(-10 -8 (-15 -3484 (|#1| |#1|)) (-15 -3699 (|#1| |#2| |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3699 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-1415 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 41 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327))) (($ |#1| $) 42 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 40 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 49)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-149 |#1|) (-138) (-1172)) (T -149)) +((-3754 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-149 *3)))) (-4030 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-2061 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-2061 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *3)) (-4 *3 (-1172)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *3)) (-4 *3 (-1172)))) (-2061 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-3699 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-3484 (*1 *1 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) (-4 *2 (-1063))))) +(-13 (-480 |t#1|) (-10 -8 (-15 -3754 ($ (-619 |t#1|))) (-15 -4030 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4327)) (PROGN (-15 -2061 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2061 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3699 ($ (-1 (-112) |t#1|) $)) (-15 -1415 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -2061 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3699 ($ |t#1| $)) (-15 -3484 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) 86)) (-2266 (((-112) $) NIL)) (-2024 (($ |#2| (-619 (-890))) 56)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1586 (($ (-890)) 47)) (-3402 (((-133)) 23)) (-3743 (((-832) $) 69) (($ (-548)) 45) (($ |#2|) 46)) (-1951 ((|#2| $ (-619 (-890))) 59)) (-3835 (((-745)) 20)) (-3107 (($) 40 T CONST)) (-3118 (($) 43 T CONST)) (-2214 (((-112) $ $) 26)) (-2309 (($ $ |#2|) NIL)) (-2299 (($ $) 34) (($ $ $) 32)) (-2290 (($ $ $) 30)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-150 |#1| |#2| |#3|) (-13 (-1016) (-38 |#2|) (-1225 |#2|) (-10 -8 (-15 -1586 ($ (-890))) (-15 -2024 ($ |#2| (-619 (-890)))) (-15 -1951 (|#2| $ (-619 (-890)))) (-15 -3859 ((-3 $ "failed") $)))) (-890) (-355) (-962 |#1| |#2|)) (T -150)) +((-3859 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-355)) (-14 *4 (-962 *2 *3)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-355)) (-14 *5 (-962 *3 *4)))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-4 *2 (-355)) (-14 *5 (-962 *4 *2)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-890))) (-4 *2 (-355)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-14 *5 (-962 *4 *2))))) +(-13 (-1016) (-38 |#2|) (-1225 |#2|) (-10 -8 (-15 -1586 ($ (-890))) (-15 -2024 ($ |#2| (-619 (-890)))) (-15 -1951 (|#2| $ (-619 (-890)))) (-15 -3859 ((-3 $ "failed") $)))) +((-4053 (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218)))) (-218) (-218) (-218) (-218)) 38)) (-4041 (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548))) 63) (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896)) 64)) (-3138 (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218))))) 67) (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-912 (-218)))) 66) (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548))) 58) (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896)) 59))) +(((-151) (-10 -7 (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548)))) (-15 -4041 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896))) (-15 -4041 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548)))) (-15 -4053 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218)))) (-218) (-218) (-218) (-218))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-912 (-218))))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218)))))))) (T -151)) +((-3138 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 (-218))))))) (-3138 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)) (-5 *3 (-619 (-912 (-218)))))) (-4053 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-218)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 *4)))) (|:| |xValues| (-1058 *4)) (|:| |yValues| (-1058 *4)))) (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 *4)))))) (-4041 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-399 (-548))) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)))) (-3138 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-399 (-548))) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151))))) +(-10 -7 (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548)))) (-15 -4041 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896))) (-15 -4041 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548)))) (-15 -4053 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218)))) (-218) (-218) (-218) (-218))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-912 (-218))))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218))))))) +((-3327 (((-619 (-166 |#2|)) |#1| |#2|) 45))) +(((-152 |#1| |#2|) (-10 -7 (-15 -3327 ((-619 (-166 |#2|)) |#1| |#2|))) (-1194 (-166 (-548))) (-13 (-355) (-819))) (T -152)) +((-3327 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-166 *4))) (-5 *1 (-152 *3 *4)) (-4 *3 (-1194 (-166 (-548)))) (-4 *4 (-13 (-355) (-819)))))) +(-10 -7 (-15 -3327 ((-619 (-166 |#2|)) |#1| |#2|))) +((-3730 (((-112) $ $) NIL)) (-1987 (((-1171) $) 12)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-153) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1171) $))))) (T -153)) +((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-153)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-153))))) +(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1171) $)))) +((-3730 (((-112) $ $) NIL)) (-4091 (($) 15)) (-4102 (($) 14)) (-4062 (((-890)) 22)) (-2546 (((-1118) $) NIL)) (-2756 (((-548) $) 19)) (-3932 (((-1082) $) NIL)) (-4083 (($) 16)) (-2747 (($ (-548)) 23)) (-3743 (((-832) $) 29)) (-4072 (($) 17)) (-2214 (((-112) $ $) 13)) (-2290 (($ $ $) 11)) (* (($ (-890) $) 21) (($ (-218) $) 8))) +(((-154) (-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-218) $)) (-15 -2290 ($ $ $)) (-15 -4102 ($)) (-15 -4091 ($)) (-15 -4083 ($)) (-15 -4072 ($)) (-15 -2756 ((-548) $)) (-15 -4062 ((-890))) (-15 -2747 ($ (-548)))))) (T -154)) +((-2290 (*1 *1 *1 *1) (-5 *1 (-154))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-154)))) (-4102 (*1 *1) (-5 *1 (-154))) (-4091 (*1 *1) (-5 *1 (-154))) (-4083 (*1 *1) (-5 *1 (-154))) (-4072 (*1 *1) (-5 *1 (-154))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-154)))) (-4062 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) (-2747 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-154))))) +(-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-218) $)) (-15 -2290 ($ $ $)) (-15 -4102 ($)) (-15 -4091 ($)) (-15 -4083 ($)) (-15 -4072 ($)) (-15 -2756 ((-548) $)) (-15 -4062 ((-890))) (-15 -2747 ($ (-548))))) +((-4237 ((|#2| |#2| (-1056 |#2|)) 88) ((|#2| |#2| (-1135)) 68)) (-2481 ((|#2| |#2| (-1056 |#2|)) 87) ((|#2| |#2| (-1135)) 67)) (-4206 ((|#2| |#2| |#2|) 27)) (-1402 (((-114) (-114)) 99)) (-4175 ((|#2| (-619 |#2|)) 117)) (-4144 ((|#2| (-619 |#2|)) 135)) (-4134 ((|#2| (-619 |#2|)) 125)) (-4114 ((|#2| |#2|) 123)) (-4154 ((|#2| (-619 |#2|)) 111)) (-4164 ((|#2| (-619 |#2|)) 112)) (-4126 ((|#2| (-619 |#2|)) 133)) (-4249 ((|#2| |#2| (-1135)) 56) ((|#2| |#2|) 55)) (-4185 ((|#2| |#2|) 23)) (-3612 ((|#2| |#2| |#2|) 26)) (-1392 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3612 (|#2| |#2| |#2|)) (-15 -4206 (|#2| |#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -4249 (|#2| |#2| (-1135))) (-15 -4237 (|#2| |#2| (-1135))) (-15 -4237 (|#2| |#2| (-1056 |#2|))) (-15 -2481 (|#2| |#2| (-1135))) (-15 -2481 (|#2| |#2| (-1056 |#2|))) (-15 -4114 (|#2| |#2|)) (-15 -4126 (|#2| (-619 |#2|))) (-15 -4134 (|#2| (-619 |#2|))) (-15 -4144 (|#2| (-619 |#2|))) (-15 -4154 (|#2| (-619 |#2|))) (-15 -4164 (|#2| (-619 |#2|))) (-15 -4175 (|#2| (-619 |#2|)))) (-13 (-821) (-540)) (-422 |#1|)) (T -155)) +((-4175 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) (-4 *2 (-422 *4)))) (-4237 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)))) (-4237 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) (-4 *2 (-422 *4)))) (-4249 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) (-4 *2 (-422 *4)))) (-4249 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-4206 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-3612 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *4)) (-4 *4 (-422 *3)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-155 *4 *5)) (-4 *5 (-422 *4))))) +(-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3612 (|#2| |#2| |#2|)) (-15 -4206 (|#2| |#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -4249 (|#2| |#2| (-1135))) (-15 -4237 (|#2| |#2| (-1135))) (-15 -4237 (|#2| |#2| (-1056 |#2|))) (-15 -2481 (|#2| |#2| (-1135))) (-15 -2481 (|#2| |#2| (-1056 |#2|))) (-15 -4114 (|#2| |#2|)) (-15 -4126 (|#2| (-619 |#2|))) (-15 -4134 (|#2| (-619 |#2|))) (-15 -4144 (|#2| (-619 |#2|))) (-15 -4154 (|#2| (-619 |#2|))) (-15 -4164 (|#2| (-619 |#2|))) (-15 -4175 (|#2| (-619 |#2|)))) +((-4227 ((|#1| |#1| |#1|) 53)) (-4217 ((|#1| |#1| |#1|) 50)) (-4206 ((|#1| |#1| |#1|) 44)) (-3317 ((|#1| |#1|) 35)) (-4195 ((|#1| |#1| (-619 |#1|)) 43)) (-4185 ((|#1| |#1|) 37)) (-3612 ((|#1| |#1| |#1|) 40))) +(((-156 |#1|) (-10 -7 (-15 -3612 (|#1| |#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -4195 (|#1| |#1| (-619 |#1|))) (-15 -3317 (|#1| |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| |#1|)) (-15 -4227 (|#1| |#1| |#1|))) (-533)) (T -156)) +((-4227 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-4217 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-4206 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-3317 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-4195 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-533)) (-5 *1 (-156 *2)))) (-4185 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-3612 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) +(-10 -7 (-15 -3612 (|#1| |#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -4195 (|#1| |#1| (-619 |#1|))) (-15 -3317 (|#1| |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| |#1|)) (-15 -4227 (|#1| |#1| |#1|))) +((-4237 (($ $ (-1135)) 12) (($ $ (-1056 $)) 11)) (-2481 (($ $ (-1135)) 10) (($ $ (-1056 $)) 9)) (-4206 (($ $ $) 8)) (-4249 (($ $) 14) (($ $ (-1135)) 13)) (-4185 (($ $) 7)) (-3612 (($ $ $) 6))) +(((-157) (-138)) (T -157)) +((-4249 (*1 *1 *1) (-4 *1 (-157))) (-4249 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-4237 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-4237 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) (-2481 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157))))) +(-13 (-141) (-10 -8 (-15 -4249 ($ $)) (-15 -4249 ($ $ (-1135))) (-15 -4237 ($ $ (-1135))) (-15 -4237 ($ $ (-1056 $))) (-15 -2481 ($ $ (-1135))) (-15 -2481 ($ $ (-1056 $))))) +(((-141) . T)) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-619 (-1140)) $) 9)) (-2214 (((-112) $ $) NIL))) +(((-158) (-13 (-1047) (-10 -8 (-15 -2286 ((-619 (-1140)) $))))) (T -158)) +((-2286 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-158))))) +(-13 (-1047) (-10 -8 (-15 -2286 ((-619 (-1140)) $)))) +((-3730 (((-112) $ $) NIL)) (-4262 (($ (-548)) 13) (($ $ $) 14)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 17)) (-2214 (((-112) $ $) 9))) +(((-159) (-13 (-1063) (-10 -8 (-15 -4262 ($ (-548))) (-15 -4262 ($ $ $))))) (T -159)) +((-4262 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-159)))) (-4262 (*1 *1 *1 *1) (-5 *1 (-159)))) +(-13 (-1063) (-10 -8 (-15 -4262 ($ (-548))) (-15 -4262 ($ $ $)))) +((-1402 (((-114) (-1135)) 97))) +(((-160) (-10 -7 (-15 -1402 ((-114) (-1135))))) (T -160)) +((-1402 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-114)) (-5 *1 (-160))))) +(-10 -7 (-15 -1402 ((-114) (-1135)))) +((-1715 ((|#3| |#3|) 19))) +(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -1715 (|#3| |#3|))) (-1016) (-1194 |#1|) (-1194 |#2|)) (T -161)) +((-1715 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-1194 *3)) (-5 *1 (-161 *3 *4 *2)) (-4 *2 (-1194 *4))))) +(-10 -7 (-15 -1715 (|#3| |#3|))) +((-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 217)) (-2707 ((|#2| $) 96)) (-2074 (($ $) 247)) (-1940 (($ $) 241)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 40)) (-2054 (($ $) 245)) (-1918 (($ $) 239)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#2| $) 139)) (-1945 (($ $ $) 222)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 155) (((-663 |#2|) (-663 $)) 149)) (-2061 (($ (-1131 |#2|)) 119) (((-3 $ "failed") (-399 (-1131 |#2|))) NIL)) (-3859 (((-3 $ "failed") $) 209)) (-4182 (((-3 (-399 (-548)) "failed") $) 199)) (-4172 (((-112) $) 194)) (-4161 (((-399 (-548)) $) 197)) (-2103 (((-890)) 89)) (-1922 (($ $ $) 224)) (-4273 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1365 (($) 236)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 186) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 191)) (-3910 ((|#2| $) 94)) (-2898 (((-1131 |#2|) $) 121)) (-2540 (($ (-1 |#2| |#2|) $) 102)) (-3496 (($ $) 238)) (-2050 (((-1131 |#2|) $) 120)) (-2153 (($ $) 202)) (-4283 (($) 97)) (-4051 (((-410 (-1131 $)) (-1131 $)) 88)) (-4060 (((-410 (-1131 $)) (-1131 $)) 57)) (-1900 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2458 (($ $) 237)) (-4077 (((-745) $) 219)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 229)) (-1566 ((|#2| (-1218 $)) NIL) ((|#2|) 91)) (-4050 (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3287 (((-1131 |#2|)) 114)) (-2065 (($ $) 246)) (-1929 (($ $) 240)) (-2447 (((-1218 |#2|) $ (-1218 $)) 128) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 110) (((-663 |#2|) (-1218 $)) NIL)) (-2591 (((-1218 |#2|) $) NIL) (($ (-1218 |#2|)) NIL) (((-1131 |#2|) $) NIL) (($ (-1131 |#2|)) NIL) (((-861 (-548)) $) 177) (((-861 (-371)) $) 181) (((-166 (-371)) $) 167) (((-166 (-218)) $) 162) (((-524) $) 173)) (-2128 (($ $) 98)) (-3743 (((-832) $) 138) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-399 (-548))) NIL) (($ $) NIL)) (-3780 (((-1131 |#2|) $) 23)) (-3835 (((-745)) 100)) (-2145 (($ $) 250)) (-2006 (($ $) 244)) (-2122 (($ $) 248)) (-1986 (($ $) 242)) (-4257 ((|#2| $) 233)) (-2132 (($ $) 249)) (-1996 (($ $) 243)) (-1446 (($ $) 157)) (-2214 (((-112) $ $) 104)) (-2234 (((-112) $ $) 193)) (-2299 (($ $) 106) (($ $ $) NIL)) (-2290 (($ $ $) 105)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-399 (-548))) 267) (($ $ $) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL))) +(((-162 |#1| |#2|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3743 (|#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4077 ((-745) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-166 (-218)) |#1|)) (-15 -2591 ((-166 (-371)) |#1|)) (-15 -1940 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1365 (|#1|)) (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -4273 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4257 (|#2| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2128 (|#1| |#1|)) (-15 -4283 (|#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2061 ((-3 |#1| "failed") (-399 (-1131 |#2|)))) (-15 -2050 ((-1131 |#2|) |#1|)) (-15 -2591 (|#1| (-1131 |#2|))) (-15 -2061 (|#1| (-1131 |#2|))) (-15 -3287 ((-1131 |#2|))) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 ((-1131 |#2|) |#1|)) (-15 -1566 (|#2|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2898 ((-1131 |#2|) |#1|)) (-15 -3780 ((-1131 |#2|) |#1|)) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3910 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2103 ((-890))) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-163 |#2|) (-169)) (T -162)) +((-3835 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-2103 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-890)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-1566 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) (-3287 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 *4)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4))))) +(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3743 (|#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4077 ((-745) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-166 (-218)) |#1|)) (-15 -2591 ((-166 (-371)) |#1|)) (-15 -1940 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1365 (|#1|)) (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -4273 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4257 (|#2| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2128 (|#1| |#1|)) (-15 -4283 (|#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2061 ((-3 |#1| "failed") (-399 (-1131 |#2|)))) (-15 -2050 ((-1131 |#2|) |#1|)) (-15 -2591 (|#1| (-1131 |#2|))) (-15 -2061 (|#1| (-1131 |#2|))) (-15 -3287 ((-1131 |#2|))) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 ((-1131 |#2|) |#1|)) (-15 -1566 (|#2|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2898 ((-1131 |#2|) |#1|)) (-15 -3780 ((-1131 |#2|) |#1|)) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3910 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2103 ((-890))) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 91 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3303 (($ $) 92 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3279 (((-112) $) 94 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-2350 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2707 ((|#1| $) 50)) (-2074 (($ $) 225 (|has| |#1| (-1157)))) (-1940 (($ $) 208 (|has| |#1| (-1157)))) (-3667 (((-1145 (-890) (-745)) (-548)) 144 (|has| |#1| (-341)))) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 239 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-1688 (($ $) 111 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-2634 (((-410 $) $) 112 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-1926 (($ $) 238 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 242 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-4087 (((-112) $ $) 102 (|has| |#1| (-299)))) (-3423 (((-745)) 85 (|has| |#1| (-360)))) (-2054 (($ $) 224 (|has| |#1| (-1157)))) (-1918 (($ $) 209 (|has| |#1| (-1157)))) (-2098 (($ $) 223 (|has| |#1| (-1157)))) (-1963 (($ $) 210 (|has| |#1| (-1157)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 166 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 164 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 163)) (-2375 (((-548) $) 167 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 165 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 162)) (-2455 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-341)))) (-1945 (($ $ $) 106 (|has| |#1| (-299)))) (-2341 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-1608 (((-663 (-548)) (-663 $)) 161 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 160 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 159) (((-663 |#1|) (-663 $)) 158)) (-2061 (($ (-1131 |#1|)) 155) (((-3 $ "failed") (-399 (-1131 |#1|))) 152 (|has| |#1| (-355)))) (-3859 (((-3 $ "failed") $) 32)) (-1937 ((|#1| $) 250)) (-4182 (((-3 (-399 (-548)) "failed") $) 243 (|has| |#1| (-533)))) (-4172 (((-112) $) 245 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 244 (|has| |#1| (-533)))) (-2103 (((-890)) 52)) (-2545 (($) 88 (|has| |#1| (-360)))) (-1922 (($ $ $) 105 (|has| |#1| (-299)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 100 (|has| |#1| (-299)))) (-2771 (($) 146 (|has| |#1| (-341)))) (-3727 (((-112) $) 147 (|has| |#1| (-341)))) (-2208 (($ $ (-745)) 138 (|has| |#1| (-341))) (($ $) 137 (|has| |#1| (-341)))) (-1271 (((-112) $) 113 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-4273 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1025)) (|has| |#1| (-1157))))) (-1365 (($) 235 (|has| |#1| (-1157)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 258 (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 257 (|has| |#1| (-855 (-371))))) (-1672 (((-890) $) 149 (|has| |#1| (-341))) (((-807 (-890)) $) 135 (|has| |#1| (-341)))) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 237 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-3910 ((|#1| $) 49)) (-3725 (((-3 $ "failed") $) 139 (|has| |#1| (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| |#1| (-299)))) (-2898 (((-1131 |#1|) $) 42 (|has| |#1| (-355)))) (-1795 (($ $ $) 204 (|has| |#1| (-821)))) (-3091 (($ $ $) 203 (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) 259)) (-2855 (((-890) $) 87 (|has| |#1| (-360)))) (-3496 (($ $) 232 (|has| |#1| (-1157)))) (-2050 (((-1131 |#1|) $) 153)) (-3553 (($ (-619 $)) 98 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (($ $ $) 97 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 114 (|has| |#1| (-355)))) (-3410 (($) 140 (|has| |#1| (-341)) CONST)) (-3337 (($ (-890)) 86 (|has| |#1| (-360)))) (-4283 (($) 254)) (-1948 ((|#1| $) 251)) (-3932 (((-1082) $) 10)) (-4160 (($) 157)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 99 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3587 (($ (-619 $)) 96 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (($ $ $) 95 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 143 (|has| |#1| (-341)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 241 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-4060 (((-410 (-1131 $)) (-1131 $)) 240 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-1915 (((-410 $) $) 110 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-299))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 107 (|has| |#1| (-299)))) (-1900 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 90 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| |#1| (-299)))) (-2458 (($ $) 233 (|has| |#1| (-1157)))) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 265 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 263 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 262 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 261 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) 260 (|has| |#1| (-504 (-1135) |#1|)))) (-4077 (((-745) $) 103 (|has| |#1| (-299)))) (-3171 (($ $ |#1|) 266 (|has| |#1| (-278 |#1| |#1|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 104 (|has| |#1| (-299)))) (-1566 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-2217 (((-745) $) 148 (|has| |#1| (-341))) (((-3 (-745) "failed") $ $) 136 (|has| |#1| (-341)))) (-4050 (($ $ (-1 |#1| |#1|) (-745)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-619 (-1135)) (-619 (-745))) 127 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 128 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 129 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 130 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 132 (-1524 (-1723 (|has| |#1| (-355)) (|has| |#1| (-226))) (|has| |#1| (-226)) (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))))) (($ $) 134 (-1524 (-1723 (|has| |#1| (-355)) (|has| |#1| (-226))) (|has| |#1| (-226)) (-1723 (|has| |#1| (-226)) (|has| |#1| (-355)))))) (-2257 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-355)))) (-3287 (((-1131 |#1|)) 156)) (-2110 (($ $) 222 (|has| |#1| (-1157)))) (-1973 (($ $) 211 (|has| |#1| (-1157)))) (-3655 (($) 145 (|has| |#1| (-341)))) (-2086 (($ $) 221 (|has| |#1| (-1157)))) (-1952 (($ $) 212 (|has| |#1| (-1157)))) (-2065 (($ $) 220 (|has| |#1| (-1157)))) (-1929 (($ $) 213 (|has| |#1| (-1157)))) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2591 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60) (((-1131 |#1|) $) 168) (($ (-1131 |#1|)) 154) (((-861 (-548)) $) 256 (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) 255 (|has| |#1| (-593 (-861 (-371))))) (((-166 (-371)) $) 207 (|has| |#1| (-991))) (((-166 (-218)) $) 206 (|has| |#1| (-991))) (((-524) $) 205 (|has| |#1| (-593 (-524))))) (-2128 (($ $) 253)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 142 (-1524 (-1723 (|has| $ (-143)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))) (|has| |#1| (-341))))) (-3247 (($ |#1| |#1|) 252)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35) (($ (-399 (-548))) 84 (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) 89 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-4017 (($ $) 141 (|has| |#1| (-341))) (((-3 $ "failed") $) 41 (-1524 (-1723 (|has| $ (-143)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))) (|has| |#1| (-143))))) (-3780 (((-1131 |#1|) $) 43)) (-3835 (((-745)) 28)) (-2877 (((-1218 $)) 65)) (-2145 (($ $) 231 (|has| |#1| (-1157)))) (-2006 (($ $) 219 (|has| |#1| (-1157)))) (-3290 (((-112) $ $) 93 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-2122 (($ $) 230 (|has| |#1| (-1157)))) (-1986 (($ $) 218 (|has| |#1| (-1157)))) (-2170 (($ $) 229 (|has| |#1| (-1157)))) (-2029 (($ $) 217 (|has| |#1| (-1157)))) (-4257 ((|#1| $) 247 (|has| |#1| (-1157)))) (-4026 (($ $) 228 (|has| |#1| (-1157)))) (-2040 (($ $) 216 (|has| |#1| (-1157)))) (-2158 (($ $) 227 (|has| |#1| (-1157)))) (-2017 (($ $) 215 (|has| |#1| (-1157)))) (-2132 (($ $) 226 (|has| |#1| (-1157)))) (-1996 (($ $) 214 (|has| |#1| (-1157)))) (-1446 (($ $) 248 (|has| |#1| (-1025)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 |#1| |#1|) (-745)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-619 (-1135)) (-619 (-745))) 123 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 124 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 125 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 126 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 131 (-1524 (-1723 (|has| |#1| (-355)) (|has| |#1| (-226))) (|has| |#1| (-226)) (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))))) (($ $) 133 (-1524 (-1723 (|has| |#1| (-355)) (|has| |#1| (-226))) (|has| |#1| (-226)) (-1723 (|has| |#1| (-226)) (|has| |#1| (-355)))))) (-2262 (((-112) $ $) 201 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 200 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 202 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 199 (|has| |#1| (-821)))) (-2309 (($ $ $) 118 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-399 (-548))) 236 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157)))) (($ $ $) 234 (|has| |#1| (-1157))) (($ $ (-548)) 115 (|has| |#1| (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-399 (-548)) $) 117 (|has| |#1| (-355))) (($ $ (-399 (-548))) 116 (|has| |#1| (-355))))) +(((-163 |#1|) (-138) (-169)) (T -163)) +((-3910 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-4283 (*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2128 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3247 (*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) (-1446 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-4257 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1157)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1025)) (-4 *3 (-1157)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548))))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548)))))) +(-13 (-699 |t#1| (-1131 |t#1|)) (-403 |t#1|) (-224 |t#1|) (-330 |t#1|) (-392 |t#1|) (-853 |t#1|) (-369 |t#1|) (-169) (-10 -8 (-6 -3247) (-15 -4283 ($)) (-15 -2128 ($ $)) (-15 -3247 ($ |t#1| |t#1|)) (-15 -1948 (|t#1| $)) (-15 -1937 (|t#1| $)) (-15 -3910 (|t#1| $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-6 (-540)) (-15 -1900 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|) (IF (|has| |t#1| (-6 -4326)) (-6 -4326) |%noBranch|) (IF (|has| |t#1| (-6 -4323)) (-6 -4323) |%noBranch|) (IF (|has| |t#1| (-355)) (-6 (-355)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-991)) (PROGN (-6 (-593 (-166 (-218)))) (-6 (-593 (-166 (-371))))) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -1446 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1157)) (PROGN (-6 (-1157)) (-15 -4257 (|t#1| $)) (IF (|has| |t#1| (-971)) (-6 (-971)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -4273 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-878)) (IF (|has| |t#1| (-299)) (-6 (-878)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-38 |#1|) . T) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-35) |has| |#1| (-1157)) ((-94) |has| |#1| (-1157)) ((-101) . T) ((-111 #0# #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-341)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 (-166 (-218))) |has| |#1| (-991)) ((-593 (-166 (-371))) |has| |#1| (-991)) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548)))) ((-593 #1=(-1131 |#1|)) . T) ((-224 |#1|) . T) ((-226) -1524 (|has| |#1| (-341)) (|has| |#1| (-226))) ((-236) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-276) |has| |#1| (-1157)) ((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-299) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-355) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-394) |has| |#1| (-341)) ((-360) -1524 (|has| |#1| (-360)) (|has| |#1| (-341))) ((-341) |has| |#1| (-341)) ((-362 |#1| #1#) . T) ((-401 |#1| #1#) . T) ((-330 |#1|) . T) ((-369 |#1|) . T) ((-392 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-483) |has| |#1| (-1157)) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|)) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-622 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-692 |#1|) . T) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-699 |#1| #1#) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-853 |#1|) . T) ((-878) -12 (|has| |#1| (-299)) (|has| |#1| (-878))) ((-889) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-971) -12 (|has| |#1| (-971)) (|has| |#1| (-1157))) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-341)) ((-1157) |has| |#1| (-1157)) ((-1160) |has| |#1| (-1157)) ((-1172) . T) ((-1176) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) +((-1915 (((-410 |#2|) |#2|) 63))) +(((-164 |#1| |#2|) (-10 -7 (-15 -1915 ((-410 |#2|) |#2|))) (-299) (-1194 (-166 |#1|))) (T -164)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(-10 -7 (-15 -1915 ((-410 |#2|) |#2|))) +((-2540 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) +(((-165 |#1| |#2|) (-10 -7 (-15 -2540 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-169) (-169)) (T -165)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6))))) +(-10 -7 (-15 -2540 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 33)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-3303 (($ $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-3279 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-2350 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-2707 ((|#1| $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-1157)))) (-1940 (($ $) NIL (|has| |#1| (-1157)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-1688 (($ $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-2634 (((-410 $) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-1926 (($ $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-299)))) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-2054 (($ $) NIL (|has| |#1| (-1157)))) (-1918 (($ $) NIL (|has| |#1| (-1157)))) (-2098 (($ $) NIL (|has| |#1| (-1157)))) (-1963 (($ $) NIL (|has| |#1| (-1157)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-341)))) (-1945 (($ $ $) NIL (|has| |#1| (-299)))) (-2341 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2061 (($ (-1131 |#1|)) NIL) (((-3 $ "failed") (-399 (-1131 |#1|))) NIL (|has| |#1| (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 13)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-533)))) (-4172 (((-112) $) NIL (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) NIL (|has| |#1| (-533)))) (-2103 (((-890)) NIL)) (-2545 (($) NIL (|has| |#1| (-360)))) (-1922 (($ $ $) NIL (|has| |#1| (-299)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-299)))) (-2771 (($) NIL (|has| |#1| (-341)))) (-3727 (((-112) $) NIL (|has| |#1| (-341)))) (-2208 (($ $ (-745)) NIL (|has| |#1| (-341))) (($ $) NIL (|has| |#1| (-341)))) (-1271 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-4273 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1025)) (|has| |#1| (-1157))))) (-1365 (($) NIL (|has| |#1| (-1157)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| |#1| (-855 (-371))))) (-1672 (((-890) $) NIL (|has| |#1| (-341))) (((-807 (-890)) $) NIL (|has| |#1| (-341)))) (-2266 (((-112) $) 35)) (-2154 (($ $ (-548)) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-3910 ((|#1| $) 46)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-299)))) (-2898 (((-1131 |#1|) $) NIL (|has| |#1| (-355)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-3496 (($ $) NIL (|has| |#1| (-1157)))) (-2050 (((-1131 |#1|) $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-299))) (($ $ $) NIL (|has| |#1| (-299)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3410 (($) NIL (|has| |#1| (-341)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-4283 (($) NIL)) (-1948 ((|#1| $) 15)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-299)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-299))) (($ $ $) NIL (|has| |#1| (-299)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-341)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-1915 (((-410 $) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-299))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-299)))) (-1900 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 47 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-299)))) (-2458 (($ $) NIL (|has| |#1| (-1157)))) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|)))) (-4077 (((-745) $) NIL (|has| |#1| (-299)))) (-3171 (($ $ |#1|) NIL (|has| |#1| (-278 |#1| |#1|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-299)))) (-1566 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-341))) (((-3 (-745) "failed") $ $) NIL (|has| |#1| (-341)))) (-4050 (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $) NIL (|has| |#1| (-226)))) (-2257 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-355)))) (-3287 (((-1131 |#1|)) NIL)) (-2110 (($ $) NIL (|has| |#1| (-1157)))) (-1973 (($ $) NIL (|has| |#1| (-1157)))) (-3655 (($) NIL (|has| |#1| (-341)))) (-2086 (($ $) NIL (|has| |#1| (-1157)))) (-1952 (($ $) NIL (|has| |#1| (-1157)))) (-2065 (($ $) NIL (|has| |#1| (-1157)))) (-1929 (($ $) NIL (|has| |#1| (-1157)))) (-2447 (((-1218 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-2591 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL) (((-1131 |#1|) $) NIL) (($ (-1131 |#1|)) NIL) (((-861 (-548)) $) NIL (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| |#1| (-593 (-861 (-371))))) (((-166 (-371)) $) NIL (|has| |#1| (-991))) (((-166 (-218)) $) NIL (|has| |#1| (-991))) (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-2128 (($ $) 45)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-341))))) (-3247 (($ |#1| |#1|) 37)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) 36) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-4017 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3780 (((-1131 |#1|) $) NIL)) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL)) (-2145 (($ $) NIL (|has| |#1| (-1157)))) (-2006 (($ $) NIL (|has| |#1| (-1157)))) (-3290 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-2122 (($ $) NIL (|has| |#1| (-1157)))) (-1986 (($ $) NIL (|has| |#1| (-1157)))) (-2170 (($ $) NIL (|has| |#1| (-1157)))) (-2029 (($ $) NIL (|has| |#1| (-1157)))) (-4257 ((|#1| $) NIL (|has| |#1| (-1157)))) (-4026 (($ $) NIL (|has| |#1| (-1157)))) (-2040 (($ $) NIL (|has| |#1| (-1157)))) (-2158 (($ $) NIL (|has| |#1| (-1157)))) (-2017 (($ $) NIL (|has| |#1| (-1157)))) (-2132 (($ $) NIL (|has| |#1| (-1157)))) (-1996 (($ $) NIL (|has| |#1| (-1157)))) (-1446 (($ $) NIL (|has| |#1| (-1025)))) (-3107 (($) 28 T CONST)) (-3118 (($) 30 T CONST)) (-2739 (((-1118) $) 23 (|has| |#1| (-802))) (((-1118) $ (-112)) 25 (|has| |#1| (-802))) (((-1223) (-796) $) 26 (|has| |#1| (-802))) (((-1223) (-796) $ (-112)) 27 (|has| |#1| (-802)))) (-3296 (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $) NIL (|has| |#1| (-226)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 39)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-399 (-548))) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157)))) (($ $ $) NIL (|has| |#1| (-1157))) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-355))) (($ $ (-399 (-548))) NIL (|has| |#1| (-355))))) +(((-166 |#1|) (-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) (-169)) (T -166)) +NIL +(-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) +((-2591 (((-861 |#1|) |#3|) 22))) +(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -2591 ((-861 |#1|) |#3|))) (-1063) (-13 (-593 (-861 |#1|)) (-169)) (-163 |#2|)) (T -167)) +((-2591 (*1 *2 *3) (-12 (-4 *5 (-13 (-593 *2) (-169))) (-5 *2 (-861 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1063)) (-4 *3 (-163 *5))))) +(-10 -7 (-15 -2591 ((-861 |#1|) |#3|))) +((-3730 (((-112) $ $) NIL)) (-4306 (((-112) $) 9)) (-4294 (((-112) $ (-112)) 11)) (-3550 (($) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2113 (($ $) 13)) (-3743 (((-832) $) 17)) (-2225 (((-112) $) 8)) (-2466 (((-112) $ (-112)) 10)) (-2214 (((-112) $ $) NIL))) +(((-168) (-13 (-1063) (-10 -8 (-15 -3550 ($)) (-15 -2225 ((-112) $)) (-15 -4306 ((-112) $)) (-15 -2466 ((-112) $ (-112))) (-15 -4294 ((-112) $ (-112))) (-15 -2113 ($ $))))) (T -168)) +((-3550 (*1 *1) (-5 *1 (-168))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2466 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-4294 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2113 (*1 *1 *1) (-5 *1 (-168)))) +(-13 (-1063) (-10 -8 (-15 -3550 ($)) (-15 -2225 ((-112) $)) (-15 -4306 ((-112) $)) (-15 -2466 ((-112) $ (-112))) (-15 -4294 ((-112) $ (-112))) (-15 -2113 ($ $)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-169) (-138)) (T -169)) +NIL +(-13 (-1016) (-111 $ $) (-10 -7 (-6 (-4329 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3972 (($ $) 6))) +(((-170) (-138)) (T -170)) +((-3972 (*1 *1 *1) (-4 *1 (-170)))) +(-13 (-10 -8 (-15 -3972 ($ $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 ((|#1| $) 75)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL)) (-1308 (($ $) 19)) (-1353 (($ |#1| (-1116 |#1|)) 48)) (-3859 (((-3 $ "failed") $) 117)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-1319 (((-1116 |#1|) $) 82)) (-1342 (((-1116 |#1|) $) 79)) (-1330 (((-1116 |#1|) $) 80)) (-2266 (((-112) $) NIL)) (-1273 (((-1116 |#1|) $) 88)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1656 (($ $ (-548)) 91)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1261 (((-1116 |#1|) $) 89)) (-1285 (((-1116 (-399 |#1|)) $) 14)) (-1351 (($ (-399 |#1|)) 17) (($ |#1| (-1116 |#1|) (-1116 |#1|)) 38)) (-3330 (($ $) 93)) (-3743 (((-832) $) 127) (($ (-548)) 51) (($ |#1|) 52) (($ (-399 |#1|)) 36) (($ (-399 (-548))) NIL) (($ $) NIL)) (-3835 (((-745)) 64)) (-3290 (((-112) $ $) NIL)) (-1296 (((-1116 (-399 |#1|)) $) 18)) (-3107 (($) 25 T CONST)) (-3118 (($) 28 T CONST)) (-2214 (((-112) $ $) 35)) (-2309 (($ $ $) 115)) (-2299 (($ $) 106) (($ $ $) 103)) (-2290 (($ $ $) 101)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-399 |#1|) $) 111) (($ $ (-399 |#1|)) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL))) +(((-171 |#1|) (-13 (-38 |#1|) (-38 (-399 |#1|)) (-355) (-10 -8 (-15 -1351 ($ (-399 |#1|))) (-15 -1351 ($ |#1| (-1116 |#1|) (-1116 |#1|))) (-15 -1353 ($ |#1| (-1116 |#1|))) (-15 -1342 ((-1116 |#1|) $)) (-15 -1330 ((-1116 |#1|) $)) (-15 -1319 ((-1116 |#1|) $)) (-15 -3875 (|#1| $)) (-15 -1308 ($ $)) (-15 -1296 ((-1116 (-399 |#1|)) $)) (-15 -1285 ((-1116 (-399 |#1|)) $)) (-15 -1273 ((-1116 |#1|) $)) (-15 -1261 ((-1116 |#1|) $)) (-15 -1656 ($ $ (-548))) (-15 -3330 ($ $)))) (-299)) (T -171)) +((-1351 (*1 *1 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-299)) (-5 *1 (-171 *3)))) (-1351 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1116 *2)) (-4 *2 (-299)) (-5 *1 (-171 *2)))) (-1353 (*1 *1 *2 *3) (-12 (-5 *3 (-1116 *2)) (-4 *2 (-299)) (-5 *1 (-171 *2)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-3875 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299)))) (-1308 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-1116 (-399 *3))) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-1116 (-399 *3))) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1273 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1261 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-3330 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299))))) +(-13 (-38 |#1|) (-38 (-399 |#1|)) (-355) (-10 -8 (-15 -1351 ($ (-399 |#1|))) (-15 -1351 ($ |#1| (-1116 |#1|) (-1116 |#1|))) (-15 -1353 ($ |#1| (-1116 |#1|))) (-15 -1342 ((-1116 |#1|) $)) (-15 -1330 ((-1116 |#1|) $)) (-15 -1319 ((-1116 |#1|) $)) (-15 -3875 (|#1| $)) (-15 -1308 ($ $)) (-15 -1296 ((-1116 (-399 |#1|)) $)) (-15 -1285 ((-1116 (-399 |#1|)) $)) (-15 -1273 ((-1116 |#1|) $)) (-15 -1261 ((-1116 |#1|) $)) (-15 -1656 ($ $ (-548))) (-15 -3330 ($ $)))) +((-1363 (($ (-108) $) 13)) (-2415 (((-3 (-108) "failed") (-1135) $) 12)) (-3743 (((-832) $) 16)) (-1375 (((-619 (-108)) $) 8))) +(((-172) (-13 (-592 (-832)) (-10 -8 (-15 -1375 ((-619 (-108)) $)) (-15 -1363 ($ (-108) $)) (-15 -2415 ((-3 (-108) "failed") (-1135) $))))) (T -172)) +((-1375 (*1 *2 *1) (-12 (-5 *2 (-619 (-108))) (-5 *1 (-172)))) (-1363 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))) (-2415 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-172))))) +(-13 (-592 (-832)) (-10 -8 (-15 -1375 ((-619 (-108)) $)) (-15 -1363 ($ (-108) $)) (-15 -2415 ((-3 (-108) "failed") (-1135) $)))) +((-1520 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 40)) (-1418 (((-912 |#1|) (-912 |#1|)) 19)) (-1474 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 36)) (-1397 (((-912 |#1|) (-912 |#1|)) 17)) (-1452 (((-912 |#1|) (-912 |#1|)) 25)) (-1442 (((-912 |#1|) (-912 |#1|)) 24)) (-1430 (((-912 |#1|) (-912 |#1|)) 23)) (-1487 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 37)) (-1463 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 35)) (-1525 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 34)) (-1407 (((-912 |#1|) (-912 |#1|)) 18)) (-1530 (((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|) 43)) (-1387 (((-912 |#1|) (-912 |#1|)) 8)) (-1509 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 39)) (-1498 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 38))) +(((-173 |#1|) (-10 -7 (-15 -1387 ((-912 |#1|) (-912 |#1|))) (-15 -1397 ((-912 |#1|) (-912 |#1|))) (-15 -1407 ((-912 |#1|) (-912 |#1|))) (-15 -1418 ((-912 |#1|) (-912 |#1|))) (-15 -1430 ((-912 |#1|) (-912 |#1|))) (-15 -1442 ((-912 |#1|) (-912 |#1|))) (-15 -1452 ((-912 |#1|) (-912 |#1|))) (-15 -1525 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1463 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1474 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1487 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1498 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1509 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1520 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1530 ((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|))) (-13 (-355) (-1157) (-971))) (T -173)) +((-1530 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1520 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1498 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1487 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1463 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1525 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1452 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1430 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3))))) +(-10 -7 (-15 -1387 ((-912 |#1|) (-912 |#1|))) (-15 -1397 ((-912 |#1|) (-912 |#1|))) (-15 -1407 ((-912 |#1|) (-912 |#1|))) (-15 -1418 ((-912 |#1|) (-912 |#1|))) (-15 -1430 ((-912 |#1|) (-912 |#1|))) (-15 -1442 ((-912 |#1|) (-912 |#1|))) (-15 -1452 ((-912 |#1|) (-912 |#1|))) (-15 -1525 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1463 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1474 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1487 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1498 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1509 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1520 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1530 ((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|))) +((-3780 ((|#2| |#3|) 27))) +(((-174 |#1| |#2| |#3|) (-10 -7 (-15 -3780 (|#2| |#3|))) (-169) (-1194 |#1|) (-699 |#1| |#2|)) (T -174)) +((-3780 (*1 *2 *3) (-12 (-4 *4 (-169)) (-4 *2 (-1194 *4)) (-5 *1 (-174 *4 *2 *3)) (-4 *3 (-699 *4 *2))))) +(-10 -7 (-15 -3780 (|#2| |#3|))) +((-3628 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 47 (|has| (-921 |#2|) (-855 |#1|))))) +(((-175 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-921 |#2|) (-855 |#1|)) (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) |%noBranch|)) (-1063) (-13 (-855 |#1|) (-169)) (-163 |#2|)) (T -175)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *3 (-163 *6)) (-4 (-921 *6) (-855 *5)) (-4 *6 (-13 (-855 *5) (-169))) (-5 *1 (-175 *5 *6 *3))))) +(-10 -7 (IF (|has| (-921 |#2|) (-855 |#1|)) (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) |%noBranch|)) +((-3315 (((-619 |#1|) (-619 |#1|) |#1|) 38)) (-3301 (((-619 |#1|) |#1| (-619 |#1|)) 19)) (-2318 (((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|)) 33) ((|#1| (-619 |#1|) (-619 |#1|)) 31))) +(((-176 |#1|) (-10 -7 (-15 -3301 ((-619 |#1|) |#1| (-619 |#1|))) (-15 -2318 (|#1| (-619 |#1|) (-619 |#1|))) (-15 -2318 ((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|))) (-15 -3315 ((-619 |#1|) (-619 |#1|) |#1|))) (-299)) (T -176)) +((-3315 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-299)) (-5 *1 (-176 *3)))) (-2318 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-619 *4))) (-5 *2 (-619 *4)) (-4 *4 (-299)) (-5 *1 (-176 *4)))) (-2318 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-176 *2)) (-4 *2 (-299)))) (-3301 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-299)) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -3301 ((-619 |#1|) |#1| (-619 |#1|))) (-15 -2318 (|#1| (-619 |#1|) (-619 |#1|))) (-15 -2318 ((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|))) (-15 -3315 ((-619 |#1|) (-619 |#1|) |#1|))) +((-3730 (((-112) $ $) NIL)) (-1949 (((-1171) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-177) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1949 ((-1171) $))))) (T -177)) +((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-177)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-177))))) +(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1949 ((-1171) $)))) +((-3436 (((-2 (|:| |start| |#2|) (|:| -3213 (-410 |#2|))) |#2|) 61)) (-3428 ((|#1| |#1|) 54)) (-3415 (((-166 |#1|) |#2|) 84)) (-3403 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3390 ((|#2| |#2|) 83)) (-3373 (((-410 |#2|) |#2| |#1|) 113) (((-410 |#2|) |#2| |#1| (-112)) 81)) (-3910 ((|#1| |#2|) 112)) (-3356 ((|#2| |#2|) 119)) (-1915 (((-410 |#2|) |#2|) 134) (((-410 |#2|) |#2| |#1|) 32) (((-410 |#2|) |#2| |#1| (-112)) 133)) (-3341 (((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2|) 132) (((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2| (-112)) 76)) (-3327 (((-619 (-166 |#1|)) |#2| |#1|) 40) (((-619 (-166 |#1|)) |#2|) 41))) +(((-178 |#1| |#2|) (-10 -7 (-15 -3327 ((-619 (-166 |#1|)) |#2|)) (-15 -3327 ((-619 (-166 |#1|)) |#2| |#1|)) (-15 -3341 ((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2| (-112))) (-15 -3341 ((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2|)) (-15 -1915 ((-410 |#2|) |#2| |#1| (-112))) (-15 -1915 ((-410 |#2|) |#2| |#1|)) (-15 -1915 ((-410 |#2|) |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3910 (|#1| |#2|)) (-15 -3373 ((-410 |#2|) |#2| |#1| (-112))) (-15 -3373 ((-410 |#2|) |#2| |#1|)) (-15 -3390 (|#2| |#2|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -3403 (|#1| |#2|)) (-15 -3415 ((-166 |#1|) |#2|)) (-15 -3428 (|#1| |#1|)) (-15 -3436 ((-2 (|:| |start| |#2|) (|:| -3213 (-410 |#2|))) |#2|))) (-13 (-355) (-819)) (-1194 (-166 |#1|))) (T -178)) +((-3436 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-2 (|:| |start| *3) (|:| -3213 (-410 *3)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3428 (*1 *2 *2) (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3415 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) (-4 *4 (-13 (-355) (-819))) (-4 *3 (-1194 *2)))) (-3403 (*1 *2 *3) (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3403 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-819))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1194 (-166 *3))))) (-3373 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3373 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3910 (*1 *2 *3) (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-819))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1194 (-166 *3))))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-1915 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-2 (|:| -3213 (-619 *3)) (|:| -2831 *4)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3341 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-355) (-819))) (-5 *2 (-619 (-2 (|:| -3213 (-619 *3)) (|:| -2831 *5)))) (-5 *1 (-178 *5 *3)) (-4 *3 (-1194 (-166 *5))))) (-3327 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(-10 -7 (-15 -3327 ((-619 (-166 |#1|)) |#2|)) (-15 -3327 ((-619 (-166 |#1|)) |#2| |#1|)) (-15 -3341 ((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2| (-112))) (-15 -3341 ((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2|)) (-15 -1915 ((-410 |#2|) |#2| |#1| (-112))) (-15 -1915 ((-410 |#2|) |#2| |#1|)) (-15 -1915 ((-410 |#2|) |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3910 (|#1| |#2|)) (-15 -3373 ((-410 |#2|) |#2| |#1| (-112))) (-15 -3373 ((-410 |#2|) |#2| |#1|)) (-15 -3390 (|#2| |#2|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -3403 (|#1| |#2|)) (-15 -3415 ((-166 |#1|) |#2|)) (-15 -3428 (|#1| |#1|)) (-15 -3436 ((-2 (|:| |start| |#2|) (|:| -3213 (-410 |#2|))) |#2|))) +((-3446 (((-3 |#2| "failed") |#2|) 14)) (-3457 (((-745) |#2|) 16)) (-3469 ((|#2| |#2| |#2|) 18))) +(((-179 |#1| |#2|) (-10 -7 (-15 -3446 ((-3 |#2| "failed") |#2|)) (-15 -3457 ((-745) |#2|)) (-15 -3469 (|#2| |#2| |#2|))) (-1172) (-648 |#1|)) (T -179)) +((-3469 (*1 *2 *2 *2) (-12 (-4 *3 (-1172)) (-5 *1 (-179 *3 *2)) (-4 *2 (-648 *3)))) (-3457 (*1 *2 *3) (-12 (-4 *4 (-1172)) (-5 *2 (-745)) (-5 *1 (-179 *4 *3)) (-4 *3 (-648 *4)))) (-3446 (*1 *2 *2) (|partial| -12 (-4 *3 (-1172)) (-5 *1 (-179 *3 *2)) (-4 *2 (-648 *3))))) +(-10 -7 (-15 -3446 ((-3 |#2| "failed") |#2|)) (-15 -3457 ((-745) |#2|)) (-15 -3469 (|#2| |#2| |#2|))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2244 (((-1135) $) 10)) (-3743 (((-832) $) 17)) (-3277 (((-619 (-1140)) $) 12)) (-2214 (((-112) $ $) 15))) +(((-180) (-13 (-1063) (-10 -8 (-15 -2244 ((-1135) $)) (-15 -3277 ((-619 (-1140)) $))))) (T -180)) +((-2244 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-180)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-180))))) +(-13 (-1063) (-10 -8 (-15 -2244 ((-1135) $)) (-15 -3277 ((-619 (-1140)) $)))) +((-2765 ((|#2| |#2|) 28)) (-2773 (((-112) |#2|) 19)) (-1937 (((-308 |#1|) |#2|) 12)) (-1948 (((-308 |#1|) |#2|) 14)) (-2749 ((|#2| |#2| (-1135)) 68) ((|#2| |#2|) 69)) (-2781 (((-166 (-308 |#1|)) |#2|) 10)) (-2758 ((|#2| |#2| (-1135)) 65) ((|#2| |#2|) 59))) +(((-181 |#1| |#2|) (-10 -7 (-15 -2749 (|#2| |#2|)) (-15 -2749 (|#2| |#2| (-1135))) (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1135))) (-15 -1937 ((-308 |#1|) |#2|)) (-15 -1948 ((-308 |#1|) |#2|)) (-15 -2773 ((-112) |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2781 ((-166 (-308 |#1|)) |#2|))) (-13 (-540) (-821) (-1007 (-548))) (-13 (-27) (-1157) (-422 (-166 |#1|)))) (T -181)) +((-2781 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-166 (-308 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-112)) (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-308 *4)) (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-308 *4)) (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-2758 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) (-2749 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3))))))) +(-10 -7 (-15 -2749 (|#2| |#2|)) (-15 -2749 (|#2| |#2| (-1135))) (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1135))) (-15 -1937 ((-308 |#1|) |#2|)) (-15 -1948 ((-308 |#1|) |#2|)) (-15 -2773 ((-112) |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2781 ((-166 (-308 |#1|)) |#2|))) +((-3479 (((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|))) 24)) (-3743 (((-1218 (-663 (-399 (-921 |#1|)))) (-1218 (-663 |#1|))) 33))) +(((-182 |#1|) (-10 -7 (-15 -3479 ((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|)))) (-15 -3743 ((-1218 (-663 (-399 (-921 |#1|)))) (-1218 (-663 |#1|))))) (-169)) (T -182)) +((-3743 (*1 *2 *3) (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) (-5 *2 (-1218 (-663 (-399 (-921 *4))))) (-5 *1 (-182 *4)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) (-5 *2 (-1218 (-663 (-921 *4)))) (-5 *1 (-182 *4))))) +(-10 -7 (-15 -3479 ((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|)))) (-15 -3743 ((-1218 (-663 (-399 (-921 |#1|)))) (-1218 (-663 |#1|))))) +((-3570 (((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548)))) 66)) (-3593 (((-1137 (-399 (-548))) (-619 (-548)) (-619 (-548))) 75)) (-3491 (((-1137 (-399 (-548))) (-548)) 40)) (-4133 (((-1137 (-399 (-548))) (-548)) 52)) (-2460 (((-399 (-548)) (-1137 (-399 (-548)))) 62)) (-3504 (((-1137 (-399 (-548))) (-548)) 32)) (-3536 (((-1137 (-399 (-548))) (-548)) 48)) (-3525 (((-1137 (-399 (-548))) (-548)) 46)) (-3559 (((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548)))) 60)) (-3330 (((-1137 (-399 (-548))) (-548)) 25)) (-3547 (((-399 (-548)) (-1137 (-399 (-548))) (-1137 (-399 (-548)))) 64)) (-3512 (((-1137 (-399 (-548))) (-548)) 30)) (-3581 (((-1137 (-399 (-548))) (-619 (-548))) 72))) +(((-183) (-10 -7 (-15 -3330 ((-1137 (-399 (-548))) (-548))) (-15 -3491 ((-1137 (-399 (-548))) (-548))) (-15 -3504 ((-1137 (-399 (-548))) (-548))) (-15 -3512 ((-1137 (-399 (-548))) (-548))) (-15 -3525 ((-1137 (-399 (-548))) (-548))) (-15 -3536 ((-1137 (-399 (-548))) (-548))) (-15 -4133 ((-1137 (-399 (-548))) (-548))) (-15 -3547 ((-399 (-548)) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -3559 ((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -2460 ((-399 (-548)) (-1137 (-399 (-548))))) (-15 -3570 ((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -3581 ((-1137 (-399 (-548))) (-619 (-548)))) (-15 -3593 ((-1137 (-399 (-548))) (-619 (-548)) (-619 (-548)))))) (T -183)) +((-3593 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)))) (-3570 (*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-1137 (-399 (-548)))) (-5 *2 (-399 (-548))) (-5 *1 (-183)))) (-3559 (*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)))) (-3547 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 (-399 (-548)))) (-5 *2 (-399 (-548))) (-5 *1 (-183)))) (-4133 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3536 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3525 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3512 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3504 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3330 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) +(-10 -7 (-15 -3330 ((-1137 (-399 (-548))) (-548))) (-15 -3491 ((-1137 (-399 (-548))) (-548))) (-15 -3504 ((-1137 (-399 (-548))) (-548))) (-15 -3512 ((-1137 (-399 (-548))) (-548))) (-15 -3525 ((-1137 (-399 (-548))) (-548))) (-15 -3536 ((-1137 (-399 (-548))) (-548))) (-15 -4133 ((-1137 (-399 (-548))) (-548))) (-15 -3547 ((-399 (-548)) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -3559 ((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -2460 ((-399 (-548)) (-1137 (-399 (-548))))) (-15 -3570 ((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -3581 ((-1137 (-399 (-548))) (-619 (-548)))) (-15 -3593 ((-1137 (-399 (-548))) (-619 (-548)) (-619 (-548))))) +((-3615 (((-410 (-1131 (-548))) (-548)) 28)) (-3605 (((-619 (-1131 (-548))) (-548)) 23)) (-3686 (((-1131 (-548)) (-548)) 21))) +(((-184) (-10 -7 (-15 -3605 ((-619 (-1131 (-548))) (-548))) (-15 -3686 ((-1131 (-548)) (-548))) (-15 -3615 ((-410 (-1131 (-548))) (-548))))) (T -184)) +((-3615 (*1 *2 *3) (-12 (-5 *2 (-410 (-1131 (-548)))) (-5 *1 (-184)) (-5 *3 (-548)))) (-3686 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-184)) (-5 *3 (-548)))) (-3605 (*1 *2 *3) (-12 (-5 *2 (-619 (-1131 (-548)))) (-5 *1 (-184)) (-5 *3 (-548))))) +(-10 -7 (-15 -3605 ((-619 (-1131 (-548))) (-548))) (-15 -3686 ((-1131 (-548)) (-548))) (-15 -3615 ((-410 (-1131 (-548))) (-548)))) +((-1796 (((-1116 (-218)) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 105)) (-2011 (((-619 (-1118)) (-1116 (-218))) NIL)) (-3626 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 81)) (-1778 (((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218)))) NIL)) (-2000 (((-619 (-1118)) (-619 (-218))) NIL)) (-2022 (((-218) (-1058 (-814 (-218)))) 24)) (-2033 (((-218) (-1058 (-814 (-218)))) 25)) (-3649 (((-371) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 98)) (-3637 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 42)) (-1978 (((-1118) (-218)) NIL)) (-2120 (((-1118) (-619 (-1118))) 20)) (-3660 (((-1004) (-1135) (-1135) (-1004)) 13))) +(((-185) (-10 -7 (-15 -3626 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3637 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -3649 ((-371) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1778 ((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))) (-15 -2120 ((-1118) (-619 (-1118)))) (-15 -3660 ((-1004) (-1135) (-1135) (-1004))))) (T -185)) +((-3660 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-185)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-185)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-185)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-185)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-185)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-185)))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-185)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-185)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-185)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-185)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-185)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-185))))) +(-10 -7 (-15 -3626 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3637 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -3649 ((-371) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1778 ((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))) (-15 -2120 ((-1118) (-619 (-1118)))) (-15 -3660 ((-1004) (-1135) (-1135) (-1004)))) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 55) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 32) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-186) (-761)) (T -186)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 60) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 41) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-187) (-761)) (T -187)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 69) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 40) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-188) (-761)) (T -188)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 56) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 34) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-189) (-761)) (T -189)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 67) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 38) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-190) (-761)) (T -190)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 73) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 36) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-191) (-761)) (T -191)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 80) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 44) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-192) (-761)) (T -192)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 70) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 40) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-193) (-761)) (T -193)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 66)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 32)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-194) (-761)) (T -194)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 63)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 34)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-195) (-761)) (T -195)) +NIL +(-761) +((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 90) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 78) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-196) (-761)) (T -196)) +NIL +(-761) +((-3673 (((-3 (-2 (|:| -2503 (-114)) (|:| |w| (-218))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 85)) (-3695 (((-548) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 42)) (-3684 (((-3 (-619 (-218)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 73))) +(((-197) (-10 -7 (-15 -3673 ((-3 (-2 (|:| -2503 (-114)) (|:| |w| (-218))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3684 ((-3 (-619 (-218)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3695 ((-548) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (T -197)) +((-3695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-548)) (-5 *1 (-197)))) (-3684 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-197)))) (-3673 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| -2503 (-114)) (|:| |w| (-218)))) (-5 *1 (-197))))) +(-10 -7 (-15 -3673 ((-3 (-2 (|:| -2503 (-114)) (|:| |w| (-218))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3684 ((-3 (-619 (-218)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3695 ((-548) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) +((-3757 (((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 39)) (-3746 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 130)) (-3734 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-663 (-308 (-218)))) 89)) (-3720 (((-371) (-663 (-308 (-218)))) 113)) (-2937 (((-663 (-308 (-218))) (-1218 (-308 (-218))) (-619 (-1135))) 110)) (-3789 (((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 30)) (-3767 (((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 43)) (-2460 (((-663 (-308 (-218))) (-663 (-308 (-218))) (-619 (-1135)) (-1218 (-308 (-218)))) 102)) (-3708 (((-371) (-371) (-619 (-371))) 107) (((-371) (-371) (-371)) 105)) (-3777 (((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 36))) +(((-198) (-10 -7 (-15 -3708 ((-371) (-371) (-371))) (-15 -3708 ((-371) (-371) (-619 (-371)))) (-15 -3720 ((-371) (-663 (-308 (-218))))) (-15 -2937 ((-663 (-308 (-218))) (-1218 (-308 (-218))) (-619 (-1135)))) (-15 -2460 ((-663 (-308 (-218))) (-663 (-308 (-218))) (-619 (-1135)) (-1218 (-308 (-218))))) (-15 -3734 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-663 (-308 (-218))))) (-15 -3746 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3757 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3767 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3777 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3789 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (T -198)) +((-3789 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-198)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-663 (-308 (-218)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-198)))) (-2460 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 (-308 (-218)))) (-5 *3 (-619 (-1135))) (-5 *4 (-1218 (-308 (-218)))) (-5 *1 (-198)))) (-2937 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *4 (-619 (-1135))) (-5 *2 (-663 (-308 (-218)))) (-5 *1 (-198)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-663 (-308 (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3708 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-371))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3708 (*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-198))))) +(-10 -7 (-15 -3708 ((-371) (-371) (-371))) (-15 -3708 ((-371) (-371) (-619 (-371)))) (-15 -3720 ((-371) (-663 (-308 (-218))))) (-15 -2937 ((-663 (-308 (-218))) (-1218 (-308 (-218))) (-619 (-1135)))) (-15 -2460 ((-663 (-308 (-218))) (-663 (-308 (-218))) (-619 (-1135)) (-1218 (-308 (-218))))) (-15 -3734 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-663 (-308 (-218))))) (-15 -3746 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3757 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3767 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3777 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3789 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) +((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 41)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 64)) (-2214 (((-112) $ $) NIL))) +(((-199) (-774)) (T -199)) +NIL +(-774) +((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 41)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 62)) (-2214 (((-112) $ $) NIL))) +(((-200) (-774)) (T -200)) +NIL +(-774) +((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 40)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 66)) (-2214 (((-112) $ $) NIL))) +(((-201) (-774)) (T -201)) +NIL +(-774) +((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 46)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 75)) (-2214 (((-112) $ $) NIL))) +(((-202) (-774)) (T -202)) +NIL +(-774) +((-3065 (((-619 (-1135)) (-1135) (-745)) 23)) (-3800 (((-308 (-218)) (-308 (-218))) 31)) (-3825 (((-112) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 74)) (-3811 (((-112) (-218) (-218) (-619 (-308 (-218)))) 45))) +(((-203) (-10 -7 (-15 -3065 ((-619 (-1135)) (-1135) (-745))) (-15 -3800 ((-308 (-218)) (-308 (-218)))) (-15 -3811 ((-112) (-218) (-218) (-619 (-308 (-218))))) (-15 -3825 ((-112) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))))) (T -203)) +((-3825 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *2 (-112)) (-5 *1 (-203)))) (-3811 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-619 (-308 (-218)))) (-5 *3 (-218)) (-5 *2 (-112)) (-5 *1 (-203)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-308 (-218))) (-5 *1 (-203)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-203)) (-5 *3 (-1135))))) +(-10 -7 (-15 -3065 ((-619 (-1135)) (-1135) (-745))) (-15 -3800 ((-308 (-218)) (-308 (-218)))) (-15 -3811 ((-112) (-218) (-218) (-619 (-308 (-218))))) (-15 -3825 ((-112) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))))) +((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 26)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3634 (((-1004) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 57)) (-2214 (((-112) $ $) NIL))) +(((-204) (-864)) (T -204)) +NIL +(-864) +((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 21)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3634 (((-1004) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) NIL)) (-2214 (((-112) $ $) NIL))) +(((-205) (-864)) (T -205)) +NIL +(-864) +((-3730 (((-112) $ $) NIL)) (-2089 ((|#2| $ (-745) |#2|) 11)) (-3550 (($) 8)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3171 ((|#2| $ (-745)) 10)) (-3743 (((-832) $) 18)) (-2214 (((-112) $ $) 13))) +(((-206 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3550 ($)) (-15 -3171 (|#2| $ (-745))) (-15 -2089 (|#2| $ (-745) |#2|)))) (-890) (-1063)) (T -206)) +((-3550 (*1 *1) (-12 (-5 *1 (-206 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1063)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *2 (-1063)) (-5 *1 (-206 *4 *2)) (-14 *4 (-890)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-206 *4 *2)) (-14 *4 (-890)) (-4 *2 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3550 ($)) (-15 -3171 (|#2| $ (-745))) (-15 -2089 (|#2| $ (-745) |#2|)))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3721 (((-1223) $) 36) (((-1223) $ (-890) (-890)) 38)) (-3171 (($ $ (-958)) 19) (((-238 (-1118)) $ (-1135)) 15)) (-2487 (((-1223) $) 34)) (-3743 (((-832) $) 31) (($ (-619 |#1|)) 8)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $ $) 27)) (-2290 (($ $ $) 22))) +(((-207 |#1|) (-13 (-1063) (-10 -8 (-15 -3171 ($ $ (-958))) (-15 -3171 ((-238 (-1118)) $ (-1135))) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -3743 ($ (-619 |#1|))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $)) (-15 -3721 ((-1223) $ (-890) (-890))))) (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))) (T -207)) +((-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-958)) (-5 *1 (-207 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-238 (-1118))) (-5 *1 (-207 *4)) (-4 *4 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ *3)) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))))) (-2299 (*1 *1 *1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))) (-5 *1 (-207 *3)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-207 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) (-15 -3721 (*2 $))))))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-207 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) (-15 -3721 (*2 $))))))) (-3721 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-207 *4)) (-4 *4 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) (-15 -3721 (*2 $)))))))) +(-13 (-1063) (-10 -8 (-15 -3171 ($ $ (-958))) (-15 -3171 ((-238 (-1118)) $ (-1135))) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -3743 ($ (-619 |#1|))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $)) (-15 -3721 ((-1223) $ (-890) (-890))))) +((-3840 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-208 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3840 (|#2| |#4| (-1 |#2| |#2|)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -208)) +((-3840 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-355)) (-4 *6 (-1194 (-399 *2))) (-4 *2 (-1194 *5)) (-5 *1 (-208 *5 *2 *6 *3)) (-4 *3 (-334 *5 *2 *6))))) +(-10 -7 (-15 -3840 (|#2| |#4| (-1 |#2| |#2|)))) +((-3890 ((|#2| |#2| (-745) |#2|) 42)) (-3879 ((|#2| |#2| (-745) |#2|) 38)) (-3002 (((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|)))) 57)) (-3865 (((-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))) |#2|) 53)) (-3902 (((-112) |#2|) 50)) (-1329 (((-410 |#2|) |#2|) 77)) (-1915 (((-410 |#2|) |#2|) 76)) (-3012 ((|#2| |#2| (-745) |#2|) 36)) (-3853 (((-2 (|:| |cont| |#1|) (|:| -3213 (-619 (-2 (|:| |irr| |#2|) (|:| -3286 (-548)))))) |#2| (-112)) 69))) +(((-209 |#1| |#2|) (-10 -7 (-15 -1915 ((-410 |#2|) |#2|)) (-15 -1329 ((-410 |#2|) |#2|)) (-15 -3853 ((-2 (|:| |cont| |#1|) (|:| -3213 (-619 (-2 (|:| |irr| |#2|) (|:| -3286 (-548)))))) |#2| (-112))) (-15 -3865 ((-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))) |#2|)) (-15 -3002 ((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))))) (-15 -3012 (|#2| |#2| (-745) |#2|)) (-15 -3879 (|#2| |#2| (-745) |#2|)) (-15 -3890 (|#2| |#2| (-745) |#2|)) (-15 -3902 ((-112) |#2|))) (-341) (-1194 |#1|)) (T -209)) +((-3902 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4)))) (-3890 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) (-4 *2 (-1194 *4)))) (-3879 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) (-4 *2 (-1194 *4)))) (-3012 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) (-4 *2 (-1194 *4)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |deg| (-745)) (|:| -2168 *5)))) (-4 *5 (-1194 *4)) (-4 *4 (-341)) (-5 *2 (-619 *5)) (-5 *1 (-209 *4 *5)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2168 *3)))) (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) (-5 *1 (-209 *5 *3)) (-4 *3 (-1194 *5)))) (-1329 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -1915 ((-410 |#2|) |#2|)) (-15 -1329 ((-410 |#2|) |#2|)) (-15 -3853 ((-2 (|:| |cont| |#1|) (|:| -3213 (-619 (-2 (|:| |irr| |#2|) (|:| -3286 (-548)))))) |#2| (-112))) (-15 -3865 ((-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))) |#2|)) (-15 -3002 ((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))))) (-15 -3012 (|#2| |#2| (-745) |#2|)) (-15 -3879 (|#2| |#2| (-745) |#2|)) (-15 -3890 (|#2| |#2| (-745) |#2|)) (-15 -3902 ((-112) |#2|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-548) $) NIL (|has| (-548) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-548) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-548) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-548) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-548) (-1007 (-548))))) (-2375 (((-548) $) NIL) (((-1135) $) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-548) (-1007 (-548)))) (((-548) $) NIL (|has| (-548) (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-548) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-548) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-548) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-548) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-548) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-548) (-1111)))) (-3312 (((-112) $) NIL (|has| (-548) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-548) (-821)))) (-2540 (($ (-1 (-548) (-548)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-548) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-548) (-299))) (((-399 (-548)) $) NIL)) (-3887 (((-548) $) NIL (|has| (-548) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-548)) (-619 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-548) (-548)) NIL (|has| (-548) (-301 (-548)))) (($ $ (-286 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-286 (-548)))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-1135)) (-619 (-548))) NIL (|has| (-548) (-504 (-1135) (-548)))) (($ $ (-1135) (-548)) NIL (|has| (-548) (-504 (-1135) (-548))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-548)) NIL (|has| (-548) (-278 (-548) (-548))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-548) $) NIL)) (-3913 (($ (-399 (-548))) 9)) (-2591 (((-861 (-548)) $) NIL (|has| (-548) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-548) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-548) (-593 (-524)))) (((-371) $) NIL (|has| (-548) (-991))) (((-218) $) NIL (|has| (-548) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-548) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 8) (($ (-548)) NIL) (($ (-1135)) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL) (((-973 10) $) 10)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-548) (-878))) (|has| (-548) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-548) $) NIL (|has| (-548) (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-548) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2309 (($ $ $) NIL) (($ (-548) (-548)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-548) $) NIL) (($ $ (-548)) NIL))) +(((-210) (-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 10) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -3913 ($ (-399 (-548))))))) (T -210)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-973 10)) (-5 *1 (-210)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210))))) +(-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 10) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -3913 ($ (-399 (-548)))))) +((-3730 (((-112) $ $) NIL)) (-3858 (((-1080) $) 14)) (-2546 (((-1118) $) NIL)) (-3218 (((-619 (-496)) $) 11)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 16)) (-2214 (((-112) $ $) NIL))) +(((-211) (-13 (-1047) (-10 -8 (-15 -3218 ((-619 (-496)) $)) (-15 -3858 ((-1080) $)) (-15 -2286 ((-1140) $))))) (T -211)) +((-3218 (*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-211)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-211)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-211))))) +(-13 (-1047) (-10 -8 (-15 -3218 ((-619 (-496)) $)) (-15 -3858 ((-1080) $)) (-15 -2286 ((-1140) $)))) +((-3810 (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118)) 28) (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|))) 24)) (-3924 (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)) 17))) +(((-212 |#1| |#2|) (-10 -7 (-15 -3810 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)))) (-15 -3810 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118))) (-15 -3924 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-928) (-29 |#1|))) (T -212)) +((-3924 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1135)) (-5 *6 (-112)) (-4 *7 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-4 *3 (-13 (-1157) (-928) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *7 *3)) (-5 *5 (-814 *3)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-814 *3))) (-5 *5 (-1118)) (-4 *3 (-13 (-1157) (-928) (-29 *6))) (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *6 *3)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-814 *3))) (-4 *3 (-13 (-1157) (-928) (-29 *5))) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *5 *3))))) +(-10 -7 (-15 -3810 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)))) (-15 -3810 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118))) (-15 -3924 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)))) +((-3810 (((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))) (-1118)) 46) (((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|))))) 43) (((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))) (-1118)) 47) (((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|)))) 20))) +(((-213 |#1|) (-10 -7 (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))) (-1118))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))) (-1118)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (T -213)) +((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-814 (-399 (-921 *6))))) (-5 *5 (-1118)) (-5 *3 (-399 (-921 *6))) (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 (-308 *6))) (|:| |f2| (-619 (-814 (-308 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-814 (-399 (-921 *5))))) (-5 *3 (-399 (-921 *5))) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 (-308 *5))) (|:| |f2| (-619 (-814 (-308 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *5)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-399 (-921 *6))) (-5 *4 (-1056 (-814 (-308 *6)))) (-5 *5 (-1118)) (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 (-308 *6))) (|:| |f2| (-619 (-814 (-308 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1056 (-814 (-308 *5)))) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 (-308 *5))) (|:| |f2| (-619 (-814 (-308 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *5))))) +(-10 -7 (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))) (-1118))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))) (-1118)))) +((-2061 (((-2 (|:| -2802 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|)) 21)) (-1384 (((-619 (-308 |#2|)) (-308 |#2|) (-890)) 42))) +(((-214 |#1| |#2|) (-10 -7 (-15 -2061 ((-2 (|:| -2802 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|))) (-15 -1384 ((-619 (-308 |#2|)) (-308 |#2|) (-890)))) (-1016) (-13 (-540) (-821))) (T -214)) +((-1384 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *6 (-13 (-540) (-821))) (-5 *2 (-619 (-308 *6))) (-5 *1 (-214 *5 *6)) (-5 *3 (-308 *6)) (-4 *5 (-1016)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-2 (|:| -2802 (-1131 *4)) (|:| |deg| (-890)))) (-5 *1 (-214 *4 *5)) (-5 *3 (-1131 *4)) (-4 *5 (-13 (-540) (-821)))))) +(-10 -7 (-15 -2061 ((-2 (|:| -2802 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|))) (-15 -1384 ((-619 (-308 |#2|)) (-308 |#2|) (-890)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2995 ((|#1| $) NIL)) (-2088 ((|#1| $) 25)) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-2048 (($ $) NIL)) (-3499 (($ $) 31)) (-2043 ((|#1| |#1| $) NIL)) (-2032 ((|#1| $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3198 (((-745) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) NIL)) (-2974 ((|#1| |#1| $) 28)) (-2963 ((|#1| |#1| $) 30)) (-2539 (($ |#1| $) NIL)) (-3926 (((-745) $) 27)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2035 ((|#1| $) NIL)) (-2952 ((|#1| $) 26)) (-2941 ((|#1| $) 24)) (-1357 ((|#1| $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-2071 ((|#1| |#1| $) NIL)) (-1616 (((-112) $) 9)) (-3319 (($) NIL)) (-2060 ((|#1| $) NIL)) (-3006 (($) NIL) (($ (-619 |#1|)) 16)) (-3045 (((-745) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2985 ((|#1| $) 13)) (-1368 (($ (-619 |#1|)) NIL)) (-2025 ((|#1| $) NIL)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-215 |#1|) (-13 (-246 |#1|) (-10 -8 (-15 -3006 ($ (-619 |#1|))))) (-1063)) (T -215)) +((-3006 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-215 *3))))) +(-13 (-246 |#1|) (-10 -8 (-15 -3006 ($ (-619 |#1|))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3951 (($ (-308 |#1|)) 23)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3613 (((-112) $) NIL)) (-2441 (((-3 (-308 |#1|) "failed") $) NIL)) (-2375 (((-308 |#1|) $) NIL)) (-1872 (($ $) 31)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2540 (($ (-1 (-308 |#1|) (-308 |#1|)) $) NIL)) (-2197 (((-308 |#1|) $) NIL)) (-2711 (($ $) 30)) (-2546 (((-1118) $) NIL)) (-3966 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($ (-745)) NIL)) (-3937 (($ $) 32)) (-2512 (((-548) $) NIL)) (-3743 (((-832) $) 57) (($ (-548)) NIL) (($ (-308 |#1|)) NIL)) (-1951 (((-308 |#1|) $ $) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) 25 T CONST)) (-3118 (($) 50 T CONST)) (-2214 (((-112) $ $) 28)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 24) (($ (-308 |#1|) $) 18))) +(((-216 |#1| |#2|) (-13 (-596 (-308 |#1|)) (-1007 (-308 |#1|)) (-10 -8 (-15 -2197 ((-308 |#1|) $)) (-15 -2711 ($ $)) (-15 -1872 ($ $)) (-15 -1951 ((-308 |#1|) $ $)) (-15 -4160 ($ (-745))) (-15 -3966 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -2512 ((-548) $)) (-15 -2540 ($ (-1 (-308 |#1|) (-308 |#1|)) $)) (-15 -3951 ($ (-308 |#1|))) (-15 -3937 ($ $)))) (-13 (-1016) (-821)) (-619 (-1135))) (T -216)) +((-2197 (*1 *2 *1) (-12 (-5 *2 (-308 *3)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-2711 (*1 *1 *1) (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135))))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135))))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-308 *3)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-308 *3) (-308 *3))) (-4 *3 (-13 (-1016) (-821))) (-5 *1 (-216 *3 *4)) (-14 *4 (-619 (-1135))))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-308 *3)) (-4 *3 (-13 (-1016) (-821))) (-5 *1 (-216 *3 *4)) (-14 *4 (-619 (-1135))))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135)))))) +(-13 (-596 (-308 |#1|)) (-1007 (-308 |#1|)) (-10 -8 (-15 -2197 ((-308 |#1|) $)) (-15 -2711 ($ $)) (-15 -1872 ($ $)) (-15 -1951 ((-308 |#1|) $ $)) (-15 -4160 ($ (-745))) (-15 -3966 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -2512 ((-548) $)) (-15 -2540 ($ (-1 (-308 |#1|) (-308 |#1|)) $)) (-15 -3951 ($ (-308 |#1|))) (-15 -3937 ($ $)))) +((-2719 (((-112) (-1118)) 22)) (-2728 (((-3 (-814 |#2|) "failed") (-591 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112)) 32)) (-2736 (((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)) 73) (((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112)) 74))) +(((-217 |#1| |#2|) (-10 -7 (-15 -2719 ((-112) (-1118))) (-15 -2728 ((-3 (-814 |#2|) "failed") (-591 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-29 |#1|))) (T -217)) +((-2736 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1131 *6)) (-5 *4 (-814 *6)) (-4 *6 (-13 (-1157) (-29 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-217 *5 *6)))) (-2736 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-921 *6)) (-5 *4 (-1135)) (-5 *5 (-814 *7)) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-4 *7 (-13 (-1157) (-29 *6))) (-5 *1 (-217 *6 *7)))) (-2728 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-814 *4)) (-5 *3 (-591 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1157) (-29 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-217 *6 *4)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-112)) (-5 *1 (-217 *4 *5)) (-4 *5 (-13 (-1157) (-29 *4)))))) +(-10 -7 (-15 -2719 ((-112) (-1118))) (-15 -2728 ((-3 (-814 |#2|) "failed") (-591 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 89)) (-3875 (((-548) $) 100)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1665 (($ $) NIL)) (-2074 (($ $) 77)) (-1940 (($ $) 65)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) 56)) (-4087 (((-112) $ $) NIL)) (-2054 (($ $) 75)) (-1918 (($ $) 63)) (-2672 (((-548) $) 117)) (-2098 (($ $) 80)) (-1963 (($ $) 67)) (-3030 (($) NIL T CONST)) (-3849 (($ $) NIL)) (-2441 (((-3 (-548) "failed") $) 116) (((-3 (-399 (-548)) "failed") $) 113)) (-2375 (((-548) $) 114) (((-399 (-548)) $) 111)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) 93)) (-3123 (((-399 (-548)) $ (-745)) 109) (((-399 (-548)) $ (-745) (-745)) 108)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2232 (((-890)) 29) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-3298 (((-112) $) NIL)) (-1365 (($) 39)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL)) (-1672 (((-548) $) 35)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL)) (-3910 (($ $) NIL)) (-3312 (((-112) $) 88)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) 53) (($) 34 (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-3091 (($ $ $) 52) (($) 33 (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-1382 (((-548) $) 27)) (-3112 (($ $) 30)) (-2133 (($ $) 57)) (-3496 (($ $) 62)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-2237 (((-890) (-548)) NIL (|has| $ (-6 -4318)))) (-3932 (((-1082) $) 91)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL)) (-3887 (($ $) NIL)) (-1335 (($ (-548) (-548)) NIL) (($ (-548) (-548) (-890)) 101)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3352 (((-548) $) 28)) (-3100 (($) 38)) (-2458 (($ $) 61)) (-4077 (((-745) $) NIL)) (-2745 (((-1118) (-1118)) 8)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1340 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-4050 (($ $ (-745)) NIL) (($ $) 94)) (-2226 (((-890) (-548)) NIL (|has| $ (-6 -4318)))) (-2110 (($ $) 78)) (-1973 (($ $) 68)) (-2086 (($ $) 79)) (-1952 (($ $) 66)) (-2065 (($ $) 76)) (-1929 (($ $) 64)) (-2591 (((-371) $) 105) (((-218) $) 102) (((-861 (-371)) $) NIL) (((-524) $) 45)) (-3743 (((-832) $) 42) (($ (-548)) 60) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-548)) 60) (($ (-399 (-548))) NIL)) (-3835 (((-745)) NIL)) (-3897 (($ $) NIL)) (-2245 (((-890)) 32) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-3957 (((-890)) 25)) (-2145 (($ $) 83)) (-2006 (($ $) 71) (($ $ $) 110)) (-3290 (((-112) $ $) NIL)) (-2122 (($ $) 81)) (-1986 (($ $) 69)) (-2170 (($ $) 86)) (-2029 (($ $) 74)) (-4026 (($ $) 84)) (-2040 (($ $) 72)) (-2158 (($ $) 85)) (-2017 (($ $) 73)) (-2132 (($ $) 82)) (-1996 (($ $) 70)) (-1446 (($ $) 118)) (-3107 (($) 36 T CONST)) (-3118 (($) 37 T CONST)) (-2739 (((-1118) $) 19) (((-1118) $ (-112)) 21) (((-1223) (-796) $) 22) (((-1223) (-796) $ (-112)) 23)) (-1491 (($ $) 97)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-1456 (($ $ $) 99)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 54)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 46)) (-2309 (($ $ $) 87) (($ $ (-548)) 55)) (-2299 (($ $) 47) (($ $ $) 49)) (-2290 (($ $ $) 48)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 58) (($ $ (-399 (-548))) 130) (($ $ $) 59)) (* (($ (-890) $) 31) (($ (-745) $) NIL) (($ (-548) $) 51) (($ $ $) 50) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) +(((-218) (-13 (-396) (-226) (-802) (-1157) (-593 (-524)) (-10 -8 (-15 -2309 ($ $ (-548))) (-15 ** ($ $ $)) (-15 -3100 ($)) (-15 -3112 ($ $)) (-15 -2133 ($ $)) (-15 -2006 ($ $ $)) (-15 -1491 ($ $)) (-15 -1456 ($ $ $)) (-15 -2745 ((-1118) (-1118))) (-15 -3123 ((-399 (-548)) $ (-745))) (-15 -3123 ((-399 (-548)) $ (-745) (-745)))))) (T -218)) +((** (*1 *1 *1 *1) (-5 *1 (-218))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-218)))) (-3100 (*1 *1) (-5 *1 (-218))) (-3112 (*1 *1 *1) (-5 *1 (-218))) (-2133 (*1 *1 *1) (-5 *1 (-218))) (-2006 (*1 *1 *1 *1) (-5 *1 (-218))) (-1491 (*1 *1 *1) (-5 *1 (-218))) (-1456 (*1 *1 *1 *1) (-5 *1 (-218))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-218)))) (-3123 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-218)))) (-3123 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-218))))) +(-13 (-396) (-226) (-802) (-1157) (-593 (-524)) (-10 -8 (-15 -2309 ($ $ (-548))) (-15 ** ($ $ $)) (-15 -3100 ($)) (-15 -3112 ($ $)) (-15 -2133 ($ $)) (-15 -2006 ($ $ $)) (-15 -1491 ($ $)) (-15 -1456 ($ $ $)) (-15 -2745 ((-1118) (-1118))) (-15 -3123 ((-399 (-548)) $ (-745))) (-15 -3123 ((-399 (-548)) $ (-745) (-745))))) +((-1478 (((-166 (-218)) (-745) (-166 (-218))) 11) (((-218) (-745) (-218)) 12)) (-2753 (((-166 (-218)) (-166 (-218))) 13) (((-218) (-218)) 14)) (-2762 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 19) (((-218) (-218) (-218)) 22)) (-1467 (((-166 (-218)) (-166 (-218))) 25) (((-218) (-218)) 24)) (-1513 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 43) (((-218) (-218) (-218)) 35)) (-1533 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 48) (((-218) (-218) (-218)) 45)) (-1502 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 15) (((-218) (-218) (-218)) 16)) (-1523 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 17) (((-218) (-218) (-218)) 18)) (-1551 (((-166 (-218)) (-166 (-218))) 60) (((-218) (-218)) 59)) (-1542 (((-218) (-218)) 54) (((-166 (-218)) (-166 (-218))) 58)) (-1491 (((-166 (-218)) (-166 (-218))) 8) (((-218) (-218)) 9)) (-1456 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 30) (((-218) (-218) (-218)) 26))) +(((-219) (-10 -7 (-15 -1491 ((-218) (-218))) (-15 -1491 ((-166 (-218)) (-166 (-218)))) (-15 -1456 ((-218) (-218) (-218))) (-15 -1456 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -2753 ((-218) (-218))) (-15 -2753 ((-166 (-218)) (-166 (-218)))) (-15 -1467 ((-218) (-218))) (-15 -1467 ((-166 (-218)) (-166 (-218)))) (-15 -1478 ((-218) (-745) (-218))) (-15 -1478 ((-166 (-218)) (-745) (-166 (-218)))) (-15 -1502 ((-218) (-218) (-218))) (-15 -1502 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1513 ((-218) (-218) (-218))) (-15 -1513 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1523 ((-218) (-218) (-218))) (-15 -1523 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1533 ((-218) (-218) (-218))) (-15 -1533 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1542 ((-166 (-218)) (-166 (-218)))) (-15 -1542 ((-218) (-218))) (-15 -1551 ((-218) (-218))) (-15 -1551 ((-166 (-218)) (-166 (-218)))) (-15 -2762 ((-218) (-218) (-218))) (-15 -2762 ((-166 (-218)) (-166 (-218)) (-166 (-218)))))) (T -219)) +((-2762 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-2762 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1533 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1533 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1523 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1523 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1502 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1502 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1478 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-218))) (-5 *3 (-745)) (-5 *1 (-219)))) (-1478 (*1 *2 *3 *2) (-12 (-5 *2 (-218)) (-5 *3 (-745)) (-5 *1 (-219)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1456 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1456 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219))))) +(-10 -7 (-15 -1491 ((-218) (-218))) (-15 -1491 ((-166 (-218)) (-166 (-218)))) (-15 -1456 ((-218) (-218) (-218))) (-15 -1456 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -2753 ((-218) (-218))) (-15 -2753 ((-166 (-218)) (-166 (-218)))) (-15 -1467 ((-218) (-218))) (-15 -1467 ((-166 (-218)) (-166 (-218)))) (-15 -1478 ((-218) (-745) (-218))) (-15 -1478 ((-166 (-218)) (-745) (-166 (-218)))) (-15 -1502 ((-218) (-218) (-218))) (-15 -1502 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1513 ((-218) (-218) (-218))) (-15 -1513 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1523 ((-218) (-218) (-218))) (-15 -1523 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1533 ((-218) (-218) (-218))) (-15 -1533 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1542 ((-166 (-218)) (-166 (-218)))) (-15 -1542 ((-218) (-218))) (-15 -1551 ((-218) (-218))) (-15 -1551 ((-166 (-218)) (-166 (-218)))) (-15 -2762 ((-218) (-218) (-218))) (-15 -2762 ((-166 (-218)) (-166 (-218)) (-166 (-218))))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745) (-745)) NIL)) (-4025 (($ $ $) NIL)) (-3508 (($ (-1218 |#1|)) NIL) (($ $) NIL)) (-2534 (($ |#1| |#1| |#1|) 32)) (-3785 (((-112) $) NIL)) (-4015 (($ $ (-548) (-548)) NIL)) (-4004 (($ $ (-548) (-548)) NIL)) (-3992 (($ $ (-548) (-548) (-548) (-548)) NIL)) (-4048 (($ $) NIL)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3982 (($ $ (-548) (-548) $) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548)) $) NIL)) (-4141 (($ $ (-548) (-1218 |#1|)) NIL)) (-4131 (($ $ (-548) (-1218 |#1|)) NIL)) (-4071 (($ |#1| |#1| |#1|) 31)) (-2114 (($ (-745) |#1|) NIL)) (-3030 (($) NIL T CONST)) (-3691 (($ $) NIL (|has| |#1| (-299)))) (-3717 (((-1218 |#1|) $ (-548)) NIL)) (-2769 (($ |#1|) 30)) (-2777 (($ |#1|) 29)) (-2785 (($ |#1|) 28)) (-2103 (((-745) $) NIL (|has| |#1| (-540)))) (-3971 ((|#1| $ (-548) (-548) |#1|) NIL)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-3681 (((-745) $) NIL (|has| |#1| (-540)))) (-3669 (((-619 (-1218 |#1|)) $) NIL (|has| |#1| (-540)))) (-4205 (((-745) $) NIL)) (-3550 (($ (-745) (-745) |#1|) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#1| $) NIL (|has| |#1| (-6 (-4329 "*"))))) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#1|))) 11)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2401 (((-619 (-619 |#1|)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2369 (((-3 $ "failed") $) NIL (|has| |#1| (-355)))) (-2791 (($) 12)) (-4036 (($ $ $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548))) NIL)) (-2102 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL)) (-3797 (((-112) $) NIL)) (-2068 ((|#1| $) NIL (|has| |#1| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 (((-1218 |#1|) $ (-548)) NIL)) (-3743 (($ (-1218 |#1|)) NIL) (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-548) $) NIL) (((-1218 |#1|) $ (-1218 |#1|)) 15) (((-1218 |#1|) (-1218 |#1|) $) NIL) (((-912 |#1|) $ (-912 |#1|)) 20)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-220 |#1|) (-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 * ((-912 |#1|) $ (-912 |#1|))) (-15 -2791 ($)) (-15 -2785 ($ |#1|)) (-15 -2777 ($ |#1|)) (-15 -2769 ($ |#1|)) (-15 -4071 ($ |#1| |#1| |#1|)) (-15 -2534 ($ |#1| |#1| |#1|)))) (-13 (-355) (-1157))) (T -220)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157))) (-5 *1 (-220 *3)))) (-2791 (*1 *1) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-2785 (*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-2777 (*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-2769 (*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-4071 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-2534 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) +(-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 * ((-912 |#1|) $ (-912 |#1|))) (-15 -2791 ($)) (-15 -2785 ($ |#1|)) (-15 -2777 ($ |#1|)) (-15 -2769 ($ |#1|)) (-15 -4071 ($ |#1| |#1| |#1|)) (-15 -2534 ($ |#1| |#1| |#1|)))) +((-2657 (($ (-1 (-112) |#2|) $) 16)) (-1636 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-2801 (($) NIL) (($ (-619 |#2|)) 11)) (-2214 (((-112) $ $) 23))) +(((-221 |#1| |#2|) (-10 -8 (-15 -2657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2801 (|#1| (-619 |#2|))) (-15 -2801 (|#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-222 |#2|) (-1063)) (T -221)) +NIL +(-10 -8 (-15 -2657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2801 (|#1| (-619 |#2|))) (-15 -2801 (|#1|)) (-15 -2214 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-222 |#1|) (-138) (-1063)) (T -222)) +NIL +(-13 (-228 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-4050 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) 11) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) 19) (($ $ (-745)) NIL) (($ $) 16)) (-3296 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-745)) 14) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL))) +(((-223 |#1| |#2|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3296 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3296 (|#1| |#1| (-1135))) (-15 -3296 (|#1| |#1| (-619 (-1135)))) (-15 -3296 (|#1| |#1| (-1135) (-745))) (-15 -3296 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3296 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3296 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|)))) (-224 |#2|) (-1016)) (T -223)) +NIL +(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3296 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3296 (|#1| |#1| (-1135))) (-15 -3296 (|#1| |#1| (-619 (-1135)))) (-15 -3296 (|#1| |#1| (-1135) (-745))) (-15 -3296 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3296 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3296 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4050 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-745)) 49) (($ $ (-619 (-1135)) (-619 (-745))) 42 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 41 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 40 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 39 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 37 (|has| |#1| (-226))) (($ $) 35 (|has| |#1| (-226)))) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-745)) 47) (($ $ (-619 (-1135)) (-619 (-745))) 46 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 45 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 44 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 43 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 38 (|has| |#1| (-226))) (($ $) 36 (|has| |#1| (-226)))) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-224 |#1|) (-138) (-1016)) (T -224)) +((-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1016)))) (-4050 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-224 *4)) (-4 *4 (-1016)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1016)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-224 *4)) (-4 *4 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -4050 ($ $ (-1 |t#1| |t#1|))) (-15 -4050 ($ $ (-1 |t#1| |t#1|) (-745))) (-15 -3296 ($ $ (-1 |t#1| |t#1|))) (-15 -3296 ($ $ (-1 |t#1| |t#1|) (-745))) (IF (|has| |t#1| (-226)) (-6 (-226)) |%noBranch|) (IF (|has| |t#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-226) |has| |#1| (-226)) ((-622 $) . T) ((-701) . T) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-4050 (($ $) NIL) (($ $ (-745)) 10)) (-3296 (($ $) 8) (($ $ (-745)) 12))) +(((-225 |#1|) (-10 -8 (-15 -3296 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-745))) (-15 -3296 (|#1| |#1|)) (-15 -4050 (|#1| |#1|))) (-226)) (T -225)) +NIL +(-10 -8 (-15 -3296 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-745))) (-15 -3296 (|#1| |#1|)) (-15 -4050 (|#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4050 (($ $) 36) (($ $ (-745)) 34)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $) 35) (($ $ (-745)) 33)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-226) (-138)) (T -226)) +((-4050 (*1 *1 *1) (-4 *1 (-226))) (-3296 (*1 *1 *1) (-4 *1 (-226))) (-4050 (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-745)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-745))))) +(-13 (-1016) (-10 -8 (-15 -4050 ($ $)) (-15 -3296 ($ $)) (-15 -4050 ($ $ (-745))) (-15 -3296 ($ $ (-745))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2801 (($) 12) (($ (-619 |#2|)) NIL)) (-2113 (($ $) 14)) (-3754 (($ (-619 |#2|)) 10)) (-3743 (((-832) $) 21))) +(((-227 |#1| |#2|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2801 (|#1| (-619 |#2|))) (-15 -2801 (|#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -2113 (|#1| |#1|))) (-228 |#2|) (-1063)) (T -227)) +NIL +(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2801 (|#1| (-619 |#2|))) (-15 -2801 (|#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -2113 (|#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-228 |#1|) (-138) (-1063)) (T -228)) +((-2801 (*1 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-1063)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-228 *3)))) (-1636 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-228 *2)) (-4 *2 (-1063)))) (-1636 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-228 *3)) (-4 *3 (-1063)))) (-2657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-228 *3)) (-4 *3 (-1063))))) +(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -2801 ($)) (-15 -2801 ($ (-619 |t#1|))) (IF (|has| $ (-6 -4327)) (PROGN (-15 -1636 ($ |t#1| $)) (-15 -1636 ($ (-1 (-112) |t#1|) $)) (-15 -2657 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-2810 (((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-286 (-921 (-548)))) 27))) +(((-229) (-10 -7 (-15 -2810 ((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-286 (-921 (-548))))))) (T -229)) +((-2810 (*1 *2 *3) (-12 (-5 *3 (-286 (-921 (-548)))) (-5 *2 (-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745)))))) (-5 *1 (-229))))) +(-10 -7 (-15 -2810 ((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-286 (-921 (-548)))))) +((-3423 (((-745)) 51)) (-1608 (((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) 49) (((-663 |#3|) (-663 $)) 41) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3402 (((-133)) 57)) (-4050 (($ $ (-1 |#3| |#3|) (-745)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3743 (((-1218 |#3|) $) NIL) (($ |#3|) NIL) (((-832) $) NIL) (($ (-548)) 12) (($ (-399 (-548))) NIL)) (-3835 (((-745)) 15)) (-2309 (($ $ |#3|) 54))) +(((-230 |#1| |#2| |#3|) (-10 -8 (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|)) (-15 -3835 ((-745))) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -3743 (|#1| |#3|)) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -1608 ((-663 |#3|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -3423 ((-745))) (-15 -2309 (|#1| |#1| |#3|)) (-15 -3402 ((-133))) (-15 -3743 ((-1218 |#3|) |#1|))) (-231 |#2| |#3|) (-745) (-1172)) (T -230)) +((-3402 (*1 *2) (-12 (-14 *4 (-745)) (-4 *5 (-1172)) (-5 *2 (-133)) (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) (-3423 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) (-3835 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5))))) +(-10 -8 (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|)) (-15 -3835 ((-745))) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -3743 (|#1| |#3|)) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -1608 ((-663 |#3|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -3423 ((-745))) (-15 -2309 (|#1| |#1| |#3|)) (-15 -3402 ((-133))) (-15 -3743 ((-1218 |#3|) |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#2| (-1063)))) (-3324 (((-112) $) 72 (|has| |#2| (-130)))) (-2264 (($ (-890)) 125 (|has| |#2| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2857 (($ $ $) 121 (|has| |#2| (-767)))) (-4104 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-2028 (((-112) $ (-745)) 8)) (-3423 (((-745)) 107 (|has| |#2| (-360)))) (-2672 (((-548) $) 119 (|has| |#2| (-819)))) (-2089 ((|#2| $ (-548) |#2|) 52 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-2441 (((-3 (-548) "failed") $) 67 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-3 (-399 (-548)) "failed") $) 64 (-1723 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1063)))) (-2375 (((-548) $) 68 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-399 (-548)) $) 65 (-1723 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) ((|#2| $) 60 (|has| |#2| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) 106 (-1723 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 105 (-1723 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 104 (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) 103 (|has| |#2| (-1016)))) (-3859 (((-3 $ "failed") $) 79 (|has| |#2| (-701)))) (-2545 (($) 110 (|has| |#2| (-360)))) (-3971 ((|#2| $ (-548) |#2|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ (-548)) 51)) (-3298 (((-112) $) 117 (|has| |#2| (-819)))) (-1934 (((-619 |#2|) $) 30 (|has| $ (-6 -4327)))) (-2266 (((-112) $) 81 (|has| |#2| (-701)))) (-3312 (((-112) $) 118 (|has| |#2| (-819)))) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 116 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2342 (((-619 |#2|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 115 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-3960 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) 35)) (-2855 (((-890) $) 109 (|has| |#2| (-360)))) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#2| (-1063)))) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3337 (($ (-890)) 108 (|has| |#2| (-360)))) (-3932 (((-1082) $) 21 (|has| |#2| (-1063)))) (-3453 ((|#2| $) 42 (|has| (-548) (-821)))) (-4159 (($ $ |#2|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) 26 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 23 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#2| $ (-548) |#2|) 50) ((|#2| $ (-548)) 49)) (-4029 ((|#2| $ $) 124 (|has| |#2| (-1016)))) (-1957 (($ (-1218 |#2|)) 126)) (-3402 (((-133)) 123 (|has| |#2| (-355)))) (-4050 (($ $) 98 (-1723 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) 96 (-1723 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) 94 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) 93 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) 92 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) 91 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) 84 (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1016)))) (-3945 (((-745) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4327))) (((-745) |#2| $) 28 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-1218 |#2|) $) 127) (($ (-548)) 66 (-1524 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-399 (-548))) 63 (-1723 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (($ |#2|) 62 (|has| |#2| (-1063))) (((-832) $) 18 (|has| |#2| (-592 (-832))))) (-3835 (((-745)) 102 (|has| |#2| (-1016)))) (-3548 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4327)))) (-1446 (($ $) 120 (|has| |#2| (-819)))) (-3107 (($) 71 (|has| |#2| (-130)) CONST)) (-3118 (($) 82 (|has| |#2| (-701)) CONST)) (-3296 (($ $) 97 (-1723 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) 95 (-1723 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) 90 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) 89 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) 88 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) 87 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) 86 (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1016)))) (-2262 (((-112) $ $) 113 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2241 (((-112) $ $) 112 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2214 (((-112) $ $) 20 (|has| |#2| (-1063)))) (-2252 (((-112) $ $) 114 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2234 (((-112) $ $) 111 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2309 (($ $ |#2|) 122 (|has| |#2| (-355)))) (-2299 (($ $ $) 100 (|has| |#2| (-1016))) (($ $) 99 (|has| |#2| (-1016)))) (-2290 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-745)) 80 (|has| |#2| (-701))) (($ $ (-890)) 77 (|has| |#2| (-701)))) (* (($ (-548) $) 101 (|has| |#2| (-1016))) (($ $ $) 78 (|has| |#2| (-701))) (($ $ |#2|) 76 (|has| |#2| (-701))) (($ |#2| $) 75 (|has| |#2| (-701))) (($ (-745) $) 73 (|has| |#2| (-130))) (($ (-890) $) 70 (|has| |#2| (-25)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-231 |#1| |#2|) (-138) (-745) (-1172)) (T -231)) +((-1957 (*1 *1 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1172)) (-4 *1 (-231 *3 *4)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-231 *3 *4)) (-4 *4 (-1016)) (-4 *4 (-1172)))) (-4029 (*1 *2 *1 *1) (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701))))) +(-13 (-583 (-548) |t#2|) (-592 (-1218 |t#2|)) (-10 -8 (-6 -4327) (-15 -1957 ($ (-1218 |t#2|))) (IF (|has| |t#2| (-1063)) (-6 (-403 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1016)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-224 |t#2|)) (-6 (-369 |t#2|)) (-15 -2264 ($ (-890))) (-15 -4029 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-701)) (PROGN (-6 (-701)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-360)) (-6 (-360)) |%noBranch|) (IF (|has| |t#2| (-169)) (PROGN (-6 (-38 |t#2|)) (-6 (-169))) |%noBranch|) (IF (|has| |t#2| (-6 -4324)) (-6 -4324) |%noBranch|) (IF (|has| |t#2| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |t#2| (-767)) (-6 (-767)) |%noBranch|) (IF (|has| |t#2| (-355)) (-6 (-1225 |t#2|)) |%noBranch|))) +(((-21) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-355)) (|has| |#2| (-169))) ((-23) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130))) ((-25) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-360)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-355)) (|has| |#2| (-169))) ((-111 $ $) |has| |#2| (-169)) ((-130) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130))) ((-592 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-360)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-592 (-832))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-592 (-1218 |#2|)) . T) ((-169) |has| |#2| (-169)) ((-224 |#2|) |has| |#2| (-1016)) ((-226) -12 (|has| |#2| (-226)) (|has| |#2| (-1016))) ((-278 #0=(-548) |#2|) . T) ((-280 #0# |#2|) . T) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-360) |has| |#2| (-360)) ((-369 |#2|) |has| |#2| (-1016)) ((-403 |#2|) |has| |#2| (-1063)) ((-480 |#2|) . T) ((-583 #0# |#2|) . T) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-622 |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-355)) (|has| |#2| (-169))) ((-622 $) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-615 (-548)) -12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016))) ((-615 |#2|) |has| |#2| (-1016)) ((-692 |#2|) -1524 (|has| |#2| (-355)) (|has| |#2| (-169))) ((-701) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-701)) (|has| |#2| (-169))) ((-765) |has| |#2| (-819)) ((-766) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-767) |has| |#2| (-767)) ((-768) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-769) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-819) |has| |#2| (-819)) ((-821) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-869 (-1135)) -12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016))) ((-1007 (-399 (-548))) -12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063))) ((-1007 (-548)) -12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) ((-1007 |#2|) |has| |#2| (-1063)) ((-1022 |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-355)) (|has| |#2| (-169))) ((-1022 $) |has| |#2| (-169)) ((-1016) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-1023) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-1075) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-701)) (|has| |#2| (-169))) ((-1063) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-360)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1172) . T) ((-1225 |#2|) |has| |#2| (-355))) +((-4040 (((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 21)) (-2061 ((|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 23)) (-2540 (((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)) 18))) +(((-232 |#1| |#2| |#3|) (-10 -7 (-15 -4040 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -2061 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -2540 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) (-745) (-1172) (-1172)) (T -232)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-745)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-5 *2 (-233 *5 *7)) (-5 *1 (-232 *5 *6 *7)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-745)) (-4 *6 (-1172)) (-4 *2 (-1172)) (-5 *1 (-232 *5 *6 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-745)) (-4 *7 (-1172)) (-4 *5 (-1172)) (-5 *2 (-233 *6 *5)) (-5 *1 (-232 *6 *7 *5))))) +(-10 -7 (-15 -4040 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -2061 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -2540 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) +((-3730 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-3324 (((-112) $) NIL (|has| |#2| (-130)))) (-2264 (($ (-890)) 56 (|has| |#2| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) 60 (|has| |#2| (-767)))) (-4104 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-2028 (((-112) $ (-745)) 17)) (-3423 (((-745)) NIL (|has| |#2| (-360)))) (-2672 (((-548) $) NIL (|has| |#2| (-819)))) (-2089 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1063)))) (-2375 (((-548) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) ((|#2| $) 27 (|has| |#2| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3859 (((-3 $ "failed") $) 53 (|has| |#2| (-701)))) (-2545 (($) NIL (|has| |#2| (-360)))) (-3971 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ (-548)) 51)) (-3298 (((-112) $) NIL (|has| |#2| (-819)))) (-1934 (((-619 |#2|) $) 15 (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (|has| |#2| (-701)))) (-3312 (((-112) $) NIL (|has| |#2| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 20 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 (((-548) $) 50 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) 41)) (-2855 (((-890) $) NIL (|has| |#2| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#2| (-1063)))) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#2| (-360)))) (-3932 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3453 ((|#2| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-548)) 21)) (-4029 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-1957 (($ (-1218 |#2|)) 18)) (-3402 (((-133)) NIL (|has| |#2| (-355)))) (-4050 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#2|) $) 10) (($ (-548)) NIL (-1524 (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (($ |#2|) 13 (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-592 (-832))))) (-3835 (((-745)) NIL (|has| |#2| (-1016)))) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#2| (-819)))) (-3107 (($) 35 (|has| |#2| (-130)) CONST)) (-3118 (($) 38 (|has| |#2| (-701)) CONST)) (-3296 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2214 (((-112) $ $) 26 (|has| |#2| (-1063)))) (-2252 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2234 (((-112) $ $) 58 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2290 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-548) $) NIL (|has| |#2| (-1016))) (($ $ $) 44 (|has| |#2| (-701))) (($ $ |#2|) 42 (|has| |#2| (-701))) (($ |#2| $) 43 (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-233 |#1| |#2|) (-231 |#1| |#2|) (-745) (-1172)) (T -233)) +NIL +(-231 |#1| |#2|) +((-2836 (((-548) (-619 (-1118))) 24) (((-548) (-1118)) 19)) (-2194 (((-1223) (-619 (-1118))) 29) (((-1223) (-1118)) 28)) (-2820 (((-1118)) 14)) (-2826 (((-1118) (-548) (-1118)) 16)) (-2278 (((-619 (-1118)) (-619 (-1118)) (-548) (-1118)) 25) (((-1118) (-1118) (-548) (-1118)) 23)) (-3093 (((-619 (-1118)) (-619 (-1118))) 13) (((-619 (-1118)) (-1118)) 11))) +(((-234) (-10 -7 (-15 -3093 ((-619 (-1118)) (-1118))) (-15 -3093 ((-619 (-1118)) (-619 (-1118)))) (-15 -2820 ((-1118))) (-15 -2826 ((-1118) (-548) (-1118))) (-15 -2278 ((-1118) (-1118) (-548) (-1118))) (-15 -2278 ((-619 (-1118)) (-619 (-1118)) (-548) (-1118))) (-15 -2194 ((-1223) (-1118))) (-15 -2194 ((-1223) (-619 (-1118)))) (-15 -2836 ((-548) (-1118))) (-15 -2836 ((-548) (-619 (-1118)))))) (T -234)) +((-2836 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-548)) (-5 *1 (-234)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-548)) (-5 *1 (-234)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1223)) (-5 *1 (-234)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-234)))) (-2278 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-619 (-1118))) (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *1 (-234)))) (-2278 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-234)))) (-2826 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-234)))) (-2820 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-234)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-234)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-234)) (-5 *3 (-1118))))) +(-10 -7 (-15 -3093 ((-619 (-1118)) (-1118))) (-15 -3093 ((-619 (-1118)) (-619 (-1118)))) (-15 -2820 ((-1118))) (-15 -2826 ((-1118) (-548) (-1118))) (-15 -2278 ((-1118) (-1118) (-548) (-1118))) (-15 -2278 ((-619 (-1118)) (-619 (-1118)) (-548) (-1118))) (-15 -2194 ((-1223) (-1118))) (-15 -2194 ((-1223) (-619 (-1118)))) (-15 -2836 ((-548) (-1118))) (-15 -2836 ((-548) (-619 (-1118))))) +((** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 16)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ (-399 (-548)) $) 23) (($ $ (-399 (-548))) NIL))) +(((-235 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-548))) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-236)) (T -235)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-548))) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 37)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 41)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 38)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ (-399 (-548)) $) 40) (($ $ (-399 (-548))) 39))) +(((-236) (-138)) (T -236)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-236)) (-5 *2 (-548)))) (-2153 (*1 *1 *1) (-4 *1 (-236)))) +(-13 (-282) (-38 (-399 (-548))) (-10 -8 (-15 ** ($ $ (-548))) (-15 -2153 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-282) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-701) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1272 (($ $) 57)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-2854 (($ $ $) 53 (|has| $ (-6 -4328)))) (-2846 (($ $ $) 52 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-4074 (($ $) 56)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-1619 (($ $) 55)) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 59)) (-3218 (($ $) 58)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3659 (($ $ $) 54 (|has| $ (-6 -4328)))) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-237 |#1|) (-138) (-1172)) (T -237)) +((-3724 (*1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-4074 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-3659 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-2854 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-2846 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172))))) +(-13 (-979 |t#1|) (-10 -8 (-15 -3724 (|t#1| $)) (-15 -3218 ($ $)) (-15 -1272 ($ $)) (-15 -4074 ($ $)) (-15 -1619 ($ $)) (IF (|has| $ (-6 -4328)) (PROGN (-15 -3659 ($ $ $)) (-15 -2854 ($ $ $)) (-15 -2846 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-1988 ((|#1| $) NIL)) (-1272 (($ $) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2490 (($ $) 10 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) NIL (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "rest" $) NIL (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-1975 ((|#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3465 (($ $) NIL) (($ $ (-745)) NIL)) (-2969 (($ $) NIL (|has| |#1| (-1063)))) (-3484 (($ $) 7 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3699 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-2621 (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063))) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) (-1 (-112) |#1|) $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (($ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3724 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2539 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3712 (((-112) $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-548))) NIL) ((|#1| $ (-548)) NIL) ((|#1| $ (-548) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-745) $ "count") 16)) (-4234 (((-548) $ $) NIL)) (-2668 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2044 (($ (-619 |#1|)) 22)) (-2740 (((-112) $) NIL)) (-3672 (($ $) NIL)) (-3648 (($ $) NIL (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-3659 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1831 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3743 (($ (-619 |#1|)) 17) (((-619 |#1|) $) 18) (((-832) $) 21 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 14 (|has| $ (-6 -4327))))) +(((-238 |#1|) (-13 (-640 |#1|) (-10 -8 (-15 -3743 ($ (-619 |#1|))) (-15 -3743 ((-619 |#1|) $)) (-15 -2044 ($ (-619 |#1|))) (-15 -3171 ($ $ "unique")) (-15 -3171 ($ $ "sort")) (-15 -3171 ((-745) $ "count")))) (-821)) (T -238)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-238 *3)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-238 *3)) (-4 *3 (-821)))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-238 *3)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-238 *3)) (-4 *3 (-821)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-238 *3)) (-4 *3 (-821)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-745)) (-5 *1 (-238 *4)) (-4 *4 (-821))))) +(-13 (-640 |#1|) (-10 -8 (-15 -3743 ($ (-619 |#1|))) (-15 -3743 ((-619 |#1|) $)) (-15 -2044 ($ (-619 |#1|))) (-15 -3171 ($ $ "unique")) (-15 -3171 ($ $ "sort")) (-15 -3171 ((-745) $ "count")))) +((-2865 (((-3 (-745) "failed") |#1| |#1| (-745)) 27))) +(((-239 |#1|) (-10 -7 (-15 -2865 ((-3 (-745) "failed") |#1| |#1| (-745)))) (-13 (-701) (-360) (-10 -7 (-15 ** (|#1| |#1| (-548)))))) (T -239)) +((-2865 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-745)) (-4 *3 (-13 (-701) (-360) (-10 -7 (-15 ** (*3 *3 (-548)))))) (-5 *1 (-239 *3))))) +(-10 -7 (-15 -2865 ((-3 (-745) "failed") |#1| |#1| (-745)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-834 |#1|)) $) NIL)) (-1884 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-834 |#1|) $) NIL)) (-1557 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3447 (($ $ (-619 (-548))) NIL)) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| (-233 (-3643 |#1|) (-745)) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#2| (-233 (-3643 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-834 |#1|)) NIL)) (-3904 (((-233 (-3643 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 (-233 (-3643 |#1|) (-745)) (-233 (-3643 |#1|) (-745))) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3511 (((-3 (-834 |#1|) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#2| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-1566 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2512 (((-233 (-3643 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-834 |#1|) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#2| (-540)))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-233 (-3643 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-240 |#1| |#2|) (-13 (-918 |#2| (-233 (-3643 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) (-619 (-1135)) (-1016)) (T -240)) +((-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-240 *3 *4)) (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) +(-13 (-918 |#2| (-233 (-3643 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) +((-3730 (((-112) $ $) NIL)) (-2533 (((-1223) $) 15)) (-2886 (((-180) $) 9)) (-2876 (($ (-180)) 10)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 7)) (-2214 (((-112) $ $) 13))) +(((-241) (-13 (-1063) (-10 -8 (-15 -2886 ((-180) $)) (-15 -2876 ($ (-180))) (-15 -2533 ((-1223) $))))) (T -241)) +((-2886 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-241)))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-241)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-241))))) +(-13 (-1063) (-10 -8 (-15 -2886 ((-180) $)) (-15 -2876 ($ (-180))) (-15 -2533 ((-1223) $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2264 (($ (-890)) NIL (|has| |#4| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#4| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#4| (-360)))) (-2672 (((-548) $) NIL (|has| |#4| (-819)))) (-2089 ((|#4| $ (-548) |#4|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1063))) (((-3 (-548) "failed") $) NIL (-12 (|has| |#4| (-1007 (-548))) (|has| |#4| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#4| (-1007 (-399 (-548)))) (|has| |#4| (-1063))))) (-2375 ((|#4| $) NIL (|has| |#4| (-1063))) (((-548) $) NIL (-12 (|has| |#4| (-1007 (-548))) (|has| |#4| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#4| (-1007 (-399 (-548)))) (|has| |#4| (-1063))))) (-1608 (((-2 (|:| -4035 (-663 |#4|)) (|:| |vec| (-1218 |#4|))) (-663 $) (-1218 $)) NIL (|has| |#4| (-1016))) (((-663 |#4|) (-663 $)) NIL (|has| |#4| (-1016))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-2545 (($) NIL (|has| |#4| (-360)))) (-3971 ((|#4| $ (-548) |#4|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#4| $ (-548)) NIL)) (-3298 (((-112) $) NIL (|has| |#4| (-819)))) (-1934 (((-619 |#4|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-3312 (((-112) $) NIL (|has| |#4| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2342 (((-619 |#4|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-3960 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#4| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#4| (-360)))) (-3932 (((-1082) $) NIL)) (-3453 ((|#4| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#4|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-4223 (((-619 |#4|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#4| $ (-548) |#4|) NIL) ((|#4| $ (-548)) 12)) (-4029 ((|#4| $ $) NIL (|has| |#4| (-1016)))) (-1957 (($ (-1218 |#4|)) NIL)) (-3402 (((-133)) NIL (|has| |#4| (-355)))) (-4050 (($ $ (-1 |#4| |#4|) (-745)) NIL (|has| |#4| (-1016))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#4| (-226)) (|has| |#4| (-1016)))) (($ $) NIL (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))))) (-3945 (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#4|) $) NIL) (((-832) $) NIL) (($ |#4|) NIL (|has| |#4| (-1063))) (($ (-548)) NIL (-1524 (-12 (|has| |#4| (-1007 (-548))) (|has| |#4| (-1063))) (|has| |#4| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#4| (-1007 (-399 (-548)))) (|has| |#4| (-1063))))) (-3835 (((-745)) NIL (|has| |#4| (-1016)))) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#4| (-819)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) CONST)) (-3296 (($ $ (-1 |#4| |#4|) (-745)) NIL (|has| |#4| (-1016))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#4| (-226)) (|has| |#4| (-1016)))) (($ $) NIL (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2234 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2309 (($ $ |#4|) NIL (|has| |#4| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (* (($ |#2| $) 14) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-701))) (($ |#4| $) NIL (|has| |#4| (-701))) (($ $ $) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-242 |#1| |#2| |#3| |#4|) (-13 (-231 |#1| |#4|) (-622 |#2|) (-622 |#3|)) (-890) (-1016) (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-622 |#2|)) (T -242)) +NIL +(-13 (-231 |#1| |#4|) (-622 |#2|) (-622 |#3|)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2264 (($ (-890)) NIL (|has| |#3| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#3| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#3| (-360)))) (-2672 (((-548) $) NIL (|has| |#3| (-819)))) (-2089 ((|#3| $ (-548) |#3|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1063))) (((-3 (-548) "failed") $) NIL (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063))))) (-2375 ((|#3| $) NIL (|has| |#3| (-1063))) (((-548) $) NIL (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063))))) (-1608 (((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) NIL (|has| |#3| (-1016))) (((-663 |#3|) (-663 $)) NIL (|has| |#3| (-1016))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-2545 (($) NIL (|has| |#3| (-360)))) (-3971 ((|#3| $ (-548) |#3|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#3| $ (-548)) NIL)) (-3298 (((-112) $) NIL (|has| |#3| (-819)))) (-1934 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-3312 (((-112) $) NIL (|has| |#3| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2342 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-3960 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#3| |#3|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#3| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#3| (-360)))) (-3932 (((-1082) $) NIL)) (-3453 ((|#3| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#3|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#3|))) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-4223 (((-619 |#3|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#3| $ (-548) |#3|) NIL) ((|#3| $ (-548)) 11)) (-4029 ((|#3| $ $) NIL (|has| |#3| (-1016)))) (-1957 (($ (-1218 |#3|)) NIL)) (-3402 (((-133)) NIL (|has| |#3| (-355)))) (-4050 (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))))) (-3945 (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327))) (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#3|) $) NIL) (((-832) $) NIL) (($ |#3|) NIL (|has| |#3| (-1063))) (($ (-548)) NIL (-1524 (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063))) (|has| |#3| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063))))) (-3835 (((-745)) NIL (|has| |#3| (-1016)))) (-3548 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#3| (-819)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) CONST)) (-3296 (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2234 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2309 (($ $ |#3|) NIL (|has| |#3| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (* (($ |#2| $) 13) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-701))) (($ |#3| $) NIL (|has| |#3| (-701))) (($ $ $) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-243 |#1| |#2| |#3|) (-13 (-231 |#1| |#3|) (-622 |#2|)) (-745) (-1016) (-622 |#2|)) (T -243)) +NIL +(-13 (-231 |#1| |#3|) (-622 |#2|)) +((-2919 (((-619 (-745)) $) 47) (((-619 (-745)) $ |#3|) 50)) (-3266 (((-745) $) 49) (((-745) $ |#3|) 52)) (-2896 (($ $) 65)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1672 (((-745) $ |#3|) 39) (((-745) $) 36)) (-3278 (((-1 $ (-745)) |#3|) 15) (((-1 $ (-745)) $) 77)) (-1956 ((|#4| $) 58)) (-2909 (((-112) $) 56)) (-2045 (($ $) 64)) (-2460 (($ $ (-619 (-286 $))) 97) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-619 |#4|) (-619 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-619 |#4|) (-619 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-619 |#3|) (-619 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-619 |#3|) (-619 |#2|)) 84)) (-4050 (($ $ |#4|) NIL) (($ $ (-619 |#4|)) NIL) (($ $ |#4| (-745)) NIL) (($ $ (-619 |#4|) (-619 (-745))) NIL) (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2930 (((-619 |#3|) $) 75)) (-2512 ((|#5| $) NIL) (((-745) $ |#4|) NIL) (((-619 (-745)) $ (-619 |#4|)) NIL) (((-745) $ |#3|) 44)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-399 (-548))) NIL) (($ $) NIL))) +(((-244 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2460 (|#1| |#1| (-619 |#3|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#3| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#3|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#3| |#1|)) (-15 -3278 ((-1 |#1| (-745)) |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -1956 (|#4| |#1|)) (-15 -2909 ((-112) |#1|)) (-15 -3266 ((-745) |#1| |#3|)) (-15 -2919 ((-619 (-745)) |#1| |#3|)) (-15 -3266 ((-745) |#1|)) (-15 -2919 ((-619 (-745)) |#1|)) (-15 -2512 ((-745) |#1| |#3|)) (-15 -1672 ((-745) |#1|)) (-15 -1672 ((-745) |#1| |#3|)) (-15 -2930 ((-619 |#3|) |#1|)) (-15 -3278 ((-1 |#1| (-745)) |#3|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3743 (|#1| |#3|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2512 ((-619 (-745)) |#1| (-619 |#4|))) (-15 -2512 ((-745) |#1| |#4|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -3743 (|#1| |#4|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#4| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#4| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2512 (|#5| |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -4050 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -4050 (|#1| |#1| |#4| (-745))) (-15 -4050 (|#1| |#1| (-619 |#4|))) (-15 -4050 (|#1| |#1| |#4|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-245 |#2| |#3| |#4| |#5|) (-1016) (-821) (-258 |#3|) (-767)) (T -244)) +NIL +(-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2460 (|#1| |#1| (-619 |#3|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#3| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#3|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#3| |#1|)) (-15 -3278 ((-1 |#1| (-745)) |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -1956 (|#4| |#1|)) (-15 -2909 ((-112) |#1|)) (-15 -3266 ((-745) |#1| |#3|)) (-15 -2919 ((-619 (-745)) |#1| |#3|)) (-15 -3266 ((-745) |#1|)) (-15 -2919 ((-619 (-745)) |#1|)) (-15 -2512 ((-745) |#1| |#3|)) (-15 -1672 ((-745) |#1|)) (-15 -1672 ((-745) |#1| |#3|)) (-15 -2930 ((-619 |#3|) |#1|)) (-15 -3278 ((-1 |#1| (-745)) |#3|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3743 (|#1| |#3|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2512 ((-619 (-745)) |#1| (-619 |#4|))) (-15 -2512 ((-745) |#1| |#4|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -3743 (|#1| |#4|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#4| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#4| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2512 (|#5| |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -4050 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -4050 (|#1| |#1| |#4| (-745))) (-15 -4050 (|#1| |#1| (-619 |#4|))) (-15 -4050 (|#1| |#1| |#4|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2919 (((-619 (-745)) $) 212) (((-619 (-745)) $ |#2|) 210)) (-3266 (((-745) $) 211) (((-745) $ |#2|) 209)) (-2049 (((-619 |#3|) $) 108)) (-1884 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 85 (|has| |#1| (-540)))) (-3303 (($ $) 86 (|has| |#1| (-540)))) (-3279 (((-112) $) 88 (|has| |#1| (-540)))) (-3892 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-1688 (($ $) 96 (|has| |#1| (-443)))) (-2634 (((-410 $) $) 95 (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-2896 (($ $) 205)) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 162) (((-3 (-399 (-548)) "failed") $) 160 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 158 (|has| |#1| (-1007 (-548)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2375 ((|#1| $) 163) (((-399 (-548)) $) 159 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 157 (|has| |#1| (-1007 (-548)))) ((|#3| $) 133) ((|#2| $) 218)) (-1557 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-1872 (($ $) 152)) (-1608 (((-663 (-548)) (-663 $)) 132 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 174 (|has| |#1| (-443))) (($ $ |#3|) 103 (|has| |#1| (-443)))) (-1862 (((-619 $) $) 107)) (-1271 (((-112) $) 94 (|has| |#1| (-878)))) (-4256 (($ $ |#1| |#4| $) 170)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 82 (-12 (|has| |#3| (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 81 (-12 (|has| |#3| (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ |#2|) 215) (((-745) $) 214)) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 167)) (-2036 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-3915 (((-619 $) $) 124)) (-2435 (((-112) $) 150)) (-2024 (($ |#1| |#4|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) 118)) (-3904 ((|#4| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-1795 (($ $ $) 77 (|has| |#1| (-821)))) (-3091 (($ $ $) 76 (|has| |#1| (-821)))) (-4267 (($ (-1 |#4| |#4|) $) 169)) (-2540 (($ (-1 |#1| |#1|) $) 149)) (-3278 (((-1 $ (-745)) |#2|) 217) (((-1 $ (-745)) $) 204 (|has| |#1| (-226)))) (-3511 (((-3 |#3| "failed") $) 121)) (-2185 (($ $) 147)) (-2197 ((|#1| $) 146)) (-1956 ((|#3| $) 207)) (-3553 (($ (-619 $)) 92 (|has| |#1| (-443))) (($ $ $) 91 (|has| |#1| (-443)))) (-2546 (((-1118) $) 9)) (-2909 (((-112) $) 208)) (-3939 (((-3 (-619 $) "failed") $) 112)) (-3927 (((-3 (-619 $) "failed") $) 113)) (-3954 (((-3 (-2 (|:| |var| |#3|) (|:| -3352 (-745))) "failed") $) 111)) (-2045 (($ $) 206)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 164)) (-2175 ((|#1| $) 165)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) 90 (|has| |#1| (-443))) (($ $ $) 89 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 97 (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-226))) (($ $ (-619 |#2|) (-619 $)) 202 (|has| |#1| (-226))) (($ $ |#2| |#1|) 201 (|has| |#1| (-226))) (($ $ (-619 |#2|) (-619 |#1|)) 200 (|has| |#1| (-226)))) (-1566 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-4050 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37) (($ $) 236 (|has| |#1| (-226))) (($ $ (-745)) 234 (|has| |#1| (-226))) (($ $ (-1135)) 232 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 231 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 230 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 229 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-2930 (((-619 |#2|) $) 216)) (-2512 ((|#4| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127) (((-745) $ |#2|) 213)) (-2591 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) 79 (-12 (|has| |#3| (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) 78 (-12 (|has| |#3| (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) 173 (|has| |#1| (-443))) (($ $ |#3|) 104 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-399 (-548))) 70 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548)))))) (($ $) 83 (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) 166)) (-1951 ((|#1| $ |#4|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-4017 (((-3 $ "failed") $) 71 (-1524 (-1723 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 87 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33) (($ $) 235 (|has| |#1| (-226))) (($ $ (-745)) 233 (|has| |#1| (-226))) (($ $ (-1135)) 228 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 227 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 226 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 225 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2262 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 154 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 156 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 155 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-245 |#1| |#2| |#3| |#4|) (-138) (-1016) (-821) (-258 |t#2|) (-767)) (T -245)) +((-3278 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-245 *4 *3 *5 *6)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-619 *4)))) (-1672 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2512 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2919 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) (-3266 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-112)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-4 *2 (-258 *4)))) (-2045 (*1 *1 *1) (-12 (-4 *1 (-245 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-258 *3)) (-4 *5 (-767)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-245 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-258 *3)) (-4 *5 (-767)))) (-3278 (*1 *2 *1) (-12 (-4 *3 (-226)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-245 *3 *4 *5 *6))))) +(-13 (-918 |t#1| |t#4| |t#3|) (-224 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -3278 ((-1 $ (-745)) |t#2|)) (-15 -2930 ((-619 |t#2|) $)) (-15 -1672 ((-745) $ |t#2|)) (-15 -1672 ((-745) $)) (-15 -2512 ((-745) $ |t#2|)) (-15 -2919 ((-619 (-745)) $)) (-15 -3266 ((-745) $)) (-15 -2919 ((-619 (-745)) $ |t#2|)) (-15 -3266 ((-745) $ |t#2|)) (-15 -2909 ((-112) $)) (-15 -1956 (|t#3| $)) (-15 -2045 ($ $)) (-15 -2896 ($ $)) (IF (|has| |t#1| (-226)) (PROGN (-6 (-504 |t#2| |t#1|)) (-6 (-504 |t#2| $)) (-6 (-301 $)) (-15 -3278 ((-1 $ (-745)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-593 (-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548))))) ((-224 |#1|) . T) ((-226) |has| |#1| (-226)) ((-282) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-301 $) . T) ((-318 |#1| |#4|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-878)) (|has| |#1| (-443))) ((-504 |#2| |#1|) |has| |#1| (-226)) ((-504 |#2| $) |has| |#1| (-226)) ((-504 |#3| |#1|) . T) ((-504 |#3| $) . T) ((-504 $ $) . T) ((-540) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-869 |#3|) . T) ((-855 (-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371)))) ((-855 (-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))) ((-918 |#1| |#4| |#3|) . T) ((-878) |has| |#1| (-878)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1007 |#2|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2995 ((|#1| $) 54)) (-2088 ((|#1| $) 44)) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-2048 (($ $) 60)) (-3499 (($ $) 48)) (-2043 ((|#1| |#1| $) 46)) (-2032 ((|#1| $) 45)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-3198 (((-745) $) 61)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2974 ((|#1| |#1| $) 52)) (-2963 ((|#1| |#1| $) 51)) (-2539 (($ |#1| $) 40)) (-3926 (((-745) $) 55)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2035 ((|#1| $) 62)) (-2952 ((|#1| $) 50)) (-2941 ((|#1| $) 49)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-2071 ((|#1| |#1| $) 58)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2060 ((|#1| $) 59)) (-3006 (($) 57) (($ (-619 |#1|)) 56)) (-3045 (((-745) $) 43)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2985 ((|#1| $) 53)) (-1368 (($ (-619 |#1|)) 42)) (-2025 ((|#1| $) 63)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-246 |#1|) (-138) (-1172)) (T -246)) +((-3006 (*1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-246 *3)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-246 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2974 (*1 *2 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2963 (*1 *2 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-3499 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) +(-13 (-1083 |t#1|) (-964 |t#1|) (-10 -8 (-15 -3006 ($)) (-15 -3006 ($ (-619 |t#1|))) (-15 -3926 ((-745) $)) (-15 -2995 (|t#1| $)) (-15 -2985 (|t#1| $)) (-15 -2974 (|t#1| |t#1| $)) (-15 -2963 (|t#1| |t#1| $)) (-15 -2952 (|t#1| $)) (-15 -2941 (|t#1| $)) (-15 -3499 ($ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-964 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1083 |#1|) . T) ((-1172) . T)) +((-3016 (((-1 (-912 (-218)) (-218) (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218) (-218))) 139)) (-1464 (((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371))) 160) (((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 158) (((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371))) 163) (((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 159) (((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371))) 150) (((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 149) (((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371))) 129) (((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255))) 127) (((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371))) 128) (((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255))) 125)) (-1419 (((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371))) 162) (((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 161) (((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371))) 165) (((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 164) (((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371))) 152) (((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 151) (((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371))) 135) (((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255))) 134) (((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371))) 133) (((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255))) 132) (((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371))) 100) (((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255))) 99) (((-1219) (-1 (-218) (-218)) (-1058 (-371))) 96) (((-1219) (-1 (-218) (-218)) (-1058 (-371)) (-619 (-255))) 95))) +(((-247) (-10 -7 (-15 -1419 ((-1219) (-1 (-218) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-1 (-218) (-218)) (-1058 (-371)))) (-15 -1419 ((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1419 ((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1419 ((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)))) (-15 -3016 ((-1 (-912 (-218)) (-218) (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218) (-218)))))) (T -247)) +((-3016 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218) (-218))) (-5 *3 (-1 (-218) (-218) (-218) (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-846 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1219)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-846 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1219)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-247))))) +(-10 -7 (-15 -1419 ((-1219) (-1 (-218) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-1 (-218) (-218)) (-1058 (-371)))) (-15 -1419 ((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1419 ((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1419 ((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)))) (-15 -3016 ((-1 (-912 (-218)) (-218) (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218) (-218))))) +((-1419 (((-1219) (-286 |#2|) (-1135) (-1135) (-619 (-255))) 96))) +(((-248 |#1| |#2|) (-10 -7 (-15 -1419 ((-1219) (-286 |#2|) (-1135) (-1135) (-619 (-255))))) (-13 (-540) (-821) (-1007 (-548))) (-422 |#1|)) (T -248)) +((-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-1135)) (-5 *5 (-619 (-255))) (-4 *7 (-422 *6)) (-4 *6 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-1219)) (-5 *1 (-248 *6 *7))))) +(-10 -7 (-15 -1419 ((-1219) (-286 |#2|) (-1135) (-1135) (-619 (-255))))) +((-3048 (((-548) (-548)) 50)) (-3059 (((-548) (-548)) 51)) (-3070 (((-218) (-218)) 52)) (-3036 (((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218))) 49)) (-3026 (((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)) (-112)) 47))) +(((-249) (-10 -7 (-15 -3026 ((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)) (-112))) (-15 -3036 ((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)))) (-15 -3048 ((-548) (-548))) (-15 -3059 ((-548) (-548))) (-15 -3070 ((-218) (-218))))) (T -249)) +((-3070 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-249)))) (-3059 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-249)))) (-3048 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-249)))) (-3036 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-218)) (-166 (-218)))) (-5 *4 (-1058 (-218))) (-5 *2 (-1220)) (-5 *1 (-249)))) (-3026 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-218)) (-166 (-218)))) (-5 *4 (-1058 (-218))) (-5 *5 (-112)) (-5 *2 (-1220)) (-5 *1 (-249))))) +(-10 -7 (-15 -3026 ((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)) (-112))) (-15 -3036 ((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)))) (-15 -3048 ((-548) (-548))) (-15 -3059 ((-548) (-548))) (-15 -3070 ((-218) (-218)))) +((-3743 (((-1056 (-371)) (-1056 (-308 |#1|))) 16))) +(((-250 |#1|) (-10 -7 (-15 -3743 ((-1056 (-371)) (-1056 (-308 |#1|))))) (-13 (-821) (-540) (-593 (-371)))) (T -250)) +((-3743 (*1 *2 *3) (-12 (-5 *3 (-1056 (-308 *4))) (-4 *4 (-13 (-821) (-540) (-593 (-371)))) (-5 *2 (-1056 (-371))) (-5 *1 (-250 *4))))) +(-10 -7 (-15 -3743 ((-1056 (-371)) (-1056 (-308 |#1|))))) +((-1464 (((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371))) 71) (((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255))) 70) (((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371))) 61) (((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255))) 60) (((-1095 (-218)) (-848 |#1|) (-1056 (-371))) 52) (((-1095 (-218)) (-848 |#1|) (-1056 (-371)) (-619 (-255))) 51)) (-1419 (((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371))) 74) (((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255))) 73) (((-1220) |#1| (-1056 (-371)) (-1056 (-371))) 64) (((-1220) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255))) 63) (((-1220) (-848 |#1|) (-1056 (-371))) 56) (((-1220) (-848 |#1|) (-1056 (-371)) (-619 (-255))) 55) (((-1219) (-846 |#1|) (-1056 (-371))) 43) (((-1219) (-846 |#1|) (-1056 (-371)) (-619 (-255))) 42) (((-1219) |#1| (-1056 (-371))) 35) (((-1219) |#1| (-1056 (-371)) (-619 (-255))) 34))) +(((-251 |#1|) (-10 -7 (-15 -1419 ((-1219) |#1| (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) |#1| (-1056 (-371)))) (-15 -1419 ((-1219) (-846 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-846 |#1|) (-1056 (-371)))) (-15 -1419 ((-1220) (-848 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-848 |#1|) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) (-848 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-848 |#1|) (-1056 (-371)))) (-15 -1419 ((-1220) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) |#1| (-1056 (-371)) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)))) (-15 -1419 ((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371))))) (-13 (-593 (-524)) (-1063))) (T -251)) +((-1464 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *5)))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *6)))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-251 *5)))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-251 *6)))) (-1464 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1220)) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *5)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *6)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-251 *5)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-251 *6)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-846 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1219)) (-5 *1 (-251 *5)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-846 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1219)) (-5 *1 (-251 *6)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1219)) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063)))))) +(-10 -7 (-15 -1419 ((-1219) |#1| (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) |#1| (-1056 (-371)))) (-15 -1419 ((-1219) (-846 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-846 |#1|) (-1056 (-371)))) (-15 -1419 ((-1220) (-848 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-848 |#1|) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) (-848 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-848 |#1|) (-1056 (-371)))) (-15 -1419 ((-1220) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) |#1| (-1056 (-371)) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)))) (-15 -1419 ((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371))))) +((-1419 (((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)) (-619 (-255))) 23) (((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218))) 24) (((-1219) (-619 (-912 (-218))) (-619 (-255))) 16) (((-1219) (-619 (-912 (-218)))) 17) (((-1219) (-619 (-218)) (-619 (-218)) (-619 (-255))) 20) (((-1219) (-619 (-218)) (-619 (-218))) 21))) +(((-252) (-10 -7 (-15 -1419 ((-1219) (-619 (-218)) (-619 (-218)))) (-15 -1419 ((-1219) (-619 (-218)) (-619 (-218)) (-619 (-255)))) (-15 -1419 ((-1219) (-619 (-912 (-218))))) (-15 -1419 ((-1219) (-619 (-912 (-218))) (-619 (-255)))) (-15 -1419 ((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)))) (-15 -1419 ((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)) (-619 (-255)))))) (T -252)) +((-1419 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-619 (-218))) (-5 *4 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-252)))) (-1419 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1220)) (-5 *1 (-252)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *4 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-252)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *2 (-1219)) (-5 *1 (-252)))) (-1419 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-218))) (-5 *4 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-252)))) (-1419 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1219)) (-5 *1 (-252))))) +(-10 -7 (-15 -1419 ((-1219) (-619 (-218)) (-619 (-218)))) (-15 -1419 ((-1219) (-619 (-218)) (-619 (-218)) (-619 (-255)))) (-15 -1419 ((-1219) (-619 (-912 (-218))))) (-15 -1419 ((-1219) (-619 (-912 (-218))) (-619 (-255)))) (-15 -1419 ((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)))) (-15 -1419 ((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)) (-619 (-255))))) +((-3069 (((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) (-619 (-255)) (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) 26)) (-3221 (((-890) (-619 (-255)) (-890)) 53)) (-3207 (((-890) (-619 (-255)) (-890)) 52)) (-1841 (((-619 (-371)) (-619 (-255)) (-619 (-371))) 69)) (-3253 (((-371) (-619 (-255)) (-371)) 58)) (-3242 (((-890) (-619 (-255)) (-890)) 54)) (-3169 (((-112) (-619 (-255)) (-112)) 28)) (-1560 (((-1118) (-619 (-255)) (-1118)) 20)) (-3159 (((-1118) (-619 (-255)) (-1118)) 27)) (-3232 (((-1095 (-218)) (-619 (-255))) 47)) (-1558 (((-619 (-1058 (-371))) (-619 (-255)) (-619 (-1058 (-371)))) 41)) (-3182 (((-843) (-619 (-255)) (-843)) 33)) (-3194 (((-843) (-619 (-255)) (-843)) 34)) (-1505 (((-1 (-912 (-218)) (-912 (-218))) (-619 (-255)) (-1 (-912 (-218)) (-912 (-218)))) 64)) (-3148 (((-112) (-619 (-255)) (-112)) 16)) (-1511 (((-112) (-619 (-255)) (-112)) 15))) +(((-253) (-10 -7 (-15 -1511 ((-112) (-619 (-255)) (-112))) (-15 -3148 ((-112) (-619 (-255)) (-112))) (-15 -3069 ((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) (-619 (-255)) (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -1560 ((-1118) (-619 (-255)) (-1118))) (-15 -3159 ((-1118) (-619 (-255)) (-1118))) (-15 -3169 ((-112) (-619 (-255)) (-112))) (-15 -3182 ((-843) (-619 (-255)) (-843))) (-15 -3194 ((-843) (-619 (-255)) (-843))) (-15 -1558 ((-619 (-1058 (-371))) (-619 (-255)) (-619 (-1058 (-371))))) (-15 -3207 ((-890) (-619 (-255)) (-890))) (-15 -3221 ((-890) (-619 (-255)) (-890))) (-15 -3232 ((-1095 (-218)) (-619 (-255)))) (-15 -3242 ((-890) (-619 (-255)) (-890))) (-15 -3253 ((-371) (-619 (-255)) (-371))) (-15 -1505 ((-1 (-912 (-218)) (-912 (-218))) (-619 (-255)) (-1 (-912 (-218)) (-912 (-218))))) (-15 -1841 ((-619 (-371)) (-619 (-255)) (-619 (-371)))))) (T -253)) +((-1841 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-371))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-1505 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3253 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3242 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-253)))) (-3221 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3207 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-1558 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3194 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3182 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3169 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3159 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-1560 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3069 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3148 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253))))) +(-10 -7 (-15 -1511 ((-112) (-619 (-255)) (-112))) (-15 -3148 ((-112) (-619 (-255)) (-112))) (-15 -3069 ((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) (-619 (-255)) (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -1560 ((-1118) (-619 (-255)) (-1118))) (-15 -3159 ((-1118) (-619 (-255)) (-1118))) (-15 -3169 ((-112) (-619 (-255)) (-112))) (-15 -3182 ((-843) (-619 (-255)) (-843))) (-15 -3194 ((-843) (-619 (-255)) (-843))) (-15 -1558 ((-619 (-1058 (-371))) (-619 (-255)) (-619 (-1058 (-371))))) (-15 -3207 ((-890) (-619 (-255)) (-890))) (-15 -3221 ((-890) (-619 (-255)) (-890))) (-15 -3232 ((-1095 (-218)) (-619 (-255)))) (-15 -3242 ((-890) (-619 (-255)) (-890))) (-15 -3253 ((-371) (-619 (-255)) (-371))) (-15 -1505 ((-1 (-912 (-218)) (-912 (-218))) (-619 (-255)) (-1 (-912 (-218)) (-912 (-218))))) (-15 -1841 ((-619 (-371)) (-619 (-255)) (-619 (-371))))) +((-3366 (((-3 |#1| "failed") (-619 (-255)) (-1135)) 17))) +(((-254 |#1|) (-10 -7 (-15 -3366 ((-3 |#1| "failed") (-619 (-255)) (-1135)))) (-1172)) (T -254)) +((-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *1 (-254 *2)) (-4 *2 (-1172))))) +(-10 -7 (-15 -3366 ((-3 |#1| "failed") (-619 (-255)) (-1135)))) +((-3730 (((-112) $ $) NIL)) (-3069 (($ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) 15)) (-3221 (($ (-890)) 76)) (-3207 (($ (-890)) 75)) (-2265 (($ (-619 (-371))) 82)) (-3253 (($ (-371)) 58)) (-3242 (($ (-890)) 77)) (-3169 (($ (-112)) 23)) (-1560 (($ (-1118)) 18)) (-3159 (($ (-1118)) 19)) (-3232 (($ (-1095 (-218))) 71)) (-1558 (($ (-619 (-1058 (-371)))) 67)) (-3094 (($ (-619 (-1058 (-371)))) 59) (($ (-619 (-1058 (-399 (-548))))) 66)) (-3128 (($ (-371)) 29) (($ (-843)) 33)) (-3080 (((-112) (-619 $) (-1135)) 91)) (-3366 (((-3 (-52) "failed") (-619 $) (-1135)) 93)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3117 (($ (-371)) 34) (($ (-843)) 35)) (-2447 (($ (-1 (-912 (-218)) (-912 (-218)))) 57)) (-1505 (($ (-1 (-912 (-218)) (-912 (-218)))) 78)) (-3105 (($ (-1 (-218) (-218))) 39) (($ (-1 (-218) (-218) (-218))) 43) (($ (-1 (-218) (-218) (-218) (-218))) 47)) (-3743 (((-832) $) 87)) (-3138 (($ (-112)) 24) (($ (-619 (-1058 (-371)))) 52)) (-1511 (($ (-112)) 25)) (-2214 (((-112) $ $) 89))) +(((-255) (-13 (-1063) (-10 -8 (-15 -1511 ($ (-112))) (-15 -3138 ($ (-112))) (-15 -3069 ($ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -1560 ($ (-1118))) (-15 -3159 ($ (-1118))) (-15 -3169 ($ (-112))) (-15 -3138 ($ (-619 (-1058 (-371))))) (-15 -2447 ($ (-1 (-912 (-218)) (-912 (-218))))) (-15 -3128 ($ (-371))) (-15 -3128 ($ (-843))) (-15 -3117 ($ (-371))) (-15 -3117 ($ (-843))) (-15 -3105 ($ (-1 (-218) (-218)))) (-15 -3105 ($ (-1 (-218) (-218) (-218)))) (-15 -3105 ($ (-1 (-218) (-218) (-218) (-218)))) (-15 -3253 ($ (-371))) (-15 -3094 ($ (-619 (-1058 (-371))))) (-15 -3094 ($ (-619 (-1058 (-399 (-548)))))) (-15 -1558 ($ (-619 (-1058 (-371))))) (-15 -3232 ($ (-1095 (-218)))) (-15 -3207 ($ (-890))) (-15 -3221 ($ (-890))) (-15 -3242 ($ (-890))) (-15 -1505 ($ (-1 (-912 (-218)) (-912 (-218))))) (-15 -2265 ($ (-619 (-371)))) (-15 -3366 ((-3 (-52) "failed") (-619 $) (-1135))) (-15 -3080 ((-112) (-619 $) (-1135)))))) (T -255)) +((-1511 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255)))) (-3138 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255)))) (-3069 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) (-5 *1 (-255)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-255)))) (-3159 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-255)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255)))) (-3138 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) (-2447 (*1 *1 *2) (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *1 (-255)))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255)))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-255)))) (-3117 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255)))) (-3117 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-255)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-255)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218) (-218))) (-5 *1 (-255)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218) (-218) (-218))) (-5 *1 (-255)))) (-3253 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-399 (-548))))) (-5 *1 (-255)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-255)))) (-3207 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255)))) (-3221 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *1 (-255)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-255)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *2 (-52)) (-5 *1 (-255)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *2 (-112)) (-5 *1 (-255))))) +(-13 (-1063) (-10 -8 (-15 -1511 ($ (-112))) (-15 -3138 ($ (-112))) (-15 -3069 ($ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -1560 ($ (-1118))) (-15 -3159 ($ (-1118))) (-15 -3169 ($ (-112))) (-15 -3138 ($ (-619 (-1058 (-371))))) (-15 -2447 ($ (-1 (-912 (-218)) (-912 (-218))))) (-15 -3128 ($ (-371))) (-15 -3128 ($ (-843))) (-15 -3117 ($ (-371))) (-15 -3117 ($ (-843))) (-15 -3105 ($ (-1 (-218) (-218)))) (-15 -3105 ($ (-1 (-218) (-218) (-218)))) (-15 -3105 ($ (-1 (-218) (-218) (-218) (-218)))) (-15 -3253 ($ (-371))) (-15 -3094 ($ (-619 (-1058 (-371))))) (-15 -3094 ($ (-619 (-1058 (-399 (-548)))))) (-15 -1558 ($ (-619 (-1058 (-371))))) (-15 -3232 ($ (-1095 (-218)))) (-15 -3207 ($ (-890))) (-15 -3221 ($ (-890))) (-15 -3242 ($ (-890))) (-15 -1505 ($ (-1 (-912 (-218)) (-912 (-218))))) (-15 -2265 ($ (-619 (-371)))) (-15 -3366 ((-3 (-52) "failed") (-619 $) (-1135))) (-15 -3080 ((-112) (-619 $) (-1135))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2919 (((-619 (-745)) $) NIL) (((-619 (-745)) $ |#2|) NIL)) (-3266 (((-745) $) NIL) (((-745) $ |#2|) NIL)) (-2049 (((-619 |#3|) $) NIL)) (-1884 (((-1131 $) $ |#3|) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 |#3|)) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2896 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1087 |#1| |#2|) "failed") $) 21)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1087 |#1| |#2|) $) NIL)) (-1557 (($ $ $ |#3|) NIL (|has| |#1| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ |#3|) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 |#3|) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))))) (-1672 (((-745) $ |#2|) NIL) (((-745) $) 10)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#1|) |#3|) NIL) (($ (-1131 $) |#3|) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) NIL)) (-3904 (((-520 |#3|) $) NIL) (((-745) $ |#3|) NIL) (((-619 (-745)) $ (-619 |#3|)) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 |#3|) (-520 |#3|)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3278 (((-1 $ (-745)) |#2|) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-226)))) (-3511 (((-3 |#3| "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-1956 ((|#3| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-2909 (((-112) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| |#3|) (|:| -3352 (-745))) "failed") $) NIL)) (-2045 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-619 |#3|) (-619 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-619 |#3|) (-619 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-226))) (($ $ (-619 |#2|) (-619 $)) NIL (|has| |#1| (-226))) (($ $ |#2| |#1|) NIL (|has| |#1| (-226))) (($ $ (-619 |#2|) (-619 |#1|)) NIL (|has| |#1| (-226)))) (-1566 (($ $ |#3|) NIL (|has| |#1| (-169)))) (-4050 (($ $ |#3|) NIL) (($ $ (-619 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2930 (((-619 |#2|) $) NIL)) (-2512 (((-520 |#3|) $) NIL) (((-745) $ |#3|) NIL) (((-619 (-745)) $ (-619 |#3|)) NIL) (((-745) $ |#2|) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ |#3|) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1087 |#1| |#2|)) 30) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ |#3|) NIL) (($ $ (-619 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-256 |#1| |#2| |#3|) (-13 (-245 |#1| |#2| |#3| (-520 |#3|)) (-1007 (-1087 |#1| |#2|))) (-1016) (-821) (-258 |#2|)) (T -256)) +NIL +(-13 (-245 |#1| |#2| |#3| (-520 |#3|)) (-1007 (-1087 |#1| |#2|))) +((-3266 (((-745) $) 30)) (-2441 (((-3 |#2| "failed") $) 17)) (-2375 ((|#2| $) 27)) (-4050 (($ $) 12) (($ $ (-745)) 15)) (-3743 (((-832) $) 26) (($ |#2|) 10)) (-2214 (((-112) $ $) 20)) (-2234 (((-112) $ $) 29))) +(((-257 |#1| |#2|) (-10 -8 (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -3266 ((-745) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-258 |#2|) (-821)) (T -257)) +NIL +(-10 -8 (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -3266 ((-745) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3266 (((-745) $) 22)) (-2754 ((|#1| $) 23)) (-2441 (((-3 |#1| "failed") $) 27)) (-2375 ((|#1| $) 26)) (-1672 (((-745) $) 24)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-3278 (($ |#1| (-745)) 25)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4050 (($ $) 21) (($ $ (-745)) 20)) (-3743 (((-832) $) 11) (($ |#1|) 28)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) +(((-258 |#1|) (-138) (-821)) (T -258)) +((-3743 (*1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) (-3278 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-258 *2)) (-4 *2 (-821)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-258 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-258 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) (-4050 (*1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-258 *3)) (-4 *3 (-821))))) +(-13 (-821) (-1007 |t#1|) (-10 -8 (-15 -3278 ($ |t#1| (-745))) (-15 -1672 ((-745) $)) (-15 -2754 (|t#1| $)) (-15 -3266 ((-745) $)) (-15 -4050 ($ $)) (-15 -4050 ($ $ (-745))) (-15 -3743 ($ |t#1|)))) +(((-101) . T) ((-592 (-832)) . T) ((-821) . T) ((-1007 |#1|) . T) ((-1063) . T)) +((-2049 (((-619 (-1135)) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 41)) (-3065 (((-619 (-1135)) (-308 (-218)) (-745)) 80)) (-2163 (((-3 (-308 (-218)) "failed") (-308 (-218))) 51)) (-2174 (((-308 (-218)) (-308 (-218))) 67)) (-2151 (((-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 26)) (-2183 (((-112) (-619 (-308 (-218)))) 84)) (-2221 (((-112) (-308 (-218))) 24)) (-2238 (((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) 106)) (-2211 (((-619 (-308 (-218))) (-619 (-308 (-218)))) 88)) (-2205 (((-619 (-308 (-218))) (-619 (-308 (-218)))) 86)) (-2193 (((-663 (-218)) (-619 (-308 (-218))) (-745)) 95)) (-2474 (((-112) (-308 (-218))) 20) (((-112) (-619 (-308 (-218)))) 85)) (-2138 (((-619 (-218)) (-619 (-814 (-218))) (-218)) 14)) (-1881 (((-371) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 101)) (-2230 (((-1004) (-1135) (-1004)) 34))) +(((-259) (-10 -7 (-15 -2138 ((-619 (-218)) (-619 (-814 (-218))) (-218))) (-15 -2151 ((-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -2163 ((-3 (-308 (-218)) "failed") (-308 (-218)))) (-15 -2174 ((-308 (-218)) (-308 (-218)))) (-15 -2183 ((-112) (-619 (-308 (-218))))) (-15 -2474 ((-112) (-619 (-308 (-218))))) (-15 -2474 ((-112) (-308 (-218)))) (-15 -2193 ((-663 (-218)) (-619 (-308 (-218))) (-745))) (-15 -2205 ((-619 (-308 (-218))) (-619 (-308 (-218))))) (-15 -2211 ((-619 (-308 (-218))) (-619 (-308 (-218))))) (-15 -2221 ((-112) (-308 (-218)))) (-15 -2049 ((-619 (-1135)) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -3065 ((-619 (-1135)) (-308 (-218)) (-745))) (-15 -2230 ((-1004) (-1135) (-1004))) (-15 -1881 ((-371) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -2238 ((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))))))) (T -259)) +((-2238 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) (-5 *2 (-619 (-1118))) (-5 *1 (-259)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *2 (-371)) (-5 *1 (-259)))) (-2230 (*1 *2 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-259)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-259)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *2 (-619 (-1135))) (-5 *1 (-259)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-112)) (-5 *1 (-259)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-619 (-308 (-218)))) (-5 *1 (-259)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-619 (-308 (-218)))) (-5 *1 (-259)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *4 (-745)) (-5 *2 (-663 (-218))) (-5 *1 (-259)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-112)) (-5 *1 (-259)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *2 (-112)) (-5 *1 (-259)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *2 (-112)) (-5 *1 (-259)))) (-2174 (*1 *2 *2) (-12 (-5 *2 (-308 (-218))) (-5 *1 (-259)))) (-2163 (*1 *2 *2) (|partial| -12 (-5 *2 (-308 (-218))) (-5 *1 (-259)))) (-2151 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (-5 *1 (-259)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-814 (-218)))) (-5 *4 (-218)) (-5 *2 (-619 *4)) (-5 *1 (-259))))) +(-10 -7 (-15 -2138 ((-619 (-218)) (-619 (-814 (-218))) (-218))) (-15 -2151 ((-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -2163 ((-3 (-308 (-218)) "failed") (-308 (-218)))) (-15 -2174 ((-308 (-218)) (-308 (-218)))) (-15 -2183 ((-112) (-619 (-308 (-218))))) (-15 -2474 ((-112) (-619 (-308 (-218))))) (-15 -2474 ((-112) (-308 (-218)))) (-15 -2193 ((-663 (-218)) (-619 (-308 (-218))) (-745))) (-15 -2205 ((-619 (-308 (-218))) (-619 (-308 (-218))))) (-15 -2211 ((-619 (-308 (-218))) (-619 (-308 (-218))))) (-15 -2221 ((-112) (-308 (-218)))) (-15 -2049 ((-619 (-1135)) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -3065 ((-619 (-1135)) (-308 (-218)) (-745))) (-15 -2230 ((-1004) (-1135) (-1004))) (-15 -1881 ((-371) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -2238 ((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))))) +((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 44)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 26) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-260) (-810)) (T -260)) +NIL +(-810) +((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 58) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 54)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 34) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 36)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-261) (-810)) (T -261)) +NIL +(-810) +((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 76) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 73)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 44) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 55)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-262) (-810)) (T -262)) +NIL +(-810) +((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 50)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 31) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-263) (-810)) (T -263)) +NIL +(-810) +((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 50)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 28) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-264) (-810)) (T -264)) +NIL +(-810) +((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 73)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 28) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-265) (-810)) (T -265)) +NIL +(-810) +((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 77)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 25) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-266) (-810)) (T -266)) +NIL +(-810) +((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2259 (((-619 (-548)) $) 19)) (-2512 (((-745) $) 17)) (-3743 (((-832) $) 23) (($ (-619 (-548))) 15)) (-2248 (($ (-745)) 20)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 9)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 11))) +(((-267) (-13 (-821) (-10 -8 (-15 -3743 ($ (-619 (-548)))) (-15 -2512 ((-745) $)) (-15 -2259 ((-619 (-548)) $)) (-15 -2248 ($ (-745)))))) (T -267)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-267)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-267)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-267)))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-267))))) +(-13 (-821) (-10 -8 (-15 -3743 ($ (-619 (-548)))) (-15 -2512 ((-745) $)) (-15 -2259 ((-619 (-548)) $)) (-15 -2248 ($ (-745))))) +((-2074 ((|#2| |#2|) 77)) (-1940 ((|#2| |#2|) 65)) (-2558 (((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-2054 ((|#2| |#2|) 75)) (-1918 ((|#2| |#2|) 63)) (-2098 ((|#2| |#2|) 79)) (-1963 ((|#2| |#2|) 67)) (-1365 ((|#2|) 46)) (-1402 (((-114) (-114)) 95)) (-3496 ((|#2| |#2|) 61)) (-2568 (((-112) |#2|) 134)) (-2449 ((|#2| |#2|) 181)) (-2327 ((|#2| |#2|) 157)) (-2276 ((|#2|) 59)) (-2268 ((|#2|) 58)) (-2426 ((|#2| |#2|) 177)) (-2306 ((|#2| |#2|) 153)) (-2472 ((|#2| |#2|) 185)) (-2345 ((|#2| |#2|) 161)) (-2296 ((|#2| |#2|) 149)) (-2287 ((|#2| |#2|) 151)) (-2482 ((|#2| |#2|) 187)) (-2356 ((|#2| |#2|) 163)) (-2461 ((|#2| |#2|) 183)) (-2336 ((|#2| |#2|) 159)) (-2436 ((|#2| |#2|) 179)) (-2317 ((|#2| |#2|) 155)) (-2513 ((|#2| |#2|) 193)) (-2385 ((|#2| |#2|) 169)) (-2494 ((|#2| |#2|) 189)) (-2365 ((|#2| |#2|) 165)) (-2535 ((|#2| |#2|) 197)) (-2407 ((|#2| |#2|) 173)) (-2548 ((|#2| |#2|) 199)) (-2417 ((|#2| |#2|) 175)) (-2523 ((|#2| |#2|) 195)) (-2397 ((|#2| |#2|) 171)) (-2504 ((|#2| |#2|) 191)) (-2374 ((|#2| |#2|) 167)) (-2458 ((|#2| |#2|) 62)) (-2110 ((|#2| |#2|) 80)) (-1973 ((|#2| |#2|) 68)) (-2086 ((|#2| |#2|) 78)) (-1952 ((|#2| |#2|) 66)) (-2065 ((|#2| |#2|) 76)) (-1929 ((|#2| |#2|) 64)) (-1392 (((-112) (-114)) 93)) (-2145 ((|#2| |#2|) 83)) (-2006 ((|#2| |#2|) 71)) (-2122 ((|#2| |#2|) 81)) (-1986 ((|#2| |#2|) 69)) (-2170 ((|#2| |#2|) 85)) (-2029 ((|#2| |#2|) 73)) (-4026 ((|#2| |#2|) 86)) (-2040 ((|#2| |#2|) 74)) (-2158 ((|#2| |#2|) 84)) (-2017 ((|#2| |#2|) 72)) (-2132 ((|#2| |#2|) 82)) (-1996 ((|#2| |#2|) 70))) +(((-268 |#1| |#2|) (-10 -7 (-15 -2458 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -1940 (|#2| |#2|)) (-15 -1952 (|#2| |#2|)) (-15 -1963 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -1996 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2029 (|#2| |#2|)) (-15 -2040 (|#2| |#2|)) (-15 -2054 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2074 (|#2| |#2|)) (-15 -2086 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2122 (|#2| |#2|)) (-15 -2132 (|#2| |#2|)) (-15 -2145 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -1365 (|#2|)) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -2268 (|#2|)) (-15 -2276 (|#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2374 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -2417 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2436 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -2504 (|#2| |#2|)) (-15 -2513 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -2558 ((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2568 ((-112) |#2|))) (-13 (-821) (-540)) (-13 (-422 |#1|) (-971))) (T -268)) +((-2568 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-268 *4 *3)) (-4 *3 (-13 (-422 *4) (-971))))) (-2558 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-619 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-422 *4) (-971))) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-268 *4 *2)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2513 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2504 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2494 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2482 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2449 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2436 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2365 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2327 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2317 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2276 (*1 *2) (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) (-4 *3 (-13 (-821) (-540))))) (-2268 (*1 *2) (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) (-4 *3 (-13 (-821) (-540))))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *4)) (-4 *4 (-13 (-422 *3) (-971))))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-268 *4 *5)) (-4 *5 (-13 (-422 *4) (-971))))) (-1365 (*1 *2) (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) (-4 *3 (-13 (-821) (-540))))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2145 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2132 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2122 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2074 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2054 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1996 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1963 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1952 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971)))))) +(-10 -7 (-15 -2458 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -1940 (|#2| |#2|)) (-15 -1952 (|#2| |#2|)) (-15 -1963 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -1996 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2029 (|#2| |#2|)) (-15 -2040 (|#2| |#2|)) (-15 -2054 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2074 (|#2| |#2|)) (-15 -2086 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2122 (|#2| |#2|)) (-15 -2132 (|#2| |#2|)) (-15 -2145 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -1365 (|#2|)) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -2268 (|#2|)) (-15 -2276 (|#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2374 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -2417 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2436 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -2504 (|#2| |#2|)) (-15 -2513 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -2558 ((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2568 ((-112) |#2|))) +((-2597 (((-3 |#2| "failed") (-619 (-591 |#2|)) |#2| (-1135)) 135)) (-2616 ((|#2| (-399 (-548)) |#2|) 51)) (-2606 ((|#2| |#2| (-591 |#2|)) 128)) (-2577 (((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-591 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135)) 127)) (-2586 ((|#2| |#2| (-1135)) 20) ((|#2| |#2|) 23)) (-3711 ((|#2| |#2| (-1135)) 141) ((|#2| |#2|) 139))) +(((-269 |#1| |#2|) (-10 -7 (-15 -3711 (|#2| |#2|)) (-15 -3711 (|#2| |#2| (-1135))) (-15 -2577 ((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-591 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1135))) (-15 -2597 ((-3 |#2| "failed") (-619 (-591 |#2|)) |#2| (-1135))) (-15 -2606 (|#2| |#2| (-591 |#2|))) (-15 -2616 (|#2| (-399 (-548)) |#2|))) (-13 (-540) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -269)) +((-2616 (*1 *2 *3 *2) (-12 (-5 *3 (-399 (-548))) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-2606 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *4 *2)))) (-2597 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-619 (-591 *2))) (-5 *4 (-1135)) (-4 *2 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *5 *2)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-619 (-591 *3))) (|:| |vals| (-619 *3)))) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-3711 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) +(-10 -7 (-15 -3711 (|#2| |#2|)) (-15 -3711 (|#2| |#2| (-1135))) (-15 -2577 ((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-591 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1135))) (-15 -2597 ((-3 |#2| "failed") (-619 (-591 |#2|)) |#2| (-1135))) (-15 -2606 (|#2| |#2| (-591 |#2|))) (-15 -2616 (|#2| (-399 (-548)) |#2|))) +((-1798 (((-3 |#3| "failed") |#3|) 110)) (-2074 ((|#3| |#3|) 131)) (-1694 (((-3 |#3| "failed") |#3|) 82)) (-1940 ((|#3| |#3|) 121)) (-1780 (((-3 |#3| "failed") |#3|) 58)) (-2054 ((|#3| |#3|) 129)) (-1678 (((-3 |#3| "failed") |#3|) 46)) (-1918 ((|#3| |#3|) 119)) (-1819 (((-3 |#3| "failed") |#3|) 112)) (-2098 ((|#3| |#3|) 133)) (-1708 (((-3 |#3| "failed") |#3|) 84)) (-1963 ((|#3| |#3|) 123)) (-1654 (((-3 |#3| "failed") |#3| (-745)) 36)) (-1670 (((-3 |#3| "failed") |#3|) 74)) (-3496 ((|#3| |#3|) 118)) (-1663 (((-3 |#3| "failed") |#3|) 44)) (-2458 ((|#3| |#3|) 117)) (-1829 (((-3 |#3| "failed") |#3|) 113)) (-2110 ((|#3| |#3|) 134)) (-1717 (((-3 |#3| "failed") |#3|) 85)) (-1973 ((|#3| |#3|) 124)) (-1808 (((-3 |#3| "failed") |#3|) 111)) (-2086 ((|#3| |#3|) 132)) (-1700 (((-3 |#3| "failed") |#3|) 83)) (-1952 ((|#3| |#3|) 122)) (-1788 (((-3 |#3| "failed") |#3|) 60)) (-2065 ((|#3| |#3|) 130)) (-1686 (((-3 |#3| "failed") |#3|) 48)) (-1929 ((|#3| |#3|) 120)) (-1855 (((-3 |#3| "failed") |#3|) 66)) (-2145 ((|#3| |#3|) 137)) (-1746 (((-3 |#3| "failed") |#3|) 104)) (-2006 ((|#3| |#3|) 142)) (-1837 (((-3 |#3| "failed") |#3|) 62)) (-2122 ((|#3| |#3|) 135)) (-1726 (((-3 |#3| "failed") |#3|) 50)) (-1986 ((|#3| |#3|) 125)) (-1874 (((-3 |#3| "failed") |#3|) 70)) (-2170 ((|#3| |#3|) 139)) (-1764 (((-3 |#3| "failed") |#3|) 54)) (-2029 ((|#3| |#3|) 127)) (-1883 (((-3 |#3| "failed") |#3|) 72)) (-4026 ((|#3| |#3|) 140)) (-1772 (((-3 |#3| "failed") |#3|) 56)) (-2040 ((|#3| |#3|) 128)) (-1864 (((-3 |#3| "failed") |#3|) 68)) (-2158 ((|#3| |#3|) 138)) (-1755 (((-3 |#3| "failed") |#3|) 107)) (-2017 ((|#3| |#3|) 143)) (-1846 (((-3 |#3| "failed") |#3|) 64)) (-2132 ((|#3| |#3|) 136)) (-1736 (((-3 |#3| "failed") |#3|) 52)) (-1996 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-399 (-548))) 40 (|has| |#1| (-355))))) +(((-270 |#1| |#2| |#3|) (-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-355)) (-15 ** (|#3| |#3| (-399 (-548)))) |%noBranch|) (-15 -2458 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)) (-15 -1929 (|#3| |#3|)) (-15 -1940 (|#3| |#3|)) (-15 -1952 (|#3| |#3|)) (-15 -1963 (|#3| |#3|)) (-15 -1973 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1996 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2029 (|#3| |#3|)) (-15 -2040 (|#3| |#3|)) (-15 -2054 (|#3| |#3|)) (-15 -2065 (|#3| |#3|)) (-15 -2074 (|#3| |#3|)) (-15 -2086 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2122 (|#3| |#3|)) (-15 -2132 (|#3| |#3|)) (-15 -2145 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)))) (-38 (-399 (-548))) (-1209 |#1|) (-1180 |#1| |#2|)) (T -270)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-399 (-548))) (-4 *4 (-355)) (-4 *4 (-38 *3)) (-4 *5 (-1209 *4)) (-5 *1 (-270 *4 *5 *2)) (-4 *2 (-1180 *4 *5)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1952 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1963 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1996 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2054 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2074 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2122 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2132 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2145 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4))))) +(-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-355)) (-15 ** (|#3| |#3| (-399 (-548)))) |%noBranch|) (-15 -2458 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)) (-15 -1929 (|#3| |#3|)) (-15 -1940 (|#3| |#3|)) (-15 -1952 (|#3| |#3|)) (-15 -1963 (|#3| |#3|)) (-15 -1973 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1996 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2029 (|#3| |#3|)) (-15 -2040 (|#3| |#3|)) (-15 -2054 (|#3| |#3|)) (-15 -2065 (|#3| |#3|)) (-15 -2074 (|#3| |#3|)) (-15 -2086 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2122 (|#3| |#3|)) (-15 -2132 (|#3| |#3|)) (-15 -2145 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)))) +((-1798 (((-3 |#3| "failed") |#3|) 66)) (-2074 ((|#3| |#3|) 129)) (-1694 (((-3 |#3| "failed") |#3|) 50)) (-1940 ((|#3| |#3|) 117)) (-1780 (((-3 |#3| "failed") |#3|) 62)) (-2054 ((|#3| |#3|) 127)) (-1678 (((-3 |#3| "failed") |#3|) 46)) (-1918 ((|#3| |#3|) 115)) (-1819 (((-3 |#3| "failed") |#3|) 70)) (-2098 ((|#3| |#3|) 131)) (-1708 (((-3 |#3| "failed") |#3|) 54)) (-1963 ((|#3| |#3|) 119)) (-1654 (((-3 |#3| "failed") |#3| (-745)) 35)) (-1670 (((-3 |#3| "failed") |#3|) 44)) (-3496 ((|#3| |#3|) 104)) (-1663 (((-3 |#3| "failed") |#3|) 42)) (-2458 ((|#3| |#3|) 114)) (-1829 (((-3 |#3| "failed") |#3|) 72)) (-2110 ((|#3| |#3|) 132)) (-1717 (((-3 |#3| "failed") |#3|) 56)) (-1973 ((|#3| |#3|) 120)) (-1808 (((-3 |#3| "failed") |#3|) 68)) (-2086 ((|#3| |#3|) 130)) (-1700 (((-3 |#3| "failed") |#3|) 52)) (-1952 ((|#3| |#3|) 118)) (-1788 (((-3 |#3| "failed") |#3|) 64)) (-2065 ((|#3| |#3|) 128)) (-1686 (((-3 |#3| "failed") |#3|) 48)) (-1929 ((|#3| |#3|) 116)) (-1855 (((-3 |#3| "failed") |#3|) 74)) (-2145 ((|#3| |#3|) 135)) (-1746 (((-3 |#3| "failed") |#3|) 58)) (-2006 ((|#3| |#3|) 123)) (-1837 (((-3 |#3| "failed") |#3|) 105)) (-2122 ((|#3| |#3|) 133)) (-1726 (((-3 |#3| "failed") |#3|) 94)) (-1986 ((|#3| |#3|) 121)) (-1874 (((-3 |#3| "failed") |#3|) 109)) (-2170 ((|#3| |#3|) 137)) (-1764 (((-3 |#3| "failed") |#3|) 101)) (-2029 ((|#3| |#3|) 125)) (-1883 (((-3 |#3| "failed") |#3|) 110)) (-4026 ((|#3| |#3|) 138)) (-1772 (((-3 |#3| "failed") |#3|) 103)) (-2040 ((|#3| |#3|) 126)) (-1864 (((-3 |#3| "failed") |#3|) 76)) (-2158 ((|#3| |#3|) 136)) (-1755 (((-3 |#3| "failed") |#3|) 60)) (-2017 ((|#3| |#3|) 124)) (-1846 (((-3 |#3| "failed") |#3|) 106)) (-2132 ((|#3| |#3|) 134)) (-1736 (((-3 |#3| "failed") |#3|) 97)) (-1996 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-399 (-548))) 40 (|has| |#1| (-355))))) +(((-271 |#1| |#2| |#3| |#4|) (-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-355)) (-15 ** (|#3| |#3| (-399 (-548)))) |%noBranch|) (-15 -2458 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)) (-15 -1929 (|#3| |#3|)) (-15 -1940 (|#3| |#3|)) (-15 -1952 (|#3| |#3|)) (-15 -1963 (|#3| |#3|)) (-15 -1973 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1996 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2029 (|#3| |#3|)) (-15 -2040 (|#3| |#3|)) (-15 -2054 (|#3| |#3|)) (-15 -2065 (|#3| |#3|)) (-15 -2074 (|#3| |#3|)) (-15 -2086 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2122 (|#3| |#3|)) (-15 -2132 (|#3| |#3|)) (-15 -2145 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)))) (-38 (-399 (-548))) (-1178 |#1|) (-1201 |#1| |#2|) (-952 |#2|)) (T -271)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-399 (-548))) (-4 *4 (-355)) (-4 *4 (-38 *3)) (-4 *5 (-1178 *4)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *2 (-1201 *4 *5)) (-4 *6 (-952 *5)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1952 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1963 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1996 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2054 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2074 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2122 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2132 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2145 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4))))) +(-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-355)) (-15 ** (|#3| |#3| (-399 (-548)))) |%noBranch|) (-15 -2458 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)) (-15 -1929 (|#3| |#3|)) (-15 -1940 (|#3| |#3|)) (-15 -1952 (|#3| |#3|)) (-15 -1963 (|#3| |#3|)) (-15 -1973 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1996 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2029 (|#3| |#3|)) (-15 -2040 (|#3| |#3|)) (-15 -2054 (|#3| |#3|)) (-15 -2065 (|#3| |#3|)) (-15 -2074 (|#3| |#3|)) (-15 -2086 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2122 (|#3| |#3|)) (-15 -2132 (|#3| |#3|)) (-15 -2145 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)))) +((-2921 (((-112) $) 19)) (-2902 (((-180) $) 7)) (-3362 (((-3 (-1135) "failed") $) 14)) (-3347 (((-3 (-619 $) "failed") $) NIL)) (-2635 (((-3 (-1135) "failed") $) 21)) (-2646 (((-3 (-1067) "failed") $) 17)) (-2547 (((-112) $) 15)) (-3743 (((-832) $) NIL)) (-2626 (((-112) $) 9))) +(((-272) (-13 (-592 (-832)) (-10 -8 (-15 -2902 ((-180) $)) (-15 -2547 ((-112) $)) (-15 -2646 ((-3 (-1067) "failed") $)) (-15 -2921 ((-112) $)) (-15 -2635 ((-3 (-1135) "failed") $)) (-15 -2626 ((-112) $)) (-15 -3362 ((-3 (-1135) "failed") $)) (-15 -3347 ((-3 (-619 $) "failed") $))))) (T -272)) +((-2902 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-272)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-2646 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-272)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-2635 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-272)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-3362 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-272)))) (-3347 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-272))) (-5 *1 (-272))))) +(-13 (-592 (-832)) (-10 -8 (-15 -2902 ((-180) $)) (-15 -2547 ((-112) $)) (-15 -2646 ((-3 (-1067) "failed") $)) (-15 -2921 ((-112) $)) (-15 -2635 ((-3 (-1135) "failed") $)) (-15 -2626 ((-112) $)) (-15 -3362 ((-3 (-1135) "failed") $)) (-15 -3347 ((-3 (-619 $) "failed") $)))) +((-1415 (($ (-1 (-112) |#2|) $) 24)) (-3484 (($ $) 36)) (-1636 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3699 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-2965 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2387 (($ |#2| $ (-548)) 20) (($ $ $ (-548)) 22)) (-2008 (($ $ (-548)) 11) (($ $ (-1185 (-548))) 14)) (-3659 (($ $ |#2|) 30) (($ $ $) NIL)) (-1831 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-619 $)) NIL))) +(((-273 |#1| |#2|) (-10 -8 (-15 -2965 (|#1| |#1| |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2965 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -3699 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3699 (|#1| |#2| |#1|)) (-15 -3484 (|#1| |#1|))) (-274 |#2|) (-1172)) (T -273)) +NIL +(-10 -8 (-15 -2965 (|#1| |#1| |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2965 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -3699 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3699 (|#1| |#2| |#1|)) (-15 -3484 (|#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) 85)) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-2969 (($ $) 83 (|has| |#1| (-1063)))) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1063)))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-2965 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2539 (($ |#1| $ (-548)) 88) (($ $ $ (-548)) 87)) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-2668 (($ $ (-548)) 91) (($ $ (-1185 (-548))) 90)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-3659 (($ $ |#1|) 93) (($ $ $) 92)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-274 |#1|) (-138) (-1172)) (T -274)) +((-3659 (*1 *1 *1 *2) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)))) (-3659 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-1636 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-2539 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-274 *2)) (-4 *2 (-1172)))) (-2539 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-2965 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-2657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-1636 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-2969 (*1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-2965 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-821))))) +(-13 (-625 |t#1|) (-10 -8 (-6 -4328) (-15 -3659 ($ $ |t#1|)) (-15 -3659 ($ $ $)) (-15 -2668 ($ $ (-548))) (-15 -2668 ($ $ (-1185 (-548)))) (-15 -1636 ($ (-1 (-112) |t#1|) $)) (-15 -2539 ($ |t#1| $ (-548))) (-15 -2539 ($ $ $ (-548))) (-15 -2965 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2657 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -1636 ($ |t#1| $)) (-15 -2969 ($ $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-15 -2965 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) ((** (($ $ $) 10))) -(((-268 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-269)) (T -268)) +(((-275 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-276)) (T -275)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4259 (($ $) 6)) (-4260 (($ $) 7)) (** (($ $ $) 8))) -(((-269) (-134)) (T -269)) -((** (*1 *1 *1 *1) (-4 *1 (-269))) (-4260 (*1 *1 *1) (-4 *1 (-269))) (-4259 (*1 *1 *1) (-4 *1 (-269)))) -(-13 (-10 -8 (-15 -4259 ($ $)) (-15 -4260 ($ $)) (-15 ** ($ $ $)))) -((-1612 (((-607 (-1101 |#1|)) (-1101 |#1|) |#1|) 35)) (-1609 ((|#2| |#2| |#1|) 38)) (-1611 ((|#2| |#2| |#1|) 40)) (-1610 ((|#2| |#2| |#1|) 39))) -(((-270 |#1| |#2|) (-10 -7 (-15 -1609 (|#2| |#2| |#1|)) (-15 -1610 (|#2| |#2| |#1|)) (-15 -1611 (|#2| |#2| |#1|)) (-15 -1612 ((-607 (-1101 |#1|)) (-1101 |#1|) |#1|))) (-348) (-1198 |#1|)) (T -270)) -((-1612 (*1 *2 *3 *4) (-12 (-4 *4 (-348)) (-5 *2 (-607 (-1101 *4))) (-5 *1 (-270 *4 *5)) (-5 *3 (-1101 *4)) (-4 *5 (-1198 *4)))) (-1611 (*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3)))) (-1610 (*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3)))) (-1609 (*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3))))) -(-10 -7 (-15 -1609 (|#2| |#2| |#1|)) (-15 -1610 (|#2| |#2| |#1|)) (-15 -1611 (|#2| |#2| |#1|)) (-15 -1612 ((-607 (-1101 |#1|)) (-1101 |#1|) |#1|))) -((-4118 ((|#2| $ |#1|) 6))) -(((-271 |#1| |#2|) (-134) (-1052) (-1159)) (T -271)) -((-4118 (*1 *2 *1 *3) (-12 (-4 *1 (-271 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159))))) -(-13 (-10 -8 (-15 -4118 (|t#2| $ |t#1|)))) -((-1613 ((|#3| $ |#2| |#3|) 12)) (-3410 ((|#3| $ |#2|) 10))) -(((-272 |#1| |#2| |#3|) (-10 -8 (-15 -1613 (|#3| |#1| |#2| |#3|)) (-15 -3410 (|#3| |#1| |#2|))) (-273 |#2| |#3|) (-1052) (-1159)) (T -272)) -NIL -(-10 -8 (-15 -1613 (|#3| |#1| |#2| |#3|)) (-15 -3410 (|#3| |#1| |#2|))) -((-4106 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4311)))) (-1613 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) 11)) (-4118 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-273 |#1| |#2|) (-134) (-1052) (-1159)) (T -273)) -((-4118 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) (-3410 (*1 *2 *1 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) (-1613 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159))))) -(-13 (-271 |t#1| |t#2|) (-10 -8 (-15 -4118 (|t#2| $ |t#1| |t#2|)) (-15 -3410 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4311)) (PROGN (-15 -4106 (|t#2| $ |t#1| |t#2|)) (-15 -1613 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-271 |#1| |#2|) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 35)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 40)) (-2151 (($ $) 38)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) 33)) (-4161 (($ |#2| |#3|) 19)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 ((|#3| $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 20)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2463 (((-3 $ "failed") $ $) NIL)) (-1680 (((-735) $) 34)) (-4118 ((|#2| $ |#2|) 42)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 24)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 29 T CONST)) (-2964 (($) 36 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 37))) -(((-274 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-292) (-10 -8 (-15 -2909 (|#3| $)) (-15 -4274 (|#2| $)) (-15 -4161 ($ |#2| |#3|)) (-15 -2463 ((-3 $ "failed") $ $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -2703 ($ $)) (-15 -4118 (|#2| $ |#2|)))) (-163) (-1181 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -274)) -((-3781 (*1 *1 *1) (|partial| -12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2909 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-23)) (-5 *1 (-274 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1181 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4274 (*1 *2 *1) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-274 *3 *2 *4 *5 *6 *7)) (-4 *3 (-163)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4161 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-274 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1181 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2463 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2703 (*1 *1 *1) (-12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4118 (*1 *2 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-274 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1181 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) -(-13 (-292) (-10 -8 (-15 -2909 (|#3| $)) (-15 -4274 (|#2| $)) (-15 -4161 ($ |#2| |#3|)) (-15 -2463 ((-3 $ "failed") $ $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -2703 ($ $)) (-15 -4118 (|#2| $ |#2|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-275) (-134)) (T -275)) -NIL -(-13 (-1004) (-110 $ $) (-10 -7 (-6 -4303))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-1618 (($ (-1123) (-1123) (-1054) $) 17)) (-1616 (($ (-1123) (-607 (-924)) $) 22)) (-1620 (((-607 (-1037)) $) 10)) (-1619 (((-3 (-1054) "failed") (-1123) (-1123) $) 16)) (-1617 (((-3 (-607 (-924)) "failed") (-1123) $) 21)) (-3887 (($) 7)) (-1615 (($) 23)) (-4274 (((-823) $) 27)) (-1614 (($) 24))) -(((-276) (-13 (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -1620 ((-607 (-1037)) $)) (-15 -1619 ((-3 (-1054) "failed") (-1123) (-1123) $)) (-15 -1618 ($ (-1123) (-1123) (-1054) $)) (-15 -1617 ((-3 (-607 (-924)) "failed") (-1123) $)) (-15 -1616 ($ (-1123) (-607 (-924)) $)) (-15 -1615 ($)) (-15 -1614 ($))))) (T -276)) -((-3887 (*1 *1) (-5 *1 (-276))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-607 (-1037))) (-5 *1 (-276)))) (-1619 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-276)))) (-1618 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1123)) (-5 *3 (-1054)) (-5 *1 (-276)))) (-1617 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-607 (-924))) (-5 *1 (-276)))) (-1616 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-924))) (-5 *1 (-276)))) (-1615 (*1 *1) (-5 *1 (-276))) (-1614 (*1 *1) (-5 *1 (-276)))) -(-13 (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -1620 ((-607 (-1037)) $)) (-15 -1619 ((-3 (-1054) "failed") (-1123) (-1123) $)) (-15 -1618 ($ (-1123) (-1123) (-1054) $)) (-15 -1617 ((-3 (-607 (-924)) "failed") (-1123) $)) (-15 -1616 ($ (-1123) (-607 (-924)) $)) (-15 -1615 ($)) (-15 -1614 ($)))) -((-1624 (((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |geneigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|)))) 85)) (-1623 (((-607 (-653 (-392 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|)))))) (-653 (-392 (-905 |#1|)))) 80) (((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))) (-735) (-735)) 38)) (-1625 (((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|)))) 82)) (-1622 (((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|)))) 62)) (-1621 (((-607 (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (-653 (-392 (-905 |#1|)))) 61)) (-2667 (((-905 |#1|) (-653 (-392 (-905 |#1|)))) 50) (((-905 |#1|) (-653 (-392 (-905 |#1|))) (-1123)) 51))) -(((-277 |#1|) (-10 -7 (-15 -2667 ((-905 |#1|) (-653 (-392 (-905 |#1|))) (-1123))) (-15 -2667 ((-905 |#1|) (-653 (-392 (-905 |#1|))))) (-15 -1621 ((-607 (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (-653 (-392 (-905 |#1|))))) (-15 -1622 ((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))))) (-15 -1623 ((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))) (-735) (-735))) (-15 -1623 ((-607 (-653 (-392 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|)))))) (-653 (-392 (-905 |#1|))))) (-15 -1624 ((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |geneigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|))))) (-15 -1625 ((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|)))))) (-436)) (T -277)) -((-1625 (*1 *2 *3) (-12 (-4 *4 (-436)) (-5 *2 (-607 (-2 (|:| |eigval| (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 *4)))))))) (-5 *1 (-277 *4)) (-5 *3 (-653 (-392 (-905 *4)))))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-436)) (-5 *2 (-607 (-2 (|:| |eigval| (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4)))) (|:| |geneigvec| (-607 (-653 (-392 (-905 *4)))))))) (-5 *1 (-277 *4)) (-5 *3 (-653 (-392 (-905 *4)))))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-392 (-905 *5)) (-1113 (-1123) (-905 *5)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 *4)))) (-4 *5 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *5))))) (-5 *1 (-277 *5)) (-5 *4 (-653 (-392 (-905 *5)))))) (-1623 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-392 (-905 *6)) (-1113 (-1123) (-905 *6)))) (-5 *5 (-735)) (-4 *6 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *6))))) (-5 *1 (-277 *6)) (-5 *4 (-653 (-392 (-905 *6)))))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-392 (-905 *5)) (-1113 (-1123) (-905 *5)))) (-4 *5 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *5))))) (-5 *1 (-277 *5)) (-5 *4 (-653 (-392 (-905 *5)))))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 *4)))) (-4 *4 (-436)) (-5 *2 (-607 (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4))))) (-5 *1 (-277 *4)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 *4)))) (-5 *2 (-905 *4)) (-5 *1 (-277 *4)) (-4 *4 (-436)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-392 (-905 *5)))) (-5 *4 (-1123)) (-5 *2 (-905 *5)) (-5 *1 (-277 *5)) (-4 *5 (-436))))) -(-10 -7 (-15 -2667 ((-905 |#1|) (-653 (-392 (-905 |#1|))) (-1123))) (-15 -2667 ((-905 |#1|) (-653 (-392 (-905 |#1|))))) (-15 -1621 ((-607 (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (-653 (-392 (-905 |#1|))))) (-15 -1622 ((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))))) (-15 -1623 ((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))) (-735) (-735))) (-15 -1623 ((-607 (-653 (-392 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|)))))) (-653 (-392 (-905 |#1|))))) (-15 -1624 ((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |geneigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|))))) (-15 -1625 ((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|)))))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3502 (((-111) $) NIL (|has| |#1| (-21)))) (-1631 (($ $) 12)) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1640 (($ $ $) 94 (|has| |#1| (-283)))) (-3855 (($) NIL (-3850 (|has| |#1| (-21)) (|has| |#1| (-691))) CONST)) (-1629 (($ $) 50 (|has| |#1| (-21)))) (-1627 (((-3 $ "failed") $) 61 (|has| |#1| (-691)))) (-3842 ((|#1| $) 11)) (-3781 (((-3 $ "failed") $) 59 (|has| |#1| (-691)))) (-2471 (((-111) $) NIL (|has| |#1| (-691)))) (-4275 (($ (-1 |#1| |#1|) $) 14)) (-3843 ((|#1| $) 10)) (-1630 (($ $) 49 (|has| |#1| (-21)))) (-1628 (((-3 $ "failed") $) 60 (|has| |#1| (-691)))) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2703 (($ $) 63 (-3850 (|has| |#1| (-348)) (|has| |#1| (-457))))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1626 (((-607 $) $) 84 (|has| |#1| (-533)))) (-4086 (($ $ $) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 $)) 28 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-1123) |#1|) 17 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 21 (|has| |#1| (-496 (-1123) |#1|)))) (-3539 (($ |#1| |#1|) 9)) (-4230 (((-131)) 89 (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 86 (|has| |#1| (-859 (-1123))))) (-3309 (($ $ $) NIL (|has| |#1| (-457)))) (-2655 (($ $ $) NIL (|has| |#1| (-457)))) (-4274 (($ (-526)) NIL (|has| |#1| (-1004))) (((-111) $) 36 (|has| |#1| (-1052))) (((-823) $) 35 (|has| |#1| (-1052)))) (-3423 (((-735)) 66 (|has| |#1| (-1004)))) (-2957 (($) 46 (|has| |#1| (-21)) CONST)) (-2964 (($) 56 (|has| |#1| (-691)) CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123))))) (-3353 (($ |#1| |#1|) 8) (((-111) $ $) 31 (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) 91 (-3850 (|has| |#1| (-348)) (|has| |#1| (-457))))) (-4156 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4158 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-526)) NIL (|has| |#1| (-457))) (($ $ (-735)) NIL (|has| |#1| (-691))) (($ $ (-878)) NIL (|has| |#1| (-1063)))) (* (($ $ |#1|) 54 (|has| |#1| (-1063))) (($ |#1| $) 53 (|has| |#1| (-1063))) (($ $ $) 52 (|has| |#1| (-1063))) (($ (-526) $) 69 (|has| |#1| (-21))) (($ (-735) $) NIL (|has| |#1| (-21))) (($ (-878) $) NIL (|has| |#1| (-25))))) -(((-278 |#1|) (-13 (-1159) (-10 -8 (-15 -3353 ($ |#1| |#1|)) (-15 -3539 ($ |#1| |#1|)) (-15 -1631 ($ $)) (-15 -3843 (|#1| $)) (-15 -3842 (|#1| $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-496 (-1123) |#1|)) (-6 (-496 (-1123) |#1|)) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-583 (-111))) (IF (|has| |#1| (-294 |#1|)) (PROGN (-15 -4086 ($ $ $)) (-15 -4086 ($ $ (-607 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4158 ($ |#1| $)) (-15 -4158 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1630 ($ $)) (-15 -1629 ($ $)) (-15 -4156 ($ |#1| $)) (-15 -4156 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-691)) (PROGN (-6 (-691)) (-15 -1628 ((-3 $ "failed") $)) (-15 -1627 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-457)) (PROGN (-6 (-457)) (-15 -1628 ((-3 $ "failed") $)) (-15 -1627 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-6 (-1004)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-682 |#1|)) |%noBranch|) (IF (|has| |#1| (-533)) (-15 -1626 ((-607 $) $)) |%noBranch|) (IF (|has| |#1| (-859 (-1123))) (-6 (-859 (-1123))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-6 (-1213 |#1|)) (-15 -4265 ($ $ $)) (-15 -2703 ($ $))) |%noBranch|) (IF (|has| |#1| (-283)) (-15 -1640 ($ $ $)) |%noBranch|))) (-1159)) (T -278)) -((-3353 (*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-3539 (*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-1631 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-3843 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-3842 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-278 *3)))) (-4086 (*1 *1 *1 *1) (-12 (-4 *2 (-294 *2)) (-4 *2 (-1052)) (-4 *2 (-1159)) (-5 *1 (-278 *2)))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-278 *3))) (-4 *3 (-294 *3)) (-4 *3 (-1052)) (-4 *3 (-1159)) (-5 *1 (-278 *3)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1159)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1159)))) (-1630 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) (-1629 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) (-4156 (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) (-4156 (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) (-1628 (*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-691)) (-4 *2 (-1159)))) (-1627 (*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-691)) (-4 *2 (-1159)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-607 (-278 *3))) (-5 *1 (-278 *3)) (-4 *3 (-533)) (-4 *3 (-1159)))) (-1640 (*1 *1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-283)) (-4 *2 (-1159)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1063)) (-4 *2 (-1159)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1063)) (-4 *2 (-1159)))) (-4265 (*1 *1 *1 *1) (-3850 (-12 (-5 *1 (-278 *2)) (-4 *2 (-348)) (-4 *2 (-1159))) (-12 (-5 *1 (-278 *2)) (-4 *2 (-457)) (-4 *2 (-1159))))) (-2703 (*1 *1 *1) (-3850 (-12 (-5 *1 (-278 *2)) (-4 *2 (-348)) (-4 *2 (-1159))) (-12 (-5 *1 (-278 *2)) (-4 *2 (-457)) (-4 *2 (-1159)))))) -(-13 (-1159) (-10 -8 (-15 -3353 ($ |#1| |#1|)) (-15 -3539 ($ |#1| |#1|)) (-15 -1631 ($ $)) (-15 -3843 (|#1| $)) (-15 -3842 (|#1| $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-496 (-1123) |#1|)) (-6 (-496 (-1123) |#1|)) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-583 (-111))) (IF (|has| |#1| (-294 |#1|)) (PROGN (-15 -4086 ($ $ $)) (-15 -4086 ($ $ (-607 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4158 ($ |#1| $)) (-15 -4158 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1630 ($ $)) (-15 -1629 ($ $)) (-15 -4156 ($ |#1| $)) (-15 -4156 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-691)) (PROGN (-6 (-691)) (-15 -1628 ((-3 $ "failed") $)) (-15 -1627 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-457)) (PROGN (-6 (-457)) (-15 -1628 ((-3 $ "failed") $)) (-15 -1627 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-6 (-1004)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-682 |#1|)) |%noBranch|) (IF (|has| |#1| (-533)) (-15 -1626 ((-607 $) $)) |%noBranch|) (IF (|has| |#1| (-859 (-1123))) (-6 (-859 (-1123))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-6 (-1213 |#1|)) (-15 -4265 ($ $ $)) (-15 -2703 ($ $))) |%noBranch|) (IF (|has| |#1| (-283)) (-15 -1640 ($ $ $)) |%noBranch|))) -((-4275 (((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)) 14))) -(((-279 |#1| |#2|) (-10 -7 (-15 -4275 ((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)))) (-1159) (-1159)) (T -279)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-278 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-278 *6)) (-5 *1 (-279 *5 *6))))) -(-10 -7 (-15 -4275 ((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) NIL)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-280 |#1| |#2|) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) (-1052) (-1052)) (T -280)) -NIL -(-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) -((-1632 (((-296) (-1106) (-607 (-1106))) 16) (((-296) (-1106) (-1106)) 15) (((-296) (-607 (-1106))) 14) (((-296) (-1106)) 12))) -(((-281) (-10 -7 (-15 -1632 ((-296) (-1106))) (-15 -1632 ((-296) (-607 (-1106)))) (-15 -1632 ((-296) (-1106) (-1106))) (-15 -1632 ((-296) (-1106) (-607 (-1106)))))) (T -281)) -((-1632 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-1106))) (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281)))) (-1632 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-296)) (-5 *1 (-281)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281))))) -(-10 -7 (-15 -1632 ((-296) (-1106))) (-15 -1632 ((-296) (-607 (-1106)))) (-15 -1632 ((-296) (-1106) (-1106))) (-15 -1632 ((-296) (-1106) (-607 (-1106))))) -((-1636 (((-607 (-581 $)) $) 30)) (-1640 (($ $ (-278 $)) 81) (($ $ (-607 (-278 $))) 123) (($ $ (-607 (-581 $)) (-607 $)) NIL)) (-3470 (((-3 (-581 $) "failed") $) 113)) (-3469 (((-581 $) $) 112)) (-2870 (($ $) 19) (($ (-607 $)) 56)) (-1635 (((-607 (-112)) $) 38)) (-2307 (((-112) (-112)) 91)) (-2973 (((-111) $) 131)) (-4275 (($ (-1 $ $) (-581 $)) 89)) (-1638 (((-3 (-581 $) "failed") $) 93)) (-2288 (($ (-112) $) 61) (($ (-112) (-607 $)) 100)) (-2930 (((-111) $ (-112)) 117) (((-111) $ (-1123)) 116)) (-2900 (((-735) $) 46)) (-1634 (((-111) $ $) 59) (((-111) $ (-1123)) 51)) (-2974 (((-111) $) 129)) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL) (($ $ (-607 (-278 $))) 121) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) 84) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) 69) (($ $ (-1123) (-1 $ $)) 75) (($ $ (-607 (-112)) (-607 (-1 $ $))) 83) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) 85) (($ $ (-112) (-1 $ (-607 $))) 71) (($ $ (-112) (-1 $ $)) 77)) (-4118 (($ (-112) $) 62) (($ (-112) $ $) 63) (($ (-112) $ $ $) 64) (($ (-112) $ $ $ $) 65) (($ (-112) (-607 $)) 109)) (-1639 (($ $) 53) (($ $ $) 119)) (-2887 (($ $) 17) (($ (-607 $)) 55)) (-2306 (((-111) (-112)) 22))) -(((-282 |#1|) (-10 -8 (-15 -2973 ((-111) |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| |#1|)))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| |#1|)))) (-15 -1634 ((-111) |#1| (-1123))) (-15 -1634 ((-111) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#1| |#1|) (-581 |#1|))) (-15 -2288 (|#1| (-112) (-607 |#1|))) (-15 -2288 (|#1| (-112) |#1|)) (-15 -2930 ((-111) |#1| (-1123))) (-15 -2930 ((-111) |#1| (-112))) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1635 ((-607 (-112)) |#1|)) (-15 -1636 ((-607 (-581 |#1|)) |#1|)) (-15 -1638 ((-3 (-581 |#1|) "failed") |#1|)) (-15 -2900 ((-735) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -2870 (|#1| (-607 |#1|))) (-15 -2870 (|#1| |#1|)) (-15 -2887 (|#1| (-607 |#1|))) (-15 -2887 (|#1| |#1|)) (-15 -1640 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -1640 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -1640 (|#1| |#1| (-278 |#1|))) (-15 -4118 (|#1| (-112) (-607 |#1|))) (-15 -4118 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-581 |#1|) |#1|)) (-15 -3469 ((-581 |#1|) |#1|)) (-15 -3470 ((-3 (-581 |#1|) "failed") |#1|))) (-283)) (T -282)) -((-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-282 *3)) (-4 *3 (-283)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-111)) (-5 *1 (-282 *4)) (-4 *4 (-283))))) -(-10 -8 (-15 -2973 ((-111) |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| |#1|)))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| |#1|)))) (-15 -1634 ((-111) |#1| (-1123))) (-15 -1634 ((-111) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#1| |#1|) (-581 |#1|))) (-15 -2288 (|#1| (-112) (-607 |#1|))) (-15 -2288 (|#1| (-112) |#1|)) (-15 -2930 ((-111) |#1| (-1123))) (-15 -2930 ((-111) |#1| (-112))) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1635 ((-607 (-112)) |#1|)) (-15 -1636 ((-607 (-581 |#1|)) |#1|)) (-15 -1638 ((-3 (-581 |#1|) "failed") |#1|)) (-15 -2900 ((-735) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -2870 (|#1| (-607 |#1|))) (-15 -2870 (|#1| |#1|)) (-15 -2887 (|#1| (-607 |#1|))) (-15 -2887 (|#1| |#1|)) (-15 -1640 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -1640 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -1640 (|#1| |#1| (-278 |#1|))) (-15 -4118 (|#1| (-112) (-607 |#1|))) (-15 -4118 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-581 |#1|) |#1|)) (-15 -3469 ((-581 |#1|) |#1|)) (-15 -3470 ((-3 (-581 |#1|) "failed") |#1|))) -((-2865 (((-111) $ $) 7)) (-1636 (((-607 (-581 $)) $) 44)) (-1640 (($ $ (-278 $)) 56) (($ $ (-607 (-278 $))) 55) (($ $ (-607 (-581 $)) (-607 $)) 54)) (-3470 (((-3 (-581 $) "failed") $) 69)) (-3469 (((-581 $) $) 68)) (-2870 (($ $) 51) (($ (-607 $)) 50)) (-1635 (((-607 (-112)) $) 43)) (-2307 (((-112) (-112)) 42)) (-2973 (((-111) $) 22 (|has| $ (-995 (-526))))) (-1633 (((-1117 $) (-581 $)) 25 (|has| $ (-1004)))) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-4275 (($ (-1 $ $) (-581 $)) 36)) (-1638 (((-3 (-581 $) "failed") $) 46)) (-3554 (((-1106) $) 9)) (-1637 (((-607 (-581 $)) $) 45)) (-2288 (($ (-112) $) 38) (($ (-112) (-607 $)) 37)) (-2930 (((-111) $ (-112)) 40) (((-111) $ (-1123)) 39)) (-2900 (((-735) $) 47)) (-3555 (((-1070) $) 10)) (-1634 (((-111) $ $) 35) (((-111) $ (-1123)) 34)) (-2974 (((-111) $) 23 (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) 67) (($ $ (-607 (-581 $)) (-607 $)) 66) (($ $ (-607 (-278 $))) 65) (($ $ (-278 $)) 64) (($ $ $ $) 63) (($ $ (-607 $) (-607 $)) 62) (($ $ (-607 (-1123)) (-607 (-1 $ $))) 33) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) 32) (($ $ (-1123) (-1 $ (-607 $))) 31) (($ $ (-1123) (-1 $ $)) 30) (($ $ (-607 (-112)) (-607 (-1 $ $))) 29) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) 28) (($ $ (-112) (-1 $ (-607 $))) 27) (($ $ (-112) (-1 $ $)) 26)) (-4118 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-607 $)) 57)) (-1639 (($ $) 49) (($ $ $) 48)) (-3499 (($ $) 24 (|has| $ (-1004)))) (-4274 (((-823) $) 11) (($ (-581 $)) 70)) (-2887 (($ $) 53) (($ (-607 $)) 52)) (-2306 (((-111) (-112)) 41)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) -(((-283) (-134)) (T -283)) -((-4118 (*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-4118 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-4118 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-4118 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-4118 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 *1)) (-4 *1 (-283)))) (-1640 (*1 *1 *1 *2) (-12 (-5 *2 (-278 *1)) (-4 *1 (-283)))) (-1640 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-278 *1))) (-4 *1 (-283)))) (-1640 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-581 *1))) (-5 *3 (-607 *1)) (-4 *1 (-283)))) (-2887 (*1 *1 *1) (-4 *1 (-283))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-283)))) (-2870 (*1 *1 *1) (-4 *1 (-283))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-283)))) (-1639 (*1 *1 *1) (-4 *1 (-283))) (-1639 (*1 *1 *1 *1) (-4 *1 (-283))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-735)))) (-1638 (*1 *2 *1) (|partial| -12 (-5 *2 (-581 *1)) (-4 *1 (-283)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-607 (-581 *1))) (-4 *1 (-283)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-607 (-581 *1))) (-4 *1 (-283)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-607 (-112))))) (-2307 (*1 *2 *2) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-2306 (*1 *2 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-111)))) (-2930 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-111)))) (-2930 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1123)) (-5 *2 (-111)))) (-2288 (*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-2288 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 *1)) (-4 *1 (-283)))) (-4275 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-581 *1)) (-4 *1 (-283)))) (-1634 (*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-111)))) (-1634 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1123)) (-5 *2 (-111)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-1 *1 *1))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1 *1 (-607 *1))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 (-1 *1 *1))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-607 *1))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-581 *1)) (-4 *1 (-1004)) (-4 *1 (-283)) (-5 *2 (-1117 *1)))) (-3499 (*1 *1 *1) (-12 (-4 *1 (-1004)) (-4 *1 (-283)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-995 (-526))) (-4 *1 (-283)) (-5 *2 (-111)))) (-2973 (*1 *2 *1) (-12 (-4 *1 (-995 (-526))) (-4 *1 (-283)) (-5 *2 (-111))))) -(-13 (-811) (-995 (-581 $)) (-496 (-581 $) $) (-294 $) (-10 -8 (-15 -4118 ($ (-112) $)) (-15 -4118 ($ (-112) $ $)) (-15 -4118 ($ (-112) $ $ $)) (-15 -4118 ($ (-112) $ $ $ $)) (-15 -4118 ($ (-112) (-607 $))) (-15 -1640 ($ $ (-278 $))) (-15 -1640 ($ $ (-607 (-278 $)))) (-15 -1640 ($ $ (-607 (-581 $)) (-607 $))) (-15 -2887 ($ $)) (-15 -2887 ($ (-607 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-607 $))) (-15 -1639 ($ $)) (-15 -1639 ($ $ $)) (-15 -2900 ((-735) $)) (-15 -1638 ((-3 (-581 $) "failed") $)) (-15 -1637 ((-607 (-581 $)) $)) (-15 -1636 ((-607 (-581 $)) $)) (-15 -1635 ((-607 (-112)) $)) (-15 -2307 ((-112) (-112))) (-15 -2306 ((-111) (-112))) (-15 -2930 ((-111) $ (-112))) (-15 -2930 ((-111) $ (-1123))) (-15 -2288 ($ (-112) $)) (-15 -2288 ($ (-112) (-607 $))) (-15 -4275 ($ (-1 $ $) (-581 $))) (-15 -1634 ((-111) $ $)) (-15 -1634 ((-111) $ (-1123))) (-15 -4086 ($ $ (-607 (-1123)) (-607 (-1 $ $)))) (-15 -4086 ($ $ (-607 (-1123)) (-607 (-1 $ (-607 $))))) (-15 -4086 ($ $ (-1123) (-1 $ (-607 $)))) (-15 -4086 ($ $ (-1123) (-1 $ $))) (-15 -4086 ($ $ (-607 (-112)) (-607 (-1 $ $)))) (-15 -4086 ($ $ (-607 (-112)) (-607 (-1 $ (-607 $))))) (-15 -4086 ($ $ (-112) (-1 $ (-607 $)))) (-15 -4086 ($ $ (-112) (-1 $ $))) (IF (|has| $ (-1004)) (PROGN (-15 -1633 ((-1117 $) (-581 $))) (-15 -3499 ($ $))) |%noBranch|) (IF (|has| $ (-995 (-526))) (PROGN (-15 -2974 ((-111) $)) (-15 -2973 ((-111) $))) |%noBranch|))) -(((-100) . T) ((-583 (-823)) . T) ((-294 $) . T) ((-496 (-581 $) $) . T) ((-496 $ $) . T) ((-811) . T) ((-995 (-581 $)) . T) ((-1052) . T)) -((-4275 ((|#2| (-1 |#2| |#1|) (-1106) (-581 |#1|)) 18))) -(((-284 |#1| |#2|) (-10 -7 (-15 -4275 (|#2| (-1 |#2| |#1|) (-1106) (-581 |#1|)))) (-283) (-1159)) (T -284)) -((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1106)) (-5 *5 (-581 *6)) (-4 *6 (-283)) (-4 *2 (-1159)) (-5 *1 (-284 *6 *2))))) -(-10 -7 (-15 -4275 (|#2| (-1 |#2| |#1|) (-1106) (-581 |#1|)))) -((-4275 ((|#2| (-1 |#2| |#1|) (-581 |#1|)) 17))) -(((-285 |#1| |#2|) (-10 -7 (-15 -4275 (|#2| (-1 |#2| |#1|) (-581 |#1|)))) (-283) (-283)) (T -285)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-581 *5)) (-4 *5 (-283)) (-4 *2 (-283)) (-5 *1 (-285 *5 *2))))) -(-10 -7 (-15 -4275 (|#2| (-1 |#2| |#1|) (-581 |#1|)))) -((-1643 (((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211)))) 93)) (-1644 (((-1101 (-211)) (-1205 (-299 (-211))) (-607 (-1123)) (-1041 (-803 (-211)))) 107) (((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211)))) 61)) (-1665 (((-607 (-1106)) (-1101 (-211))) NIL)) (-1642 (((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211)))) 58)) (-1645 (((-607 (-211)) (-905 (-392 (-526))) (-1123) (-1041 (-803 (-211)))) 49)) (-1664 (((-607 (-1106)) (-607 (-211))) NIL)) (-1666 (((-211) (-1041 (-803 (-211)))) 25)) (-1667 (((-211) (-1041 (-803 (-211)))) 26)) (-1641 (((-111) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 54)) (-1662 (((-1106) (-211)) NIL))) -(((-286) (-10 -7 (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -1641 ((-111) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1642 ((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211))))) (-15 -1643 ((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-1205 (-299 (-211))) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1645 ((-607 (-211)) (-905 (-392 (-526))) (-1123) (-1041 (-803 (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))))) (T -286)) -((-1665 (*1 *2 *3) (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-286)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-286)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-286)))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-286)))) (-1644 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *4 (-607 (-1123))) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286)))) (-1644 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-607 (-1123))) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-607 (-1123))) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286)))) (-1642 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-286)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-111)) (-5 *1 (-286)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-286)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-286))))) -(-10 -7 (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -1641 ((-111) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1642 ((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211))))) (-15 -1643 ((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-1205 (-299 (-211))) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1645 ((-607 (-211)) (-905 (-392 (-526))) (-1123) (-1041 (-803 (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211))))) -((-2075 (((-111) (-211)) 10))) -(((-287 |#1| |#2|) (-10 -7 (-15 -2075 ((-111) (-211)))) (-211) (-211)) (T -287)) -((-2075 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-111)) (-5 *1 (-287 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2075 ((-111) (-211)))) -((-1661 (((-1205 (-299 (-363))) (-1205 (-299 (-211)))) 105)) (-1649 (((-1041 (-803 (-211))) (-1041 (-803 (-363)))) 40)) (-1665 (((-607 (-1106)) (-1101 (-211))) 87)) (-1672 (((-299 (-363)) (-905 (-211))) 50)) (-1673 (((-211) (-905 (-211))) 46)) (-1668 (((-1106) (-363)) 169)) (-1648 (((-803 (-211)) (-803 (-363))) 34)) (-1654 (((-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526))) (-1205 (-299 (-211)))) 143)) (-1669 (((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) 181) (((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) 179)) (-1676 (((-653 (-211)) (-607 (-211)) (-735)) 14)) (-1659 (((-1205 (-663)) (-607 (-211))) 94)) (-1664 (((-607 (-1106)) (-607 (-211))) 75)) (-2955 (((-3 (-299 (-211)) "failed") (-299 (-211))) 120)) (-2075 (((-111) (-211) (-1041 (-803 (-211)))) 109)) (-1671 (((-992) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) 198)) (-1666 (((-211) (-1041 (-803 (-211)))) 107)) (-1667 (((-211) (-1041 (-803 (-211)))) 108)) (-1675 (((-211) (-392 (-526))) 27)) (-1663 (((-1106) (-363)) 73)) (-1646 (((-211) (-363)) 17)) (-1653 (((-363) (-1205 (-299 (-211)))) 154)) (-1647 (((-299 (-211)) (-299 (-363))) 23)) (-1651 (((-392 (-526)) (-299 (-211))) 53)) (-1655 (((-299 (-392 (-526))) (-299 (-211))) 69)) (-1660 (((-299 (-363)) (-299 (-211))) 98)) (-1652 (((-211) (-299 (-211))) 54)) (-1657 (((-607 (-211)) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) 64)) (-1656 (((-1041 (-803 (-211))) (-1041 (-803 (-211)))) 61)) (-1662 (((-1106) (-211)) 72)) (-1658 (((-663) (-211)) 90)) (-1650 (((-392 (-526)) (-211)) 55)) (-1674 (((-299 (-363)) (-211)) 49)) (-4287 (((-607 (-1041 (-803 (-211)))) (-607 (-1041 (-803 (-363))))) 43)) (-4120 (((-992) (-607 (-992))) 165) (((-992) (-992) (-992)) 162)) (-1670 (((-992) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-288) (-10 -7 (-15 -1646 ((-211) (-363))) (-15 -1647 ((-299 (-211)) (-299 (-363)))) (-15 -1648 ((-803 (-211)) (-803 (-363)))) (-15 -1649 ((-1041 (-803 (-211))) (-1041 (-803 (-363))))) (-15 -4287 ((-607 (-1041 (-803 (-211)))) (-607 (-1041 (-803 (-363)))))) (-15 -1650 ((-392 (-526)) (-211))) (-15 -1651 ((-392 (-526)) (-299 (-211)))) (-15 -1652 ((-211) (-299 (-211)))) (-15 -2955 ((-3 (-299 (-211)) "failed") (-299 (-211)))) (-15 -1653 ((-363) (-1205 (-299 (-211))))) (-15 -1654 ((-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526))) (-1205 (-299 (-211))))) (-15 -1655 ((-299 (-392 (-526))) (-299 (-211)))) (-15 -1656 ((-1041 (-803 (-211))) (-1041 (-803 (-211))))) (-15 -1657 ((-607 (-211)) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-15 -1658 ((-663) (-211))) (-15 -1659 ((-1205 (-663)) (-607 (-211)))) (-15 -1660 ((-299 (-363)) (-299 (-211)))) (-15 -1661 ((-1205 (-299 (-363))) (-1205 (-299 (-211))))) (-15 -2075 ((-111) (-211) (-1041 (-803 (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1663 ((-1106) (-363))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))) (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -4120 ((-992) (-992) (-992))) (-15 -4120 ((-992) (-607 (-992)))) (-15 -1668 ((-1106) (-363))) (-15 -1669 ((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))))) (-15 -1669 ((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))))) (-15 -1670 ((-992) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1671 ((-992) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))) (-15 -1672 ((-299 (-363)) (-905 (-211)))) (-15 -1673 ((-211) (-905 (-211)))) (-15 -1674 ((-299 (-363)) (-211))) (-15 -1675 ((-211) (-392 (-526)))) (-15 -1676 ((-653 (-211)) (-607 (-211)) (-735))))) (T -288)) -((-1676 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-211))) (-5 *4 (-735)) (-5 *2 (-653 (-211))) (-5 *1 (-288)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-392 (-526))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-299 (-363))) (-5 *1 (-288)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-905 (-211))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-905 (-211))) (-5 *2 (-299 (-363))) (-5 *1 (-288)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) (-5 *2 (-992)) (-5 *1 (-288)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-992)) (-5 *1 (-288)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) (-5 *2 (-992)) (-5 *1 (-288)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *2 (-992)) (-5 *1 (-288)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1106)) (-5 *1 (-288)))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-607 (-992))) (-5 *2 (-992)) (-5 *1 (-288)))) (-4120 (*1 *2 *2 *2) (-12 (-5 *2 (-992)) (-5 *1 (-288)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-288)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-288)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1106)) (-5 *1 (-288)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-288)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-1041 (-803 (-211)))) (-5 *3 (-211)) (-5 *2 (-111)) (-5 *1 (-288)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-1205 (-299 (-363)))) (-5 *1 (-288)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-299 (-363))) (-5 *1 (-288)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1205 (-663))) (-5 *1 (-288)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-663)) (-5 *1 (-288)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *2 (-607 (-211))) (-5 *1 (-288)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1041 (-803 (-211)))) (-5 *1 (-288)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-299 (-392 (-526)))) (-5 *1 (-288)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526)))) (-5 *1 (-288)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-363)) (-5 *1 (-288)))) (-2955 (*1 *2 *2) (|partial| -12 (-5 *2 (-299 (-211))) (-5 *1 (-288)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-392 (-526))) (-5 *1 (-288)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-392 (-526))) (-5 *1 (-288)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-607 (-1041 (-803 (-363))))) (-5 *2 (-607 (-1041 (-803 (-211))))) (-5 *1 (-288)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-363)))) (-5 *2 (-1041 (-803 (-211)))) (-5 *1 (-288)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-803 (-363))) (-5 *2 (-803 (-211))) (-5 *1 (-288)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-299 (-363))) (-5 *2 (-299 (-211))) (-5 *1 (-288)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-211)) (-5 *1 (-288))))) -(-10 -7 (-15 -1646 ((-211) (-363))) (-15 -1647 ((-299 (-211)) (-299 (-363)))) (-15 -1648 ((-803 (-211)) (-803 (-363)))) (-15 -1649 ((-1041 (-803 (-211))) (-1041 (-803 (-363))))) (-15 -4287 ((-607 (-1041 (-803 (-211)))) (-607 (-1041 (-803 (-363)))))) (-15 -1650 ((-392 (-526)) (-211))) (-15 -1651 ((-392 (-526)) (-299 (-211)))) (-15 -1652 ((-211) (-299 (-211)))) (-15 -2955 ((-3 (-299 (-211)) "failed") (-299 (-211)))) (-15 -1653 ((-363) (-1205 (-299 (-211))))) (-15 -1654 ((-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526))) (-1205 (-299 (-211))))) (-15 -1655 ((-299 (-392 (-526))) (-299 (-211)))) (-15 -1656 ((-1041 (-803 (-211))) (-1041 (-803 (-211))))) (-15 -1657 ((-607 (-211)) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-15 -1658 ((-663) (-211))) (-15 -1659 ((-1205 (-663)) (-607 (-211)))) (-15 -1660 ((-299 (-363)) (-299 (-211)))) (-15 -1661 ((-1205 (-299 (-363))) (-1205 (-299 (-211))))) (-15 -2075 ((-111) (-211) (-1041 (-803 (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1663 ((-1106) (-363))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))) (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -4120 ((-992) (-992) (-992))) (-15 -4120 ((-992) (-607 (-992)))) (-15 -1668 ((-1106) (-363))) (-15 -1669 ((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))))) (-15 -1669 ((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))))) (-15 -1670 ((-992) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1671 ((-992) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))) (-15 -1672 ((-299 (-363)) (-905 (-211)))) (-15 -1673 ((-211) (-905 (-211)))) (-15 -1674 ((-299 (-363)) (-211))) (-15 -1675 ((-211) (-392 (-526)))) (-15 -1676 ((-653 (-211)) (-607 (-211)) (-735)))) -((-1677 (((-607 |#1|) (-607 |#1|)) 10))) -(((-289 |#1|) (-10 -7 (-15 -1677 ((-607 |#1|) (-607 |#1|)))) (-809)) (T -289)) -((-1677 (*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-809)) (-5 *1 (-289 *3))))) -(-10 -7 (-15 -1677 ((-607 |#1|) (-607 |#1|)))) -((-4275 (((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)) 17))) -(((-290 |#1| |#2|) (-10 -7 (-15 -4275 ((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)))) (-1004) (-1004)) (T -290)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-653 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-653 *6)) (-5 *1 (-290 *5 *6))))) -(-10 -7 (-15 -4275 ((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)))) -((-1681 (((-111) $ $) 11)) (-2861 (($ $ $) 15)) (-2860 (($ $ $) 14)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 44)) (-1678 (((-3 (-607 $) "failed") (-607 $) $) 53)) (-3457 (($ $ $) 21) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3780 (((-3 $ "failed") $ $) 17)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 46))) -(((-291 |#1|) (-10 -8 (-15 -1678 ((-3 (-607 |#1|) "failed") (-607 |#1|) |#1|)) (-15 -1679 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1679 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -1681 ((-111) |#1| |#1|)) (-15 -3040 ((-3 (-607 |#1|) "failed") (-607 |#1|) |#1|)) (-15 -3041 ((-2 (|:| -4270 (-607 |#1|)) (|:| -2470 |#1|)) (-607 |#1|))) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|))) (-292)) (T -291)) -NIL -(-10 -8 (-15 -1678 ((-3 (-607 |#1|) "failed") (-607 |#1|) |#1|)) (-15 -1679 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1679 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -1681 ((-111) |#1| |#1|)) (-15 -3040 ((-3 (-607 |#1|) "failed") (-607 |#1|) |#1|)) (-15 -3041 ((-2 (|:| -4270 (-607 |#1|)) (|:| -2470 |#1|)) (-607 |#1|))) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) "failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-292) (-134)) (T -292)) -((-1681 (*1 *2 *1 *1) (-12 (-4 *1 (-292)) (-5 *2 (-111)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-292)) (-5 *2 (-735)))) (-3181 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-292)))) (-2860 (*1 *1 *1 *1) (-4 *1 (-292))) (-2861 (*1 *1 *1 *1) (-4 *1 (-292))) (-1679 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) (-4 *1 (-292)))) (-1679 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-292)))) (-1678 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-292))))) -(-13 (-880) (-10 -8 (-15 -1681 ((-111) $ $)) (-15 -1680 ((-735) $)) (-15 -3181 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2860 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -1679 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $)) (-15 -1679 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1678 ((-3 (-607 $) "failed") (-607 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-4086 (($ $ (-607 |#2|) (-607 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-278 |#2|)) 11) (($ $ (-607 (-278 |#2|))) NIL))) -(((-293 |#1| |#2|) (-10 -8 (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|)))) (-294 |#2|) (-1052)) (T -293)) -NIL -(-10 -8 (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|)))) -((-4086 (($ $ (-607 |#1|) (-607 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-278 |#1|)) 11) (($ $ (-607 (-278 |#1|))) 10))) -(((-294 |#1|) (-134) (-1052)) (T -294)) -((-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-278 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1052)))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-278 *3))) (-4 *1 (-294 *3)) (-4 *3 (-1052))))) -(-13 (-496 |t#1| |t#1|) (-10 -8 (-15 -4086 ($ $ (-278 |t#1|))) (-15 -4086 ($ $ (-607 (-278 |t#1|)))))) -(((-496 |#1| |#1|) . T)) -((-4086 ((|#1| (-1 |#1| (-526)) (-1125 (-392 (-526)))) 25))) -(((-295 |#1|) (-10 -7 (-15 -4086 (|#1| (-1 |#1| (-526)) (-1125 (-392 (-526)))))) (-37 (-392 (-526)))) (T -295)) -((-4086 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-526))) (-5 *4 (-1125 (-392 (-526)))) (-5 *1 (-295 *2)) (-4 *2 (-37 (-392 (-526))))))) -(-10 -7 (-15 -4086 (|#1| (-1 |#1| (-526)) (-1125 (-392 (-526)))))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 7)) (-3353 (((-111) $ $) 9))) -(((-296) (-1052)) (T -296)) -NIL -(-1052) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3382 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-297) (-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $))))) (T -297)) -((-3382 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-297))))) -(-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 62)) (-3426 (((-1192 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1192 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-526)))) (((-3 (-1186 |#2| |#3| |#4|) #2#) $) 25)) (-3469 (((-1192 |#1| |#2| |#3| |#4|) $) NIL) (((-1123) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-526)))) (((-526) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-526)))) (((-1186 |#2| |#3| |#4|) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-1192 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1205 (-1192 |#1| |#2| |#3| |#4|)))) (-653 $) (-1205 $)) NIL) (((-653 (-1192 |#1| |#2| |#3| |#4|)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-1192 |#1| |#2| |#3| |#4|) $) 21)) (-3763 (((-3 $ "failed") $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-1099)))) (-3501 (((-111) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-3638 (($ $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-4275 (($ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) $) NIL)) (-4102 (((-3 (-803 |#2|) "failed") $) 78)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-292)))) (-3427 (((-1192 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-1192 |#1| |#2| |#3| |#4|)) (-607 (-1192 |#1| |#2| |#3| |#4|))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-294 (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-294 (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-278 (-1192 |#1| |#2| |#3| |#4|))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-294 (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-607 (-278 (-1192 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-294 (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-607 (-1123)) (-607 (-1192 |#1| |#2| |#3| |#4|))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-496 (-1123) (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-1123) (-1192 |#1| |#2| |#3| |#4|)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-496 (-1123) (-1192 |#1| |#2| |#3| |#4|))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-1192 |#1| |#2| |#3| |#4|)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-271 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-219))) (($ $ (-735)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-219))) (($ $ (-1123)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) (-735)) NIL) (($ $ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-1192 |#1| |#2| |#3| |#4|) $) 17)) (-4287 (((-849 (-526)) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-584 (-515)))) (((-363) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-977))) (((-211) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-1192 |#1| |#2| |#3| |#4|) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-1192 |#1| |#2| |#3| |#4|)) 29) (($ (-1123)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-1123)))) (($ (-1186 |#2| |#3| |#4|)) 36)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-1192 |#1| |#2| |#3| |#4|) (-869))) (|has| (-1192 |#1| |#2| |#3| |#4|) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-1192 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-784)))) (-2957 (($) 41 T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-219))) (($ $ (-735)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-219))) (($ $ (-1123)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) (-735)) NIL) (($ $ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-4265 (($ $ $) 34) (($ (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) 31)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-1192 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1192 |#1| |#2| |#3| |#4|)) NIL))) -(((-298 |#1| |#2| |#3| |#4|) (-13 (-950 (-1192 |#1| |#2| |#3| |#4|)) (-995 (-1186 |#2| |#3| |#4|)) (-10 -8 (-15 -4102 ((-3 (-803 |#2|) "failed") $)) (-15 -4274 ($ (-1186 |#2| |#3| |#4|))))) (-13 (-811) (-995 (-526)) (-606 (-526)) (-436)) (-13 (-27) (-1145) (-406 |#1|)) (-1123) |#2|) (T -298)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1186 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4) (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *1 (-298 *3 *4 *5 *6)))) (-4102 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *2 (-803 *4)) (-5 *1 (-298 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4)))) -(-13 (-950 (-1192 |#1| |#2| |#3| |#4|)) (-995 (-1186 |#2| |#3| |#4|)) (-10 -8 (-15 -4102 ((-3 (-803 |#2|) "failed") $)) (-15 -4274 ($ (-1186 |#2| |#3| |#4|))))) -((-2865 (((-111) $ $) NIL)) (-1643 (((-607 $) $ (-1123)) NIL (|has| |#1| (-533))) (((-607 $) $) NIL (|has| |#1| (-533))) (((-607 $) (-1117 $) (-1123)) NIL (|has| |#1| (-533))) (((-607 $) (-1117 $)) NIL (|has| |#1| (-533))) (((-607 $) (-905 $)) NIL (|has| |#1| (-533)))) (-1238 (($ $ (-1123)) NIL (|has| |#1| (-533))) (($ $) NIL (|has| |#1| (-533))) (($ (-1117 $) (-1123)) NIL (|has| |#1| (-533))) (($ (-1117 $)) NIL (|has| |#1| (-533))) (($ (-905 $)) NIL (|has| |#1| (-533)))) (-3502 (((-111) $) 27 (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (-3384 (((-607 (-1123)) $) 351)) (-3386 (((-392 (-1117 $)) $ (-581 $)) NIL (|has| |#1| (-533)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-1636 (((-607 (-581 $)) $) NIL)) (-3806 (($ $) 161 (|has| |#1| (-533)))) (-3961 (($ $) 137 (|has| |#1| (-533)))) (-1397 (($ $ (-1044 $)) 222 (|has| |#1| (-533))) (($ $ (-1123)) 218 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL (-3850 (|has| |#1| (-21)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) 368) (($ $ (-607 (-581 $)) (-607 $)) 412)) (-3007 (((-390 (-1117 $)) (-1117 $)) 295 (-12 (|has| |#1| (-436)) (|has| |#1| (-533))))) (-4093 (($ $) NIL (|has| |#1| (-533)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-533)))) (-3337 (($ $) NIL (|has| |#1| (-533)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3804 (($ $) 157 (|has| |#1| (-533)))) (-3960 (($ $) 133 (|has| |#1| (-533)))) (-1682 (($ $ (-526)) 72 (|has| |#1| (-533)))) (-3808 (($ $) 165 (|has| |#1| (-533)))) (-3959 (($ $) 141 (|has| |#1| (-533)))) (-3855 (($) NIL (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))) CONST)) (-1239 (((-607 $) $ (-1123)) NIL (|has| |#1| (-533))) (((-607 $) $) NIL (|has| |#1| (-533))) (((-607 $) (-1117 $) (-1123)) NIL (|has| |#1| (-533))) (((-607 $) (-1117 $)) NIL (|has| |#1| (-533))) (((-607 $) (-905 $)) NIL (|has| |#1| (-533)))) (-3497 (($ $ (-1123)) NIL (|has| |#1| (-533))) (($ $) NIL (|has| |#1| (-533))) (($ (-1117 $) (-1123)) 124 (|has| |#1| (-533))) (($ (-1117 $)) NIL (|has| |#1| (-533))) (($ (-905 $)) NIL (|has| |#1| (-533)))) (-3470 (((-3 (-581 $) #1="failed") $) 17) (((-3 (-1123) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-47) #1#) $) 323 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) (((-3 (-526) #1#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-905 |#1|)) #1#) $) NIL (|has| |#1| (-533))) (((-3 (-905 |#1|) #1#) $) NIL (|has| |#1| (-1004))) (((-3 (-392 (-526)) #1#) $) 46 (-3850 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-3469 (((-581 $) $) 11) (((-1123) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-905 |#1|)) $) NIL (|has| |#1| (-533))) (((-905 |#1|) $) NIL (|has| |#1| (-1004))) (((-392 (-526)) $) 306 (-3850 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-2861 (($ $ $) NIL (|has| |#1| (-533)))) (-2331 (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 117 (|has| |#1| (-1004))) (((-653 |#1|) (-653 $)) 107 (|has| |#1| (-1004))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (-4161 (($ $) 89 (|has| |#1| (-533)))) (-3781 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))))) (-2860 (($ $ $) NIL (|has| |#1| (-533)))) (-4261 (($ $ (-1044 $)) 226 (|has| |#1| (-533))) (($ $ (-1123)) 224 (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-533)))) (-4045 (((-111) $) NIL (|has| |#1| (-533)))) (-3705 (($ $ $) 192 (|has| |#1| (-533)))) (-3949 (($) 127 (|has| |#1| (-533)))) (-1394 (($ $ $) 212 (|has| |#1| (-533)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 374 (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 381 (|has| |#1| (-845 (-363))))) (-2870 (($ $) NIL) (($ (-607 $)) NIL)) (-1635 (((-607 (-112)) $) NIL)) (-2307 (((-112) (-112)) 267)) (-2471 (((-111) $) 25 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))))) (-2973 (((-111) $) NIL (|has| $ (-995 (-526))))) (-3296 (($ $) 71 (|has| |#1| (-1004)))) (-3298 (((-1075 |#1| (-581 $)) $) 84 (|has| |#1| (-1004)))) (-1683 (((-111) $) 64 (|has| |#1| (-533)))) (-3311 (($ $ (-526)) NIL (|has| |#1| (-533)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-533)))) (-1633 (((-1117 $) (-581 $)) 268 (|has| $ (-1004)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 $ $) (-581 $)) 408)) (-1638 (((-3 (-581 $) "failed") $) NIL)) (-4259 (($ $) 131 (|has| |#1| (-533)))) (-2310 (($ $) 237 (|has| |#1| (-533)))) (-1989 (($ (-607 $)) NIL (|has| |#1| (-533))) (($ $ $) NIL (|has| |#1| (-533)))) (-3554 (((-1106) $) NIL)) (-1637 (((-607 (-581 $)) $) 49)) (-2288 (($ (-112) $) NIL) (($ (-112) (-607 $)) 413)) (-3123 (((-3 (-607 $) #3="failed") $) NIL (|has| |#1| (-1063)))) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) #3#) $) NIL (|has| |#1| (-1004)))) (-3122 (((-3 (-607 $) #3#) $) 416 (|has| |#1| (-25)))) (-1889 (((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3124 (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $) NIL (|has| |#1| (-1063))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $ (-112)) NIL (|has| |#1| (-1004))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $ (-1123)) NIL (|has| |#1| (-1004)))) (-2930 (((-111) $ (-112)) NIL) (((-111) $ (-1123)) 53)) (-2703 (($ $) NIL (-3850 (|has| |#1| (-457)) (|has| |#1| (-533))))) (-3132 (($ $ (-1123)) 241 (|has| |#1| (-533))) (($ $ (-1044 $)) 243 (|has| |#1| (-533)))) (-2900 (((-735) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 43)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 288 (|has| |#1| (-533)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-533))) (($ $ $) NIL (|has| |#1| (-533)))) (-1634 (((-111) $ $) NIL) (((-111) $ (-1123)) NIL)) (-1398 (($ $ (-1123)) 216 (|has| |#1| (-533))) (($ $) 214 (|has| |#1| (-533)))) (-1392 (($ $) 208 (|has| |#1| (-533)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 293 (-12 (|has| |#1| (-436)) (|has| |#1| (-533))))) (-4051 (((-390 $) $) NIL (|has| |#1| (-533)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-533))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-533)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-533)))) (-4260 (($ $) 129 (|has| |#1| (-533)))) (-2974 (((-111) $) NIL (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) 407) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) 361) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1123)) NIL (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-584 (-515)))) (($ $) NIL (|has| |#1| (-584 (-515)))) (($ $ (-112) $ (-1123)) 349 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-112)) (-607 $) (-1123)) 348 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $))) NIL (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $)))) NIL (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ (-607 $))) NIL (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ $)) NIL (|has| |#1| (-1004)))) (-1680 (((-735) $) NIL (|has| |#1| (-533)))) (-2308 (($ $) 229 (|has| |#1| (-533)))) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-2309 (($ $) 239 (|has| |#1| (-533)))) (-3704 (($ $) 190 (|has| |#1| (-533)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-1004))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-1004))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-1004))) (($ $ (-1123)) NIL (|has| |#1| (-1004)))) (-3295 (($ $) 73 (|has| |#1| (-533)))) (-3297 (((-1075 |#1| (-581 $)) $) 86 (|has| |#1| (-533)))) (-3499 (($ $) 304 (|has| $ (-1004)))) (-3809 (($ $) 167 (|has| |#1| (-533)))) (-3958 (($ $) 143 (|has| |#1| (-533)))) (-3807 (($ $) 163 (|has| |#1| (-533)))) (-3957 (($ $) 139 (|has| |#1| (-533)))) (-3805 (($ $) 159 (|has| |#1| (-533)))) (-3956 (($ $) 135 (|has| |#1| (-533)))) (-4287 (((-849 (-526)) $) NIL (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| |#1| (-584 (-849 (-363))))) (($ (-390 $)) NIL (|has| |#1| (-533))) (((-515) $) 346 (|has| |#1| (-584 (-515))))) (-3309 (($ $ $) NIL (|has| |#1| (-457)))) (-2655 (($ $ $) NIL (|has| |#1| (-457)))) (-4274 (((-823) $) 406) (($ (-581 $)) 397) (($ (-1123)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-533))) (($ (-47)) 299 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) (($ (-1075 |#1| (-581 $))) 88 (|has| |#1| (-1004))) (($ (-392 |#1|)) NIL (|has| |#1| (-533))) (($ (-905 (-392 |#1|))) NIL (|has| |#1| (-533))) (($ (-392 (-905 (-392 |#1|)))) NIL (|has| |#1| (-533))) (($ (-392 (-905 |#1|))) NIL (|has| |#1| (-533))) (($ (-905 |#1|)) NIL (|has| |#1| (-1004))) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-533)) (|has| |#1| (-995 (-392 (-526)))))) (($ (-526)) 34 (-3850 (|has| |#1| (-995 (-526))) (|has| |#1| (-1004))))) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL (|has| |#1| (-1004)))) (-2887 (($ $) NIL) (($ (-607 $)) NIL)) (-3399 (($ $ $) 210 (|has| |#1| (-533)))) (-3708 (($ $ $) 196 (|has| |#1| (-533)))) (-3710 (($ $ $) 200 (|has| |#1| (-533)))) (-3707 (($ $ $) 194 (|has| |#1| (-533)))) (-3709 (($ $ $) 198 (|has| |#1| (-533)))) (-2306 (((-111) (-112)) 9)) (-3812 (($ $) 173 (|has| |#1| (-533)))) (-3800 (($ $) 149 (|has| |#1| (-533)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 169 (|has| |#1| (-533)))) (-3798 (($ $) 145 (|has| |#1| (-533)))) (-3814 (($ $) 177 (|has| |#1| (-533)))) (-3802 (($ $) 153 (|has| |#1| (-533)))) (-1890 (($ (-1123) $) NIL) (($ (-1123) $ $) NIL) (($ (-1123) $ $ $) NIL) (($ (-1123) $ $ $ $) NIL) (($ (-1123) (-607 $)) NIL)) (-3712 (($ $) 204 (|has| |#1| (-533)))) (-3711 (($ $) 202 (|has| |#1| (-533)))) (-3815 (($ $) 179 (|has| |#1| (-533)))) (-3803 (($ $) 155 (|has| |#1| (-533)))) (-3813 (($ $) 175 (|has| |#1| (-533)))) (-3801 (($ $) 151 (|has| |#1| (-533)))) (-3811 (($ $) 171 (|has| |#1| (-533)))) (-3799 (($ $) 147 (|has| |#1| (-533)))) (-3702 (($ $) 182 (|has| |#1| (-533)))) (-2957 (($) 20 (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) CONST)) (-2312 (($ $) 233 (|has| |#1| (-533)))) (-2964 (($) 22 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))) CONST)) (-3706 (($ $) 184 (|has| |#1| (-533))) (($ $ $) 186 (|has| |#1| (-533)))) (-2313 (($ $) 231 (|has| |#1| (-533)))) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-1004))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-1004))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-1004))) (($ $ (-1123)) NIL (|has| |#1| (-1004)))) (-2311 (($ $) 235 (|has| |#1| (-533)))) (-3703 (($ $ $) 188 (|has| |#1| (-533)))) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 81)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 80)) (-4265 (($ (-1075 |#1| (-581 $)) (-1075 |#1| (-581 $))) 98 (|has| |#1| (-533))) (($ $ $) 42 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533))))) (-4156 (($ $ $) 40 (-3850 (|has| |#1| (-21)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (($ $) 29 (-3850 (|has| |#1| (-21)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (-4158 (($ $ $) 38 (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (** (($ $ $) 66 (|has| |#1| (-533))) (($ $ (-392 (-526))) 301 (|has| |#1| (-533))) (($ $ (-526)) 76 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533)))) (($ $ (-735)) 74 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063)))) (($ $ (-878)) 78 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))))) (* (($ (-392 (-526)) $) NIL (|has| |#1| (-533))) (($ $ (-392 (-526))) NIL (|has| |#1| (-533))) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))) (($ $ $) 36 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063)))) (($ (-526) $) 32 (-3850 (|has| |#1| (-21)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (($ (-735) $) NIL (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (($ (-878) $) NIL (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))))) -(((-299 |#1|) (-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-533)) (PROGN (-6 (-29 |#1|)) (-6 (-1145)) (-6 (-152)) (-6 (-597)) (-6 (-1087)) (-15 -4161 ($ $)) (-15 -1683 ((-111) $)) (-15 -1682 ($ $ (-526))) (IF (|has| |#1| (-436)) (PROGN (-15 -3006 ((-390 (-1117 $)) (-1117 $))) (-15 -3007 ((-390 (-1117 $)) (-1117 $)))) |%noBranch|) (IF (|has| |#1| (-995 (-526))) (-6 (-995 (-47))) |%noBranch|)) |%noBranch|))) (-811)) (T -299)) -((-4161 (*1 *1 *1) (-12 (-5 *1 (-299 *2)) (-4 *2 (-533)) (-4 *2 (-811)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-299 *3)) (-4 *3 (-533)) (-4 *3 (-811)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-299 *3)) (-4 *3 (-533)) (-4 *3 (-811)))) (-3006 (*1 *2 *3) (-12 (-5 *2 (-390 (-1117 *1))) (-5 *1 (-299 *4)) (-5 *3 (-1117 *1)) (-4 *4 (-436)) (-4 *4 (-533)) (-4 *4 (-811)))) (-3007 (*1 *2 *3) (-12 (-5 *2 (-390 (-1117 *1))) (-5 *1 (-299 *4)) (-5 *3 (-1117 *1)) (-4 *4 (-436)) (-4 *4 (-533)) (-4 *4 (-811))))) -(-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-533)) (PROGN (-6 (-29 |#1|)) (-6 (-1145)) (-6 (-152)) (-6 (-597)) (-6 (-1087)) (-15 -4161 ($ $)) (-15 -1683 ((-111) $)) (-15 -1682 ($ $ (-526))) (IF (|has| |#1| (-436)) (PROGN (-15 -3006 ((-390 (-1117 $)) (-1117 $))) (-15 -3007 ((-390 (-1117 $)) (-1117 $)))) |%noBranch|) (IF (|has| |#1| (-995 (-526))) (-6 (-995 (-47))) |%noBranch|)) |%noBranch|))) -((-4275 (((-299 |#2|) (-1 |#2| |#1|) (-299 |#1|)) 13))) -(((-300 |#1| |#2|) (-10 -7 (-15 -4275 ((-299 |#2|) (-1 |#2| |#1|) (-299 |#1|)))) (-811) (-811)) (T -300)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-299 *5)) (-4 *5 (-811)) (-4 *6 (-811)) (-5 *2 (-299 *6)) (-5 *1 (-300 *5 *6))))) -(-10 -7 (-15 -4275 ((-299 |#2|) (-1 |#2| |#1|) (-299 |#1|)))) -((-4048 (((-50) |#2| (-278 |#2|) (-735)) 33) (((-50) |#2| (-278 |#2|)) 24) (((-50) |#2| (-735)) 28) (((-50) |#2|) 25) (((-50) (-1123)) 21)) (-4137 (((-50) |#2| (-278 |#2|) (-392 (-526))) 51) (((-50) |#2| (-278 |#2|)) 48) (((-50) |#2| (-392 (-526))) 50) (((-50) |#2|) 49) (((-50) (-1123)) 47)) (-4100 (((-50) |#2| (-278 |#2|) (-392 (-526))) 46) (((-50) |#2| (-278 |#2|)) 43) (((-50) |#2| (-392 (-526))) 45) (((-50) |#2|) 44) (((-50) (-1123)) 42)) (-4097 (((-50) |#2| (-278 |#2|) (-526)) 39) (((-50) |#2| (-278 |#2|)) 35) (((-50) |#2| (-526)) 38) (((-50) |#2|) 36) (((-50) (-1123)) 34))) -(((-301 |#1| |#2|) (-10 -7 (-15 -4048 ((-50) (-1123))) (-15 -4048 ((-50) |#2|)) (-15 -4048 ((-50) |#2| (-735))) (-15 -4048 ((-50) |#2| (-278 |#2|))) (-15 -4048 ((-50) |#2| (-278 |#2|) (-735))) (-15 -4097 ((-50) (-1123))) (-15 -4097 ((-50) |#2|)) (-15 -4097 ((-50) |#2| (-526))) (-15 -4097 ((-50) |#2| (-278 |#2|))) (-15 -4097 ((-50) |#2| (-278 |#2|) (-526))) (-15 -4100 ((-50) (-1123))) (-15 -4100 ((-50) |#2|)) (-15 -4100 ((-50) |#2| (-392 (-526)))) (-15 -4100 ((-50) |#2| (-278 |#2|))) (-15 -4100 ((-50) |#2| (-278 |#2|) (-392 (-526)))) (-15 -4137 ((-50) (-1123))) (-15 -4137 ((-50) |#2|)) (-15 -4137 ((-50) |#2| (-392 (-526)))) (-15 -4137 ((-50) |#2| (-278 |#2|))) (-15 -4137 ((-50) |#2| (-278 |#2|) (-392 (-526))))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -301)) -((-4137 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *6 *3)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *4 (-392 (-526))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-4137 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) (-4100 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *6 *3)))) (-4100 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)))) (-4100 (*1 *2 *3 *4) (-12 (-5 *4 (-392 (-526))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-4100 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) (-4097 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 *5) (-606 *5))) (-5 *5 (-526)) (-5 *2 (-50)) (-5 *1 (-301 *6 *3)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-4 *5 (-13 (-436) (-811) (-995 *4) (-606 *4))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-4097 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-4097 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) (-4048 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-735)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *6 *3)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-4048 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4)))))) -(-10 -7 (-15 -4048 ((-50) (-1123))) (-15 -4048 ((-50) |#2|)) (-15 -4048 ((-50) |#2| (-735))) (-15 -4048 ((-50) |#2| (-278 |#2|))) (-15 -4048 ((-50) |#2| (-278 |#2|) (-735))) (-15 -4097 ((-50) (-1123))) (-15 -4097 ((-50) |#2|)) (-15 -4097 ((-50) |#2| (-526))) (-15 -4097 ((-50) |#2| (-278 |#2|))) (-15 -4097 ((-50) |#2| (-278 |#2|) (-526))) (-15 -4100 ((-50) (-1123))) (-15 -4100 ((-50) |#2|)) (-15 -4100 ((-50) |#2| (-392 (-526)))) (-15 -4100 ((-50) |#2| (-278 |#2|))) (-15 -4100 ((-50) |#2| (-278 |#2|) (-392 (-526)))) (-15 -4137 ((-50) (-1123))) (-15 -4137 ((-50) |#2|)) (-15 -4137 ((-50) |#2| (-392 (-526)))) (-15 -4137 ((-50) |#2| (-278 |#2|))) (-15 -4137 ((-50) |#2| (-278 |#2|) (-392 (-526))))) -((-1684 (((-50) |#2| (-112) (-278 |#2|) (-607 |#2|)) 88) (((-50) |#2| (-112) (-278 |#2|) (-278 |#2|)) 84) (((-50) |#2| (-112) (-278 |#2|) |#2|) 86) (((-50) (-278 |#2|) (-112) (-278 |#2|) |#2|) 87) (((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|))) 80) (((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 |#2|)) 82) (((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 |#2|)) 83) (((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|))) 81) (((-50) (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|)) 89) (((-50) (-278 |#2|) (-112) (-278 |#2|) (-278 |#2|)) 85))) -(((-302 |#1| |#2|) (-10 -7 (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) (-278 |#2|))) (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|)))) (-15 -1684 ((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|)))) (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) |#2|)) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) |#2|)) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) (-278 |#2|))) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) (-607 |#2|)))) (-13 (-811) (-533) (-584 (-515))) (-406 |#1|)) (T -302)) -((-1684 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-5 *6 (-607 *3)) (-4 *3 (-406 *7)) (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *7 *3)))) (-1684 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *3)))) (-1684 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *3)))) (-1684 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-278 *5)) (-5 *4 (-112)) (-4 *5 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *5)))) (-1684 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-112))) (-5 *6 (-607 (-278 *8))) (-4 *8 (-406 *7)) (-5 *5 (-278 *8)) (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *7 *8)))) (-1684 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-607 *7)) (-5 *4 (-607 (-112))) (-5 *5 (-278 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *7)))) (-1684 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-607 (-278 *8))) (-5 *4 (-607 (-112))) (-5 *5 (-278 *8)) (-5 *6 (-607 *8)) (-4 *8 (-406 *7)) (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *7 *8)))) (-1684 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-607 (-278 *7))) (-5 *4 (-607 (-112))) (-5 *5 (-278 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *7)))) (-1684 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-112)) (-5 *5 (-607 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *7)))) (-1684 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-278 *6)) (-5 *4 (-112)) (-4 *6 (-406 *5)) (-4 *5 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *5 *6))))) -(-10 -7 (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) (-278 |#2|))) (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|)))) (-15 -1684 ((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|)))) (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) |#2|)) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) |#2|)) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) (-278 |#2|))) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) (-607 |#2|)))) -((-1686 (((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526) (-1106)) 46) (((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526)) 47) (((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526) (-1106)) 43) (((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526)) 44)) (-1685 (((-1 (-211) (-211)) (-211)) 45))) -(((-303) (-10 -7 (-15 -1685 ((-1 (-211) (-211)) (-211))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526) (-1106))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526) (-1106))))) (T -303)) -((-1686 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-211)) (-5 *7 (-526)) (-5 *8 (-1106)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) (-1686 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-211)) (-5 *7 (-526)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) (-1686 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-526)) (-5 *7 (-1106)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) (-1686 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-526)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-303)) (-5 *3 (-211))))) -(-10 -7 (-15 -1685 ((-1 (-211) (-211)) (-211))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526) (-1106))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526) (-1106)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 25)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) NIL) (($ $ (-392 (-526)) (-392 (-526))) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) 20)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) 32)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) NIL) (((-392 (-526)) $ (-392 (-526))) 16)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL) (($ $ (-392 (-526))) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) NIL) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-1687 (((-392 (-526)) $) 17)) (-3393 (($ (-1186 |#1| |#2| |#3|)) 11)) (-2462 (((-1186 |#1| |#2| |#3|) $) 12)) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) NIL) (($ $ $) NIL (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-4264 (((-392 (-526)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 10)) (-4274 (((-823) $) 38) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) 30)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) NIL)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 27)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 33)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-304 |#1| |#2| |#3|) (-13 (-1188 |#1|) (-756) (-10 -8 (-15 -3393 ($ (-1186 |#1| |#2| |#3|))) (-15 -2462 ((-1186 |#1| |#2| |#3|) $)) (-15 -1687 ((-392 (-526)) $)))) (-13 (-348) (-811)) (-1123) |#1|) (T -304)) -((-3393 (*1 *1 *2) (-12 (-5 *2 (-1186 *3 *4 *5)) (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3) (-5 *1 (-304 *3 *4 *5)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4 *5)) (-5 *1 (-304 *3 *4 *5)) (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-304 *3 *4 *5)) (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3)))) -(-13 (-1188 |#1|) (-756) (-10 -8 (-15 -3393 ($ (-1186 |#1| |#2| |#3|))) (-15 -2462 ((-1186 |#1| |#2| |#3|) $)) (-15 -1687 ((-392 (-526)) $)))) -((-3311 (((-2 (|:| -2462 (-735)) (|:| -4270 |#1|) (|:| |radicand| (-607 |#1|))) (-390 |#1|) (-735)) 24)) (-4259 (((-607 (-2 (|:| -4270 (-735)) (|:| |logand| |#1|))) (-390 |#1|)) 28))) -(((-305 |#1|) (-10 -7 (-15 -3311 ((-2 (|:| -2462 (-735)) (|:| -4270 |#1|) (|:| |radicand| (-607 |#1|))) (-390 |#1|) (-735))) (-15 -4259 ((-607 (-2 (|:| -4270 (-735)) (|:| |logand| |#1|))) (-390 |#1|)))) (-533)) (T -305)) -((-4259 (*1 *2 *3) (-12 (-5 *3 (-390 *4)) (-4 *4 (-533)) (-5 *2 (-607 (-2 (|:| -4270 (-735)) (|:| |logand| *4)))) (-5 *1 (-305 *4)))) (-3311 (*1 *2 *3 *4) (-12 (-5 *3 (-390 *5)) (-4 *5 (-533)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *5) (|:| |radicand| (-607 *5)))) (-5 *1 (-305 *5)) (-5 *4 (-735))))) -(-10 -7 (-15 -3311 ((-2 (|:| -2462 (-735)) (|:| -4270 |#1|) (|:| |radicand| (-607 |#1|))) (-390 |#1|) (-735))) (-15 -4259 ((-607 (-2 (|:| -4270 (-735)) (|:| |logand| |#1|))) (-390 |#1|)))) -((-3384 (((-607 |#2|) (-1117 |#4|)) 43)) (-1692 ((|#3| (-526)) 46)) (-1690 (((-1117 |#4|) (-1117 |#3|)) 30)) (-1691 (((-1117 |#4|) (-1117 |#4|) (-526)) 56)) (-1689 (((-1117 |#3|) (-1117 |#4|)) 21)) (-4264 (((-607 (-735)) (-1117 |#4|) (-607 |#2|)) 40)) (-1688 (((-1117 |#3|) (-1117 |#4|) (-607 |#2|) (-607 |#3|)) 35))) -(((-306 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1688 ((-1117 |#3|) (-1117 |#4|) (-607 |#2|) (-607 |#3|))) (-15 -4264 ((-607 (-735)) (-1117 |#4|) (-607 |#2|))) (-15 -3384 ((-607 |#2|) (-1117 |#4|))) (-15 -1689 ((-1117 |#3|) (-1117 |#4|))) (-15 -1690 ((-1117 |#4|) (-1117 |#3|))) (-15 -1691 ((-1117 |#4|) (-1117 |#4|) (-526))) (-15 -1692 (|#3| (-526)))) (-757) (-811) (-1004) (-909 |#3| |#1| |#2|)) (T -306)) -((-1692 (*1 *2 *3) (-12 (-5 *3 (-526)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1004)) (-5 *1 (-306 *4 *5 *2 *6)) (-4 *6 (-909 *2 *4 *5)))) (-1691 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 *7)) (-5 *3 (-526)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-5 *1 (-306 *4 *5 *6 *7)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1117 *6)) (-4 *6 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-1117 *7)) (-5 *1 (-306 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1117 *7)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-5 *2 (-1117 *6)) (-5 *1 (-306 *4 *5 *6 *7)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-1117 *7)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-5 *2 (-607 *5)) (-5 *1 (-306 *4 *5 *6 *7)))) (-4264 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *8)) (-5 *4 (-607 *6)) (-4 *6 (-811)) (-4 *8 (-909 *7 *5 *6)) (-4 *5 (-757)) (-4 *7 (-1004)) (-5 *2 (-607 (-735))) (-5 *1 (-306 *5 *6 *7 *8)))) (-1688 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-5 *5 (-607 *8)) (-4 *7 (-811)) (-4 *8 (-1004)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-5 *2 (-1117 *8)) (-5 *1 (-306 *6 *7 *8 *9))))) -(-10 -7 (-15 -1688 ((-1117 |#3|) (-1117 |#4|) (-607 |#2|) (-607 |#3|))) (-15 -4264 ((-607 (-735)) (-1117 |#4|) (-607 |#2|))) (-15 -3384 ((-607 |#2|) (-1117 |#4|))) (-15 -1689 ((-1117 |#3|) (-1117 |#4|))) (-15 -1690 ((-1117 |#4|) (-1117 |#3|))) (-15 -1691 ((-1117 |#4|) (-1117 |#4|) (-526))) (-15 -1692 (|#3| (-526)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 14)) (-4092 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-526)))) $) 18)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-2737 ((|#1| $ (-526)) NIL)) (-1695 (((-526) $ (-526)) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2340 (($ (-1 |#1| |#1|) $) NIL)) (-1694 (($ (-1 (-526) (-526)) $) 10)) (-3554 (((-1106) $) NIL)) (-1693 (($ $ $) NIL (|has| (-526) (-756)))) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-3999 (((-526) |#1| $) NIL)) (-2957 (($) 15 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) 21 (|has| |#1| (-811)))) (-4156 (($ $) 11) (($ $ $) 20)) (-4158 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ (-526)) NIL) (($ (-526) |#1|) 19))) -(((-307 |#1|) (-13 (-21) (-682 (-526)) (-308 |#1| (-526)) (-10 -7 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) (-1052)) (T -307)) -NIL -(-13 (-21) (-682 (-526)) (-308 |#1| (-526)) (-10 -7 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4092 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $) 27)) (-1345 (((-3 $ "failed") $ $) 19)) (-3433 (((-735) $) 28)) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| "failed") $) 32)) (-3469 ((|#1| $) 31)) (-2737 ((|#1| $ (-526)) 25)) (-1695 ((|#2| $ (-526)) 26)) (-2340 (($ (-1 |#1| |#1|) $) 22)) (-1694 (($ (-1 |#2| |#2|) $) 23)) (-3554 (((-1106) $) 9)) (-1693 (($ $ $) 21 (|has| |#2| (-756)))) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ |#1|) 33)) (-3999 ((|#2| |#1| $) 24)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4158 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ |#2| |#1|) 29))) -(((-308 |#1| |#2|) (-134) (-1052) (-129)) (T -308)) -((-4158 (*1 *1 *2 *1) (-12 (-4 *1 (-308 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-129)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-308 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-129)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)) (-5 *2 (-735)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)) (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))))) (-1695 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-308 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-129)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-308 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1052)))) (-3999 (*1 *2 *3 *1) (-12 (-4 *1 (-308 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-129)))) (-1694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)))) (-1693 (*1 *1 *1 *1) (-12 (-4 *1 (-308 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-129)) (-4 *3 (-756))))) -(-13 (-129) (-995 |t#1|) (-10 -8 (-15 -4158 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3433 ((-735) $)) (-15 -4092 ((-607 (-2 (|:| |gen| |t#1|) (|:| -4260 |t#2|))) $)) (-15 -1695 (|t#2| $ (-526))) (-15 -2737 (|t#1| $ (-526))) (-15 -3999 (|t#2| |t#1| $)) (-15 -1694 ($ (-1 |t#2| |t#2|) $)) (-15 -2340 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-756)) (-15 -1693 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-995 |#1|) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4092 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-2737 ((|#1| $ (-526)) NIL)) (-1695 (((-735) $ (-526)) NIL)) (-2340 (($ (-1 |#1| |#1|) $) NIL)) (-1694 (($ (-1 (-735) (-735)) $) NIL)) (-3554 (((-1106) $) NIL)) (-1693 (($ $ $) NIL (|has| (-735) (-756)))) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-3999 (((-735) |#1| $) NIL)) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-735) |#1|) NIL))) -(((-309 |#1|) (-308 |#1| (-735)) (-1052)) (T -309)) -NIL -(-308 |#1| (-735)) -((-3817 (($ $) 53)) (-1697 (($ $ |#2| |#3| $) 14)) (-1698 (($ (-1 |#3| |#3|) $) 35)) (-1892 (((-111) $) 27)) (-1891 ((|#2| $) 29)) (-3780 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3117 ((|#2| $) 49)) (-4136 (((-607 |#2|) $) 38)) (-1696 (($ $ $ (-735)) 23)) (-4265 (($ $ |#2|) 42))) -(((-310 |#1| |#2| |#3|) (-10 -8 (-15 -3817 (|#1| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1696 (|#1| |#1| |#1| (-735))) (-15 -1697 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1698 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4136 ((-607 |#2|) |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -1892 ((-111) |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4265 (|#1| |#1| |#2|))) (-311 |#2| |#3|) (-1004) (-756)) (T -310)) -NIL -(-10 -8 (-15 -3817 (|#1| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1696 (|#1| |#1| |#1| (-735))) (-15 -1697 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1698 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4136 ((-607 |#2|) |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -1892 ((-111) |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4265 (|#1| |#1| |#2|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 88 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 86 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 85)) (-3469 (((-526) $) 89 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 87 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 84)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 73 (|has| |#1| (-436)))) (-1697 (($ $ |#1| |#2| $) 77)) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 80)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| |#2|) 59)) (-3120 ((|#2| $) 79)) (-1698 (($ (-1 |#2| |#2|) $) 78)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 83)) (-1891 ((|#1| $) 82)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-533)))) (-4264 ((|#2| $) 62)) (-3117 ((|#1| $) 74 (|has| |#1| (-436)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45) (($ (-392 (-526))) 55 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526))))))) (-4136 (((-607 |#1|) $) 81)) (-3999 ((|#1| $ |#2|) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 76 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-311 |#1| |#2|) (-134) (-1004) (-756)) (T -311)) -((-1892 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-111)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-607 *3)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-735)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) (-1697 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) (-1696 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *3 (-163)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-533)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)) (-4 *2 (-436)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-436))))) -(-13 (-46 |t#1| |t#2|) (-397 |t#1|) (-10 -8 (-15 -1892 ((-111) $)) (-15 -1891 (|t#1| $)) (-15 -4136 ((-607 |t#1|) $)) (-15 -2479 ((-735) $)) (-15 -3120 (|t#2| $)) (-15 -1698 ($ (-1 |t#2| |t#2|) $)) (-15 -1697 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-163)) (-15 -1696 ($ $ $ (-735))) |%noBranch|) (IF (|has| |t#1| (-533)) (-15 -3780 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-436)) (PROGN (-15 -3117 (|t#1| $)) (-15 -3817 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-275) |has| |#1| (-533)) ((-397 |#1|) . T) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-2083 (((-111) (-111)) NIL)) (-4106 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) NIL)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-2424 (($ $) NIL (|has| |#1| (-1052)))) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) NIL)) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2084 (($ $ (-526)) NIL)) (-2085 (((-735) $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3929 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2086 (($ (-607 |#1|)) NIL)) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-1608 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4109 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-312 |#1|) (-13 (-19 |#1|) (-267 |#1|) (-10 -8 (-15 -2086 ($ (-607 |#1|))) (-15 -2085 ((-735) $)) (-15 -2084 ($ $ (-526))) (-15 -2083 ((-111) (-111))))) (-1159)) (T -312)) -((-2086 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-312 *3)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-312 *3)) (-4 *3 (-1159))))) -(-13 (-19 |#1|) (-267 |#1|) (-10 -8 (-15 -2086 ($ (-607 |#1|))) (-15 -2085 ((-735) $)) (-15 -2084 ($ $ (-526))) (-15 -2083 ((-111) (-111))))) -((-4249 (((-111) $) 42)) (-4246 (((-735)) 22)) (-3649 ((|#2| $) 46) (($ $ (-878)) 103)) (-3433 (((-735)) 98)) (-1887 (($ (-1205 |#2|)) 20)) (-2103 (((-111) $) 115)) (-3429 ((|#2| $) 48) (($ $ (-878)) 101)) (-2106 (((-1117 |#2|) $) NIL) (((-1117 $) $ (-878)) 95)) (-1700 (((-1117 |#2|) $) 83)) (-1699 (((-1117 |#2|) $) 80) (((-3 (-1117 |#2|) "failed") $ $) 77)) (-1701 (($ $ (-1117 |#2|)) 53)) (-4247 (((-796 (-878))) 28) (((-878)) 43)) (-4230 (((-131)) 25)) (-4264 (((-796 (-878)) $) 30) (((-878) $) 117)) (-1702 (($) 109)) (-3537 (((-1205 |#2|) $) NIL) (((-653 |#2|) (-1205 $)) 39)) (-3002 (($ $) NIL) (((-3 $ "failed") $) 86)) (-4250 (((-111) $) 41))) -(((-313 |#1| |#2|) (-10 -8 (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3433 ((-735))) (-15 -3002 (|#1| |#1|)) (-15 -1699 ((-3 (-1117 |#2|) "failed") |#1| |#1|)) (-15 -1699 ((-1117 |#2|) |#1|)) (-15 -1700 ((-1117 |#2|) |#1|)) (-15 -1701 (|#1| |#1| (-1117 |#2|))) (-15 -2103 ((-111) |#1|)) (-15 -1702 (|#1|)) (-15 -3649 (|#1| |#1| (-878))) (-15 -3429 (|#1| |#1| (-878))) (-15 -2106 ((-1117 |#1|) |#1| (-878))) (-15 -3649 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -4264 ((-878) |#1|)) (-15 -4247 ((-878))) (-15 -2106 ((-1117 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -4246 ((-735))) (-15 -4247 ((-796 (-878)))) (-15 -4264 ((-796 (-878)) |#1|)) (-15 -4249 ((-111) |#1|)) (-15 -4250 ((-111) |#1|)) (-15 -4230 ((-131)))) (-314 |#2|) (-348)) (T -313)) -((-4230 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-131)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) (-4247 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-796 (-878))) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) (-4246 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) (-4247 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-878)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) (-3433 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4))))) -(-10 -8 (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3433 ((-735))) (-15 -3002 (|#1| |#1|)) (-15 -1699 ((-3 (-1117 |#2|) "failed") |#1| |#1|)) (-15 -1699 ((-1117 |#2|) |#1|)) (-15 -1700 ((-1117 |#2|) |#1|)) (-15 -1701 (|#1| |#1| (-1117 |#2|))) (-15 -2103 ((-111) |#1|)) (-15 -1702 (|#1|)) (-15 -3649 (|#1| |#1| (-878))) (-15 -3429 (|#1| |#1| (-878))) (-15 -2106 ((-1117 |#1|) |#1| (-878))) (-15 -3649 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -4264 ((-878) |#1|)) (-15 -4247 ((-878))) (-15 -2106 ((-1117 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -4246 ((-735))) (-15 -4247 ((-796 (-878)))) (-15 -4264 ((-796 (-878)) |#1|)) (-15 -4249 ((-111) |#1|)) (-15 -4250 ((-111) |#1|)) (-15 -4230 ((-131)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-4249 (((-111) $) 91)) (-4246 (((-735)) 87)) (-3649 ((|#1| $) 137) (($ $ (-878)) 134 (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) 119 (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3433 (((-735)) 109 (|has| |#1| (-353)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| "failed") $) 98)) (-3469 ((|#1| $) 97)) (-1887 (($ (-1205 |#1|)) 143)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-353)))) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-3294 (($) 106 (|has| |#1| (-353)))) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-3133 (($) 121 (|has| |#1| (-353)))) (-1772 (((-111) $) 122 (|has| |#1| (-353)))) (-1862 (($ $ (-735)) 84 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) 83 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) 68)) (-4090 (((-878) $) 124 (|has| |#1| (-353))) (((-796 (-878)) $) 81 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) 30)) (-2105 (($) 132 (|has| |#1| (-353)))) (-2103 (((-111) $) 131 (|has| |#1| (-353)))) (-3429 ((|#1| $) 138) (($ $ (-878)) 135 (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) 110 (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-2106 (((-1117 |#1|) $) 142) (((-1117 $) $ (-878)) 136 (|has| |#1| (-353)))) (-2102 (((-878) $) 107 (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) 128 (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) 127 (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) 126 (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) 129 (|has| |#1| (-353)))) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3764 (($) 111 (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) 108 (|has| |#1| (-353)))) (-4248 (((-111) $) 90)) (-3555 (((-1070) $) 10)) (-2470 (($) 130 (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 118 (|has| |#1| (-353)))) (-4051 (((-390 $) $) 71)) (-4247 (((-796 (-878))) 88) (((-878)) 140)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1863 (((-735) $) 123 (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) 82 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) 96)) (-4129 (($ $) 115 (|has| |#1| (-353))) (($ $ (-735)) 113 (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) 89) (((-878) $) 139)) (-3499 (((-1117 |#1|)) 141)) (-1766 (($) 120 (|has| |#1| (-353)))) (-1702 (($) 133 (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) 145) (((-653 |#1|) (-1205 $)) 144)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 117 (|has| |#1| (-353)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ |#1|) 99)) (-3002 (($ $) 116 (|has| |#1| (-353))) (((-3 $ "failed") $) 80 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 28)) (-2104 (((-1205 $)) 147) (((-1205 $) (-878)) 146)) (-2150 (((-111) $ $) 37)) (-4250 (((-111) $) 92)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-4245 (($ $) 86 (|has| |#1| (-353))) (($ $ (-735)) 85 (|has| |#1| (-353)))) (-2969 (($ $) 114 (|has| |#1| (-353))) (($ $ (-735)) 112 (|has| |#1| (-353)))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62) (($ $ |#1|) 95)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-314 |#1|) (-134) (-348)) (T -314)) -((-2104 (*1 *2) (-12 (-4 *3 (-348)) (-5 *2 (-1205 *1)) (-4 *1 (-314 *3)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-878)) (-4 *4 (-348)) (-5 *2 (-1205 *1)) (-4 *1 (-314 *4)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1205 *3)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-314 *4)) (-4 *4 (-348)) (-5 *2 (-653 *4)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-348)) (-4 *1 (-314 *3)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1117 *3)))) (-3499 (*1 *2) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1117 *3)))) (-4247 (*1 *2) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-878)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-878)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-348)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-348)))) (-2106 (*1 *2 *1 *3) (-12 (-5 *3 (-878)) (-4 *4 (-353)) (-4 *4 (-348)) (-5 *2 (-1117 *1)) (-4 *1 (-314 *4)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) (-1702 (*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) (-2105 (*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-111)))) (-2470 (*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-353)) (-4 *1 (-314 *3)) (-4 *3 (-348)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3)))) (-1699 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3))))) -(-13 (-1223 |t#1|) (-995 |t#1|) (-10 -8 (-15 -2104 ((-1205 $))) (-15 -2104 ((-1205 $) (-878))) (-15 -3537 ((-1205 |t#1|) $)) (-15 -3537 ((-653 |t#1|) (-1205 $))) (-15 -1887 ($ (-1205 |t#1|))) (-15 -2106 ((-1117 |t#1|) $)) (-15 -3499 ((-1117 |t#1|))) (-15 -4247 ((-878))) (-15 -4264 ((-878) $)) (-15 -3429 (|t#1| $)) (-15 -3649 (|t#1| $)) (IF (|has| |t#1| (-353)) (PROGN (-6 (-335)) (-15 -2106 ((-1117 $) $ (-878))) (-15 -3429 ($ $ (-878))) (-15 -3649 ($ $ (-878))) (-15 -1702 ($)) (-15 -2105 ($)) (-15 -2103 ((-111) $)) (-15 -2470 ($)) (-15 -1701 ($ $ (-1117 |t#1|))) (-15 -1700 ((-1117 |t#1|) $)) (-15 -1699 ((-1117 |t#1|) $)) (-15 -1699 ((-3 (-1117 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| |#1| (-353)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-219) |has| |#1| (-353)) ((-229) . T) ((-275) . T) ((-292) . T) ((-1223 |#1|) . T) ((-348) . T) ((-387) -3850 (|has| |#1| (-353)) (|has| |#1| (-139))) ((-353) |has| |#1| (-353)) ((-335) |has| |#1| (-353)) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 |#1|) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-995 |#1|) . T) ((-1010 #1#) . T) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-353)) ((-1164) . T) ((-1213 |#1|) . T)) -((-2865 (((-111) $ $) NIL)) (-1720 (($ (-1122) $) 88)) (-1711 (($) 77)) (-1703 (((-1070) (-1070)) 11)) (-1710 (($) 78)) (-1714 (($) 90) (($ (-299 (-663))) 98) (($ (-299 (-665))) 94) (($ (-299 (-658))) 102) (($ (-299 (-363))) 109) (($ (-299 (-526))) 105) (($ (-299 (-159 (-363)))) 113)) (-1719 (($ (-1122) $) 89)) (-1709 (($ (-607 (-823))) 79)) (-1705 (((-1211) $) 75)) (-1707 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1718 (($ (-1070)) 51)) (-1704 (((-1054) $) 25)) (-1721 (($ (-1044 (-905 (-526))) $) 85) (($ (-1044 (-905 (-526))) (-905 (-526)) $) 86)) (-1717 (($ (-1070)) 87)) (-1713 (($ (-1122) $) 115) (($ (-1122) $ $) 116)) (-1708 (($ (-1123) (-607 (-1123))) 76)) (-1716 (($ (-1106)) 82) (($ (-607 (-1106))) 80)) (-4274 (((-823) $) 118)) (-1706 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1122)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3722 (-111)) (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |blockBranch| (-607 $)) (|:| |commentBranch| (-607 (-1106))) (|:| |callBranch| (-1106)) (|:| |forBranch| (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) (|:| -3494 $))) (|:| |labelBranch| (-1070)) (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 $))) (|:| |commonBranch| (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) (|:| |printBranch| (-607 (-823)))) $) 44)) (-1715 (($ (-1106)) 187)) (-1712 (($ (-607 $)) 114)) (-2883 (($ (-1123) (-1106)) 120) (($ (-1123) (-299 (-665))) 160) (($ (-1123) (-299 (-663))) 161) (($ (-1123) (-299 (-658))) 162) (($ (-1123) (-653 (-665))) 123) (($ (-1123) (-653 (-663))) 126) (($ (-1123) (-653 (-658))) 129) (($ (-1123) (-1205 (-665))) 132) (($ (-1123) (-1205 (-663))) 135) (($ (-1123) (-1205 (-658))) 138) (($ (-1123) (-653 (-299 (-665)))) 141) (($ (-1123) (-653 (-299 (-663)))) 144) (($ (-1123) (-653 (-299 (-658)))) 147) (($ (-1123) (-1205 (-299 (-665)))) 150) (($ (-1123) (-1205 (-299 (-663)))) 153) (($ (-1123) (-1205 (-299 (-658)))) 156) (($ (-1123) (-607 (-905 (-526))) (-299 (-665))) 157) (($ (-1123) (-607 (-905 (-526))) (-299 (-663))) 158) (($ (-1123) (-607 (-905 (-526))) (-299 (-658))) 159) (($ (-1123) (-299 (-526))) 184) (($ (-1123) (-299 (-363))) 185) (($ (-1123) (-299 (-159 (-363)))) 186) (($ (-1123) (-653 (-299 (-526)))) 165) (($ (-1123) (-653 (-299 (-363)))) 168) (($ (-1123) (-653 (-299 (-159 (-363))))) 171) (($ (-1123) (-1205 (-299 (-526)))) 174) (($ (-1123) (-1205 (-299 (-363)))) 177) (($ (-1123) (-1205 (-299 (-159 (-363))))) 180) (($ (-1123) (-607 (-905 (-526))) (-299 (-526))) 181) (($ (-1123) (-607 (-905 (-526))) (-299 (-363))) 182) (($ (-1123) (-607 (-905 (-526))) (-299 (-159 (-363)))) 183)) (-3353 (((-111) $ $) NIL))) -(((-315) (-13 (-1052) (-10 -8 (-15 -4274 ((-823) $)) (-15 -1721 ($ (-1044 (-905 (-526))) $)) (-15 -1721 ($ (-1044 (-905 (-526))) (-905 (-526)) $)) (-15 -1720 ($ (-1122) $)) (-15 -1719 ($ (-1122) $)) (-15 -1718 ($ (-1070))) (-15 -1717 ($ (-1070))) (-15 -1716 ($ (-1106))) (-15 -1716 ($ (-607 (-1106)))) (-15 -1715 ($ (-1106))) (-15 -1714 ($)) (-15 -1714 ($ (-299 (-663)))) (-15 -1714 ($ (-299 (-665)))) (-15 -1714 ($ (-299 (-658)))) (-15 -1714 ($ (-299 (-363)))) (-15 -1714 ($ (-299 (-526)))) (-15 -1714 ($ (-299 (-159 (-363))))) (-15 -1713 ($ (-1122) $)) (-15 -1713 ($ (-1122) $ $)) (-15 -2883 ($ (-1123) (-1106))) (-15 -2883 ($ (-1123) (-299 (-665)))) (-15 -2883 ($ (-1123) (-299 (-663)))) (-15 -2883 ($ (-1123) (-299 (-658)))) (-15 -2883 ($ (-1123) (-653 (-665)))) (-15 -2883 ($ (-1123) (-653 (-663)))) (-15 -2883 ($ (-1123) (-653 (-658)))) (-15 -2883 ($ (-1123) (-1205 (-665)))) (-15 -2883 ($ (-1123) (-1205 (-663)))) (-15 -2883 ($ (-1123) (-1205 (-658)))) (-15 -2883 ($ (-1123) (-653 (-299 (-665))))) (-15 -2883 ($ (-1123) (-653 (-299 (-663))))) (-15 -2883 ($ (-1123) (-653 (-299 (-658))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-665))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-663))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-658))))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-665)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-663)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-658)))) (-15 -2883 ($ (-1123) (-299 (-526)))) (-15 -2883 ($ (-1123) (-299 (-363)))) (-15 -2883 ($ (-1123) (-299 (-159 (-363))))) (-15 -2883 ($ (-1123) (-653 (-299 (-526))))) (-15 -2883 ($ (-1123) (-653 (-299 (-363))))) (-15 -2883 ($ (-1123) (-653 (-299 (-159 (-363)))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-526))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-363))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-159 (-363)))))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-526)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-363)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-159 (-363))))) (-15 -1712 ($ (-607 $))) (-15 -1711 ($)) (-15 -1710 ($)) (-15 -1709 ($ (-607 (-823)))) (-15 -1708 ($ (-1123) (-607 (-1123)))) (-15 -1707 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1706 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1122)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3722 (-111)) (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |blockBranch| (-607 $)) (|:| |commentBranch| (-607 (-1106))) (|:| |callBranch| (-1106)) (|:| |forBranch| (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) (|:| -3494 $))) (|:| |labelBranch| (-1070)) (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 $))) (|:| |commonBranch| (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) (|:| |printBranch| (-607 (-823)))) $)) (-15 -1705 ((-1211) $)) (-15 -1704 ((-1054) $)) (-15 -1703 ((-1070) (-1070)))))) (T -315)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-315)))) (-1721 (*1 *1 *2 *1) (-12 (-5 *2 (-1044 (-905 (-526)))) (-5 *1 (-315)))) (-1721 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1044 (-905 (-526)))) (-5 *3 (-905 (-526))) (-5 *1 (-315)))) (-1720 (*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) (-1719 (*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) (-1718 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315)))) (-1717 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-315)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-315)))) (-1715 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-315)))) (-1714 (*1 *1) (-5 *1 (-315))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-663))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-665))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-658))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-159 (-363)))) (-5 *1 (-315)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) (-1713 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1106)) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-665))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-663))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-658))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-665))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-663))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-658))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-665))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-663))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-658))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-665)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-663)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-658)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-665)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-663)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-658)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-665))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-663))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-658))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-526))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-363))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-159 (-363)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-526)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-363)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-159 (-363))))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-526)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-363)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-159 (-363))))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-526))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-363))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-159 (-363)))) (-5 *1 (-315)))) (-1712 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-5 *1 (-315)))) (-1711 (*1 *1) (-5 *1 (-315))) (-1710 (*1 *1) (-5 *1 (-315))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-315)))) (-1708 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1123)) (-5 *1 (-315)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-315)))) (-1706 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1122)) (|:| |thenClause| (-315)) (|:| |elseClause| (-315)))) (|:| |returnBranch| (-2 (|:| -3722 (-111)) (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |blockBranch| (-607 (-315))) (|:| |commentBranch| (-607 (-1106))) (|:| |callBranch| (-1106)) (|:| |forBranch| (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) (|:| -3494 (-315)))) (|:| |labelBranch| (-1070)) (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 (-315)))) (|:| |commonBranch| (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) (|:| |printBranch| (-607 (-823))))) (-5 *1 (-315)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-315)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) (-1703 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315))))) -(-13 (-1052) (-10 -8 (-15 -4274 ((-823) $)) (-15 -1721 ($ (-1044 (-905 (-526))) $)) (-15 -1721 ($ (-1044 (-905 (-526))) (-905 (-526)) $)) (-15 -1720 ($ (-1122) $)) (-15 -1719 ($ (-1122) $)) (-15 -1718 ($ (-1070))) (-15 -1717 ($ (-1070))) (-15 -1716 ($ (-1106))) (-15 -1716 ($ (-607 (-1106)))) (-15 -1715 ($ (-1106))) (-15 -1714 ($)) (-15 -1714 ($ (-299 (-663)))) (-15 -1714 ($ (-299 (-665)))) (-15 -1714 ($ (-299 (-658)))) (-15 -1714 ($ (-299 (-363)))) (-15 -1714 ($ (-299 (-526)))) (-15 -1714 ($ (-299 (-159 (-363))))) (-15 -1713 ($ (-1122) $)) (-15 -1713 ($ (-1122) $ $)) (-15 -2883 ($ (-1123) (-1106))) (-15 -2883 ($ (-1123) (-299 (-665)))) (-15 -2883 ($ (-1123) (-299 (-663)))) (-15 -2883 ($ (-1123) (-299 (-658)))) (-15 -2883 ($ (-1123) (-653 (-665)))) (-15 -2883 ($ (-1123) (-653 (-663)))) (-15 -2883 ($ (-1123) (-653 (-658)))) (-15 -2883 ($ (-1123) (-1205 (-665)))) (-15 -2883 ($ (-1123) (-1205 (-663)))) (-15 -2883 ($ (-1123) (-1205 (-658)))) (-15 -2883 ($ (-1123) (-653 (-299 (-665))))) (-15 -2883 ($ (-1123) (-653 (-299 (-663))))) (-15 -2883 ($ (-1123) (-653 (-299 (-658))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-665))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-663))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-658))))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-665)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-663)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-658)))) (-15 -2883 ($ (-1123) (-299 (-526)))) (-15 -2883 ($ (-1123) (-299 (-363)))) (-15 -2883 ($ (-1123) (-299 (-159 (-363))))) (-15 -2883 ($ (-1123) (-653 (-299 (-526))))) (-15 -2883 ($ (-1123) (-653 (-299 (-363))))) (-15 -2883 ($ (-1123) (-653 (-299 (-159 (-363)))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-526))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-363))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-159 (-363)))))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-526)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-363)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-159 (-363))))) (-15 -1712 ($ (-607 $))) (-15 -1711 ($)) (-15 -1710 ($)) (-15 -1709 ($ (-607 (-823)))) (-15 -1708 ($ (-1123) (-607 (-1123)))) (-15 -1707 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1706 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1122)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3722 (-111)) (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |blockBranch| (-607 $)) (|:| |commentBranch| (-607 (-1106))) (|:| |callBranch| (-1106)) (|:| |forBranch| (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) (|:| -3494 $))) (|:| |labelBranch| (-1070)) (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 $))) (|:| |commonBranch| (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) (|:| |printBranch| (-607 (-823)))) $)) (-15 -1705 ((-1211) $)) (-15 -1704 ((-1054) $)) (-15 -1703 ((-1070) (-1070))))) -((-2865 (((-111) $ $) NIL)) (-1722 (((-111) $) 11)) (-3960 (($ |#1|) 8)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3956 (($ |#1|) 9)) (-4274 (((-823) $) 17)) (-2289 ((|#1| $) 12)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 19))) -(((-316 |#1|) (-13 (-811) (-10 -8 (-15 -3960 ($ |#1|)) (-15 -3956 ($ |#1|)) (-15 -1722 ((-111) $)) (-15 -2289 (|#1| $)))) (-811)) (T -316)) -((-3960 (*1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) (-3956 (*1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-316 *3)) (-4 *3 (-811)))) (-2289 (*1 *2 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811))))) -(-13 (-811) (-10 -8 (-15 -3960 ($ |#1|)) (-15 -3956 ($ |#1|)) (-15 -1722 ((-111) $)) (-15 -2289 (|#1| $)))) -((-1723 (((-315) (-1123) (-905 (-526))) 23)) (-1724 (((-315) (-1123) (-905 (-526))) 27)) (-2378 (((-315) (-1123) (-1044 (-905 (-526))) (-1044 (-905 (-526)))) 26) (((-315) (-1123) (-905 (-526)) (-905 (-526))) 24)) (-1725 (((-315) (-1123) (-905 (-526))) 31))) -(((-317) (-10 -7 (-15 -1723 ((-315) (-1123) (-905 (-526)))) (-15 -2378 ((-315) (-1123) (-905 (-526)) (-905 (-526)))) (-15 -2378 ((-315) (-1123) (-1044 (-905 (-526))) (-1044 (-905 (-526))))) (-15 -1724 ((-315) (-1123) (-905 (-526)))) (-15 -1725 ((-315) (-1123) (-905 (-526)))))) (T -317)) -((-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317)))) (-2378 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-1044 (-905 (-526)))) (-5 *2 (-315)) (-5 *1 (-317)))) (-2378 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317))))) -(-10 -7 (-15 -1723 ((-315) (-1123) (-905 (-526)))) (-15 -2378 ((-315) (-1123) (-905 (-526)) (-905 (-526)))) (-15 -2378 ((-315) (-1123) (-1044 (-905 (-526))) (-1044 (-905 (-526))))) (-15 -1724 ((-315) (-1123) (-905 (-526)))) (-15 -1725 ((-315) (-1123) (-905 (-526))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4161 (($ $) 33)) (-1728 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-1726 (((-1205 |#4|) $) 125)) (-2068 (((-398 |#2| (-392 |#2|) |#3| |#4|) $) 31)) (-3555 (((-1070) $) NIL)) (-2470 (((-3 |#4| "failed") $) 36)) (-1727 (((-1205 |#4|) $) 118)) (-1729 (($ (-398 |#2| (-392 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-526)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3754 (((-2 (|:| -2386 (-398 |#2| (-392 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4274 (((-823) $) 17)) (-2957 (($) 14 T CONST)) (-3353 (((-111) $ $) 20)) (-4156 (($ $) 27) (($ $ $) NIL)) (-4158 (($ $ $) 25)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 23))) -(((-318 |#1| |#2| |#3| |#4|) (-13 (-321 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1727 ((-1205 |#4|) $)) (-15 -1726 ((-1205 |#4|) $)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -318)) -((-1727 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-1205 *6)) (-5 *1 (-318 *3 *4 *5 *6)) (-4 *6 (-327 *3 *4 *5)))) (-1726 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-1205 *6)) (-5 *1 (-318 *3 *4 *5 *6)) (-4 *6 (-327 *3 *4 *5))))) -(-13 (-321 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1727 ((-1205 |#4|) $)) (-15 -1726 ((-1205 |#4|) $)))) -((-4275 (((-318 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-318 |#1| |#2| |#3| |#4|)) 33))) -(((-319 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4275 ((-318 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-318 |#1| |#2| |#3| |#4|)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|) (-348) (-1181 |#5|) (-1181 (-392 |#6|)) (-327 |#5| |#6| |#7|)) (T -319)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-318 *5 *6 *7 *8)) (-4 *5 (-348)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) (-4 *9 (-348)) (-4 *10 (-1181 *9)) (-4 *11 (-1181 (-392 *10))) (-5 *2 (-318 *9 *10 *11 *12)) (-5 *1 (-319 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-327 *9 *10 *11))))) -(-10 -7 (-15 -4275 ((-318 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-318 |#1| |#2| |#3| |#4|)))) -((-1728 (((-111) $) 14))) -(((-320 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1728 ((-111) |#1|))) (-321 |#2| |#3| |#4| |#5|) (-348) (-1181 |#2|) (-1181 (-392 |#3|)) (-327 |#2| |#3| |#4|)) (T -320)) -NIL -(-10 -8 (-15 -1728 ((-111) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4161 (($ $) 26)) (-1728 (((-111) $) 25)) (-3554 (((-1106) $) 9)) (-2068 (((-398 |#2| (-392 |#2|) |#3| |#4|) $) 32)) (-3555 (((-1070) $) 10)) (-2470 (((-3 |#4| "failed") $) 24)) (-1729 (($ (-398 |#2| (-392 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-526)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3754 (((-2 (|:| -2386 (-398 |#2| (-392 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20))) -(((-321 |#1| |#2| |#3| |#4|) (-134) (-348) (-1181 |t#1|) (-1181 (-392 |t#2|)) (-327 |t#1| |t#2| |t#3|)) (T -321)) -((-2068 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 (-398 *4 (-392 *4) *5 *6)))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-398 *4 (-392 *4) *5 *6)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-4 *3 (-348)) (-4 *1 (-321 *3 *4 *5 *6)))) (-1729 (*1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *1 (-321 *3 *4 *5 *2)) (-4 *2 (-327 *3 *4 *5)))) (-1729 (*1 *1 *2 *2) (-12 (-4 *2 (-348)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))) (-4 *1 (-321 *2 *3 *4 *5)) (-4 *5 (-327 *2 *3 *4)))) (-1729 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-526)) (-4 *2 (-348)) (-4 *4 (-1181 *2)) (-4 *5 (-1181 (-392 *4))) (-4 *1 (-321 *2 *4 *5 *6)) (-4 *6 (-327 *2 *4 *5)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 (-2 (|:| -2386 (-398 *4 (-392 *4) *5 *6)) (|:| |principalPart| *6))))) (-4161 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3 *4 *5)) (-4 *2 (-348)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))) (-4 *5 (-327 *2 *3 *4)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 (-111)))) (-2470 (*1 *2 *1) (|partial| -12 (-4 *1 (-321 *3 *4 *5 *2)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *2 (-327 *3 *4 *5)))) (-1729 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-348)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-4 *1 (-321 *4 *3 *5 *2)) (-4 *2 (-327 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2068 ((-398 |t#2| (-392 |t#2|) |t#3| |t#4|) $)) (-15 -1729 ($ (-398 |t#2| (-392 |t#2|) |t#3| |t#4|))) (-15 -1729 ($ |t#4|)) (-15 -1729 ($ |t#1| |t#1|)) (-15 -1729 ($ |t#1| |t#1| (-526))) (-15 -3754 ((-2 (|:| -2386 (-398 |t#2| (-392 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4161 ($ $)) (-15 -1728 ((-111) $)) (-15 -2470 ((-3 |t#4| "failed") $)) (-15 -1729 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-4086 (($ $ (-1123) |#2|) NIL) (($ $ (-607 (-1123)) (-607 |#2|)) 20) (($ $ (-607 (-278 |#2|))) 15) (($ $ (-278 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-607 |#2|) (-607 |#2|)) NIL)) (-4118 (($ $ |#2|) 11))) -(((-322 |#1| |#2|) (-10 -8 (-15 -4118 (|#1| |#1| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 |#2|))) (-15 -4086 (|#1| |#1| (-1123) |#2|))) (-323 |#2|) (-1052)) (T -322)) -NIL -(-10 -8 (-15 -4118 (|#1| |#1| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 |#2|))) (-15 -4086 (|#1| |#1| (-1123) |#2|))) -((-4275 (($ (-1 |#1| |#1|) $) 6)) (-4086 (($ $ (-1123) |#1|) 17 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 16 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-607 (-278 |#1|))) 15 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 14 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-294 |#1|))) (($ $ (-607 |#1|) (-607 |#1|)) 12 (|has| |#1| (-294 |#1|)))) (-4118 (($ $ |#1|) 11 (|has| |#1| (-271 |#1| |#1|))))) -(((-323 |#1|) (-134) (-1052)) (T -323)) -((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1052))))) -(-13 (-10 -8 (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-271 |t#1| |t#1|)) (-6 (-271 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-294 |t#1|)) (-6 (-294 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496 (-1123) |t#1|)) (-6 (-496 (-1123) |t#1|)) |%noBranch|))) -(((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1123)) $) NIL)) (-1730 (((-111)) 91) (((-111) (-111)) 92)) (-1636 (((-607 (-581 $)) $) NIL)) (-3806 (($ $) NIL)) (-3961 (($ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL)) (-3337 (($ $) NIL)) (-3804 (($ $) NIL)) (-3960 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-581 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-299 |#3|)) 71) (((-3 $ "failed") (-1123)) 97) (((-3 $ "failed") (-299 (-526))) 59 (|has| |#3| (-995 (-526)))) (((-3 $ "failed") (-392 (-905 (-526)))) 65 (|has| |#3| (-995 (-526)))) (((-3 $ "failed") (-905 (-526))) 60 (|has| |#3| (-995 (-526)))) (((-3 $ "failed") (-299 (-363))) 89 (|has| |#3| (-995 (-363)))) (((-3 $ "failed") (-392 (-905 (-363)))) 83 (|has| |#3| (-995 (-363)))) (((-3 $ "failed") (-905 (-363))) 78 (|has| |#3| (-995 (-363))))) (-3469 (((-581 $) $) NIL) ((|#3| $) NIL) (($ (-299 |#3|)) 72) (($ (-1123)) 98) (($ (-299 (-526))) 61 (|has| |#3| (-995 (-526)))) (($ (-392 (-905 (-526)))) 66 (|has| |#3| (-995 (-526)))) (($ (-905 (-526))) 62 (|has| |#3| (-995 (-526)))) (($ (-299 (-363))) 90 (|has| |#3| (-995 (-363)))) (($ (-392 (-905 (-363)))) 84 (|has| |#3| (-995 (-363)))) (($ (-905 (-363))) 80 (|has| |#3| (-995 (-363))))) (-3781 (((-3 $ "failed") $) NIL)) (-3949 (($) 10)) (-2870 (($ $) NIL) (($ (-607 $)) NIL)) (-1635 (((-607 (-112)) $) NIL)) (-2307 (((-112) (-112)) NIL)) (-2471 (((-111) $) NIL)) (-2973 (((-111) $) NIL (|has| $ (-995 (-526))))) (-1633 (((-1117 $) (-581 $)) NIL (|has| $ (-1004)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 $ $) (-581 $)) NIL)) (-1638 (((-3 (-581 $) "failed") $) NIL)) (-1834 (($ $) 94)) (-4259 (($ $) NIL)) (-3554 (((-1106) $) NIL)) (-1637 (((-607 (-581 $)) $) NIL)) (-2288 (($ (-112) $) 93) (($ (-112) (-607 $)) NIL)) (-2930 (((-111) $ (-112)) NIL) (((-111) $ (-1123)) NIL)) (-2900 (((-735) $) NIL)) (-3555 (((-1070) $) NIL)) (-1634 (((-111) $ $) NIL) (((-111) $ (-1123)) NIL)) (-4260 (($ $) NIL)) (-2974 (((-111) $) NIL (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL)) (-3499 (($ $) NIL (|has| $ (-1004)))) (-3805 (($ $) NIL)) (-3956 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-581 $)) NIL) (($ |#3|) NIL) (($ (-526)) NIL) (((-299 |#3|) $) 96)) (-3423 (((-735)) NIL)) (-2887 (($ $) NIL) (($ (-607 $)) NIL)) (-2306 (((-111) (-112)) NIL)) (-3800 (($ $) NIL)) (-3798 (($ $) NIL)) (-3799 (($ $) NIL)) (-3702 (($ $) NIL)) (-2957 (($) 95 T CONST)) (-2964 (($) 24 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL))) -(((-324 |#1| |#2| |#3|) (-13 (-283) (-37 |#3|) (-995 |#3|) (-859 (-1123)) (-10 -8 (-15 -3469 ($ (-299 |#3|))) (-15 -3470 ((-3 $ "failed") (-299 |#3|))) (-15 -3469 ($ (-1123))) (-15 -3470 ((-3 $ "failed") (-1123))) (-15 -4274 ((-299 |#3|) $)) (IF (|has| |#3| (-995 (-526))) (PROGN (-15 -3469 ($ (-299 (-526)))) (-15 -3470 ((-3 $ "failed") (-299 (-526)))) (-15 -3469 ($ (-392 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-526))))) (-15 -3469 ($ (-905 (-526)))) (-15 -3470 ((-3 $ "failed") (-905 (-526))))) |%noBranch|) (IF (|has| |#3| (-995 (-363))) (PROGN (-15 -3469 ($ (-299 (-363)))) (-15 -3470 ((-3 $ "failed") (-299 (-363)))) (-15 -3469 ($ (-392 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-363))))) (-15 -3469 ($ (-905 (-363)))) (-15 -3470 ((-3 $ "failed") (-905 (-363))))) |%noBranch|) (-15 -3702 ($ $)) (-15 -3337 ($ $)) (-15 -4260 ($ $)) (-15 -4259 ($ $)) (-15 -1834 ($ $)) (-15 -3960 ($ $)) (-15 -3956 ($ $)) (-15 -3961 ($ $)) (-15 -3798 ($ $)) (-15 -3799 ($ $)) (-15 -3800 ($ $)) (-15 -3804 ($ $)) (-15 -3805 ($ $)) (-15 -3806 ($ $)) (-15 -3949 ($)) (-15 -3384 ((-607 (-1123)) $)) (-15 -1730 ((-111))) (-15 -1730 ((-111) (-111))))) (-607 (-1123)) (-607 (-1123)) (-372)) (T -324)) -((-3469 (*1 *1 *2) (-12 (-5 *2 (-299 *5)) (-4 *5 (-372)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 *5)) (-4 *5 (-372)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 *2)) (-14 *4 (-607 *2)) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 *2)) (-14 *4 (-607 *2)) (-4 *5 (-372)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-299 *5)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-526)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-526)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-363)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-363)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3702 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-4260 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-4259 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-1834 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3956 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3949 (*1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-324 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-372)))) (-1730 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372))))) -(-13 (-283) (-37 |#3|) (-995 |#3|) (-859 (-1123)) (-10 -8 (-15 -3469 ($ (-299 |#3|))) (-15 -3470 ((-3 $ "failed") (-299 |#3|))) (-15 -3469 ($ (-1123))) (-15 -3470 ((-3 $ "failed") (-1123))) (-15 -4274 ((-299 |#3|) $)) (IF (|has| |#3| (-995 (-526))) (PROGN (-15 -3469 ($ (-299 (-526)))) (-15 -3470 ((-3 $ "failed") (-299 (-526)))) (-15 -3469 ($ (-392 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-526))))) (-15 -3469 ($ (-905 (-526)))) (-15 -3470 ((-3 $ "failed") (-905 (-526))))) |%noBranch|) (IF (|has| |#3| (-995 (-363))) (PROGN (-15 -3469 ($ (-299 (-363)))) (-15 -3470 ((-3 $ "failed") (-299 (-363)))) (-15 -3469 ($ (-392 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-363))))) (-15 -3469 ($ (-905 (-363)))) (-15 -3470 ((-3 $ "failed") (-905 (-363))))) |%noBranch|) (-15 -3702 ($ $)) (-15 -3337 ($ $)) (-15 -4260 ($ $)) (-15 -4259 ($ $)) (-15 -1834 ($ $)) (-15 -3960 ($ $)) (-15 -3956 ($ $)) (-15 -3961 ($ $)) (-15 -3798 ($ $)) (-15 -3799 ($ $)) (-15 -3800 ($ $)) (-15 -3804 ($ $)) (-15 -3805 ($ $)) (-15 -3806 ($ $)) (-15 -3949 ($)) (-15 -3384 ((-607 (-1123)) $)) (-15 -1730 ((-111))) (-15 -1730 ((-111) (-111))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-865 |#1|) (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| (-865 |#1|) (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-865 |#1|) "failed") $) NIL)) (-3469 (((-865 |#1|) $) NIL)) (-1887 (($ (-1205 (-865 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-865 |#1|) (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-865 |#1|) (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| (-865 |#1|) (-353)))) (-1772 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353)))) (($ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| (-865 |#1|) (-353))) (((-796 (-878)) $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| (-865 |#1|) (-353)))) (-2103 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-3429 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 (-865 |#1|)) $) NIL) (((-1117 $) $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-2102 (((-878) $) NIL (|has| (-865 |#1|) (-353)))) (-1700 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353)))) (-1699 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-1117 (-865 |#1|)) "failed") $ $) NIL (|has| (-865 |#1|) (-353)))) (-1701 (($ $ (-1117 (-865 |#1|))) NIL (|has| (-865 |#1|) (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-865 |#1|) (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL (|has| (-865 |#1|) (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-865 |#1|) (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 (-865 |#1|))) NIL)) (-1766 (($) NIL (|has| (-865 |#1|) (-353)))) (-1702 (($) NIL (|has| (-865 |#1|) (-353)))) (-3537 (((-1205 (-865 |#1|)) $) NIL) (((-653 (-865 |#1|)) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-865 |#1|) (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-865 |#1|)) NIL)) (-3002 (($ $) NIL (|has| (-865 |#1|) (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-2969 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ (-865 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-865 |#1|)) NIL) (($ (-865 |#1|) $) NIL))) -(((-325 |#1| |#2|) (-314 (-865 |#1|)) (-878) (-878)) (T -325)) -NIL -(-314 (-865 |#1|)) -((-1739 (((-2 (|:| |num| (-1205 |#3|)) (|:| |den| |#3|)) $) 38)) (-1887 (($ (-1205 (-392 |#3|)) (-1205 $)) NIL) (($ (-1205 (-392 |#3|))) NIL) (($ (-1205 |#3|) |#3|) 161)) (-1744 (((-1205 $) (-1205 $)) 145)) (-1731 (((-607 (-607 |#2|))) 119)) (-1756 (((-111) |#2| |#2|) 73)) (-3817 (($ $) 139)) (-3696 (((-735)) 31)) (-1745 (((-1205 $) (-1205 $)) 198)) (-1732 (((-607 (-905 |#2|)) (-1123)) 110)) (-1748 (((-111) $) 158)) (-1747 (((-111) $) 25) (((-111) $ |#2|) 29) (((-111) $ |#3|) 202)) (-1734 (((-3 |#3| "failed")) 50)) (-1758 (((-735)) 170)) (-4118 ((|#2| $ |#2| |#2|) 132)) (-1735 (((-3 |#3| "failed")) 68)) (-4129 (($ $ (-1 (-392 |#3|) (-392 |#3|)) (-735)) NIL) (($ $ (-1 (-392 |#3|) (-392 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-1746 (((-1205 $) (-1205 $)) 151)) (-1733 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1757 (((-111)) 33))) -(((-326 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -1731 ((-607 (-607 |#2|)))) (-15 -1732 ((-607 (-905 |#2|)) (-1123))) (-15 -1733 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1734 ((-3 |#3| "failed"))) (-15 -1735 ((-3 |#3| "failed"))) (-15 -4118 (|#2| |#1| |#2| |#2|)) (-15 -3817 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1747 ((-111) |#1| |#3|)) (-15 -1747 ((-111) |#1| |#2|)) (-15 -1887 (|#1| (-1205 |#3|) |#3|)) (-15 -1739 ((-2 (|:| |num| (-1205 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1744 ((-1205 |#1|) (-1205 |#1|))) (-15 -1745 ((-1205 |#1|) (-1205 |#1|))) (-15 -1746 ((-1205 |#1|) (-1205 |#1|))) (-15 -1747 ((-111) |#1|)) (-15 -1748 ((-111) |#1|)) (-15 -1756 ((-111) |#2| |#2|)) (-15 -1757 ((-111))) (-15 -1758 ((-735))) (-15 -3696 ((-735))) (-15 -4129 (|#1| |#1| (-1 (-392 |#3|) (-392 |#3|)))) (-15 -4129 (|#1| |#1| (-1 (-392 |#3|) (-392 |#3|)) (-735))) (-15 -1887 (|#1| (-1205 (-392 |#3|)))) (-15 -1887 (|#1| (-1205 (-392 |#3|)) (-1205 |#1|)))) (-327 |#2| |#3| |#4|) (-1164) (-1181 |#2|) (-1181 (-392 |#3|))) (T -326)) -((-3696 (*1 *2) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-735)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) (-1758 (*1 *2) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-735)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) (-1757 (*1 *2) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-111)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) (-1756 (*1 *2 *3 *3) (-12 (-4 *3 (-1164)) (-4 *5 (-1181 *3)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-111)) (-5 *1 (-326 *4 *3 *5 *6)) (-4 *4 (-327 *3 *5 *6)))) (-1735 (*1 *2) (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-326 *3 *4 *2 *5)) (-4 *3 (-327 *4 *2 *5)))) (-1734 (*1 *2) (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-326 *3 *4 *2 *5)) (-4 *3 (-327 *4 *2 *5)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *5 (-1164)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-5 *2 (-607 (-905 *5))) (-5 *1 (-326 *4 *5 *6 *7)) (-4 *4 (-327 *5 *6 *7)))) (-1731 (*1 *2) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-607 (-607 *4))) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6))))) -(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -1731 ((-607 (-607 |#2|)))) (-15 -1732 ((-607 (-905 |#2|)) (-1123))) (-15 -1733 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1734 ((-3 |#3| "failed"))) (-15 -1735 ((-3 |#3| "failed"))) (-15 -4118 (|#2| |#1| |#2| |#2|)) (-15 -3817 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1747 ((-111) |#1| |#3|)) (-15 -1747 ((-111) |#1| |#2|)) (-15 -1887 (|#1| (-1205 |#3|) |#3|)) (-15 -1739 ((-2 (|:| |num| (-1205 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1744 ((-1205 |#1|) (-1205 |#1|))) (-15 -1745 ((-1205 |#1|) (-1205 |#1|))) (-15 -1746 ((-1205 |#1|) (-1205 |#1|))) (-15 -1747 ((-111) |#1|)) (-15 -1748 ((-111) |#1|)) (-15 -1756 ((-111) |#2| |#2|)) (-15 -1757 ((-111))) (-15 -1758 ((-735))) (-15 -3696 ((-735))) (-15 -4129 (|#1| |#1| (-1 (-392 |#3|) (-392 |#3|)))) (-15 -4129 (|#1| |#1| (-1 (-392 |#3|) (-392 |#3|)) (-735))) (-15 -1887 (|#1| (-1205 (-392 |#3|)))) (-15 -1887 (|#1| (-1205 (-392 |#3|)) (-1205 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1739 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) 193)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 91 (|has| (-392 |#2|) (-348)))) (-2151 (($ $) 92 (|has| (-392 |#2|) (-348)))) (-2149 (((-111) $) 94 (|has| (-392 |#2|) (-348)))) (-1877 (((-653 (-392 |#2|)) (-1205 $)) 44) (((-653 (-392 |#2|))) 59)) (-3649 (((-392 |#2|) $) 50)) (-1767 (((-1132 (-878) (-735)) (-526)) 144 (|has| (-392 |#2|) (-335)))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 111 (|has| (-392 |#2|) (-348)))) (-4286 (((-390 $) $) 112 (|has| (-392 |#2|) (-348)))) (-1681 (((-111) $ $) 102 (|has| (-392 |#2|) (-348)))) (-3433 (((-735)) 85 (|has| (-392 |#2|) (-353)))) (-1753 (((-111)) 210)) (-1752 (((-111) |#1|) 209) (((-111) |#2|) 208)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 166 (|has| (-392 |#2|) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 164 (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-3 (-392 |#2|) #1#) $) 163)) (-3469 (((-526) $) 167 (|has| (-392 |#2|) (-995 (-526)))) (((-392 (-526)) $) 165 (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-392 |#2|) $) 162)) (-1887 (($ (-1205 (-392 |#2|)) (-1205 $)) 46) (($ (-1205 (-392 |#2|))) 62) (($ (-1205 |#2|) |#2|) 192)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-392 |#2|) (-335)))) (-2861 (($ $ $) 106 (|has| (-392 |#2|) (-348)))) (-1876 (((-653 (-392 |#2|)) $ (-1205 $)) 51) (((-653 (-392 |#2|)) $) 57)) (-2331 (((-653 (-526)) (-653 $)) 161 (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 160 (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-392 |#2|))) (|:| |vec| (-1205 (-392 |#2|)))) (-653 $) (-1205 $)) 159) (((-653 (-392 |#2|)) (-653 $)) 158)) (-1744 (((-1205 $) (-1205 $)) 198)) (-4161 (($ |#3|) 155) (((-3 $ "failed") (-392 |#3|)) 152 (|has| (-392 |#2|) (-348)))) (-3781 (((-3 $ "failed") $) 32)) (-1731 (((-607 (-607 |#1|))) 179 (|has| |#1| (-353)))) (-1756 (((-111) |#1| |#1|) 214)) (-3406 (((-878)) 52)) (-3294 (($) 88 (|has| (-392 |#2|) (-353)))) (-1751 (((-111)) 207)) (-1750 (((-111) |#1|) 206) (((-111) |#2|) 205)) (-2860 (($ $ $) 105 (|has| (-392 |#2|) (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 100 (|has| (-392 |#2|) (-348)))) (-3817 (($ $) 185)) (-3133 (($) 146 (|has| (-392 |#2|) (-335)))) (-1772 (((-111) $) 147 (|has| (-392 |#2|) (-335)))) (-1862 (($ $ (-735)) 138 (|has| (-392 |#2|) (-335))) (($ $) 137 (|has| (-392 |#2|) (-335)))) (-4045 (((-111) $) 113 (|has| (-392 |#2|) (-348)))) (-4090 (((-878) $) 149 (|has| (-392 |#2|) (-335))) (((-796 (-878)) $) 135 (|has| (-392 |#2|) (-335)))) (-2471 (((-111) $) 30)) (-3696 (((-735)) 217)) (-1745 (((-1205 $) (-1205 $)) 199)) (-3429 (((-392 |#2|) $) 49)) (-1732 (((-607 (-905 |#1|)) (-1123)) 180 (|has| |#1| (-348)))) (-3763 (((-3 $ "failed") $) 139 (|has| (-392 |#2|) (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 109 (|has| (-392 |#2|) (-348)))) (-2106 ((|#3| $) 42 (|has| (-392 |#2|) (-348)))) (-2102 (((-878) $) 87 (|has| (-392 |#2|) (-353)))) (-3379 ((|#3| $) 153)) (-1989 (($ (-607 $)) 98 (|has| (-392 |#2|) (-348))) (($ $ $) 97 (|has| (-392 |#2|) (-348)))) (-3554 (((-1106) $) 9)) (-1740 (((-653 (-392 |#2|))) 194)) (-1742 (((-653 (-392 |#2|))) 196)) (-2703 (($ $) 114 (|has| (-392 |#2|) (-348)))) (-1737 (($ (-1205 |#2|) |#2|) 190)) (-1741 (((-653 (-392 |#2|))) 195)) (-1743 (((-653 (-392 |#2|))) 197)) (-1736 (((-2 (|:| |num| (-653 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1738 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) 191)) (-1749 (((-1205 $)) 203)) (-4237 (((-1205 $)) 204)) (-1748 (((-111) $) 202)) (-1747 (((-111) $) 201) (((-111) $ |#1|) 188) (((-111) $ |#2|) 187)) (-3764 (($) 140 (|has| (-392 |#2|) (-335)) CONST)) (-2461 (($ (-878)) 86 (|has| (-392 |#2|) (-353)))) (-1734 (((-3 |#2| "failed")) 182)) (-3555 (((-1070) $) 10)) (-1758 (((-735)) 216)) (-2470 (($) 157)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 99 (|has| (-392 |#2|) (-348)))) (-3457 (($ (-607 $)) 96 (|has| (-392 |#2|) (-348))) (($ $ $) 95 (|has| (-392 |#2|) (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 143 (|has| (-392 |#2|) (-335)))) (-4051 (((-390 $) $) 110 (|has| (-392 |#2|) (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| (-392 |#2|) (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 107 (|has| (-392 |#2|) (-348)))) (-3780 (((-3 $ "failed") $ $) 90 (|has| (-392 |#2|) (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 101 (|has| (-392 |#2|) (-348)))) (-1680 (((-735) $) 103 (|has| (-392 |#2|) (-348)))) (-4118 ((|#1| $ |#1| |#1|) 184)) (-1735 (((-3 |#2| "failed")) 183)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 104 (|has| (-392 |#2|) (-348)))) (-4076 (((-392 |#2|) (-1205 $)) 45) (((-392 |#2|)) 58)) (-1863 (((-735) $) 148 (|has| (-392 |#2|) (-335))) (((-3 (-735) "failed") $ $) 136 (|has| (-392 |#2|) (-335)))) (-4129 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) 120 (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) 119 (|has| (-392 |#2|) (-348))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-607 (-1123)) (-607 (-735))) 127 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-1123) (-735)) 128 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-607 (-1123))) 129 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-1123)) 130 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-735)) 132 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-219))) (-3155 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) 134 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-219))) (-3155 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-2469 (((-653 (-392 |#2|)) (-1205 $) (-1 (-392 |#2|) (-392 |#2|))) 151 (|has| (-392 |#2|) (-348)))) (-3499 ((|#3|) 156)) (-1766 (($) 145 (|has| (-392 |#2|) (-335)))) (-3537 (((-1205 (-392 |#2|)) $ (-1205 $)) 48) (((-653 (-392 |#2|)) (-1205 $) (-1205 $)) 47) (((-1205 (-392 |#2|)) $) 64) (((-653 (-392 |#2|)) (-1205 $)) 63)) (-4287 (((-1205 (-392 |#2|)) $) 61) (($ (-1205 (-392 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 142 (|has| (-392 |#2|) (-335)))) (-1746 (((-1205 $) (-1205 $)) 200)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 |#2|)) 35) (($ (-392 (-526))) 84 (-3850 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-995 (-392 (-526)))))) (($ $) 89 (|has| (-392 |#2|) (-348)))) (-3002 (($ $) 141 (|has| (-392 |#2|) (-335))) (((-3 $ "failed") $) 41 (|has| (-392 |#2|) (-139)))) (-2667 ((|#3| $) 43)) (-3423 (((-735)) 28)) (-1755 (((-111)) 213)) (-1754 (((-111) |#1|) 212) (((-111) |#2|) 211)) (-2104 (((-1205 $)) 65)) (-2150 (((-111) $ $) 93 (|has| (-392 |#2|) (-348)))) (-1733 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1757 (((-111)) 215)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) 122 (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) 121 (|has| (-392 |#2|) (-348))) (($ $ (-607 (-1123)) (-607 (-735))) 123 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-1123) (-735)) 124 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-607 (-1123))) 125 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-1123)) 126 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-735)) 131 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-219))) (-3155 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) 133 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-219))) (-3155 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 118 (|has| (-392 |#2|) (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 115 (|has| (-392 |#2|) (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 |#2|)) 37) (($ (-392 |#2|) $) 36) (($ (-392 (-526)) $) 117 (|has| (-392 |#2|) (-348))) (($ $ (-392 (-526))) 116 (|has| (-392 |#2|) (-348))))) -(((-327 |#1| |#2| |#3|) (-134) (-1164) (-1181 |t#1|) (-1181 (-392 |t#2|))) (T -327)) -((-3696 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-735)))) (-1758 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-735)))) (-1757 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1756 (*1 *2 *3 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1755 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1754 (*1 *2 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1754 (*1 *2 *3) (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) (-1753 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1752 (*1 *2 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1752 (*1 *2 *3) (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) (-1751 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1750 (*1 *2 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1750 (*1 *2 *3) (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) (-4237 (*1 *2) (-12 (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)))) (-1749 (*1 *2) (-12 (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1746 (*1 *2 *2) (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) (-1743 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4))))) (-1742 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4))))) (-1741 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4))))) (-1740 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4))))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-2 (|:| |num| (-1205 *4)) (|:| |den| *4))))) (-1887 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1181 *4)) (-4 *4 (-1164)) (-4 *1 (-327 *4 *3 *5)) (-4 *5 (-1181 (-392 *3))))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-2 (|:| |num| (-1205 *4)) (|:| |den| *4))))) (-1737 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1181 *4)) (-4 *4 (-1164)) (-4 *1 (-327 *4 *3 *5)) (-4 *5 (-1181 (-392 *3))))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-327 *4 *5 *6)) (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-2 (|:| |num| (-653 *5)) (|:| |den| *5))))) (-1747 (*1 *2 *1 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1747 (*1 *2 *1 *3) (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3 *4)) (-4 *2 (-1164)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))))) (-4118 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-327 *2 *3 *4)) (-4 *2 (-1164)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))))) (-1735 (*1 *2) (|partial| -12 (-4 *1 (-327 *3 *2 *4)) (-4 *3 (-1164)) (-4 *4 (-1181 (-392 *2))) (-4 *2 (-1181 *3)))) (-1734 (*1 *2) (|partial| -12 (-4 *1 (-327 *3 *2 *4)) (-4 *3 (-1164)) (-4 *4 (-1181 (-392 *2))) (-4 *2 (-1181 *3)))) (-1733 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-1164)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-327 *4 *5 *6)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *1 (-327 *4 *5 *6)) (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-4 *4 (-348)) (-5 *2 (-607 (-905 *4))))) (-1731 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *3 (-353)) (-5 *2 (-607 (-607 *3)))))) -(-13 (-689 (-392 |t#2|) |t#3|) (-10 -8 (-15 -3696 ((-735))) (-15 -1758 ((-735))) (-15 -1757 ((-111))) (-15 -1756 ((-111) |t#1| |t#1|)) (-15 -1755 ((-111))) (-15 -1754 ((-111) |t#1|)) (-15 -1754 ((-111) |t#2|)) (-15 -1753 ((-111))) (-15 -1752 ((-111) |t#1|)) (-15 -1752 ((-111) |t#2|)) (-15 -1751 ((-111))) (-15 -1750 ((-111) |t#1|)) (-15 -1750 ((-111) |t#2|)) (-15 -4237 ((-1205 $))) (-15 -1749 ((-1205 $))) (-15 -1748 ((-111) $)) (-15 -1747 ((-111) $)) (-15 -1746 ((-1205 $) (-1205 $))) (-15 -1745 ((-1205 $) (-1205 $))) (-15 -1744 ((-1205 $) (-1205 $))) (-15 -1743 ((-653 (-392 |t#2|)))) (-15 -1742 ((-653 (-392 |t#2|)))) (-15 -1741 ((-653 (-392 |t#2|)))) (-15 -1740 ((-653 (-392 |t#2|)))) (-15 -1739 ((-2 (|:| |num| (-1205 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1887 ($ (-1205 |t#2|) |t#2|)) (-15 -1738 ((-2 (|:| |num| (-1205 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1737 ($ (-1205 |t#2|) |t#2|)) (-15 -1736 ((-2 (|:| |num| (-653 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1747 ((-111) $ |t#1|)) (-15 -1747 ((-111) $ |t#2|)) (-15 -4129 ($ $ (-1 |t#2| |t#2|))) (-15 -3817 ($ $)) (-15 -4118 (|t#1| $ |t#1| |t#1|)) (-15 -1735 ((-3 |t#2| "failed"))) (-15 -1734 ((-3 |t#2| "failed"))) (-15 -1733 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-348)) (-15 -1732 ((-607 (-905 |t#1|)) (-1123))) |%noBranch|) (IF (|has| |t#1| (-353)) (-15 -1731 ((-607 (-607 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-37 #2=(-392 |#2|)) . T) ((-37 $) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-100) . T) ((-110 #1# #1#) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-110 #2# #2#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-139))) ((-141) |has| (-392 |#2|) (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 |#3|) . T) ((-217 #2#) |has| (-392 |#2|) (-348)) ((-219) -3850 (|has| (-392 |#2|) (-335)) (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348)))) ((-229) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-275) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-292) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-348) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-387) |has| (-392 |#2|) (-335)) ((-353) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-353))) ((-335) |has| (-392 |#2|) (-335)) ((-355 #2# |#3|) . T) ((-395 #2# |#3|) . T) ((-362 #2#) . T) ((-397 #2#) . T) ((-436) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-533) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-613 #1#) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-613 #2#) . T) ((-613 $) . T) ((-606 #2#) . T) ((-606 (-526)) |has| (-392 |#2|) (-606 (-526))) ((-682 #1#) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-682 #2#) . T) ((-682 $) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-689 #2# |#3|) . T) ((-691) . T) ((-859 (-1123)) -12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) ((-880) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-995 (-392 (-526))) |has| (-392 |#2|) (-995 (-392 (-526)))) ((-995 #2#) . T) ((-995 (-526)) |has| (-392 |#2|) (-995 (-526))) ((-1010 #1#) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-1010 #2#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| (-392 |#2|) (-335)) ((-1164) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348)))) -((-4275 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-328 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4275 (|#8| (-1 |#5| |#1|) |#4|))) (-1164) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|) (-1164) (-1181 |#5|) (-1181 (-392 |#6|)) (-327 |#5| |#6| |#7|)) (T -328)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1164)) (-4 *8 (-1164)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *9 (-1181 *8)) (-4 *2 (-327 *8 *9 *10)) (-5 *1 (-328 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-327 *5 *6 *7)) (-4 *10 (-1181 (-392 *9)))))) -(-10 -7 (-15 -4275 (|#8| (-1 |#5| |#1|) |#4|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-865 |#1|) (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| (-865 |#1|) (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-865 |#1|) "failed") $) NIL)) (-3469 (((-865 |#1|) $) NIL)) (-1887 (($ (-1205 (-865 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-865 |#1|) (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-865 |#1|) (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| (-865 |#1|) (-353)))) (-1772 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353)))) (($ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| (-865 |#1|) (-353))) (((-796 (-878)) $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| (-865 |#1|) (-353)))) (-2103 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-3429 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 (-865 |#1|)) $) NIL) (((-1117 $) $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-2102 (((-878) $) NIL (|has| (-865 |#1|) (-353)))) (-1700 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353)))) (-1699 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-1117 (-865 |#1|)) "failed") $ $) NIL (|has| (-865 |#1|) (-353)))) (-1701 (($ $ (-1117 (-865 |#1|))) NIL (|has| (-865 |#1|) (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-865 |#1|) (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-1759 (((-917 (-1070))) NIL)) (-2470 (($) NIL (|has| (-865 |#1|) (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-865 |#1|) (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 (-865 |#1|))) NIL)) (-1766 (($) NIL (|has| (-865 |#1|) (-353)))) (-1702 (($) NIL (|has| (-865 |#1|) (-353)))) (-3537 (((-1205 (-865 |#1|)) $) NIL) (((-653 (-865 |#1|)) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-865 |#1|) (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-865 |#1|)) NIL)) (-3002 (($ $) NIL (|has| (-865 |#1|) (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-2969 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ (-865 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-865 |#1|)) NIL) (($ (-865 |#1|) $) NIL))) -(((-329 |#1| |#2|) (-13 (-314 (-865 |#1|)) (-10 -7 (-15 -1759 ((-917 (-1070)))))) (-878) (-878)) (T -329)) -((-1759 (*1 *2) (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-329 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878))))) -(-13 (-314 (-865 |#1|)) (-10 -7 (-15 -1759 ((-917 (-1070)))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 46)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) 43 (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) 115)) (-3469 ((|#1| $) 86)) (-1887 (($ (-1205 |#1|)) 104)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) 98 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) 130 (|has| |#1| (-353)))) (-1772 (((-111) $) 49 (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) 47 (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) 132 (|has| |#1| (-353)))) (-2103 (((-111) $) NIL (|has| |#1| (-353)))) (-3429 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) 90) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) 140 (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 147)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) 71 (|has| |#1| (-353)))) (-4248 (((-111) $) 118)) (-3555 (((-1070) $) NIL)) (-1759 (((-917 (-1070))) 44)) (-2470 (($) 128 (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 93 (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) 67) (((-878)) 68)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) 131 (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) 125 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 |#1|)) 96)) (-1766 (($) 129 (|has| |#1| (-353)))) (-1702 (($) 137 (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) 59) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) 143) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 75)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 139)) (-2104 (((-1205 $)) 117) (((-1205 $) (-878)) 73)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) 32 T CONST)) (-2964 (($) 19 T CONST)) (-4245 (($ $) 81 (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) 48)) (-4265 (($ $ $) 145) (($ $ |#1|) 146)) (-4156 (($ $) 127) (($ $ $) NIL)) (-4158 (($ $ $) 61)) (** (($ $ (-878)) 149) (($ $ (-735)) 150) (($ $ (-526)) 148)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 77) (($ $ $) 76) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144))) -(((-330 |#1| |#2|) (-13 (-314 |#1|) (-10 -7 (-15 -1759 ((-917 (-1070)))))) (-335) (-1117 |#1|)) (T -330)) -((-1759 (*1 *2) (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-330 *3 *4)) (-4 *3 (-335)) (-14 *4 (-1117 *3))))) -(-13 (-314 |#1|) (-10 -7 (-15 -1759 ((-917 (-1070)))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| |#1| (-353)))) (-2103 (((-111) $) NIL (|has| |#1| (-353)))) (-3429 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) NIL) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-1759 (((-917 (-1070))) NIL)) (-2470 (($) NIL (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) NIL) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) NIL)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-331 |#1| |#2|) (-13 (-314 |#1|) (-10 -7 (-15 -1759 ((-917 (-1070)))))) (-335) (-878)) (T -331)) -((-1759 (*1 *2) (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-331 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) -(-13 (-314 |#1|) (-10 -7 (-15 -1759 ((-917 (-1070)))))) -((-1769 (((-735) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) 42)) (-1760 (((-917 (-1070)) (-1117 |#1|)) 85)) (-1761 (((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) (-1117 |#1|)) 78)) (-1762 (((-653 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) 86)) (-1763 (((-3 (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) "failed") (-878)) 13)) (-1764 (((-3 (-1117 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) (-878)) 18))) -(((-332 |#1|) (-10 -7 (-15 -1760 ((-917 (-1070)) (-1117 |#1|))) (-15 -1761 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) (-1117 |#1|))) (-15 -1762 ((-653 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1769 ((-735) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1763 ((-3 (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) "failed") (-878))) (-15 -1764 ((-3 (-1117 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) (-878)))) (-335)) (T -332)) -((-1764 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-3 (-1117 *4) (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070))))))) (-5 *1 (-332 *4)) (-4 *4 (-335)))) (-1763 (*1 *2 *3) (|partial| -12 (-5 *3 (-878)) (-5 *2 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-5 *1 (-332 *4)) (-4 *4 (-335)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-4 *4 (-335)) (-5 *2 (-735)) (-5 *1 (-332 *4)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-4 *4 (-335)) (-5 *2 (-653 *4)) (-5 *1 (-332 *4)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-5 *1 (-332 *4)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-917 (-1070))) (-5 *1 (-332 *4))))) -(-10 -7 (-15 -1760 ((-917 (-1070)) (-1117 |#1|))) (-15 -1761 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) (-1117 |#1|))) (-15 -1762 ((-653 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1769 ((-735) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1763 ((-3 (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) "failed") (-878))) (-15 -1764 ((-3 (-1117 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) (-878)))) -((-4274 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-333 |#1| |#2| |#3|) (-10 -7 (-15 -4274 (|#3| |#1|)) (-15 -4274 (|#1| |#3|))) (-314 |#2|) (-335) (-314 |#2|)) (T -333)) -((-4274 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *2 (-314 *4)) (-5 *1 (-333 *2 *4 *3)) (-4 *3 (-314 *4)))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *2 (-314 *4)) (-5 *1 (-333 *3 *4 *2)) (-4 *3 (-314 *4))))) -(-10 -7 (-15 -4274 (|#3| |#1|)) (-15 -4274 (|#1| |#3|))) -((-1772 (((-111) $) 52)) (-4090 (((-796 (-878)) $) 21) (((-878) $) 53)) (-3763 (((-3 $ "failed") $) 16)) (-3764 (($) 9)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 95)) (-1863 (((-3 (-735) "failed") $ $) 73) (((-735) $) 61)) (-4129 (($ $ (-735)) NIL) (($ $) 8)) (-1766 (($) 46)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 34)) (-3002 (((-3 $ "failed") $) 40) (($ $) 39))) -(((-334 |#1|) (-10 -8 (-15 -4090 ((-878) |#1|)) (-15 -1863 ((-735) |#1|)) (-15 -1772 ((-111) |#1|)) (-15 -1766 (|#1|)) (-15 -3003 ((-3 (-1205 |#1|) "failed") (-653 |#1|))) (-15 -3002 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -1863 ((-3 (-735) "failed") |#1| |#1|)) (-15 -4090 ((-796 (-878)) |#1|)) (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)))) (-335)) (T -334)) -NIL -(-10 -8 (-15 -4090 ((-878) |#1|)) (-15 -1863 ((-735) |#1|)) (-15 -1772 ((-111) |#1|)) (-15 -1766 (|#1|)) (-15 -3003 ((-3 (-1205 |#1|) "failed") (-653 |#1|))) (-15 -3002 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -1863 ((-3 (-735) "failed") |#1| |#1|)) (-15 -4090 ((-796 (-878)) |#1|)) (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1767 (((-1132 (-878) (-735)) (-526)) 90)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3433 (((-735)) 100)) (-3855 (($) 17 T CONST)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-3294 (($) 103)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-3133 (($) 88)) (-1772 (((-111) $) 87)) (-1862 (($ $) 76) (($ $ (-735)) 75)) (-4045 (((-111) $) 68)) (-4090 (((-796 (-878)) $) 78) (((-878) $) 85)) (-2471 (((-111) $) 30)) (-3763 (((-3 $ "failed") $) 99)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-2102 (((-878) $) 102)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3764 (($) 98 T CONST)) (-2461 (($ (-878)) 101)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 91)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1863 (((-3 (-735) "failed") $ $) 77) (((-735) $) 86)) (-4129 (($ $ (-735)) 96) (($ $) 94)) (-1766 (($) 89)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 92)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63)) (-3002 (((-3 $ "failed") $) 79) (($ $) 93)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-735)) 97) (($ $) 95)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) -(((-335) (-134)) (T -335)) -((-3002 (*1 *1 *1) (-4 *1 (-335))) (-3003 (*1 *2 *3) (|partial| -12 (-5 *3 (-653 *1)) (-4 *1 (-335)) (-5 *2 (-1205 *1)))) (-1768 (*1 *2) (-12 (-4 *1 (-335)) (-5 *2 (-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))))) (-1767 (*1 *2 *3) (-12 (-4 *1 (-335)) (-5 *3 (-526)) (-5 *2 (-1132 (-878) (-735))))) (-1766 (*1 *1) (-4 *1 (-335))) (-3133 (*1 *1) (-4 *1 (-335))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-111)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-735)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-878)))) (-1765 (*1 *2) (-12 (-4 *1 (-335)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-387) (-353) (-1099) (-219) (-10 -8 (-15 -3002 ($ $)) (-15 -3003 ((-3 (-1205 $) "failed") (-653 $))) (-15 -1768 ((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526)))))) (-15 -1767 ((-1132 (-878) (-735)) (-526))) (-15 -1766 ($)) (-15 -3133 ($)) (-15 -1772 ((-111) $)) (-15 -1863 ((-735) $)) (-15 -4090 ((-878) $)) (-15 -1765 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) . T) ((-583 (-823)) . T) ((-163) . T) ((-219) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-387) . T) ((-353) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) . T) ((-1164) . T)) -((-4238 (((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) |#1|) 53)) (-4237 (((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|)))) 51))) -(((-336 |#1| |#2| |#3|) (-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) |#1|))) (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $)))) (-1181 |#1|) (-395 |#1| |#2|)) (T -336)) -((-4238 (*1 *2 *3) (-12 (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-336 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-4237 (*1 *2) (-12 (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-336 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) -(-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-865 |#1|) (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1769 (((-735)) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| (-865 |#1|) (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-865 |#1|) "failed") $) NIL)) (-3469 (((-865 |#1|) $) NIL)) (-1887 (($ (-1205 (-865 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-865 |#1|) (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-865 |#1|) (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| (-865 |#1|) (-353)))) (-1772 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353)))) (($ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| (-865 |#1|) (-353))) (((-796 (-878)) $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| (-865 |#1|) (-353)))) (-2103 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-3429 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 (-865 |#1|)) $) NIL) (((-1117 $) $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-2102 (((-878) $) NIL (|has| (-865 |#1|) (-353)))) (-1700 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353)))) (-1699 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-1117 (-865 |#1|)) "failed") $ $) NIL (|has| (-865 |#1|) (-353)))) (-1701 (($ $ (-1117 (-865 |#1|))) NIL (|has| (-865 |#1|) (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-865 |#1|) (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-1771 (((-1205 (-607 (-2 (|:| -3721 (-865 |#1|)) (|:| -2461 (-1070)))))) NIL)) (-1770 (((-653 (-865 |#1|))) NIL)) (-2470 (($) NIL (|has| (-865 |#1|) (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-865 |#1|) (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 (-865 |#1|))) NIL)) (-1766 (($) NIL (|has| (-865 |#1|) (-353)))) (-1702 (($) NIL (|has| (-865 |#1|) (-353)))) (-3537 (((-1205 (-865 |#1|)) $) NIL) (((-653 (-865 |#1|)) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-865 |#1|) (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-865 |#1|)) NIL)) (-3002 (($ $) NIL (|has| (-865 |#1|) (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-2969 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ (-865 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-865 |#1|)) NIL) (($ (-865 |#1|) $) NIL))) -(((-337 |#1| |#2|) (-13 (-314 (-865 |#1|)) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 (-865 |#1|)) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 (-865 |#1|)))) (-15 -1769 ((-735))))) (-878) (-878)) (T -337)) -((-1771 (*1 *2) (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 (-865 *3)) (|:| -2461 (-1070)))))) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-1770 (*1 *2) (-12 (-5 *2 (-653 (-865 *3))) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-1769 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878))))) -(-13 (-314 (-865 |#1|)) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 (-865 |#1|)) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 (-865 |#1|)))) (-15 -1769 ((-735))))) -((-2865 (((-111) $ $) 62)) (-3502 (((-111) $) 75)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) 93) (($ $ (-878)) 91 (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) 149 (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1769 (((-735)) 90)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) 163 (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) 113)) (-3469 ((|#1| $) 92)) (-1887 (($ (-1205 |#1|)) 59)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) 159 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) 150 (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) 99 (|has| |#1| (-353)))) (-2103 (((-111) $) 176 (|has| |#1| (-353)))) (-3429 ((|#1| $) 95) (($ $ (-878)) 94 (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) 190) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) 135 (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) 74 (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) 71 (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) 83 (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) 70 (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 193)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) 138 (|has| |#1| (-353)))) (-4248 (((-111) $) 109)) (-3555 (((-1070) $) NIL)) (-1771 (((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) 84)) (-1770 (((-653 |#1|)) 88)) (-2470 (($) 97 (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 151 (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) 152)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) 63)) (-3499 (((-1117 |#1|)) 153)) (-1766 (($) 134 (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) 107) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) 125) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 58)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 157)) (-2104 (((-1205 $)) 173) (((-1205 $) (-878)) 102)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) 30 T CONST)) (-2964 (($) 22 T CONST)) (-4245 (($ $) 108 (|has| |#1| (-353))) (($ $ (-735)) 100 (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) 184)) (-4265 (($ $ $) 105) (($ $ |#1|) 106)) (-4156 (($ $) 178) (($ $ $) 182)) (-4158 (($ $ $) 180)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 139)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 187) (($ $ $) 143) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104))) -(((-338 |#1| |#2|) (-13 (-314 |#1|) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 |#1|))) (-15 -1769 ((-735))))) (-335) (-3 (-1117 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (T -338)) -((-1771 (*1 *2) (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) (-14 *4 (-3 (-1117 *3) *2)))) (-1770 (*1 *2) (-12 (-5 *2 (-653 *3)) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) (-14 *4 (-3 (-1117 *3) (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070))))))))) (-1769 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) (-14 *4 (-3 (-1117 *3) (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))))))) -(-13 (-314 |#1|) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 |#1|))) (-15 -1769 ((-735))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1769 (((-735)) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| |#1| (-353)))) (-2103 (((-111) $) NIL (|has| |#1| (-353)))) (-3429 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) NIL) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-1771 (((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) NIL)) (-1770 (((-653 |#1|)) NIL)) (-2470 (($) NIL (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) NIL) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) NIL)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-339 |#1| |#2|) (-13 (-314 |#1|) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 |#1|))) (-15 -1769 ((-735))))) (-335) (-878)) (T -339)) -((-1771 (*1 *2) (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878)))) (-1770 (*1 *2) (-12 (-5 *2 (-653 *3)) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878)))) (-1769 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) -(-13 (-314 |#1|) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 |#1|))) (-15 -1769 ((-735))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) 120 (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) 140 (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) 93)) (-3469 ((|#1| $) 90)) (-1887 (($ (-1205 |#1|)) 85)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) 82 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) 42 (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) 121 (|has| |#1| (-353)))) (-2103 (((-111) $) 74 (|has| |#1| (-353)))) (-3429 ((|#1| $) 39) (($ $ (-878)) 43 (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) 65) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) 97 (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) 95 (|has| |#1| (-353)))) (-4248 (((-111) $) 142)) (-3555 (((-1070) $) NIL)) (-2470 (($) 36 (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 115 (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) 139)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) 59)) (-3499 (((-1117 |#1|)) 88)) (-1766 (($) 126 (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) 53) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) 138) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 87)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 144)) (-2104 (((-1205 $)) 109) (((-1205 $) (-878)) 49)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) 111 T CONST)) (-2964 (($) 32 T CONST)) (-4245 (($ $) 68 (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) 107)) (-4265 (($ $ $) 99) (($ $ |#1|) 100)) (-4156 (($ $) 80) (($ $ $) 105)) (-4158 (($ $ $) 103)) (** (($ $ (-878)) NIL) (($ $ (-735)) 44) (($ $ (-526)) 130)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 78) (($ $ $) 56) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-340 |#1| |#2|) (-314 |#1|) (-335) (-1117 |#1|)) (T -340)) -NIL -(-314 |#1|) -((-1787 (((-917 (-1117 |#1|)) (-1117 |#1|)) 36)) (-3294 (((-1117 |#1|) (-878) (-878)) 113) (((-1117 |#1|) (-878)) 112)) (-1772 (((-111) (-1117 |#1|)) 84)) (-1774 (((-878) (-878)) 71)) (-1775 (((-878) (-878)) 74)) (-1773 (((-878) (-878)) 69)) (-2103 (((-111) (-1117 |#1|)) 88)) (-1782 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 101)) (-1785 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 104)) (-1784 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 103)) (-1783 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 102)) (-1781 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 98)) (-1786 (((-1117 |#1|) (-1117 |#1|)) 62)) (-1777 (((-1117 |#1|) (-878)) 107)) (-1780 (((-1117 |#1|) (-878)) 110)) (-1779 (((-1117 |#1|) (-878)) 109)) (-1778 (((-1117 |#1|) (-878)) 108)) (-1776 (((-1117 |#1|) (-878)) 105))) -(((-341 |#1|) (-10 -7 (-15 -1772 ((-111) (-1117 |#1|))) (-15 -2103 ((-111) (-1117 |#1|))) (-15 -1773 ((-878) (-878))) (-15 -1774 ((-878) (-878))) (-15 -1775 ((-878) (-878))) (-15 -1776 ((-1117 |#1|) (-878))) (-15 -1777 ((-1117 |#1|) (-878))) (-15 -1778 ((-1117 |#1|) (-878))) (-15 -1779 ((-1117 |#1|) (-878))) (-15 -1780 ((-1117 |#1|) (-878))) (-15 -1781 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1782 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1783 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1784 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1785 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -3294 ((-1117 |#1|) (-878))) (-15 -3294 ((-1117 |#1|) (-878) (-878))) (-15 -1786 ((-1117 |#1|) (-1117 |#1|))) (-15 -1787 ((-917 (-1117 |#1|)) (-1117 |#1|)))) (-335)) (T -341)) -((-1787 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-917 (-1117 *4))) (-5 *1 (-341 *4)) (-5 *3 (-1117 *4)))) (-1786 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-3294 (*1 *2 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1785 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1784 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1783 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1782 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1781 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-341 *4)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-341 *4))))) -(-10 -7 (-15 -1772 ((-111) (-1117 |#1|))) (-15 -2103 ((-111) (-1117 |#1|))) (-15 -1773 ((-878) (-878))) (-15 -1774 ((-878) (-878))) (-15 -1775 ((-878) (-878))) (-15 -1776 ((-1117 |#1|) (-878))) (-15 -1777 ((-1117 |#1|) (-878))) (-15 -1778 ((-1117 |#1|) (-878))) (-15 -1779 ((-1117 |#1|) (-878))) (-15 -1780 ((-1117 |#1|) (-878))) (-15 -1781 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1782 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1783 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1784 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1785 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -3294 ((-1117 |#1|) (-878))) (-15 -3294 ((-1117 |#1|) (-878) (-878))) (-15 -1786 ((-1117 |#1|) (-1117 |#1|))) (-15 -1787 ((-917 (-1117 |#1|)) (-1117 |#1|)))) -((-1788 ((|#1| (-1117 |#2|)) 52))) -(((-342 |#1| |#2|) (-10 -7 (-15 -1788 (|#1| (-1117 |#2|)))) (-13 (-387) (-10 -7 (-15 -4274 (|#1| |#2|)) (-15 -2102 ((-878) |#1|)) (-15 -2104 ((-1205 |#1|) (-878))) (-15 -4245 (|#1| |#1|)))) (-335)) (T -342)) -((-1788 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-4 *2 (-13 (-387) (-10 -7 (-15 -4274 (*2 *4)) (-15 -2102 ((-878) *2)) (-15 -2104 ((-1205 *2) (-878))) (-15 -4245 (*2 *2))))) (-5 *1 (-342 *2 *4))))) -(-10 -7 (-15 -1788 (|#1| (-1117 |#2|)))) -((-3004 (((-3 (-607 |#3|) "failed") (-607 |#3|) |#3|) 34))) -(((-343 |#1| |#2| |#3|) (-10 -7 (-15 -3004 ((-3 (-607 |#3|) "failed") (-607 |#3|) |#3|))) (-335) (-1181 |#1|) (-1181 |#2|)) (T -343)) -((-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-335)) (-5 *1 (-343 *4 *5 *3))))) -(-10 -7 (-15 -3004 ((-3 (-607 |#3|) "failed") (-607 |#3|) |#3|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| |#1| (-353)))) (-2103 (((-111) $) NIL (|has| |#1| (-353)))) (-3429 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) NIL) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) NIL) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) NIL)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-344 |#1| |#2|) (-314 |#1|) (-335) (-878)) (T -344)) -NIL -(-314 |#1|) -((-2301 (((-111) (-607 (-905 |#1|))) 34)) (-2303 (((-607 (-905 |#1|)) (-607 (-905 |#1|))) 46)) (-2302 (((-3 (-607 (-905 |#1|)) "failed") (-607 (-905 |#1|))) 41))) -(((-345 |#1| |#2|) (-10 -7 (-15 -2301 ((-111) (-607 (-905 |#1|)))) (-15 -2302 ((-3 (-607 (-905 |#1|)) "failed") (-607 (-905 |#1|)))) (-15 -2303 ((-607 (-905 |#1|)) (-607 (-905 |#1|))))) (-436) (-607 (-1123))) (T -345)) -((-2303 (*1 *2 *2) (-12 (-5 *2 (-607 (-905 *3))) (-4 *3 (-436)) (-5 *1 (-345 *3 *4)) (-14 *4 (-607 (-1123))))) (-2302 (*1 *2 *2) (|partial| -12 (-5 *2 (-607 (-905 *3))) (-4 *3 (-436)) (-5 *1 (-345 *3 *4)) (-14 *4 (-607 (-1123))))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-436)) (-5 *2 (-111)) (-5 *1 (-345 *4 *5)) (-14 *5 (-607 (-1123)))))) -(-10 -7 (-15 -2301 ((-111) (-607 (-905 |#1|)))) (-15 -2302 ((-3 (-607 (-905 |#1|)) "failed") (-607 (-905 |#1|)))) (-15 -2303 ((-607 (-905 |#1|)) (-607 (-905 |#1|))))) -((-2865 (((-111) $ $) NIL)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) 15)) (-2737 ((|#1| $ (-526)) NIL)) (-2738 (((-526) $ (-526)) NIL)) (-2340 (($ (-1 |#1| |#1|) $) 32)) (-2341 (($ (-1 (-526) (-526)) $) 24)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 26)) (-3555 (((-1070) $) NIL)) (-2736 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-526)))) $) 28)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 38) (($ |#1|) NIL)) (-2964 (($) 9 T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL) (($ |#1| (-526)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-346 |#1|) (-13 (-457) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-526))) (-15 -3433 ((-735) $)) (-15 -2738 ((-526) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2341 ($ (-1 (-526) (-526)) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-526)))) $)))) (-1052)) (T -346)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-1052)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-346 *2)) (-4 *2 (-1052)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-346 *2)) (-4 *2 (-1052)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) (-2738 (*1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-346 *2)) (-4 *2 (-1052)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-526) (-526))) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-346 *3)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-526))))) (-5 *1 (-346 *3)) (-4 *3 (-1052))))) -(-13 (-457) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-526))) (-15 -3433 ((-735) $)) (-15 -2738 ((-526) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2341 ($ (-1 (-526) (-526)) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-526)))) $)))) -((-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 13)) (-2151 (($ $) 14)) (-4286 (((-390 $) $) 30)) (-4045 (((-111) $) 26)) (-2703 (($ $) 19)) (-3457 (($ $ $) 23) (($ (-607 $)) NIL)) (-4051 (((-390 $) $) 31)) (-3780 (((-3 $ "failed") $ $) 22)) (-1680 (((-735) $) 25)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 35)) (-2150 (((-111) $ $) 16)) (-4265 (($ $ $) 33))) -(((-347 |#1|) (-10 -8 (-15 -4265 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -4045 ((-111) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -1680 ((-735) |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -2150 ((-111) |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|))) (-348)) (T -347)) -NIL -(-10 -8 (-15 -4265 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -4045 ((-111) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -1680 ((-735) |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -2150 ((-111) |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) -(((-348) (-134)) (T -348)) -((-4265 (*1 *1 *1 *1) (-4 *1 (-348)))) -(-13 (-292) (-1164) (-229) (-10 -8 (-15 -4265 ($ $ $)) (-6 -4308) (-6 -4302))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) -((-2865 (((-111) $ $) NIL)) (-1789 ((|#1| $ |#1|) 30)) (-1793 (($ $ (-1106)) 22)) (-3941 (((-3 |#1| "failed") $) 29)) (-1790 ((|#1| $) 27)) (-1794 (($ (-373)) 21) (($ (-373) (-1106)) 20)) (-3864 (((-373) $) 24)) (-3554 (((-1106) $) NIL)) (-1791 (((-1106) $) 25)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 19)) (-1792 (($ $) 23)) (-3353 (((-111) $ $) 18))) -(((-349 |#1|) (-13 (-350 (-373) |#1|) (-10 -8 (-15 -3941 ((-3 |#1| "failed") $)))) (-1052)) (T -349)) -((-3941 (*1 *2 *1) (|partial| -12 (-5 *1 (-349 *2)) (-4 *2 (-1052))))) -(-13 (-350 (-373) |#1|) (-10 -8 (-15 -3941 ((-3 |#1| "failed") $)))) -((-2865 (((-111) $ $) 7)) (-1789 ((|#2| $ |#2|) 13)) (-1793 (($ $ (-1106)) 18)) (-1790 ((|#2| $) 14)) (-1794 (($ |#1|) 20) (($ |#1| (-1106)) 19)) (-3864 ((|#1| $) 16)) (-3554 (((-1106) $) 9)) (-1791 (((-1106) $) 15)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-1792 (($ $) 17)) (-3353 (((-111) $ $) 6))) -(((-350 |#1| |#2|) (-134) (-1052) (-1052)) (T -350)) -((-1794 (*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-1794 (*1 *1 *2 *3) (-12 (-5 *3 (-1106)) (-4 *1 (-350 *2 *4)) (-4 *2 (-1052)) (-4 *4 (-1052)))) (-1793 (*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-350 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-1792 (*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-1106)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-1789 (*1 *2 *1 *2) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) -(-13 (-1052) (-10 -8 (-15 -1794 ($ |t#1|)) (-15 -1794 ($ |t#1| (-1106))) (-15 -1793 ($ $ (-1106))) (-15 -1792 ($ $)) (-15 -3864 (|t#1| $)) (-15 -1791 ((-1106) $)) (-15 -1790 (|t#2| $)) (-15 -1789 (|t#2| $ |t#2|)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-3536 (((-1205 (-653 |#2|)) (-1205 $)) 61)) (-1883 (((-653 |#2|) (-1205 $)) 120)) (-1819 ((|#2| $) 32)) (-1881 (((-653 |#2|) $ (-1205 $)) 123)) (-2465 (((-3 $ "failed") $) 75)) (-1817 ((|#2| $) 35)) (-1797 (((-1117 |#2|) $) 83)) (-1885 ((|#2| (-1205 $)) 106)) (-1815 (((-1117 |#2|) $) 28)) (-1809 (((-111)) 100)) (-1887 (($ (-1205 |#2|) (-1205 $)) 113)) (-3781 (((-3 $ "failed") $) 79)) (-1802 (((-111)) 95)) (-1800 (((-111)) 90)) (-1804 (((-111)) 53)) (-1884 (((-653 |#2|) (-1205 $)) 118)) (-1820 ((|#2| $) 31)) (-1882 (((-653 |#2|) $ (-1205 $)) 122)) (-2466 (((-3 $ "failed") $) 73)) (-1818 ((|#2| $) 34)) (-1798 (((-1117 |#2|) $) 82)) (-1886 ((|#2| (-1205 $)) 104)) (-1816 (((-1117 |#2|) $) 26)) (-1810 (((-111)) 99)) (-1801 (((-111)) 92)) (-1803 (((-111)) 51)) (-1805 (((-111)) 87)) (-1808 (((-111)) 101)) (-3537 (((-1205 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) 111)) (-1814 (((-111)) 97)) (-1799 (((-607 (-1205 |#2|))) 86)) (-1812 (((-111)) 98)) (-1813 (((-111)) 96)) (-1811 (((-111)) 46)) (-1807 (((-111)) 102))) -(((-351 |#1| |#2|) (-10 -8 (-15 -1797 ((-1117 |#2|) |#1|)) (-15 -1798 ((-1117 |#2|) |#1|)) (-15 -1799 ((-607 (-1205 |#2|)))) (-15 -2465 ((-3 |#1| "failed") |#1|)) (-15 -2466 ((-3 |#1| "failed") |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 -1800 ((-111))) (-15 -1801 ((-111))) (-15 -1802 ((-111))) (-15 -1803 ((-111))) (-15 -1804 ((-111))) (-15 -1805 ((-111))) (-15 -1807 ((-111))) (-15 -1808 ((-111))) (-15 -1809 ((-111))) (-15 -1810 ((-111))) (-15 -1811 ((-111))) (-15 -1812 ((-111))) (-15 -1813 ((-111))) (-15 -1814 ((-111))) (-15 -1815 ((-1117 |#2|) |#1|)) (-15 -1816 ((-1117 |#2|) |#1|)) (-15 -1883 ((-653 |#2|) (-1205 |#1|))) (-15 -1884 ((-653 |#2|) (-1205 |#1|))) (-15 -1885 (|#2| (-1205 |#1|))) (-15 -1886 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1817 (|#2| |#1|)) (-15 -1818 (|#2| |#1|)) (-15 -1819 (|#2| |#1|)) (-15 -1820 (|#2| |#1|)) (-15 -1881 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -1882 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -3536 ((-1205 (-653 |#2|)) (-1205 |#1|)))) (-352 |#2|) (-163)) (T -351)) -((-1814 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1813 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1812 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1811 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1810 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1809 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1808 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1807 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1805 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1804 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1803 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1802 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1801 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1800 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1799 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-607 (-1205 *4))) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4))))) -(-10 -8 (-15 -1797 ((-1117 |#2|) |#1|)) (-15 -1798 ((-1117 |#2|) |#1|)) (-15 -1799 ((-607 (-1205 |#2|)))) (-15 -2465 ((-3 |#1| "failed") |#1|)) (-15 -2466 ((-3 |#1| "failed") |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 -1800 ((-111))) (-15 -1801 ((-111))) (-15 -1802 ((-111))) (-15 -1803 ((-111))) (-15 -1804 ((-111))) (-15 -1805 ((-111))) (-15 -1807 ((-111))) (-15 -1808 ((-111))) (-15 -1809 ((-111))) (-15 -1810 ((-111))) (-15 -1811 ((-111))) (-15 -1812 ((-111))) (-15 -1813 ((-111))) (-15 -1814 ((-111))) (-15 -1815 ((-1117 |#2|) |#1|)) (-15 -1816 ((-1117 |#2|) |#1|)) (-15 -1883 ((-653 |#2|) (-1205 |#1|))) (-15 -1884 ((-653 |#2|) (-1205 |#1|))) (-15 -1885 (|#2| (-1205 |#1|))) (-15 -1886 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1817 (|#2| |#1|)) (-15 -1818 (|#2| |#1|)) (-15 -1819 (|#2| |#1|)) (-15 -1820 (|#2| |#1|)) (-15 -1881 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -1882 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -3536 ((-1205 (-653 |#2|)) (-1205 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1868 (((-3 $ "failed")) 37 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3536 (((-1205 (-653 |#1|)) (-1205 $)) 78)) (-1821 (((-1205 $)) 81)) (-3855 (($) 17 T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed")) 40 (|has| |#1| (-533)))) (-1795 (((-3 $ "failed")) 38 (|has| |#1| (-533)))) (-1883 (((-653 |#1|) (-1205 $)) 65)) (-1819 ((|#1| $) 74)) (-1881 (((-653 |#1|) $ (-1205 $)) 76)) (-2465 (((-3 $ "failed") $) 45 (|has| |#1| (-533)))) (-2468 (($ $ (-878)) 28)) (-1817 ((|#1| $) 72)) (-1797 (((-1117 |#1|) $) 42 (|has| |#1| (-533)))) (-1885 ((|#1| (-1205 $)) 67)) (-1815 (((-1117 |#1|) $) 63)) (-1809 (((-111)) 57)) (-1887 (($ (-1205 |#1|) (-1205 $)) 69)) (-3781 (((-3 $ "failed") $) 47 (|has| |#1| (-533)))) (-3406 (((-878)) 80)) (-1806 (((-111)) 54)) (-2493 (($ $ (-878)) 33)) (-1802 (((-111)) 50)) (-1800 (((-111)) 48)) (-1804 (((-111)) 52)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed")) 41 (|has| |#1| (-533)))) (-1796 (((-3 $ "failed")) 39 (|has| |#1| (-533)))) (-1884 (((-653 |#1|) (-1205 $)) 66)) (-1820 ((|#1| $) 75)) (-1882 (((-653 |#1|) $ (-1205 $)) 77)) (-2466 (((-3 $ "failed") $) 46 (|has| |#1| (-533)))) (-2467 (($ $ (-878)) 29)) (-1818 ((|#1| $) 73)) (-1798 (((-1117 |#1|) $) 43 (|has| |#1| (-533)))) (-1886 ((|#1| (-1205 $)) 68)) (-1816 (((-1117 |#1|) $) 64)) (-1810 (((-111)) 58)) (-3554 (((-1106) $) 9)) (-1801 (((-111)) 49)) (-1803 (((-111)) 51)) (-1805 (((-111)) 53)) (-3555 (((-1070) $) 10)) (-1808 (((-111)) 56)) (-3537 (((-1205 |#1|) $ (-1205 $)) 71) (((-653 |#1|) (-1205 $) (-1205 $)) 70)) (-1990 (((-607 (-905 |#1|)) (-1205 $)) 79)) (-2655 (($ $ $) 25)) (-1814 (((-111)) 62)) (-4274 (((-823) $) 11)) (-1799 (((-607 (-1205 |#1|))) 44 (|has| |#1| (-533)))) (-2656 (($ $ $ $) 26)) (-1812 (((-111)) 60)) (-2654 (($ $ $) 24)) (-1813 (((-111)) 61)) (-1811 (((-111)) 59)) (-1807 (((-111)) 55)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-352 |#1|) (-134) (-163)) (T -352)) -((-1821 (*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1205 *1)) (-4 *1 (-352 *3)))) (-3406 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-878)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-607 (-905 *4))))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-1205 (-653 *4))))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-1205 *4)))) (-3537 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1887 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1205 *1)) (-4 *4 (-163)) (-4 *1 (-352 *4)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-1117 *3)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-1117 *3)))) (-1814 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1813 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1812 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1811 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1810 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1809 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1808 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1807 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1806 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1805 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1804 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1803 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1802 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1801 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1800 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3781 (*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) (-2466 (*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) (-2465 (*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) (-1799 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-607 (-1205 *3))))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-1117 *3)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-1117 *3)))) (-2005 (*1 *2) (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-607 *1)))) (-4 *1 (-352 *3)))) (-2004 (*1 *2) (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-607 *1)))) (-4 *1 (-352 *3)))) (-1796 (*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163)))) (-1795 (*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163)))) (-1868 (*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163))))) -(-13 (-709 |t#1|) (-10 -8 (-15 -1821 ((-1205 $))) (-15 -3406 ((-878))) (-15 -1990 ((-607 (-905 |t#1|)) (-1205 $))) (-15 -3536 ((-1205 (-653 |t#1|)) (-1205 $))) (-15 -1882 ((-653 |t#1|) $ (-1205 $))) (-15 -1881 ((-653 |t#1|) $ (-1205 $))) (-15 -1820 (|t#1| $)) (-15 -1819 (|t#1| $)) (-15 -1818 (|t#1| $)) (-15 -1817 (|t#1| $)) (-15 -3537 ((-1205 |t#1|) $ (-1205 $))) (-15 -3537 ((-653 |t#1|) (-1205 $) (-1205 $))) (-15 -1887 ($ (-1205 |t#1|) (-1205 $))) (-15 -1886 (|t#1| (-1205 $))) (-15 -1885 (|t#1| (-1205 $))) (-15 -1884 ((-653 |t#1|) (-1205 $))) (-15 -1883 ((-653 |t#1|) (-1205 $))) (-15 -1816 ((-1117 |t#1|) $)) (-15 -1815 ((-1117 |t#1|) $)) (-15 -1814 ((-111))) (-15 -1813 ((-111))) (-15 -1812 ((-111))) (-15 -1811 ((-111))) (-15 -1810 ((-111))) (-15 -1809 ((-111))) (-15 -1808 ((-111))) (-15 -1807 ((-111))) (-15 -1806 ((-111))) (-15 -1805 ((-111))) (-15 -1804 ((-111))) (-15 -1803 ((-111))) (-15 -1802 ((-111))) (-15 -1801 ((-111))) (-15 -1800 ((-111))) (IF (|has| |t#1| (-533)) (PROGN (-15 -3781 ((-3 $ "failed") $)) (-15 -2466 ((-3 $ "failed") $)) (-15 -2465 ((-3 $ "failed") $)) (-15 -1799 ((-607 (-1205 |t#1|)))) (-15 -1798 ((-1117 |t#1|) $)) (-15 -1797 ((-1117 |t#1|) $)) (-15 -2005 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2004 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -1796 ((-3 $ "failed"))) (-15 -1795 ((-3 $ "failed"))) (-15 -1868 ((-3 $ "failed"))) (-6 -4307)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-685) . T) ((-709 |#1|) . T) ((-726) . T) ((-1010 |#1|) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 7)) (-3433 (((-735)) 16)) (-3294 (($) 13)) (-2102 (((-878) $) 14)) (-3554 (((-1106) $) 9)) (-2461 (($ (-878)) 15)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) -(((-353) (-134)) (T -353)) -((-3433 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-735)))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-353)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-878)))) (-3294 (*1 *1) (-4 *1 (-353)))) -(-13 (-1052) (-10 -8 (-15 -3433 ((-735))) (-15 -2461 ($ (-878))) (-15 -2102 ((-878) $)) (-15 -3294 ($)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-1877 (((-653 |#2|) (-1205 $)) 40)) (-1887 (($ (-1205 |#2|) (-1205 $)) 34)) (-1876 (((-653 |#2|) $ (-1205 $)) 42)) (-4076 ((|#2| (-1205 $)) 13)) (-3537 (((-1205 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) 25))) -(((-354 |#1| |#2| |#3|) (-10 -8 (-15 -1877 ((-653 |#2|) (-1205 |#1|))) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1876 ((-653 |#2|) |#1| (-1205 |#1|)))) (-355 |#2| |#3|) (-163) (-1181 |#2|)) (T -354)) -NIL -(-10 -8 (-15 -1877 ((-653 |#2|) (-1205 |#1|))) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1876 ((-653 |#2|) |#1| (-1205 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1877 (((-653 |#1|) (-1205 $)) 44)) (-3649 ((|#1| $) 50)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-1887 (($ (-1205 |#1|) (-1205 $)) 46)) (-1876 (((-653 |#1|) $ (-1205 $)) 51)) (-3781 (((-3 $ "failed") $) 32)) (-3406 (((-878)) 52)) (-2471 (((-111) $) 30)) (-3429 ((|#1| $) 49)) (-2106 ((|#2| $) 42 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4076 ((|#1| (-1205 $)) 45)) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) 47)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35)) (-3002 (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2667 ((|#2| $) 43)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-355 |#1| |#2|) (-134) (-163) (-1181 |t#1|)) (T -355)) -((-3406 (*1 *2) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-878)))) (-1876 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *4)))) (-3537 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) (-1887 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1205 *1)) (-4 *4 (-163)) (-4 *1 (-355 *4 *5)) (-4 *5 (-1181 *4)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *2 *4)) (-4 *4 (-1181 *2)) (-4 *2 (-163)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-163)) (-4 *3 (-348)) (-4 *2 (-1181 *3))))) -(-13 (-37 |t#1|) (-10 -8 (-15 -3406 ((-878))) (-15 -1876 ((-653 |t#1|) $ (-1205 $))) (-15 -3649 (|t#1| $)) (-15 -3429 (|t#1| $)) (-15 -3537 ((-1205 |t#1|) $ (-1205 $))) (-15 -3537 ((-653 |t#1|) (-1205 $) (-1205 $))) (-15 -1887 ($ (-1205 |t#1|) (-1205 $))) (-15 -4076 (|t#1| (-1205 $))) (-15 -1877 ((-653 |t#1|) (-1205 $))) (-15 -2667 (|t#2| $)) (IF (|has| |t#1| (-348)) (-15 -2106 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) . T) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-1824 (((-111) (-1 (-111) |#2| |#2|) $) NIL) (((-111) $) 18)) (-1822 (($ (-1 (-111) |#2| |#2|) $) NIL) (($ $) 28)) (-3209 (($ (-1 (-111) |#2| |#2|) $) 27) (($ $) 22)) (-2347 (($ $) 25)) (-3738 (((-526) (-1 (-111) |#2|) $) NIL) (((-526) |#2| $) 11) (((-526) |#2| $ (-526)) NIL)) (-3832 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-356 |#1| |#2|) (-10 -8 (-15 -1822 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1824 ((-111) |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3209 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) (-357 |#2|) (-1159)) (T -356)) -NIL -(-10 -8 (-15 -1822 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1824 ((-111) |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3209 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-3738 (((-526) (-1 (-111) |#1|) $) 97) (((-526) |#1| $) 96 (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) 95 (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 83 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 85 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 82 (|has| |#1| (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-357 |#1|) (-134) (-1159)) (T -357)) -((-3832 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) (-2347 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)))) (-3209 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) (-1824 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-357 *4)) (-4 *4 (-1159)) (-5 *2 (-111)))) (-3738 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-357 *4)) (-4 *4 (-1159)) (-5 *2 (-526)))) (-3738 (*1 *2 *3 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-526)))) (-3738 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)))) (-3832 (*1 *1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) (-3209 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-811)) (-5 *2 (-111)))) (-1823 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (|has| *1 (-6 -4311)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) (-2346 (*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-357 *2)) (-4 *2 (-1159)))) (-1822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4311)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) (-1822 (*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811))))) -(-13 (-616 |t#1|) (-10 -8 (-6 -4310) (-15 -3832 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -2347 ($ $)) (-15 -3209 ($ (-1 (-111) |t#1| |t#1|) $)) (-15 -1824 ((-111) (-1 (-111) |t#1| |t#1|) $)) (-15 -3738 ((-526) (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -3738 ((-526) |t#1| $)) (-15 -3738 ((-526) |t#1| $ (-526)))) |%noBranch|) (IF (|has| |t#1| (-811)) (PROGN (-6 (-811)) (-15 -3832 ($ $ $)) (-15 -3209 ($ $)) (-15 -1824 ((-111) $))) |%noBranch|) (IF (|has| $ (-6 -4311)) (PROGN (-15 -1823 ($ $ $ (-526))) (-15 -2346 ($ $)) (-15 -1822 ($ (-1 (-111) |t#1| |t#1|) $)) (IF (|has| |t#1| (-811)) (-15 -1822 ($ $)) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-811) |has| |#1| (-811)) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1159) . T)) -((-4160 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4161 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4275 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-358 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4161 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4160 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1159) (-357 |#1|) (-1159) (-357 |#3|)) (T -358)) -((-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-4 *2 (-357 *5)) (-5 *1 (-358 *6 *4 *5 *2)) (-4 *4 (-357 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-358 *5 *4 *2 *6)) (-4 *4 (-357 *5)) (-4 *6 (-357 *2)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *2 (-357 *6)) (-5 *1 (-358 *5 *4 *6 *2)) (-4 *4 (-357 *5))))) -(-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4161 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4160 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4251 (((-607 |#1|) $) 32)) (-4263 (($ $ (-735)) 33)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4256 (((-1229 |#1| |#2|) (-1229 |#1| |#2|) $) 36)) (-4253 (($ $) 34)) (-4257 (((-1229 |#1| |#2|) (-1229 |#1| |#2|) $) 37)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4086 (($ $ |#1| $) 31) (($ $ (-607 |#1|) (-607 $)) 30)) (-4264 (((-735) $) 38)) (-3844 (($ $ $) 29)) (-4274 (((-823) $) 11) (($ |#1|) 41) (((-1220 |#1| |#2|) $) 40) (((-1229 |#1| |#2|) $) 39)) (-4270 ((|#2| (-1229 |#1| |#2|) $) 42)) (-2957 (($) 18 T CONST)) (-1825 (($ (-637 |#1|)) 35)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#2|) 28 (|has| |#2| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-359 |#1| |#2|) (-134) (-811) (-163)) (T -359)) -((-4270 (*1 *2 *3 *1) (-12 (-5 *3 (-1229 *4 *2)) (-4 *1 (-359 *4 *2)) (-4 *4 (-811)) (-4 *2 (-163)))) (-4274 (*1 *1 *2) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-1220 *3 *4)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-1229 *3 *4)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-735)))) (-4257 (*1 *2 *2 *1) (-12 (-5 *2 (-1229 *3 *4)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4256 (*1 *2 *2 *1) (-12 (-5 *2 (-1229 *3 *4)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-4 *1 (-359 *3 *4)) (-4 *4 (-163)))) (-4253 (*1 *1 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) (-4263 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-607 *3)))) (-4086 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 *1)) (-4 *1 (-359 *4 *5)) (-4 *4 (-811)) (-4 *5 (-163))))) -(-13 (-602 |t#2|) (-10 -8 (-15 -4270 (|t#2| (-1229 |t#1| |t#2|) $)) (-15 -4274 ($ |t#1|)) (-15 -4274 ((-1220 |t#1| |t#2|) $)) (-15 -4274 ((-1229 |t#1| |t#2|) $)) (-15 -4264 ((-735) $)) (-15 -4257 ((-1229 |t#1| |t#2|) (-1229 |t#1| |t#2|) $)) (-15 -4256 ((-1229 |t#1| |t#2|) (-1229 |t#1| |t#2|) $)) (-15 -1825 ($ (-637 |t#1|))) (-15 -4253 ($ $)) (-15 -4263 ($ $ (-735))) (-15 -4251 ((-607 |t#1|) $)) (-15 -4086 ($ $ |t#1| $)) (-15 -4086 ($ $ (-607 |t#1|) (-607 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#2|) . T) ((-602 |#2|) . T) ((-682 |#2|) . T) ((-1010 |#2|) . T) ((-1052) . T)) -((-1828 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 24)) (-1826 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 13)) (-1827 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 22))) -(((-360 |#1| |#2|) (-10 -7 (-15 -1826 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1827 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1828 (|#2| (-1 (-111) |#1| |#1|) |#2|))) (-1159) (-13 (-357 |#1|) (-10 -7 (-6 -4311)))) (T -360)) -((-1828 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311)))))) (-1827 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311)))))) (-1826 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311))))))) -(-10 -7 (-15 -1826 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1827 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1828 (|#2| (-1 (-111) |#1| |#1|) |#2|))) -((-2331 (((-653 |#2|) (-653 $)) NIL) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 22) (((-653 (-526)) (-653 $)) 14))) -(((-361 |#1| |#2|) (-10 -8 (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 |#2|) (-653 |#1|)))) (-362 |#2|) (-1004)) (T -361)) -NIL -(-10 -8 (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 |#2|) (-653 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2331 (((-653 |#1|) (-653 $)) 34) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 33) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 41 (|has| |#1| (-606 (-526)))) (((-653 (-526)) (-653 $)) 40 (|has| |#1| (-606 (-526))))) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-362 |#1|) (-134) (-1004)) (T -362)) -NIL -(-13 (-606 |t#1|) (-10 -7 (IF (|has| |t#1| (-606 (-526))) (-6 (-606 (-526))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 33)) (-3426 (((-526) $) 55)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4089 (($ $) 110)) (-3806 (($ $) 82)) (-3961 (($ $) 71)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) 44)) (-1681 (((-111) $ $) NIL)) (-3804 (($ $) 80)) (-3960 (($ $) 69)) (-3945 (((-526) $) 64)) (-2659 (($ $ (-526)) 62)) (-3808 (($ $) NIL)) (-3959 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3424 (($ $) 112)) (-3470 (((-3 (-526) #1="failed") $) 189) (((-3 (-392 (-526)) #1#) $) 185)) (-3469 (((-526) $) 187) (((-392 (-526)) $) 183)) (-2861 (($ $ $) NIL)) (-1837 (((-526) $ $) 102)) (-3781 (((-3 $ "failed") $) 114)) (-1836 (((-392 (-526)) $ (-735)) 190) (((-392 (-526)) $ (-735) (-735)) 182)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2435 (((-878)) 73) (((-878) (-878)) 98 (|has| $ (-6 -4301)))) (-3500 (((-111) $) 106)) (-3949 (($) 40)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL)) (-1829 (((-1211) (-735)) 152)) (-1830 (((-1211)) 157) (((-1211) (-735)) 158)) (-1832 (((-1211)) 159) (((-1211) (-735)) 160)) (-1831 (((-1211)) 155) (((-1211) (-735)) 156)) (-4090 (((-526) $) 58)) (-2471 (((-111) $) 104)) (-3311 (($ $ (-526)) NIL)) (-2661 (($ $) 48)) (-3429 (($ $) NIL)) (-3501 (((-111) $) 35)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL) (($) NIL (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-3638 (($ $ $) NIL) (($) 99 (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-2436 (((-526) $) 17)) (-1835 (($) 87) (($ $) 92)) (-1834 (($) 91) (($ $) 93)) (-4259 (($ $) 83)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 116)) (-1865 (((-878) (-526)) 43 (|has| $ (-6 -4301)))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) 53)) (-3427 (($ $) 109)) (-3566 (($ (-526) (-526)) 107) (($ (-526) (-526) (-878)) 108)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2462 (((-526) $) 19)) (-1833 (($) 94)) (-4260 (($ $) 79)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2910 (((-878)) 100) (((-878) (-878)) 101 (|has| $ (-6 -4301)))) (-4129 (($ $ (-735)) NIL) (($ $) 115)) (-1864 (((-878) (-526)) 47 (|has| $ (-6 -4301)))) (-3809 (($ $) NIL)) (-3958 (($ $) NIL)) (-3807 (($ $) NIL)) (-3957 (($ $) NIL)) (-3805 (($ $) 81)) (-3956 (($ $) 70)) (-4287 (((-363) $) 175) (((-211) $) 177) (((-849 (-363)) $) NIL) (((-1106) $) 162) (((-515) $) 173) (($ (-211)) 181)) (-4274 (((-823) $) 164) (($ (-526)) 186) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-526)) 186) (($ (-392 (-526))) NIL) (((-211) $) 178)) (-3423 (((-735)) NIL)) (-3428 (($ $) 111)) (-1866 (((-878)) 54) (((-878) (-878)) 66 (|has| $ (-6 -4301)))) (-2994 (((-878)) 103)) (-3812 (($ $) 86)) (-3800 (($ $) 46) (($ $ $) 52)) (-2150 (((-111) $ $) NIL)) (-3810 (($ $) 84)) (-3798 (($ $) 37)) (-3814 (($ $) NIL)) (-3802 (($ $) NIL)) (-3815 (($ $) NIL)) (-3803 (($ $) NIL)) (-3813 (($ $) NIL)) (-3801 (($ $) NIL)) (-3811 (($ $) 85)) (-3799 (($ $) 49)) (-3702 (($ $) 51)) (-2957 (($) 34 T CONST)) (-2964 (($) 38 T CONST)) (-2803 (((-1106) $) 27) (((-1106) $ (-111)) 29) (((-1211) (-787) $) 30) (((-1211) (-787) $ (-111)) 31)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 39)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 42)) (-4265 (($ $ $) 45) (($ $ (-526)) 41)) (-4156 (($ $) 36) (($ $ $) 50)) (-4158 (($ $ $) 61)) (** (($ $ (-878)) 67) (($ $ (-735)) NIL) (($ $ (-526)) 88) (($ $ (-392 (-526))) 125) (($ $ $) 117)) (* (($ (-878) $) 65) (($ (-735) $) NIL) (($ (-526) $) 68) (($ $ $) 60) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) -(((-363) (-13 (-389) (-219) (-584 (-1106)) (-785) (-583 (-211)) (-1145) (-584 (-515)) (-10 -8 (-15 -4265 ($ $ (-526))) (-15 ** ($ $ $)) (-15 -2661 ($ $)) (-15 -1837 ((-526) $ $)) (-15 -2659 ($ $ (-526))) (-15 -1836 ((-392 (-526)) $ (-735))) (-15 -1836 ((-392 (-526)) $ (-735) (-735))) (-15 -1835 ($)) (-15 -1834 ($)) (-15 -1833 ($)) (-15 -3800 ($ $ $)) (-15 -1835 ($ $)) (-15 -1834 ($ $)) (-15 -4287 ($ (-211))) (-15 -1832 ((-1211))) (-15 -1832 ((-1211) (-735))) (-15 -1831 ((-1211))) (-15 -1831 ((-1211) (-735))) (-15 -1830 ((-1211))) (-15 -1830 ((-1211) (-735))) (-15 -1829 ((-1211) (-735))) (-6 -4301) (-6 -4293)))) (T -363)) -((** (*1 *1 *1 *1) (-5 *1 (-363))) (-4265 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) (-2661 (*1 *1 *1) (-5 *1 (-363))) (-1837 (*1 *2 *1 *1) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) (-2659 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) (-1836 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-363)))) (-1836 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-363)))) (-1835 (*1 *1) (-5 *1 (-363))) (-1834 (*1 *1) (-5 *1 (-363))) (-1833 (*1 *1) (-5 *1 (-363))) (-3800 (*1 *1 *1 *1) (-5 *1 (-363))) (-1835 (*1 *1 *1) (-5 *1 (-363))) (-1834 (*1 *1 *1) (-5 *1 (-363))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-363)))) (-1832 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) (-1831 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) (-1830 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363))))) -(-13 (-389) (-219) (-584 (-1106)) (-785) (-583 (-211)) (-1145) (-584 (-515)) (-10 -8 (-15 -4265 ($ $ (-526))) (-15 ** ($ $ $)) (-15 -2661 ($ $)) (-15 -1837 ((-526) $ $)) (-15 -2659 ($ $ (-526))) (-15 -1836 ((-392 (-526)) $ (-735))) (-15 -1836 ((-392 (-526)) $ (-735) (-735))) (-15 -1835 ($)) (-15 -1834 ($)) (-15 -1833 ($)) (-15 -3800 ($ $ $)) (-15 -1835 ($ $)) (-15 -1834 ($ $)) (-15 -4287 ($ (-211))) (-15 -1832 ((-1211))) (-15 -1832 ((-1211) (-735))) (-15 -1831 ((-1211))) (-15 -1831 ((-1211) (-735))) (-15 -1830 ((-1211))) (-15 -1830 ((-1211) (-735))) (-15 -1829 ((-1211) (-735))) (-6 -4301) (-6 -4293))) -((-1838 (((-607 (-278 (-905 (-159 |#1|)))) (-278 (-392 (-905 (-159 (-526))))) |#1|) 51) (((-607 (-278 (-905 (-159 |#1|)))) (-392 (-905 (-159 (-526)))) |#1|) 50) (((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-278 (-392 (-905 (-159 (-526)))))) |#1|) 47) (((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-392 (-905 (-159 (-526))))) |#1|) 41)) (-1839 (((-607 (-607 (-159 |#1|))) (-607 (-392 (-905 (-159 (-526))))) (-607 (-1123)) |#1|) 30) (((-607 (-159 |#1|)) (-392 (-905 (-159 (-526)))) |#1|) 18))) -(((-364 |#1|) (-10 -7 (-15 -1838 ((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-392 (-905 (-159 (-526))))) |#1|)) (-15 -1838 ((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-278 (-392 (-905 (-159 (-526)))))) |#1|)) (-15 -1838 ((-607 (-278 (-905 (-159 |#1|)))) (-392 (-905 (-159 (-526)))) |#1|)) (-15 -1838 ((-607 (-278 (-905 (-159 |#1|)))) (-278 (-392 (-905 (-159 (-526))))) |#1|)) (-15 -1839 ((-607 (-159 |#1|)) (-392 (-905 (-159 (-526)))) |#1|)) (-15 -1839 ((-607 (-607 (-159 |#1|))) (-607 (-392 (-905 (-159 (-526))))) (-607 (-1123)) |#1|))) (-13 (-348) (-809))) (T -364)) -((-1839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-392 (-905 (-159 (-526)))))) (-5 *4 (-607 (-1123))) (-5 *2 (-607 (-607 (-159 *5)))) (-5 *1 (-364 *5)) (-4 *5 (-13 (-348) (-809))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-159 (-526))))) (-5 *2 (-607 (-159 *4))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-392 (-905 (-159 (-526)))))) (-5 *2 (-607 (-278 (-905 (-159 *4))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-159 (-526))))) (-5 *2 (-607 (-278 (-905 (-159 *4))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-278 (-392 (-905 (-159 (-526))))))) (-5 *2 (-607 (-607 (-278 (-905 (-159 *4)))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 (-159 (-526)))))) (-5 *2 (-607 (-607 (-278 (-905 (-159 *4)))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809)))))) -(-10 -7 (-15 -1838 ((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-392 (-905 (-159 (-526))))) |#1|)) (-15 -1838 ((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-278 (-392 (-905 (-159 (-526)))))) |#1|)) (-15 -1838 ((-607 (-278 (-905 (-159 |#1|)))) (-392 (-905 (-159 (-526)))) |#1|)) (-15 -1838 ((-607 (-278 (-905 (-159 |#1|)))) (-278 (-392 (-905 (-159 (-526))))) |#1|)) (-15 -1839 ((-607 (-159 |#1|)) (-392 (-905 (-159 (-526)))) |#1|)) (-15 -1839 ((-607 (-607 (-159 |#1|))) (-607 (-392 (-905 (-159 (-526))))) (-607 (-1123)) |#1|))) -((-3895 (((-607 (-278 (-905 |#1|))) (-278 (-392 (-905 (-526)))) |#1|) 46) (((-607 (-278 (-905 |#1|))) (-392 (-905 (-526))) |#1|) 45) (((-607 (-607 (-278 (-905 |#1|)))) (-607 (-278 (-392 (-905 (-526))))) |#1|) 42) (((-607 (-607 (-278 (-905 |#1|)))) (-607 (-392 (-905 (-526)))) |#1|) 36)) (-1840 (((-607 |#1|) (-392 (-905 (-526))) |#1|) 20) (((-607 (-607 |#1|)) (-607 (-392 (-905 (-526)))) (-607 (-1123)) |#1|) 30))) -(((-365 |#1|) (-10 -7 (-15 -3895 ((-607 (-607 (-278 (-905 |#1|)))) (-607 (-392 (-905 (-526)))) |#1|)) (-15 -3895 ((-607 (-607 (-278 (-905 |#1|)))) (-607 (-278 (-392 (-905 (-526))))) |#1|)) (-15 -3895 ((-607 (-278 (-905 |#1|))) (-392 (-905 (-526))) |#1|)) (-15 -3895 ((-607 (-278 (-905 |#1|))) (-278 (-392 (-905 (-526)))) |#1|)) (-15 -1840 ((-607 (-607 |#1|)) (-607 (-392 (-905 (-526)))) (-607 (-1123)) |#1|)) (-15 -1840 ((-607 |#1|) (-392 (-905 (-526))) |#1|))) (-13 (-809) (-348))) (T -365)) -((-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-526)))) (-5 *2 (-607 *4)) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-392 (-905 (-526))))) (-5 *4 (-607 (-1123))) (-5 *2 (-607 (-607 *5))) (-5 *1 (-365 *5)) (-4 *5 (-13 (-809) (-348))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-392 (-905 (-526))))) (-5 *2 (-607 (-278 (-905 *4)))) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-526)))) (-5 *2 (-607 (-278 (-905 *4)))) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-278 (-392 (-905 (-526)))))) (-5 *2 (-607 (-607 (-278 (-905 *4))))) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 (-526))))) (-5 *2 (-607 (-607 (-278 (-905 *4))))) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348)))))) -(-10 -7 (-15 -3895 ((-607 (-607 (-278 (-905 |#1|)))) (-607 (-392 (-905 (-526)))) |#1|)) (-15 -3895 ((-607 (-607 (-278 (-905 |#1|)))) (-607 (-278 (-392 (-905 (-526))))) |#1|)) (-15 -3895 ((-607 (-278 (-905 |#1|))) (-392 (-905 (-526))) |#1|)) (-15 -3895 ((-607 (-278 (-905 |#1|))) (-278 (-392 (-905 (-526)))) |#1|)) (-15 -1840 ((-607 (-607 |#1|)) (-607 (-392 (-905 (-526)))) (-607 (-1123)) |#1|)) (-15 -1840 ((-607 |#1|) (-392 (-905 (-526))) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 28)) (-2957 (($) 12 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-366 |#1| |#2|) (-13 (-110 |#1| |#1|) (-491 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-163)) (-6 (-682 |#1|)) |%noBranch|))) (-1004) (-811)) (T -366)) -NIL -(-13 (-110 |#1| |#1|) (-491 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-163)) (-6 (-682 |#1|)) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| "failed") $) 26)) (-3469 ((|#2| $) 28)) (-4276 (($ $) NIL)) (-2479 (((-735) $) 10)) (-3121 (((-607 $) $) 20)) (-4254 (((-111) $) NIL)) (-4255 (($ |#2| |#1|) 18)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1841 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3194 ((|#2| $) 15)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 45) (($ |#2|) 27)) (-4136 (((-607 |#1|) $) 17)) (-3999 ((|#1| $ |#2|) 47)) (-2957 (($) 29 T CONST)) (-2963 (((-607 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-367 |#1| |#2|) (-13 (-369 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1004) (-811)) (T -367)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-367 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-811))))) -(-13 (-369 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-653 (-663))) 14) (($ (-607 (-315))) 13) (($ (-315)) 12) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 11))) -(((-368) (-134)) (T -368)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-663))) (-4 *1 (-368)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-368)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-368)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-368))))) -(-13 (-381) (-10 -8 (-15 -4274 ($ (-653 (-663)))) (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))))) -(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#2| "failed") $) 44)) (-3469 ((|#2| $) 43)) (-4276 (($ $) 30)) (-2479 (((-735) $) 34)) (-3121 (((-607 $) $) 35)) (-4254 (((-111) $) 38)) (-4255 (($ |#2| |#1|) 39)) (-4275 (($ (-1 |#1| |#1|) $) 40)) (-1841 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3194 ((|#2| $) 33)) (-3487 ((|#1| $) 32)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ |#2|) 45)) (-4136 (((-607 |#1|) $) 36)) (-3999 ((|#1| $ |#2|) 41)) (-2957 (($) 18 T CONST)) (-2963 (((-607 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-369 |#1| |#2|) (-134) (-1004) (-1052)) (T -369)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1052)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1004)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)))) (-4255 (*1 *1 *2 *3) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1052)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-111)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 *3)))) (-3121 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 *1)) (-4 *1 (-369 *3 *4)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-735)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1052)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1004)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1052))))) -(-13 (-110 |t#1| |t#1|) (-995 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3999 (|t#1| $ |t#2|)) (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (-15 -4255 ($ |t#2| |t#1|)) (-15 -4254 ((-111) $)) (-15 -2963 ((-607 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4136 ((-607 |t#1|) $)) (-15 -3121 ((-607 $) $)) (-15 -2479 ((-735) $)) (-15 -3194 (|t#2| $)) (-15 -3487 (|t#1| $)) (-15 -1841 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4276 ($ $)) (IF (|has| |t#1| (-163)) (-6 (-682 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) |has| |#1| (-163)) ((-995 |#2|) . T) ((-1010 |#1|) . T) ((-1052) . T)) -((-3470 (((-3 $ "failed") (-653 (-299 (-363)))) 21) (((-3 $ "failed") (-653 (-299 (-526)))) 19) (((-3 $ "failed") (-653 (-905 (-363)))) 17) (((-3 $ "failed") (-653 (-905 (-526)))) 15) (((-3 $ "failed") (-653 (-392 (-905 (-363))))) 13) (((-3 $ "failed") (-653 (-392 (-905 (-526))))) 11)) (-3469 (($ (-653 (-299 (-363)))) 22) (($ (-653 (-299 (-526)))) 20) (($ (-653 (-905 (-363)))) 18) (($ (-653 (-905 (-526)))) 16) (($ (-653 (-392 (-905 (-363))))) 14) (($ (-653 (-392 (-905 (-526))))) 12)) (-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-607 (-315))) 25) (($ (-315)) 24) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 23))) -(((-370) (-134)) (T -370)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-370)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-370)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-299 (-363)))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-299 (-363)))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-299 (-526)))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-299 (-526)))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-905 (-363)))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-905 (-363)))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-905 (-526)))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-905 (-526)))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-392 (-905 (-363))))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-392 (-905 (-363))))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-392 (-905 (-526))))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-392 (-905 (-526))))) (-4 *1 (-370))))) -(-13 (-381) (-10 -8 (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -3469 ($ (-653 (-299 (-363))))) (-15 -3470 ((-3 $ "failed") (-653 (-299 (-363))))) (-15 -3469 ($ (-653 (-299 (-526))))) (-15 -3470 ((-3 $ "failed") (-653 (-299 (-526))))) (-15 -3469 ($ (-653 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-653 (-905 (-363))))) (-15 -3469 ($ (-653 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-653 (-905 (-526))))) (-15 -3469 ($ (-653 (-392 (-905 (-363)))))) (-15 -3470 ((-3 $ "failed") (-653 (-392 (-905 (-363)))))) (-15 -3469 ($ (-653 (-392 (-905 (-526)))))) (-15 -3470 ((-3 $ "failed") (-653 (-392 (-905 (-526)))))))) -(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3433 (((-735) $) 59)) (-3855 (($) NIL T CONST)) (-4256 (((-3 $ "failed") $ $) 61)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2739 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2471 (((-111) $) 15)) (-2737 ((|#1| $ (-526)) NIL)) (-2738 (((-735) $ (-526)) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2340 (($ (-1 |#1| |#1|) $) 38)) (-2341 (($ (-1 (-735) (-735)) $) 35)) (-4257 (((-3 $ "failed") $ $) 50)) (-3554 (((-1106) $) NIL)) (-2740 (($ $ $) 26)) (-2741 (($ $ $) 24)) (-3555 (((-1070) $) NIL)) (-2736 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $) 32)) (-3181 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4274 (((-823) $) 22) (($ |#1|) NIL)) (-2964 (($) 9 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 41)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) 63 (|has| |#1| (-811)))) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ |#1| (-735)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-371 |#1|) (-13 (-691) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-735))) (-15 -2741 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -4257 ((-3 $ "failed") $ $)) (-15 -4256 ((-3 $ "failed") $ $)) (-15 -3181 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3433 ((-735) $)) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $)) (-15 -2738 ((-735) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2341 ($ (-1 (-735) (-735)) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) (-1052)) (T -371)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-2741 (*1 *1 *1 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-2740 (*1 *1 *1 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-4257 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-4256 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-3181 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-371 *3)) (|:| |rm| (-371 *3)))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-2739 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-371 *3)) (|:| |mm| (-371 *3)) (|:| |rm| (-371 *3)))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-735))))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-2738 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-735)) (-5 *1 (-371 *4)) (-4 *4 (-1052)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-735) (-735))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-371 *3))))) -(-13 (-691) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-735))) (-15 -2741 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -4257 ((-3 $ "failed") $ $)) (-15 -4256 ((-3 $ "failed") $ $)) (-15 -3181 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3433 ((-735) $)) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $)) (-15 -2738 ((-735) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2341 ($ (-1 (-735) (-735)) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) "failed") $) 45)) (-3469 (((-526) $) 44)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3637 (($ $ $) 52)) (-3638 (($ $ $) 51)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-526)) 46)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 49)) (-2864 (((-111) $ $) 48)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 50)) (-2985 (((-111) $ $) 47)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-372) (-134)) (T -372)) -NIL -(-13 (-533) (-811) (-995 (-526))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-811) . T) ((-995 (-526)) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-1842 (((-111) $) 20)) (-1843 (((-111) $) 19)) (-3936 (($ (-1106) (-1106) (-1106)) 21)) (-3864 (((-1106) $) 16)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1847 (($ (-1106) (-1106) (-1106)) 14)) (-1845 (((-1106) $) 17)) (-1844 (((-111) $) 18)) (-1846 (((-1106) $) 15)) (-4274 (((-823) $) 12) (($ (-1106)) 13) (((-1106) $) 9)) (-3353 (((-111) $ $) 7))) -(((-373) (-374)) (T -373)) -NIL -(-374) -((-2865 (((-111) $ $) 7)) (-1842 (((-111) $) 14)) (-1843 (((-111) $) 15)) (-3936 (($ (-1106) (-1106) (-1106)) 13)) (-3864 (((-1106) $) 18)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-1847 (($ (-1106) (-1106) (-1106)) 20)) (-1845 (((-1106) $) 17)) (-1844 (((-111) $) 16)) (-1846 (((-1106) $) 19)) (-4274 (((-823) $) 11) (($ (-1106)) 22) (((-1106) $) 21)) (-3353 (((-111) $ $) 6))) -(((-374) (-134)) (T -374)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) (-1847 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111)))) (-3936 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374))))) -(-13 (-1052) (-10 -8 (-15 -4274 ($ (-1106))) (-15 -4274 ((-1106) $)) (-15 -1847 ($ (-1106) (-1106) (-1106))) (-15 -1846 ((-1106) $)) (-15 -3864 ((-1106) $)) (-15 -1845 ((-1106) $)) (-15 -1844 ((-111) $)) (-15 -1843 ((-111) $)) (-15 -1842 ((-111) $)) (-15 -3936 ($ (-1106) (-1106) (-1106))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1848 (((-823) $) 50)) (-3855 (($) NIL T CONST)) (-2468 (($ $ (-878)) NIL)) (-2493 (($ $ (-878)) NIL)) (-2467 (($ $ (-878)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($ (-735)) 26)) (-4230 (((-735)) 17)) (-1849 (((-823) $) 52)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) NIL)) (-2656 (($ $ $ $) NIL)) (-2654 (($ $ $) NIL)) (-2957 (($) 20 T CONST)) (-3353 (((-111) $ $) 28)) (-4156 (($ $) 34) (($ $ $) 36)) (-4158 (($ $ $) 37)) (** (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-375 |#1| |#2| |#3|) (-13 (-709 |#3|) (-10 -8 (-15 -4230 ((-735))) (-15 -1849 ((-823) $)) (-15 -1848 ((-823) $)) (-15 -2470 ($ (-735))))) (-735) (-735) (-163)) (T -375)) -((-4230 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-163)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) (-4 *5 (-163)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) (-4 *5 (-163)))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-163))))) -(-13 (-709 |#3|) (-10 -8 (-15 -4230 ((-735))) (-15 -1849 ((-823) $)) (-15 -1848 ((-823) $)) (-15 -2470 ($ (-735))))) -((-1854 (((-1106)) 10)) (-1851 (((-1095 (-1106))) 28)) (-1853 (((-1211) (-1106)) 25) (((-1211) (-373)) 24)) (-1852 (((-1211)) 26)) (-1850 (((-1095 (-1106))) 27))) -(((-376) (-10 -7 (-15 -1850 ((-1095 (-1106)))) (-15 -1851 ((-1095 (-1106)))) (-15 -1852 ((-1211))) (-15 -1853 ((-1211) (-373))) (-15 -1853 ((-1211) (-1106))) (-15 -1854 ((-1106))))) (T -376)) -((-1854 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-376)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-376)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1211)) (-5 *1 (-376)))) (-1852 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-376)))) (-1851 (*1 *2) (-12 (-5 *2 (-1095 (-1106))) (-5 *1 (-376)))) (-1850 (*1 *2) (-12 (-5 *2 (-1095 (-1106))) (-5 *1 (-376))))) -(-10 -7 (-15 -1850 ((-1095 (-1106)))) (-15 -1851 ((-1095 (-1106)))) (-15 -1852 ((-1211))) (-15 -1853 ((-1211) (-373))) (-15 -1853 ((-1211) (-1106))) (-15 -1854 ((-1106)))) -((-4090 (((-735) (-318 |#1| |#2| |#3| |#4|)) 16))) -(((-377 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4090 ((-735) (-318 |#1| |#2| |#3| |#4|)))) (-13 (-353) (-348)) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -377)) -((-4090 (*1 *2 *3) (-12 (-5 *3 (-318 *4 *5 *6 *7)) (-4 *4 (-13 (-353) (-348))) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-4 *7 (-327 *4 *5 *6)) (-5 *2 (-735)) (-5 *1 (-377 *4 *5 *6 *7))))) -(-10 -7 (-15 -4090 ((-735) (-318 |#1| |#2| |#3| |#4|)))) -((-2865 (((-111) $ $) NIL)) (-3932 (((-607 (-1106)) $ (-607 (-1106))) 38)) (-1855 (((-607 (-1106)) $ (-607 (-1106))) 39)) (-3934 (((-607 (-1106)) $ (-607 (-1106))) 40)) (-3935 (((-607 (-1106)) $) 35)) (-3936 (($) 23)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1856 (((-607 (-1106)) $) 36)) (-3938 (((-607 (-1106)) $) 37)) (-3939 (((-1211) $ (-526)) 33) (((-1211) $) 34)) (-4287 (($ (-823) (-526)) 30)) (-4274 (((-823) $) 42) (($ (-823)) 25)) (-3353 (((-111) $ $) NIL))) -(((-378) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-823))) (-15 -4287 ($ (-823) (-526))) (-15 -3939 ((-1211) $ (-526))) (-15 -3939 ((-1211) $)) (-15 -3938 ((-607 (-1106)) $)) (-15 -1856 ((-607 (-1106)) $)) (-15 -3936 ($)) (-15 -3935 ((-607 (-1106)) $)) (-15 -3934 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -1855 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3932 ((-607 (-1106)) $ (-607 (-1106))))))) (T -378)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-378)))) (-4287 (*1 *1 *2 *3) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-378)))) (-3939 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-378)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-378)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-3936 (*1 *1) (-5 *1 (-378))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-3934 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-1855 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378))))) -(-13 (-1052) (-10 -8 (-15 -4274 ($ (-823))) (-15 -4287 ($ (-823) (-526))) (-15 -3939 ((-1211) $ (-526))) (-15 -3939 ((-1211) $)) (-15 -3938 ((-607 (-1106)) $)) (-15 -1856 ((-607 (-1106)) $)) (-15 -3936 ($)) (-15 -3935 ((-607 (-1106)) $)) (-15 -3934 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -1855 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3932 ((-607 (-1106)) $ (-607 (-1106)))))) -((-4274 (((-378) |#1|) 11))) -(((-379 |#1|) (-10 -7 (-15 -4274 ((-378) |#1|))) (-1052)) (T -379)) -((-4274 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-379 *3)) (-4 *3 (-1052))))) -(-10 -7 (-15 -4274 ((-378) |#1|))) -((-1858 (((-607 (-1106)) (-607 (-1106))) 9)) (-3699 (((-1211) (-373)) 27)) (-1857 (((-1054) (-1123) (-607 (-1123)) (-1126) (-607 (-1123))) 60) (((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)) (-1123)) 35) (((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123))) 34))) -(((-380) (-10 -7 (-15 -1857 ((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)))) (-15 -1857 ((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)) (-1123))) (-15 -1857 ((-1054) (-1123) (-607 (-1123)) (-1126) (-607 (-1123)))) (-15 -3699 ((-1211) (-373))) (-15 -1858 ((-607 (-1106)) (-607 (-1106)))))) (T -380)) -((-1858 (*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-380)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1211)) (-5 *1 (-380)))) (-1857 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-607 (-1123))) (-5 *5 (-1126)) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380)))) (-1857 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-607 (-607 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-607 (-3 (|:| |array| (-607 *3)) (|:| |scalar| (-1123))))) (-5 *6 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380)))) (-1857 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-607 (-607 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-607 (-3 (|:| |array| (-607 *3)) (|:| |scalar| (-1123))))) (-5 *6 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380))))) -(-10 -7 (-15 -1857 ((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)))) (-15 -1857 ((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)) (-1123))) (-15 -1857 ((-1054) (-1123) (-607 (-1123)) (-1126) (-607 (-1123)))) (-15 -3699 ((-1211) (-373))) (-15 -1858 ((-607 (-1106)) (-607 (-1106))))) -((-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8))) -(((-381) (-134)) (T -381)) -((-3699 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1211))))) -(-13 (-1159) (-583 (-823)) (-10 -8 (-15 -3699 ((-1211) $)))) -(((-583 (-823)) . T) ((-1159) . T)) -((-3470 (((-3 $ "failed") (-299 (-363))) 21) (((-3 $ "failed") (-299 (-526))) 19) (((-3 $ "failed") (-905 (-363))) 17) (((-3 $ "failed") (-905 (-526))) 15) (((-3 $ "failed") (-392 (-905 (-363)))) 13) (((-3 $ "failed") (-392 (-905 (-526)))) 11)) (-3469 (($ (-299 (-363))) 22) (($ (-299 (-526))) 20) (($ (-905 (-363))) 18) (($ (-905 (-526))) 16) (($ (-392 (-905 (-363)))) 14) (($ (-392 (-905 (-526)))) 12)) (-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-607 (-315))) 25) (($ (-315)) 24) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 23))) -(((-382) (-134)) (T -382)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-382)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-382)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-363))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-526))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-526))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-363)))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-363)))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-526)))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-526)))) (-4 *1 (-382))))) -(-13 (-381) (-10 -8 (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -3469 ($ (-299 (-363)))) (-15 -3470 ((-3 $ "failed") (-299 (-363)))) (-15 -3469 ($ (-299 (-526)))) (-15 -3470 ((-3 $ "failed") (-299 (-526)))) (-15 -3469 ($ (-905 (-363)))) (-15 -3470 ((-3 $ "failed") (-905 (-363)))) (-15 -3469 ($ (-905 (-526)))) (-15 -3470 ((-3 $ "failed") (-905 (-526)))) (-15 -3469 ($ (-392 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-363))))) (-15 -3469 ($ (-392 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-526))))))) -(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) -((-3699 (((-1211) $) 38)) (-4274 (((-823) $) 98) (($ (-315)) 100) (($ (-607 (-315))) 99) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 97) (($ (-299 (-665))) 54) (($ (-299 (-663))) 73) (($ (-299 (-658))) 86) (($ (-278 (-299 (-665)))) 68) (($ (-278 (-299 (-663)))) 81) (($ (-278 (-299 (-658)))) 94) (($ (-299 (-526))) 104) (($ (-299 (-363))) 117) (($ (-299 (-159 (-363)))) 130) (($ (-278 (-299 (-526)))) 112) (($ (-278 (-299 (-363)))) 125) (($ (-278 (-299 (-159 (-363))))) 138))) -(((-383 |#1| |#2| |#3| |#4|) (-13 (-381) (-10 -8 (-15 -4274 ($ (-315))) (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -4274 ($ (-299 (-665)))) (-15 -4274 ($ (-299 (-663)))) (-15 -4274 ($ (-299 (-658)))) (-15 -4274 ($ (-278 (-299 (-665))))) (-15 -4274 ($ (-278 (-299 (-663))))) (-15 -4274 ($ (-278 (-299 (-658))))) (-15 -4274 ($ (-299 (-526)))) (-15 -4274 ($ (-299 (-363)))) (-15 -4274 ($ (-299 (-159 (-363))))) (-15 -4274 ($ (-278 (-299 (-526))))) (-15 -4274 ($ (-278 (-299 (-363))))) (-15 -4274 ($ (-278 (-299 (-159 (-363)))))))) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 "void")) (-607 (-1123)) (-1127)) (T -383)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-665))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-663))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-658))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-665)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-663)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-658)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-159 (-363)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-526)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-363)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-159 (-363))))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127))))) -(-13 (-381) (-10 -8 (-15 -4274 ($ (-315))) (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -4274 ($ (-299 (-665)))) (-15 -4274 ($ (-299 (-663)))) (-15 -4274 ($ (-299 (-658)))) (-15 -4274 ($ (-278 (-299 (-665))))) (-15 -4274 ($ (-278 (-299 (-663))))) (-15 -4274 ($ (-278 (-299 (-658))))) (-15 -4274 ($ (-299 (-526)))) (-15 -4274 ($ (-299 (-363)))) (-15 -4274 ($ (-299 (-159 (-363))))) (-15 -4274 ($ (-278 (-299 (-526))))) (-15 -4274 ($ (-278 (-299 (-363))))) (-15 -4274 ($ (-278 (-299 (-159 (-363)))))))) -((-2865 (((-111) $ $) NIL)) (-1860 ((|#2| $) 36)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1861 (($ (-392 |#2|)) 85)) (-1859 (((-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))) $) 37)) (-4129 (($ $) 32) (($ $ (-735)) 34)) (-4287 (((-392 |#2|) $) 46)) (-3844 (($ (-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|)))) 31)) (-4274 (((-823) $) 120)) (-2969 (($ $) 33) (($ $ (-735)) 35)) (-3353 (((-111) $ $) NIL)) (-4158 (($ |#2| $) 39))) -(((-384 |#1| |#2|) (-13 (-1052) (-584 (-392 |#2|)) (-10 -8 (-15 -4158 ($ |#2| $)) (-15 -1861 ($ (-392 |#2|))) (-15 -1860 (|#2| $)) (-15 -1859 ((-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))) $)) (-15 -3844 ($ (-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))))) (-15 -4129 ($ $)) (-15 -2969 ($ $)) (-15 -4129 ($ $ (-735))) (-15 -2969 ($ $ (-735))))) (-13 (-348) (-141)) (-1181 |#1|)) (T -384)) -((-4158 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *2)) (-4 *2 (-1181 *3)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)))) (-1860 (*1 *2 *1) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-384 *3 *2)) (-4 *3 (-13 (-348) (-141))))) (-1859 (*1 *2 *1) (-12 (-4 *3 (-13 (-348) (-141))) (-5 *2 (-607 (-2 (|:| -2462 (-735)) (|:| -4091 *4) (|:| |num| *4)))) (-5 *1 (-384 *3 *4)) (-4 *4 (-1181 *3)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -2462 (-735)) (|:| -4091 *4) (|:| |num| *4)))) (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)))) (-4129 (*1 *1 *1) (-12 (-4 *2 (-13 (-348) (-141))) (-5 *1 (-384 *2 *3)) (-4 *3 (-1181 *2)))) (-2969 (*1 *1 *1) (-12 (-4 *2 (-13 (-348) (-141))) (-5 *1 (-384 *2 *3)) (-4 *3 (-1181 *2)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)) (-4 *4 (-1181 *3)))) (-2969 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)) (-4 *4 (-1181 *3))))) -(-13 (-1052) (-584 (-392 |#2|)) (-10 -8 (-15 -4158 ($ |#2| $)) (-15 -1861 ($ (-392 |#2|))) (-15 -1860 (|#2| $)) (-15 -1859 ((-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))) $)) (-15 -3844 ($ (-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))))) (-15 -4129 ($ $)) (-15 -2969 ($ $)) (-15 -4129 ($ $ (-735))) (-15 -2969 ($ $ (-735))))) -((-2865 (((-111) $ $) 9 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))))) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 15 (|has| |#1| (-845 (-363)))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 14 (|has| |#1| (-845 (-526))))) (-3554 (((-1106) $) 13 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))))) (-3555 (((-1070) $) 12 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))))) (-4274 (((-823) $) 11 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))))) (-3353 (((-111) $ $) 10 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363))))))) -(((-385 |#1|) (-134) (-1159)) (T -385)) -NIL -(-13 (-1159) (-10 -7 (IF (|has| |t#1| (-845 (-526))) (-6 (-845 (-526))) |%noBranch|) (IF (|has| |t#1| (-845 (-363))) (-6 (-845 (-363))) |%noBranch|))) -(((-100) -3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))) ((-583 (-823)) -3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-1052) -3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))) ((-1159) . T)) -((-1862 (($ $) 10) (($ $ (-735)) 11))) -(((-386 |#1|) (-10 -8 (-15 -1862 (|#1| |#1| (-735))) (-15 -1862 (|#1| |#1|))) (-387)) (T -386)) -NIL -(-10 -8 (-15 -1862 (|#1| |#1| (-735))) (-15 -1862 (|#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-1862 (($ $) 76) (($ $ (-735)) 75)) (-4045 (((-111) $) 68)) (-4090 (((-796 (-878)) $) 78)) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1863 (((-3 (-735) "failed") $ $) 77)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63)) (-3002 (((-3 $ "failed") $) 79)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) -(((-387) (-134)) (T -387)) -((-4090 (*1 *2 *1) (-12 (-4 *1 (-387)) (-5 *2 (-796 (-878))))) (-1863 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-387)) (-5 *2 (-735)))) (-1862 (*1 *1 *1) (-4 *1 (-387))) (-1862 (*1 *1 *1 *2) (-12 (-4 *1 (-387)) (-5 *2 (-735))))) -(-13 (-348) (-139) (-10 -8 (-15 -4090 ((-796 (-878)) $)) (-15 -1863 ((-3 (-735) "failed") $ $)) (-15 -1862 ($ $)) (-15 -1862 ($ $ (-735))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) . T) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) -((-3566 (($ (-526) (-526)) 11) (($ (-526) (-526) (-878)) NIL)) (-2910 (((-878)) 16) (((-878) (-878)) NIL))) -(((-388 |#1|) (-10 -8 (-15 -2910 ((-878) (-878))) (-15 -2910 ((-878))) (-15 -3566 (|#1| (-526) (-526) (-878))) (-15 -3566 (|#1| (-526) (-526)))) (-389)) (T -388)) -((-2910 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-388 *3)) (-4 *3 (-389)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-388 *3)) (-4 *3 (-389))))) -(-10 -8 (-15 -2910 ((-878) (-878))) (-15 -2910 ((-878))) (-15 -3566 (|#1| (-526) (-526) (-878))) (-15 -3566 (|#1| (-526) (-526)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3426 (((-526) $) 86)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-4089 (($ $) 84)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3337 (($ $) 94)) (-1681 (((-111) $ $) 57)) (-3945 (((-526) $) 111)) (-3855 (($) 17 T CONST)) (-3424 (($ $) 83)) (-3470 (((-3 (-526) #1="failed") $) 99) (((-3 (-392 (-526)) #1#) $) 96)) (-3469 (((-526) $) 98) (((-392 (-526)) $) 95)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-2435 (((-878)) 127) (((-878) (-878)) 124 (|has| $ (-6 -4301)))) (-3500 (((-111) $) 109)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 90)) (-4090 (((-526) $) 133)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 93)) (-3429 (($ $) 89)) (-3501 (((-111) $) 110)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 50)) (-3637 (($ $ $) 108) (($) 121 (-12 (-3636 (|has| $ (-6 -4301))) (-3636 (|has| $ (-6 -4293)))))) (-3638 (($ $ $) 107) (($) 120 (-12 (-3636 (|has| $ (-6 -4301))) (-3636 (|has| $ (-6 -4293)))))) (-2436 (((-526) $) 130)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-1865 (((-878) (-526)) 123 (|has| $ (-6 -4301)))) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3425 (($ $) 85)) (-3427 (($ $) 87)) (-3566 (($ (-526) (-526)) 135) (($ (-526) (-526) (-878)) 134)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-2462 (((-526) $) 131)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-2910 (((-878)) 128) (((-878) (-878)) 125 (|has| $ (-6 -4301)))) (-1864 (((-878) (-526)) 122 (|has| $ (-6 -4301)))) (-4287 (((-363) $) 102) (((-211) $) 101) (((-849 (-363)) $) 91)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ (-526)) 100) (($ (-392 (-526))) 97)) (-3423 (((-735)) 28)) (-3428 (($ $) 88)) (-1866 (((-878)) 129) (((-878) (-878)) 126 (|has| $ (-6 -4301)))) (-2994 (((-878)) 132)) (-2150 (((-111) $ $) 37)) (-3702 (($ $) 112)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 105)) (-2864 (((-111) $ $) 104)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 106)) (-2985 (((-111) $ $) 103)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66) (($ $ (-392 (-526))) 92)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) -(((-389) (-134)) (T -389)) -((-3566 (*1 *1 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-389)))) (-3566 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-878)) (-4 *1 (-389)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) (-2994 (*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) (-1866 (*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) (-2910 (*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) (-2435 (*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) (-2435 (*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-526)) (|has| *1 (-6 -4301)) (-4 *1 (-389)) (-5 *2 (-878)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-526)) (|has| *1 (-6 -4301)) (-4 *1 (-389)) (-5 *2 (-878)))) (-3637 (*1 *1) (-12 (-4 *1 (-389)) (-3636 (|has| *1 (-6 -4301))) (-3636 (|has| *1 (-6 -4293))))) (-3638 (*1 *1) (-12 (-4 *1 (-389)) (-3636 (|has| *1 (-6 -4301))) (-3636 (|has| *1 (-6 -4293)))))) -(-13 (-1013) (-10 -8 (-6 -4088) (-15 -3566 ($ (-526) (-526))) (-15 -3566 ($ (-526) (-526) (-878))) (-15 -4090 ((-526) $)) (-15 -2994 ((-878))) (-15 -2462 ((-526) $)) (-15 -2436 ((-526) $)) (-15 -1866 ((-878))) (-15 -2910 ((-878))) (-15 -2435 ((-878))) (IF (|has| $ (-6 -4301)) (PROGN (-15 -1866 ((-878) (-878))) (-15 -2910 ((-878) (-878))) (-15 -2435 ((-878) (-878))) (-15 -1865 ((-878) (-526))) (-15 -1864 ((-878) (-526)))) |%noBranch|) (IF (|has| $ (-6 -4293)) |%noBranch| (IF (|has| $ (-6 -4301)) |%noBranch| (PROGN (-15 -3637 ($)) (-15 -3638 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-163) . T) ((-584 (-211)) . T) ((-584 (-363)) . T) ((-584 (-849 (-363))) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-809) . T) ((-811) . T) ((-845 (-363)) . T) ((-880) . T) ((-960) . T) ((-977) . T) ((-1013) . T) ((-995 (-392 (-526))) . T) ((-995 (-526)) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 42)) (-1867 (($ $) 57)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 146)) (-2151 (($ $) NIL)) (-2149 (((-111) $) 36)) (-1868 ((|#1| $) 13)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-1164)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-1164)))) (-1870 (($ |#1| (-526)) 31)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 116)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 55)) (-3781 (((-3 $ "failed") $) 131)) (-3324 (((-3 (-392 (-526)) "failed") $) 63 (|has| |#1| (-525)))) (-3323 (((-111) $) 59 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 70 (|has| |#1| (-525)))) (-1871 (($ |#1| (-526)) 33)) (-4045 (((-111) $) 152 (|has| |#1| (-1164)))) (-2471 (((-111) $) 43)) (-1932 (((-735) $) 38)) (-1872 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-526)) 137)) (-2737 ((|#1| $ (-526)) 136)) (-1873 (((-526) $ (-526)) 135)) (-1875 (($ |#1| (-526)) 30)) (-4275 (($ (-1 |#1| |#1|) $) 143)) (-1929 (($ |#1| (-607 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-526))))) 58)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-1874 (($ |#1| (-526)) 32)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) 147 (|has| |#1| (-436)))) (-1869 (($ |#1| (-526) (-3 #2# #3# #4# #5#)) 29)) (-2736 (((-607 (-2 (|:| -4051 |#1|) (|:| -2462 (-526)))) $) 54)) (-2051 (((-607 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))) $) 12)) (-4051 (((-390 $) $) NIL (|has| |#1| (-1164)))) (-3780 (((-3 $ "failed") $ $) 138)) (-2462 (((-526) $) 132)) (-4280 ((|#1| $) 56)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 79 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 85 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) $) NIL (|has| |#1| (-496 (-1123) $))) (($ $ (-607 (-1123)) (-607 $)) 86 (|has| |#1| (-496 (-1123) $))) (($ $ (-607 (-278 $))) 82 (|has| |#1| (-294 $))) (($ $ (-278 $)) NIL (|has| |#1| (-294 $))) (($ $ $ $) NIL (|has| |#1| (-294 $))) (($ $ (-607 $) (-607 $)) NIL (|has| |#1| (-294 $)))) (-4118 (($ $ |#1|) 71 (|has| |#1| (-271 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-271 $ $)))) (-4129 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4287 (((-515) $) 27 (|has| |#1| (-584 (-515)))) (((-363) $) 92 (|has| |#1| (-977))) (((-211) $) 95 (|has| |#1| (-977)))) (-4274 (((-823) $) 114) (($ (-526)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526)))))) (-3423 (((-735)) 48)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 40 T CONST)) (-2964 (($) 39 T CONST)) (-2969 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3353 (((-111) $ $) 96)) (-4156 (($ $) 128) (($ $ $) NIL)) (-4158 (($ $ $) 140)) (** (($ $ (-878)) NIL) (($ $ (-735)) 102)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-390 |#1|) (-13 (-533) (-217 |#1|) (-37 |#1|) (-323 |#1|) (-397 |#1|) (-10 -8 (-15 -4280 (|#1| $)) (-15 -2462 ((-526) $)) (-15 -1929 ($ |#1| (-607 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))))) (-15 -2051 ((-607 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))) $)) (-15 -1875 ($ |#1| (-526))) (-15 -2736 ((-607 (-2 (|:| -4051 |#1|) (|:| -2462 (-526)))) $)) (-15 -1874 ($ |#1| (-526))) (-15 -1873 ((-526) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -1872 ((-3 #1# #2# #3# #4#) $ (-526))) (-15 -1932 ((-735) $)) (-15 -1871 ($ |#1| (-526))) (-15 -1870 ($ |#1| (-526))) (-15 -1869 ($ |#1| (-526) (-3 #1# #2# #3# #4#))) (-15 -1868 (|#1| $)) (-15 -1867 ($ $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-436)) (-6 (-436)) |%noBranch|) (IF (|has| |#1| (-977)) (-6 (-977)) |%noBranch|) (IF (|has| |#1| (-1164)) (-6 (-1164)) |%noBranch|) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-271 $ $)) (-6 (-271 $ $)) |%noBranch|) (IF (|has| |#1| (-294 $)) (-6 (-294 $)) |%noBranch|) (IF (|has| |#1| (-496 (-1123) $)) (-6 (-496 (-1123) $)) |%noBranch|))) (-533)) (T -390)) -((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-533)) (-5 *1 (-390 *3)))) (-4280 (*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-526))))) (-4 *2 (-533)) (-5 *1 (-390 *2)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-526))))) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-1875 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| -4051 *3) (|:| -2462 (-526))))) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-1874 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1873 (*1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-390 *4)) (-4 *4 (-533)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-1871 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1870 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1869 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-526)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1868 (*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1867 (*1 *1 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533)))) (-3324 (*1 *2 *1) (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533))))) -(-13 (-533) (-217 |#1|) (-37 |#1|) (-323 |#1|) (-397 |#1|) (-10 -8 (-15 -4280 (|#1| $)) (-15 -2462 ((-526) $)) (-15 -1929 ($ |#1| (-607 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))))) (-15 -2051 ((-607 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))) $)) (-15 -1875 ($ |#1| (-526))) (-15 -2736 ((-607 (-2 (|:| -4051 |#1|) (|:| -2462 (-526)))) $)) (-15 -1874 ($ |#1| (-526))) (-15 -1873 ((-526) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -1872 ((-3 #1# #2# #3# #4#) $ (-526))) (-15 -1932 ((-735) $)) (-15 -1871 ($ |#1| (-526))) (-15 -1870 ($ |#1| (-526))) (-15 -1869 ($ |#1| (-526) (-3 #1# #2# #3# #4#))) (-15 -1868 (|#1| $)) (-15 -1867 ($ $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-436)) (-6 (-436)) |%noBranch|) (IF (|has| |#1| (-977)) (-6 (-977)) |%noBranch|) (IF (|has| |#1| (-1164)) (-6 (-1164)) |%noBranch|) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-271 $ $)) (-6 (-271 $ $)) |%noBranch|) (IF (|has| |#1| (-294 $)) (-6 (-294 $)) |%noBranch|) (IF (|has| |#1| (-496 (-1123) $)) (-6 (-496 (-1123) $)) |%noBranch|))) -((-4275 (((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)) 20))) -(((-391 |#1| |#2|) (-10 -7 (-15 -4275 ((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)))) (-533) (-533)) (T -391)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-390 *5)) (-4 *5 (-533)) (-4 *6 (-533)) (-5 *2 (-390 *6)) (-5 *1 (-391 *5 *6))))) -(-10 -7 (-15 -4275 ((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 13)) (-3426 ((|#1| $) 21 (|has| |#1| (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| |#1| (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) 17) (((-3 (-1123) #2#) $) NIL (|has| |#1| (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) 70 (|has| |#1| (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526))))) (-3469 ((|#1| $) 15) (((-1123) $) NIL (|has| |#1| (-995 (-1123)))) (((-392 (-526)) $) 67 (|has| |#1| (-995 (-526)))) (((-526) $) NIL (|has| |#1| (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) 50)) (-3294 (($) NIL (|has| |#1| (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| |#1| (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| |#1| (-845 (-363))))) (-2471 (((-111) $) 64)) (-3296 (($ $) NIL)) (-3298 ((|#1| $) 71)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-1099)))) (-3501 (((-111) $) NIL (|has| |#1| (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 97)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| |#1| (-292)))) (-3427 ((|#1| $) 28 (|has| |#1| (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 135 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 131 (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|)))) (-1680 (((-735) $) NIL)) (-4118 (($ $ |#1|) NIL (|has| |#1| (-271 |#1| |#1|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3295 (($ $) NIL)) (-3297 ((|#1| $) 73)) (-4287 (((-849 (-526)) $) NIL (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| |#1| (-584 (-849 (-363))))) (((-515) $) NIL (|has| |#1| (-584 (-515)))) (((-363) $) NIL (|has| |#1| (-977))) (((-211) $) NIL (|has| |#1| (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 115 (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 10) (($ (-1123)) NIL (|has| |#1| (-995 (-1123))))) (-3002 (((-3 $ #1#) $) 99 (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 100)) (-3428 ((|#1| $) 26 (|has| |#1| (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| |#1| (-784)))) (-2957 (($) 22 T CONST)) (-2964 (($) 8 T CONST)) (-2803 (((-1106) $) 43 (-12 (|has| |#1| (-525)) (|has| |#1| (-785)))) (((-1106) $ (-111)) 44 (-12 (|has| |#1| (-525)) (|has| |#1| (-785)))) (((-1211) (-787) $) 45 (-12 (|has| |#1| (-525)) (|has| |#1| (-785)))) (((-1211) (-787) $ (-111)) 46 (-12 (|has| |#1| (-525)) (|has| |#1| (-785))))) (-2969 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 56)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) 24 (|has| |#1| (-811)))) (-4265 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4156 (($ $) 25) (($ $ $) 55)) (-4158 (($ $ $) 53)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 125)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 60) (($ $ $) 57) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-392 |#1|) (-13 (-950 |#1|) (-10 -7 (IF (|has| |#1| (-525)) (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4297)) (IF (|has| |#1| (-436)) (IF (|has| |#1| (-6 -4308)) (-6 -4297) |%noBranch|) |%noBranch|) |%noBranch|))) (-533)) (T -392)) -NIL -(-13 (-950 |#1|) (-10 -7 (IF (|has| |#1| (-525)) (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4297)) (IF (|has| |#1| (-436)) (IF (|has| |#1| (-6 -4308)) (-6 -4297) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4275 (((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)) 13))) -(((-393 |#1| |#2|) (-10 -7 (-15 -4275 ((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)))) (-533) (-533)) (T -393)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-392 *5)) (-4 *5 (-533)) (-4 *6 (-533)) (-5 *2 (-392 *6)) (-5 *1 (-393 *5 *6))))) -(-10 -7 (-15 -4275 ((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)))) -((-1877 (((-653 |#2|) (-1205 $)) NIL) (((-653 |#2|)) 18)) (-1887 (($ (-1205 |#2|) (-1205 $)) NIL) (($ (-1205 |#2|)) 24)) (-1876 (((-653 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) $) 38)) (-2106 ((|#3| $) 60)) (-4076 ((|#2| (-1205 $)) NIL) ((|#2|) 20)) (-3537 (((-1205 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) NIL) (((-1205 |#2|) $) 22) (((-653 |#2|) (-1205 $)) 36)) (-4287 (((-1205 |#2|) $) 11) (($ (-1205 |#2|)) 13)) (-2667 ((|#3| $) 52))) -(((-394 |#1| |#2| |#3|) (-10 -8 (-15 -1876 ((-653 |#2|) |#1|)) (-15 -4076 (|#2|)) (-15 -1877 ((-653 |#2|))) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -2106 (|#3| |#1|)) (-15 -2667 (|#3| |#1|)) (-15 -1877 ((-653 |#2|) (-1205 |#1|))) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1876 ((-653 |#2|) |#1| (-1205 |#1|)))) (-395 |#2| |#3|) (-163) (-1181 |#2|)) (T -394)) -((-1877 (*1 *2) (-12 (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)) (-5 *1 (-394 *3 *4 *5)) (-4 *3 (-395 *4 *5)))) (-4076 (*1 *2) (-12 (-4 *4 (-1181 *2)) (-4 *2 (-163)) (-5 *1 (-394 *3 *2 *4)) (-4 *3 (-395 *2 *4))))) -(-10 -8 (-15 -1876 ((-653 |#2|) |#1|)) (-15 -4076 (|#2|)) (-15 -1877 ((-653 |#2|))) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -2106 (|#3| |#1|)) (-15 -2667 (|#3| |#1|)) (-15 -1877 ((-653 |#2|) (-1205 |#1|))) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1876 ((-653 |#2|) |#1| (-1205 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1877 (((-653 |#1|) (-1205 $)) 44) (((-653 |#1|)) 59)) (-3649 ((|#1| $) 50)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-1887 (($ (-1205 |#1|) (-1205 $)) 46) (($ (-1205 |#1|)) 62)) (-1876 (((-653 |#1|) $ (-1205 $)) 51) (((-653 |#1|) $) 57)) (-3781 (((-3 $ "failed") $) 32)) (-3406 (((-878)) 52)) (-2471 (((-111) $) 30)) (-3429 ((|#1| $) 49)) (-2106 ((|#2| $) 42 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4076 ((|#1| (-1205 $)) 45) ((|#1|) 58)) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) 47) (((-1205 |#1|) $) 64) (((-653 |#1|) (-1205 $)) 63)) (-4287 (((-1205 |#1|) $) 61) (($ (-1205 |#1|)) 60)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35)) (-3002 (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2667 ((|#2| $) 43)) (-3423 (((-735)) 28)) (-2104 (((-1205 $)) 65)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-395 |#1| |#2|) (-134) (-163) (-1181 |t#1|)) (T -395)) -((-2104 (*1 *2) (-12 (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-1205 *1)) (-4 *1 (-395 *3 *4)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-1205 *3)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-395 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-395 *3 *4)) (-4 *4 (-1181 *3)))) (-4287 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-1205 *3)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-395 *3 *4)) (-4 *4 (-1181 *3)))) (-1877 (*1 *2) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-653 *3)))) (-4076 (*1 *2) (-12 (-4 *1 (-395 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) (-1876 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-653 *3))))) -(-13 (-355 |t#1| |t#2|) (-10 -8 (-15 -2104 ((-1205 $))) (-15 -3537 ((-1205 |t#1|) $)) (-15 -3537 ((-653 |t#1|) (-1205 $))) (-15 -1887 ($ (-1205 |t#1|))) (-15 -4287 ((-1205 |t#1|) $)) (-15 -4287 ($ (-1205 |t#1|))) (-15 -1877 ((-653 |t#1|))) (-15 -4076 (|t#1|)) (-15 -1876 ((-653 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-355 |#1| |#2|) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) . T) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-3470 (((-3 |#2| #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) 27) (((-3 (-526) #1#) $) 19)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) 24) (((-526) $) 14)) (-4274 (($ |#2|) NIL) (($ (-392 (-526))) 22) (($ (-526)) 11))) -(((-396 |#1| |#2|) (-10 -8 (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|))) (-397 |#2|) (-1159)) (T -396)) -NIL -(-10 -8 (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|))) -((-3470 (((-3 |#1| #1="failed") $) 7) (((-3 (-392 (-526)) #1#) $) 16 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #1#) $) 13 (|has| |#1| (-995 (-526))))) (-3469 ((|#1| $) 8) (((-392 (-526)) $) 15 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 12 (|has| |#1| (-995 (-526))))) (-4274 (($ |#1|) 6) (($ (-392 (-526))) 17 (|has| |#1| (-995 (-392 (-526))))) (($ (-526)) 14 (|has| |#1| (-995 (-526)))))) -(((-397 |#1|) (-134) (-1159)) (T -397)) -NIL -(-13 (-995 |t#1|) (-10 -7 (IF (|has| |t#1| (-995 (-526))) (-6 (-995 (-526))) |%noBranch|) (IF (|has| |t#1| (-995 (-392 (-526)))) (-6 (-995 (-392 (-526)))) |%noBranch|))) -(((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T)) -((-2865 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-1878 ((|#4| (-735) (-1205 |#4|)) 56)) (-2471 (((-111) $) NIL)) (-3298 (((-1205 |#4|) $) 17)) (-3429 ((|#2| $) 54)) (-1879 (($ $) 139)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 100)) (-2068 (($ (-1205 |#4|)) 99)) (-3555 (((-1070) $) NIL)) (-3297 ((|#1| $) 18)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 134)) (-2104 (((-1205 |#4|) $) 129)) (-2964 (($) 11 T CONST)) (-3353 (((-111) $ $) 40)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 122)) (* (($ $ $) 121))) -(((-398 |#1| |#2| |#3| |#4|) (-13 (-457) (-10 -8 (-15 -2068 ($ (-1205 |#4|))) (-15 -2104 ((-1205 |#4|) $)) (-15 -3429 (|#2| $)) (-15 -3298 ((-1205 |#4|) $)) (-15 -3297 (|#1| $)) (-15 -1879 ($ $)) (-15 -1878 (|#4| (-735) (-1205 |#4|))))) (-292) (-950 |#1|) (-1181 |#2|) (-13 (-395 |#2| |#3|) (-995 |#2|))) (T -398)) -((-2068 (*1 *1 *2) (-12 (-5 *2 (-1205 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *3 (-292)) (-5 *1 (-398 *3 *4 *5 *6)))) (-2104 (*1 *2 *1) (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) (-5 *1 (-398 *3 *4 *5 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))))) (-3429 (*1 *2 *1) (-12 (-4 *4 (-1181 *2)) (-4 *2 (-950 *3)) (-5 *1 (-398 *3 *2 *4 *5)) (-4 *3 (-292)) (-4 *5 (-13 (-395 *2 *4) (-995 *2))))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) (-5 *1 (-398 *3 *4 *5 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))))) (-3297 (*1 *2 *1) (-12 (-4 *3 (-950 *2)) (-4 *4 (-1181 *3)) (-4 *2 (-292)) (-5 *1 (-398 *2 *3 *4 *5)) (-4 *5 (-13 (-395 *3 *4) (-995 *3))))) (-1879 (*1 *1 *1) (-12 (-4 *2 (-292)) (-4 *3 (-950 *2)) (-4 *4 (-1181 *3)) (-5 *1 (-398 *2 *3 *4 *5)) (-4 *5 (-13 (-395 *3 *4) (-995 *3))))) (-1878 (*1 *2 *3 *4) (-12 (-5 *3 (-735)) (-5 *4 (-1205 *2)) (-4 *5 (-292)) (-4 *6 (-950 *5)) (-4 *2 (-13 (-395 *6 *7) (-995 *6))) (-5 *1 (-398 *5 *6 *7 *2)) (-4 *7 (-1181 *6))))) -(-13 (-457) (-10 -8 (-15 -2068 ($ (-1205 |#4|))) (-15 -2104 ((-1205 |#4|) $)) (-15 -3429 (|#2| $)) (-15 -3298 ((-1205 |#4|) $)) (-15 -3297 (|#1| $)) (-15 -1879 ($ $)) (-15 -1878 (|#4| (-735) (-1205 |#4|))))) -((-4275 (((-398 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-398 |#1| |#2| |#3| |#4|)) 33))) -(((-399 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4275 ((-398 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-398 |#1| |#2| |#3| |#4|)))) (-292) (-950 |#1|) (-1181 |#2|) (-13 (-395 |#2| |#3|) (-995 |#2|)) (-292) (-950 |#5|) (-1181 |#6|) (-13 (-395 |#6| |#7|) (-995 |#6|))) (T -399)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-398 *5 *6 *7 *8)) (-4 *5 (-292)) (-4 *6 (-950 *5)) (-4 *7 (-1181 *6)) (-4 *8 (-13 (-395 *6 *7) (-995 *6))) (-4 *9 (-292)) (-4 *10 (-950 *9)) (-4 *11 (-1181 *10)) (-5 *2 (-398 *9 *10 *11 *12)) (-5 *1 (-399 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-395 *10 *11) (-995 *10)))))) -(-10 -7 (-15 -4275 ((-398 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-398 |#1| |#2| |#3| |#4|)))) -((-2865 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3429 ((|#2| $) 61)) (-1880 (($ (-1205 |#4|)) 25) (($ (-398 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-995 |#2|)))) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 34)) (-2104 (((-1205 |#4|) $) 26)) (-2964 (($) 23 T CONST)) (-3353 (((-111) $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ $ $) 72))) -(((-400 |#1| |#2| |#3| |#4| |#5|) (-13 (-691) (-10 -8 (-15 -2104 ((-1205 |#4|) $)) (-15 -3429 (|#2| $)) (-15 -1880 ($ (-1205 |#4|))) (IF (|has| |#4| (-995 |#2|)) (-15 -1880 ($ (-398 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-292) (-950 |#1|) (-1181 |#2|) (-395 |#2| |#3|) (-1205 |#4|)) (T -400)) -((-2104 (*1 *2 *1) (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) (-5 *1 (-400 *3 *4 *5 *6 *7)) (-4 *6 (-395 *4 *5)) (-14 *7 *2))) (-3429 (*1 *2 *1) (-12 (-4 *4 (-1181 *2)) (-4 *2 (-950 *3)) (-5 *1 (-400 *3 *2 *4 *5 *6)) (-4 *3 (-292)) (-4 *5 (-395 *2 *4)) (-14 *6 (-1205 *5)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-1205 *6)) (-4 *6 (-395 *4 *5)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *3 (-292)) (-5 *1 (-400 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-398 *3 *4 *5 *6)) (-4 *6 (-995 *4)) (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *6 (-395 *4 *5)) (-14 *7 (-1205 *6)) (-5 *1 (-400 *3 *4 *5 *6 *7))))) -(-13 (-691) (-10 -8 (-15 -2104 ((-1205 |#4|) $)) (-15 -3429 (|#2| $)) (-15 -1880 ($ (-1205 |#4|))) (IF (|has| |#4| (-995 |#2|)) (-15 -1880 ($ (-398 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4275 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) (-403 |#2|) (-163) (-403 |#4|) (-163)) (T -401)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-403 *6)) (-5 *1 (-401 *4 *5 *2 *6)) (-4 *4 (-403 *5))))) -(-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) -((-1868 (((-3 $ #1="failed")) 86)) (-3536 (((-1205 (-653 |#2|)) (-1205 $)) NIL) (((-1205 (-653 |#2|))) 91)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) 85)) (-1795 (((-3 $ #1#)) 84)) (-1883 (((-653 |#2|) (-1205 $)) NIL) (((-653 |#2|)) 102)) (-1881 (((-653 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) $) 110)) (-1998 (((-1117 (-905 |#2|))) 55)) (-1885 ((|#2| (-1205 $)) NIL) ((|#2|) 106)) (-1887 (($ (-1205 |#2|) (-1205 $)) NIL) (($ (-1205 |#2|)) 112)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) 83)) (-1796 (((-3 $ #1#)) 75)) (-1884 (((-653 |#2|) (-1205 $)) NIL) (((-653 |#2|)) 100)) (-1882 (((-653 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) $) 108)) (-2002 (((-1117 (-905 |#2|))) 54)) (-1886 ((|#2| (-1205 $)) NIL) ((|#2|) 104)) (-3537 (((-1205 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) NIL) (((-1205 |#2|) $) 111) (((-653 |#2|) (-1205 $)) 118)) (-4287 (((-1205 |#2|) $) 96) (($ (-1205 |#2|)) 98)) (-1990 (((-607 (-905 |#2|)) (-1205 $)) NIL) (((-607 (-905 |#2|))) 94)) (-2849 (($ (-653 |#2|) $) 90))) -(((-402 |#1| |#2|) (-10 -8 (-15 -2849 (|#1| (-653 |#2|) |#1|)) (-15 -1998 ((-1117 (-905 |#2|)))) (-15 -2002 ((-1117 (-905 |#2|)))) (-15 -1881 ((-653 |#2|) |#1|)) (-15 -1882 ((-653 |#2|) |#1|)) (-15 -1883 ((-653 |#2|))) (-15 -1884 ((-653 |#2|))) (-15 -1885 (|#2|)) (-15 -1886 (|#2|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -1990 ((-607 (-905 |#2|)))) (-15 -3536 ((-1205 (-653 |#2|)))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -1868 ((-3 |#1| #1="failed"))) (-15 -1795 ((-3 |#1| #1#))) (-15 -1796 ((-3 |#1| #1#))) (-15 -2004 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) #1#))) (-15 -2005 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) #1#))) (-15 -1883 ((-653 |#2|) (-1205 |#1|))) (-15 -1884 ((-653 |#2|) (-1205 |#1|))) (-15 -1885 (|#2| (-1205 |#1|))) (-15 -1886 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1881 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -1882 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -3536 ((-1205 (-653 |#2|)) (-1205 |#1|))) (-15 -1990 ((-607 (-905 |#2|)) (-1205 |#1|)))) (-403 |#2|) (-163)) (T -402)) -((-3536 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1990 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-607 (-905 *4))) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1886 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-402 *3 *2)) (-4 *3 (-403 *2)))) (-1885 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-402 *3 *2)) (-4 *3 (-403 *2)))) (-1884 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-653 *4)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1883 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-653 *4)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-2002 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1117 (-905 *4))) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1998 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1117 (-905 *4))) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4))))) -(-10 -8 (-15 -2849 (|#1| (-653 |#2|) |#1|)) (-15 -1998 ((-1117 (-905 |#2|)))) (-15 -2002 ((-1117 (-905 |#2|)))) (-15 -1881 ((-653 |#2|) |#1|)) (-15 -1882 ((-653 |#2|) |#1|)) (-15 -1883 ((-653 |#2|))) (-15 -1884 ((-653 |#2|))) (-15 -1885 (|#2|)) (-15 -1886 (|#2|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -1990 ((-607 (-905 |#2|)))) (-15 -3536 ((-1205 (-653 |#2|)))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -1868 ((-3 |#1| #1="failed"))) (-15 -1795 ((-3 |#1| #1#))) (-15 -1796 ((-3 |#1| #1#))) (-15 -2004 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) #1#))) (-15 -2005 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) #1#))) (-15 -1883 ((-653 |#2|) (-1205 |#1|))) (-15 -1884 ((-653 |#2|) (-1205 |#1|))) (-15 -1885 (|#2| (-1205 |#1|))) (-15 -1886 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1881 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -1882 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -3536 ((-1205 (-653 |#2|)) (-1205 |#1|))) (-15 -1990 ((-607 (-905 |#2|)) (-1205 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1868 (((-3 $ #1="failed")) 37 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3536 (((-1205 (-653 |#1|)) (-1205 $)) 78) (((-1205 (-653 |#1|))) 100)) (-1821 (((-1205 $)) 81)) (-3855 (($) 17 T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) 40 (|has| |#1| (-533)))) (-1795 (((-3 $ #1#)) 38 (|has| |#1| (-533)))) (-1883 (((-653 |#1|) (-1205 $)) 65) (((-653 |#1|)) 92)) (-1819 ((|#1| $) 74)) (-1881 (((-653 |#1|) $ (-1205 $)) 76) (((-653 |#1|) $) 90)) (-2465 (((-3 $ #1#) $) 45 (|has| |#1| (-533)))) (-1998 (((-1117 (-905 |#1|))) 88 (|has| |#1| (-348)))) (-2468 (($ $ (-878)) 28)) (-1817 ((|#1| $) 72)) (-1797 (((-1117 |#1|) $) 42 (|has| |#1| (-533)))) (-1885 ((|#1| (-1205 $)) 67) ((|#1|) 94)) (-1815 (((-1117 |#1|) $) 63)) (-1809 (((-111)) 57)) (-1887 (($ (-1205 |#1|) (-1205 $)) 69) (($ (-1205 |#1|)) 98)) (-3781 (((-3 $ #1#) $) 47 (|has| |#1| (-533)))) (-3406 (((-878)) 80)) (-1806 (((-111)) 54)) (-2493 (($ $ (-878)) 33)) (-1802 (((-111)) 50)) (-1800 (((-111)) 48)) (-1804 (((-111)) 52)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) 41 (|has| |#1| (-533)))) (-1796 (((-3 $ #1#)) 39 (|has| |#1| (-533)))) (-1884 (((-653 |#1|) (-1205 $)) 66) (((-653 |#1|)) 93)) (-1820 ((|#1| $) 75)) (-1882 (((-653 |#1|) $ (-1205 $)) 77) (((-653 |#1|) $) 91)) (-2466 (((-3 $ #1#) $) 46 (|has| |#1| (-533)))) (-2002 (((-1117 (-905 |#1|))) 89 (|has| |#1| (-348)))) (-2467 (($ $ (-878)) 29)) (-1818 ((|#1| $) 73)) (-1798 (((-1117 |#1|) $) 43 (|has| |#1| (-533)))) (-1886 ((|#1| (-1205 $)) 68) ((|#1|) 95)) (-1816 (((-1117 |#1|) $) 64)) (-1810 (((-111)) 58)) (-3554 (((-1106) $) 9)) (-1801 (((-111)) 49)) (-1803 (((-111)) 51)) (-1805 (((-111)) 53)) (-3555 (((-1070) $) 10)) (-1808 (((-111)) 56)) (-4118 ((|#1| $ (-526)) 101)) (-3537 (((-1205 |#1|) $ (-1205 $)) 71) (((-653 |#1|) (-1205 $) (-1205 $)) 70) (((-1205 |#1|) $) 103) (((-653 |#1|) (-1205 $)) 102)) (-4287 (((-1205 |#1|) $) 97) (($ (-1205 |#1|)) 96)) (-1990 (((-607 (-905 |#1|)) (-1205 $)) 79) (((-607 (-905 |#1|))) 99)) (-2655 (($ $ $) 25)) (-1814 (((-111)) 62)) (-4274 (((-823) $) 11)) (-2104 (((-1205 $)) 104)) (-1799 (((-607 (-1205 |#1|))) 44 (|has| |#1| (-533)))) (-2656 (($ $ $ $) 26)) (-1812 (((-111)) 60)) (-2849 (($ (-653 |#1|) $) 87)) (-2654 (($ $ $) 24)) (-1813 (((-111)) 61)) (-1811 (((-111)) 59)) (-1807 (((-111)) 55)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-403 |#1|) (-134) (-163)) (T -403)) -((-2104 (*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1205 *1)) (-4 *1 (-403 *3)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 *3)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-403 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-403 *2)) (-4 *2 (-163)))) (-3536 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 (-653 *3))))) (-1990 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-607 (-905 *3))))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-403 *3)))) (-4287 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 *3)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-403 *3)))) (-1886 (*1 *2) (-12 (-4 *1 (-403 *2)) (-4 *2 (-163)))) (-1885 (*1 *2) (-12 (-4 *1 (-403 *2)) (-4 *2 (-163)))) (-1884 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3)))) (-1883 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3)))) (-2002 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-4 *3 (-348)) (-5 *2 (-1117 (-905 *3))))) (-1998 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-4 *3 (-348)) (-5 *2 (-1117 (-905 *3))))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-653 *3)) (-4 *1 (-403 *3)) (-4 *3 (-163))))) -(-13 (-352 |t#1|) (-10 -8 (-15 -2104 ((-1205 $))) (-15 -3537 ((-1205 |t#1|) $)) (-15 -3537 ((-653 |t#1|) (-1205 $))) (-15 -4118 (|t#1| $ (-526))) (-15 -3536 ((-1205 (-653 |t#1|)))) (-15 -1990 ((-607 (-905 |t#1|)))) (-15 -1887 ($ (-1205 |t#1|))) (-15 -4287 ((-1205 |t#1|) $)) (-15 -4287 ($ (-1205 |t#1|))) (-15 -1886 (|t#1|)) (-15 -1885 (|t#1|)) (-15 -1884 ((-653 |t#1|))) (-15 -1883 ((-653 |t#1|))) (-15 -1882 ((-653 |t#1|) $)) (-15 -1881 ((-653 |t#1|) $)) (IF (|has| |t#1| (-348)) (PROGN (-15 -2002 ((-1117 (-905 |t#1|)))) (-15 -1998 ((-1117 (-905 |t#1|))))) |%noBranch|) (-15 -2849 ($ (-653 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-352 |#1|) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-685) . T) ((-709 |#1|) . T) ((-726) . T) ((-1010 |#1|) . T) ((-1052) . T)) -((-3431 (((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|)) 21)) (-1888 (((-390 |#1|) (-390 |#1|) (-390 |#1|)) 16))) -(((-404 |#1|) (-10 -7 (-15 -3431 ((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|))) (-15 -1888 ((-390 |#1|) (-390 |#1|) (-390 |#1|)))) (-533)) (T -404)) -((-1888 (*1 *2 *2 *2) (-12 (-5 *2 (-390 *3)) (-4 *3 (-533)) (-5 *1 (-404 *3)))) (-3431 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-390 *4) *4)) (-4 *4 (-533)) (-5 *2 (-390 *4)) (-5 *1 (-404 *4))))) -(-10 -7 (-15 -3431 ((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|))) (-15 -1888 ((-390 |#1|) (-390 |#1|) (-390 |#1|)))) -((-3384 (((-607 (-1123)) $) 72)) (-3386 (((-392 (-1117 $)) $ (-581 $)) 273)) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-607 (-581 $)) (-607 $)) 237)) (-3470 (((-3 (-581 $) #1="failed") $) NIL) (((-3 (-1123) #1#) $) 75) (((-3 (-526) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-392 (-905 |#2|)) #1#) $) 324) (((-3 (-905 |#2|) #1#) $) 235) (((-3 (-392 (-526)) #1#) $) NIL)) (-3469 (((-581 $) $) NIL) (((-1123) $) 30) (((-526) $) NIL) ((|#2| $) 231) (((-392 (-905 |#2|)) $) 305) (((-905 |#2|) $) 232) (((-392 (-526)) $) NIL)) (-2307 (((-112) (-112)) 47)) (-3296 (($ $) 87)) (-1638 (((-3 (-581 $) "failed") $) 228)) (-1637 (((-607 (-581 $)) $) 229)) (-3123 (((-3 (-607 $) "failed") $) 247)) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) "failed") $) 254)) (-3122 (((-3 (-607 $) "failed") $) 245)) (-1889 (((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) "failed") $) 264)) (-3124 (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $) 251) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-112)) 217) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-1123)) 219)) (-1892 (((-111) $) 19)) (-1891 ((|#2| $) 21)) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) 236) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) 96) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1123)) 57) (($ $ (-607 (-1123))) 240) (($ $) 241) (($ $ (-112) $ (-1123)) 60) (($ $ (-607 (-112)) (-607 $) (-1123)) 67) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $))) 107) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $)))) 242) (($ $ (-1123) (-735) (-1 $ (-607 $))) 94) (($ $ (-1123) (-735) (-1 $ $)) 93)) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) 106)) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) 238)) (-3295 (($ $) 284)) (-4287 (((-849 (-526)) $) 257) (((-849 (-363)) $) 261) (($ (-390 $)) 320) (((-515) $) NIL)) (-4274 (((-823) $) 239) (($ (-581 $)) 84) (($ (-1123)) 26) (($ |#2|) NIL) (($ (-1075 |#2| (-581 $))) NIL) (($ (-392 |#2|)) 289) (($ (-905 (-392 |#2|))) 329) (($ (-392 (-905 (-392 |#2|)))) 301) (($ (-392 (-905 |#2|))) 295) (($ $) NIL) (($ (-905 |#2|)) 185) (($ (-392 (-526))) 334) (($ (-526)) NIL)) (-3423 (((-735)) 79)) (-2306 (((-111) (-112)) 41)) (-1890 (($ (-1123) $) 33) (($ (-1123) $ $) 34) (($ (-1123) $ $ $) 35) (($ (-1123) $ $ $ $) 36) (($ (-1123) (-607 $)) 39)) (* (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL))) -(((-405 |#1| |#2|) (-10 -8 (-15 * (|#1| (-878) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3423 ((-735))) (-15 -4274 (|#1| (-526))) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1="failed") |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-905 |#2|) |#1|)) (-15 -3470 ((-3 (-905 |#2|) #1#) |#1|)) (-15 -4274 (|#1| (-905 |#2|))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4274 (|#1| |#1|)) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -3469 ((-392 (-905 |#2|)) |#1|)) (-15 -3470 ((-3 (-392 (-905 |#2|)) #1#) |#1|)) (-15 -4274 (|#1| (-392 (-905 |#2|)))) (-15 -3386 ((-392 (-1117 |#1|)) |#1| (-581 |#1|))) (-15 -4274 (|#1| (-392 (-905 (-392 |#2|))))) (-15 -4274 (|#1| (-905 (-392 |#2|)))) (-15 -4274 (|#1| (-392 |#2|))) (-15 -3295 (|#1| |#1|)) (-15 -4287 (|#1| (-390 |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-735) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-735) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-735)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-735)) (-607 (-1 |#1| |#1|)))) (-15 -3125 ((-3 (-2 (|:| |val| |#1|) (|:| -2462 (-526))) "failed") |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1| (-1123))) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1| (-112))) (-15 -3296 (|#1| |#1|)) (-15 -4274 (|#1| (-1075 |#2| (-581 |#1|)))) (-15 -1889 ((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 |#1|))) "failed") |#1|)) (-15 -3122 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1|)) (-15 -3123 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 |#1|) (-1123))) (-15 -4086 (|#1| |#1| (-112) |#1| (-1123))) (-15 -4086 (|#1| |#1|)) (-15 -4086 (|#1| |#1| (-607 (-1123)))) (-15 -4086 (|#1| |#1| (-1123))) (-15 -1890 (|#1| (-1123) (-607 |#1|))) (-15 -1890 (|#1| (-1123) |#1| |#1| |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1| |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1|)) (-15 -3384 ((-607 (-1123)) |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -1892 ((-111) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -4274 (|#1| (-1123))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| |#1|)))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| |#1|)))) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1637 ((-607 (-581 |#1|)) |#1|)) (-15 -1638 ((-3 (-581 |#1|) "failed") |#1|)) (-15 -1640 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -1640 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -1640 (|#1| |#1| (-278 |#1|))) (-15 -4118 (|#1| (-112) (-607 |#1|))) (-15 -4118 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-581 |#1|) |#1|)) (-15 -3469 ((-581 |#1|) |#1|)) (-15 -3470 ((-3 (-581 |#1|) #1#) |#1|)) (-15 -4274 (|#1| (-581 |#1|))) (-15 -4274 ((-823) |#1|))) (-406 |#2|) (-811)) (T -405)) -((-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *4 (-811)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-405 *4 *5)) (-4 *4 (-406 *5)))) (-3423 (*1 *2) (-12 (-4 *4 (-811)) (-5 *2 (-735)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4))))) -(-10 -8 (-15 * (|#1| (-878) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3423 ((-735))) (-15 -4274 (|#1| (-526))) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1="failed") |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-905 |#2|) |#1|)) (-15 -3470 ((-3 (-905 |#2|) #1#) |#1|)) (-15 -4274 (|#1| (-905 |#2|))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4274 (|#1| |#1|)) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -3469 ((-392 (-905 |#2|)) |#1|)) (-15 -3470 ((-3 (-392 (-905 |#2|)) #1#) |#1|)) (-15 -4274 (|#1| (-392 (-905 |#2|)))) (-15 -3386 ((-392 (-1117 |#1|)) |#1| (-581 |#1|))) (-15 -4274 (|#1| (-392 (-905 (-392 |#2|))))) (-15 -4274 (|#1| (-905 (-392 |#2|)))) (-15 -4274 (|#1| (-392 |#2|))) (-15 -3295 (|#1| |#1|)) (-15 -4287 (|#1| (-390 |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-735) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-735) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-735)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-735)) (-607 (-1 |#1| |#1|)))) (-15 -3125 ((-3 (-2 (|:| |val| |#1|) (|:| -2462 (-526))) "failed") |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1| (-1123))) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1| (-112))) (-15 -3296 (|#1| |#1|)) (-15 -4274 (|#1| (-1075 |#2| (-581 |#1|)))) (-15 -1889 ((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 |#1|))) "failed") |#1|)) (-15 -3122 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1|)) (-15 -3123 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 |#1|) (-1123))) (-15 -4086 (|#1| |#1| (-112) |#1| (-1123))) (-15 -4086 (|#1| |#1|)) (-15 -4086 (|#1| |#1| (-607 (-1123)))) (-15 -4086 (|#1| |#1| (-1123))) (-15 -1890 (|#1| (-1123) (-607 |#1|))) (-15 -1890 (|#1| (-1123) |#1| |#1| |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1| |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1|)) (-15 -3384 ((-607 (-1123)) |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -1892 ((-111) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -4274 (|#1| (-1123))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| |#1|)))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| |#1|)))) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1637 ((-607 (-581 |#1|)) |#1|)) (-15 -1638 ((-3 (-581 |#1|) "failed") |#1|)) (-15 -1640 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -1640 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -1640 (|#1| |#1| (-278 |#1|))) (-15 -4118 (|#1| (-112) (-607 |#1|))) (-15 -4118 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-581 |#1|) |#1|)) (-15 -3469 ((-581 |#1|) |#1|)) (-15 -3470 ((-3 (-581 |#1|) #1#) |#1|)) (-15 -4274 (|#1| (-581 |#1|))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 113 (|has| |#1| (-25)))) (-3384 (((-607 (-1123)) $) 200)) (-3386 (((-392 (-1117 $)) $ (-581 $)) 168 (|has| |#1| (-533)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 140 (|has| |#1| (-533)))) (-2151 (($ $) 141 (|has| |#1| (-533)))) (-2149 (((-111) $) 143 (|has| |#1| (-533)))) (-1636 (((-607 (-581 $)) $) 44)) (-1345 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1640 (($ $ (-278 $)) 56) (($ $ (-607 (-278 $))) 55) (($ $ (-607 (-581 $)) (-607 $)) 54)) (-4093 (($ $) 160 (|has| |#1| (-533)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-533)))) (-1681 (((-111) $ $) 151 (|has| |#1| (-533)))) (-3855 (($) 101 (-3850 (|has| |#1| (-1063)) (|has| |#1| (-25))) CONST)) (-3470 (((-3 (-581 $) #1="failed") $) 69) (((-3 (-1123) #1#) $) 213) (((-3 (-526) #1#) $) 206 (|has| |#1| (-995 (-526)))) (((-3 |#1| #1#) $) 204) (((-3 (-392 (-905 |#1|)) #1#) $) 166 (|has| |#1| (-533))) (((-3 (-905 |#1|) #1#) $) 120 (|has| |#1| (-1004))) (((-3 (-392 (-526)) #1#) $) 95 (-3850 (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526))))))) (-3469 (((-581 $) $) 68) (((-1123) $) 212) (((-526) $) 207 (|has| |#1| (-995 (-526)))) ((|#1| $) 203) (((-392 (-905 |#1|)) $) 165 (|has| |#1| (-533))) (((-905 |#1|) $) 119 (|has| |#1| (-1004))) (((-392 (-526)) $) 94 (-3850 (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526))))))) (-2861 (($ $ $) 155 (|has| |#1| (-533)))) (-2331 (((-653 (-526)) (-653 $)) 134 (-3155 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 133 (-3155 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 132 (|has| |#1| (-1004))) (((-653 |#1|) (-653 $)) 131 (|has| |#1| (-1004)))) (-3781 (((-3 $ "failed") $) 103 (|has| |#1| (-1063)))) (-2860 (($ $ $) 154 (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-533)))) (-4045 (((-111) $) 162 (|has| |#1| (-533)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 209 (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 208 (|has| |#1| (-845 (-363))))) (-2870 (($ $) 51) (($ (-607 $)) 50)) (-1635 (((-607 (-112)) $) 43)) (-2307 (((-112) (-112)) 42)) (-2471 (((-111) $) 102 (|has| |#1| (-1063)))) (-2973 (((-111) $) 22 (|has| $ (-995 (-526))))) (-3296 (($ $) 183 (|has| |#1| (-1004)))) (-3298 (((-1075 |#1| (-581 $)) $) 184 (|has| |#1| (-1004)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 158 (|has| |#1| (-533)))) (-1633 (((-1117 $) (-581 $)) 25 (|has| $ (-1004)))) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-4275 (($ (-1 $ $) (-581 $)) 36)) (-1638 (((-3 (-581 $) "failed") $) 46)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-533))) (($ $ $) 146 (|has| |#1| (-533)))) (-3554 (((-1106) $) 9)) (-1637 (((-607 (-581 $)) $) 45)) (-2288 (($ (-112) $) 38) (($ (-112) (-607 $)) 37)) (-3123 (((-3 (-607 $) "failed") $) 189 (|has| |#1| (-1063)))) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) "failed") $) 180 (|has| |#1| (-1004)))) (-3122 (((-3 (-607 $) "failed") $) 187 (|has| |#1| (-25)))) (-1889 (((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3124 (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $) 188 (|has| |#1| (-1063))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-112)) 182 (|has| |#1| (-1004))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-1123)) 181 (|has| |#1| (-1004)))) (-2930 (((-111) $ (-112)) 40) (((-111) $ (-1123)) 39)) (-2703 (($ $) 105 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533))))) (-2900 (((-735) $) 47)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 202)) (-1891 ((|#1| $) 201)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-533)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-533))) (($ $ $) 144 (|has| |#1| (-533)))) (-1634 (((-111) $ $) 35) (((-111) $ (-1123)) 34)) (-4051 (((-390 $) $) 159 (|has| |#1| (-533)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 157 (|has| |#1| (-533))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-533)))) (-3780 (((-3 $ "failed") $ $) 139 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-533)))) (-2974 (((-111) $) 23 (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) 67) (($ $ (-607 (-581 $)) (-607 $)) 66) (($ $ (-607 (-278 $))) 65) (($ $ (-278 $)) 64) (($ $ $ $) 63) (($ $ (-607 $) (-607 $)) 62) (($ $ (-607 (-1123)) (-607 (-1 $ $))) 33) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) 32) (($ $ (-1123) (-1 $ (-607 $))) 31) (($ $ (-1123) (-1 $ $)) 30) (($ $ (-607 (-112)) (-607 (-1 $ $))) 29) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) 28) (($ $ (-112) (-1 $ (-607 $))) 27) (($ $ (-112) (-1 $ $)) 26) (($ $ (-1123)) 194 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123))) 193 (|has| |#1| (-584 (-515)))) (($ $) 192 (|has| |#1| (-584 (-515)))) (($ $ (-112) $ (-1123)) 191 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-112)) (-607 $) (-1123)) 190 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $))) 179 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $)))) 178 (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ (-607 $))) 177 (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ $)) 176 (|has| |#1| (-1004)))) (-1680 (((-735) $) 152 (|has| |#1| (-533)))) (-4118 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-607 $)) 57)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-533)))) (-1639 (($ $) 49) (($ $ $) 48)) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 125 (|has| |#1| (-1004))) (($ $ (-1123) (-735)) 124 (|has| |#1| (-1004))) (($ $ (-607 (-1123))) 123 (|has| |#1| (-1004))) (($ $ (-1123)) 122 (|has| |#1| (-1004)))) (-3295 (($ $) 173 (|has| |#1| (-533)))) (-3297 (((-1075 |#1| (-581 $)) $) 174 (|has| |#1| (-533)))) (-3499 (($ $) 24 (|has| $ (-1004)))) (-4287 (((-849 (-526)) $) 211 (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) 210 (|has| |#1| (-584 (-849 (-363))))) (($ (-390 $)) 175 (|has| |#1| (-533))) (((-515) $) 97 (|has| |#1| (-584 (-515))))) (-3309 (($ $ $) 108 (|has| |#1| (-457)))) (-2655 (($ $ $) 109 (|has| |#1| (-457)))) (-4274 (((-823) $) 11) (($ (-581 $)) 70) (($ (-1123)) 214) (($ |#1|) 205) (($ (-1075 |#1| (-581 $))) 185 (|has| |#1| (-1004))) (($ (-392 |#1|)) 171 (|has| |#1| (-533))) (($ (-905 (-392 |#1|))) 170 (|has| |#1| (-533))) (($ (-392 (-905 (-392 |#1|)))) 169 (|has| |#1| (-533))) (($ (-392 (-905 |#1|))) 167 (|has| |#1| (-533))) (($ $) 138 (|has| |#1| (-533))) (($ (-905 |#1|)) 121 (|has| |#1| (-1004))) (($ (-392 (-526))) 96 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526)))))) (($ (-526)) 93 (-3850 (|has| |#1| (-1004)) (|has| |#1| (-995 (-526)))))) (-3002 (((-3 $ "failed") $) 135 (|has| |#1| (-139)))) (-3423 (((-735)) 130 (|has| |#1| (-1004)))) (-2887 (($ $) 53) (($ (-607 $)) 52)) (-2306 (((-111) (-112)) 41)) (-2150 (((-111) $ $) 142 (|has| |#1| (-533)))) (-1890 (($ (-1123) $) 199) (($ (-1123) $ $) 198) (($ (-1123) $ $ $) 197) (($ (-1123) $ $ $ $) 196) (($ (-1123) (-607 $)) 195)) (-2957 (($) 112 (|has| |#1| (-25)) CONST)) (-2964 (($) 100 (|has| |#1| (-1063)) CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 129 (|has| |#1| (-1004))) (($ $ (-1123) (-735)) 128 (|has| |#1| (-1004))) (($ $ (-607 (-1123))) 127 (|has| |#1| (-1004))) (($ $ (-1123)) 126 (|has| |#1| (-1004)))) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4265 (($ (-1075 |#1| (-581 $)) (-1075 |#1| (-581 $))) 172 (|has| |#1| (-533))) (($ $ $) 106 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533))))) (-4156 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-4158 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-526)) 107 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533)))) (($ $ (-735)) 104 (|has| |#1| (-1063))) (($ $ (-878)) 99 (|has| |#1| (-1063)))) (* (($ (-392 (-526)) $) 164 (|has| |#1| (-533))) (($ $ (-392 (-526))) 163 (|has| |#1| (-533))) (($ |#1| $) 137 (|has| |#1| (-163))) (($ $ |#1|) 136 (|has| |#1| (-163))) (($ (-526) $) 118 (|has| |#1| (-21))) (($ (-735) $) 114 (|has| |#1| (-25))) (($ (-878) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1063))))) -(((-406 |#1|) (-134) (-811)) (T -406)) -((-1892 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-811)) (-5 *2 (-111)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-811)) (-5 *2 (-607 (-1123))))) (-1890 (*1 *1 *2 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) (-1890 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) (-1890 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) (-1890 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 *1)) (-4 *1 (-406 *4)) (-4 *4 (-811)))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-584 (-515))))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1123))) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-584 (-515))))) (-4086 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-584 (-515))))) (-4086 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1123)) (-4 *1 (-406 *4)) (-4 *4 (-811)) (-4 *4 (-584 (-515))))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 *1)) (-5 *4 (-1123)) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-584 (-515))))) (-3123 (*1 *2 *1) (|partial| -12 (-4 *3 (-1063)) (-4 *3 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-406 *3)))) (-3124 (*1 *2 *1) (|partial| -12 (-4 *3 (-1063)) (-4 *3 (-811)) (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *3)))) (-3122 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-406 *3)))) (-1889 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-811)) (-5 *2 (-2 (|:| -4270 (-526)) (|:| |var| (-581 *1)))) (-4 *1 (-406 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1075 *3 (-581 *1))) (-4 *3 (-1004)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *3 (-811)) (-5 *2 (-1075 *3 (-581 *1))) (-4 *1 (-406 *3)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-1004)))) (-3124 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-4 *4 (-1004)) (-4 *4 (-811)) (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *4)))) (-3124 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1123)) (-4 *4 (-1004)) (-4 *4 (-811)) (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *4)))) (-3125 (*1 *2 *1) (|partial| -12 (-4 *3 (-1004)) (-4 *3 (-811)) (-5 *2 (-2 (|:| |val| *1) (|:| -2462 (-526)))) (-4 *1 (-406 *3)))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-735))) (-5 *4 (-607 (-1 *1 *1))) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-735))) (-5 *4 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *4 (-1 *1 (-607 *1))) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *4 (-1 *1 *1)) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-390 *1)) (-4 *1 (-406 *3)) (-4 *3 (-533)) (-4 *3 (-811)))) (-3297 (*1 *2 *1) (-12 (-4 *3 (-533)) (-4 *3 (-811)) (-5 *2 (-1075 *3 (-581 *1))) (-4 *1 (-406 *3)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-533)))) (-4265 (*1 *1 *2 *2) (-12 (-5 *2 (-1075 *3 (-581 *1))) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-392 *3)) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-905 (-392 *3))) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-392 *3)))) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-3386 (*1 *2 *1 *3) (-12 (-5 *3 (-581 *1)) (-4 *1 (-406 *4)) (-4 *4 (-811)) (-4 *4 (-533)) (-5 *2 (-392 (-1117 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-1063))))) -(-13 (-283) (-995 (-1123)) (-843 |t#1|) (-385 |t#1|) (-397 |t#1|) (-10 -8 (-15 -1892 ((-111) $)) (-15 -1891 (|t#1| $)) (-15 -3384 ((-607 (-1123)) $)) (-15 -1890 ($ (-1123) $)) (-15 -1890 ($ (-1123) $ $)) (-15 -1890 ($ (-1123) $ $ $)) (-15 -1890 ($ (-1123) $ $ $ $)) (-15 -1890 ($ (-1123) (-607 $))) (IF (|has| |t#1| (-584 (-515))) (PROGN (-6 (-584 (-515))) (-15 -4086 ($ $ (-1123))) (-15 -4086 ($ $ (-607 (-1123)))) (-15 -4086 ($ $)) (-15 -4086 ($ $ (-112) $ (-1123))) (-15 -4086 ($ $ (-607 (-112)) (-607 $) (-1123)))) |%noBranch|) (IF (|has| |t#1| (-1063)) (PROGN (-6 (-691)) (-15 ** ($ $ (-735))) (-15 -3123 ((-3 (-607 $) "failed") $)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3122 ((-3 (-607 $) "failed") $)) (-15 -1889 ((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1004)) (PROGN (-6 (-1004)) (-6 (-995 (-905 |t#1|))) (-6 (-859 (-1123))) (-6 (-362 |t#1|)) (-15 -4274 ($ (-1075 |t#1| (-581 $)))) (-15 -3298 ((-1075 |t#1| (-581 $)) $)) (-15 -3296 ($ $)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-112))) (-15 -3124 ((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-1123))) (-15 -3125 ((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) "failed") $)) (-15 -4086 ($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $)))) (-15 -4086 ($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $))))) (-15 -4086 ($ $ (-1123) (-735) (-1 $ (-607 $)))) (-15 -4086 ($ $ (-1123) (-735) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-6 (-348)) (-6 (-995 (-392 (-905 |t#1|)))) (-15 -4287 ($ (-390 $))) (-15 -3297 ((-1075 |t#1| (-581 $)) $)) (-15 -3295 ($ $)) (-15 -4265 ($ (-1075 |t#1| (-581 $)) (-1075 |t#1| (-581 $)))) (-15 -4274 ($ (-392 |t#1|))) (-15 -4274 ($ (-905 (-392 |t#1|)))) (-15 -4274 ($ (-392 (-905 (-392 |t#1|))))) (-15 -3386 ((-392 (-1117 $)) $ (-581 $))) (IF (|has| |t#1| (-995 (-526))) (-6 (-995 (-392 (-526)))) |%noBranch|)) |%noBranch|))) -(((-21) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-21))) ((-23) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #1=(-392 (-526))) |has| |#1| (-533)) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-533)) ((-110 |#1| |#1|) |has| |#1| (-163)) ((-110 $ $) |has| |#1| (-533)) ((-129) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-21))) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) |has| |#1| (-533)) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526)))) ((-229) |has| |#1| (-533)) ((-275) |has| |#1| (-533)) ((-292) |has| |#1| (-533)) ((-294 $) . T) ((-283) . T) ((-348) |has| |#1| (-533)) ((-362 |#1|) |has| |#1| (-1004)) ((-385 |#1|) . T) ((-397 |#1|) . T) ((-436) |has| |#1| (-533)) ((-457) |has| |#1| (-457)) ((-496 (-581 $) $) . T) ((-496 $ $) . T) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-533)) ((-613 |#1|) |has| |#1| (-163)) ((-613 $) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-606 (-526)) -12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) ((-606 |#1|) |has| |#1| (-1004)) ((-682 #1#) |has| |#1| (-533)) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) -3850 (|has| |#1| (-1063)) (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-457)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-811) . T) ((-859 (-1123)) |has| |#1| (-1004)) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-843 |#1|) . T) ((-880) |has| |#1| (-533)) ((-995 (-392 (-526))) -3850 (|has| |#1| (-995 (-392 (-526)))) (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) ((-995 (-392 (-905 |#1|))) |has| |#1| (-533)) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 (-581 $)) . T) ((-995 (-905 |#1|)) |has| |#1| (-1004)) ((-995 (-1123)) . T) ((-995 |#1|) . T) ((-1010 #1#) |has| |#1| (-533)) ((-1010 |#1|) |has| |#1| (-163)) ((-1010 $) |has| |#1| (-533)) ((-1004) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1011) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1063) -3850 (|has| |#1| (-1063)) (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-457)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1052) . T) ((-1159) . T) ((-1164) |has| |#1| (-533))) -((-4275 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-407 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1004) (-811)) (-406 |#1|) (-13 (-1004) (-811)) (-406 |#3|)) (T -407)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1004) (-811))) (-4 *6 (-13 (-1004) (-811))) (-4 *2 (-406 *6)) (-5 *1 (-407 *5 *4 *6 *2)) (-4 *4 (-406 *5))))) -(-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|))) -((-1896 ((|#2| |#2|) 166)) (-1893 (((-3 (|:| |%expansion| (-298 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111)) 57))) -(((-408 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 ((-3 (|:| |%expansion| (-298 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111))) (-15 -1896 (|#2| |#2|))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|)) (-1123) |#2|) (T -408)) -((-1896 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-408 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1145) (-406 *3))) (-14 *4 (-1123)) (-14 *5 *2))) (-1893 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |%expansion| (-298 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) (-5 *1 (-408 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-14 *6 (-1123)) (-14 *7 *3)))) -(-10 -7 (-15 -1893 ((-3 (|:| |%expansion| (-298 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111))) (-15 -1896 (|#2| |#2|))) -((-1896 ((|#2| |#2|) 90)) (-1894 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106)) 48)) (-1895 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106)) 154))) -(((-409 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1894 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106))) (-15 -1895 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106))) (-15 -1896 (|#2| |#2|))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|) (-10 -8 (-15 -4274 ($ |#3|)))) (-809) (-13 (-1184 |#2| |#3|) (-348) (-1145) (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $)))) (-942 |#4|) (-1123)) (T -409)) -((-1896 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-4 *2 (-13 (-27) (-1145) (-406 *3) (-10 -8 (-15 -4274 ($ *4))))) (-4 *4 (-809)) (-4 *5 (-13 (-1184 *2 *4) (-348) (-1145) (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) (-5 *1 (-409 *3 *2 *4 *5 *6 *7)) (-4 *6 (-942 *5)) (-14 *7 (-1123)))) (-1895 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-4 *3 (-13 (-27) (-1145) (-406 *6) (-10 -8 (-15 -4274 ($ *7))))) (-4 *7 (-809)) (-4 *8 (-13 (-1184 *3 *7) (-348) (-1145) (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) (-5 *1 (-409 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1106)) (-4 *9 (-942 *8)) (-14 *10 (-1123)))) (-1894 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-4 *3 (-13 (-27) (-1145) (-406 *6) (-10 -8 (-15 -4274 ($ *7))))) (-4 *7 (-809)) (-4 *8 (-13 (-1184 *3 *7) (-348) (-1145) (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) (-5 *1 (-409 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1106)) (-4 *9 (-942 *8)) (-14 *10 (-1123))))) -(-10 -7 (-15 -1894 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106))) (-15 -1895 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106))) (-15 -1896 (|#2| |#2|))) -((-1897 (($) 44)) (-3546 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3548 (($ $ $) 39)) (-3547 (((-111) $ $) 28)) (-3433 (((-735)) 47)) (-3551 (($ (-607 |#2|)) 20) (($) NIL)) (-3294 (($) 53)) (-3553 (((-111) $ $) 13)) (-3637 ((|#2| $) 61)) (-3638 ((|#2| $) 59)) (-2102 (((-878) $) 55)) (-3550 (($ $ $) 35)) (-2461 (($ (-878)) 50)) (-3549 (($ $ |#2|) NIL) (($ $ $) 38)) (-2045 (((-735) (-1 (-111) |#2|) $) NIL) (((-735) |#2| $) 26)) (-3844 (($ (-607 |#2|)) 24)) (-1898 (($ $) 46)) (-4274 (((-823) $) 33)) (-1899 (((-735) $) 21)) (-3552 (($ (-607 |#2|)) 19) (($) NIL)) (-3353 (((-111) $ $) 16))) -(((-410 |#1| |#2|) (-10 -8 (-15 -3433 ((-735))) (-15 -2461 (|#1| (-878))) (-15 -2102 ((-878) |#1|)) (-15 -3294 (|#1|)) (-15 -3637 (|#2| |#1|)) (-15 -3638 (|#2| |#1|)) (-15 -1897 (|#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1899 ((-735) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3553 ((-111) |#1| |#1|)) (-15 -3552 (|#1|)) (-15 -3552 (|#1| (-607 |#2|))) (-15 -3551 (|#1|)) (-15 -3551 (|#1| (-607 |#2|))) (-15 -3550 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#2|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3547 ((-111) |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3546 (|#1| |#1| |#2|)) (-15 -3546 (|#1| |#2| |#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|))) (-411 |#2|) (-1052)) (T -410)) -((-3433 (*1 *2) (-12 (-4 *4 (-1052)) (-5 *2 (-735)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) -(-10 -8 (-15 -3433 ((-735))) (-15 -2461 (|#1| (-878))) (-15 -2102 ((-878) |#1|)) (-15 -3294 (|#1|)) (-15 -3637 (|#2| |#1|)) (-15 -3638 (|#2| |#1|)) (-15 -1897 (|#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1899 ((-735) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3553 ((-111) |#1| |#1|)) (-15 -3552 (|#1|)) (-15 -3552 (|#1| (-607 |#2|))) (-15 -3551 (|#1|)) (-15 -3551 (|#1| (-607 |#2|))) (-15 -3550 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#2|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3547 ((-111) |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3546 (|#1| |#1| |#2|)) (-15 -3546 (|#1| |#2| |#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|))) -((-2865 (((-111) $ $) 19)) (-1897 (($) 67 (|has| |#1| (-353)))) (-3546 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3548 (($ $ $) 78)) (-3547 (((-111) $ $) 79)) (-1244 (((-111) $ (-735)) 8)) (-3433 (((-735)) 61 (|has| |#1| (-353)))) (-3551 (($ (-607 |#1|)) 74) (($) 73)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-3294 (($) 64 (|has| |#1| (-353)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 70)) (-4041 (((-111) $ (-735)) 9)) (-3637 ((|#1| $) 65 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3638 ((|#1| $) 66 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-2102 (((-878) $) 63 (|has| |#1| (-353)))) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22)) (-3550 (($ $ $) 75)) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-2461 (($ (-878)) 62 (|has| |#1| (-353)))) (-3555 (((-1070) $) 21)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3549 (($ $ |#1|) 77) (($ $ $) 76)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-1898 (($ $) 68 (|has| |#1| (-353)))) (-4274 (((-823) $) 18)) (-1899 (((-735) $) 69)) (-3552 (($ (-607 |#1|)) 72) (($) 71)) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-411 |#1|) (-134) (-1052)) (T -411)) -((-1899 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-1052)) (-5 *2 (-735)))) (-1898 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-353)))) (-1897 (*1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-353)) (-4 *2 (-1052)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-811)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-811))))) -(-13 (-215 |t#1|) (-1050 |t#1|) (-10 -8 (-6 -4310) (-15 -1899 ((-735) $)) (IF (|has| |t#1| (-353)) (PROGN (-6 (-353)) (-15 -1898 ($ $)) (-15 -1897 ($))) |%noBranch|) (IF (|has| |t#1| (-811)) (PROGN (-15 -3638 (|t#1| $)) (-15 -3637 (|t#1| $))) |%noBranch|))) -(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-215 |#1|) . T) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-353) |has| |#1| (-353)) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1050 |#1|) . T) ((-1052) . T) ((-1159) . T)) -((-4160 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4161 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4275 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-412 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4161 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4160 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1052) (-411 |#1|) (-1052) (-411 |#3|)) (T -412)) -((-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1052)) (-4 *5 (-1052)) (-4 *2 (-411 *5)) (-5 *1 (-412 *6 *4 *5 *2)) (-4 *4 (-411 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1052)) (-4 *2 (-1052)) (-5 *1 (-412 *5 *4 *2 *6)) (-4 *4 (-411 *5)) (-4 *6 (-411 *2)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-411 *6)) (-5 *1 (-412 *5 *4 *6 *2)) (-4 *4 (-411 *5))))) -(-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4161 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4160 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1900 (((-556 |#2|) |#2| (-1123)) 36)) (-2193 (((-556 |#2|) |#2| (-1123)) 20)) (-2232 ((|#2| |#2| (-1123)) 25))) -(((-413 |#1| |#2|) (-10 -7 (-15 -2193 ((-556 |#2|) |#2| (-1123))) (-15 -1900 ((-556 |#2|) |#2| (-1123))) (-15 -2232 (|#2| |#2| (-1123)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-29 |#1|))) (T -413)) -((-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *1 (-413 *4 *2)) (-4 *2 (-13 (-1145) (-29 *4))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-413 *5 *3)) (-4 *3 (-13 (-1145) (-29 *5))))) (-2193 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-413 *5 *3)) (-4 *3 (-13 (-1145) (-29 *5)))))) -(-10 -7 (-15 -2193 ((-556 |#2|) |#2| (-1123))) (-15 -1900 ((-556 |#2|) |#2| (-1123))) (-15 -2232 (|#2| |#2| (-1123)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-1902 (($ |#2| |#1|) 35)) (-1901 (($ |#2| |#1|) 33)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-316 |#2|)) 25)) (-3423 (((-735)) NIL)) (-2957 (($) 10 T CONST)) (-2964 (($) 16 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 34)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-414 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4297)) (IF (|has| |#1| (-6 -4297)) (-6 -4297) |%noBranch|) |%noBranch|) (-15 -4274 ($ |#1|)) (-15 -4274 ($ (-316 |#2|))) (-15 -1902 ($ |#2| |#1|)) (-15 -1901 ($ |#2| |#1|)))) (-13 (-163) (-37 (-392 (-526)))) (-13 (-811) (-21))) (T -414)) -((-4274 (*1 *1 *2) (-12 (-5 *1 (-414 *2 *3)) (-4 *2 (-13 (-163) (-37 (-392 (-526))))) (-4 *3 (-13 (-811) (-21))))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-316 *4)) (-4 *4 (-13 (-811) (-21))) (-5 *1 (-414 *3 *4)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))))) (-1902 (*1 *1 *2 *3) (-12 (-5 *1 (-414 *3 *2)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))) (-4 *2 (-13 (-811) (-21))))) (-1901 (*1 *1 *2 *3) (-12 (-5 *1 (-414 *3 *2)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))) (-4 *2 (-13 (-811) (-21)))))) -(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4297)) (IF (|has| |#1| (-6 -4297)) (-6 -4297) |%noBranch|) |%noBranch|) (-15 -4274 ($ |#1|)) (-15 -4274 ($ (-316 |#2|))) (-15 -1902 ($ |#2| |#1|)) (-15 -1901 ($ |#2| |#1|)))) -((-4131 (((-3 |#2| (-607 |#2|)) |#2| (-1123)) 109))) -(((-415 |#1| |#2|) (-10 -7 (-15 -4131 ((-3 |#2| (-607 |#2|)) |#2| (-1123)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-919) (-29 |#1|))) (T -415)) -((-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 *3 (-607 *3))) (-5 *1 (-415 *5 *3)) (-4 *3 (-13 (-1145) (-919) (-29 *5)))))) -(-10 -7 (-15 -4131 ((-3 |#2| (-607 |#2|)) |#2| (-1123)))) -((-3705 ((|#2| |#2| |#2|) 33)) (-2307 (((-112) (-112)) 44)) (-1904 ((|#2| |#2|) 66)) (-1903 ((|#2| |#2|) 69)) (-3704 ((|#2| |#2|) 32)) (-3708 ((|#2| |#2| |#2|) 35)) (-3710 ((|#2| |#2| |#2|) 37)) (-3707 ((|#2| |#2| |#2|) 34)) (-3709 ((|#2| |#2| |#2|) 36)) (-2306 (((-111) (-112)) 42)) (-3712 ((|#2| |#2|) 39)) (-3711 ((|#2| |#2|) 38)) (-3702 ((|#2| |#2|) 27)) (-3706 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3703 ((|#2| |#2| |#2|) 31))) -(((-416 |#1| |#2|) (-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -3702 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -3706 (|#2| |#2| |#2|)) (-15 -3703 (|#2| |#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2|)) (-15 -3708 (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2| |#2|)) (-15 -3710 (|#2| |#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1903 (|#2| |#2|)) (-15 -1904 (|#2| |#2|))) (-13 (-811) (-533)) (-406 |#1|)) (T -416)) -((-1904 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-1903 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3710 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3709 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3708 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3707 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3705 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3703 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3706 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3702 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *4)) (-4 *4 (-406 *3)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-416 *4 *5)) (-4 *5 (-406 *4))))) -(-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -3702 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -3706 (|#2| |#2| |#2|)) (-15 -3703 (|#2| |#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2|)) (-15 -3708 (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2| |#2|)) (-15 -3710 (|#2| |#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1903 (|#2| |#2|)) (-15 -1904 (|#2| |#2|))) -((-3133 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1117 |#2|)) (|:| |pol2| (-1117 |#2|)) (|:| |prim| (-1117 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-607 (-1117 |#2|))) (|:| |prim| (-1117 |#2|))) (-607 |#2|)) 61))) -(((-417 |#1| |#2|) (-10 -7 (-15 -3133 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-607 (-1117 |#2|))) (|:| |prim| (-1117 |#2|))) (-607 |#2|))) (IF (|has| |#2| (-27)) (-15 -3133 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1117 |#2|)) (|:| |pol2| (-1117 |#2|)) (|:| |prim| (-1117 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-533) (-811) (-141)) (-406 |#1|)) (T -417)) -((-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-533) (-811) (-141))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1117 *3)) (|:| |pol2| (-1117 *3)) (|:| |prim| (-1117 *3)))) (-5 *1 (-417 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-533) (-811) (-141))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-607 (-1117 *5))) (|:| |prim| (-1117 *5)))) (-5 *1 (-417 *4 *5))))) -(-10 -7 (-15 -3133 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-607 (-1117 |#2|))) (|:| |prim| (-1117 |#2|))) (-607 |#2|))) (IF (|has| |#2| (-27)) (-15 -3133 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1117 |#2|)) (|:| |pol2| (-1117 |#2|)) (|:| |prim| (-1117 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1906 (((-1211)) 19)) (-1905 (((-1117 (-392 (-526))) |#2| (-581 |#2|)) 41) (((-392 (-526)) |#2|) 25))) -(((-418 |#1| |#2|) (-10 -7 (-15 -1905 ((-392 (-526)) |#2|)) (-15 -1905 ((-1117 (-392 (-526))) |#2| (-581 |#2|))) (-15 -1906 ((-1211)))) (-13 (-811) (-533) (-995 (-526))) (-406 |#1|)) (T -418)) -((-1906 (*1 *2) (-12 (-4 *3 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-1211)) (-5 *1 (-418 *3 *4)) (-4 *4 (-406 *3)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-581 *3)) (-4 *3 (-406 *5)) (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-418 *5 *3)))) (-1905 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-418 *4 *3)) (-4 *3 (-406 *4))))) -(-10 -7 (-15 -1905 ((-392 (-526)) |#2|)) (-15 -1905 ((-1117 (-392 (-526))) |#2| (-581 |#2|))) (-15 -1906 ((-1211)))) -((-3967 (((-111) $) 28)) (-1907 (((-111) $) 30)) (-3571 (((-111) $) 31)) (-1909 (((-111) $) 34)) (-1911 (((-111) $) 29)) (-1910 (((-111) $) 33)) (-4274 (((-823) $) 18) (($ (-1106)) 27) (($ (-1123)) 23) (((-1123) $) 22) (((-1054) $) 21)) (-1908 (((-111) $) 32)) (-3353 (((-111) $ $) 15))) -(((-419) (-13 (-583 (-823)) (-10 -8 (-15 -4274 ($ (-1106))) (-15 -4274 ($ (-1123))) (-15 -4274 ((-1123) $)) (-15 -4274 ((-1054) $)) (-15 -3967 ((-111) $)) (-15 -1911 ((-111) $)) (-15 -3571 ((-111) $)) (-15 -1910 ((-111) $)) (-15 -1909 ((-111) $)) (-15 -1908 ((-111) $)) (-15 -1907 ((-111) $)) (-15 -3353 ((-111) $ $))))) (T -419)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-419)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-419)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-419)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-419)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-3353 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) -(-13 (-583 (-823)) (-10 -8 (-15 -4274 ($ (-1106))) (-15 -4274 ($ (-1123))) (-15 -4274 ((-1123) $)) (-15 -4274 ((-1054) $)) (-15 -3967 ((-111) $)) (-15 -1911 ((-111) $)) (-15 -3571 ((-111) $)) (-15 -1910 ((-111) $)) (-15 -1909 ((-111) $)) (-15 -1908 ((-111) $)) (-15 -1907 ((-111) $)) (-15 -3353 ((-111) $ $)))) -((-1913 (((-3 (-390 (-1117 (-392 (-526)))) "failed") |#3|) 70)) (-1912 (((-390 |#3|) |#3|) 34)) (-1915 (((-3 (-390 (-1117 (-47))) "failed") |#3|) 46 (|has| |#2| (-995 (-47))))) (-1914 (((-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) (|:| -2936 (-111))) |#3|) 37))) -(((-420 |#1| |#2| |#3|) (-10 -7 (-15 -1912 ((-390 |#3|) |#3|)) (-15 -1913 ((-3 (-390 (-1117 (-392 (-526)))) "failed") |#3|)) (-15 -1914 ((-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) (|:| -2936 (-111))) |#3|)) (IF (|has| |#2| (-995 (-47))) (-15 -1915 ((-3 (-390 (-1117 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-533) (-811) (-995 (-526))) (-406 |#1|) (-1181 |#2|)) (T -420)) -((-1915 (*1 *2 *3) (|partial| -12 (-4 *5 (-995 (-47))) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 (-390 (-1117 (-47)))) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5)))) (-1914 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 (-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) (|:| -2936 (-111)))) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5)))) (-1913 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 (-390 (-1117 (-392 (-526))))) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5)))) (-1912 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 (-390 *3)) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5))))) -(-10 -7 (-15 -1912 ((-390 |#3|) |#3|)) (-15 -1913 ((-3 (-390 (-1117 (-392 (-526)))) "failed") |#3|)) (-15 -1914 ((-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) (|:| -2936 (-111))) |#3|)) (IF (|has| |#2| (-995 (-47))) (-15 -1915 ((-3 (-390 (-1117 (-47))) "failed") |#3|)) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-1924 (((-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $) 11)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1922 (($) 32)) (-1919 (($) 38)) (-1920 (($) 34)) (-1917 (($) 36)) (-1921 (($) 33)) (-1918 (($) 35)) (-1916 (($) 37)) (-1923 (((-111) $) 8)) (-2651 (((-607 (-905 (-526))) $) 19)) (-3844 (($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-1123)) (-111)) 27) (($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-905 (-526))) (-111)) 28)) (-4274 (((-823) $) 23) (($ (-419)) 29)) (-3353 (((-111) $ $) NIL))) -(((-421) (-13 (-1052) (-10 -8 (-15 -4274 ((-823) $)) (-15 -4274 ($ (-419))) (-15 -1924 ((-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $)) (-15 -2651 ((-607 (-905 (-526))) $)) (-15 -1923 ((-111) $)) (-15 -3844 ($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-1123)) (-111))) (-15 -3844 ($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-905 (-526))) (-111))) (-15 -1922 ($)) (-15 -1921 ($)) (-15 -1920 ($)) (-15 -1919 ($)) (-15 -1918 ($)) (-15 -1917 ($)) (-15 -1916 ($))))) (T -421)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-421)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-419)) (-5 *1 (-421)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) (-5 *1 (-421)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-607 (-905 (-526)))) (-5 *1 (-421)))) (-1923 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-421)))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *3 (-607 (-1123))) (-5 *4 (-111)) (-5 *1 (-421)))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-111)) (-5 *1 (-421)))) (-1922 (*1 *1) (-5 *1 (-421))) (-1921 (*1 *1) (-5 *1 (-421))) (-1920 (*1 *1) (-5 *1 (-421))) (-1919 (*1 *1) (-5 *1 (-421))) (-1918 (*1 *1) (-5 *1 (-421))) (-1917 (*1 *1) (-5 *1 (-421))) (-1916 (*1 *1) (-5 *1 (-421)))) -(-13 (-1052) (-10 -8 (-15 -4274 ((-823) $)) (-15 -4274 ($ (-419))) (-15 -1924 ((-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $)) (-15 -2651 ((-607 (-905 (-526))) $)) (-15 -1923 ((-111) $)) (-15 -3844 ($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-1123)) (-111))) (-15 -3844 ($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-905 (-526))) (-111))) (-15 -1922 ($)) (-15 -1921 ($)) (-15 -1920 ($)) (-15 -1919 ($)) (-15 -1918 ($)) (-15 -1917 ($)) (-15 -1916 ($)))) -((-2865 (((-111) $ $) NIL)) (-1789 (((-1106) $ (-1106)) NIL)) (-1793 (($ $ (-1106)) NIL)) (-1790 (((-1106) $) NIL)) (-1928 (((-373) (-373) (-373)) 17) (((-373) (-373)) 15)) (-1794 (($ (-373)) NIL) (($ (-373) (-1106)) NIL)) (-3864 (((-373) $) NIL)) (-3554 (((-1106) $) NIL)) (-1791 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1927 (((-1211) (-1106)) 9)) (-1926 (((-1211) (-1106)) 10)) (-1925 (((-1211)) 11)) (-4274 (((-823) $) NIL)) (-1792 (($ $) 35)) (-3353 (((-111) $ $) NIL))) -(((-422) (-13 (-350 (-373) (-1106)) (-10 -7 (-15 -1928 ((-373) (-373) (-373))) (-15 -1928 ((-373) (-373))) (-15 -1927 ((-1211) (-1106))) (-15 -1926 ((-1211) (-1106))) (-15 -1925 ((-1211)))))) (T -422)) -((-1928 (*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-422)))) (-1928 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-422)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-422)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-422)))) (-1925 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-422))))) -(-13 (-350 (-373) (-1106)) (-10 -7 (-15 -1928 ((-373) (-373) (-373))) (-15 -1928 ((-373) (-373))) (-15 -1927 ((-1211) (-1106))) (-15 -1926 ((-1211) (-1106))) (-15 -1925 ((-1211))))) -((-2865 (((-111) $ $) NIL)) (-3864 (((-1123) $) 8)) (-3554 (((-1106) $) 16)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 13))) -(((-423 |#1|) (-13 (-1052) (-10 -8 (-15 -3864 ((-1123) $)))) (-1123)) (T -423)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-423 *3)) (-14 *3 *2)))) -(-13 (-1052) (-10 -8 (-15 -3864 ((-1123) $)))) -((-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-1205 (-663))) 14) (($ (-607 (-315))) 13) (($ (-315)) 12) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 11))) -(((-424) (-134)) (T -424)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-663))) (-4 *1 (-424)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-424)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-424)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-424))))) -(-13 (-381) (-10 -8 (-15 -4274 ($ (-1205 (-663)))) (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))))) -(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) -((-3470 (((-3 $ "failed") (-1205 (-299 (-363)))) 21) (((-3 $ "failed") (-1205 (-299 (-526)))) 19) (((-3 $ "failed") (-1205 (-905 (-363)))) 17) (((-3 $ "failed") (-1205 (-905 (-526)))) 15) (((-3 $ "failed") (-1205 (-392 (-905 (-363))))) 13) (((-3 $ "failed") (-1205 (-392 (-905 (-526))))) 11)) (-3469 (($ (-1205 (-299 (-363)))) 22) (($ (-1205 (-299 (-526)))) 20) (($ (-1205 (-905 (-363)))) 18) (($ (-1205 (-905 (-526)))) 16) (($ (-1205 (-392 (-905 (-363))))) 14) (($ (-1205 (-392 (-905 (-526))))) 12)) (-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-607 (-315))) 25) (($ (-315)) 24) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 23))) -(((-425) (-134)) (T -425)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-425)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-425)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-299 (-363)))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-299 (-363)))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-299 (-526)))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-299 (-526)))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-905 (-363)))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-905 (-363)))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-905 (-526)))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-905 (-526)))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 (-363))))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-392 (-905 (-363))))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 (-526))))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-392 (-905 (-526))))) (-4 *1 (-425))))) -(-13 (-381) (-10 -8 (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -3469 ($ (-1205 (-299 (-363))))) (-15 -3470 ((-3 $ "failed") (-1205 (-299 (-363))))) (-15 -3469 ($ (-1205 (-299 (-526))))) (-15 -3470 ((-3 $ "failed") (-1205 (-299 (-526))))) (-15 -3469 ($ (-1205 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-1205 (-905 (-363))))) (-15 -3469 ($ (-1205 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-1205 (-905 (-526))))) (-15 -3469 ($ (-1205 (-392 (-905 (-363)))))) (-15 -3470 ((-3 $ "failed") (-1205 (-392 (-905 (-363)))))) (-15 -3469 ($ (-1205 (-392 (-905 (-526)))))) (-15 -3470 ((-3 $ "failed") (-1205 (-392 (-905 (-526)))))))) -(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) -((-1934 (((-111)) 17)) (-1935 (((-111) (-111)) 18)) (-1936 (((-111)) 13)) (-1937 (((-111) (-111)) 14)) (-1939 (((-111)) 15)) (-1940 (((-111) (-111)) 16)) (-1931 (((-878) (-878)) 21) (((-878)) 20)) (-1932 (((-735) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526))))) 42)) (-1930 (((-878) (-878)) 23) (((-878)) 22)) (-1933 (((-2 (|:| -2875 (-526)) (|:| -2736 (-607 |#1|))) |#1|) 62)) (-1929 (((-390 |#1|) (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526))))))) 126)) (-4053 (((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111)) 152)) (-4052 (((-390 |#1|) |#1| (-735) (-735)) 165) (((-390 |#1|) |#1| (-607 (-735)) (-735)) 162) (((-390 |#1|) |#1| (-607 (-735))) 164) (((-390 |#1|) |#1| (-735)) 163) (((-390 |#1|) |#1|) 161)) (-1951 (((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735) (-111)) 167) (((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735)) 168) (((-3 |#1| "failed") (-878) |#1| (-607 (-735))) 170) (((-3 |#1| "failed") (-878) |#1| (-735)) 169) (((-3 |#1| "failed") (-878) |#1|) 171)) (-4051 (((-390 |#1|) |#1| (-735) (-735)) 160) (((-390 |#1|) |#1| (-607 (-735)) (-735)) 156) (((-390 |#1|) |#1| (-607 (-735))) 158) (((-390 |#1|) |#1| (-735)) 157) (((-390 |#1|) |#1|) 155)) (-1938 (((-111) |#1|) 37)) (-1950 (((-701 (-735)) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526))))) 67)) (-1941 (((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111) (-1048 (-735)) (-735)) 154))) -(((-426 |#1|) (-10 -7 (-15 -1929 ((-390 |#1|) (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))))) (-15 -1950 ((-701 (-735)) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))))) (-15 -1930 ((-878))) (-15 -1930 ((-878) (-878))) (-15 -1931 ((-878))) (-15 -1931 ((-878) (-878))) (-15 -1932 ((-735) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))))) (-15 -1933 ((-2 (|:| -2875 (-526)) (|:| -2736 (-607 |#1|))) |#1|)) (-15 -1934 ((-111))) (-15 -1935 ((-111) (-111))) (-15 -1936 ((-111))) (-15 -1937 ((-111) (-111))) (-15 -1938 ((-111) |#1|)) (-15 -1939 ((-111))) (-15 -1940 ((-111) (-111))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4051 ((-390 |#1|) |#1| (-735))) (-15 -4051 ((-390 |#1|) |#1| (-607 (-735)))) (-15 -4051 ((-390 |#1|) |#1| (-607 (-735)) (-735))) (-15 -4051 ((-390 |#1|) |#1| (-735) (-735))) (-15 -4052 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1| (-735))) (-15 -4052 ((-390 |#1|) |#1| (-607 (-735)))) (-15 -4052 ((-390 |#1|) |#1| (-607 (-735)) (-735))) (-15 -4052 ((-390 |#1|) |#1| (-735) (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1|)) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735) (-111))) (-15 -4053 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111))) (-15 -1941 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111) (-1048 (-735)) (-735)))) (-1181 (-526))) (T -426)) -((-1941 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-1048 (-735))) (-5 *6 (-735)) (-5 *2 (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1951 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *6 (-111)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-1951 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-1951 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-1951 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-878)) (-5 *4 (-735)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-1951 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-878)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-4052 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-735))) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-735))) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1939 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1938 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1937 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1936 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1934 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1933 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2875 (-526)) (|:| -2736 (-607 *3)))) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -4051 *4) (|:| -4264 (-526))))) (-4 *4 (-1181 (-526))) (-5 *2 (-735)) (-5 *1 (-426 *4)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1931 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1930 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -4051 *4) (|:| -4264 (-526))))) (-4 *4 (-1181 (-526))) (-5 *2 (-701 (-735))) (-5 *1 (-426 *4)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| *4) (|:| -2456 (-526))))))) (-4 *4 (-1181 (-526))) (-5 *2 (-390 *4)) (-5 *1 (-426 *4))))) -(-10 -7 (-15 -1929 ((-390 |#1|) (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))))) (-15 -1950 ((-701 (-735)) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))))) (-15 -1930 ((-878))) (-15 -1930 ((-878) (-878))) (-15 -1931 ((-878))) (-15 -1931 ((-878) (-878))) (-15 -1932 ((-735) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))))) (-15 -1933 ((-2 (|:| -2875 (-526)) (|:| -2736 (-607 |#1|))) |#1|)) (-15 -1934 ((-111))) (-15 -1935 ((-111) (-111))) (-15 -1936 ((-111))) (-15 -1937 ((-111) (-111))) (-15 -1938 ((-111) |#1|)) (-15 -1939 ((-111))) (-15 -1940 ((-111) (-111))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4051 ((-390 |#1|) |#1| (-735))) (-15 -4051 ((-390 |#1|) |#1| (-607 (-735)))) (-15 -4051 ((-390 |#1|) |#1| (-607 (-735)) (-735))) (-15 -4051 ((-390 |#1|) |#1| (-735) (-735))) (-15 -4052 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1| (-735))) (-15 -4052 ((-390 |#1|) |#1| (-607 (-735)))) (-15 -4052 ((-390 |#1|) |#1| (-607 (-735)) (-735))) (-15 -4052 ((-390 |#1|) |#1| (-735) (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1|)) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735) (-111))) (-15 -4053 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111))) (-15 -1941 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111) (-1048 (-735)) (-735)))) -((-1945 (((-526) |#2|) 48) (((-526) |#2| (-735)) 47)) (-1944 (((-526) |#2|) 55)) (-1946 ((|#3| |#2|) 25)) (-3429 ((|#3| |#2| (-878)) 14)) (-4152 ((|#3| |#2|) 15)) (-1947 ((|#3| |#2|) 9)) (-2900 ((|#3| |#2|) 10)) (-1943 ((|#3| |#2| (-878)) 62) ((|#3| |#2|) 30)) (-1942 (((-526) |#2|) 57))) -(((-427 |#1| |#2| |#3|) (-10 -7 (-15 -1942 ((-526) |#2|)) (-15 -1943 (|#3| |#2|)) (-15 -1943 (|#3| |#2| (-878))) (-15 -1944 ((-526) |#2|)) (-15 -1945 ((-526) |#2| (-735))) (-15 -1945 ((-526) |#2|)) (-15 -3429 (|#3| |#2| (-878))) (-15 -1946 (|#3| |#2|)) (-15 -1947 (|#3| |#2|)) (-15 -2900 (|#3| |#2|)) (-15 -4152 (|#3| |#2|))) (-1004) (-1181 |#1|) (-13 (-389) (-995 |#1|) (-348) (-1145) (-269))) (T -427)) -((-4152 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-2900 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *2 (-13 (-389) (-995 *5) (-348) (-1145) (-269))) (-5 *1 (-427 *5 *3 *2)) (-4 *3 (-1181 *5)))) (-1945 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269))))) (-1945 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *5 *3 *6)) (-4 *3 (-1181 *5)) (-4 *6 (-13 (-389) (-995 *5) (-348) (-1145) (-269))))) (-1944 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269))))) (-1943 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *2 (-13 (-389) (-995 *5) (-348) (-1145) (-269))) (-5 *1 (-427 *5 *3 *2)) (-4 *3 (-1181 *5)))) (-1943 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269)))))) -(-10 -7 (-15 -1942 ((-526) |#2|)) (-15 -1943 (|#3| |#2|)) (-15 -1943 (|#3| |#2| (-878))) (-15 -1944 ((-526) |#2|)) (-15 -1945 ((-526) |#2| (-735))) (-15 -1945 ((-526) |#2|)) (-15 -3429 (|#3| |#2| (-878))) (-15 -1946 (|#3| |#2|)) (-15 -1947 (|#3| |#2|)) (-15 -2900 (|#3| |#2|)) (-15 -4152 (|#3| |#2|))) -((-3673 ((|#2| (-1205 |#1|)) 36)) (-1949 ((|#2| |#2| |#1|) 49)) (-1948 ((|#2| |#2| |#1|) 41)) (-2347 ((|#2| |#2|) 38)) (-3486 (((-111) |#2|) 30)) (-1952 (((-607 |#2|) (-878) (-390 |#2|)) 17)) (-1951 ((|#2| (-878) (-390 |#2|)) 21)) (-1950 (((-701 (-735)) (-390 |#2|)) 25))) -(((-428 |#1| |#2|) (-10 -7 (-15 -3486 ((-111) |#2|)) (-15 -3673 (|#2| (-1205 |#1|))) (-15 -2347 (|#2| |#2|)) (-15 -1948 (|#2| |#2| |#1|)) (-15 -1949 (|#2| |#2| |#1|)) (-15 -1950 ((-701 (-735)) (-390 |#2|))) (-15 -1951 (|#2| (-878) (-390 |#2|))) (-15 -1952 ((-607 |#2|) (-878) (-390 |#2|)))) (-1004) (-1181 |#1|)) (T -428)) -((-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-390 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-1004)) (-5 *2 (-607 *6)) (-5 *1 (-428 *5 *6)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-390 *2)) (-4 *2 (-1181 *5)) (-5 *1 (-428 *5 *2)) (-4 *5 (-1004)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-390 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-1004)) (-5 *2 (-701 (-735))) (-5 *1 (-428 *4 *5)))) (-1949 (*1 *2 *2 *3) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3)))) (-1948 (*1 *2 *2 *3) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3)))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-1004)) (-4 *2 (-1181 *4)) (-5 *1 (-428 *4 *2)))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-111)) (-5 *1 (-428 *4 *3)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -3486 ((-111) |#2|)) (-15 -3673 (|#2| (-1205 |#1|))) (-15 -2347 (|#2| |#2|)) (-15 -1948 (|#2| |#2| |#1|)) (-15 -1949 (|#2| |#2| |#1|)) (-15 -1950 ((-701 (-735)) (-390 |#2|))) (-15 -1951 (|#2| (-878) (-390 |#2|))) (-15 -1952 ((-607 |#2|) (-878) (-390 |#2|)))) -((-1955 (((-735)) 41)) (-1959 (((-735)) 23 (|has| |#1| (-389))) (((-735) (-735)) 22 (|has| |#1| (-389)))) (-1958 (((-526) |#1|) 18 (|has| |#1| (-389)))) (-1957 (((-526) |#1|) 20 (|has| |#1| (-389)))) (-1954 (((-735)) 40) (((-735) (-735)) 39)) (-1953 ((|#1| (-735) (-526)) 29)) (-1956 (((-1211)) 43))) -(((-429 |#1|) (-10 -7 (-15 -1953 (|#1| (-735) (-526))) (-15 -1954 ((-735) (-735))) (-15 -1954 ((-735))) (-15 -1955 ((-735))) (-15 -1956 ((-1211))) (IF (|has| |#1| (-389)) (PROGN (-15 -1957 ((-526) |#1|)) (-15 -1958 ((-526) |#1|)) (-15 -1959 ((-735) (-735))) (-15 -1959 ((-735)))) |%noBranch|)) (-1004)) (T -429)) -((-1959 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) (-1958 (*1 *2 *3) (-12 (-5 *2 (-526)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-526)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) (-1956 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) (-1955 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) (-1954 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) (-1953 (*1 *2 *3 *4) (-12 (-5 *3 (-735)) (-5 *4 (-526)) (-5 *1 (-429 *2)) (-4 *2 (-1004))))) -(-10 -7 (-15 -1953 (|#1| (-735) (-526))) (-15 -1954 ((-735) (-735))) (-15 -1954 ((-735))) (-15 -1955 ((-735))) (-15 -1956 ((-1211))) (IF (|has| |#1| (-389)) (PROGN (-15 -1957 ((-526) |#1|)) (-15 -1958 ((-526) |#1|)) (-15 -1959 ((-735) (-735))) (-15 -1959 ((-735)))) |%noBranch|)) -((-1960 (((-607 (-526)) (-526)) 61)) (-4045 (((-111) (-159 (-526))) 65)) (-4051 (((-390 (-159 (-526))) (-159 (-526))) 60))) -(((-430) (-10 -7 (-15 -4051 ((-390 (-159 (-526))) (-159 (-526)))) (-15 -1960 ((-607 (-526)) (-526))) (-15 -4045 ((-111) (-159 (-526)))))) (T -430)) -((-4045 (*1 *2 *3) (-12 (-5 *3 (-159 (-526))) (-5 *2 (-111)) (-5 *1 (-430)))) (-1960 (*1 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-430)) (-5 *3 (-526)))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 (-159 (-526)))) (-5 *1 (-430)) (-5 *3 (-159 (-526)))))) -(-10 -7 (-15 -4051 ((-390 (-159 (-526))) (-159 (-526)))) (-15 -1960 ((-607 (-526)) (-526))) (-15 -4045 ((-111) (-159 (-526))))) -((-3246 ((|#4| |#4| (-607 |#4|)) 22 (|has| |#1| (-348)))) (-2303 (((-607 |#4|) (-607 |#4|) (-1106) (-1106)) 41) (((-607 |#4|) (-607 |#4|) (-1106)) 40) (((-607 |#4|) (-607 |#4|)) 35))) -(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2303 ((-607 |#4|) (-607 |#4|))) (-15 -2303 ((-607 |#4|) (-607 |#4|) (-1106))) (-15 -2303 ((-607 |#4|) (-607 |#4|) (-1106) (-1106))) (IF (|has| |#1| (-348)) (-15 -3246 (|#4| |#4| (-607 |#4|))) |%noBranch|)) (-436) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -431)) -((-3246 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-348)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *2)))) (-2303 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *7)))) (-2303 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *7)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-431 *3 *4 *5 *6))))) -(-10 -7 (-15 -2303 ((-607 |#4|) (-607 |#4|))) (-15 -2303 ((-607 |#4|) (-607 |#4|) (-1106))) (-15 -2303 ((-607 |#4|) (-607 |#4|) (-1106) (-1106))) (IF (|has| |#1| (-348)) (-15 -3246 (|#4| |#4| (-607 |#4|))) |%noBranch|)) -((-1961 ((|#4| |#4| (-607 |#4|)) 61)) (-1962 (((-607 |#4|) (-607 |#4|) (-1106) (-1106)) 17) (((-607 |#4|) (-607 |#4|) (-1106)) 16) (((-607 |#4|) (-607 |#4|)) 11))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1961 (|#4| |#4| (-607 |#4|))) (-15 -1962 ((-607 |#4|) (-607 |#4|))) (-15 -1962 ((-607 |#4|) (-607 |#4|) (-1106))) (-15 -1962 ((-607 |#4|) (-607 |#4|) (-1106) (-1106)))) (-292) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -432)) -((-1962 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-292)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *7)))) (-1962 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-292)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *7)))) (-1962 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-432 *3 *4 *5 *6)))) (-1961 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-292)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *2))))) -(-10 -7 (-15 -1961 (|#4| |#4| (-607 |#4|))) (-15 -1962 ((-607 |#4|) (-607 |#4|))) (-15 -1962 ((-607 |#4|) (-607 |#4|) (-1106))) (-15 -1962 ((-607 |#4|) (-607 |#4|) (-1106) (-1106)))) -((-1964 (((-607 (-607 |#4|)) (-607 |#4|) (-111)) 73) (((-607 (-607 |#4|)) (-607 |#4|)) 72) (((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|) (-111)) 66) (((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|)) 67)) (-1963 (((-607 (-607 |#4|)) (-607 |#4|) (-111)) 42) (((-607 (-607 |#4|)) (-607 |#4|)) 63))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1963 ((-607 (-607 |#4|)) (-607 |#4|))) (-15 -1963 ((-607 (-607 |#4|)) (-607 |#4|) (-111))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|) (-111))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-111)))) (-13 (-292) (-141)) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -433)) -((-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) (-5 *3 (-607 *8)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-1964 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) (-5 *3 (-607 *8)))) (-1964 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-1963 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) (-5 *3 (-607 *8)))) (-1963 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) -(-10 -7 (-15 -1963 ((-607 (-607 |#4|)) (-607 |#4|))) (-15 -1963 ((-607 (-607 |#4|)) (-607 |#4|) (-111))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|) (-111))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-111)))) -((-1988 (((-735) |#4|) 12)) (-1976 (((-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))) |#4| (-735) (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|)))) 31)) (-1978 (((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1977 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1966 ((|#4| |#4| (-607 |#4|)) 40)) (-1974 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-607 |#4|)) 70)) (-1981 (((-1211) |#4|) 42)) (-1984 (((-1211) (-607 |#4|)) 51)) (-1982 (((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526)) 48)) (-1985 (((-1211) (-526)) 79)) (-1979 (((-607 |#4|) (-607 |#4|)) 77)) (-1987 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|)) |#4| (-735)) 25)) (-1980 (((-526) |#4|) 78)) (-1975 ((|#4| |#4|) 29)) (-1967 (((-607 |#4|) (-607 |#4|) (-526) (-526)) 56)) (-1983 (((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526) (-526)) 89)) (-1986 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1968 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1973 (((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1972 (((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1969 (((-111) |#2| |#2|) 57)) (-1971 (((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1970 (((-111) |#2| |#2| |#2| |#2|) 60)) (-1965 ((|#4| |#4| (-607 |#4|)) 71))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1965 (|#4| |#4| (-607 |#4|))) (-15 -1966 (|#4| |#4| (-607 |#4|))) (-15 -1967 ((-607 |#4|) (-607 |#4|) (-526) (-526))) (-15 -1968 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1969 ((-111) |#2| |#2|)) (-15 -1970 ((-111) |#2| |#2| |#2| |#2|)) (-15 -1971 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1972 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1973 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1974 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-607 |#4|))) (-15 -1975 (|#4| |#4|)) (-15 -1976 ((-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))) |#4| (-735) (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))))) (-15 -1977 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1978 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1979 ((-607 |#4|) (-607 |#4|))) (-15 -1980 ((-526) |#4|)) (-15 -1981 ((-1211) |#4|)) (-15 -1982 ((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526))) (-15 -1983 ((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526) (-526))) (-15 -1984 ((-1211) (-607 |#4|))) (-15 -1985 ((-1211) (-526))) (-15 -1986 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1987 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|)) |#4| (-735))) (-15 -1988 ((-735) |#4|))) (-436) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -434)) -((-1988 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-735)) (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-1987 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-735)) (|:| -2096 *4))) (-5 *5 (-735)) (-4 *4 (-909 *6 *7 *8)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-434 *6 *7 *8 *4)))) (-1986 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-757)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-434 *4 *5 *6 *7)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-526)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *7)))) (-1983 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-735)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-757)) (-4 *4 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-811)) (-5 *1 (-434 *5 *6 *7 *4)))) (-1982 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-735)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-757)) (-4 *4 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-811)) (-5 *1 (-434 *5 *6 *7 *4)))) (-1981 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-1980 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-526)) (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *6)))) (-1978 (*1 *2 *2 *2) (-12 (-5 *2 (-607 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-735)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-757)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *6)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-757)) (-4 *2 (-909 *4 *5 *6)) (-5 *1 (-434 *4 *5 *6 *2)) (-4 *4 (-436)) (-4 *6 (-811)))) (-1976 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 *3)))) (-5 *4 (-735)) (-4 *3 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-434 *5 *6 *7 *3)))) (-1975 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *2)) (-4 *2 (-909 *3 *4 *5)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-434 *5 *6 *7 *3)))) (-1973 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-735)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-757)) (-4 *6 (-909 *4 *3 *5)) (-4 *4 (-436)) (-4 *5 (-811)) (-5 *1 (-434 *4 *3 *5 *6)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-607 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-735)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-757)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *6)))) (-1971 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-757)) (-4 *3 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *3)))) (-1970 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-436)) (-4 *3 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-434 *4 *3 *5 *6)) (-4 *6 (-909 *4 *3 *5)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *3 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-434 *4 *3 *5 *6)) (-4 *6 (-909 *4 *3 *5)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-757)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-434 *4 *5 *6 *7)))) (-1967 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-526)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *7)))) (-1966 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *2)))) (-1965 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *2))))) -(-10 -7 (-15 -1965 (|#4| |#4| (-607 |#4|))) (-15 -1966 (|#4| |#4| (-607 |#4|))) (-15 -1967 ((-607 |#4|) (-607 |#4|) (-526) (-526))) (-15 -1968 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1969 ((-111) |#2| |#2|)) (-15 -1970 ((-111) |#2| |#2| |#2| |#2|)) (-15 -1971 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1972 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1973 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1974 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-607 |#4|))) (-15 -1975 (|#4| |#4|)) (-15 -1976 ((-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))) |#4| (-735) (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))))) (-15 -1977 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1978 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1979 ((-607 |#4|) (-607 |#4|))) (-15 -1980 ((-526) |#4|)) (-15 -1981 ((-1211) |#4|)) (-15 -1982 ((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526))) (-15 -1983 ((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526) (-526))) (-15 -1984 ((-1211) (-607 |#4|))) (-15 -1985 ((-1211) (-526))) (-15 -1986 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1987 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|)) |#4| (-735))) (-15 -1988 ((-735) |#4|))) -((-1989 (($ $ $) 14) (($ (-607 $)) 21)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 41)) (-3457 (($ $ $) NIL) (($ (-607 $)) 22))) -(((-435 |#1|) (-10 -8 (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -1989 (|#1| (-607 |#1|))) (-15 -1989 (|#1| |#1| |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|))) (-436)) (T -435)) -NIL -(-10 -8 (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -1989 (|#1| (-607 |#1|))) (-15 -1989 (|#1| |#1| |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-436) (-134)) (T -436)) -((-3457 (*1 *1 *1 *1) (-4 *1 (-436))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-436)))) (-1989 (*1 *1 *1 *1) (-4 *1 (-436))) (-1989 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-436)))) (-3008 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-436))))) -(-13 (-533) (-10 -8 (-15 -3457 ($ $ $)) (-15 -3457 ($ (-607 $))) (-15 -1989 ($ $ $)) (-15 -1989 ($ (-607 $))) (-15 -3008 ((-1117 $) (-1117 $) (-1117 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 (-392 (-905 |#1|)))) (-1205 $)) NIL) (((-1205 (-653 (-392 (-905 |#1|))))) NIL)) (-1821 (((-1205 $)) NIL)) (-3855 (($) NIL T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed")) NIL)) (-1795 (((-3 $ #1#)) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-1883 (((-653 (-392 (-905 |#1|))) (-1205 $)) NIL) (((-653 (-392 (-905 |#1|)))) NIL)) (-1819 (((-392 (-905 |#1|)) $) NIL)) (-1881 (((-653 (-392 (-905 |#1|))) $ (-1205 $)) NIL) (((-653 (-392 (-905 |#1|))) $) NIL)) (-2465 (((-3 $ #1#) $) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-1998 (((-1117 (-905 (-392 (-905 |#1|))))) NIL (|has| (-392 (-905 |#1|)) (-348))) (((-1117 (-392 (-905 |#1|)))) 84 (|has| |#1| (-533)))) (-2468 (($ $ (-878)) NIL)) (-1817 (((-392 (-905 |#1|)) $) NIL)) (-1797 (((-1117 (-392 (-905 |#1|))) $) 82 (|has| (-392 (-905 |#1|)) (-533)))) (-1885 (((-392 (-905 |#1|)) (-1205 $)) NIL) (((-392 (-905 |#1|))) NIL)) (-1815 (((-1117 (-392 (-905 |#1|))) $) NIL)) (-1809 (((-111)) NIL)) (-1887 (($ (-1205 (-392 (-905 |#1|))) (-1205 $)) 103) (($ (-1205 (-392 (-905 |#1|)))) NIL)) (-3781 (((-3 $ #1#) $) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-3406 (((-878)) NIL)) (-1806 (((-111)) NIL)) (-2493 (($ $ (-878)) NIL)) (-1802 (((-111)) NIL)) (-1800 (((-111)) NIL)) (-1804 (((-111)) NIL)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed")) NIL)) (-1796 (((-3 $ #1#)) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-1884 (((-653 (-392 (-905 |#1|))) (-1205 $)) NIL) (((-653 (-392 (-905 |#1|)))) NIL)) (-1820 (((-392 (-905 |#1|)) $) NIL)) (-1882 (((-653 (-392 (-905 |#1|))) $ (-1205 $)) NIL) (((-653 (-392 (-905 |#1|))) $) NIL)) (-2466 (((-3 $ #1#) $) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-2002 (((-1117 (-905 (-392 (-905 |#1|))))) NIL (|has| (-392 (-905 |#1|)) (-348))) (((-1117 (-392 (-905 |#1|)))) 83 (|has| |#1| (-533)))) (-2467 (($ $ (-878)) NIL)) (-1818 (((-392 (-905 |#1|)) $) NIL)) (-1798 (((-1117 (-392 (-905 |#1|))) $) 77 (|has| (-392 (-905 |#1|)) (-533)))) (-1886 (((-392 (-905 |#1|)) (-1205 $)) NIL) (((-392 (-905 |#1|))) NIL)) (-1816 (((-1117 (-392 (-905 |#1|))) $) NIL)) (-1810 (((-111)) NIL)) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) NIL)) (-1803 (((-111)) NIL)) (-1805 (((-111)) NIL)) (-3555 (((-1070) $) NIL)) (-1992 (((-392 (-905 |#1|)) $ $) 71 (|has| |#1| (-533)))) (-1996 (((-392 (-905 |#1|)) $) 93 (|has| |#1| (-533)))) (-1995 (((-392 (-905 |#1|)) $) 95 (|has| |#1| (-533)))) (-1997 (((-1117 (-392 (-905 |#1|))) $) 88 (|has| |#1| (-533)))) (-1991 (((-392 (-905 |#1|))) 72 (|has| |#1| (-533)))) (-1994 (((-392 (-905 |#1|)) $ $) 64 (|has| |#1| (-533)))) (-2000 (((-392 (-905 |#1|)) $) 92 (|has| |#1| (-533)))) (-1999 (((-392 (-905 |#1|)) $) 94 (|has| |#1| (-533)))) (-2001 (((-1117 (-392 (-905 |#1|))) $) 87 (|has| |#1| (-533)))) (-1993 (((-392 (-905 |#1|))) 68 (|has| |#1| (-533)))) (-2003 (($) 101) (($ (-1123)) 107) (($ (-1205 (-1123))) 106) (($ (-1205 $)) 96) (($ (-1123) (-1205 $)) 105) (($ (-1205 (-1123)) (-1205 $)) 104)) (-1808 (((-111)) NIL)) (-4118 (((-392 (-905 |#1|)) $ (-526)) NIL)) (-3537 (((-1205 (-392 (-905 |#1|))) $ (-1205 $)) 98) (((-653 (-392 (-905 |#1|))) (-1205 $) (-1205 $)) NIL) (((-1205 (-392 (-905 |#1|))) $) 40) (((-653 (-392 (-905 |#1|))) (-1205 $)) NIL)) (-4287 (((-1205 (-392 (-905 |#1|))) $) NIL) (($ (-1205 (-392 (-905 |#1|)))) 37)) (-1990 (((-607 (-905 (-392 (-905 |#1|)))) (-1205 $)) NIL) (((-607 (-905 (-392 (-905 |#1|))))) NIL) (((-607 (-905 |#1|)) (-1205 $)) 99 (|has| |#1| (-533))) (((-607 (-905 |#1|))) 100 (|has| |#1| (-533)))) (-2655 (($ $ $) NIL)) (-1814 (((-111)) NIL)) (-4274 (((-823) $) NIL) (($ (-1205 (-392 (-905 |#1|)))) NIL)) (-2104 (((-1205 $)) 60)) (-1799 (((-607 (-1205 (-392 (-905 |#1|))))) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) NIL)) (-2849 (($ (-653 (-392 (-905 |#1|))) $) NIL)) (-2654 (($ $ $) NIL)) (-1813 (((-111)) NIL)) (-1811 (((-111)) NIL)) (-1807 (((-111)) NIL)) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) 97)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 56) (($ $ (-392 (-905 |#1|))) NIL) (($ (-392 (-905 |#1|)) $) NIL) (($ (-1090 |#2| (-392 (-905 |#1|))) $) NIL))) -(((-437 |#1| |#2| |#3| |#4|) (-13 (-403 (-392 (-905 |#1|))) (-613 (-1090 |#2| (-392 (-905 |#1|)))) (-10 -8 (-15 -4274 ($ (-1205 (-392 (-905 |#1|))))) (-15 -2005 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2004 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2003 ($)) (-15 -2003 ($ (-1123))) (-15 -2003 ($ (-1205 (-1123)))) (-15 -2003 ($ (-1205 $))) (-15 -2003 ($ (-1123) (-1205 $))) (-15 -2003 ($ (-1205 (-1123)) (-1205 $))) (IF (|has| |#1| (-533)) (PROGN (-15 -2002 ((-1117 (-392 (-905 |#1|))))) (-15 -2001 ((-1117 (-392 (-905 |#1|))) $)) (-15 -2000 ((-392 (-905 |#1|)) $)) (-15 -1999 ((-392 (-905 |#1|)) $)) (-15 -1998 ((-1117 (-392 (-905 |#1|))))) (-15 -1997 ((-1117 (-392 (-905 |#1|))) $)) (-15 -1996 ((-392 (-905 |#1|)) $)) (-15 -1995 ((-392 (-905 |#1|)) $)) (-15 -1994 ((-392 (-905 |#1|)) $ $)) (-15 -1993 ((-392 (-905 |#1|)))) (-15 -1992 ((-392 (-905 |#1|)) $ $)) (-15 -1991 ((-392 (-905 |#1|)))) (-15 -1990 ((-607 (-905 |#1|)) (-1205 $))) (-15 -1990 ((-607 (-905 |#1|))))) |%noBranch|))) (-163) (-878) (-607 (-1123)) (-1205 (-653 |#1|))) (T -437)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 *3)))) (-4 *3 (-163)) (-14 *6 (-1205 (-653 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))))) (-2005 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-437 *3 *4 *5 *6)) (|:| -2104 (-607 (-437 *3 *4 *5 *6))))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2004 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-437 *3 *4 *5 *6)) (|:| -2104 (-607 (-437 *3 *4 *5 *6))))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2003 (*1 *1) (-12 (-5 *1 (-437 *2 *3 *4 *5)) (-4 *2 (-163)) (-14 *3 (-878)) (-14 *4 (-607 (-1123))) (-14 *5 (-1205 (-653 *2))))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 *2)) (-14 *6 (-1205 (-653 *3))))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-1205 (-1123))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-1205 (-437 *3 *4 *5 *6))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2003 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-437 *4 *5 *6 *7))) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-878)) (-14 *6 (-607 *2)) (-14 *7 (-1205 (-653 *4))))) (-2003 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 (-1123))) (-5 *3 (-1205 (-437 *4 *5 *6 *7))) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-878)) (-14 *6 (-607 (-1123))) (-14 *7 (-1205 (-653 *4))))) (-2002 (*1 *2) (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1998 (*1 *2) (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1994 (*1 *2 *1 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1993 (*1 *2) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1992 (*1 *2 *1 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1991 (*1 *2) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1205 (-437 *4 *5 *6 *7))) (-5 *2 (-607 (-905 *4))) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-533)) (-4 *4 (-163)) (-14 *5 (-878)) (-14 *6 (-607 (-1123))) (-14 *7 (-1205 (-653 *4))))) (-1990 (*1 *2) (-12 (-5 *2 (-607 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3)))))) -(-13 (-403 (-392 (-905 |#1|))) (-613 (-1090 |#2| (-392 (-905 |#1|)))) (-10 -8 (-15 -4274 ($ (-1205 (-392 (-905 |#1|))))) (-15 -2005 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2004 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2003 ($)) (-15 -2003 ($ (-1123))) (-15 -2003 ($ (-1205 (-1123)))) (-15 -2003 ($ (-1205 $))) (-15 -2003 ($ (-1123) (-1205 $))) (-15 -2003 ($ (-1205 (-1123)) (-1205 $))) (IF (|has| |#1| (-533)) (PROGN (-15 -2002 ((-1117 (-392 (-905 |#1|))))) (-15 -2001 ((-1117 (-392 (-905 |#1|))) $)) (-15 -2000 ((-392 (-905 |#1|)) $)) (-15 -1999 ((-392 (-905 |#1|)) $)) (-15 -1998 ((-1117 (-392 (-905 |#1|))))) (-15 -1997 ((-1117 (-392 (-905 |#1|))) $)) (-15 -1996 ((-392 (-905 |#1|)) $)) (-15 -1995 ((-392 (-905 |#1|)) $)) (-15 -1994 ((-392 (-905 |#1|)) $ $)) (-15 -1993 ((-392 (-905 |#1|)))) (-15 -1992 ((-392 (-905 |#1|)) $ $)) (-15 -1991 ((-392 (-905 |#1|)))) (-15 -1990 ((-607 (-905 |#1|)) (-1205 $))) (-15 -1990 ((-607 (-905 |#1|))))) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 13)) (-3384 (((-607 (-824 |#1|)) $) 75)) (-3386 (((-1117 $) $ (-824 |#1|)) 46) (((-1117 |#2|) $) 118)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) 21) (((-735) $ (-607 (-824 |#1|))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) 44) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-824 |#1|) #2#) $) NIL)) (-3469 ((|#2| $) 42) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-824 |#1|) $) NIL)) (-4075 (($ $ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-2035 (($ $ (-607 (-526))) 80)) (-4276 (($ $) 68)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| |#3| $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) 58)) (-3387 (($ (-1117 |#2|) (-824 |#1|)) 123) (($ (-1117 $) (-824 |#1|)) 52)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) 59)) (-3193 (($ |#2| |#3|) 28) (($ $ (-824 |#1|) (-735)) 30) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-824 |#1|)) NIL)) (-3120 ((|#3| $) NIL) (((-735) $ (-824 |#1|)) 50) (((-607 (-735)) $ (-607 (-824 |#1|))) 57)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 |#3| |#3|) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-3385 (((-3 (-824 |#1|) #3="failed") $) 39)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) 41)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-824 |#1|)) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 40)) (-1891 ((|#2| $) 116)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) 128 (|has| |#2| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-824 |#1|) |#2|) 87) (($ $ (-607 (-824 |#1|)) (-607 |#2|)) 90) (($ $ (-824 |#1|) $) 85) (($ $ (-607 (-824 |#1|)) (-607 $)) 106)) (-4076 (($ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-824 |#1|)) 53) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4264 ((|#3| $) 67) (((-735) $ (-824 |#1|)) 37) (((-607 (-735)) $ (-607 (-824 |#1|))) 56)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-824 |#1|) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) 125 (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) 145) (($ (-526)) NIL) (($ |#2|) 86) (($ (-824 |#1|)) 31) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#2| (-533)))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ |#3|) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) 17 T CONST)) (-2964 (($) 25 T CONST)) (-2969 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) 64 (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 111)) (** (($ $ (-878)) NIL) (($ $ (-735)) 109)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 29) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-438 |#1| |#2| |#3|) (-13 (-909 |#2| |#3| (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) (-607 (-1123)) (-1004) (-224 (-4273 |#1|) (-735))) (T -438)) -((-2035 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-14 *3 (-607 (-1123))) (-5 *1 (-438 *3 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-224 (-4273 *3) (-735)))))) -(-13 (-909 |#2| |#3| (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) -((-2009 (((-111) |#1| (-607 |#2|)) 69)) (-2007 (((-3 (-1205 (-607 |#2|)) "failed") (-735) |#1| (-607 |#2|)) 78)) (-2008 (((-3 (-607 |#2|) "failed") |#2| |#1| (-1205 (-607 |#2|))) 80)) (-2125 ((|#2| |#2| |#1|) 28)) (-2006 (((-735) |#2| (-607 |#2|)) 20))) -(((-439 |#1| |#2|) (-10 -7 (-15 -2125 (|#2| |#2| |#1|)) (-15 -2006 ((-735) |#2| (-607 |#2|))) (-15 -2007 ((-3 (-1205 (-607 |#2|)) "failed") (-735) |#1| (-607 |#2|))) (-15 -2008 ((-3 (-607 |#2|) "failed") |#2| |#1| (-1205 (-607 |#2|)))) (-15 -2009 ((-111) |#1| (-607 |#2|)))) (-292) (-1181 |#1|)) (T -439)) -((-2009 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *5)) (-4 *5 (-1181 *3)) (-4 *3 (-292)) (-5 *2 (-111)) (-5 *1 (-439 *3 *5)))) (-2008 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1205 (-607 *3))) (-4 *4 (-292)) (-5 *2 (-607 *3)) (-5 *1 (-439 *4 *3)) (-4 *3 (-1181 *4)))) (-2007 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-735)) (-4 *4 (-292)) (-4 *6 (-1181 *4)) (-5 *2 (-1205 (-607 *6))) (-5 *1 (-439 *4 *6)) (-5 *5 (-607 *6)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-292)) (-5 *2 (-735)) (-5 *1 (-439 *5 *3)))) (-2125 (*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1181 *3))))) -(-10 -7 (-15 -2125 (|#2| |#2| |#1|)) (-15 -2006 ((-735) |#2| (-607 |#2|))) (-15 -2007 ((-3 (-1205 (-607 |#2|)) "failed") (-735) |#1| (-607 |#2|))) (-15 -2008 ((-3 (-607 |#2|) "failed") |#2| |#1| (-1205 (-607 |#2|)))) (-15 -2009 ((-111) |#1| (-607 |#2|)))) -((-4051 (((-390 |#5|) |#5|) 24))) -(((-440 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4051 ((-390 |#5|) |#5|))) (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123))))) (-757) (-533) (-533) (-909 |#4| |#2| |#1|)) (T -440)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) (-4 *5 (-757)) (-4 *7 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-440 *4 *5 *6 *7 *3)) (-4 *6 (-533)) (-4 *3 (-909 *7 *5 *4))))) -(-10 -7 (-15 -4051 ((-390 |#5|) |#5|))) -((-3000 ((|#3|) 37)) (-3008 (((-1117 |#4|) (-1117 |#4|) (-1117 |#4|)) 33))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3008 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3000 (|#3|))) (-757) (-811) (-869) (-909 |#3| |#1| |#2|)) (T -441)) -((-3000 (*1 *2) (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-869)) (-5 *1 (-441 *3 *4 *2 *5)) (-4 *5 (-909 *2 *3 *4)))) (-3008 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-869)) (-5 *1 (-441 *3 *4 *5 *6))))) -(-10 -7 (-15 -3008 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3000 (|#3|))) -((-4051 (((-390 (-1117 |#1|)) (-1117 |#1|)) 43))) -(((-442 |#1|) (-10 -7 (-15 -4051 ((-390 (-1117 |#1|)) (-1117 |#1|)))) (-292)) (T -442)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-292)) (-5 *2 (-390 (-1117 *4))) (-5 *1 (-442 *4)) (-5 *3 (-1117 *4))))) -(-10 -7 (-15 -4051 ((-390 (-1117 |#1|)) (-1117 |#1|)))) -((-4048 (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-735))) 42) (((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-735))) 41) (((-50) |#2| (-1123) (-278 |#2|)) 35) (((-50) (-1 |#2| (-526)) (-278 |#2|)) 28)) (-4137 (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))) 80) (((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))) 79) (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526))) 78) (((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526))) 77) (((-50) |#2| (-1123) (-278 |#2|)) 72) (((-50) (-1 |#2| (-526)) (-278 |#2|)) 71)) (-4100 (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))) 66) (((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))) 64)) (-4097 (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526))) 48) (((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526))) 47))) -(((-443 |#1| |#2|) (-10 -7 (-15 -4048 ((-50) (-1 |#2| (-526)) (-278 |#2|))) (-15 -4048 ((-50) |#2| (-1123) (-278 |#2|))) (-15 -4048 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-735)))) (-15 -4048 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-735)))) (-15 -4097 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526)))) (-15 -4097 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526)))) (-15 -4100 ((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4100 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4137 ((-50) (-1 |#2| (-526)) (-278 |#2|))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|))) (-15 -4137 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526)))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526)))) (-15 -4137 ((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))))) (-13 (-533) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -443)) -((-4137 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-392 (-526)))) (-5 *7 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *8))) (-4 *8 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *8 *3)))) (-4137 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-392 (-526)))) (-5 *4 (-278 *8)) (-5 *5 (-1172 (-392 (-526)))) (-5 *6 (-392 (-526))) (-4 *8 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *8)))) (-4137 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *3)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-526))) (-4 *7 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *7)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *3)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-526))) (-5 *4 (-278 *6)) (-4 *6 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *5 *6)))) (-4100 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-392 (-526)))) (-5 *7 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *8))) (-4 *8 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *8 *3)))) (-4100 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-392 (-526)))) (-5 *4 (-278 *8)) (-5 *5 (-1172 (-392 (-526)))) (-5 *6 (-392 (-526))) (-4 *8 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *8)))) (-4097 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *3)))) (-4097 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-526))) (-4 *7 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *7)))) (-4048 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-735))) (-4 *3 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *3)))) (-4048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-735))) (-4 *7 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *7)))) (-4048 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *3)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-526))) (-5 *4 (-278 *6)) (-4 *6 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *5 *6))))) -(-10 -7 (-15 -4048 ((-50) (-1 |#2| (-526)) (-278 |#2|))) (-15 -4048 ((-50) |#2| (-1123) (-278 |#2|))) (-15 -4048 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-735)))) (-15 -4048 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-735)))) (-15 -4097 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526)))) (-15 -4097 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526)))) (-15 -4100 ((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4100 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4137 ((-50) (-1 |#2| (-526)) (-278 |#2|))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|))) (-15 -4137 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526)))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526)))) (-15 -4137 ((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))))) -((-2125 ((|#2| |#2| |#1|) 15)) (-2011 (((-607 |#2|) |#2| (-607 |#2|) |#1| (-878)) 69)) (-2010 (((-2 (|:| |plist| (-607 |#2|)) (|:| |modulo| |#1|)) |#2| (-607 |#2|) |#1| (-878)) 60))) -(((-444 |#1| |#2|) (-10 -7 (-15 -2010 ((-2 (|:| |plist| (-607 |#2|)) (|:| |modulo| |#1|)) |#2| (-607 |#2|) |#1| (-878))) (-15 -2011 ((-607 |#2|) |#2| (-607 |#2|) |#1| (-878))) (-15 -2125 (|#2| |#2| |#1|))) (-292) (-1181 |#1|)) (T -444)) -((-2125 (*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1181 *3)))) (-2011 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-607 *3)) (-5 *5 (-878)) (-4 *3 (-1181 *4)) (-4 *4 (-292)) (-5 *1 (-444 *4 *3)))) (-2010 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-878)) (-4 *5 (-292)) (-4 *3 (-1181 *5)) (-5 *2 (-2 (|:| |plist| (-607 *3)) (|:| |modulo| *5))) (-5 *1 (-444 *5 *3)) (-5 *4 (-607 *3))))) -(-10 -7 (-15 -2010 ((-2 (|:| |plist| (-607 |#2|)) (|:| |modulo| |#1|)) |#2| (-607 |#2|) |#1| (-878))) (-15 -2011 ((-607 |#2|) |#2| (-607 |#2|) |#1| (-878))) (-15 -2125 (|#2| |#2| |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 28)) (-4029 (($ |#3|) 25)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) 32)) (-2012 (($ |#2| |#4| $) 33)) (-3193 (($ |#2| (-678 |#3| |#4| |#5|)) 24)) (-3194 (((-678 |#3| |#4| |#5|) $) 15)) (-2014 ((|#3| $) 19)) (-2015 ((|#4| $) 17)) (-3487 ((|#2| $) 29)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2013 (($ |#2| |#3| |#4|) 26)) (-2957 (($) 36 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 34)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-445 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-682 |#6|) (-682 |#2|) (-10 -8 (-15 -3487 (|#2| $)) (-15 -3194 ((-678 |#3| |#4| |#5|) $)) (-15 -2015 (|#4| $)) (-15 -2014 (|#3| $)) (-15 -4276 ($ $)) (-15 -3193 ($ |#2| (-678 |#3| |#4| |#5|))) (-15 -4029 ($ |#3|)) (-15 -2013 ($ |#2| |#3| |#4|)) (-15 -2012 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-607 (-1123)) (-163) (-811) (-224 (-4273 |#1|) (-735)) (-1 (-111) (-2 (|:| -2461 |#3|) (|:| -2462 |#4|)) (-2 (|:| -2461 |#3|) (|:| -2462 |#4|))) (-909 |#2| |#4| (-824 |#1|))) (T -445)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *6 (-224 (-4273 *3) (-735))) (-14 *7 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) (-2 (|:| -2461 *5) (|:| -2462 *6)))) (-5 *1 (-445 *3 *4 *5 *6 *7 *2)) (-4 *5 (-811)) (-4 *2 (-909 *4 *6 (-824 *3))))) (-3487 (*1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *5 (-224 (-4273 *3) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *4) (|:| -2462 *5)) (-2 (|:| -2461 *4) (|:| -2462 *5)))) (-4 *2 (-163)) (-5 *1 (-445 *3 *2 *4 *5 *6 *7)) (-4 *4 (-811)) (-4 *7 (-909 *2 *5 (-824 *3))))) (-3194 (*1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *6 (-224 (-4273 *3) (-735))) (-14 *7 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) (-2 (|:| -2461 *5) (|:| -2462 *6)))) (-5 *2 (-678 *5 *6 *7)) (-5 *1 (-445 *3 *4 *5 *6 *7 *8)) (-4 *5 (-811)) (-4 *8 (-909 *4 *6 (-824 *3))))) (-2015 (*1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-14 *6 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *2)) (-2 (|:| -2461 *5) (|:| -2462 *2)))) (-4 *2 (-224 (-4273 *3) (-735))) (-5 *1 (-445 *3 *4 *5 *2 *6 *7)) (-4 *5 (-811)) (-4 *7 (-909 *4 *2 (-824 *3))))) (-2014 (*1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *5 (-224 (-4273 *3) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *5)) (-2 (|:| -2461 *2) (|:| -2462 *5)))) (-4 *2 (-811)) (-5 *1 (-445 *3 *4 *2 *5 *6 *7)) (-4 *7 (-909 *4 *5 (-824 *3))))) (-4276 (*1 *1 *1) (-12 (-14 *2 (-607 (-1123))) (-4 *3 (-163)) (-4 *5 (-224 (-4273 *2) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *4) (|:| -2462 *5)) (-2 (|:| -2461 *4) (|:| -2462 *5)))) (-5 *1 (-445 *2 *3 *4 *5 *6 *7)) (-4 *4 (-811)) (-4 *7 (-909 *3 *5 (-824 *2))))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-678 *5 *6 *7)) (-4 *5 (-811)) (-4 *6 (-224 (-4273 *4) (-735))) (-14 *7 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) (-2 (|:| -2461 *5) (|:| -2462 *6)))) (-14 *4 (-607 (-1123))) (-4 *2 (-163)) (-5 *1 (-445 *4 *2 *5 *6 *7 *8)) (-4 *8 (-909 *2 *6 (-824 *4))))) (-4029 (*1 *1 *2) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *5 (-224 (-4273 *3) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *5)) (-2 (|:| -2461 *2) (|:| -2462 *5)))) (-5 *1 (-445 *3 *4 *2 *5 *6 *7)) (-4 *2 (-811)) (-4 *7 (-909 *4 *5 (-824 *3))))) (-2013 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-607 (-1123))) (-4 *2 (-163)) (-4 *4 (-224 (-4273 *5) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *3) (|:| -2462 *4)) (-2 (|:| -2461 *3) (|:| -2462 *4)))) (-5 *1 (-445 *5 *2 *3 *4 *6 *7)) (-4 *3 (-811)) (-4 *7 (-909 *2 *4 (-824 *5))))) (-2012 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-607 (-1123))) (-4 *2 (-163)) (-4 *3 (-224 (-4273 *4) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *3)) (-2 (|:| -2461 *5) (|:| -2462 *3)))) (-5 *1 (-445 *4 *2 *5 *3 *6 *7)) (-4 *5 (-811)) (-4 *7 (-909 *2 *3 (-824 *4)))))) -(-13 (-682 |#6|) (-682 |#2|) (-10 -8 (-15 -3487 (|#2| $)) (-15 -3194 ((-678 |#3| |#4| |#5|) $)) (-15 -2015 (|#4| $)) (-15 -2014 (|#3| $)) (-15 -4276 ($ $)) (-15 -3193 ($ |#2| (-678 |#3| |#4| |#5|))) (-15 -4029 ($ |#3|)) (-15 -2013 ($ |#2| |#3| |#4|)) (-15 -2012 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2016 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-446 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2016 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-757) (-811) (-533) (-909 |#3| |#1| |#2|) (-13 (-995 (-392 (-526))) (-348) (-10 -8 (-15 -4274 ($ |#4|)) (-15 -3298 (|#4| $)) (-15 -3297 (|#4| $))))) (T -446)) -((-2016 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-811)) (-4 *5 (-757)) (-4 *6 (-533)) (-4 *7 (-909 *6 *5 *3)) (-5 *1 (-446 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-995 (-392 (-526))) (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) -(-10 -7 (-15 -2016 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2865 (((-111) $ $) NIL)) (-3384 (((-607 |#3|) $) 41)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) NIL (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-3200 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 47)) (-3469 (($ (-607 |#4|)) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310)))) (-2044 (((-607 |#4|) $) 18 (|has| $ (-6 -4310)))) (-3493 ((|#3| $) 45)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 14 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 26 (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2048 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 21)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-3555 (((-1070) $) NIL)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 39)) (-3887 (($) 17)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) 16)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515)))) (($ (-607 |#4|)) 49)) (-3844 (($ (-607 |#4|)) 13)) (-3210 (($ $ |#3|) NIL)) (-3212 (($ $ |#3|) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) 38) (((-607 |#4|) $) 48)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 30)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-447 |#1| |#2| |#3| |#4|) (-13 (-935 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4287 ($ (-607 |#4|))) (-6 -4310) (-6 -4311))) (-1004) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -447)) -((-4287 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-447 *3 *4 *5 *6))))) -(-13 (-935 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4287 ($ (-607 |#4|))) (-6 -4310) (-6 -4311))) -((-2957 (($) 11)) (-2964 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-448 |#1| |#2| |#3|) (-10 -8 (-15 -2964 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2957 (|#1|))) (-449 |#2| |#3|) (-163) (-23)) (T -448)) -NIL -(-10 -8 (-15 -2964 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2957 (|#1|))) -((-2865 (((-111) $ $) 7)) (-3470 (((-3 |#1| "failed") $) 26)) (-3469 ((|#1| $) 25)) (-4261 (($ $ $) 23)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4264 ((|#2| $) 19)) (-4274 (((-823) $) 11) (($ |#1|) 27)) (-2957 (($) 18 T CONST)) (-2964 (($) 24 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 15) (($ $ $) 13)) (-4158 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-449 |#1| |#2|) (-134) (-163) (-23)) (T -449)) -((-2964 (*1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-4261 (*1 *1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23))))) -(-13 (-454 |t#1| |t#2|) (-995 |t#1|) (-10 -8 (-15 (-2964) ($) -4268) (-15 -4261 ($ $ $)))) -(((-100) . T) ((-583 (-823)) . T) ((-454 |#1| |#2|) . T) ((-995 |#1|) . T) ((-1052) . T)) -((-2017 (((-1205 (-1205 (-526))) (-1205 (-1205 (-526))) (-878)) 18)) (-2018 (((-1205 (-1205 (-526))) (-878)) 16))) -(((-450) (-10 -7 (-15 -2017 ((-1205 (-1205 (-526))) (-1205 (-1205 (-526))) (-878))) (-15 -2018 ((-1205 (-1205 (-526))) (-878))))) (T -450)) -((-2018 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 (-1205 (-526)))) (-5 *1 (-450)))) (-2017 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 (-1205 (-526)))) (-5 *3 (-878)) (-5 *1 (-450))))) -(-10 -7 (-15 -2017 ((-1205 (-1205 (-526))) (-1205 (-1205 (-526))) (-878))) (-15 -2018 ((-1205 (-1205 (-526))) (-878)))) -((-3070 (((-526) (-526)) 30) (((-526)) 22)) (-3074 (((-526) (-526)) 26) (((-526)) 18)) (-3072 (((-526) (-526)) 28) (((-526)) 20)) (-2020 (((-111) (-111)) 12) (((-111)) 10)) (-2019 (((-111) (-111)) 11) (((-111)) 9)) (-2021 (((-111) (-111)) 24) (((-111)) 15))) -(((-451) (-10 -7 (-15 -2019 ((-111))) (-15 -2020 ((-111))) (-15 -2019 ((-111) (-111))) (-15 -2020 ((-111) (-111))) (-15 -2021 ((-111))) (-15 -3072 ((-526))) (-15 -3074 ((-526))) (-15 -3070 ((-526))) (-15 -2021 ((-111) (-111))) (-15 -3072 ((-526) (-526))) (-15 -3074 ((-526) (-526))) (-15 -3070 ((-526) (-526))))) (T -451)) -((-3070 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-3074 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-3070 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-3074 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-3072 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-2021 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-2019 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-2020 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-2019 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451))))) -(-10 -7 (-15 -2019 ((-111))) (-15 -2020 ((-111))) (-15 -2019 ((-111) (-111))) (-15 -2020 ((-111) (-111))) (-15 -2021 ((-111))) (-15 -3072 ((-526))) (-15 -3074 ((-526))) (-15 -3070 ((-526))) (-15 -2021 ((-111) (-111))) (-15 -3072 ((-526) (-526))) (-15 -3074 ((-526) (-526))) (-15 -3070 ((-526) (-526)))) -((-2865 (((-111) $ $) NIL)) (-4170 (((-607 (-363)) $) 28) (((-607 (-363)) $ (-607 (-363))) 96)) (-2026 (((-607 (-1041 (-363))) $) 16) (((-607 (-1041 (-363))) $ (-607 (-1041 (-363)))) 94)) (-2023 (((-607 (-607 (-902 (-211)))) (-607 (-607 (-902 (-211)))) (-607 (-833))) 45)) (-2027 (((-607 (-607 (-902 (-211)))) $) 90)) (-4028 (((-1211) $ (-902 (-211)) (-833)) 108)) (-2028 (($ $) 89) (($ (-607 (-607 (-902 (-211))))) 99) (($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878))) 98) (($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)) (-607 (-246))) 100)) (-3554 (((-1106) $) NIL)) (-4179 (((-526) $) 71)) (-3555 (((-1070) $) NIL)) (-2029 (($) 97)) (-2022 (((-607 (-211)) (-607 (-607 (-902 (-211))))) 56)) (-2025 (((-1211) $ (-607 (-902 (-211))) (-833) (-833) (-878)) 102) (((-1211) $ (-902 (-211))) 104) (((-1211) $ (-902 (-211)) (-833) (-833) (-878)) 103)) (-4274 (((-823) $) 114) (($ (-607 (-607 (-902 (-211))))) 109)) (-2024 (((-1211) $ (-902 (-211))) 107)) (-3353 (((-111) $ $) NIL))) -(((-452) (-13 (-1052) (-10 -8 (-15 -2029 ($)) (-15 -2028 ($ $)) (-15 -2028 ($ (-607 (-607 (-902 (-211)))))) (-15 -2028 ($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)))) (-15 -2028 ($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)) (-607 (-246)))) (-15 -2027 ((-607 (-607 (-902 (-211)))) $)) (-15 -4179 ((-526) $)) (-15 -2026 ((-607 (-1041 (-363))) $)) (-15 -2026 ((-607 (-1041 (-363))) $ (-607 (-1041 (-363))))) (-15 -4170 ((-607 (-363)) $)) (-15 -4170 ((-607 (-363)) $ (-607 (-363)))) (-15 -2025 ((-1211) $ (-607 (-902 (-211))) (-833) (-833) (-878))) (-15 -2025 ((-1211) $ (-902 (-211)))) (-15 -2025 ((-1211) $ (-902 (-211)) (-833) (-833) (-878))) (-15 -2024 ((-1211) $ (-902 (-211)))) (-15 -4028 ((-1211) $ (-902 (-211)) (-833))) (-15 -4274 ($ (-607 (-607 (-902 (-211)))))) (-15 -4274 ((-823) $)) (-15 -2023 ((-607 (-607 (-902 (-211)))) (-607 (-607 (-902 (-211)))) (-607 (-833)))) (-15 -2022 ((-607 (-211)) (-607 (-607 (-902 (-211))))))))) (T -452)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-452)))) (-2029 (*1 *1) (-5 *1 (-452))) (-2028 (*1 *1 *1) (-5 *1 (-452))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) (-2028 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) (-5 *4 (-607 (-878))) (-5 *1 (-452)))) (-2028 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) (-5 *4 (-607 (-878))) (-5 *5 (-607 (-246))) (-5 *1 (-452)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-452)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-452)))) (-2026 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-452)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-452)))) (-4170 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-452)))) (-2025 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *2 (-1211)) (-5 *1 (-452)))) (-2025 (*1 *2 *1 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-452)))) (-2025 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-902 (-211))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *2 (-1211)) (-5 *1 (-452)))) (-2024 (*1 *2 *1 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-452)))) (-4028 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902 (-211))) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-452)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) (-5 *1 (-452)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-607 (-211))) (-5 *1 (-452))))) -(-13 (-1052) (-10 -8 (-15 -2029 ($)) (-15 -2028 ($ $)) (-15 -2028 ($ (-607 (-607 (-902 (-211)))))) (-15 -2028 ($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)))) (-15 -2028 ($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)) (-607 (-246)))) (-15 -2027 ((-607 (-607 (-902 (-211)))) $)) (-15 -4179 ((-526) $)) (-15 -2026 ((-607 (-1041 (-363))) $)) (-15 -2026 ((-607 (-1041 (-363))) $ (-607 (-1041 (-363))))) (-15 -4170 ((-607 (-363)) $)) (-15 -4170 ((-607 (-363)) $ (-607 (-363)))) (-15 -2025 ((-1211) $ (-607 (-902 (-211))) (-833) (-833) (-878))) (-15 -2025 ((-1211) $ (-902 (-211)))) (-15 -2025 ((-1211) $ (-902 (-211)) (-833) (-833) (-878))) (-15 -2024 ((-1211) $ (-902 (-211)))) (-15 -4028 ((-1211) $ (-902 (-211)) (-833))) (-15 -4274 ($ (-607 (-607 (-902 (-211)))))) (-15 -4274 ((-823) $)) (-15 -2023 ((-607 (-607 (-902 (-211)))) (-607 (-607 (-902 (-211)))) (-607 (-833)))) (-15 -2022 ((-607 (-211)) (-607 (-607 (-902 (-211)))))))) -((-4156 (($ $) NIL) (($ $ $) 11))) -(((-453 |#1| |#2| |#3|) (-10 -8 (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|))) (-454 |#2| |#3|) (-163) (-23)) (T -453)) -NIL -(-10 -8 (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4264 ((|#2| $) 19)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 15) (($ $ $) 13)) (-4158 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-454 |#1| |#2|) (-134) (-163) (-23)) (T -454)) -((-4264 (*1 *2 *1) (-12 (-4 *1 (-454 *3 *2)) (-4 *3 (-163)) (-4 *2 (-23)))) (-2957 (*1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-4158 (*1 *1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23))))) -(-13 (-1052) (-10 -8 (-15 -4264 (|t#2| $)) (-15 (-2957) ($) -4268) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4156 ($ $)) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2031 (((-3 (-607 (-464 |#1| |#2|)) "failed") (-607 (-464 |#1| |#2|)) (-607 (-824 |#1|))) 92)) (-2030 (((-607 (-607 (-233 |#1| |#2|))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|))) 90)) (-2032 (((-2 (|:| |dpolys| (-607 (-233 |#1| |#2|))) (|:| |coords| (-607 (-526)))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|))) 61))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -2030 ((-607 (-607 (-233 |#1| |#2|))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|)))) (-15 -2031 ((-3 (-607 (-464 |#1| |#2|)) "failed") (-607 (-464 |#1| |#2|)) (-607 (-824 |#1|)))) (-15 -2032 ((-2 (|:| |dpolys| (-607 (-233 |#1| |#2|))) (|:| |coords| (-607 (-526)))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|))))) (-607 (-1123)) (-436) (-436)) (T -455)) -((-2032 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-824 *5))) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) (-5 *2 (-2 (|:| |dpolys| (-607 (-233 *5 *6))) (|:| |coords| (-607 (-526))))) (-5 *1 (-455 *5 *6 *7)) (-5 *3 (-607 (-233 *5 *6))) (-4 *7 (-436)))) (-2031 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-464 *4 *5))) (-5 *3 (-607 (-824 *4))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *1 (-455 *4 *5 *6)) (-4 *6 (-436)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-824 *5))) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) (-5 *2 (-607 (-607 (-233 *5 *6)))) (-5 *1 (-455 *5 *6 *7)) (-5 *3 (-607 (-233 *5 *6))) (-4 *7 (-436))))) -(-10 -7 (-15 -2030 ((-607 (-607 (-233 |#1| |#2|))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|)))) (-15 -2031 ((-3 (-607 (-464 |#1| |#2|)) "failed") (-607 (-464 |#1| |#2|)) (-607 (-824 |#1|)))) (-15 -2032 ((-2 (|:| |dpolys| (-607 (-233 |#1| |#2|))) (|:| |coords| (-607 (-526)))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|))))) -((-3781 (((-3 $ "failed") $) 11)) (-3309 (($ $ $) 18)) (-2655 (($ $ $) 19)) (-4265 (($ $ $) 9)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 17))) -(((-456 |#1|) (-10 -8 (-15 -2655 (|#1| |#1| |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -4265 (|#1| |#1| |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878)))) (-457)) (T -456)) -NIL -(-10 -8 (-15 -2655 (|#1| |#1| |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -4265 (|#1| |#1| |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878)))) -((-2865 (((-111) $ $) 7)) (-3855 (($) 18 T CONST)) (-3781 (((-3 $ "failed") $) 15)) (-2471 (((-111) $) 17)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 24)) (-3555 (((-1070) $) 10)) (-3309 (($ $ $) 21)) (-2655 (($ $ $) 20)) (-4274 (((-823) $) 11)) (-2964 (($) 19 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 23)) (** (($ $ (-878)) 13) (($ $ (-735)) 16) (($ $ (-526)) 22)) (* (($ $ $) 14))) -(((-457) (-134)) (T -457)) -((-2703 (*1 *1 *1) (-4 *1 (-457))) (-4265 (*1 *1 *1 *1) (-4 *1 (-457))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-457)) (-5 *2 (-526)))) (-3309 (*1 *1 *1 *1) (-4 *1 (-457))) (-2655 (*1 *1 *1 *1) (-4 *1 (-457)))) -(-13 (-691) (-10 -8 (-15 -2703 ($ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ (-526))) (-6 -4307) (-15 -3309 ($ $ $)) (-15 -2655 ($ $ $)))) -(((-100) . T) ((-583 (-823)) . T) ((-691) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 17)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) NIL) (($ $ (-392 (-526)) (-392 (-526))) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) NIL) (((-392 (-526)) $ (-392 (-526))) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL) (($ $ (-392 (-526))) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) NIL) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 22)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 26 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 33 (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 27 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) NIL) (($ $ $) NIL (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 25 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $ (-1202 |#2|)) 15)) (-4264 (((-392 (-526)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1202 |#2|)) NIL) (($ (-1186 |#1| |#2| |#3|)) 9) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 18)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) 24)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-458 |#1| |#2| |#3|) (-13 (-1188 |#1|) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4274 ($ (-1186 |#1| |#2| |#3|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -458)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1186 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) (-5 *1 (-458 *3 *4 *5)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) -(-13 (-1188 |#1|) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4274 ($ (-1186 |#1| |#2| |#3|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) 18)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) 19)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) 16)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-459 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2|) (-1052) (-1052) (-1136 |#1| |#2|) |#2|) (T -459)) -NIL -(-1136 |#1| |#2|) -((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) NIL)) (-4004 (((-607 $) (-607 |#4|)) NIL)) (-3384 (((-607 |#3|) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4010 ((|#4| |#4| $) NIL)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) 26 (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3200 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) NIL)) (-3469 (($ (-607 |#4|)) NIL)) (-4117 (((-3 $ #1#) $) 39)) (-4007 ((|#4| |#4| $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-4005 ((|#4| |#4| $) NIL)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) NIL)) (-2044 (((-607 |#4|) $) 16 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3493 ((|#3| $) 33)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 17 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2048 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 21)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-4116 (((-3 |#4| #1#) $) 37)) (-4019 (((-607 |#4|) $) NIL)) (-4013 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4008 ((|#4| |#4| $) NIL)) (-4021 (((-111) $ $) NIL)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4009 ((|#4| |#4| $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 |#4| #1#) $) 35)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-4001 (((-3 $ #1#) $ |#4|) 47)) (-4087 (($ $ |#4|) NIL)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 15)) (-3887 (($) 13)) (-4264 (((-735) $) NIL)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) 12)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 20)) (-3210 (($ $ |#3|) 42)) (-3212 (($ $ |#3|) 44)) (-4006 (($ $) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) 31) (((-607 |#4|) $) 40)) (-4000 (((-735) $) NIL (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) NIL)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) NIL)) (-4250 (((-111) |#3| $) NIL)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-460 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|) (-533) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -460)) -NIL -(-1154 |#1| |#2| |#3| |#4|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3949 (($) 18)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4287 (((-363) $) 22) (((-211) $) 25) (((-392 (-1117 (-526))) $) 19) (((-515) $) 52)) (-4274 (((-823) $) 50) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (((-211) $) 24) (((-363) $) 21)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 36 T CONST)) (-2964 (($) 11 T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) -(((-461) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))) (-977) (-583 (-211)) (-583 (-363)) (-584 (-392 (-1117 (-526)))) (-584 (-515)) (-10 -8 (-15 -3949 ($))))) (T -461)) -((-3949 (*1 *1) (-5 *1 (-461)))) -(-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))) (-977) (-583 (-211)) (-583 (-363)) (-584 (-392 (-1117 (-526)))) (-584 (-515)) (-10 -8 (-15 -3949 ($)))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) 16)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) 20)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) 18)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) 13)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 19)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 11 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) 15 (|has| $ (-6 -4310))))) -(((-462 |#1| |#2| |#3|) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) (-1052) (-1052) (-1106)) (T -462)) -NIL -(-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) -((-2033 (((-526) (-526) (-526)) 7)) (-2034 (((-111) (-526) (-526) (-526) (-526)) 11)) (-3771 (((-1205 (-607 (-526))) (-735) (-735)) 23))) -(((-463) (-10 -7 (-15 -2033 ((-526) (-526) (-526))) (-15 -2034 ((-111) (-526) (-526) (-526) (-526))) (-15 -3771 ((-1205 (-607 (-526))) (-735) (-735))))) (T -463)) -((-3771 (*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1205 (-607 (-526)))) (-5 *1 (-463)))) (-2034 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-111)) (-5 *1 (-463)))) (-2033 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-463))))) -(-10 -7 (-15 -2033 ((-526) (-526) (-526))) (-15 -2034 ((-111) (-526) (-526) (-526) (-526))) (-15 -3771 ((-1205 (-607 (-526))) (-735) (-735)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-824 |#1|)) $) NIL)) (-3386 (((-1117 $) $ (-824 |#1|)) NIL) (((-1117 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-824 |#1|))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-824 |#1|) #2#) $) NIL)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-824 |#1|) $) NIL)) (-4075 (($ $ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-2035 (($ $ (-607 (-526))) NIL)) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| (-465 (-4273 |#1|) (-735)) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#2|) (-824 |#1|)) NIL) (($ (-1117 $) (-824 |#1|)) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#2| (-465 (-4273 |#1|) (-735))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-824 |#1|)) NIL)) (-3120 (((-465 (-4273 |#1|) (-735)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 (-465 (-4273 |#1|) (-735)) (-465 (-4273 |#1|) (-735))) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-3385 (((-3 (-824 |#1|) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-824 |#1|)) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#2| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-824 |#1|) |#2|) NIL) (($ $ (-607 (-824 |#1|)) (-607 |#2|)) NIL) (($ $ (-824 |#1|) $) NIL) (($ $ (-607 (-824 |#1|)) (-607 $)) NIL)) (-4076 (($ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4264 (((-465 (-4273 |#1|) (-735)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-824 |#1|) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-824 |#1|)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#2| (-533)))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-465 (-4273 |#1|) (-735))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-464 |#1| |#2|) (-13 (-909 |#2| (-465 (-4273 |#1|) (-735)) (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) (-607 (-1123)) (-1004)) (T -464)) -((-2035 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-464 *3 *4)) (-14 *3 (-607 (-1123))) (-4 *4 (-1004))))) -(-13 (-909 |#2| (-465 (-4273 |#1|) (-735)) (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) -((-2865 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-3502 (((-111) $) NIL (|has| |#2| (-129)))) (-4029 (($ (-878)) NIL (|has| |#2| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#2| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#2| (-353)))) (-3945 (((-526) $) NIL (|has| |#2| (-809)))) (-4106 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1052)))) (-3469 (((-526) $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) ((|#2| $) NIL (|has| |#2| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL (|has| |#2| (-1004))) (((-653 |#2|) (-653 $)) NIL (|has| |#2| (-1004)))) (-3781 (((-3 $ "failed") $) NIL (|has| |#2| (-691)))) (-3294 (($) NIL (|has| |#2| (-353)))) (-1613 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ (-526)) 11)) (-3500 (((-111) $) NIL (|has| |#2| (-809)))) (-2044 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (|has| |#2| (-691)))) (-3501 (((-111) $) NIL (|has| |#2| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#2| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#2| (-1052)))) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#2| (-353)))) (-3555 (((-1070) $) NIL (|has| |#2| (-1052)))) (-4119 ((|#2| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-526)) NIL)) (-4155 ((|#2| $ $) NIL (|has| |#2| (-1004)))) (-1501 (($ (-1205 |#2|)) NIL)) (-4230 (((-131)) NIL (|has| |#2| (-348)))) (-4129 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#2|) $) NIL) (($ (-526)) NIL (-3850 (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (|has| |#2| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (($ |#2|) NIL (|has| |#2| (-1052))) (((-823) $) NIL (|has| |#2| (-583 (-823))))) (-3423 (((-735)) NIL (|has| |#2| (-1004)))) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#2| (-809)))) (-2957 (($) NIL (|has| |#2| (-129)) CONST)) (-2964 (($) NIL (|has| |#2| (-691)) CONST)) (-2969 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-3353 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-2984 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2985 (((-111) $ $) 15 (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $ $) NIL (|has| |#2| (-1004))) (($ $) NIL (|has| |#2| (-1004)))) (-4158 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-735)) NIL (|has| |#2| (-691))) (($ $ (-878)) NIL (|has| |#2| (-691)))) (* (($ (-526) $) NIL (|has| |#2| (-1004))) (($ $ $) NIL (|has| |#2| (-691))) (($ $ |#2|) NIL (|has| |#2| (-691))) (($ |#2| $) NIL (|has| |#2| (-691))) (($ (-735) $) NIL (|has| |#2| (-129))) (($ (-878) $) NIL (|has| |#2| (-25)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-465 |#1| |#2|) (-224 |#1| |#2|) (-735) (-757)) (T -465)) -NIL -(-224 |#1| |#2|) -((-2865 (((-111) $ $) NIL)) (-2036 (((-607 (-488)) $) 11)) (-3864 (((-488) $) 10)) (-3554 (((-1106) $) NIL)) (-2037 (($ (-488) (-607 (-488))) 9)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-466) (-13 (-1035) (-10 -8 (-15 -2037 ($ (-488) (-607 (-488)))) (-15 -3864 ((-488) $)) (-15 -2036 ((-607 (-488)) $))))) (T -466)) -((-2037 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-488))) (-5 *2 (-488)) (-5 *1 (-466)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-466)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-607 (-488))) (-5 *1 (-466))))) -(-13 (-1035) (-10 -8 (-15 -2037 ($ (-488) (-607 (-488)))) (-15 -3864 ((-488) $)) (-15 -2036 ((-607 (-488)) $)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-3159 (($ $ $) 32)) (-3832 (($ $ $) 31)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3638 ((|#1| $) 26)) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) 27)) (-3929 (($ |#1| $) 10)) (-2038 (($ (-607 |#1|)) 12)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1307 ((|#1| $) 23)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 9)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 29)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) 21 (|has| $ (-6 -4310))))) -(((-467 |#1|) (-13 (-927 |#1|) (-10 -8 (-15 -2038 ($ (-607 |#1|))))) (-811)) (T -467)) -((-2038 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-467 *3))))) -(-13 (-927 |#1|) (-10 -8 (-15 -2038 ($ (-607 |#1|))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4161 (($ $) 69)) (-1728 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-2068 (((-398 |#2| (-392 |#2|) |#3| |#4|) $) 44)) (-3555 (((-1070) $) NIL)) (-2470 (((-3 |#4| "failed") $) 107)) (-1729 (($ (-398 |#2| (-392 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-526)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3754 (((-2 (|:| -2386 (-398 |#2| (-392 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4274 (((-823) $) 102)) (-2957 (($) 33 T CONST)) (-3353 (((-111) $ $) 109)) (-4156 (($ $) 72) (($ $ $) NIL)) (-4158 (($ $ $) 70)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 73))) -(((-468 |#1| |#2| |#3| |#4|) (-321 |#1| |#2| |#3| |#4|) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -468)) -NIL -(-321 |#1| |#2| |#3| |#4|) -((-2042 (((-526) (-607 (-526))) 30)) (-2039 ((|#1| (-607 |#1|)) 56)) (-2041 (((-607 |#1|) (-607 |#1|)) 57)) (-2040 (((-607 |#1|) (-607 |#1|)) 59)) (-3457 ((|#1| (-607 |#1|)) 58)) (-3117 (((-607 (-526)) (-607 |#1|)) 33))) -(((-469 |#1|) (-10 -7 (-15 -3457 (|#1| (-607 |#1|))) (-15 -2039 (|#1| (-607 |#1|))) (-15 -2040 ((-607 |#1|) (-607 |#1|))) (-15 -2041 ((-607 |#1|) (-607 |#1|))) (-15 -3117 ((-607 (-526)) (-607 |#1|))) (-15 -2042 ((-526) (-607 (-526))))) (-1181 (-526))) (T -469)) -((-2042 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-526)) (-5 *1 (-469 *4)) (-4 *4 (-1181 *2)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1181 (-526))) (-5 *2 (-607 (-526))) (-5 *1 (-469 *4)))) (-2041 (*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1181 (-526))) (-5 *1 (-469 *3)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1181 (-526))) (-5 *1 (-469 *3)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-469 *2)) (-4 *2 (-1181 (-526))))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-469 *2)) (-4 *2 (-1181 (-526)))))) -(-10 -7 (-15 -3457 (|#1| (-607 |#1|))) (-15 -2039 (|#1| (-607 |#1|))) (-15 -2040 ((-607 |#1|) (-607 |#1|))) (-15 -2041 ((-607 |#1|) (-607 |#1|))) (-15 -3117 ((-607 (-526)) (-607 |#1|))) (-15 -2042 ((-526) (-607 (-526))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-526) $) NIL (|has| (-526) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-526) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-526) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-526) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-526) (-995 (-526))))) (-3469 (((-526) $) NIL) (((-1123) $) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-526) (-995 (-526)))) (((-526) $) NIL (|has| (-526) (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-526) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-526) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-526) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-526) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-526) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-526) (-1099)))) (-3501 (((-111) $) NIL (|has| (-526) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-526) (-811)))) (-4275 (($ (-1 (-526) (-526)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-526) (-1099)) CONST)) (-2043 (($ (-392 (-526))) 9)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-526) (-292))) (((-392 (-526)) $) NIL)) (-3427 (((-526) $) NIL (|has| (-526) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-526)) (-607 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-526) (-526)) NIL (|has| (-526) (-294 (-526)))) (($ $ (-278 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-278 (-526)))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-1123)) (-607 (-526))) NIL (|has| (-526) (-496 (-1123) (-526)))) (($ $ (-1123) (-526)) NIL (|has| (-526) (-496 (-1123) (-526))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-526)) NIL (|has| (-526) (-271 (-526) (-526))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-526) $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| (-526) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-526) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-526) (-584 (-515)))) (((-363) $) NIL (|has| (-526) (-977))) (((-211) $) NIL (|has| (-526) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-526) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 8) (($ (-526)) NIL) (($ (-1123)) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL) (((-962 16) $) 10)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-526) (-869))) (|has| (-526) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-526) $) NIL (|has| (-526) (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-526) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-526) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-526) (-811)))) (-4265 (($ $ $) NIL) (($ (-526) (-526)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-526) $) NIL) (($ $ (-526)) NIL))) -(((-470) (-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 16) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -2043 ($ (-392 (-526))))))) (T -470)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-962 16)) (-5 *1 (-470)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470)))) (-2043 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470))))) -(-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 16) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -2043 ($ (-392 (-526)))))) -((-2480 (((-607 |#2|) $) 23)) (-3557 (((-111) |#2| $) 28)) (-2046 (((-111) (-1 (-111) |#2|) $) 21)) (-4086 (($ $ (-607 (-278 |#2|))) 13) (($ $ (-278 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-607 |#2|) (-607 |#2|)) NIL)) (-2045 (((-735) (-1 (-111) |#2|) $) 22) (((-735) |#2| $) 26)) (-4274 (((-823) $) 37)) (-2047 (((-111) (-1 (-111) |#2|) $) 20)) (-3353 (((-111) $ $) 31)) (-4273 (((-735) $) 17))) -(((-471 |#1| |#2|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -3557 ((-111) |#2| |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2480 ((-607 |#2|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|))) (-472 |#2|) (-1159)) (T -471)) -NIL -(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -3557 ((-111) |#2| |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2480 ((-607 |#2|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-472 |#1|) (-134) (-1159)) (T -472)) -((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-472 *3)) (-4 *3 (-1159)))) (-2048 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4311)) (-4 *1 (-472 *3)) (-4 *3 (-1159)))) (-2047 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) (-4 *4 (-1159)) (-5 *2 (-111)))) (-2046 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) (-4 *4 (-1159)) (-5 *2 (-111)))) (-2045 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) (-4 *4 (-1159)) (-5 *2 (-735)))) (-2044 (*1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-5 *2 (-607 *3)))) (-2480 (*1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-5 *2 (-607 *3)))) (-2045 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-735)))) (-3557 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111))))) -(-13 (-33) (-10 -8 (IF (|has| |t#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-1052)) (IF (|has| |t#1| (-294 |t#1|)) (-6 (-294 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4311)) (-15 -2048 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4310)) (PROGN (-15 -2047 ((-111) (-1 (-111) |t#1|) $)) (-15 -2046 ((-111) (-1 (-111) |t#1|) $)) (-15 -2045 ((-735) (-1 (-111) |t#1|) $)) (-15 -2044 ((-607 |t#1|) $)) (-15 -2480 ((-607 |t#1|) $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -2045 ((-735) |t#1| $)) (-15 -3557 ((-111) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2049 (($ (-1106)) 8)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 14) (((-1106) $) 11)) (-3353 (((-111) $ $) 10))) -(((-473) (-13 (-1052) (-583 (-1106)) (-10 -8 (-15 -2049 ($ (-1106)))))) (T -473)) -((-2049 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-473))))) -(-13 (-1052) (-583 (-1106)) (-10 -8 (-15 -2049 ($ (-1106))))) -((-3806 (($ $) 15)) (-3804 (($ $) 24)) (-3808 (($ $) 12)) (-3809 (($ $) 10)) (-3807 (($ $) 17)) (-3805 (($ $) 22))) -(((-474 |#1|) (-10 -8 (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|))) (-475)) (T -474)) -NIL -(-10 -8 (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|))) -((-3806 (($ $) 11)) (-3804 (($ $) 10)) (-3808 (($ $) 9)) (-3809 (($ $) 8)) (-3807 (($ $) 7)) (-3805 (($ $) 6))) -(((-475) (-134)) (T -475)) -((-3806 (*1 *1 *1) (-4 *1 (-475))) (-3804 (*1 *1 *1) (-4 *1 (-475))) (-3808 (*1 *1 *1) (-4 *1 (-475))) (-3809 (*1 *1 *1) (-4 *1 (-475))) (-3807 (*1 *1 *1) (-4 *1 (-475))) (-3805 (*1 *1 *1) (-4 *1 (-475)))) -(-13 (-10 -8 (-15 -3805 ($ $)) (-15 -3807 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3804 ($ $)) (-15 -3806 ($ $)))) -((-4051 (((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)) 42))) -(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)))) (-348) (-1181 |#1|) (-13 (-348) (-141) (-689 |#1| |#2|)) (-1181 |#3|)) (T -476)) -((-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-4 *7 (-13 (-348) (-141) (-689 *5 *6))) (-5 *2 (-390 *3)) (-5 *1 (-476 *5 *6 *7 *3)) (-4 *3 (-1181 *7))))) -(-10 -7 (-15 -4051 ((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)))) -((-2865 (((-111) $ $) NIL)) (-1643 (((-607 $) (-1117 $) (-1123)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-905 $)) NIL)) (-1238 (($ (-1117 $) (-1123)) NIL) (($ (-1117 $)) NIL) (($ (-905 $)) NIL)) (-3502 (((-111) $) 39)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2050 (((-111) $ $) 64)) (-1636 (((-607 (-581 $)) $) 48)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-1239 (((-607 $) (-1117 $) (-1123)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-905 $)) NIL)) (-3497 (($ (-1117 $) (-1123)) NIL) (($ (-1117 $)) NIL) (($ (-905 $)) NIL)) (-3470 (((-3 (-581 $) #1="failed") $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 (-392 (-526)) #1#) $) NIL)) (-3469 (((-581 $) $) NIL) (((-526) $) NIL) (((-392 (-526)) $) 50)) (-2861 (($ $ $) NIL)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-392 (-526)))) (|:| |vec| (-1205 (-392 (-526))))) (-653 $) (-1205 $)) NIL) (((-653 (-392 (-526))) (-653 $)) NIL)) (-4161 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2870 (($ $) NIL) (($ (-607 $)) NIL)) (-1635 (((-607 (-112)) $) NIL)) (-2307 (((-112) (-112)) NIL)) (-2471 (((-111) $) 42)) (-2973 (((-111) $) NIL (|has| $ (-995 (-526))))) (-3298 (((-1075 (-526) (-581 $)) $) 37)) (-3311 (($ $ (-526)) NIL)) (-3429 (((-1117 $) (-1117 $) (-581 $)) 78) (((-1117 $) (-1117 $) (-607 (-581 $))) 55) (($ $ (-581 $)) 67) (($ $ (-607 (-581 $))) 68)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-1633 (((-1117 $) (-581 $)) 65 (|has| $ (-1004)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 $ $) (-581 $)) NIL)) (-1638 (((-3 (-581 $) "failed") $) NIL)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-1637 (((-607 (-581 $)) $) NIL)) (-2288 (($ (-112) $) NIL) (($ (-112) (-607 $)) NIL)) (-2930 (((-111) $ (-112)) NIL) (((-111) $ (-1123)) NIL)) (-2703 (($ $) NIL)) (-2900 (((-735) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-1634 (((-111) $ $) NIL) (((-111) $ (-1123)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1680 (((-735) $) NIL)) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) 36)) (-3297 (((-1075 (-526) (-581 $)) $) 20)) (-3499 (($ $) NIL (|has| $ (-1004)))) (-4287 (((-363) $) 92) (((-211) $) 100) (((-159 (-363)) $) 108)) (-4274 (((-823) $) NIL) (($ (-581 $)) NIL) (($ (-392 (-526))) NIL) (($ $) NIL) (($ (-526)) NIL) (($ (-1075 (-526) (-581 $))) 21)) (-3423 (((-735)) NIL)) (-2887 (($ $) NIL) (($ (-607 $)) NIL)) (-2306 (((-111) (-112)) 84)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 10 T CONST)) (-2964 (($) 22 T CONST)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 24)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4265 (($ $ $) 44)) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-392 (-526))) NIL) (($ $ (-526)) 46) (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ $ $) 27) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL))) -(((-477) (-13 (-283) (-27) (-995 (-526)) (-995 (-392 (-526))) (-606 (-526)) (-977) (-606 (-392 (-526))) (-141) (-584 (-159 (-363))) (-219) (-10 -8 (-15 -4274 ($ (-1075 (-526) (-581 $)))) (-15 -3298 ((-1075 (-526) (-581 $)) $)) (-15 -3297 ((-1075 (-526) (-581 $)) $)) (-15 -4161 ($ $)) (-15 -2050 ((-111) $ $)) (-15 -3429 ((-1117 $) (-1117 $) (-581 $))) (-15 -3429 ((-1117 $) (-1117 $) (-607 (-581 $)))) (-15 -3429 ($ $ (-581 $))) (-15 -3429 ($ $ (-607 (-581 $))))))) (T -477)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) (-4161 (*1 *1 *1) (-5 *1 (-477))) (-2050 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-477)))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-477))) (-5 *3 (-581 (-477))) (-5 *1 (-477)))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-477))) (-5 *3 (-607 (-581 (-477)))) (-5 *1 (-477)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-581 (-477))) (-5 *1 (-477)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-581 (-477)))) (-5 *1 (-477))))) -(-13 (-283) (-27) (-995 (-526)) (-995 (-392 (-526))) (-606 (-526)) (-977) (-606 (-392 (-526))) (-141) (-584 (-159 (-363))) (-219) (-10 -8 (-15 -4274 ($ (-1075 (-526) (-581 $)))) (-15 -3298 ((-1075 (-526) (-581 $)) $)) (-15 -3297 ((-1075 (-526) (-581 $)) $)) (-15 -4161 ($ $)) (-15 -2050 ((-111) $ $)) (-15 -3429 ((-1117 $) (-1117 $) (-581 $))) (-15 -3429 ((-1117 $) (-1117 $) (-607 (-581 $)))) (-15 -3429 ($ $ (-581 $))) (-15 -3429 ($ $ (-607 (-581 $)))))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) 25 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 22 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 21)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 14)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 12 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) 23 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) 10 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 13)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) 24) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 9 (|has| $ (-6 -4310))))) -(((-478 |#1| |#2|) (-19 |#1|) (-1159) (-526)) (T -478)) +((-3496 (($ $) 6)) (-2458 (($ $) 7)) (** (($ $ $) 8))) +(((-276) (-138)) (T -276)) +((** (*1 *1 *1 *1) (-4 *1 (-276))) (-2458 (*1 *1 *1) (-4 *1 (-276))) (-3496 (*1 *1 *1) (-4 *1 (-276)))) +(-13 (-10 -8 (-15 -3496 ($ $)) (-15 -2458 ($ $)) (-15 ** ($ $ $)))) +((-2695 (((-619 (-1116 |#1|)) (-1116 |#1|) |#1|) 35)) (-2676 ((|#2| |#2| |#1|) 38)) (-2685 ((|#2| |#2| |#1|) 40)) (-3871 ((|#2| |#2| |#1|) 39))) +(((-277 |#1| |#2|) (-10 -7 (-15 -2676 (|#2| |#2| |#1|)) (-15 -3871 (|#2| |#2| |#1|)) (-15 -2685 (|#2| |#2| |#1|)) (-15 -2695 ((-619 (-1116 |#1|)) (-1116 |#1|) |#1|))) (-355) (-1209 |#1|)) (T -277)) +((-2695 (*1 *2 *3 *4) (-12 (-4 *4 (-355)) (-5 *2 (-619 (-1116 *4))) (-5 *1 (-277 *4 *5)) (-5 *3 (-1116 *4)) (-4 *5 (-1209 *4)))) (-2685 (*1 *2 *2 *3) (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3)))) (-3871 (*1 *2 *2 *3) (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3)))) (-2676 (*1 *2 *2 *3) (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3))))) +(-10 -7 (-15 -2676 (|#2| |#2| |#1|)) (-15 -3871 (|#2| |#2| |#1|)) (-15 -2685 (|#2| |#2| |#1|)) (-15 -2695 ((-619 (-1116 |#1|)) (-1116 |#1|) |#1|))) +((-3171 ((|#2| $ |#1|) 6))) +(((-278 |#1| |#2|) (-138) (-1063) (-1172)) (T -278)) +((-3171 (*1 *2 *1 *3) (-12 (-4 *1 (-278 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172))))) +(-13 (-10 -8 (-15 -3171 (|t#2| $ |t#1|)))) +((-3971 ((|#3| $ |#2| |#3|) 12)) (-3899 ((|#3| $ |#2|) 10))) +(((-279 |#1| |#2| |#3|) (-10 -8 (-15 -3971 (|#3| |#1| |#2| |#3|)) (-15 -3899 (|#3| |#1| |#2|))) (-280 |#2| |#3|) (-1063) (-1172)) (T -279)) +NIL +(-10 -8 (-15 -3971 (|#3| |#1| |#2| |#3|)) (-15 -3899 (|#3| |#1| |#2|))) +((-2089 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4328)))) (-3971 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) 11)) (-3171 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-280 |#1| |#2|) (-138) (-1063) (-1172)) (T -280)) +((-3171 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-3899 (*1 *2 *1 *3) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-3971 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172))))) +(-13 (-278 |t#1| |t#2|) (-10 -8 (-15 -3171 (|t#2| $ |t#1| |t#2|)) (-15 -3899 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4328)) (PROGN (-15 -2089 (|t#2| $ |t#1| |t#2|)) (-15 -3971 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-278 |#1| |#2|) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 35)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 40)) (-3303 (($ $) 38)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) 33)) (-2061 (($ |#2| |#3|) 19)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 ((|#3| $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 20)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3368 (((-3 $ "failed") $ $) NIL)) (-4077 (((-745) $) 34)) (-3171 ((|#2| $ |#2|) 42)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 24)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 29 T CONST)) (-3118 (($) 36 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 37))) +(((-281 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-299) (-10 -8 (-15 -1328 (|#3| $)) (-15 -3743 (|#2| $)) (-15 -2061 ($ |#2| |#3|)) (-15 -3368 ((-3 $ "failed") $ $)) (-15 -3859 ((-3 $ "failed") $)) (-15 -2153 ($ $)) (-15 -3171 (|#2| $ |#2|)))) (-169) (-1194 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -281)) +((-3859 (*1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1328 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-281 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1194 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-281 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2061 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-281 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1194 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3368 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2153 (*1 *1 *1) (-12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3171 (*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-281 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1194 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-299) (-10 -8 (-15 -1328 (|#3| $)) (-15 -3743 (|#2| $)) (-15 -2061 ($ |#2| |#3|)) (-15 -3368 ((-3 $ "failed") $ $)) (-15 -3859 ((-3 $ "failed") $)) (-15 -2153 ($ $)) (-15 -3171 (|#2| $ |#2|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-282) (-138)) (T -282)) +NIL +(-13 (-1016) (-111 $ $) (-10 -7 (-6 -4320))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-1607 (($ (-1135) (-1135) (-1067) $) 17)) (-1590 (($ (-1135) (-619 (-934)) $) 22)) (-1627 (((-619 (-1049)) $) 10)) (-1617 (((-3 (-1067) "failed") (-1135) (-1135) $) 16)) (-1598 (((-3 (-619 (-934)) "failed") (-1135) $) 21)) (-3319 (($) 7)) (-2662 (($) 23)) (-3743 (((-832) $) 27)) (-1580 (($) 24))) +(((-283) (-13 (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -1627 ((-619 (-1049)) $)) (-15 -1617 ((-3 (-1067) "failed") (-1135) (-1135) $)) (-15 -1607 ($ (-1135) (-1135) (-1067) $)) (-15 -1598 ((-3 (-619 (-934)) "failed") (-1135) $)) (-15 -1590 ($ (-1135) (-619 (-934)) $)) (-15 -2662 ($)) (-15 -1580 ($))))) (T -283)) +((-3319 (*1 *1) (-5 *1 (-283))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-619 (-1049))) (-5 *1 (-283)))) (-1617 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-283)))) (-1607 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-283)))) (-1598 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-619 (-934))) (-5 *1 (-283)))) (-1590 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-283)))) (-2662 (*1 *1) (-5 *1 (-283))) (-1580 (*1 *1) (-5 *1 (-283)))) +(-13 (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -1627 ((-619 (-1049)) $)) (-15 -1617 ((-3 (-1067) "failed") (-1135) (-1135) $)) (-15 -1607 ($ (-1135) (-1135) (-1067) $)) (-15 -1598 ((-3 (-619 (-934)) "failed") (-1135) $)) (-15 -1590 ($ (-1135) (-619 (-934)) $)) (-15 -2662 ($)) (-15 -1580 ($)))) +((-1661 (((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|)))) 85)) (-1652 (((-619 (-663 (-399 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|)))))) (-663 (-399 (-921 |#1|)))) 80) (((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))) (-745) (-745)) 38)) (-1668 (((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|)))) 82)) (-1644 (((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|)))) 62)) (-1637 (((-619 (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-399 (-921 |#1|)))) 61)) (-3780 (((-921 |#1|) (-663 (-399 (-921 |#1|)))) 50) (((-921 |#1|) (-663 (-399 (-921 |#1|))) (-1135)) 51))) +(((-284 |#1|) (-10 -7 (-15 -3780 ((-921 |#1|) (-663 (-399 (-921 |#1|))) (-1135))) (-15 -3780 ((-921 |#1|) (-663 (-399 (-921 |#1|))))) (-15 -1637 ((-619 (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-399 (-921 |#1|))))) (-15 -1644 ((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))))) (-15 -1652 ((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))) (-745) (-745))) (-15 -1652 ((-619 (-663 (-399 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|)))))) (-663 (-399 (-921 |#1|))))) (-15 -1661 ((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|))))) (-15 -1668 ((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|)))))) (-443)) (T -284)) +((-1668 (*1 *2 *3) (-12 (-4 *4 (-443)) (-5 *2 (-619 (-2 (|:| |eigval| (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 *4)))))))) (-5 *1 (-284 *4)) (-5 *3 (-663 (-399 (-921 *4)))))) (-1661 (*1 *2 *3) (-12 (-4 *4 (-443)) (-5 *2 (-619 (-2 (|:| |eigval| (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4)))) (|:| |geneigvec| (-619 (-663 (-399 (-921 *4)))))))) (-5 *1 (-284 *4)) (-5 *3 (-663 (-399 (-921 *4)))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-399 (-921 *5)) (-1125 (-1135) (-921 *5)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 *4)))) (-4 *5 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *5))))) (-5 *1 (-284 *5)) (-5 *4 (-663 (-399 (-921 *5)))))) (-1652 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-399 (-921 *6)) (-1125 (-1135) (-921 *6)))) (-5 *5 (-745)) (-4 *6 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *6))))) (-5 *1 (-284 *6)) (-5 *4 (-663 (-399 (-921 *6)))))) (-1644 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-399 (-921 *5)) (-1125 (-1135) (-921 *5)))) (-4 *5 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *5))))) (-5 *1 (-284 *5)) (-5 *4 (-663 (-399 (-921 *5)))))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 *4)))) (-4 *4 (-443)) (-5 *2 (-619 (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4))))) (-5 *1 (-284 *4)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 *4)))) (-5 *2 (-921 *4)) (-5 *1 (-284 *4)) (-4 *4 (-443)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-399 (-921 *5)))) (-5 *4 (-1135)) (-5 *2 (-921 *5)) (-5 *1 (-284 *5)) (-4 *5 (-443))))) +(-10 -7 (-15 -3780 ((-921 |#1|) (-663 (-399 (-921 |#1|))) (-1135))) (-15 -3780 ((-921 |#1|) (-663 (-399 (-921 |#1|))))) (-15 -1637 ((-619 (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-399 (-921 |#1|))))) (-15 -1644 ((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))))) (-15 -1652 ((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))) (-745) (-745))) (-15 -1652 ((-619 (-663 (-399 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|)))))) (-663 (-399 (-921 |#1|))))) (-15 -1661 ((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|))))) (-15 -1668 ((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|)))))) +((-2540 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 14))) +(((-285 |#1| |#2|) (-10 -7 (-15 -2540 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-1172) (-1172)) (T -285)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-286 *6)) (-5 *1 (-285 *5 *6))))) +(-10 -7 (-15 -2540 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3324 (((-112) $) NIL (|has| |#1| (-21)))) (-1715 (($ $) 12)) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3854 (($ $ $) 94 (|has| |#1| (-294)))) (-3030 (($) NIL (-1524 (|has| |#1| (-21)) (|has| |#1| (-701))) CONST)) (-1698 (($ $) 50 (|has| |#1| (-21)))) (-1684 (((-3 $ "failed") $) 61 (|has| |#1| (-701)))) (-1987 ((|#1| $) 11)) (-3859 (((-3 $ "failed") $) 59 (|has| |#1| (-701)))) (-2266 (((-112) $) NIL (|has| |#1| (-701)))) (-2540 (($ (-1 |#1| |#1|) $) 14)) (-1974 ((|#1| $) 10)) (-1706 (($ $) 49 (|has| |#1| (-21)))) (-1692 (((-3 $ "failed") $) 60 (|has| |#1| (-701)))) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2153 (($ $) 63 (-1524 (|has| |#1| (-355)) (|has| |#1| (-464))))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1676 (((-619 $) $) 84 (|has| |#1| (-540)))) (-2460 (($ $ $) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 $)) 28 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-1135) |#1|) 17 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 21 (|has| |#1| (-504 (-1135) |#1|)))) (-2155 (($ |#1| |#1|) 9)) (-3402 (((-133)) 89 (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 86 (|has| |#1| (-869 (-1135))))) (-2128 (($ $ $) NIL (|has| |#1| (-464)))) (-3652 (($ $ $) NIL (|has| |#1| (-464)))) (-3743 (($ (-548)) NIL (|has| |#1| (-1016))) (((-112) $) 36 (|has| |#1| (-1063))) (((-832) $) 35 (|has| |#1| (-1063)))) (-3835 (((-745)) 66 (|has| |#1| (-1016)))) (-3107 (($) 46 (|has| |#1| (-21)) CONST)) (-3118 (($) 56 (|has| |#1| (-701)) CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135))))) (-2214 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) 91 (-1524 (|has| |#1| (-355)) (|has| |#1| (-464))))) (-2299 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2290 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-548)) NIL (|has| |#1| (-464))) (($ $ (-745)) NIL (|has| |#1| (-701))) (($ $ (-890)) NIL (|has| |#1| (-1075)))) (* (($ $ |#1|) 54 (|has| |#1| (-1075))) (($ |#1| $) 53 (|has| |#1| (-1075))) (($ $ $) 52 (|has| |#1| (-1075))) (($ (-548) $) 69 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-25))))) +(((-286 |#1|) (-13 (-1172) (-10 -8 (-15 -2214 ($ |#1| |#1|)) (-15 -2155 ($ |#1| |#1|)) (-15 -1715 ($ $)) (-15 -1974 (|#1| $)) (-15 -1987 (|#1| $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-504 (-1135) |#1|)) (-6 (-504 (-1135) |#1|)) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-6 (-592 (-112))) (IF (|has| |#1| (-301 |#1|)) (PROGN (-15 -2460 ($ $ $)) (-15 -2460 ($ $ (-619 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2290 ($ |#1| $)) (-15 -2290 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1706 ($ $)) (-15 -1698 ($ $)) (-15 -2299 ($ |#1| $)) (-15 -2299 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1075)) (PROGN (-6 (-1075)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-701)) (PROGN (-6 (-701)) (-15 -1692 ((-3 $ "failed") $)) (-15 -1684 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-464)) (PROGN (-6 (-464)) (-15 -1692 ((-3 $ "failed") $)) (-15 -1684 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|) (IF (|has| |#1| (-540)) (-15 -1676 ((-619 $) $)) |%noBranch|) (IF (|has| |#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-6 (-1225 |#1|)) (-15 -2309 ($ $ $)) (-15 -2153 ($ $))) |%noBranch|) (IF (|has| |#1| (-294)) (-15 -3854 ($ $ $)) |%noBranch|))) (-1172)) (T -286)) +((-2214 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-2155 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-1715 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-1974 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-1987 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-286 *3)))) (-2460 (*1 *1 *1 *1) (-12 (-4 *2 (-301 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)) (-5 *1 (-286 *2)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-286 *3))) (-4 *3 (-301 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)) (-5 *1 (-286 *3)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) (-2290 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) (-1706 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-1698 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-2299 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-2299 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-1692 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-701)) (-4 *2 (-1172)))) (-1684 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-701)) (-4 *2 (-1172)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-619 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-540)) (-4 *3 (-1172)))) (-3854 (*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-294)) (-4 *2 (-1172)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) (-2309 (*1 *1 *1 *1) (-1524 (-12 (-5 *1 (-286 *2)) (-4 *2 (-355)) (-4 *2 (-1172))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-464)) (-4 *2 (-1172))))) (-2153 (*1 *1 *1) (-1524 (-12 (-5 *1 (-286 *2)) (-4 *2 (-355)) (-4 *2 (-1172))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-464)) (-4 *2 (-1172)))))) +(-13 (-1172) (-10 -8 (-15 -2214 ($ |#1| |#1|)) (-15 -2155 ($ |#1| |#1|)) (-15 -1715 ($ $)) (-15 -1974 (|#1| $)) (-15 -1987 (|#1| $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-504 (-1135) |#1|)) (-6 (-504 (-1135) |#1|)) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-6 (-592 (-112))) (IF (|has| |#1| (-301 |#1|)) (PROGN (-15 -2460 ($ $ $)) (-15 -2460 ($ $ (-619 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2290 ($ |#1| $)) (-15 -2290 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1706 ($ $)) (-15 -1698 ($ $)) (-15 -2299 ($ |#1| $)) (-15 -2299 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1075)) (PROGN (-6 (-1075)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-701)) (PROGN (-6 (-701)) (-15 -1692 ((-3 $ "failed") $)) (-15 -1684 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-464)) (PROGN (-6 (-464)) (-15 -1692 ((-3 $ "failed") $)) (-15 -1684 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|) (IF (|has| |#1| (-540)) (-15 -1676 ((-619 $) $)) |%noBranch|) (IF (|has| |#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-6 (-1225 |#1|)) (-15 -2309 ($ $ $)) (-15 -2153 ($ $))) |%noBranch|) (IF (|has| |#1| (-294)) (-15 -3854 ($ $ $)) |%noBranch|))) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) NIL)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-287 |#1| |#2|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) (-1063) (-1063)) (T -287)) +NIL +(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) +((-2831 (((-304) (-1118) (-619 (-1118))) 16) (((-304) (-1118) (-1118)) 15) (((-304) (-619 (-1118))) 14) (((-304) (-1118)) 12))) +(((-288) (-10 -7 (-15 -2831 ((-304) (-1118))) (-15 -2831 ((-304) (-619 (-1118)))) (-15 -2831 ((-304) (-1118) (-1118))) (-15 -2831 ((-304) (-1118) (-619 (-1118)))))) (T -288)) +((-2831 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1118))) (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-304)) (-5 *1 (-288)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288))))) +(-10 -7 (-15 -2831 ((-304) (-1118))) (-15 -2831 ((-304) (-619 (-1118)))) (-15 -2831 ((-304) (-1118) (-1118))) (-15 -2831 ((-304) (-1118) (-619 (-1118))))) +((-2540 ((|#2| (-1 |#2| |#1|) (-1118) (-591 |#1|)) 18))) +(((-289 |#1| |#2|) (-10 -7 (-15 -2540 (|#2| (-1 |#2| |#1|) (-1118) (-591 |#1|)))) (-294) (-1172)) (T -289)) +((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1118)) (-5 *5 (-591 *6)) (-4 *6 (-294)) (-4 *2 (-1172)) (-5 *1 (-289 *6 *2))))) +(-10 -7 (-15 -2540 (|#2| (-1 |#2| |#1|) (-1118) (-591 |#1|)))) +((-2540 ((|#2| (-1 |#2| |#1|) (-591 |#1|)) 17))) +(((-290 |#1| |#2|) (-10 -7 (-15 -2540 (|#2| (-1 |#2| |#1|) (-591 |#1|)))) (-294) (-294)) (T -290)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-591 *5)) (-4 *5 (-294)) (-4 *2 (-294)) (-5 *1 (-290 *5 *2))))) +(-10 -7 (-15 -2540 (|#2| (-1 |#2| |#1|) (-591 |#1|)))) +((-3866 (((-112) (-218)) 10))) +(((-291 |#1| |#2|) (-10 -7 (-15 -3866 ((-112) (-218)))) (-218) (-218)) (T -291)) +((-3866 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-112)) (-5 *1 (-291 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3866 ((-112) (-218)))) +((-1786 (((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218)))) 93)) (-1796 (((-1116 (-218)) (-1218 (-308 (-218))) (-619 (-1135)) (-1058 (-814 (-218)))) 107) (((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218)))) 61)) (-2011 (((-619 (-1118)) (-1116 (-218))) NIL)) (-1778 (((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218)))) 58)) (-1805 (((-619 (-218)) (-921 (-399 (-548))) (-1135) (-1058 (-814 (-218)))) 49)) (-2000 (((-619 (-1118)) (-619 (-218))) NIL)) (-2022 (((-218) (-1058 (-814 (-218)))) 25)) (-2033 (((-218) (-1058 (-814 (-218)))) 26)) (-1770 (((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 54)) (-1978 (((-1118) (-218)) NIL))) +(((-292) (-10 -7 (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -1770 ((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1778 ((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218))))) (-15 -1786 ((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-1218 (-308 (-218))) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1805 ((-619 (-218)) (-921 (-399 (-548))) (-1135) (-1058 (-814 (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))))) (T -292)) +((-2011 (*1 *2 *3) (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-292)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-292)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-292)))) (-1805 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-292)))) (-1796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292)))) (-1796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292)))) (-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292)))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-292)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-112)) (-5 *1 (-292)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-292)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-292))))) +(-10 -7 (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -1770 ((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1778 ((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218))))) (-15 -1786 ((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-1218 (-308 (-218))) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1805 ((-619 (-218)) (-921 (-399 (-548))) (-1135) (-1058 (-814 (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218))))) +((-1806 (((-619 (-591 $)) $) 30)) (-3854 (($ $ (-286 $)) 81) (($ $ (-619 (-286 $))) 123) (($ $ (-619 (-591 $)) (-619 $)) NIL)) (-2441 (((-3 (-591 $) "failed") $) 113)) (-2375 (((-591 $) $) 112)) (-2142 (($ $) 19) (($ (-619 $)) 56)) (-1744 (((-619 (-114)) $) 38)) (-1402 (((-114) (-114)) 91)) (-3705 (((-112) $) 131)) (-2540 (($ (-1 $ $) (-591 $)) 89)) (-1753 (((-3 (-591 $) "failed") $) 93)) (-1409 (($ (-114) $) 61) (($ (-114) (-619 $)) 100)) (-1518 (((-112) $ (-114)) 117) (((-112) $ (-1135)) 116)) (-3926 (((-745) $) 46)) (-1734 (((-112) $ $) 59) (((-112) $ (-1135)) 51)) (-3718 (((-112) $) 129)) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL) (($ $ (-619 (-286 $))) 121) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 84) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) 69) (($ $ (-1135) (-1 $ $)) 75) (($ $ (-619 (-114)) (-619 (-1 $ $))) 83) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 85) (($ $ (-114) (-1 $ (-619 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-3171 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-619 $)) 109)) (-1762 (($ $) 53) (($ $ $) 119)) (-3528 (($ $) 17) (($ (-619 $)) 55)) (-1392 (((-112) (-114)) 22))) +(((-293 |#1|) (-10 -8 (-15 -3705 ((-112) |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -1734 ((-112) |#1| (-1135))) (-15 -1734 ((-112) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#1| |#1|) (-591 |#1|))) (-15 -1409 (|#1| (-114) (-619 |#1|))) (-15 -1409 (|#1| (-114) |#1|)) (-15 -1518 ((-112) |#1| (-1135))) (-15 -1518 ((-112) |#1| (-114))) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1744 ((-619 (-114)) |#1|)) (-15 -1806 ((-619 (-591 |#1|)) |#1|)) (-15 -1753 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3926 ((-745) |#1|)) (-15 -1762 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -2142 (|#1| (-619 |#1|))) (-15 -2142 (|#1| |#1|)) (-15 -3528 (|#1| (-619 |#1|))) (-15 -3528 (|#1| |#1|)) (-15 -3854 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -3854 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -3854 (|#1| |#1| (-286 |#1|))) (-15 -3171 (|#1| (-114) (-619 |#1|))) (-15 -3171 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -2375 ((-591 |#1|) |#1|)) (-15 -2441 ((-3 (-591 |#1|) "failed") |#1|))) (-294)) (T -293)) +((-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-293 *3)) (-4 *3 (-294)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-293 *4)) (-4 *4 (-294))))) +(-10 -8 (-15 -3705 ((-112) |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -1734 ((-112) |#1| (-1135))) (-15 -1734 ((-112) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#1| |#1|) (-591 |#1|))) (-15 -1409 (|#1| (-114) (-619 |#1|))) (-15 -1409 (|#1| (-114) |#1|)) (-15 -1518 ((-112) |#1| (-1135))) (-15 -1518 ((-112) |#1| (-114))) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1744 ((-619 (-114)) |#1|)) (-15 -1806 ((-619 (-591 |#1|)) |#1|)) (-15 -1753 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3926 ((-745) |#1|)) (-15 -1762 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -2142 (|#1| (-619 |#1|))) (-15 -2142 (|#1| |#1|)) (-15 -3528 (|#1| (-619 |#1|))) (-15 -3528 (|#1| |#1|)) (-15 -3854 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -3854 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -3854 (|#1| |#1| (-286 |#1|))) (-15 -3171 (|#1| (-114) (-619 |#1|))) (-15 -3171 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -2375 ((-591 |#1|) |#1|)) (-15 -2441 ((-3 (-591 |#1|) "failed") |#1|))) +((-3730 (((-112) $ $) 7)) (-1806 (((-619 (-591 $)) $) 44)) (-3854 (($ $ (-286 $)) 56) (($ $ (-619 (-286 $))) 55) (($ $ (-619 (-591 $)) (-619 $)) 54)) (-2441 (((-3 (-591 $) "failed") $) 69)) (-2375 (((-591 $) $) 68)) (-2142 (($ $) 51) (($ (-619 $)) 50)) (-1744 (((-619 (-114)) $) 43)) (-1402 (((-114) (-114)) 42)) (-3705 (((-112) $) 22 (|has| $ (-1007 (-548))))) (-1724 (((-1131 $) (-591 $)) 25 (|has| $ (-1016)))) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2540 (($ (-1 $ $) (-591 $)) 36)) (-1753 (((-3 (-591 $) "failed") $) 46)) (-2546 (((-1118) $) 9)) (-1870 (((-619 (-591 $)) $) 45)) (-1409 (($ (-114) $) 38) (($ (-114) (-619 $)) 37)) (-1518 (((-112) $ (-114)) 40) (((-112) $ (-1135)) 39)) (-3926 (((-745) $) 47)) (-3932 (((-1082) $) 10)) (-1734 (((-112) $ $) 35) (((-112) $ (-1135)) 34)) (-3718 (((-112) $) 23 (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) 67) (($ $ (-619 (-591 $)) (-619 $)) 66) (($ $ (-619 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-619 $) (-619 $)) 62) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 33) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 32) (($ $ (-1135) (-1 $ (-619 $))) 31) (($ $ (-1135) (-1 $ $)) 30) (($ $ (-619 (-114)) (-619 (-1 $ $))) 29) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 28) (($ $ (-114) (-1 $ (-619 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-3171 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-619 $)) 57)) (-1762 (($ $) 49) (($ $ $) 48)) (-3287 (($ $) 24 (|has| $ (-1016)))) (-3743 (((-832) $) 11) (($ (-591 $)) 70)) (-3528 (($ $) 53) (($ (-619 $)) 52)) (-1392 (((-112) (-114)) 41)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) +(((-294) (-138)) (T -294)) +((-3171 (*1 *1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-3171 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-3171 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-3171 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-3171 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-294)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-294)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-286 *1))) (-4 *1 (-294)))) (-3854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-591 *1))) (-5 *3 (-619 *1)) (-4 *1 (-294)))) (-3528 (*1 *1 *1) (-4 *1 (-294))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-294)))) (-2142 (*1 *1 *1) (-4 *1 (-294))) (-2142 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-294)))) (-1762 (*1 *1 *1) (-4 *1 (-294))) (-1762 (*1 *1 *1 *1) (-4 *1 (-294))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-745)))) (-1753 (*1 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-294)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-619 (-591 *1))) (-4 *1 (-294)))) (-1806 (*1 *2 *1) (-12 (-5 *2 (-619 (-591 *1))) (-4 *1 (-294)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-619 (-114))))) (-1402 (*1 *2 *2) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-1392 (*1 *2 *3) (-12 (-4 *1 (-294)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1518 (*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1518 (*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-1135)) (-5 *2 (-112)))) (-1409 (*1 *1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-1409 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-294)))) (-2540 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-591 *1)) (-4 *1 (-294)))) (-1734 (*1 *2 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-112)))) (-1734 (*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-1135)) (-5 *2 (-112)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 *1)) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-294)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-1016)) (-4 *1 (-294)) (-5 *2 (-1131 *1)))) (-3287 (*1 *1 *1) (-12 (-4 *1 (-1016)) (-4 *1 (-294)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1007 (-548))) (-4 *1 (-294)) (-5 *2 (-112)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1007 (-548))) (-4 *1 (-294)) (-5 *2 (-112))))) +(-13 (-821) (-1007 (-591 $)) (-504 (-591 $) $) (-301 $) (-10 -8 (-15 -3171 ($ (-114) $)) (-15 -3171 ($ (-114) $ $)) (-15 -3171 ($ (-114) $ $ $)) (-15 -3171 ($ (-114) $ $ $ $)) (-15 -3171 ($ (-114) (-619 $))) (-15 -3854 ($ $ (-286 $))) (-15 -3854 ($ $ (-619 (-286 $)))) (-15 -3854 ($ $ (-619 (-591 $)) (-619 $))) (-15 -3528 ($ $)) (-15 -3528 ($ (-619 $))) (-15 -2142 ($ $)) (-15 -2142 ($ (-619 $))) (-15 -1762 ($ $)) (-15 -1762 ($ $ $)) (-15 -3926 ((-745) $)) (-15 -1753 ((-3 (-591 $) "failed") $)) (-15 -1870 ((-619 (-591 $)) $)) (-15 -1806 ((-619 (-591 $)) $)) (-15 -1744 ((-619 (-114)) $)) (-15 -1402 ((-114) (-114))) (-15 -1392 ((-112) (-114))) (-15 -1518 ((-112) $ (-114))) (-15 -1518 ((-112) $ (-1135))) (-15 -1409 ($ (-114) $)) (-15 -1409 ($ (-114) (-619 $))) (-15 -2540 ($ (-1 $ $) (-591 $))) (-15 -1734 ((-112) $ $)) (-15 -1734 ((-112) $ (-1135))) (-15 -2460 ($ $ (-619 (-1135)) (-619 (-1 $ $)))) (-15 -2460 ($ $ (-619 (-1135)) (-619 (-1 $ (-619 $))))) (-15 -2460 ($ $ (-1135) (-1 $ (-619 $)))) (-15 -2460 ($ $ (-1135) (-1 $ $))) (-15 -2460 ($ $ (-619 (-114)) (-619 (-1 $ $)))) (-15 -2460 ($ $ (-619 (-114)) (-619 (-1 $ (-619 $))))) (-15 -2460 ($ $ (-114) (-1 $ (-619 $)))) (-15 -2460 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1016)) (PROGN (-15 -1724 ((-1131 $) (-591 $))) (-15 -3287 ($ $))) |%noBranch|) (IF (|has| $ (-1007 (-548))) (PROGN (-15 -3718 ((-112) $)) (-15 -3705 ((-112) $))) |%noBranch|))) +(((-101) . T) ((-592 (-832)) . T) ((-301 $) . T) ((-504 (-591 $) $) . T) ((-504 $ $) . T) ((-821) . T) ((-1007 (-591 $)) . T) ((-1063) . T)) +((-4047 (((-619 |#1|) (-619 |#1|)) 10))) +(((-295 |#1|) (-10 -7 (-15 -4047 ((-619 |#1|) (-619 |#1|)))) (-819)) (T -295)) +((-4047 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-819)) (-5 *1 (-295 *3))))) +(-10 -7 (-15 -4047 ((-619 |#1|) (-619 |#1|)))) +((-2540 (((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)) 17))) +(((-296 |#1| |#2|) (-10 -7 (-15 -2540 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) (-1016) (-1016)) (T -296)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-663 *6)) (-5 *1 (-296 *5 *6))))) +(-10 -7 (-15 -2540 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) +((-1967 (((-1218 (-308 (-371))) (-1218 (-308 (-218)))) 105)) (-1844 (((-1058 (-814 (-218))) (-1058 (-814 (-371)))) 40)) (-2011 (((-619 (-1118)) (-1116 (-218))) 87)) (-2091 (((-308 (-371)) (-921 (-218))) 50)) (-2104 (((-218) (-921 (-218))) 46)) (-2046 (((-1118) (-371)) 169)) (-1835 (((-814 (-218)) (-814 (-371))) 34)) (-1891 (((-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548))) (-1218 (-308 (-218)))) 143)) (-2058 (((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) 181) (((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) 179)) (-4035 (((-663 (-218)) (-619 (-218)) (-745)) 14)) (-1944 (((-1218 (-673)) (-619 (-218))) 94)) (-2000 (((-619 (-1118)) (-619 (-218))) 75)) (-3867 (((-3 (-308 (-218)) "failed") (-308 (-218))) 120)) (-3866 (((-112) (-218) (-1058 (-814 (-218)))) 109)) (-2078 (((-1004) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) 198)) (-2022 (((-218) (-1058 (-814 (-218)))) 107)) (-2033 (((-218) (-1058 (-814 (-218)))) 108)) (-4024 (((-218) (-399 (-548))) 27)) (-1991 (((-1118) (-371)) 73)) (-1817 (((-218) (-371)) 17)) (-1881 (((-371) (-1218 (-308 (-218)))) 154)) (-1826 (((-308 (-218)) (-308 (-371))) 23)) (-1861 (((-399 (-548)) (-308 (-218))) 53)) (-1901 (((-308 (-399 (-548))) (-308 (-218))) 69)) (-1958 (((-308 (-371)) (-308 (-218))) 98)) (-1871 (((-218) (-308 (-218))) 54)) (-1923 (((-619 (-218)) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) 64)) (-1912 (((-1058 (-814 (-218))) (-1058 (-814 (-218)))) 61)) (-1978 (((-1118) (-218)) 72)) (-1933 (((-673) (-218)) 90)) (-1852 (((-399 (-548)) (-218)) 55)) (-2116 (((-308 (-371)) (-218)) 49)) (-2591 (((-619 (-1058 (-814 (-218)))) (-619 (-1058 (-814 (-371))))) 43)) (-1831 (((-1004) (-619 (-1004))) 165) (((-1004) (-1004) (-1004)) 162)) (-2069 (((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-297) (-10 -7 (-15 -1817 ((-218) (-371))) (-15 -1826 ((-308 (-218)) (-308 (-371)))) (-15 -1835 ((-814 (-218)) (-814 (-371)))) (-15 -1844 ((-1058 (-814 (-218))) (-1058 (-814 (-371))))) (-15 -2591 ((-619 (-1058 (-814 (-218)))) (-619 (-1058 (-814 (-371)))))) (-15 -1852 ((-399 (-548)) (-218))) (-15 -1861 ((-399 (-548)) (-308 (-218)))) (-15 -1871 ((-218) (-308 (-218)))) (-15 -3867 ((-3 (-308 (-218)) "failed") (-308 (-218)))) (-15 -1881 ((-371) (-1218 (-308 (-218))))) (-15 -1891 ((-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548))) (-1218 (-308 (-218))))) (-15 -1901 ((-308 (-399 (-548))) (-308 (-218)))) (-15 -1912 ((-1058 (-814 (-218))) (-1058 (-814 (-218))))) (-15 -1923 ((-619 (-218)) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-15 -1933 ((-673) (-218))) (-15 -1944 ((-1218 (-673)) (-619 (-218)))) (-15 -1958 ((-308 (-371)) (-308 (-218)))) (-15 -1967 ((-1218 (-308 (-371))) (-1218 (-308 (-218))))) (-15 -3866 ((-112) (-218) (-1058 (-814 (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -1991 ((-1118) (-371))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))) (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -1831 ((-1004) (-1004) (-1004))) (-15 -1831 ((-1004) (-619 (-1004)))) (-15 -2046 ((-1118) (-371))) (-15 -2058 ((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))))) (-15 -2058 ((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))))) (-15 -2069 ((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2078 ((-1004) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -2091 ((-308 (-371)) (-921 (-218)))) (-15 -2104 ((-218) (-921 (-218)))) (-15 -2116 ((-308 (-371)) (-218))) (-15 -4024 ((-218) (-399 (-548)))) (-15 -4035 ((-663 (-218)) (-619 (-218)) (-745))))) (T -297)) +((-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-218))) (-5 *4 (-745)) (-5 *2 (-663 (-218))) (-5 *1 (-297)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-399 (-548))) (-5 *2 (-218)) (-5 *1 (-297)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-308 (-371))) (-5 *1 (-297)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-921 (-218))) (-5 *2 (-218)) (-5 *1 (-297)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-921 (-218))) (-5 *2 (-308 (-371))) (-5 *1 (-297)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1118)) (-5 *1 (-297)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-619 (-1004))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-1831 (*1 *2 *2 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-297)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-297)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-297)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-297)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-297)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1118)) (-5 *1 (-297)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-297)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-814 (-218)))) (-5 *3 (-218)) (-5 *2 (-112)) (-5 *1 (-297)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-1218 (-308 (-371)))) (-5 *1 (-297)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-308 (-371))) (-5 *1 (-297)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1218 (-673))) (-5 *1 (-297)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-673)) (-5 *1 (-297)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *2 (-619 (-218))) (-5 *1 (-297)))) (-1912 (*1 *2 *2) (-12 (-5 *2 (-1058 (-814 (-218)))) (-5 *1 (-297)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-308 (-399 (-548)))) (-5 *1 (-297)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548)))) (-5 *1 (-297)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-371)) (-5 *1 (-297)))) (-3867 (*1 *2 *2) (|partial| -12 (-5 *2 (-308 (-218))) (-5 *1 (-297)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-218)) (-5 *1 (-297)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-399 (-548))) (-5 *1 (-297)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-399 (-548))) (-5 *1 (-297)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-619 (-1058 (-814 (-371))))) (-5 *2 (-619 (-1058 (-814 (-218))))) (-5 *1 (-297)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-371)))) (-5 *2 (-1058 (-814 (-218)))) (-5 *1 (-297)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-814 (-371))) (-5 *2 (-814 (-218))) (-5 *1 (-297)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-308 (-371))) (-5 *2 (-308 (-218))) (-5 *1 (-297)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-218)) (-5 *1 (-297))))) +(-10 -7 (-15 -1817 ((-218) (-371))) (-15 -1826 ((-308 (-218)) (-308 (-371)))) (-15 -1835 ((-814 (-218)) (-814 (-371)))) (-15 -1844 ((-1058 (-814 (-218))) (-1058 (-814 (-371))))) (-15 -2591 ((-619 (-1058 (-814 (-218)))) (-619 (-1058 (-814 (-371)))))) (-15 -1852 ((-399 (-548)) (-218))) (-15 -1861 ((-399 (-548)) (-308 (-218)))) (-15 -1871 ((-218) (-308 (-218)))) (-15 -3867 ((-3 (-308 (-218)) "failed") (-308 (-218)))) (-15 -1881 ((-371) (-1218 (-308 (-218))))) (-15 -1891 ((-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548))) (-1218 (-308 (-218))))) (-15 -1901 ((-308 (-399 (-548))) (-308 (-218)))) (-15 -1912 ((-1058 (-814 (-218))) (-1058 (-814 (-218))))) (-15 -1923 ((-619 (-218)) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-15 -1933 ((-673) (-218))) (-15 -1944 ((-1218 (-673)) (-619 (-218)))) (-15 -1958 ((-308 (-371)) (-308 (-218)))) (-15 -1967 ((-1218 (-308 (-371))) (-1218 (-308 (-218))))) (-15 -3866 ((-112) (-218) (-1058 (-814 (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -1991 ((-1118) (-371))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))) (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -1831 ((-1004) (-1004) (-1004))) (-15 -1831 ((-1004) (-619 (-1004)))) (-15 -2046 ((-1118) (-371))) (-15 -2058 ((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))))) (-15 -2058 ((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))))) (-15 -2069 ((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2078 ((-1004) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -2091 ((-308 (-371)) (-921 (-218)))) (-15 -2104 ((-218) (-921 (-218)))) (-15 -2116 ((-308 (-371)) (-218))) (-15 -4024 ((-218) (-399 (-548)))) (-15 -4035 ((-663 (-218)) (-619 (-218)) (-745)))) +((-4087 (((-112) $ $) 11)) (-1945 (($ $ $) 15)) (-1922 (($ $ $) 14)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 44)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 53)) (-3587 (($ $ $) 21) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-1900 (((-3 $ "failed") $ $) 17)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 46))) +(((-298 |#1|) (-10 -8 (-15 -4057 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -4066 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4066 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -4087 ((-112) |#1| |#1|)) (-15 -3126 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -3136 ((-2 (|:| -1489 (-619 |#1|)) (|:| -4160 |#1|)) (-619 |#1|))) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|))) (-299)) (T -298)) +NIL +(-10 -8 (-15 -4057 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -4066 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4066 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -4087 ((-112) |#1| |#1|)) (-15 -3126 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -3136 ((-2 (|:| -1489 (-619 |#1|)) (|:| -4160 |#1|)) (-619 |#1|))) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-299) (-138)) (T -299)) +((-4087 (*1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-112)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-745)))) (-3209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-299)))) (-1922 (*1 *1 *1 *1) (-4 *1 (-299))) (-1945 (*1 *1 *1 *1) (-4 *1 (-299))) (-4066 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) (-4 *1 (-299)))) (-4066 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-299)))) (-4057 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-299))))) +(-13 (-889) (-10 -8 (-15 -4087 ((-112) $ $)) (-15 -4077 ((-745) $)) (-15 -3209 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1922 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -4066 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $)) (-15 -4066 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4057 ((-3 (-619 $) "failed") (-619 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2460 (($ $ (-619 |#2|) (-619 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-286 |#2|)) 11) (($ $ (-619 (-286 |#2|))) NIL))) +(((-300 |#1| |#2|) (-10 -8 (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|)))) (-301 |#2|) (-1063)) (T -300)) +NIL +(-10 -8 (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|)))) +((-2460 (($ $ (-619 |#1|) (-619 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-286 |#1|)) 11) (($ $ (-619 (-286 |#1|))) 10))) +(((-301 |#1|) (-138) (-1063)) (T -301)) +((-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-301 *3)) (-4 *3 (-1063)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-286 *3))) (-4 *1 (-301 *3)) (-4 *3 (-1063))))) +(-13 (-504 |t#1| |t#1|) (-10 -8 (-15 -2460 ($ $ (-286 |t#1|))) (-15 -2460 ($ $ (-619 (-286 |t#1|)))))) +(((-504 |#1| |#1|) . T)) +((-2460 ((|#1| (-1 |#1| (-548)) (-1137 (-399 (-548)))) 25))) +(((-302 |#1|) (-10 -7 (-15 -2460 (|#1| (-1 |#1| (-548)) (-1137 (-399 (-548)))))) (-38 (-399 (-548)))) (T -302)) +((-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-548))) (-5 *4 (-1137 (-399 (-548)))) (-5 *1 (-302 *2)) (-4 *2 (-38 (-399 (-548))))))) +(-10 -7 (-15 -2460 (|#1| (-1 |#1| (-548)) (-1137 (-399 (-548)))))) +((-3730 (((-112) $ $) NIL)) (-1433 (((-548) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-303) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1433 ((-548) $))))) (T -303)) +((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-303)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-303))))) +(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1433 ((-548) $)))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 7)) (-2214 (((-112) $ $) 9))) +(((-304) (-1063)) (T -304)) +NIL +(-1063) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 62)) (-3875 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1204 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-548)))) (((-3 (-1203 |#2| |#3| |#4|) "failed") $) 25)) (-2375 (((-1204 |#1| |#2| |#3| |#4|) $) NIL) (((-1135) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-548)))) (((-548) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-548)))) (((-1203 |#2| |#3| |#4|) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-1204 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1218 (-1204 |#1| |#2| |#3| |#4|)))) (-663 $) (-1218 $)) NIL) (((-663 (-1204 |#1| |#2| |#3| |#4|)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-1204 |#1| |#2| |#3| |#4|) $) 21)) (-3725 (((-3 $ "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1111)))) (-3312 (((-112) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-3091 (($ $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2540 (($ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) $) NIL)) (-3592 (((-3 (-814 |#2|) "failed") $) 78)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-299)))) (-3887 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-1204 |#1| |#2| |#3| |#4|)) (-619 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-301 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-301 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-286 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-301 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-619 (-286 (-1204 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-301 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-619 (-1135)) (-619 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-504 (-1135) (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-1135) (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-504 (-1135) (-1204 |#1| |#2| |#3| |#4|))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-278 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-226))) (($ $ (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-226))) (($ $ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) (-745)) NIL) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-1204 |#1| |#2| |#3| |#4|) $) 17)) (-2591 (((-861 (-548)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-593 (-524)))) (((-371) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-991))) (((-218) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1204 |#1| |#2| |#3| |#4|) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-1204 |#1| |#2| |#3| |#4|)) 29) (($ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (($ (-1203 |#2| |#3| |#4|)) 36)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1204 |#1| |#2| |#3| |#4|) (-878))) (|has| (-1204 |#1| |#2| |#3| |#4|) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3107 (($) 41 T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-226))) (($ $ (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-226))) (($ $ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) (-745)) NIL) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2309 (($ $ $) 34) (($ (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) 31)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-1204 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1204 |#1| |#2| |#3| |#4|)) NIL))) +(((-305 |#1| |#2| |#3| |#4|) (-13 (-961 (-1204 |#1| |#2| |#3| |#4|)) (-1007 (-1203 |#2| |#3| |#4|)) (-10 -8 (-15 -3592 ((-3 (-814 |#2|) "failed") $)) (-15 -3743 ($ (-1203 |#2| |#3| |#4|))))) (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443)) (-13 (-27) (-1157) (-422 |#1|)) (-1135) |#2|) (T -305)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1203 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) (-14 *6 *4) (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) (-5 *1 (-305 *3 *4 *5 *6)))) (-3592 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) (-5 *2 (-814 *4)) (-5 *1 (-305 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) (-14 *6 *4)))) +(-13 (-961 (-1204 |#1| |#2| |#3| |#4|)) (-1007 (-1203 |#2| |#3| |#4|)) (-10 -8 (-15 -3592 ((-3 (-814 |#2|) "failed") $)) (-15 -3743 ($ (-1203 |#2| |#3| |#4|))))) +((-2540 (((-308 |#2|) (-1 |#2| |#1|) (-308 |#1|)) 13))) +(((-306 |#1| |#2|) (-10 -7 (-15 -2540 ((-308 |#2|) (-1 |#2| |#1|) (-308 |#1|)))) (-821) (-821)) (T -306)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-308 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-5 *2 (-308 *6)) (-5 *1 (-306 *5 *6))))) +(-10 -7 (-15 -2540 ((-308 |#2|) (-1 |#2| |#1|) (-308 |#1|)))) +((-2107 (((-52) |#2| (-286 |#2|) (-745)) 33) (((-52) |#2| (-286 |#2|)) 24) (((-52) |#2| (-745)) 28) (((-52) |#2|) 25) (((-52) (-1135)) 21)) (-1761 (((-52) |#2| (-286 |#2|) (-399 (-548))) 51) (((-52) |#2| (-286 |#2|)) 48) (((-52) |#2| (-399 (-548))) 50) (((-52) |#2|) 49) (((-52) (-1135)) 47)) (-2129 (((-52) |#2| (-286 |#2|) (-399 (-548))) 46) (((-52) |#2| (-286 |#2|)) 43) (((-52) |#2| (-399 (-548))) 45) (((-52) |#2|) 44) (((-52) (-1135)) 42)) (-2119 (((-52) |#2| (-286 |#2|) (-548)) 39) (((-52) |#2| (-286 |#2|)) 35) (((-52) |#2| (-548)) 38) (((-52) |#2|) 36) (((-52) (-1135)) 34))) +(((-307 |#1| |#2|) (-10 -7 (-15 -2107 ((-52) (-1135))) (-15 -2107 ((-52) |#2|)) (-15 -2107 ((-52) |#2| (-745))) (-15 -2107 ((-52) |#2| (-286 |#2|))) (-15 -2107 ((-52) |#2| (-286 |#2|) (-745))) (-15 -2119 ((-52) (-1135))) (-15 -2119 ((-52) |#2|)) (-15 -2119 ((-52) |#2| (-548))) (-15 -2119 ((-52) |#2| (-286 |#2|))) (-15 -2119 ((-52) |#2| (-286 |#2|) (-548))) (-15 -2129 ((-52) (-1135))) (-15 -2129 ((-52) |#2|)) (-15 -2129 ((-52) |#2| (-399 (-548)))) (-15 -2129 ((-52) |#2| (-286 |#2|))) (-15 -2129 ((-52) |#2| (-286 |#2|) (-399 (-548)))) (-15 -1761 ((-52) (-1135))) (-15 -1761 ((-52) |#2|)) (-15 -1761 ((-52) |#2| (-399 (-548)))) (-15 -1761 ((-52) |#2| (-286 |#2|))) (-15 -1761 ((-52) |#2| (-286 |#2|) (-399 (-548))))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -307)) +((-1761 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *4 (-399 (-548))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-1761 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-422 *4))))) (-2129 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-399 (-548))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2129 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-422 *4))))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 *5) (-615 *5))) (-5 *5 (-548)) (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-4 *5 (-13 (-443) (-821) (-1007 *4) (-615 *4))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-422 *4))))) (-2107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-745)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2107 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-422 *4)))))) +(-10 -7 (-15 -2107 ((-52) (-1135))) (-15 -2107 ((-52) |#2|)) (-15 -2107 ((-52) |#2| (-745))) (-15 -2107 ((-52) |#2| (-286 |#2|))) (-15 -2107 ((-52) |#2| (-286 |#2|) (-745))) (-15 -2119 ((-52) (-1135))) (-15 -2119 ((-52) |#2|)) (-15 -2119 ((-52) |#2| (-548))) (-15 -2119 ((-52) |#2| (-286 |#2|))) (-15 -2119 ((-52) |#2| (-286 |#2|) (-548))) (-15 -2129 ((-52) (-1135))) (-15 -2129 ((-52) |#2|)) (-15 -2129 ((-52) |#2| (-399 (-548)))) (-15 -2129 ((-52) |#2| (-286 |#2|))) (-15 -2129 ((-52) |#2| (-286 |#2|) (-399 (-548)))) (-15 -1761 ((-52) (-1135))) (-15 -1761 ((-52) |#2|)) (-15 -1761 ((-52) |#2| (-399 (-548)))) (-15 -1761 ((-52) |#2| (-286 |#2|))) (-15 -1761 ((-52) |#2| (-286 |#2|) (-399 (-548))))) +((-3730 (((-112) $ $) NIL)) (-1786 (((-619 $) $ (-1135)) NIL (|has| |#1| (-540))) (((-619 $) $) NIL (|has| |#1| (-540))) (((-619 $) (-1131 $) (-1135)) NIL (|has| |#1| (-540))) (((-619 $) (-1131 $)) NIL (|has| |#1| (-540))) (((-619 $) (-921 $)) NIL (|has| |#1| (-540)))) (-1262 (($ $ (-1135)) NIL (|has| |#1| (-540))) (($ $) NIL (|has| |#1| (-540))) (($ (-1131 $) (-1135)) NIL (|has| |#1| (-540))) (($ (-1131 $)) NIL (|has| |#1| (-540))) (($ (-921 $)) NIL (|has| |#1| (-540)))) (-3324 (((-112) $) 27 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (-2049 (((-619 (-1135)) $) 351)) (-1884 (((-399 (-1131 $)) $ (-591 $)) NIL (|has| |#1| (-540)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1806 (((-619 (-591 $)) $) NIL)) (-2074 (($ $) 161 (|has| |#1| (-540)))) (-1940 (($ $) 137 (|has| |#1| (-540)))) (-4237 (($ $ (-1056 $)) 222 (|has| |#1| (-540))) (($ $ (-1135)) 218 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) 368) (($ $ (-619 (-591 $)) (-619 $)) 412)) (-4070 (((-410 (-1131 $)) (-1131 $)) 295 (-12 (|has| |#1| (-443)) (|has| |#1| (-540))))) (-1688 (($ $) NIL (|has| |#1| (-540)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-540)))) (-1926 (($ $) NIL (|has| |#1| (-540)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2054 (($ $) 157 (|has| |#1| (-540)))) (-1918 (($ $) 133 (|has| |#1| (-540)))) (-4095 (($ $ (-548)) 72 (|has| |#1| (-540)))) (-2098 (($ $) 165 (|has| |#1| (-540)))) (-1963 (($ $) 141 (|has| |#1| (-540)))) (-3030 (($) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))) CONST)) (-1274 (((-619 $) $ (-1135)) NIL (|has| |#1| (-540))) (((-619 $) $) NIL (|has| |#1| (-540))) (((-619 $) (-1131 $) (-1135)) NIL (|has| |#1| (-540))) (((-619 $) (-1131 $)) NIL (|has| |#1| (-540))) (((-619 $) (-921 $)) NIL (|has| |#1| (-540)))) (-3263 (($ $ (-1135)) NIL (|has| |#1| (-540))) (($ $) NIL (|has| |#1| (-540))) (($ (-1131 $) (-1135)) 124 (|has| |#1| (-540))) (($ (-1131 $)) NIL (|has| |#1| (-540))) (($ (-921 $)) NIL (|has| |#1| (-540)))) (-2441 (((-3 (-591 $) "failed") $) 17) (((-3 (-1135) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-921 |#1|)) "failed") $) NIL (|has| |#1| (-540))) (((-3 (-921 |#1|) "failed") $) NIL (|has| |#1| (-1016))) (((-3 (-399 (-548)) "failed") $) 46 (-1524 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-2375 (((-591 $) $) 11) (((-1135) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-921 |#1|)) $) NIL (|has| |#1| (-540))) (((-921 |#1|) $) NIL (|has| |#1| (-1016))) (((-399 (-548)) $) 306 (-1524 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-1945 (($ $ $) NIL (|has| |#1| (-540)))) (-1608 (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 117 (|has| |#1| (-1016))) (((-663 |#1|) (-663 $)) 107 (|has| |#1| (-1016))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (-2061 (($ $) 89 (|has| |#1| (-540)))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (-1922 (($ $ $) NIL (|has| |#1| (-540)))) (-2481 (($ $ (-1056 $)) 226 (|has| |#1| (-540))) (($ $ (-1135)) 224 (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-540)))) (-1271 (((-112) $) NIL (|has| |#1| (-540)))) (-1478 (($ $ $) 192 (|has| |#1| (-540)))) (-1365 (($) 127 (|has| |#1| (-540)))) (-4206 (($ $ $) 212 (|has| |#1| (-540)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 374 (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 381 (|has| |#1| (-855 (-371))))) (-2142 (($ $) NIL) (($ (-619 $)) NIL)) (-1744 (((-619 (-114)) $) NIL)) (-1402 (((-114) (-114)) 267)) (-2266 (((-112) $) 25 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (-3705 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2002 (($ $) 71 (|has| |#1| (-1016)))) (-2470 (((-1087 |#1| (-591 $)) $) 84 (|has| |#1| (-1016)))) (-4108 (((-112) $) 64 (|has| |#1| (-540)))) (-2154 (($ $ (-548)) NIL (|has| |#1| (-540)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-540)))) (-1724 (((-1131 $) (-591 $)) 268 (|has| $ (-1016)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 $ $) (-591 $)) 408)) (-1753 (((-3 (-591 $) "failed") $) NIL)) (-3496 (($ $) 131 (|has| |#1| (-540)))) (-1613 (($ $) 237 (|has| |#1| (-540)))) (-3553 (($ (-619 $)) NIL (|has| |#1| (-540))) (($ $ $) NIL (|has| |#1| (-540)))) (-2546 (((-1118) $) NIL)) (-1870 (((-619 (-591 $)) $) 49)) (-1409 (($ (-114) $) NIL) (($ (-114) (-619 $)) 413)) (-3939 (((-3 (-619 $) "failed") $) NIL (|has| |#1| (-1075)))) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $) NIL (|has| |#1| (-1016)))) (-3927 (((-3 (-619 $) "failed") $) 416 (|has| |#1| (-25)))) (-2477 (((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3954 (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $) NIL (|has| |#1| (-1075))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114)) NIL (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135)) NIL (|has| |#1| (-1016)))) (-1518 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) 53)) (-2153 (($ $) NIL (-1524 (|has| |#1| (-464)) (|has| |#1| (-540))))) (-4044 (($ $ (-1135)) 241 (|has| |#1| (-540))) (($ $ (-1056 $)) 243 (|has| |#1| (-540)))) (-3926 (((-745) $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 43)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 288 (|has| |#1| (-540)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-540))) (($ $ $) NIL (|has| |#1| (-540)))) (-1734 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-4249 (($ $ (-1135)) 216 (|has| |#1| (-540))) (($ $) 214 (|has| |#1| (-540)))) (-4185 (($ $) 208 (|has| |#1| (-540)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 293 (-12 (|has| |#1| (-443)) (|has| |#1| (-540))))) (-1915 (((-410 $) $) NIL (|has| |#1| (-540)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-540))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-540)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-540)))) (-2458 (($ $) 129 (|has| |#1| (-540)))) (-3718 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) 407) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) 361) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1135)) NIL (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-593 (-524)))) (($ $) NIL (|has| |#1| (-593 (-524)))) (($ $ (-114) $ (-1135)) 349 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-114)) (-619 $) (-1135)) 348 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ $)) NIL (|has| |#1| (-1016)))) (-4077 (((-745) $) NIL (|has| |#1| (-540)))) (-1877 (($ $) 229 (|has| |#1| (-540)))) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-1762 (($ $) NIL) (($ $ $) NIL)) (-1907 (($ $) 239 (|has| |#1| (-540)))) (-1467 (($ $) 190 (|has| |#1| (-540)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-1016))) (($ $ (-1135)) NIL (|has| |#1| (-1016)))) (-1993 (($ $) 73 (|has| |#1| (-540)))) (-2480 (((-1087 |#1| (-591 $)) $) 86 (|has| |#1| (-540)))) (-3287 (($ $) 304 (|has| $ (-1016)))) (-2110 (($ $) 167 (|has| |#1| (-540)))) (-1973 (($ $) 143 (|has| |#1| (-540)))) (-2086 (($ $) 163 (|has| |#1| (-540)))) (-1952 (($ $) 139 (|has| |#1| (-540)))) (-2065 (($ $) 159 (|has| |#1| (-540)))) (-1929 (($ $) 135 (|has| |#1| (-540)))) (-2591 (((-861 (-548)) $) NIL (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| |#1| (-593 (-861 (-371))))) (($ (-410 $)) NIL (|has| |#1| (-540))) (((-524) $) 346 (|has| |#1| (-593 (-524))))) (-2128 (($ $ $) NIL (|has| |#1| (-464)))) (-3652 (($ $ $) NIL (|has| |#1| (-464)))) (-3743 (((-832) $) 406) (($ (-591 $)) 397) (($ (-1135)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-540))) (($ (-48)) 299 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) (($ (-1087 |#1| (-591 $))) 88 (|has| |#1| (-1016))) (($ (-399 |#1|)) NIL (|has| |#1| (-540))) (($ (-921 (-399 |#1|))) NIL (|has| |#1| (-540))) (($ (-399 (-921 (-399 |#1|)))) NIL (|has| |#1| (-540))) (($ (-399 (-921 |#1|))) NIL (|has| |#1| (-540))) (($ (-921 |#1|)) NIL (|has| |#1| (-1016))) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-540)) (|has| |#1| (-1007 (-399 (-548)))))) (($ (-548)) 34 (-1524 (|has| |#1| (-1007 (-548))) (|has| |#1| (-1016))))) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL (|has| |#1| (-1016)))) (-3528 (($ $) NIL) (($ (-619 $)) NIL)) (-3612 (($ $ $) 210 (|has| |#1| (-540)))) (-1513 (($ $ $) 196 (|has| |#1| (-540)))) (-1533 (($ $ $) 200 (|has| |#1| (-540)))) (-1502 (($ $ $) 194 (|has| |#1| (-540)))) (-1523 (($ $ $) 198 (|has| |#1| (-540)))) (-1392 (((-112) (-114)) 9)) (-2145 (($ $) 173 (|has| |#1| (-540)))) (-2006 (($ $) 149 (|has| |#1| (-540)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 169 (|has| |#1| (-540)))) (-1986 (($ $) 145 (|has| |#1| (-540)))) (-2170 (($ $) 177 (|has| |#1| (-540)))) (-2029 (($ $) 153 (|has| |#1| (-540)))) (-2201 (($ (-1135) $) NIL) (($ (-1135) $ $) NIL) (($ (-1135) $ $ $) NIL) (($ (-1135) $ $ $ $) NIL) (($ (-1135) (-619 $)) NIL)) (-1551 (($ $) 204 (|has| |#1| (-540)))) (-1542 (($ $) 202 (|has| |#1| (-540)))) (-4026 (($ $) 179 (|has| |#1| (-540)))) (-2040 (($ $) 155 (|has| |#1| (-540)))) (-2158 (($ $) 175 (|has| |#1| (-540)))) (-2017 (($ $) 151 (|has| |#1| (-540)))) (-2132 (($ $) 171 (|has| |#1| (-540)))) (-1996 (($ $) 147 (|has| |#1| (-540)))) (-1446 (($ $) 182 (|has| |#1| (-540)))) (-3107 (($) 20 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) CONST)) (-1424 (($ $) 233 (|has| |#1| (-540)))) (-3118 (($) 22 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))) CONST)) (-1491 (($ $) 184 (|has| |#1| (-540))) (($ $ $) 186 (|has| |#1| (-540)))) (-1437 (($ $) 231 (|has| |#1| (-540)))) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-1016))) (($ $ (-1135)) NIL (|has| |#1| (-1016)))) (-1413 (($ $) 235 (|has| |#1| (-540)))) (-1456 (($ $ $) 188 (|has| |#1| (-540)))) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 81)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 80)) (-2309 (($ (-1087 |#1| (-591 $)) (-1087 |#1| (-591 $))) 98 (|has| |#1| (-540))) (($ $ $) 42 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540))))) (-2299 (($ $ $) 40 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (($ $) 29 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (-2290 (($ $ $) 38 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (** (($ $ $) 66 (|has| |#1| (-540))) (($ $ (-399 (-548))) 301 (|has| |#1| (-540))) (($ $ (-548)) 76 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540)))) (($ $ (-745)) 74 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075)))) (($ $ (-890)) 78 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (* (($ (-399 (-548)) $) NIL (|has| |#1| (-540))) (($ $ (-399 (-548))) NIL (|has| |#1| (-540))) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))) (($ $ $) 36 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075)))) (($ (-548) $) 32 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (($ (-745) $) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (($ (-890) $) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))))) +(((-308 |#1|) (-13 (-422 |#1|) (-10 -8 (IF (|has| |#1| (-540)) (PROGN (-6 (-29 |#1|)) (-6 (-1157)) (-6 (-157)) (-6 (-605)) (-6 (-1099)) (-15 -2061 ($ $)) (-15 -4108 ((-112) $)) (-15 -4095 ($ $ (-548))) (IF (|has| |#1| (-443)) (PROGN (-15 -4060 ((-410 (-1131 $)) (-1131 $))) (-15 -4070 ((-410 (-1131 $)) (-1131 $)))) |%noBranch|) (IF (|has| |#1| (-1007 (-548))) (-6 (-1007 (-48))) |%noBranch|)) |%noBranch|))) (-821)) (T -308)) +((-2061 (*1 *1 *1) (-12 (-5 *1 (-308 *2)) (-4 *2 (-540)) (-4 *2 (-821)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-308 *3)) (-4 *3 (-540)) (-4 *3 (-821)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-308 *3)) (-4 *3 (-540)) (-4 *3 (-821)))) (-4060 (*1 *2 *3) (-12 (-5 *2 (-410 (-1131 *1))) (-5 *1 (-308 *4)) (-5 *3 (-1131 *1)) (-4 *4 (-443)) (-4 *4 (-540)) (-4 *4 (-821)))) (-4070 (*1 *2 *3) (-12 (-5 *2 (-410 (-1131 *1))) (-5 *1 (-308 *4)) (-5 *3 (-1131 *1)) (-4 *4 (-443)) (-4 *4 (-540)) (-4 *4 (-821))))) +(-13 (-422 |#1|) (-10 -8 (IF (|has| |#1| (-540)) (PROGN (-6 (-29 |#1|)) (-6 (-1157)) (-6 (-157)) (-6 (-605)) (-6 (-1099)) (-15 -2061 ($ $)) (-15 -4108 ((-112) $)) (-15 -4095 ($ $ (-548))) (IF (|has| |#1| (-443)) (PROGN (-15 -4060 ((-410 (-1131 $)) (-1131 $))) (-15 -4070 ((-410 (-1131 $)) (-1131 $)))) |%noBranch|) (IF (|has| |#1| (-1007 (-548))) (-6 (-1007 (-48))) |%noBranch|)) |%noBranch|))) +((-4120 (((-52) |#2| (-114) (-286 |#2|) (-619 |#2|)) 88) (((-52) |#2| (-114) (-286 |#2|) (-286 |#2|)) 84) (((-52) |#2| (-114) (-286 |#2|) |#2|) 86) (((-52) (-286 |#2|) (-114) (-286 |#2|) |#2|) 87) (((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|))) 80) (((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 |#2|)) 82) (((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 |#2|)) 83) (((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|))) 81) (((-52) (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|)) 89) (((-52) (-286 |#2|) (-114) (-286 |#2|) (-286 |#2|)) 85))) +(((-309 |#1| |#2|) (-10 -7 (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) (-286 |#2|))) (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|)))) (-15 -4120 ((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|)))) (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) |#2|)) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) |#2|)) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) (-286 |#2|))) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) (-619 |#2|)))) (-13 (-821) (-540) (-593 (-524))) (-422 |#1|)) (T -309)) +((-4120 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-5 *6 (-619 *3)) (-4 *3 (-422 *7)) (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *7 *3)))) (-4120 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-4 *3 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-4120 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-4 *3 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-4120 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *5)) (-5 *4 (-114)) (-4 *5 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *5)))) (-4120 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-114))) (-5 *6 (-619 (-286 *8))) (-4 *8 (-422 *7)) (-5 *5 (-286 *8)) (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *7 *8)))) (-4120 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-286 *7)) (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) (-4120 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 (-286 *8))) (-5 *4 (-619 (-114))) (-5 *5 (-286 *8)) (-5 *6 (-619 *8)) (-4 *8 (-422 *7)) (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *7 *8)))) (-4120 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-619 (-286 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-286 *7)) (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) (-4120 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-114)) (-5 *5 (-619 *7)) (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) (-4120 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-286 *6)) (-5 *4 (-114)) (-4 *6 (-422 *5)) (-4 *5 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *6))))) +(-10 -7 (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) (-286 |#2|))) (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|)))) (-15 -4120 ((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|)))) (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) |#2|)) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) |#2|)) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) (-286 |#2|))) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) (-619 |#2|)))) +((-4138 (((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548) (-1118)) 46) (((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548)) 47) (((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548) (-1118)) 43) (((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548)) 44)) (-4128 (((-1 (-218) (-218)) (-218)) 45))) +(((-310) (-10 -7 (-15 -4128 ((-1 (-218) (-218)) (-218))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548) (-1118))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548) (-1118))))) (T -310)) +((-4138 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-218)) (-5 *7 (-548)) (-5 *8 (-1118)) (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) (-4138 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-218)) (-5 *7 (-548)) (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) (-4138 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-548)) (-5 *7 (-1118)) (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) (-4138 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-548)) (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) (-4128 (*1 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-310)) (-5 *3 (-218))))) +(-10 -7 (-15 -4128 ((-1 (-218) (-218)) (-218))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548) (-1118))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548) (-1118)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 25)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) NIL) (($ $ (-399 (-548)) (-399 (-548))) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) 20)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) 32)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) NIL) (((-399 (-548)) $ (-399 (-548))) 16)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL) (($ $ (-399 (-548))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) NIL) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-4148 (((-399 (-548)) $) 17)) (-3567 (($ (-1203 |#1| |#2| |#3|)) 11)) (-3352 (((-1203 |#1| |#2| |#3|) $) 12)) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) NIL) (($ $ $) NIL (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2512 (((-399 (-548)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 10)) (-3743 (((-832) $) 38) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) 30)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) NIL)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 27)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 33)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-311 |#1| |#2| |#3|) (-13 (-1199 |#1|) (-766) (-10 -8 (-15 -3567 ($ (-1203 |#1| |#2| |#3|))) (-15 -3352 ((-1203 |#1| |#2| |#3|) $)) (-15 -4148 ((-399 (-548)) $)))) (-13 (-355) (-821)) (-1135) |#1|) (T -311)) +((-3567 (*1 *1 *2) (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-311 *3 *4 *5)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4 *5)) (-5 *1 (-311 *3 *4 *5)) (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-311 *3 *4 *5)) (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3)))) +(-13 (-1199 |#1|) (-766) (-10 -8 (-15 -3567 ($ (-1203 |#1| |#2| |#3|))) (-15 -3352 ((-1203 |#1| |#2| |#3|) $)) (-15 -4148 ((-399 (-548)) $)))) +((-2154 (((-2 (|:| -3352 (-745)) (|:| -1489 |#1|) (|:| |radicand| (-619 |#1|))) (-410 |#1|) (-745)) 24)) (-3496 (((-619 (-2 (|:| -1489 (-745)) (|:| |logand| |#1|))) (-410 |#1|)) 28))) +(((-312 |#1|) (-10 -7 (-15 -2154 ((-2 (|:| -3352 (-745)) (|:| -1489 |#1|) (|:| |radicand| (-619 |#1|))) (-410 |#1|) (-745))) (-15 -3496 ((-619 (-2 (|:| -1489 (-745)) (|:| |logand| |#1|))) (-410 |#1|)))) (-540)) (T -312)) +((-3496 (*1 *2 *3) (-12 (-5 *3 (-410 *4)) (-4 *4 (-540)) (-5 *2 (-619 (-2 (|:| -1489 (-745)) (|:| |logand| *4)))) (-5 *1 (-312 *4)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *5)) (-4 *5 (-540)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *5) (|:| |radicand| (-619 *5)))) (-5 *1 (-312 *5)) (-5 *4 (-745))))) +(-10 -7 (-15 -2154 ((-2 (|:| -3352 (-745)) (|:| -1489 |#1|) (|:| |radicand| (-619 |#1|))) (-410 |#1|) (-745))) (-15 -3496 ((-619 (-2 (|:| -1489 (-745)) (|:| |logand| |#1|))) (-410 |#1|)))) +((-2049 (((-619 |#2|) (-1131 |#4|)) 43)) (-4200 ((|#3| (-548)) 46)) (-4180 (((-1131 |#4|) (-1131 |#3|)) 30)) (-4190 (((-1131 |#4|) (-1131 |#4|) (-548)) 56)) (-4170 (((-1131 |#3|) (-1131 |#4|)) 21)) (-2512 (((-619 (-745)) (-1131 |#4|) (-619 |#2|)) 40)) (-4158 (((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|)) 35))) +(((-313 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 ((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|))) (-15 -2512 ((-619 (-745)) (-1131 |#4|) (-619 |#2|))) (-15 -2049 ((-619 |#2|) (-1131 |#4|))) (-15 -4170 ((-1131 |#3|) (-1131 |#4|))) (-15 -4180 ((-1131 |#4|) (-1131 |#3|))) (-15 -4190 ((-1131 |#4|) (-1131 |#4|) (-548))) (-15 -4200 (|#3| (-548)))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|)) (T -313)) +((-4200 (*1 *2 *3) (-12 (-5 *3 (-548)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1016)) (-5 *1 (-313 *4 *5 *2 *6)) (-4 *6 (-918 *2 *4 *5)))) (-4190 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 *7)) (-5 *3 (-548)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *1 (-313 *4 *5 *6 *7)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-1131 *6)) (-4 *6 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-1131 *7)) (-5 *1 (-313 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) (-5 *1 (-313 *4 *5 *6 *7)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-619 *5)) (-5 *1 (-313 *4 *5 *6 *7)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *8)) (-5 *4 (-619 *6)) (-4 *6 (-821)) (-4 *8 (-918 *7 *5 *6)) (-4 *5 (-767)) (-4 *7 (-1016)) (-5 *2 (-619 (-745))) (-5 *1 (-313 *5 *6 *7 *8)))) (-4158 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 *8)) (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-5 *2 (-1131 *8)) (-5 *1 (-313 *6 *7 *8 *9))))) +(-10 -7 (-15 -4158 ((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|))) (-15 -2512 ((-619 (-745)) (-1131 |#4|) (-619 |#2|))) (-15 -2049 ((-619 |#2|) (-1131 |#4|))) (-15 -4170 ((-1131 |#3|) (-1131 |#4|))) (-15 -4180 ((-1131 |#4|) (-1131 |#3|))) (-15 -4190 ((-1131 |#4|) (-1131 |#4|) (-548))) (-15 -4200 (|#3| (-548)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 14)) (-1680 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-548)))) $) 18)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3224 ((|#1| $ (-548)) NIL)) (-4232 (((-548) $ (-548)) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-1628 (($ (-1 |#1| |#1|) $) NIL)) (-4222 (($ (-1 (-548) (-548)) $) 10)) (-2546 (((-1118) $) NIL)) (-4211 (($ $ $) NIL (|has| (-548) (-766)))) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-1951 (((-548) |#1| $) NIL)) (-3107 (($) 15 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) 21 (|has| |#1| (-821)))) (-2299 (($ $) 11) (($ $ $) 20)) (-2290 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ (-548)) NIL) (($ (-548) |#1|) 19))) +(((-314 |#1|) (-13 (-21) (-692 (-548)) (-315 |#1| (-548)) (-10 -7 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) (-1063)) (T -314)) +NIL +(-13 (-21) (-692 (-548)) (-315 |#1| (-548)) (-10 -7 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-1680 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $) 27)) (-4104 (((-3 $ "failed") $ $) 19)) (-3423 (((-745) $) 28)) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 32)) (-2375 ((|#1| $) 31)) (-3224 ((|#1| $ (-548)) 25)) (-4232 ((|#2| $ (-548)) 26)) (-1628 (($ (-1 |#1| |#1|) $) 22)) (-4222 (($ (-1 |#2| |#2|) $) 23)) (-2546 (((-1118) $) 9)) (-4211 (($ $ $) 21 (|has| |#2| (-766)))) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ |#1|) 33)) (-1951 ((|#2| |#1| $) 24)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2290 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ |#2| |#1|) 29))) +(((-315 |#1| |#2|) (-138) (-1063) (-130)) (T -315)) +((-2290 (*1 *1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-745)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-315 *4 *2)) (-4 *4 (-1063)) (-4 *2 (-130)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-315 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1063)))) (-1951 (*1 *2 *3 *1) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)))) (-4211 (*1 *1 *1 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)) (-4 *3 (-766))))) +(-13 (-130) (-1007 |t#1|) (-10 -8 (-15 -2290 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3423 ((-745) $)) (-15 -1680 ((-619 (-2 (|:| |gen| |t#1|) (|:| -2458 |t#2|))) $)) (-15 -4232 (|t#2| $ (-548))) (-15 -3224 (|t#1| $ (-548))) (-15 -1951 (|t#2| |t#1| $)) (-15 -4222 ($ (-1 |t#2| |t#2|) $)) (-15 -1628 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-766)) (-15 -4211 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1007 |#1|) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-1680 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3224 ((|#1| $ (-548)) NIL)) (-4232 (((-745) $ (-548)) NIL)) (-1628 (($ (-1 |#1| |#1|) $) NIL)) (-4222 (($ (-1 (-745) (-745)) $) NIL)) (-2546 (((-1118) $) NIL)) (-4211 (($ $ $) NIL (|has| (-745) (-766)))) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-1951 (((-745) |#1| $) NIL)) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-745) |#1|) NIL))) +(((-316 |#1|) (-315 |#1| (-745)) (-1063)) (T -316)) +NIL +(-315 |#1| (-745)) +((-4065 (($ $) 53)) (-4256 (($ $ |#2| |#3| $) 14)) (-4267 (($ (-1 |#3| |#3|) $) 33)) (-2164 (((-112) $) 24)) (-2175 ((|#2| $) 26)) (-1900 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3881 ((|#2| $) 49)) (-3852 (((-619 |#2|) $) 36)) (-4243 (($ $ $ (-745)) 20)) (-2309 (($ $ |#2|) 40))) +(((-317 |#1| |#2| |#3|) (-10 -8 (-15 -4065 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4243 (|#1| |#1| |#1| (-745))) (-15 -4256 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4267 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3852 ((-619 |#2|) |#1|)) (-15 -2175 (|#2| |#1|)) (-15 -2164 ((-112) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2309 (|#1| |#1| |#2|))) (-318 |#2| |#3|) (-1016) (-766)) (T -317)) +NIL +(-10 -8 (-15 -4065 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4243 (|#1| |#1| |#1| (-745))) (-15 -4256 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4267 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3852 ((-619 |#2|) |#1|)) (-15 -2175 (|#2| |#1|)) (-15 -2164 ((-112) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2309 (|#1| |#1| |#2|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 88 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 86 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 85)) (-2375 (((-548) $) 89 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 87 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 84)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 73 (|has| |#1| (-443)))) (-4256 (($ $ |#1| |#2| $) 77)) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 80)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| |#2|) 59)) (-3904 ((|#2| $) 79)) (-4267 (($ (-1 |#2| |#2|) $) 78)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 83)) (-2175 ((|#1| $) 82)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-540)))) (-2512 ((|#2| $) 62)) (-3881 ((|#1| $) 74 (|has| |#1| (-443)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45) (($ (-399 (-548))) 55 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548))))))) (-3852 (((-619 |#1|) $) 81)) (-1951 ((|#1| $ |#2|) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 76 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-318 |#1| |#2|) (-138) (-1016) (-766)) (T -318)) +((-2164 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-112)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-619 *3)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-745)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-4267 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-4256 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-4243 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *3 (-169)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-540)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)) (-4 *2 (-443)))) (-4065 (*1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-443))))) +(-13 (-47 |t#1| |t#2|) (-403 |t#1|) (-10 -8 (-15 -2164 ((-112) $)) (-15 -2175 (|t#1| $)) (-15 -3852 ((-619 |t#1|) $)) (-15 -2333 ((-745) $)) (-15 -3904 (|t#2| $)) (-15 -4267 ($ (-1 |t#2| |t#2|) $)) (-15 -4256 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-169)) (-15 -4243 ($ $ $ (-745))) |%noBranch|) (IF (|has| |t#1| (-540)) (-15 -1900 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-443)) (PROGN (-15 -3881 (|t#1| $)) (-15 -4065 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-282) |has| |#1| (-540)) ((-403 |#1|) . T) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-3952 (((-112) (-112)) NIL)) (-2089 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-2969 (($ $) NIL (|has| |#1| (-1063)))) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-3967 (($ $ (-548)) NIL)) (-3977 (((-745) $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2539 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3987 (($ (-619 |#1|)) NIL)) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2668 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-3659 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-319 |#1|) (-13 (-19 |#1|) (-274 |#1|) (-10 -8 (-15 -3987 ($ (-619 |#1|))) (-15 -3977 ((-745) $)) (-15 -3967 ($ $ (-548))) (-15 -3952 ((-112) (-112))))) (-1172)) (T -319)) +((-3987 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-319 *3)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-1172))))) +(-13 (-19 |#1|) (-274 |#1|) (-10 -8 (-15 -3987 ($ (-619 |#1|))) (-15 -3977 ((-745) $)) (-15 -3967 ($ $ (-548))) (-15 -3952 ((-112) (-112))))) +((-2395 (((-112) $) 42)) (-2364 (((-745)) 22)) (-2707 ((|#2| $) 46) (($ $ (-890)) 101)) (-3423 (((-745)) 102)) (-2455 (($ (-1218 |#2|)) 20)) (-2866 (((-112) $) 115)) (-3910 ((|#2| $) 48) (($ $ (-890)) 99)) (-2898 (((-1131 |#2|) $) NIL) (((-1131 $) $ (-890)) 95)) (-4288 (((-1131 |#2|) $) 82)) (-4278 (((-1131 |#2|) $) 79) (((-3 (-1131 |#2|) "failed") $ $) 76)) (-4300 (($ $ (-1131 |#2|)) 53)) (-2373 (((-807 (-890))) 28) (((-890)) 43)) (-3402 (((-133)) 25)) (-2512 (((-807 (-890)) $) 30) (((-890) $) 117)) (-1255 (($) 108)) (-2447 (((-1218 |#2|) $) NIL) (((-663 |#2|) (-1218 $)) 39)) (-4017 (($ $) NIL) (((-3 $ "failed") $) 85)) (-2406 (((-112) $) 41))) +(((-320 |#1| |#2|) (-10 -8 (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -3423 ((-745))) (-15 -4017 (|#1| |#1|)) (-15 -4278 ((-3 (-1131 |#2|) "failed") |#1| |#1|)) (-15 -4278 ((-1131 |#2|) |#1|)) (-15 -4288 ((-1131 |#2|) |#1|)) (-15 -4300 (|#1| |#1| (-1131 |#2|))) (-15 -2866 ((-112) |#1|)) (-15 -1255 (|#1|)) (-15 -2707 (|#1| |#1| (-890))) (-15 -3910 (|#1| |#1| (-890))) (-15 -2898 ((-1131 |#1|) |#1| (-890))) (-15 -2707 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2512 ((-890) |#1|)) (-15 -2373 ((-890))) (-15 -2898 ((-1131 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2364 ((-745))) (-15 -2373 ((-807 (-890)))) (-15 -2512 ((-807 (-890)) |#1|)) (-15 -2395 ((-112) |#1|)) (-15 -2406 ((-112) |#1|)) (-15 -3402 ((-133)))) (-321 |#2|) (-355)) (T -320)) +((-3402 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-133)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-2373 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-807 (-890))) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-2364 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-2373 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-890)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-3423 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4))))) +(-10 -8 (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -3423 ((-745))) (-15 -4017 (|#1| |#1|)) (-15 -4278 ((-3 (-1131 |#2|) "failed") |#1| |#1|)) (-15 -4278 ((-1131 |#2|) |#1|)) (-15 -4288 ((-1131 |#2|) |#1|)) (-15 -4300 (|#1| |#1| (-1131 |#2|))) (-15 -2866 ((-112) |#1|)) (-15 -1255 (|#1|)) (-15 -2707 (|#1| |#1| (-890))) (-15 -3910 (|#1| |#1| (-890))) (-15 -2898 ((-1131 |#1|) |#1| (-890))) (-15 -2707 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2512 ((-890) |#1|)) (-15 -2373 ((-890))) (-15 -2898 ((-1131 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2364 ((-745))) (-15 -2373 ((-807 (-890)))) (-15 -2512 ((-807 (-890)) |#1|)) (-15 -2395 ((-112) |#1|)) (-15 -2406 ((-112) |#1|)) (-15 -3402 ((-133)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-2395 (((-112) $) 91)) (-2364 (((-745)) 87)) (-2707 ((|#1| $) 137) (($ $ (-890)) 134 (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) 119 (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3423 (((-745)) 109 (|has| |#1| (-360)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 98)) (-2375 ((|#1| $) 97)) (-2455 (($ (-1218 |#1|)) 143)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-360)))) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-2545 (($) 106 (|has| |#1| (-360)))) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2771 (($) 121 (|has| |#1| (-360)))) (-3727 (((-112) $) 122 (|has| |#1| (-360)))) (-2208 (($ $ (-745)) 84 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) 83 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) 68)) (-1672 (((-890) $) 124 (|has| |#1| (-360))) (((-807 (-890)) $) 81 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) 30)) (-2887 (($) 132 (|has| |#1| (-360)))) (-2866 (((-112) $) 131 (|has| |#1| (-360)))) (-3910 ((|#1| $) 138) (($ $ (-890)) 135 (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) 110 (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2898 (((-1131 |#1|) $) 142) (((-1131 $) $ (-890)) 136 (|has| |#1| (-360)))) (-2855 (((-890) $) 107 (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) 128 (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) 127 (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) 126 (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) 129 (|has| |#1| (-360)))) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3410 (($) 111 (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) 108 (|has| |#1| (-360)))) (-2384 (((-112) $) 90)) (-3932 (((-1082) $) 10)) (-4160 (($) 130 (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 118 (|has| |#1| (-360)))) (-1915 (((-410 $) $) 71)) (-2373 (((-807 (-890))) 88) (((-890)) 140)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2217 (((-745) $) 123 (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) 82 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) 96)) (-4050 (($ $) 115 (|has| |#1| (-360))) (($ $ (-745)) 113 (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) 89) (((-890) $) 139)) (-3287 (((-1131 |#1|)) 141)) (-3655 (($) 120 (|has| |#1| (-360)))) (-1255 (($) 133 (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) 145) (((-663 |#1|) (-1218 $)) 144)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 117 (|has| |#1| (-360)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ |#1|) 99)) (-4017 (($ $) 116 (|has| |#1| (-360))) (((-3 $ "failed") $) 80 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 28)) (-2877 (((-1218 $)) 147) (((-1218 $) (-890)) 146)) (-3290 (((-112) $ $) 37)) (-2406 (((-112) $) 92)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2354 (($ $) 86 (|has| |#1| (-360))) (($ $ (-745)) 85 (|has| |#1| (-360)))) (-3296 (($ $) 114 (|has| |#1| (-360))) (($ $ (-745)) 112 (|has| |#1| (-360)))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62) (($ $ |#1|) 95)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-321 |#1|) (-138) (-355)) (T -321)) +((-2877 (*1 *2) (-12 (-4 *3 (-355)) (-5 *2 (-1218 *1)) (-4 *1 (-321 *3)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-355)) (-5 *2 (-1218 *1)) (-4 *1 (-321 *4)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1218 *3)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-321 *4)) (-4 *4 (-355)) (-5 *2 (-663 *4)))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-355)) (-4 *1 (-321 *3)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1131 *3)))) (-3287 (*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1131 *3)))) (-2373 (*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-890)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-890)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-355)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-355)))) (-2898 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-4 *4 (-360)) (-4 *4 (-355)) (-5 *2 (-1131 *1)) (-4 *1 (-321 *4)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) (-1255 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) (-2887 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-112)))) (-4160 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) (-4300 (*1 *1 *1 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-360)) (-4 *1 (-321 *3)) (-4 *3 (-355)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-1131 *3)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-1131 *3)))) (-4278 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-1131 *3))))) +(-13 (-1237 |t#1|) (-1007 |t#1|) (-10 -8 (-15 -2877 ((-1218 $))) (-15 -2877 ((-1218 $) (-890))) (-15 -2447 ((-1218 |t#1|) $)) (-15 -2447 ((-663 |t#1|) (-1218 $))) (-15 -2455 ($ (-1218 |t#1|))) (-15 -2898 ((-1131 |t#1|) $)) (-15 -3287 ((-1131 |t#1|))) (-15 -2373 ((-890))) (-15 -2512 ((-890) $)) (-15 -3910 (|t#1| $)) (-15 -2707 (|t#1| $)) (IF (|has| |t#1| (-360)) (PROGN (-6 (-341)) (-15 -2898 ((-1131 $) $ (-890))) (-15 -3910 ($ $ (-890))) (-15 -2707 ($ $ (-890))) (-15 -1255 ($)) (-15 -2887 ($)) (-15 -2866 ((-112) $)) (-15 -4160 ($)) (-15 -4300 ($ $ (-1131 |t#1|))) (-15 -4288 ((-1131 |t#1|) $)) (-15 -4278 ((-1131 |t#1|) $)) (-15 -4278 ((-3 (-1131 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-360)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-226) |has| |#1| (-360)) ((-236) . T) ((-282) . T) ((-299) . T) ((-1237 |#1|) . T) ((-355) . T) ((-394) -1524 (|has| |#1| (-360)) (|has| |#1| (-143))) ((-360) |has| |#1| (-360)) ((-341) |has| |#1| (-360)) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-360)) ((-1176) . T) ((-1225 |#1|) . T)) +((-3730 (((-112) $ $) NIL)) (-1358 (($ (-1134) $) 88)) (-3422 (($) 77)) (-1267 (((-1082) (-1082)) 11)) (-2277 (($) 78)) (-1325 (($) 90) (($ (-308 (-673))) 98) (($ (-308 (-675))) 94) (($ (-308 (-668))) 102) (($ (-308 (-371))) 109) (($ (-308 (-548))) 105) (($ (-308 (-166 (-371)))) 113)) (-1347 (($ (-1134) $) 89)) (-1302 (($ (-619 (-832))) 79)) (-1291 (((-1223) $) 75)) (-1739 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1337 (($ (-1082)) 51)) (-1279 (((-1067) $) 25)) (-1369 (($ (-1056 (-921 (-548))) $) 85) (($ (-1056 (-921 (-548))) (-921 (-548)) $) 86)) (-2099 (($ (-1082)) 87)) (-3997 (($ (-1134) $) 115) (($ (-1134) $ $) 116)) (-3350 (($ (-1135) (-619 (-1135))) 76)) (-1729 (($ (-1118)) 82) (($ (-619 (-1118))) 80)) (-3743 (((-832) $) 118)) (-1887 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-548)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1616 (-112)) (|:| -4056 (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -3094 (-1056 (-921 (-548)))) (|:| |span| (-921 (-548))) (|:| -2286 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 $))) (|:| |commonBranch| (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $) 44)) (-3294 (($ (-1118)) 187)) (-1314 (($ (-619 $)) 114)) (-4173 (($ (-1135) (-1118)) 120) (($ (-1135) (-308 (-675))) 160) (($ (-1135) (-308 (-673))) 161) (($ (-1135) (-308 (-668))) 162) (($ (-1135) (-663 (-675))) 123) (($ (-1135) (-663 (-673))) 126) (($ (-1135) (-663 (-668))) 129) (($ (-1135) (-1218 (-675))) 132) (($ (-1135) (-1218 (-673))) 135) (($ (-1135) (-1218 (-668))) 138) (($ (-1135) (-663 (-308 (-675)))) 141) (($ (-1135) (-663 (-308 (-673)))) 144) (($ (-1135) (-663 (-308 (-668)))) 147) (($ (-1135) (-1218 (-308 (-675)))) 150) (($ (-1135) (-1218 (-308 (-673)))) 153) (($ (-1135) (-1218 (-308 (-668)))) 156) (($ (-1135) (-619 (-921 (-548))) (-308 (-675))) 157) (($ (-1135) (-619 (-921 (-548))) (-308 (-673))) 158) (($ (-1135) (-619 (-921 (-548))) (-308 (-668))) 159) (($ (-1135) (-308 (-548))) 184) (($ (-1135) (-308 (-371))) 185) (($ (-1135) (-308 (-166 (-371)))) 186) (($ (-1135) (-663 (-308 (-548)))) 165) (($ (-1135) (-663 (-308 (-371)))) 168) (($ (-1135) (-663 (-308 (-166 (-371))))) 171) (($ (-1135) (-1218 (-308 (-548)))) 174) (($ (-1135) (-1218 (-308 (-371)))) 177) (($ (-1135) (-1218 (-308 (-166 (-371))))) 180) (($ (-1135) (-619 (-921 (-548))) (-308 (-548))) 181) (($ (-1135) (-619 (-921 (-548))) (-308 (-371))) 182) (($ (-1135) (-619 (-921 (-548))) (-308 (-166 (-371)))) 183)) (-2214 (((-112) $ $) NIL))) +(((-322) (-13 (-1063) (-10 -8 (-15 -3743 ((-832) $)) (-15 -1369 ($ (-1056 (-921 (-548))) $)) (-15 -1369 ($ (-1056 (-921 (-548))) (-921 (-548)) $)) (-15 -1358 ($ (-1134) $)) (-15 -1347 ($ (-1134) $)) (-15 -1337 ($ (-1082))) (-15 -2099 ($ (-1082))) (-15 -1729 ($ (-1118))) (-15 -1729 ($ (-619 (-1118)))) (-15 -3294 ($ (-1118))) (-15 -1325 ($)) (-15 -1325 ($ (-308 (-673)))) (-15 -1325 ($ (-308 (-675)))) (-15 -1325 ($ (-308 (-668)))) (-15 -1325 ($ (-308 (-371)))) (-15 -1325 ($ (-308 (-548)))) (-15 -1325 ($ (-308 (-166 (-371))))) (-15 -3997 ($ (-1134) $)) (-15 -3997 ($ (-1134) $ $)) (-15 -4173 ($ (-1135) (-1118))) (-15 -4173 ($ (-1135) (-308 (-675)))) (-15 -4173 ($ (-1135) (-308 (-673)))) (-15 -4173 ($ (-1135) (-308 (-668)))) (-15 -4173 ($ (-1135) (-663 (-675)))) (-15 -4173 ($ (-1135) (-663 (-673)))) (-15 -4173 ($ (-1135) (-663 (-668)))) (-15 -4173 ($ (-1135) (-1218 (-675)))) (-15 -4173 ($ (-1135) (-1218 (-673)))) (-15 -4173 ($ (-1135) (-1218 (-668)))) (-15 -4173 ($ (-1135) (-663 (-308 (-675))))) (-15 -4173 ($ (-1135) (-663 (-308 (-673))))) (-15 -4173 ($ (-1135) (-663 (-308 (-668))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-675))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-673))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-668))))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-675)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-673)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-668)))) (-15 -4173 ($ (-1135) (-308 (-548)))) (-15 -4173 ($ (-1135) (-308 (-371)))) (-15 -4173 ($ (-1135) (-308 (-166 (-371))))) (-15 -4173 ($ (-1135) (-663 (-308 (-548))))) (-15 -4173 ($ (-1135) (-663 (-308 (-371))))) (-15 -4173 ($ (-1135) (-663 (-308 (-166 (-371)))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-548))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-371))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-166 (-371)))))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-548)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-371)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-166 (-371))))) (-15 -1314 ($ (-619 $))) (-15 -3422 ($)) (-15 -2277 ($)) (-15 -1302 ($ (-619 (-832)))) (-15 -3350 ($ (-1135) (-619 (-1135)))) (-15 -1739 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1887 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-548)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1616 (-112)) (|:| -4056 (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -3094 (-1056 (-921 (-548)))) (|:| |span| (-921 (-548))) (|:| -2286 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 $))) (|:| |commonBranch| (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $)) (-15 -1291 ((-1223) $)) (-15 -1279 ((-1067) $)) (-15 -1267 ((-1082) (-1082)))))) (T -322)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-322)))) (-1369 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 (-921 (-548)))) (-5 *1 (-322)))) (-1369 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1056 (-921 (-548)))) (-5 *3 (-921 (-548))) (-5 *1 (-322)))) (-1358 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) (-1337 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322)))) (-2099 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322)))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-322)))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-322)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-322)))) (-1325 (*1 *1) (-5 *1 (-322))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-673))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-675))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-668))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-166 (-371)))) (-5 *1 (-322)))) (-3997 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) (-3997 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-675))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-673))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-668))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-675))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-673))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-668))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-675))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-673))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-668))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-675)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-673)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-668)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-675)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-673)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-668)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-675))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-673))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-668))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-548))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-371))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-166 (-371)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-548)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-371)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-166 (-371))))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-548)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-371)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-166 (-371))))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-548))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-371))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-166 (-371)))) (-5 *1 (-322)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-5 *1 (-322)))) (-3422 (*1 *1) (-5 *1 (-322))) (-2277 (*1 *1) (-5 *1 (-322))) (-1302 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-322)))) (-3350 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-322)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-322)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-548)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| (-322)) (|:| |elseClause| (-322)))) (|:| |returnBranch| (-2 (|:| -1616 (-112)) (|:| -4056 (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |blockBranch| (-619 (-322))) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -3094 (-1056 (-921 (-548)))) (|:| |span| (-921 (-548))) (|:| -2286 (-322)))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 (-322)))) (|:| |commonBranch| (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832))))) (-5 *1 (-322)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-322)))) (-1279 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-322)))) (-1267 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322))))) +(-13 (-1063) (-10 -8 (-15 -3743 ((-832) $)) (-15 -1369 ($ (-1056 (-921 (-548))) $)) (-15 -1369 ($ (-1056 (-921 (-548))) (-921 (-548)) $)) (-15 -1358 ($ (-1134) $)) (-15 -1347 ($ (-1134) $)) (-15 -1337 ($ (-1082))) (-15 -2099 ($ (-1082))) (-15 -1729 ($ (-1118))) (-15 -1729 ($ (-619 (-1118)))) (-15 -3294 ($ (-1118))) (-15 -1325 ($)) (-15 -1325 ($ (-308 (-673)))) (-15 -1325 ($ (-308 (-675)))) (-15 -1325 ($ (-308 (-668)))) (-15 -1325 ($ (-308 (-371)))) (-15 -1325 ($ (-308 (-548)))) (-15 -1325 ($ (-308 (-166 (-371))))) (-15 -3997 ($ (-1134) $)) (-15 -3997 ($ (-1134) $ $)) (-15 -4173 ($ (-1135) (-1118))) (-15 -4173 ($ (-1135) (-308 (-675)))) (-15 -4173 ($ (-1135) (-308 (-673)))) (-15 -4173 ($ (-1135) (-308 (-668)))) (-15 -4173 ($ (-1135) (-663 (-675)))) (-15 -4173 ($ (-1135) (-663 (-673)))) (-15 -4173 ($ (-1135) (-663 (-668)))) (-15 -4173 ($ (-1135) (-1218 (-675)))) (-15 -4173 ($ (-1135) (-1218 (-673)))) (-15 -4173 ($ (-1135) (-1218 (-668)))) (-15 -4173 ($ (-1135) (-663 (-308 (-675))))) (-15 -4173 ($ (-1135) (-663 (-308 (-673))))) (-15 -4173 ($ (-1135) (-663 (-308 (-668))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-675))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-673))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-668))))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-675)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-673)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-668)))) (-15 -4173 ($ (-1135) (-308 (-548)))) (-15 -4173 ($ (-1135) (-308 (-371)))) (-15 -4173 ($ (-1135) (-308 (-166 (-371))))) (-15 -4173 ($ (-1135) (-663 (-308 (-548))))) (-15 -4173 ($ (-1135) (-663 (-308 (-371))))) (-15 -4173 ($ (-1135) (-663 (-308 (-166 (-371)))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-548))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-371))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-166 (-371)))))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-548)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-371)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-166 (-371))))) (-15 -1314 ($ (-619 $))) (-15 -3422 ($)) (-15 -2277 ($)) (-15 -1302 ($ (-619 (-832)))) (-15 -3350 ($ (-1135) (-619 (-1135)))) (-15 -1739 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1887 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-548)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1616 (-112)) (|:| -4056 (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -3094 (-1056 (-921 (-548)))) (|:| |span| (-921 (-548))) (|:| -2286 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 $))) (|:| |commonBranch| (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $)) (-15 -1291 ((-1223) $)) (-15 -1279 ((-1067) $)) (-15 -1267 ((-1082) (-1082))))) +((-3730 (((-112) $ $) NIL)) (-1380 (((-112) $) 11)) (-1918 (($ |#1|) 8)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1929 (($ |#1|) 9)) (-3743 (((-832) $) 17)) (-4257 ((|#1| $) 12)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 19))) +(((-323 |#1|) (-13 (-821) (-10 -8 (-15 -1918 ($ |#1|)) (-15 -1929 ($ |#1|)) (-15 -1380 ((-112) $)) (-15 -4257 (|#1| $)))) (-821)) (T -323)) +((-1918 (*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) (-1929 (*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-323 *3)) (-4 *3 (-821)))) (-4257 (*1 *2 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821))))) +(-13 (-821) (-10 -8 (-15 -1918 ($ |#1|)) (-15 -1929 ($ |#1|)) (-15 -1380 ((-112) $)) (-15 -4257 (|#1| $)))) +((-1391 (((-322) (-1135) (-921 (-548))) 23)) (-1401 (((-322) (-1135) (-921 (-548))) 27)) (-3820 (((-322) (-1135) (-1056 (-921 (-548))) (-1056 (-921 (-548)))) 26) (((-322) (-1135) (-921 (-548)) (-921 (-548))) 24)) (-1412 (((-322) (-1135) (-921 (-548))) 31))) +(((-324) (-10 -7 (-15 -1391 ((-322) (-1135) (-921 (-548)))) (-15 -3820 ((-322) (-1135) (-921 (-548)) (-921 (-548)))) (-15 -3820 ((-322) (-1135) (-1056 (-921 (-548))) (-1056 (-921 (-548))))) (-15 -1401 ((-322) (-1135) (-921 (-548)))) (-15 -1412 ((-322) (-1135) (-921 (-548)))))) (T -324)) +((-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) (-5 *1 (-324)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) (-5 *1 (-324)))) (-3820 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1056 (-921 (-548)))) (-5 *2 (-322)) (-5 *1 (-324)))) (-3820 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) (-5 *1 (-324)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) (-5 *1 (-324))))) +(-10 -7 (-15 -1391 ((-322) (-1135) (-921 (-548)))) (-15 -3820 ((-322) (-1135) (-921 (-548)) (-921 (-548)))) (-15 -3820 ((-322) (-1135) (-1056 (-921 (-548))) (-1056 (-921 (-548))))) (-15 -1401 ((-322) (-1135) (-921 (-548)))) (-15 -1412 ((-322) (-1135) (-921 (-548))))) +((-2540 (((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)) 33))) +(((-325 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2540 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|) (-355) (-1194 |#5|) (-1194 (-399 |#6|)) (-334 |#5| |#6| |#7|)) (T -325)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-355)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *9 (-355)) (-4 *10 (-1194 *9)) (-4 *11 (-1194 (-399 *10))) (-5 *2 (-328 *9 *10 *11 *12)) (-5 *1 (-325 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-334 *9 *10 *11))))) +(-10 -7 (-15 -2540 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) +((-1447 (((-112) $) 14))) +(((-326 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1447 ((-112) |#1|))) (-327 |#2| |#3| |#4| |#5|) (-355) (-1194 |#2|) (-1194 (-399 |#3|)) (-334 |#2| |#3| |#4|)) (T -326)) +NIL +(-10 -8 (-15 -1447 ((-112) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2061 (($ $) 26)) (-1447 (((-112) $) 25)) (-2546 (((-1118) $) 9)) (-3778 (((-405 |#2| (-399 |#2|) |#3| |#4|) $) 32)) (-3932 (((-1082) $) 10)) (-4160 (((-3 |#4| "failed") $) 24)) (-1457 (($ (-405 |#2| (-399 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-548)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3642 (((-2 (|:| -3514 (-405 |#2| (-399 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20))) +(((-327 |#1| |#2| |#3| |#4|) (-138) (-355) (-1194 |t#1|) (-1194 (-399 |t#2|)) (-334 |t#1| |t#2| |t#3|)) (T -327)) +((-3778 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-405 *4 (-399 *4) *5 *6)))) (-1457 (*1 *1 *2) (-12 (-5 *2 (-405 *4 (-399 *4) *5 *6)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-4 *3 (-355)) (-4 *1 (-327 *3 *4 *5 *6)))) (-1457 (*1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *1 (-327 *3 *4 *5 *2)) (-4 *2 (-334 *3 *4 *5)))) (-1457 (*1 *1 *2 *2) (-12 (-4 *2 (-355)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))) (-4 *1 (-327 *2 *3 *4 *5)) (-4 *5 (-334 *2 *3 *4)))) (-1457 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-548)) (-4 *2 (-355)) (-4 *4 (-1194 *2)) (-4 *5 (-1194 (-399 *4))) (-4 *1 (-327 *2 *4 *5 *6)) (-4 *6 (-334 *2 *4 *5)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-2 (|:| -3514 (-405 *4 (-399 *4) *5 *6)) (|:| |principalPart| *6))))) (-2061 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3 *4 *5)) (-4 *2 (-355)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))) (-4 *5 (-334 *2 *3 *4)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-112)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *1 (-327 *3 *4 *5 *2)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *2 (-334 *3 *4 *5)))) (-1457 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-355)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-4 *1 (-327 *4 *3 *5 *2)) (-4 *2 (-334 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3778 ((-405 |t#2| (-399 |t#2|) |t#3| |t#4|) $)) (-15 -1457 ($ (-405 |t#2| (-399 |t#2|) |t#3| |t#4|))) (-15 -1457 ($ |t#4|)) (-15 -1457 ($ |t#1| |t#1|)) (-15 -1457 ($ |t#1| |t#1| (-548))) (-15 -3642 ((-2 (|:| -3514 (-405 |t#2| (-399 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2061 ($ $)) (-15 -1447 ((-112) $)) (-15 -4160 ((-3 |t#4| "failed") $)) (-15 -1457 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2061 (($ $) 33)) (-1447 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-1423 (((-1218 |#4|) $) 125)) (-3778 (((-405 |#2| (-399 |#2|) |#3| |#4|) $) 31)) (-3932 (((-1082) $) NIL)) (-4160 (((-3 |#4| "failed") $) 36)) (-1436 (((-1218 |#4|) $) 118)) (-1457 (($ (-405 |#2| (-399 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-548)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3642 (((-2 (|:| -3514 (-405 |#2| (-399 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3743 (((-832) $) 17)) (-3107 (($) 14 T CONST)) (-2214 (((-112) $ $) 20)) (-2299 (($ $) 27) (($ $ $) NIL)) (-2290 (($ $ $) 25)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 23))) +(((-328 |#1| |#2| |#3| |#4|) (-13 (-327 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1436 ((-1218 |#4|) $)) (-15 -1423 ((-1218 |#4|) $)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -328)) +((-1436 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-1218 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-334 *3 *4 *5)))) (-1423 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-1218 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-334 *3 *4 *5))))) +(-13 (-327 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1436 ((-1218 |#4|) $)) (-15 -1423 ((-1218 |#4|) $)))) +((-2460 (($ $ (-1135) |#2|) NIL) (($ $ (-619 (-1135)) (-619 |#2|)) 20) (($ $ (-619 (-286 |#2|))) 15) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-619 |#2|) (-619 |#2|)) NIL)) (-3171 (($ $ |#2|) 11))) +(((-329 |#1| |#2|) (-10 -8 (-15 -3171 (|#1| |#1| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 |#2|))) (-15 -2460 (|#1| |#1| (-1135) |#2|))) (-330 |#2|) (-1063)) (T -329)) +NIL +(-10 -8 (-15 -3171 (|#1| |#1| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 |#2|))) (-15 -2460 (|#1| |#1| (-1135) |#2|))) +((-2540 (($ (-1 |#1| |#1|) $) 6)) (-2460 (($ $ (-1135) |#1|) 17 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 16 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-619 (-286 |#1|))) 15 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 14 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-301 |#1|))) (($ $ (-619 |#1|) (-619 |#1|)) 12 (|has| |#1| (-301 |#1|)))) (-3171 (($ $ |#1|) 11 (|has| |#1| (-278 |#1| |#1|))))) +(((-330 |#1|) (-138) (-1063)) (T -330)) +((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3)) (-4 *3 (-1063))))) +(-13 (-10 -8 (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-278 |t#1| |t#1|)) (-6 (-278 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-301 |t#1|)) (-6 (-301 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-504 (-1135) |t#1|)) (-6 (-504 (-1135) |t#1|)) |%noBranch|))) +(((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1135)) $) NIL)) (-1468 (((-112)) 91) (((-112) (-112)) 92)) (-1806 (((-619 (-591 $)) $) NIL)) (-2074 (($ $) NIL)) (-1940 (($ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL)) (-1926 (($ $) NIL)) (-2054 (($ $) NIL)) (-1918 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-591 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-308 |#3|)) 71) (((-3 $ "failed") (-1135)) 97) (((-3 $ "failed") (-308 (-548))) 59 (|has| |#3| (-1007 (-548)))) (((-3 $ "failed") (-399 (-921 (-548)))) 65 (|has| |#3| (-1007 (-548)))) (((-3 $ "failed") (-921 (-548))) 60 (|has| |#3| (-1007 (-548)))) (((-3 $ "failed") (-308 (-371))) 89 (|has| |#3| (-1007 (-371)))) (((-3 $ "failed") (-399 (-921 (-371)))) 83 (|has| |#3| (-1007 (-371)))) (((-3 $ "failed") (-921 (-371))) 78 (|has| |#3| (-1007 (-371))))) (-2375 (((-591 $) $) NIL) ((|#3| $) NIL) (($ (-308 |#3|)) 72) (($ (-1135)) 98) (($ (-308 (-548))) 61 (|has| |#3| (-1007 (-548)))) (($ (-399 (-921 (-548)))) 66 (|has| |#3| (-1007 (-548)))) (($ (-921 (-548))) 62 (|has| |#3| (-1007 (-548)))) (($ (-308 (-371))) 90 (|has| |#3| (-1007 (-371)))) (($ (-399 (-921 (-371)))) 84 (|has| |#3| (-1007 (-371)))) (($ (-921 (-371))) 80 (|has| |#3| (-1007 (-371))))) (-3859 (((-3 $ "failed") $) NIL)) (-1365 (($) 10)) (-2142 (($ $) NIL) (($ (-619 $)) NIL)) (-1744 (((-619 (-114)) $) NIL)) (-1402 (((-114) (-114)) NIL)) (-2266 (((-112) $) NIL)) (-3705 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-1724 (((-1131 $) (-591 $)) NIL (|has| $ (-1016)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 $ $) (-591 $)) NIL)) (-1753 (((-3 (-591 $) "failed") $) NIL)) (-2133 (($ $) 94)) (-3496 (($ $) NIL)) (-2546 (((-1118) $) NIL)) (-1870 (((-619 (-591 $)) $) NIL)) (-1409 (($ (-114) $) 93) (($ (-114) (-619 $)) NIL)) (-1518 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-3926 (((-745) $) NIL)) (-3932 (((-1082) $) NIL)) (-1734 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-2458 (($ $) NIL)) (-3718 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-1762 (($ $) NIL) (($ $ $) NIL)) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL)) (-3287 (($ $) NIL (|has| $ (-1016)))) (-2065 (($ $) NIL)) (-1929 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-591 $)) NIL) (($ |#3|) NIL) (($ (-548)) NIL) (((-308 |#3|) $) 96)) (-3835 (((-745)) NIL)) (-3528 (($ $) NIL) (($ (-619 $)) NIL)) (-1392 (((-112) (-114)) NIL)) (-2006 (($ $) NIL)) (-1986 (($ $) NIL)) (-1996 (($ $) NIL)) (-1446 (($ $) NIL)) (-3107 (($) 95 T CONST)) (-3118 (($) 24 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) +(((-331 |#1| |#2| |#3|) (-13 (-294) (-38 |#3|) (-1007 |#3|) (-869 (-1135)) (-10 -8 (-15 -2375 ($ (-308 |#3|))) (-15 -2441 ((-3 $ "failed") (-308 |#3|))) (-15 -2375 ($ (-1135))) (-15 -2441 ((-3 $ "failed") (-1135))) (-15 -3743 ((-308 |#3|) $)) (IF (|has| |#3| (-1007 (-548))) (PROGN (-15 -2375 ($ (-308 (-548)))) (-15 -2441 ((-3 $ "failed") (-308 (-548)))) (-15 -2375 ($ (-399 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-548))))) (-15 -2375 ($ (-921 (-548)))) (-15 -2441 ((-3 $ "failed") (-921 (-548))))) |%noBranch|) (IF (|has| |#3| (-1007 (-371))) (PROGN (-15 -2375 ($ (-308 (-371)))) (-15 -2441 ((-3 $ "failed") (-308 (-371)))) (-15 -2375 ($ (-399 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-371))))) (-15 -2375 ($ (-921 (-371)))) (-15 -2441 ((-3 $ "failed") (-921 (-371))))) |%noBranch|) (-15 -1446 ($ $)) (-15 -1926 ($ $)) (-15 -2458 ($ $)) (-15 -3496 ($ $)) (-15 -2133 ($ $)) (-15 -1918 ($ $)) (-15 -1929 ($ $)) (-15 -1940 ($ $)) (-15 -1986 ($ $)) (-15 -1996 ($ $)) (-15 -2006 ($ $)) (-15 -2054 ($ $)) (-15 -2065 ($ $)) (-15 -2074 ($ $)) (-15 -1365 ($)) (-15 -2049 ((-619 (-1135)) $)) (-15 -1468 ((-112))) (-15 -1468 ((-112) (-112))))) (-619 (-1135)) (-619 (-1135)) (-379)) (T -331)) +((-2375 (*1 *1 *2) (-12 (-5 *2 (-308 *5)) (-4 *5 (-379)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 *5)) (-4 *5 (-379)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-379)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-308 *5)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-548))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-548)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 (-921 (-548)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-548))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-548))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-371))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-371)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 (-921 (-371)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-371))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-371))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-1446 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1926 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2458 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-3496 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2133 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1918 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1929 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1940 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1986 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1996 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2006 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2054 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2065 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2074 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1365 (*1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-331 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-379)))) (-1468 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379))))) +(-13 (-294) (-38 |#3|) (-1007 |#3|) (-869 (-1135)) (-10 -8 (-15 -2375 ($ (-308 |#3|))) (-15 -2441 ((-3 $ "failed") (-308 |#3|))) (-15 -2375 ($ (-1135))) (-15 -2441 ((-3 $ "failed") (-1135))) (-15 -3743 ((-308 |#3|) $)) (IF (|has| |#3| (-1007 (-548))) (PROGN (-15 -2375 ($ (-308 (-548)))) (-15 -2441 ((-3 $ "failed") (-308 (-548)))) (-15 -2375 ($ (-399 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-548))))) (-15 -2375 ($ (-921 (-548)))) (-15 -2441 ((-3 $ "failed") (-921 (-548))))) |%noBranch|) (IF (|has| |#3| (-1007 (-371))) (PROGN (-15 -2375 ($ (-308 (-371)))) (-15 -2441 ((-3 $ "failed") (-308 (-371)))) (-15 -2375 ($ (-399 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-371))))) (-15 -2375 ($ (-921 (-371)))) (-15 -2441 ((-3 $ "failed") (-921 (-371))))) |%noBranch|) (-15 -1446 ($ $)) (-15 -1926 ($ $)) (-15 -2458 ($ $)) (-15 -3496 ($ $)) (-15 -2133 ($ $)) (-15 -1918 ($ $)) (-15 -1929 ($ $)) (-15 -1940 ($ $)) (-15 -1986 ($ $)) (-15 -1996 ($ $)) (-15 -2006 ($ $)) (-15 -2054 ($ $)) (-15 -2065 ($ $)) (-15 -2074 ($ $)) (-15 -1365 ($)) (-15 -2049 ((-619 (-1135)) $)) (-15 -1468 ((-112))) (-15 -1468 ((-112) (-112))))) +((-2540 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2540 (|#8| (-1 |#5| |#1|) |#4|))) (-1176) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|) (-1176) (-1194 |#5|) (-1194 (-399 |#6|)) (-334 |#5| |#6| |#7|)) (T -332)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1176)) (-4 *8 (-1176)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *9 (-1194 *8)) (-4 *2 (-334 *8 *9 *10)) (-5 *1 (-332 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-334 *5 *6 *7)) (-4 *10 (-1194 (-399 *9)))))) +(-10 -7 (-15 -2540 (|#8| (-1 |#5| |#1|) |#4|))) +((-1562 (((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) $) 38)) (-2455 (($ (-1218 (-399 |#3|)) (-1218 $)) NIL) (($ (-1218 (-399 |#3|))) NIL) (($ (-1218 |#3|) |#3|) 161)) (-3409 (((-1218 $) (-1218 $)) 145)) (-1479 (((-619 (-619 |#2|))) 119)) (-3542 (((-112) |#2| |#2|) 73)) (-4065 (($ $) 139)) (-1400 (((-745)) 31)) (-3421 (((-1218 $) (-1218 $)) 198)) (-1492 (((-619 (-921 |#2|)) (-1135)) 110)) (-3451 (((-112) $) 158)) (-3441 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1515 (((-3 |#3| "failed")) 50)) (-3564 (((-745)) 170)) (-3171 ((|#2| $ |#2| |#2|) 132)) (-1525 (((-3 |#3| "failed")) 68)) (-4050 (($ $ (-1 (-399 |#3|) (-399 |#3|)) (-745)) NIL) (($ $ (-1 (-399 |#3|) (-399 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3433 (((-1218 $) (-1218 $)) 151)) (-1503 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3554 (((-112)) 33))) +(((-333 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1479 ((-619 (-619 |#2|)))) (-15 -1492 ((-619 (-921 |#2|)) (-1135))) (-15 -1503 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1515 ((-3 |#3| "failed"))) (-15 -1525 ((-3 |#3| "failed"))) (-15 -3171 (|#2| |#1| |#2| |#2|)) (-15 -4065 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3441 ((-112) |#1| |#3|)) (-15 -3441 ((-112) |#1| |#2|)) (-15 -2455 (|#1| (-1218 |#3|) |#3|)) (-15 -1562 ((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3409 ((-1218 |#1|) (-1218 |#1|))) (-15 -3421 ((-1218 |#1|) (-1218 |#1|))) (-15 -3433 ((-1218 |#1|) (-1218 |#1|))) (-15 -3441 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3542 ((-112) |#2| |#2|)) (-15 -3554 ((-112))) (-15 -3564 ((-745))) (-15 -1400 ((-745))) (-15 -4050 (|#1| |#1| (-1 (-399 |#3|) (-399 |#3|)))) (-15 -4050 (|#1| |#1| (-1 (-399 |#3|) (-399 |#3|)) (-745))) (-15 -2455 (|#1| (-1218 (-399 |#3|)))) (-15 -2455 (|#1| (-1218 (-399 |#3|)) (-1218 |#1|)))) (-334 |#2| |#3| |#4|) (-1176) (-1194 |#2|) (-1194 (-399 |#3|))) (T -333)) +((-1400 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-745)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-3564 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-745)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-3554 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-112)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-3542 (*1 *2 *3 *3) (-12 (-4 *3 (-1176)) (-4 *5 (-1194 *3)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-112)) (-5 *1 (-333 *4 *3 *5 *6)) (-4 *4 (-334 *3 *5 *6)))) (-1525 (*1 *2) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-333 *3 *4 *2 *5)) (-4 *3 (-334 *4 *2 *5)))) (-1515 (*1 *2) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-333 *3 *4 *2 *5)) (-4 *3 (-334 *4 *2 *5)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-5 *2 (-619 (-921 *5))) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *4 (-334 *5 *6 *7)))) (-1479 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-619 (-619 *4))) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6))))) +(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1479 ((-619 (-619 |#2|)))) (-15 -1492 ((-619 (-921 |#2|)) (-1135))) (-15 -1503 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1515 ((-3 |#3| "failed"))) (-15 -1525 ((-3 |#3| "failed"))) (-15 -3171 (|#2| |#1| |#2| |#2|)) (-15 -4065 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3441 ((-112) |#1| |#3|)) (-15 -3441 ((-112) |#1| |#2|)) (-15 -2455 (|#1| (-1218 |#3|) |#3|)) (-15 -1562 ((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3409 ((-1218 |#1|) (-1218 |#1|))) (-15 -3421 ((-1218 |#1|) (-1218 |#1|))) (-15 -3433 ((-1218 |#1|) (-1218 |#1|))) (-15 -3441 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3542 ((-112) |#2| |#2|)) (-15 -3554 ((-112))) (-15 -3564 ((-745))) (-15 -1400 ((-745))) (-15 -4050 (|#1| |#1| (-1 (-399 |#3|) (-399 |#3|)))) (-15 -4050 (|#1| |#1| (-1 (-399 |#3|) (-399 |#3|)) (-745))) (-15 -2455 (|#1| (-1218 (-399 |#3|)))) (-15 -2455 (|#1| (-1218 (-399 |#3|)) (-1218 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-1562 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 193)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 91 (|has| (-399 |#2|) (-355)))) (-3303 (($ $) 92 (|has| (-399 |#2|) (-355)))) (-3279 (((-112) $) 94 (|has| (-399 |#2|) (-355)))) (-2350 (((-663 (-399 |#2|)) (-1218 $)) 44) (((-663 (-399 |#2|))) 59)) (-2707 (((-399 |#2|) $) 50)) (-3667 (((-1145 (-890) (-745)) (-548)) 144 (|has| (-399 |#2|) (-341)))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 111 (|has| (-399 |#2|) (-355)))) (-2634 (((-410 $) $) 112 (|has| (-399 |#2|) (-355)))) (-4087 (((-112) $ $) 102 (|has| (-399 |#2|) (-355)))) (-3423 (((-745)) 85 (|has| (-399 |#2|) (-360)))) (-3509 (((-112)) 210)) (-3497 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 166 (|has| (-399 |#2|) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 164 (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-3 (-399 |#2|) "failed") $) 163)) (-2375 (((-548) $) 167 (|has| (-399 |#2|) (-1007 (-548)))) (((-399 (-548)) $) 165 (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-399 |#2|) $) 162)) (-2455 (($ (-1218 (-399 |#2|)) (-1218 $)) 46) (($ (-1218 (-399 |#2|))) 62) (($ (-1218 |#2|) |#2|) 192)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-399 |#2|) (-341)))) (-1945 (($ $ $) 106 (|has| (-399 |#2|) (-355)))) (-2341 (((-663 (-399 |#2|)) $ (-1218 $)) 51) (((-663 (-399 |#2|)) $) 57)) (-1608 (((-663 (-548)) (-663 $)) 161 (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 160 (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-399 |#2|))) (|:| |vec| (-1218 (-399 |#2|)))) (-663 $) (-1218 $)) 159) (((-663 (-399 |#2|)) (-663 $)) 158)) (-3409 (((-1218 $) (-1218 $)) 198)) (-2061 (($ |#3|) 155) (((-3 $ "failed") (-399 |#3|)) 152 (|has| (-399 |#2|) (-355)))) (-3859 (((-3 $ "failed") $) 32)) (-1479 (((-619 (-619 |#1|))) 179 (|has| |#1| (-360)))) (-3542 (((-112) |#1| |#1|) 214)) (-2103 (((-890)) 52)) (-2545 (($) 88 (|has| (-399 |#2|) (-360)))) (-3485 (((-112)) 207)) (-3473 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-1922 (($ $ $) 105 (|has| (-399 |#2|) (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 100 (|has| (-399 |#2|) (-355)))) (-4065 (($ $) 185)) (-2771 (($) 146 (|has| (-399 |#2|) (-341)))) (-3727 (((-112) $) 147 (|has| (-399 |#2|) (-341)))) (-2208 (($ $ (-745)) 138 (|has| (-399 |#2|) (-341))) (($ $) 137 (|has| (-399 |#2|) (-341)))) (-1271 (((-112) $) 113 (|has| (-399 |#2|) (-355)))) (-1672 (((-890) $) 149 (|has| (-399 |#2|) (-341))) (((-807 (-890)) $) 135 (|has| (-399 |#2|) (-341)))) (-2266 (((-112) $) 30)) (-1400 (((-745)) 217)) (-3421 (((-1218 $) (-1218 $)) 199)) (-3910 (((-399 |#2|) $) 49)) (-1492 (((-619 (-921 |#1|)) (-1135)) 180 (|has| |#1| (-355)))) (-3725 (((-3 $ "failed") $) 139 (|has| (-399 |#2|) (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| (-399 |#2|) (-355)))) (-2898 ((|#3| $) 42 (|has| (-399 |#2|) (-355)))) (-2855 (((-890) $) 87 (|has| (-399 |#2|) (-360)))) (-2050 ((|#3| $) 153)) (-3553 (($ (-619 $)) 98 (|has| (-399 |#2|) (-355))) (($ $ $) 97 (|has| (-399 |#2|) (-355)))) (-2546 (((-1118) $) 9)) (-3349 (((-663 (-399 |#2|))) 194)) (-3383 (((-663 (-399 |#2|))) 196)) (-2153 (($ $) 114 (|has| (-399 |#2|) (-355)))) (-1544 (($ (-1218 |#2|) |#2|) 190)) (-3365 (((-663 (-399 |#2|))) 195)) (-3396 (((-663 (-399 |#2|))) 197)) (-1535 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1553 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 191)) (-3463 (((-1218 $)) 203)) (-3478 (((-1218 $)) 204)) (-3451 (((-112) $) 202)) (-3441 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3410 (($) 140 (|has| (-399 |#2|) (-341)) CONST)) (-3337 (($ (-890)) 86 (|has| (-399 |#2|) (-360)))) (-1515 (((-3 |#2| "failed")) 182)) (-3932 (((-1082) $) 10)) (-3564 (((-745)) 216)) (-4160 (($) 157)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 99 (|has| (-399 |#2|) (-355)))) (-3587 (($ (-619 $)) 96 (|has| (-399 |#2|) (-355))) (($ $ $) 95 (|has| (-399 |#2|) (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 143 (|has| (-399 |#2|) (-341)))) (-1915 (((-410 $) $) 110 (|has| (-399 |#2|) (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-399 |#2|) (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 107 (|has| (-399 |#2|) (-355)))) (-1900 (((-3 $ "failed") $ $) 90 (|has| (-399 |#2|) (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| (-399 |#2|) (-355)))) (-4077 (((-745) $) 103 (|has| (-399 |#2|) (-355)))) (-3171 ((|#1| $ |#1| |#1|) 184)) (-1525 (((-3 |#2| "failed")) 183)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 104 (|has| (-399 |#2|) (-355)))) (-1566 (((-399 |#2|) (-1218 $)) 45) (((-399 |#2|)) 58)) (-2217 (((-745) $) 148 (|has| (-399 |#2|) (-341))) (((-3 (-745) "failed") $ $) 136 (|has| (-399 |#2|) (-341)))) (-4050 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) 120 (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) 119 (|has| (-399 |#2|) (-355))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-619 (-1135)) (-619 (-745))) 127 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-1135) (-745)) 128 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-619 (-1135))) 129 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-1135)) 130 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-745)) 132 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-226))) (-1723 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) 134 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-226))) (-1723 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2257 (((-663 (-399 |#2|)) (-1218 $) (-1 (-399 |#2|) (-399 |#2|))) 151 (|has| (-399 |#2|) (-355)))) (-3287 ((|#3|) 156)) (-3655 (($) 145 (|has| (-399 |#2|) (-341)))) (-2447 (((-1218 (-399 |#2|)) $ (-1218 $)) 48) (((-663 (-399 |#2|)) (-1218 $) (-1218 $)) 47) (((-1218 (-399 |#2|)) $) 64) (((-663 (-399 |#2|)) (-1218 $)) 63)) (-2591 (((-1218 (-399 |#2|)) $) 61) (($ (-1218 (-399 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 142 (|has| (-399 |#2|) (-341)))) (-3433 (((-1218 $) (-1218 $)) 200)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 |#2|)) 35) (($ (-399 (-548))) 84 (-1524 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-1007 (-399 (-548)))))) (($ $) 89 (|has| (-399 |#2|) (-355)))) (-4017 (($ $) 141 (|has| (-399 |#2|) (-341))) (((-3 $ "failed") $) 41 (|has| (-399 |#2|) (-143)))) (-3780 ((|#3| $) 43)) (-3835 (((-745)) 28)) (-3531 (((-112)) 213)) (-3518 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2877 (((-1218 $)) 65)) (-3290 (((-112) $ $) 93 (|has| (-399 |#2|) (-355)))) (-1503 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-3554 (((-112)) 215)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) 122 (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) 121 (|has| (-399 |#2|) (-355))) (($ $ (-619 (-1135)) (-619 (-745))) 123 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-1135) (-745)) 124 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-619 (-1135))) 125 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-1135)) 126 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-745)) 131 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-226))) (-1723 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) 133 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-226))) (-1723 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 118 (|has| (-399 |#2|) (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 115 (|has| (-399 |#2|) (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 |#2|)) 37) (($ (-399 |#2|) $) 36) (($ (-399 (-548)) $) 117 (|has| (-399 |#2|) (-355))) (($ $ (-399 (-548))) 116 (|has| (-399 |#2|) (-355))))) +(((-334 |#1| |#2| |#3|) (-138) (-1176) (-1194 |t#1|) (-1194 (-399 |t#2|))) (T -334)) +((-1400 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-745)))) (-3564 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-745)))) (-3554 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3542 (*1 *2 *3 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3531 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3518 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3518 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) (-3509 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3497 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3497 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) (-3485 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3473 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3473 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) (-3478 (*1 *2) (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)))) (-3463 (*1 *2) (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3433 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) (-3396 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4))))) (-3383 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4))))) (-3365 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4))))) (-3349 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4))))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4))))) (-2455 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1194 (-399 *3))))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4))))) (-1544 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1194 (-399 *3))))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-2 (|:| |num| (-663 *5)) (|:| |den| *5))))) (-3441 (*1 *2 *1 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3441 (*1 *2 *1 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) (-4065 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))))) (-3171 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))))) (-1525 (*1 *2) (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1176)) (-4 *4 (-1194 (-399 *2))) (-4 *2 (-1194 *3)))) (-1515 (*1 *2) (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1176)) (-4 *4 (-1194 (-399 *2))) (-4 *2 (-1194 *3)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1176)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-334 *4 *5 *6)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-4 *4 (-355)) (-5 *2 (-619 (-921 *4))))) (-1479 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *3 (-360)) (-5 *2 (-619 (-619 *3)))))) +(-13 (-699 (-399 |t#2|) |t#3|) (-10 -8 (-15 -1400 ((-745))) (-15 -3564 ((-745))) (-15 -3554 ((-112))) (-15 -3542 ((-112) |t#1| |t#1|)) (-15 -3531 ((-112))) (-15 -3518 ((-112) |t#1|)) (-15 -3518 ((-112) |t#2|)) (-15 -3509 ((-112))) (-15 -3497 ((-112) |t#1|)) (-15 -3497 ((-112) |t#2|)) (-15 -3485 ((-112))) (-15 -3473 ((-112) |t#1|)) (-15 -3473 ((-112) |t#2|)) (-15 -3478 ((-1218 $))) (-15 -3463 ((-1218 $))) (-15 -3451 ((-112) $)) (-15 -3441 ((-112) $)) (-15 -3433 ((-1218 $) (-1218 $))) (-15 -3421 ((-1218 $) (-1218 $))) (-15 -3409 ((-1218 $) (-1218 $))) (-15 -3396 ((-663 (-399 |t#2|)))) (-15 -3383 ((-663 (-399 |t#2|)))) (-15 -3365 ((-663 (-399 |t#2|)))) (-15 -3349 ((-663 (-399 |t#2|)))) (-15 -1562 ((-2 (|:| |num| (-1218 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2455 ($ (-1218 |t#2|) |t#2|)) (-15 -1553 ((-2 (|:| |num| (-1218 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1544 ($ (-1218 |t#2|) |t#2|)) (-15 -1535 ((-2 (|:| |num| (-663 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3441 ((-112) $ |t#1|)) (-15 -3441 ((-112) $ |t#2|)) (-15 -4050 ($ $ (-1 |t#2| |t#2|))) (-15 -4065 ($ $)) (-15 -3171 (|t#1| $ |t#1| |t#1|)) (-15 -1525 ((-3 |t#2| "failed"))) (-15 -1515 ((-3 |t#2| "failed"))) (-15 -1503 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-355)) (-15 -1492 ((-619 (-921 |t#1|)) (-1135))) |%noBranch|) (IF (|has| |t#1| (-360)) (-15 -1479 ((-619 (-619 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-38 #1=(-399 |#2|)) . T) ((-38 $) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-101) . T) ((-111 #0# #0#) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-143))) ((-145) |has| (-399 |#2|) (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 |#3|) . T) ((-224 #1#) |has| (-399 |#2|) (-355)) ((-226) -1524 (|has| (-399 |#2|) (-341)) (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355)))) ((-236) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-282) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-299) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-355) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-394) |has| (-399 |#2|) (-341)) ((-360) -1524 (|has| (-399 |#2|) (-360)) (|has| (-399 |#2|) (-341))) ((-341) |has| (-399 |#2|) (-341)) ((-362 #1# |#3|) . T) ((-401 #1# |#3|) . T) ((-369 #1#) . T) ((-403 #1#) . T) ((-443) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-540) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-622 #0#) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-622 #1#) . T) ((-622 $) . T) ((-615 #1#) . T) ((-615 (-548)) |has| (-399 |#2|) (-615 (-548))) ((-692 #0#) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-692 #1#) . T) ((-692 $) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-699 #1# |#3|) . T) ((-701) . T) ((-869 (-1135)) -12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) ((-889) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-1007 (-399 (-548))) |has| (-399 |#2|) (-1007 (-399 (-548)))) ((-1007 #1#) . T) ((-1007 (-548)) |has| (-399 |#2|) (-1007 (-548))) ((-1022 #0#) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-1022 #1#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| (-399 |#2|) (-341)) ((-1176) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-879 |#1|) (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| (-879 |#1|) (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-879 |#1|) "failed") $) NIL)) (-2375 (((-879 |#1|) $) NIL)) (-2455 (($ (-1218 (-879 |#1|))) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-879 |#1|) (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| (-879 |#1|) (-360)))) (-3727 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| (-879 |#1|) (-360))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| (-879 |#1|) (-360)))) (-2866 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-3910 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2855 (((-890) $) NIL (|has| (-879 |#1|) (-360)))) (-4288 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360)))) (-4278 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-360)))) (-4300 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-879 |#1|) (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-3576 (((-927 (-1082))) NIL)) (-4160 (($) NIL (|has| (-879 |#1|) (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-879 |#1|) (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 (-879 |#1|))) NIL)) (-3655 (($) NIL (|has| (-879 |#1|) (-360)))) (-1255 (($) NIL (|has| (-879 |#1|) (-360)))) (-2447 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-879 |#1|)) NIL)) (-4017 (($ $) NIL (|has| (-879 |#1|) (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-3296 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) +(((-335 |#1| |#2|) (-13 (-321 (-879 |#1|)) (-10 -7 (-15 -3576 ((-927 (-1082)))))) (-890) (-890)) (T -335)) +((-3576 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-335 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))) +(-13 (-321 (-879 |#1|)) (-10 -7 (-15 -3576 ((-927 (-1082)))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 44)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) 41 (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 115)) (-2375 ((|#1| $) 86)) (-2455 (($ (-1218 |#1|)) 104)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) 98 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) 129 (|has| |#1| (-360)))) (-3727 (((-112) $) 48 (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) 45 (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) 131 (|has| |#1| (-360)))) (-2866 (((-112) $) NIL (|has| |#1| (-360)))) (-3910 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) 90) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) 139 (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 146)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) 71 (|has| |#1| (-360)))) (-2384 (((-112) $) 118)) (-3932 (((-1082) $) NIL)) (-3576 (((-927 (-1082))) 42)) (-4160 (($) 127 (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 93 (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) 67) (((-890)) 68)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) 130 (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) 125 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 |#1|)) 96)) (-3655 (($) 128 (|has| |#1| (-360)))) (-1255 (($) 136 (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) 59) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) 142) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 75)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 138)) (-2877 (((-1218 $)) 117) (((-1218 $) (-890)) 73)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) 49 T CONST)) (-3118 (($) 46 T CONST)) (-2354 (($ $) 81 (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) 47)) (-2309 (($ $ $) 144) (($ $ |#1|) 145)) (-2299 (($ $) 126) (($ $ $) NIL)) (-2290 (($ $ $) 61)) (** (($ $ (-890)) 148) (($ $ (-745)) 149) (($ $ (-548)) 147)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 77) (($ $ $) 76) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-336 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3576 ((-927 (-1082)))))) (-341) (-1131 |#1|)) (T -336)) +((-3576 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-336 *3 *4)) (-4 *3 (-341)) (-14 *4 (-1131 *3))))) +(-13 (-321 |#1|) (-10 -7 (-15 -3576 ((-927 (-1082)))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| |#1| (-360)))) (-2866 (((-112) $) NIL (|has| |#1| (-360)))) (-3910 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-3576 (((-927 (-1082))) NIL)) (-4160 (($) NIL (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 |#1|)) NIL)) (-3655 (($) NIL (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) NIL)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-337 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3576 ((-927 (-1082)))))) (-341) (-890)) (T -337)) +((-3576 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-337 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890))))) +(-13 (-321 |#1|) (-10 -7 (-15 -3576 ((-927 (-1082)))))) +((-3689 (((-745) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) 42)) (-3588 (((-927 (-1082)) (-1131 |#1|)) 85)) (-3600 (((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) (-1131 |#1|)) 78)) (-3610 (((-663 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) 86)) (-3620 (((-3 (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) "failed") (-890)) 13)) (-3631 (((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) (-890)) 18))) +(((-338 |#1|) (-10 -7 (-15 -3588 ((-927 (-1082)) (-1131 |#1|))) (-15 -3600 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) (-1131 |#1|))) (-15 -3610 ((-663 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3689 ((-745) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3620 ((-3 (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) "failed") (-890))) (-15 -3631 ((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) (-890)))) (-341)) (T -338)) +((-3631 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-3 (-1131 *4) (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082))))))) (-5 *1 (-338 *4)) (-4 *4 (-341)))) (-3620 (*1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-5 *2 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-5 *1 (-338 *4)) (-4 *4 (-341)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-4 *4 (-341)) (-5 *2 (-745)) (-5 *1 (-338 *4)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-4 *4 (-341)) (-5 *2 (-663 *4)) (-5 *1 (-338 *4)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-5 *1 (-338 *4)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-927 (-1082))) (-5 *1 (-338 *4))))) +(-10 -7 (-15 -3588 ((-927 (-1082)) (-1131 |#1|))) (-15 -3600 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) (-1131 |#1|))) (-15 -3610 ((-663 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3689 ((-745) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3620 ((-3 (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) "failed") (-890))) (-15 -3631 ((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) (-890)))) +((-3743 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -3743 (|#3| |#1|)) (-15 -3743 (|#1| |#3|))) (-321 |#2|) (-341) (-321 |#2|)) (T -339)) +((-3743 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *2 (-321 *4)) (-5 *1 (-339 *2 *4 *3)) (-4 *3 (-321 *4)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *2 (-321 *4)) (-5 *1 (-339 *3 *4 *2)) (-4 *3 (-321 *4))))) +(-10 -7 (-15 -3743 (|#3| |#1|)) (-15 -3743 (|#1| |#3|))) +((-3727 (((-112) $) 51)) (-1672 (((-807 (-890)) $) 21) (((-890) $) 52)) (-3725 (((-3 $ "failed") $) 16)) (-3410 (($) 9)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93)) (-2217 (((-3 (-745) "failed") $ $) 71) (((-745) $) 60)) (-4050 (($ $ (-745)) NIL) (($ $) 8)) (-3655 (($) 44)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 34)) (-4017 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-340 |#1|) (-10 -8 (-15 -1672 ((-890) |#1|)) (-15 -2217 ((-745) |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -3655 (|#1|)) (-15 -4028 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -4017 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2217 ((-3 (-745) "failed") |#1| |#1|)) (-15 -1672 ((-807 (-890)) |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) (-341)) (T -340)) +NIL +(-10 -8 (-15 -1672 ((-890) |#1|)) (-15 -2217 ((-745) |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -3655 (|#1|)) (-15 -4028 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -4017 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2217 ((-3 (-745) "failed") |#1| |#1|)) (-15 -1672 ((-807 (-890)) |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-3667 (((-1145 (-890) (-745)) (-548)) 90)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3423 (((-745)) 100)) (-3030 (($) 17 T CONST)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-2545 (($) 103)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2771 (($) 88)) (-3727 (((-112) $) 87)) (-2208 (($ $) 76) (($ $ (-745)) 75)) (-1271 (((-112) $) 68)) (-1672 (((-807 (-890)) $) 78) (((-890) $) 85)) (-2266 (((-112) $) 30)) (-3725 (((-3 $ "failed") $) 99)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2855 (((-890) $) 102)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3410 (($) 98 T CONST)) (-3337 (($ (-890)) 101)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 91)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2217 (((-3 (-745) "failed") $ $) 77) (((-745) $) 86)) (-4050 (($ $ (-745)) 96) (($ $) 94)) (-3655 (($) 89)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 92)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63)) (-4017 (((-3 $ "failed") $) 79) (($ $) 93)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-745)) 97) (($ $) 95)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) +(((-341) (-138)) (T -341)) +((-4017 (*1 *1 *1) (-4 *1 (-341))) (-4028 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-341)) (-5 *2 (-1218 *1)))) (-3679 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))))) (-3667 (*1 *2 *3) (-12 (-4 *1 (-341)) (-5 *3 (-548)) (-5 *2 (-1145 (-890) (-745))))) (-3655 (*1 *1) (-4 *1 (-341))) (-2771 (*1 *1) (-4 *1 (-341))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-112)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-745)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-890)))) (-3644 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-394) (-360) (-1111) (-226) (-10 -8 (-15 -4017 ($ $)) (-15 -4028 ((-3 (-1218 $) "failed") (-663 $))) (-15 -3679 ((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548)))))) (-15 -3667 ((-1145 (-890) (-745)) (-548))) (-15 -3655 ($)) (-15 -2771 ($)) (-15 -3727 ((-112) $)) (-15 -2217 ((-745) $)) (-15 -1672 ((-890) $)) (-15 -3644 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-592 (-832)) . T) ((-169) . T) ((-226) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-394) . T) ((-360) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) . T) ((-1176) . T)) +((-3490 (((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|) 53)) (-3478 (((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))) 51))) +(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|))) (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $)))) (-1194 |#1|) (-401 |#1| |#2|)) (T -342)) +((-3490 (*1 *2 *3) (-12 (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3478 (*1 *2) (-12 (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) +(-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-879 |#1|) (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-3689 (((-745)) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| (-879 |#1|) (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-879 |#1|) "failed") $) NIL)) (-2375 (((-879 |#1|) $) NIL)) (-2455 (($ (-1218 (-879 |#1|))) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-879 |#1|) (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| (-879 |#1|) (-360)))) (-3727 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| (-879 |#1|) (-360))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| (-879 |#1|) (-360)))) (-2866 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-3910 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2855 (((-890) $) NIL (|has| (-879 |#1|) (-360)))) (-4288 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360)))) (-4278 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-360)))) (-4300 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-879 |#1|) (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-3714 (((-1218 (-619 (-2 (|:| -4056 (-879 |#1|)) (|:| -3337 (-1082)))))) NIL)) (-3701 (((-663 (-879 |#1|))) NIL)) (-4160 (($) NIL (|has| (-879 |#1|) (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-879 |#1|) (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 (-879 |#1|))) NIL)) (-3655 (($) NIL (|has| (-879 |#1|) (-360)))) (-1255 (($) NIL (|has| (-879 |#1|) (-360)))) (-2447 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-879 |#1|)) NIL)) (-4017 (($ $) NIL (|has| (-879 |#1|) (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-3296 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) +(((-343 |#1| |#2|) (-13 (-321 (-879 |#1|)) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 (-879 |#1|)) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 (-879 |#1|)))) (-15 -3689 ((-745))))) (-890) (-890)) (T -343)) +((-3714 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 (-879 *3)) (|:| -3337 (-1082)))))) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3701 (*1 *2) (-12 (-5 *2 (-663 (-879 *3))) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3689 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))) +(-13 (-321 (-879 |#1|)) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 (-879 |#1|)) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 (-879 |#1|)))) (-15 -3689 ((-745))))) +((-3730 (((-112) $ $) 61)) (-3324 (((-112) $) 74)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) 92) (($ $ (-890)) 90 (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) 148 (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-3689 (((-745)) 89)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) 162 (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 112)) (-2375 ((|#1| $) 91)) (-2455 (($ (-1218 |#1|)) 58)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) 158 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) 149 (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) 98 (|has| |#1| (-360)))) (-2866 (((-112) $) 175 (|has| |#1| (-360)))) (-3910 ((|#1| $) 94) (($ $ (-890)) 93 (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) 189) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) 134 (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) 73 (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) 70 (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) 82 (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) 69 (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 192)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) 137 (|has| |#1| (-360)))) (-2384 (((-112) $) 108)) (-3932 (((-1082) $) NIL)) (-3714 (((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) 83)) (-3701 (((-663 |#1|)) 87)) (-4160 (($) 96 (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 150 (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) 151)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) 62)) (-3287 (((-1131 |#1|)) 152)) (-3655 (($) 133 (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) 106) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) 124) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 57)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 156)) (-2877 (((-1218 $)) 172) (((-1218 $) (-890)) 101)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) 117 T CONST)) (-3118 (($) 33 T CONST)) (-2354 (($ $) 107 (|has| |#1| (-360))) (($ $ (-745)) 99 (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) 183)) (-2309 (($ $ $) 104) (($ $ |#1|) 105)) (-2299 (($ $) 177) (($ $ $) 181)) (-2290 (($ $ $) 179)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 138)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 186) (($ $ $) 142) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-344 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 |#1|))) (-15 -3689 ((-745))))) (-341) (-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (T -344)) +((-3714 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) (-14 *4 (-3 (-1131 *3) *2)))) (-3701 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) (-14 *4 (-3 (-1131 *3) (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082))))))))) (-3689 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) (-14 *4 (-3 (-1131 *3) (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))))))) +(-13 (-321 |#1|) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 |#1|))) (-15 -3689 ((-745))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-3689 (((-745)) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| |#1| (-360)))) (-2866 (((-112) $) NIL (|has| |#1| (-360)))) (-3910 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-3714 (((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) NIL)) (-3701 (((-663 |#1|)) NIL)) (-4160 (($) NIL (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 |#1|)) NIL)) (-3655 (($) NIL (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) NIL)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-345 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 |#1|))) (-15 -3689 ((-745))))) (-341) (-890)) (T -345)) +((-3714 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890)))) (-3701 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890)))) (-3689 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890))))) +(-13 (-321 |#1|) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 |#1|))) (-15 -3689 ((-745))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-879 |#1|) (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| (-879 |#1|) (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-879 |#1|) "failed") $) NIL)) (-2375 (((-879 |#1|) $) NIL)) (-2455 (($ (-1218 (-879 |#1|))) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-879 |#1|) (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| (-879 |#1|) (-360)))) (-3727 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| (-879 |#1|) (-360))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| (-879 |#1|) (-360)))) (-2866 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-3910 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2855 (((-890) $) NIL (|has| (-879 |#1|) (-360)))) (-4288 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360)))) (-4278 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-360)))) (-4300 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-879 |#1|) (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL (|has| (-879 |#1|) (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-879 |#1|) (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 (-879 |#1|))) NIL)) (-3655 (($) NIL (|has| (-879 |#1|) (-360)))) (-1255 (($) NIL (|has| (-879 |#1|) (-360)))) (-2447 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-879 |#1|)) NIL)) (-4017 (($ $) NIL (|has| (-879 |#1|) (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-3296 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) +(((-346 |#1| |#2|) (-321 (-879 |#1|)) (-890) (-890)) (T -346)) +NIL +(-321 (-879 |#1|)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) 120 (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) 140 (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 93)) (-2375 ((|#1| $) 90)) (-2455 (($ (-1218 |#1|)) 85)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) 82 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) 42 (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) 121 (|has| |#1| (-360)))) (-2866 (((-112) $) 74 (|has| |#1| (-360)))) (-3910 ((|#1| $) 39) (($ $ (-890)) 43 (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) 65) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) 97 (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) 95 (|has| |#1| (-360)))) (-2384 (((-112) $) 142)) (-3932 (((-1082) $) NIL)) (-4160 (($) 36 (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 115 (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) 139)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) 59)) (-3287 (((-1131 |#1|)) 88)) (-3655 (($) 126 (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) 53) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) 138) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 87)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 144)) (-2877 (((-1218 $)) 109) (((-1218 $) (-890)) 49)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) 111 T CONST)) (-3118 (($) 32 T CONST)) (-2354 (($ $) 68 (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) 107)) (-2309 (($ $ $) 99) (($ $ |#1|) 100)) (-2299 (($ $) 80) (($ $ $) 105)) (-2290 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-745)) 44) (($ $ (-548)) 130)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 78) (($ $ $) 56) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-347 |#1| |#2|) (-321 |#1|) (-341) (-1131 |#1|)) (T -347)) +NIL +(-321 |#1|) +((-3918 ((|#1| (-1131 |#2|)) 52))) +(((-348 |#1| |#2|) (-10 -7 (-15 -3918 (|#1| (-1131 |#2|)))) (-13 (-394) (-10 -7 (-15 -3743 (|#1| |#2|)) (-15 -2855 ((-890) |#1|)) (-15 -2877 ((-1218 |#1|) (-890))) (-15 -2354 (|#1| |#1|)))) (-341)) (T -348)) +((-3918 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-4 *2 (-13 (-394) (-10 -7 (-15 -3743 (*2 *4)) (-15 -2855 ((-890) *2)) (-15 -2877 ((-1218 *2) (-890))) (-15 -2354 (*2 *2))))) (-5 *1 (-348 *2 *4))))) +(-10 -7 (-15 -3918 (|#1| (-1131 |#2|)))) +((-3908 (((-927 (-1131 |#1|)) (-1131 |#1|)) 36)) (-2545 (((-1131 |#1|) (-890) (-890)) 113) (((-1131 |#1|) (-890)) 112)) (-3727 (((-112) (-1131 |#1|)) 84)) (-3751 (((-890) (-890)) 71)) (-3762 (((-890) (-890)) 74)) (-3739 (((-890) (-890)) 69)) (-2866 (((-112) (-1131 |#1|)) 88)) (-3847 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 101)) (-3884 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 104)) (-3872 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 103)) (-3860 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 102)) (-3832 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 98)) (-3895 (((-1131 |#1|) (-1131 |#1|)) 62)) (-3783 (((-1131 |#1|) (-890)) 107)) (-3819 (((-1131 |#1|) (-890)) 110)) (-3806 (((-1131 |#1|) (-890)) 109)) (-3794 (((-1131 |#1|) (-890)) 108)) (-3772 (((-1131 |#1|) (-890)) 105))) +(((-349 |#1|) (-10 -7 (-15 -3727 ((-112) (-1131 |#1|))) (-15 -2866 ((-112) (-1131 |#1|))) (-15 -3739 ((-890) (-890))) (-15 -3751 ((-890) (-890))) (-15 -3762 ((-890) (-890))) (-15 -3772 ((-1131 |#1|) (-890))) (-15 -3783 ((-1131 |#1|) (-890))) (-15 -3794 ((-1131 |#1|) (-890))) (-15 -3806 ((-1131 |#1|) (-890))) (-15 -3819 ((-1131 |#1|) (-890))) (-15 -3832 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3847 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3860 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3872 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3884 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2545 ((-1131 |#1|) (-890))) (-15 -2545 ((-1131 |#1|) (-890) (-890))) (-15 -3895 ((-1131 |#1|) (-1131 |#1|))) (-15 -3908 ((-927 (-1131 |#1|)) (-1131 |#1|)))) (-341)) (T -349)) +((-3908 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-927 (-1131 *4))) (-5 *1 (-349 *4)) (-5 *3 (-1131 *4)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-2545 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3884 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3872 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3860 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3847 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3832 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-349 *4))))) +(-10 -7 (-15 -3727 ((-112) (-1131 |#1|))) (-15 -2866 ((-112) (-1131 |#1|))) (-15 -3739 ((-890) (-890))) (-15 -3751 ((-890) (-890))) (-15 -3762 ((-890) (-890))) (-15 -3772 ((-1131 |#1|) (-890))) (-15 -3783 ((-1131 |#1|) (-890))) (-15 -3794 ((-1131 |#1|) (-890))) (-15 -3806 ((-1131 |#1|) (-890))) (-15 -3819 ((-1131 |#1|) (-890))) (-15 -3832 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3847 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3860 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3872 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3884 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2545 ((-1131 |#1|) (-890))) (-15 -2545 ((-1131 |#1|) (-890) (-890))) (-15 -3895 ((-1131 |#1|) (-1131 |#1|))) (-15 -3908 ((-927 (-1131 |#1|)) (-1131 |#1|)))) +((-4039 (((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|) 34))) +(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -4039 ((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|))) (-341) (-1194 |#1|) (-1194 |#2|)) (T -350)) +((-4039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-341)) (-5 *1 (-350 *4 *5 *3))))) +(-10 -7 (-15 -4039 ((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| |#1| (-360)))) (-2866 (((-112) $) NIL (|has| |#1| (-360)))) (-3910 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 |#1|)) NIL)) (-3655 (($) NIL (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) NIL)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-351 |#1| |#2|) (-321 |#1|) (-341) (-890)) (T -351)) +NIL +(-321 |#1|) +((-1338 (((-112) (-619 (-921 |#1|))) 34)) (-1359 (((-619 (-921 |#1|)) (-619 (-921 |#1|))) 46)) (-1348 (((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|))) 41))) +(((-352 |#1| |#2|) (-10 -7 (-15 -1338 ((-112) (-619 (-921 |#1|)))) (-15 -1348 ((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|)))) (-15 -1359 ((-619 (-921 |#1|)) (-619 (-921 |#1|))))) (-443) (-619 (-1135))) (T -352)) +((-1359 (*1 *2 *2) (-12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-443)) (-5 *1 (-352 *3 *4)) (-14 *4 (-619 (-1135))))) (-1348 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-443)) (-5 *1 (-352 *3 *4)) (-14 *4 (-619 (-1135))))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-443)) (-5 *2 (-112)) (-5 *1 (-352 *4 *5)) (-14 *5 (-619 (-1135)))))) +(-10 -7 (-15 -1338 ((-112) (-619 (-921 |#1|)))) (-15 -1348 ((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|)))) (-15 -1359 ((-619 (-921 |#1|)) (-619 (-921 |#1|))))) +((-3730 (((-112) $ $) NIL)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) 15)) (-3224 ((|#1| $ (-548)) NIL)) (-3235 (((-548) $ (-548)) NIL)) (-1628 (($ (-1 |#1| |#1|) $) 32)) (-3442 (($ (-1 (-548) (-548)) $) 24)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 26)) (-3932 (((-1082) $) NIL)) (-3213 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-548)))) $) 28)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 38) (($ |#1|) NIL)) (-3118 (($) 9 T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL) (($ |#1| (-548)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-353 |#1|) (-13 (-464) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-548))) (-15 -3423 ((-745) $)) (-15 -3235 ((-548) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3442 ($ (-1 (-548) (-548)) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-548)))) $)))) (-1063)) (T -353)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-353 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-353 *2)) (-4 *2 (-1063)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-353 *2)) (-4 *2 (-1063)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) (-3235 (*1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-353 *2)) (-4 *2 (-1063)))) (-3442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-548) (-548))) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-353 *3)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-548))))) (-5 *1 (-353 *3)) (-4 *3 (-1063))))) +(-13 (-464) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-548))) (-15 -3423 ((-745) $)) (-15 -3235 ((-548) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3442 ($ (-1 (-548) (-548)) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-548)))) $)))) +((-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 13)) (-3303 (($ $) 14)) (-2634 (((-410 $) $) 30)) (-1271 (((-112) $) 26)) (-2153 (($ $) 19)) (-3587 (($ $ $) 23) (($ (-619 $)) NIL)) (-1915 (((-410 $) $) 31)) (-1900 (((-3 $ "failed") $ $) 22)) (-4077 (((-745) $) 25)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 35)) (-3290 (((-112) $ $) 16)) (-2309 (($ $ $) 33))) +(((-354 |#1|) (-10 -8 (-15 -2309 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -1271 ((-112) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -4077 ((-745) |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3290 ((-112) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|))) (-355)) (T -354)) +NIL +(-10 -8 (-15 -2309 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -1271 ((-112) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -4077 ((-745) |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3290 ((-112) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) +(((-355) (-138)) (T -355)) +((-2309 (*1 *1 *1 *1) (-4 *1 (-355)))) +(-13 (-299) (-1176) (-236) (-10 -8 (-15 -2309 ($ $ $)) (-6 -4325) (-6 -4319))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-3730 (((-112) $ $) 7)) (-3930 ((|#2| $ |#2|) 13)) (-3981 (($ $ (-1118)) 18)) (-3943 ((|#2| $) 14)) (-1280 (($ |#1|) 20) (($ |#1| (-1118)) 19)) (-2275 ((|#1| $) 16)) (-2546 (((-1118) $) 9)) (-3959 (((-1118) $) 15)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3972 (($ $) 17)) (-2214 (((-112) $ $) 6))) +(((-356 |#1| |#2|) (-138) (-1063) (-1063)) (T -356)) +((-1280 (*1 *1 *2) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1280 (*1 *1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *1 (-356 *2 *4)) (-4 *2 (-1063)) (-4 *4 (-1063)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-356 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3972 (*1 *1 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-1118)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3930 (*1 *2 *1 *2) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -1280 ($ |t#1|)) (-15 -1280 ($ |t#1| (-1118))) (-15 -3981 ($ $ (-1118))) (-15 -3972 ($ $)) (-15 -2275 (|t#1| $)) (-15 -3959 ((-1118) $)) (-15 -3943 (|t#2| $)) (-15 -3930 (|t#2| $ |t#2|)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3930 ((|#1| $ |#1|) 30)) (-3981 (($ $ (-1118)) 22)) (-2630 (((-3 |#1| "failed") $) 29)) (-3943 ((|#1| $) 27)) (-1280 (($ (-380)) 21) (($ (-380) (-1118)) 20)) (-2275 (((-380) $) 24)) (-2546 (((-1118) $) NIL)) (-3959 (((-1118) $) 25)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 19)) (-3972 (($ $) 23)) (-2214 (((-112) $ $) 18))) +(((-357 |#1|) (-13 (-356 (-380) |#1|) (-10 -8 (-15 -2630 ((-3 |#1| "failed") $)))) (-1063)) (T -357)) +((-2630 (*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1063))))) +(-13 (-356 (-380) |#1|) (-10 -8 (-15 -2630 ((-3 |#1| "failed") $)))) +((-2434 (((-1218 (-663 |#2|)) (-1218 $)) 61)) (-2413 (((-663 |#2|) (-1218 $)) 120)) (-2947 ((|#2| $) 32)) (-2391 (((-663 |#2|) $ (-1218 $)) 123)) (-3399 (((-3 $ "failed") $) 75)) (-2925 ((|#2| $) 35)) (-2741 (((-1131 |#2|) $) 83)) (-2432 ((|#2| (-1218 $)) 106)) (-2903 (((-1131 |#2|) $) 28)) (-2842 (((-112)) 100)) (-2455 (($ (-1218 |#2|) (-1218 $)) 113)) (-3859 (((-3 $ "failed") $) 79)) (-2782 (((-112)) 95)) (-2766 (((-112)) 90)) (-2797 (((-112)) 53)) (-2422 (((-663 |#2|) (-1218 $)) 118)) (-2958 ((|#2| $) 31)) (-2402 (((-663 |#2|) $ (-1218 $)) 122)) (-3411 (((-3 $ "failed") $) 73)) (-2936 ((|#2| $) 34)) (-2750 (((-1131 |#2|) $) 82)) (-2444 ((|#2| (-1218 $)) 104)) (-2914 (((-1131 |#2|) $) 26)) (-2851 (((-112)) 99)) (-2774 (((-112)) 92)) (-2790 (((-112)) 51)) (-2806 (((-112)) 87)) (-2832 (((-112)) 101)) (-2447 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) 111)) (-2891 (((-112)) 97)) (-2759 (((-619 (-1218 |#2|))) 86)) (-2871 (((-112)) 98)) (-2881 (((-112)) 96)) (-2859 (((-112)) 46)) (-2823 (((-112)) 102))) +(((-358 |#1| |#2|) (-10 -8 (-15 -2741 ((-1131 |#2|) |#1|)) (-15 -2750 ((-1131 |#2|) |#1|)) (-15 -2759 ((-619 (-1218 |#2|)))) (-15 -3399 ((-3 |#1| "failed") |#1|)) (-15 -3411 ((-3 |#1| "failed") |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 -2766 ((-112))) (-15 -2774 ((-112))) (-15 -2782 ((-112))) (-15 -2790 ((-112))) (-15 -2797 ((-112))) (-15 -2806 ((-112))) (-15 -2823 ((-112))) (-15 -2832 ((-112))) (-15 -2842 ((-112))) (-15 -2851 ((-112))) (-15 -2859 ((-112))) (-15 -2871 ((-112))) (-15 -2881 ((-112))) (-15 -2891 ((-112))) (-15 -2903 ((-1131 |#2|) |#1|)) (-15 -2914 ((-1131 |#2|) |#1|)) (-15 -2413 ((-663 |#2|) (-1218 |#1|))) (-15 -2422 ((-663 |#2|) (-1218 |#1|))) (-15 -2432 (|#2| (-1218 |#1|))) (-15 -2444 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2925 (|#2| |#1|)) (-15 -2936 (|#2| |#1|)) (-15 -2947 (|#2| |#1|)) (-15 -2958 (|#2| |#1|)) (-15 -2391 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2402 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2434 ((-1218 (-663 |#2|)) (-1218 |#1|)))) (-359 |#2|) (-169)) (T -358)) +((-2891 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2881 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2871 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2859 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2851 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2842 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2832 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2823 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2806 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2797 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2790 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2782 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2774 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2766 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2759 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-619 (-1218 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4))))) +(-10 -8 (-15 -2741 ((-1131 |#2|) |#1|)) (-15 -2750 ((-1131 |#2|) |#1|)) (-15 -2759 ((-619 (-1218 |#2|)))) (-15 -3399 ((-3 |#1| "failed") |#1|)) (-15 -3411 ((-3 |#1| "failed") |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 -2766 ((-112))) (-15 -2774 ((-112))) (-15 -2782 ((-112))) (-15 -2790 ((-112))) (-15 -2797 ((-112))) (-15 -2806 ((-112))) (-15 -2823 ((-112))) (-15 -2832 ((-112))) (-15 -2842 ((-112))) (-15 -2851 ((-112))) (-15 -2859 ((-112))) (-15 -2871 ((-112))) (-15 -2881 ((-112))) (-15 -2891 ((-112))) (-15 -2903 ((-1131 |#2|) |#1|)) (-15 -2914 ((-1131 |#2|) |#1|)) (-15 -2413 ((-663 |#2|) (-1218 |#1|))) (-15 -2422 ((-663 |#2|) (-1218 |#1|))) (-15 -2432 (|#2| (-1218 |#1|))) (-15 -2444 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2925 (|#2| |#1|)) (-15 -2936 (|#2| |#1|)) (-15 -2947 (|#2| |#1|)) (-15 -2958 (|#2| |#1|)) (-15 -2391 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2402 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2434 ((-1218 (-663 |#2|)) (-1218 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2265 (((-3 $ "failed")) 37 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-2434 (((-1218 (-663 |#1|)) (-1218 $)) 78)) (-2968 (((-1218 $)) 81)) (-3030 (($) 17 T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 40 (|has| |#1| (-540)))) (-3991 (((-3 $ "failed")) 38 (|has| |#1| (-540)))) (-2413 (((-663 |#1|) (-1218 $)) 65)) (-2947 ((|#1| $) 74)) (-2391 (((-663 |#1|) $ (-1218 $)) 76)) (-3399 (((-3 $ "failed") $) 45 (|has| |#1| (-540)))) (-2246 (($ $ (-890)) 28)) (-2925 ((|#1| $) 72)) (-2741 (((-1131 |#1|) $) 42 (|has| |#1| (-540)))) (-2432 ((|#1| (-1218 $)) 67)) (-2903 (((-1131 |#1|) $) 63)) (-2842 (((-112)) 57)) (-2455 (($ (-1218 |#1|) (-1218 $)) 69)) (-3859 (((-3 $ "failed") $) 47 (|has| |#1| (-540)))) (-2103 (((-890)) 80)) (-2815 (((-112)) 54)) (-2468 (($ $ (-890)) 33)) (-2782 (((-112)) 50)) (-2766 (((-112)) 48)) (-2797 (((-112)) 52)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 41 (|has| |#1| (-540)))) (-4003 (((-3 $ "failed")) 39 (|has| |#1| (-540)))) (-2422 (((-663 |#1|) (-1218 $)) 66)) (-2958 ((|#1| $) 75)) (-2402 (((-663 |#1|) $ (-1218 $)) 77)) (-3411 (((-3 $ "failed") $) 46 (|has| |#1| (-540)))) (-3424 (($ $ (-890)) 29)) (-2936 ((|#1| $) 73)) (-2750 (((-1131 |#1|) $) 43 (|has| |#1| (-540)))) (-2444 ((|#1| (-1218 $)) 68)) (-2914 (((-1131 |#1|) $) 64)) (-2851 (((-112)) 58)) (-2546 (((-1118) $) 9)) (-2774 (((-112)) 49)) (-2790 (((-112)) 51)) (-2806 (((-112)) 53)) (-3932 (((-1082) $) 10)) (-2832 (((-112)) 56)) (-2447 (((-1218 |#1|) $ (-1218 $)) 71) (((-663 |#1|) (-1218 $) (-1218 $)) 70)) (-4218 (((-619 (-921 |#1|)) (-1218 $)) 79)) (-3652 (($ $ $) 25)) (-2891 (((-112)) 62)) (-3743 (((-832) $) 11)) (-2759 (((-619 (-1218 |#1|))) 44 (|has| |#1| (-540)))) (-3664 (($ $ $ $) 26)) (-2871 (((-112)) 60)) (-3639 (($ $ $) 24)) (-2881 (((-112)) 61)) (-2859 (((-112)) 59)) (-2823 (((-112)) 55)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-359 |#1|) (-138) (-169)) (T -359)) +((-2968 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-359 *3)))) (-2103 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-890)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))))) (-2402 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2391 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-1218 *4)))) (-2447 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2455 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) (-4 *1 (-359 *4)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2413 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3)))) (-2891 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2881 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2871 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2859 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2851 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2842 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2832 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2823 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2815 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2806 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2797 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2790 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2782 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2774 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2766 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3859 (*1 *1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) (-3411 (*1 *1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) (-3399 (*1 *1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) (-2759 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) (-5 *2 (-619 (-1218 *3))))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) (-5 *2 (-1131 *3)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) (-5 *2 (-1131 *3)))) (-1332 (*1 *2) (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2877 (-619 *1)))) (-4 *1 (-359 *3)))) (-1321 (*1 *2) (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2877 (-619 *1)))) (-4 *1 (-359 *3)))) (-4003 (*1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169)))) (-3991 (*1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169)))) (-2265 (*1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169))))) +(-13 (-719 |t#1|) (-10 -8 (-15 -2968 ((-1218 $))) (-15 -2103 ((-890))) (-15 -4218 ((-619 (-921 |t#1|)) (-1218 $))) (-15 -2434 ((-1218 (-663 |t#1|)) (-1218 $))) (-15 -2402 ((-663 |t#1|) $ (-1218 $))) (-15 -2391 ((-663 |t#1|) $ (-1218 $))) (-15 -2958 (|t#1| $)) (-15 -2947 (|t#1| $)) (-15 -2936 (|t#1| $)) (-15 -2925 (|t#1| $)) (-15 -2447 ((-1218 |t#1|) $ (-1218 $))) (-15 -2447 ((-663 |t#1|) (-1218 $) (-1218 $))) (-15 -2455 ($ (-1218 |t#1|) (-1218 $))) (-15 -2444 (|t#1| (-1218 $))) (-15 -2432 (|t#1| (-1218 $))) (-15 -2422 ((-663 |t#1|) (-1218 $))) (-15 -2413 ((-663 |t#1|) (-1218 $))) (-15 -2914 ((-1131 |t#1|) $)) (-15 -2903 ((-1131 |t#1|) $)) (-15 -2891 ((-112))) (-15 -2881 ((-112))) (-15 -2871 ((-112))) (-15 -2859 ((-112))) (-15 -2851 ((-112))) (-15 -2842 ((-112))) (-15 -2832 ((-112))) (-15 -2823 ((-112))) (-15 -2815 ((-112))) (-15 -2806 ((-112))) (-15 -2797 ((-112))) (-15 -2790 ((-112))) (-15 -2782 ((-112))) (-15 -2774 ((-112))) (-15 -2766 ((-112))) (IF (|has| |t#1| (-540)) (PROGN (-15 -3859 ((-3 $ "failed") $)) (-15 -3411 ((-3 $ "failed") $)) (-15 -3399 ((-3 $ "failed") $)) (-15 -2759 ((-619 (-1218 |t#1|)))) (-15 -2750 ((-1131 |t#1|) $)) (-15 -2741 ((-1131 |t#1|) $)) (-15 -1332 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -4003 ((-3 $ "failed"))) (-15 -3991 ((-3 $ "failed"))) (-15 -2265 ((-3 $ "failed"))) (-6 -4324)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-719 |#1|) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 7)) (-3423 (((-745)) 16)) (-2545 (($) 13)) (-2855 (((-890) $) 14)) (-2546 (((-1118) $) 9)) (-3337 (($ (-890)) 15)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(((-360) (-138)) (T -360)) +((-3423 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-745)))) (-3337 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-360)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-890)))) (-2545 (*1 *1) (-4 *1 (-360)))) +(-13 (-1063) (-10 -8 (-15 -3423 ((-745))) (-15 -3337 ($ (-890))) (-15 -2855 ((-890) $)) (-15 -2545 ($)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-2350 (((-663 |#2|) (-1218 $)) 40)) (-2455 (($ (-1218 |#2|) (-1218 $)) 34)) (-2341 (((-663 |#2|) $ (-1218 $)) 42)) (-1566 ((|#2| (-1218 $)) 13)) (-2447 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) 25))) +(((-361 |#1| |#2| |#3|) (-10 -8 (-15 -2350 ((-663 |#2|) (-1218 |#1|))) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2341 ((-663 |#2|) |#1| (-1218 |#1|)))) (-362 |#2| |#3|) (-169) (-1194 |#2|)) (T -361)) +NIL +(-10 -8 (-15 -2350 ((-663 |#2|) (-1218 |#1|))) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2341 ((-663 |#2|) |#1| (-1218 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2350 (((-663 |#1|) (-1218 $)) 44)) (-2707 ((|#1| $) 50)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2455 (($ (-1218 |#1|) (-1218 $)) 46)) (-2341 (((-663 |#1|) $ (-1218 $)) 51)) (-3859 (((-3 $ "failed") $) 32)) (-2103 (((-890)) 52)) (-2266 (((-112) $) 30)) (-3910 ((|#1| $) 49)) (-2898 ((|#2| $) 42 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1566 ((|#1| (-1218 $)) 45)) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35)) (-4017 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3780 ((|#2| $) 43)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-362 |#1| |#2|) (-138) (-169) (-1194 |t#1|)) (T -362)) +((-2103 (*1 *2) (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-890)))) (-2341 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *4)))) (-2447 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2455 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) (-4 *1 (-362 *4 *5)) (-4 *5 (-1194 *4)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *2 *4)) (-4 *4 (-1194 *2)) (-4 *2 (-169)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-169)) (-4 *3 (-355)) (-4 *2 (-1194 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -2103 ((-890))) (-15 -2341 ((-663 |t#1|) $ (-1218 $))) (-15 -2707 (|t#1| $)) (-15 -3910 (|t#1| $)) (-15 -2447 ((-1218 |t#1|) $ (-1218 $))) (-15 -2447 ((-663 |t#1|) (-1218 $) (-1218 $))) (-15 -2455 ($ (-1218 |t#1|) (-1218 $))) (-15 -1566 (|t#1| (-1218 $))) (-15 -2350 ((-663 |t#1|) (-1218 $))) (-15 -3780 (|t#2| $)) (IF (|has| |t#1| (-355)) (-15 -2898 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-4040 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2061 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2540 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2061 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4040 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1172) (-365 |#1|) (-1172) (-365 |#3|)) (T -363)) +((-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-4 *2 (-365 *5)) (-5 *1 (-363 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-363 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *2 (-365 *6)) (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-365 *5))))) +(-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2061 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4040 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3001 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2980 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2490 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2796 (($ $) 25)) (-2621 (((-548) (-1 (-112) |#2|) $) NIL) (((-548) |#2| $) 11) (((-548) |#2| $ (-548)) NIL)) (-2913 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-364 |#1| |#2|) (-10 -8 (-15 -2980 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3001 ((-112) |#1|)) (-15 -2490 (|#1| |#1|)) (-15 -2913 (|#1| |#1| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2490 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-365 |#2|) (-1172)) (T -364)) +NIL +(-10 -8 (-15 -2980 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3001 ((-112) |#1|)) (-15 -2490 (|#1| |#1|)) (-15 -2913 (|#1| |#1| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2490 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-2621 (((-548) (-1 (-112) |#1|) $) 97) (((-548) |#1| $) 96 (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) 95 (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 82 (|has| |#1| (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-365 |#1|) (-138) (-1172)) (T -365)) +((-2913 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) (-2796 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)))) (-2490 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) (-3001 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-2621 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1172)) (-5 *2 (-548)))) (-2621 (*1 *2 *3 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-548)))) (-2621 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) (-2490 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-821)) (-5 *2 (-112)))) (-2990 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-548)) (|has| *1 (-6 -4328)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) (-3499 (*1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-365 *2)) (-4 *2 (-1172)))) (-2980 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4328)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) (-2980 (*1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821))))) +(-13 (-625 |t#1|) (-10 -8 (-6 -4327) (-15 -2913 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2796 ($ $)) (-15 -2490 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3001 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2621 ((-548) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -2621 ((-548) |t#1| $)) (-15 -2621 ((-548) |t#1| $ (-548)))) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-6 (-821)) (-15 -2913 ($ $ $)) (-15 -2490 ($ $)) (-15 -3001 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4328)) (PROGN (-15 -2990 ($ $ $ (-548))) (-15 -3499 ($ $)) (-15 -2980 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-821)) (-15 -2980 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3065 (((-619 |#1|) $) 32)) (-2502 (($ $ (-745)) 33)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2448 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 36)) (-2425 (($ $) 34)) (-2459 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 37)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2460 (($ $ |#1| $) 31) (($ $ (-619 |#1|) (-619 $)) 30)) (-2512 (((-745) $) 38)) (-3754 (($ $ $) 29)) (-3743 (((-832) $) 11) (($ |#1|) 41) (((-1233 |#1| |#2|) $) 40) (((-1242 |#1| |#2|) $) 39)) (-1489 ((|#2| (-1242 |#1| |#2|) $) 42)) (-3107 (($) 18 T CONST)) (-3011 (($ (-646 |#1|)) 35)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#2|) 28 (|has| |#2| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-366 |#1| |#2|) (-138) (-821) (-169)) (T -366)) +((-1489 (*1 *2 *3 *1) (-12 (-5 *3 (-1242 *4 *2)) (-4 *1 (-366 *4 *2)) (-4 *4 (-821)) (-4 *2 (-169)))) (-3743 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1233 *3 *4)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1242 *3 *4)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-745)))) (-2459 (*1 *2 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2448 (*1 *2 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3011 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-4 *1 (-366 *3 *4)) (-4 *4 (-169)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-619 *3)))) (-2460 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-821)) (-4 *5 (-169))))) +(-13 (-610 |t#2|) (-10 -8 (-15 -1489 (|t#2| (-1242 |t#1| |t#2|) $)) (-15 -3743 ($ |t#1|)) (-15 -3743 ((-1233 |t#1| |t#2|) $)) (-15 -3743 ((-1242 |t#1| |t#2|) $)) (-15 -2512 ((-745) $)) (-15 -2459 ((-1242 |t#1| |t#2|) (-1242 |t#1| |t#2|) $)) (-15 -2448 ((-1242 |t#1| |t#2|) (-1242 |t#1| |t#2|) $)) (-15 -3011 ($ (-646 |t#1|))) (-15 -2425 ($ $)) (-15 -2502 ($ $ (-745))) (-15 -3065 ((-619 |t#1|) $)) (-15 -2460 ($ $ |t#1| $)) (-15 -2460 ($ $ (-619 |t#1|) (-619 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#2|) . T) ((-610 |#2|) . T) ((-692 |#2|) . T) ((-1022 |#2|) . T) ((-1063) . T)) +((-3042 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3021 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3031 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) +(((-367 |#1| |#2|) (-10 -7 (-15 -3021 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3031 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3042 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1172) (-13 (-365 |#1|) (-10 -7 (-6 -4328)))) (T -367)) +((-3042 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328)))))) (-3031 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328)))))) (-3021 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328))))))) +(-10 -7 (-15 -3021 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3031 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3042 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-1608 (((-663 |#2|) (-663 $)) NIL) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 22) (((-663 (-548)) (-663 $)) 14))) +(((-368 |#1| |#2|) (-10 -8 (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 |#2|) (-663 |#1|)))) (-369 |#2|) (-1016)) (T -368)) +NIL +(-10 -8 (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 |#2|) (-663 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1608 (((-663 |#1|) (-663 $)) 34) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 33) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 41 (|has| |#1| (-615 (-548)))) (((-663 (-548)) (-663 $)) 40 (|has| |#1| (-615 (-548))))) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-369 |#1|) (-138) (-1016)) (T -369)) +NIL +(-13 (-615 |t#1|) (-10 -7 (IF (|has| |t#1| (-615 (-548))) (-6 (-615 (-548))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3143 (((-619 (-286 (-921 (-166 |#1|)))) (-286 (-399 (-921 (-166 (-548))))) |#1|) 51) (((-619 (-286 (-921 (-166 |#1|)))) (-399 (-921 (-166 (-548)))) |#1|) 50) (((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-286 (-399 (-921 (-166 (-548)))))) |#1|) 47) (((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-399 (-921 (-166 (-548))))) |#1|) 41)) (-3153 (((-619 (-619 (-166 |#1|))) (-619 (-399 (-921 (-166 (-548))))) (-619 (-1135)) |#1|) 30) (((-619 (-166 |#1|)) (-399 (-921 (-166 (-548)))) |#1|) 18))) +(((-370 |#1|) (-10 -7 (-15 -3143 ((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-399 (-921 (-166 (-548))))) |#1|)) (-15 -3143 ((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-286 (-399 (-921 (-166 (-548)))))) |#1|)) (-15 -3143 ((-619 (-286 (-921 (-166 |#1|)))) (-399 (-921 (-166 (-548)))) |#1|)) (-15 -3143 ((-619 (-286 (-921 (-166 |#1|)))) (-286 (-399 (-921 (-166 (-548))))) |#1|)) (-15 -3153 ((-619 (-166 |#1|)) (-399 (-921 (-166 (-548)))) |#1|)) (-15 -3153 ((-619 (-619 (-166 |#1|))) (-619 (-399 (-921 (-166 (-548))))) (-619 (-1135)) |#1|))) (-13 (-355) (-819))) (T -370)) +((-3153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-399 (-921 (-166 (-548)))))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-166 *5)))) (-5 *1 (-370 *5)) (-4 *5 (-13 (-355) (-819))))) (-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-166 (-548))))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-399 (-921 (-166 (-548)))))) (-5 *2 (-619 (-286 (-921 (-166 *4))))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-166 (-548))))) (-5 *2 (-619 (-286 (-921 (-166 *4))))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-286 (-399 (-921 (-166 (-548))))))) (-5 *2 (-619 (-619 (-286 (-921 (-166 *4)))))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 (-166 (-548)))))) (-5 *2 (-619 (-619 (-286 (-921 (-166 *4)))))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819)))))) +(-10 -7 (-15 -3143 ((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-399 (-921 (-166 (-548))))) |#1|)) (-15 -3143 ((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-286 (-399 (-921 (-166 (-548)))))) |#1|)) (-15 -3143 ((-619 (-286 (-921 (-166 |#1|)))) (-399 (-921 (-166 (-548)))) |#1|)) (-15 -3143 ((-619 (-286 (-921 (-166 |#1|)))) (-286 (-399 (-921 (-166 (-548))))) |#1|)) (-15 -3153 ((-619 (-166 |#1|)) (-399 (-921 (-166 (-548)))) |#1|)) (-15 -3153 ((-619 (-619 (-166 |#1|))) (-619 (-399 (-921 (-166 (-548))))) (-619 (-1135)) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 33)) (-3875 (((-548) $) 55)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1665 (($ $) 110)) (-2074 (($ $) 82)) (-1940 (($ $) 71)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) 44)) (-4087 (((-112) $ $) NIL)) (-2054 (($ $) 80)) (-1918 (($ $) 69)) (-2672 (((-548) $) 64)) (-2970 (($ $ (-548)) 62)) (-2098 (($ $) NIL)) (-1963 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-3849 (($ $) 112)) (-2441 (((-3 (-548) "failed") $) 189) (((-3 (-399 (-548)) "failed") $) 185)) (-2375 (((-548) $) 187) (((-399 (-548)) $) 183)) (-1945 (($ $ $) NIL)) (-3133 (((-548) $ $) 102)) (-3859 (((-3 $ "failed") $) 114)) (-3123 (((-399 (-548)) $ (-745)) 190) (((-399 (-548)) $ (-745) (-745)) 182)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2232 (((-890)) 73) (((-890) (-890)) 98 (|has| $ (-6 -4318)))) (-3298 (((-112) $) 106)) (-1365 (($) 40)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL)) (-3054 (((-1223) (-745)) 152)) (-3064 (((-1223)) 157) (((-1223) (-745)) 158)) (-3086 (((-1223)) 159) (((-1223) (-745)) 160)) (-3075 (((-1223)) 155) (((-1223) (-745)) 156)) (-1672 (((-548) $) 58)) (-2266 (((-112) $) 104)) (-2154 (($ $ (-548)) NIL)) (-3711 (($ $) 48)) (-3910 (($ $) NIL)) (-3312 (((-112) $) 35)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL) (($) NIL (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-3091 (($ $ $) NIL) (($) 99 (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-1382 (((-548) $) 17)) (-3112 (($) 87) (($ $) 92)) (-2133 (($) 91) (($ $) 93)) (-3496 (($ $) 83)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 116)) (-2237 (((-890) (-548)) 43 (|has| $ (-6 -4318)))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) 53)) (-3887 (($ $) 109)) (-1335 (($ (-548) (-548)) 107) (($ (-548) (-548) (-890)) 108)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3352 (((-548) $) 19)) (-3100 (($) 94)) (-2458 (($ $) 79)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1340 (((-890)) 100) (((-890) (-890)) 101 (|has| $ (-6 -4318)))) (-4050 (($ $ (-745)) NIL) (($ $) 115)) (-2226 (((-890) (-548)) 47 (|has| $ (-6 -4318)))) (-2110 (($ $) NIL)) (-1973 (($ $) NIL)) (-2086 (($ $) NIL)) (-1952 (($ $) NIL)) (-2065 (($ $) 81)) (-1929 (($ $) 70)) (-2591 (((-371) $) 175) (((-218) $) 177) (((-861 (-371)) $) NIL) (((-1118) $) 162) (((-524) $) 173) (($ (-218)) 181)) (-3743 (((-832) $) 164) (($ (-548)) 186) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-548)) 186) (($ (-399 (-548))) NIL) (((-218) $) 178)) (-3835 (((-745)) NIL)) (-3897 (($ $) 111)) (-2245 (((-890)) 54) (((-890) (-890)) 66 (|has| $ (-6 -4318)))) (-3957 (((-890)) 103)) (-2145 (($ $) 86)) (-2006 (($ $) 46) (($ $ $) 52)) (-3290 (((-112) $ $) NIL)) (-2122 (($ $) 84)) (-1986 (($ $) 37)) (-2170 (($ $) NIL)) (-2029 (($ $) NIL)) (-4026 (($ $) NIL)) (-2040 (($ $) NIL)) (-2158 (($ $) NIL)) (-2017 (($ $) NIL)) (-2132 (($ $) 85)) (-1996 (($ $) 49)) (-1446 (($ $) 51)) (-3107 (($) 34 T CONST)) (-3118 (($) 38 T CONST)) (-2739 (((-1118) $) 27) (((-1118) $ (-112)) 29) (((-1223) (-796) $) 30) (((-1223) (-796) $ (-112)) 31)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 39)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 42)) (-2309 (($ $ $) 45) (($ $ (-548)) 41)) (-2299 (($ $) 36) (($ $ $) 50)) (-2290 (($ $ $) 61)) (** (($ $ (-890)) 67) (($ $ (-745)) NIL) (($ $ (-548)) 88) (($ $ (-399 (-548))) 125) (($ $ $) 117)) (* (($ (-890) $) 65) (($ (-745) $) NIL) (($ (-548) $) 68) (($ $ $) 60) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) +(((-371) (-13 (-396) (-226) (-593 (-1118)) (-802) (-592 (-218)) (-1157) (-593 (-524)) (-10 -8 (-15 -2309 ($ $ (-548))) (-15 ** ($ $ $)) (-15 -3711 ($ $)) (-15 -3133 ((-548) $ $)) (-15 -2970 ($ $ (-548))) (-15 -3123 ((-399 (-548)) $ (-745))) (-15 -3123 ((-399 (-548)) $ (-745) (-745))) (-15 -3112 ($)) (-15 -2133 ($)) (-15 -3100 ($)) (-15 -2006 ($ $ $)) (-15 -3112 ($ $)) (-15 -2133 ($ $)) (-15 -2591 ($ (-218))) (-15 -3086 ((-1223))) (-15 -3086 ((-1223) (-745))) (-15 -3075 ((-1223))) (-15 -3075 ((-1223) (-745))) (-15 -3064 ((-1223))) (-15 -3064 ((-1223) (-745))) (-15 -3054 ((-1223) (-745))) (-6 -4318) (-6 -4310)))) (T -371)) +((** (*1 *1 *1 *1) (-5 *1 (-371))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) (-3711 (*1 *1 *1) (-5 *1 (-371))) (-3133 (*1 *2 *1 *1) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) (-2970 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) (-3123 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-371)))) (-3123 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-371)))) (-3112 (*1 *1) (-5 *1 (-371))) (-2133 (*1 *1) (-5 *1 (-371))) (-3100 (*1 *1) (-5 *1 (-371))) (-2006 (*1 *1 *1 *1) (-5 *1 (-371))) (-3112 (*1 *1 *1) (-5 *1 (-371))) (-2133 (*1 *1 *1) (-5 *1 (-371))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-371)))) (-3086 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) (-3075 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) (-3064 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371))))) +(-13 (-396) (-226) (-593 (-1118)) (-802) (-592 (-218)) (-1157) (-593 (-524)) (-10 -8 (-15 -2309 ($ $ (-548))) (-15 ** ($ $ $)) (-15 -3711 ($ $)) (-15 -3133 ((-548) $ $)) (-15 -2970 ($ $ (-548))) (-15 -3123 ((-399 (-548)) $ (-745))) (-15 -3123 ((-399 (-548)) $ (-745) (-745))) (-15 -3112 ($)) (-15 -2133 ($)) (-15 -3100 ($)) (-15 -2006 ($ $ $)) (-15 -3112 ($ $)) (-15 -2133 ($ $)) (-15 -2591 ($ (-218))) (-15 -3086 ((-1223))) (-15 -3086 ((-1223) (-745))) (-15 -3075 ((-1223))) (-15 -3075 ((-1223) (-745))) (-15 -3064 ((-1223))) (-15 -3064 ((-1223) (-745))) (-15 -3054 ((-1223) (-745))) (-6 -4318) (-6 -4310))) +((-3408 (((-619 (-286 (-921 |#1|))) (-286 (-399 (-921 (-548)))) |#1|) 46) (((-619 (-286 (-921 |#1|))) (-399 (-921 (-548))) |#1|) 45) (((-619 (-619 (-286 (-921 |#1|)))) (-619 (-286 (-399 (-921 (-548))))) |#1|) 42) (((-619 (-619 (-286 (-921 |#1|)))) (-619 (-399 (-921 (-548)))) |#1|) 36)) (-3164 (((-619 |#1|) (-399 (-921 (-548))) |#1|) 20) (((-619 (-619 |#1|)) (-619 (-399 (-921 (-548)))) (-619 (-1135)) |#1|) 30))) +(((-372 |#1|) (-10 -7 (-15 -3408 ((-619 (-619 (-286 (-921 |#1|)))) (-619 (-399 (-921 (-548)))) |#1|)) (-15 -3408 ((-619 (-619 (-286 (-921 |#1|)))) (-619 (-286 (-399 (-921 (-548))))) |#1|)) (-15 -3408 ((-619 (-286 (-921 |#1|))) (-399 (-921 (-548))) |#1|)) (-15 -3408 ((-619 (-286 (-921 |#1|))) (-286 (-399 (-921 (-548)))) |#1|)) (-15 -3164 ((-619 (-619 |#1|)) (-619 (-399 (-921 (-548)))) (-619 (-1135)) |#1|)) (-15 -3164 ((-619 |#1|) (-399 (-921 (-548))) |#1|))) (-13 (-819) (-355))) (T -372)) +((-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-548)))) (-5 *2 (-619 *4)) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-399 (-921 (-548))))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 *5))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-819) (-355))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-399 (-921 (-548))))) (-5 *2 (-619 (-286 (-921 *4)))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-548)))) (-5 *2 (-619 (-286 (-921 *4)))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-286 (-399 (-921 (-548)))))) (-5 *2 (-619 (-619 (-286 (-921 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 (-548))))) (-5 *2 (-619 (-619 (-286 (-921 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355)))))) +(-10 -7 (-15 -3408 ((-619 (-619 (-286 (-921 |#1|)))) (-619 (-399 (-921 (-548)))) |#1|)) (-15 -3408 ((-619 (-619 (-286 (-921 |#1|)))) (-619 (-286 (-399 (-921 (-548))))) |#1|)) (-15 -3408 ((-619 (-286 (-921 |#1|))) (-399 (-921 (-548))) |#1|)) (-15 -3408 ((-619 (-286 (-921 |#1|))) (-286 (-399 (-921 (-548)))) |#1|)) (-15 -3164 ((-619 (-619 |#1|)) (-619 (-399 (-921 (-548)))) (-619 (-1135)) |#1|)) (-15 -3164 ((-619 |#1|) (-399 (-921 (-548))) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) 26)) (-2375 ((|#2| $) 28)) (-1872 (($ $) NIL)) (-2333 (((-745) $) 10)) (-3915 (((-619 $) $) 20)) (-2435 (((-112) $) NIL)) (-3310 (($ |#2| |#1|) 18)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2185 ((|#2| $) 15)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 45) (($ |#2|) 27)) (-3852 (((-619 |#1|) $) 17)) (-1951 ((|#1| $ |#2|) 47)) (-3107 (($) 29 T CONST)) (-3623 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-373 |#1| |#2|) (-13 (-374 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1016) (-821)) (T -373)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821))))) +(-13 (-374 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#2| "failed") $) 44)) (-2375 ((|#2| $) 43)) (-1872 (($ $) 30)) (-2333 (((-745) $) 34)) (-3915 (((-619 $) $) 35)) (-2435 (((-112) $) 38)) (-3310 (($ |#2| |#1|) 39)) (-2540 (($ (-1 |#1| |#1|) $) 40)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2185 ((|#2| $) 33)) (-2197 ((|#1| $) 32)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ |#2|) 45)) (-3852 (((-619 |#1|) $) 36)) (-1951 ((|#1| $ |#2|) 41)) (-3107 (($) 18 T CONST)) (-3623 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-374 |#1| |#2|) (-138) (-1016) (-1063)) (T -374)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) (-1951 (*1 *2 *1 *3) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)))) (-3310 (*1 *1 *2 *3) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-112)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *3)))) (-3915 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-374 *3 *4)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-745)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063))))) +(-13 (-111 |t#1| |t#1|) (-1007 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1951 (|t#1| $ |t#2|)) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -3310 ($ |t#2| |t#1|)) (-15 -2435 ((-112) $)) (-15 -3623 ((-619 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3852 ((-619 |t#1|) $)) (-15 -3915 ((-619 $) $)) (-15 -2333 ((-745) $)) (-15 -2185 (|t#2| $)) (-15 -2197 (|t#1| $)) (-15 -3176 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1872 ($ $)) (IF (|has| |t#1| (-169)) (-6 (-692 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) |has| |#1| (-169)) ((-1007 |#2|) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-663 (-673))) 14) (($ (-619 (-322))) 13) (($ (-322)) 12) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 11))) +(((-375) (-138)) (T -375)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-673))) (-4 *1 (-375)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-375)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-375)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-375))))) +(-13 (-387) (-10 -8 (-15 -3743 ($ (-663 (-673)))) (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))))) +(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) +((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 21) (((-3 $ "failed") (-663 (-308 (-548)))) 19) (((-3 $ "failed") (-663 (-921 (-371)))) 17) (((-3 $ "failed") (-663 (-921 (-548)))) 15) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 13) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 11)) (-2375 (($ (-663 (-308 (-371)))) 22) (($ (-663 (-308 (-548)))) 20) (($ (-663 (-921 (-371)))) 18) (($ (-663 (-921 (-548)))) 16) (($ (-663 (-399 (-921 (-371))))) 14) (($ (-663 (-399 (-921 (-548))))) 12)) (-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-619 (-322))) 25) (($ (-322)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 23))) +(((-376) (-138)) (T -376)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-376)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-376)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-308 (-371)))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-308 (-371)))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-308 (-548)))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-308 (-548)))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-371)))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-921 (-371)))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-548)))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-921 (-548)))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-399 (-921 (-371))))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-399 (-921 (-371))))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-399 (-921 (-548))))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-399 (-921 (-548))))) (-4 *1 (-376))))) +(-13 (-387) (-10 -8 (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -2375 ($ (-663 (-308 (-371))))) (-15 -2441 ((-3 $ "failed") (-663 (-308 (-371))))) (-15 -2375 ($ (-663 (-308 (-548))))) (-15 -2441 ((-3 $ "failed") (-663 (-308 (-548))))) (-15 -2375 ($ (-663 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-663 (-921 (-371))))) (-15 -2375 ($ (-663 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-663 (-921 (-548))))) (-15 -2375 ($ (-663 (-399 (-921 (-371)))))) (-15 -2441 ((-3 $ "failed") (-663 (-399 (-921 (-371)))))) (-15 -2375 ($ (-663 (-399 (-921 (-548)))))) (-15 -2441 ((-3 $ "failed") (-663 (-399 (-921 (-548)))))))) +(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 28)) (-3107 (($) 12 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-377 |#1| |#2|) (-13 (-111 |#1| |#1|) (-499 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|))) (-1016) (-821)) (T -377)) +NIL +(-13 (-111 |#1| |#1|) (-499 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-3423 (((-745) $) 59)) (-3030 (($) NIL T CONST)) (-2448 (((-3 $ "failed") $ $) 61)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3245 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2266 (((-112) $) 15)) (-3224 ((|#1| $ (-548)) NIL)) (-3235 (((-745) $ (-548)) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-1628 (($ (-1 |#1| |#1|) $) 38)) (-3442 (($ (-1 (-745) (-745)) $) 35)) (-2459 (((-3 $ "failed") $ $) 50)) (-2546 (((-1118) $) NIL)) (-3257 (($ $ $) 26)) (-3269 (($ $ $) 24)) (-3932 (((-1082) $) NIL)) (-3213 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $) 32)) (-3209 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3743 (((-832) $) 22) (($ |#1|) NIL)) (-3118 (($) 9 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 41)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) 63 (|has| |#1| (-821)))) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ |#1| (-745)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-378 |#1|) (-13 (-701) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3269 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2459 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3209 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3245 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3423 ((-745) $)) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $)) (-15 -3235 ((-745) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3442 ($ (-1 (-745) (-745)) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) (-1063)) (T -378)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-3269 (*1 *1 *1 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-3257 (*1 *1 *1 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-2459 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-2448 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-3209 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-378 *3)) (|:| |rm| (-378 *3)))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-3245 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-378 *3)) (|:| |mm| (-378 *3)) (|:| |rm| (-378 *3)))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-745))))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-745)) (-5 *1 (-378 *4)) (-4 *4 (-1063)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-3442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-745) (-745))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-378 *3))))) +(-13 (-701) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3269 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2459 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3209 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3245 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3423 ((-745) $)) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $)) (-15 -3235 ((-745) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3442 ($ (-1 (-745) (-745)) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 45)) (-2375 (((-548) $) 44)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-1795 (($ $ $) 52)) (-3091 (($ $ $) 51)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-548)) 46)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 49)) (-2241 (((-112) $ $) 48)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 50)) (-2234 (((-112) $ $) 47)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-379) (-138)) (T -379)) +NIL +(-13 (-540) (-821) (-1007 (-548))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-1007 (-548)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3188 (((-112) $) 20)) (-3201 (((-112) $) 19)) (-3550 (($ (-1118) (-1118) (-1118)) 21)) (-2275 (((-1118) $) 16)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3177 (($ (-1118) (-1118) (-1118)) 14)) (-3226 (((-1118) $) 17)) (-3215 (((-112) $) 18)) (-3283 (((-1118) $) 15)) (-3743 (((-832) $) 12) (($ (-1118)) 13) (((-1118) $) 9)) (-2214 (((-112) $ $) 7))) +(((-380) (-381)) (T -380)) +NIL +(-381) +((-3730 (((-112) $ $) 7)) (-3188 (((-112) $) 14)) (-3201 (((-112) $) 15)) (-3550 (($ (-1118) (-1118) (-1118)) 13)) (-2275 (((-1118) $) 18)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3177 (($ (-1118) (-1118) (-1118)) 20)) (-3226 (((-1118) $) 17)) (-3215 (((-112) $) 16)) (-3283 (((-1118) $) 19)) (-3743 (((-832) $) 11) (($ (-1118)) 22) (((-1118) $) 21)) (-2214 (((-112) $ $) 6))) +(((-381) (-138)) (T -381)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) (-3177 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112)))) (-3550 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381))))) +(-13 (-1063) (-10 -8 (-15 -3743 ($ (-1118))) (-15 -3743 ((-1118) $)) (-15 -3177 ($ (-1118) (-1118) (-1118))) (-15 -3283 ((-1118) $)) (-15 -2275 ((-1118) $)) (-15 -3226 ((-1118) $)) (-15 -3215 ((-112) $)) (-15 -3201 ((-112) $)) (-15 -3188 ((-112) $)) (-15 -3550 ($ (-1118) (-1118) (-1118))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3237 (((-832) $) 50)) (-3030 (($) NIL T CONST)) (-2246 (($ $ (-890)) NIL)) (-2468 (($ $ (-890)) NIL)) (-3424 (($ $ (-890)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($ (-745)) 26)) (-3402 (((-745)) 17)) (-3248 (((-832) $) 52)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) NIL)) (-3664 (($ $ $ $) NIL)) (-3639 (($ $ $) NIL)) (-3107 (($) 20 T CONST)) (-2214 (((-112) $ $) 28)) (-2299 (($ $) 34) (($ $ $) 36)) (-2290 (($ $ $) 37)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-382 |#1| |#2| |#3|) (-13 (-719 |#3|) (-10 -8 (-15 -3402 ((-745))) (-15 -3248 ((-832) $)) (-15 -3237 ((-832) $)) (-15 -4160 ($ (-745))))) (-745) (-745) (-169)) (T -382)) +((-3402 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-169)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169))))) +(-13 (-719 |#3|) (-10 -8 (-15 -3402 ((-745))) (-15 -3248 ((-832) $)) (-15 -3237 ((-832) $)) (-15 -4160 ($ (-745))))) +((-3284 (((-1118)) 10)) (-3272 (((-1107 (-1118))) 28)) (-3873 (((-1223) (-1118)) 25) (((-1223) (-380)) 24)) (-3885 (((-1223)) 26)) (-3260 (((-1107 (-1118))) 27))) +(((-383) (-10 -7 (-15 -3260 ((-1107 (-1118)))) (-15 -3272 ((-1107 (-1118)))) (-15 -3885 ((-1223))) (-15 -3873 ((-1223) (-380))) (-15 -3873 ((-1223) (-1118))) (-15 -3284 ((-1118))))) (T -383)) +((-3284 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-383)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-383)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1223)) (-5 *1 (-383)))) (-3885 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-383)))) (-3272 (*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-383)))) (-3260 (*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-383))))) +(-10 -7 (-15 -3260 ((-1107 (-1118)))) (-15 -3272 ((-1107 (-1118)))) (-15 -3885 ((-1223))) (-15 -3873 ((-1223) (-380))) (-15 -3873 ((-1223) (-1118))) (-15 -3284 ((-1118)))) +((-1672 (((-745) (-328 |#1| |#2| |#3| |#4|)) 16))) +(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1672 ((-745) (-328 |#1| |#2| |#3| |#4|)))) (-13 (-360) (-355)) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -384)) +((-1672 (*1 *2 *3) (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-360) (-355))) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-4 *7 (-334 *4 *5 *6)) (-5 *2 (-745)) (-5 *1 (-384 *4 *5 *6 *7))))) +(-10 -7 (-15 -1672 ((-745) (-328 |#1| |#2| |#3| |#4|)))) +((-3743 (((-386) |#1|) 11))) +(((-385 |#1|) (-10 -7 (-15 -3743 ((-386) |#1|))) (-1063)) (T -385)) +((-3743 (*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-385 *3)) (-4 *3 (-1063))))) +(-10 -7 (-15 -3743 ((-386) |#1|))) +((-3730 (((-112) $ $) NIL)) (-2572 (((-619 (-1118)) $ (-619 (-1118))) 38)) (-3295 (((-619 (-1118)) $ (-619 (-1118))) 39)) (-2590 (((-619 (-1118)) $ (-619 (-1118))) 40)) (-2601 (((-619 (-1118)) $) 35)) (-3550 (($) 23)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4163 (((-619 (-1118)) $) 36)) (-2611 (((-619 (-1118)) $) 37)) (-2487 (((-1223) $ (-548)) 33) (((-1223) $) 34)) (-2591 (($ (-832) (-548)) 30)) (-3743 (((-832) $) 42) (($ (-832)) 25)) (-2214 (((-112) $ $) NIL))) +(((-386) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-832))) (-15 -2591 ($ (-832) (-548))) (-15 -2487 ((-1223) $ (-548))) (-15 -2487 ((-1223) $)) (-15 -2611 ((-619 (-1118)) $)) (-15 -4163 ((-619 (-1118)) $)) (-15 -3550 ($)) (-15 -2601 ((-619 (-1118)) $)) (-15 -2590 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -3295 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2572 ((-619 (-1118)) $ (-619 (-1118))))))) (T -386)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-386)))) (-2591 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-386)))) (-2487 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-386)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-386)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-3550 (*1 *1) (-5 *1 (-386))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-2590 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-3295 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-2572 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386))))) +(-13 (-1063) (-10 -8 (-15 -3743 ($ (-832))) (-15 -2591 ($ (-832) (-548))) (-15 -2487 ((-1223) $ (-548))) (-15 -2487 ((-1223) $)) (-15 -2611 ((-619 (-1118)) $)) (-15 -4163 ((-619 (-1118)) $)) (-15 -3550 ($)) (-15 -2601 ((-619 (-1118)) $)) (-15 -2590 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -3295 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2572 ((-619 (-1118)) $ (-619 (-1118)))))) +((-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8))) +(((-387) (-138)) (T -387)) +((-3898 (*1 *2 *1) (-12 (-4 *1 (-387)) (-5 *2 (-1223))))) +(-13 (-1172) (-592 (-832)) (-10 -8 (-15 -3898 ((-1223) $)))) +(((-592 (-832)) . T) ((-1172) . T)) +((-2441 (((-3 $ "failed") (-308 (-371))) 21) (((-3 $ "failed") (-308 (-548))) 19) (((-3 $ "failed") (-921 (-371))) 17) (((-3 $ "failed") (-921 (-548))) 15) (((-3 $ "failed") (-399 (-921 (-371)))) 13) (((-3 $ "failed") (-399 (-921 (-548)))) 11)) (-2375 (($ (-308 (-371))) 22) (($ (-308 (-548))) 20) (($ (-921 (-371))) 18) (($ (-921 (-548))) 16) (($ (-399 (-921 (-371)))) 14) (($ (-399 (-921 (-548)))) 12)) (-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-619 (-322))) 25) (($ (-322)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 23))) +(((-388) (-138)) (T -388)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-388)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-388)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-371))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-548))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-371))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-371))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-548))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-371)))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 (-921 (-371)))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-548)))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 (-921 (-548)))) (-4 *1 (-388))))) +(-13 (-387) (-10 -8 (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -2375 ($ (-308 (-371)))) (-15 -2441 ((-3 $ "failed") (-308 (-371)))) (-15 -2375 ($ (-308 (-548)))) (-15 -2441 ((-3 $ "failed") (-308 (-548)))) (-15 -2375 ($ (-921 (-371)))) (-15 -2441 ((-3 $ "failed") (-921 (-371)))) (-15 -2375 ($ (-921 (-548)))) (-15 -2441 ((-3 $ "failed") (-921 (-548)))) (-15 -2375 ($ (-399 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-371))))) (-15 -2375 ($ (-399 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-548))))))) +(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) +((-3321 (((-619 (-1118)) (-619 (-1118))) 9)) (-3898 (((-1223) (-380)) 27)) (-3308 (((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135))) 60) (((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135)) 35) (((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135))) 34))) +(((-389) (-10 -7 (-15 -3308 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)))) (-15 -3308 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135))) (-15 -3308 ((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135)))) (-15 -3898 ((-1223) (-380))) (-15 -3321 ((-619 (-1118)) (-619 (-1118)))))) (T -389)) +((-3321 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-389)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1223)) (-5 *1 (-389)))) (-3308 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *5 (-1138)) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-389)))) (-3308 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-389)))) (-3308 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-389))))) +(-10 -7 (-15 -3308 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)))) (-15 -3308 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135))) (-15 -3308 ((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135)))) (-15 -3898 ((-1223) (-380))) (-15 -3321 ((-619 (-1118)) (-619 (-1118))))) +((-3898 (((-1223) $) 38)) (-3743 (((-832) $) 98) (($ (-322)) 100) (($ (-619 (-322))) 99) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 97) (($ (-308 (-675))) 54) (($ (-308 (-673))) 73) (($ (-308 (-668))) 86) (($ (-286 (-308 (-675)))) 68) (($ (-286 (-308 (-673)))) 81) (($ (-286 (-308 (-668)))) 94) (($ (-308 (-548))) 104) (($ (-308 (-371))) 117) (($ (-308 (-166 (-371)))) 130) (($ (-286 (-308 (-548)))) 112) (($ (-286 (-308 (-371)))) 125) (($ (-286 (-308 (-166 (-371))))) 138))) +(((-390 |#1| |#2| |#3| |#4|) (-13 (-387) (-10 -8 (-15 -3743 ($ (-322))) (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -3743 ($ (-308 (-675)))) (-15 -3743 ($ (-308 (-673)))) (-15 -3743 ($ (-308 (-668)))) (-15 -3743 ($ (-286 (-308 (-675))))) (-15 -3743 ($ (-286 (-308 (-673))))) (-15 -3743 ($ (-286 (-308 (-668))))) (-15 -3743 ($ (-308 (-548)))) (-15 -3743 ($ (-308 (-371)))) (-15 -3743 ($ (-308 (-166 (-371))))) (-15 -3743 ($ (-286 (-308 (-548))))) (-15 -3743 ($ (-286 (-308 (-371))))) (-15 -3743 ($ (-286 (-308 (-166 (-371)))))))) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-1135)) (-1139)) (T -390)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-675))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-673))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-668))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-675)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-673)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-668)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-166 (-371)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-548)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-371)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-166 (-371))))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139))))) +(-13 (-387) (-10 -8 (-15 -3743 ($ (-322))) (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -3743 ($ (-308 (-675)))) (-15 -3743 ($ (-308 (-673)))) (-15 -3743 ($ (-308 (-668)))) (-15 -3743 ($ (-286 (-308 (-675))))) (-15 -3743 ($ (-286 (-308 (-673))))) (-15 -3743 ($ (-286 (-308 (-668))))) (-15 -3743 ($ (-308 (-548)))) (-15 -3743 ($ (-308 (-371)))) (-15 -3743 ($ (-308 (-166 (-371))))) (-15 -3743 ($ (-286 (-308 (-548))))) (-15 -3743 ($ (-286 (-308 (-371))))) (-15 -3743 ($ (-286 (-308 (-166 (-371)))))))) +((-3730 (((-112) $ $) NIL)) (-2189 ((|#2| $) 36)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2200 (($ (-399 |#2|)) 85)) (-2180 (((-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))) $) 37)) (-4050 (($ $) 32) (($ $ (-745)) 34)) (-2591 (((-399 |#2|) $) 46)) (-3754 (($ (-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|)))) 31)) (-3743 (((-832) $) 120)) (-3296 (($ $) 33) (($ $ (-745)) 35)) (-2214 (((-112) $ $) NIL)) (-2290 (($ |#2| $) 39))) +(((-391 |#1| |#2|) (-13 (-1063) (-593 (-399 |#2|)) (-10 -8 (-15 -2290 ($ |#2| $)) (-15 -2200 ($ (-399 |#2|))) (-15 -2189 (|#2| $)) (-15 -2180 ((-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))) $)) (-15 -3754 ($ (-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))))) (-15 -4050 ($ $)) (-15 -3296 ($ $)) (-15 -4050 ($ $ (-745))) (-15 -3296 ($ $ (-745))))) (-13 (-355) (-145)) (-1194 |#1|)) (T -391)) +((-2290 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *2)) (-4 *2 (-1194 *3)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)))) (-2189 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-391 *3 *2)) (-4 *3 (-13 (-355) (-145))))) (-2180 (*1 *2 *1) (-12 (-4 *3 (-13 (-355) (-145))) (-5 *2 (-619 (-2 (|:| -3352 (-745)) (|:| -2278 *4) (|:| |num| *4)))) (-5 *1 (-391 *3 *4)) (-4 *4 (-1194 *3)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3352 (-745)) (|:| -2278 *4) (|:| |num| *4)))) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)))) (-4050 (*1 *1 *1) (-12 (-4 *2 (-13 (-355) (-145))) (-5 *1 (-391 *2 *3)) (-4 *3 (-1194 *2)))) (-3296 (*1 *1 *1) (-12 (-4 *2 (-13 (-355) (-145))) (-5 *1 (-391 *2 *3)) (-4 *3 (-1194 *2)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)) (-4 *4 (-1194 *3)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)) (-4 *4 (-1194 *3))))) +(-13 (-1063) (-593 (-399 |#2|)) (-10 -8 (-15 -2290 ($ |#2| $)) (-15 -2200 ($ (-399 |#2|))) (-15 -2189 (|#2| $)) (-15 -2180 ((-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))) $)) (-15 -3754 ($ (-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))))) (-15 -4050 ($ $)) (-15 -3296 ($ $)) (-15 -4050 ($ $ (-745))) (-15 -3296 ($ $ (-745))))) +((-3730 (((-112) $ $) 9 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))))) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 15 (|has| |#1| (-855 (-371)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 14 (|has| |#1| (-855 (-548))))) (-2546 (((-1118) $) 13 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))))) (-3932 (((-1082) $) 12 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))))) (-3743 (((-832) $) 11 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))))) (-2214 (((-112) $ $) 10 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371))))))) +(((-392 |#1|) (-138) (-1172)) (T -392)) +NIL +(-13 (-1172) (-10 -7 (IF (|has| |t#1| (-855 (-548))) (-6 (-855 (-548))) |%noBranch|) (IF (|has| |t#1| (-855 (-371))) (-6 (-855 (-371))) |%noBranch|))) +(((-101) -1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))) ((-592 (-832)) -1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-1063) -1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))) ((-1172) . T)) +((-2208 (($ $) 10) (($ $ (-745)) 11))) +(((-393 |#1|) (-10 -8 (-15 -2208 (|#1| |#1| (-745))) (-15 -2208 (|#1| |#1|))) (-394)) (T -393)) +NIL +(-10 -8 (-15 -2208 (|#1| |#1| (-745))) (-15 -2208 (|#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2208 (($ $) 76) (($ $ (-745)) 75)) (-1271 (((-112) $) 68)) (-1672 (((-807 (-890)) $) 78)) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2217 (((-3 (-745) "failed") $ $) 77)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63)) (-4017 (((-3 $ "failed") $) 79)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) +(((-394) (-138)) (T -394)) +((-1672 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-807 (-890))))) (-2217 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-394)) (-5 *2 (-745)))) (-2208 (*1 *1 *1) (-4 *1 (-394))) (-2208 (*1 *1 *1 *2) (-12 (-4 *1 (-394)) (-5 *2 (-745))))) +(-13 (-355) (-143) (-10 -8 (-15 -1672 ((-807 (-890)) $)) (-15 -2217 ((-3 (-745) "failed") $ $)) (-15 -2208 ($ $)) (-15 -2208 ($ $ (-745))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-1335 (($ (-548) (-548)) 11) (($ (-548) (-548) (-890)) NIL)) (-1340 (((-890)) 16) (((-890) (-890)) NIL))) +(((-395 |#1|) (-10 -8 (-15 -1340 ((-890) (-890))) (-15 -1340 ((-890))) (-15 -1335 (|#1| (-548) (-548) (-890))) (-15 -1335 (|#1| (-548) (-548)))) (-396)) (T -395)) +((-1340 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-395 *3)) (-4 *3 (-396)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-395 *3)) (-4 *3 (-396))))) +(-10 -8 (-15 -1340 ((-890) (-890))) (-15 -1340 ((-890))) (-15 -1335 (|#1| (-548) (-548) (-890))) (-15 -1335 (|#1| (-548) (-548)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3875 (((-548) $) 86)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-1665 (($ $) 84)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-1926 (($ $) 94)) (-4087 (((-112) $ $) 57)) (-2672 (((-548) $) 111)) (-3030 (($) 17 T CONST)) (-3849 (($ $) 83)) (-2441 (((-3 (-548) "failed") $) 99) (((-3 (-399 (-548)) "failed") $) 96)) (-2375 (((-548) $) 98) (((-399 (-548)) $) 95)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-2232 (((-890)) 127) (((-890) (-890)) 124 (|has| $ (-6 -4318)))) (-3298 (((-112) $) 109)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 90)) (-1672 (((-548) $) 133)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 93)) (-3910 (($ $) 89)) (-3312 (((-112) $) 110)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1795 (($ $ $) 108) (($) 121 (-12 (-3958 (|has| $ (-6 -4318))) (-3958 (|has| $ (-6 -4310)))))) (-3091 (($ $ $) 107) (($) 120 (-12 (-3958 (|has| $ (-6 -4318))) (-3958 (|has| $ (-6 -4310)))))) (-1382 (((-548) $) 130)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-2237 (((-890) (-548)) 123 (|has| $ (-6 -4318)))) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3862 (($ $) 85)) (-3887 (($ $) 87)) (-1335 (($ (-548) (-548)) 135) (($ (-548) (-548) (-890)) 134)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3352 (((-548) $) 131)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-1340 (((-890)) 128) (((-890) (-890)) 125 (|has| $ (-6 -4318)))) (-2226 (((-890) (-548)) 122 (|has| $ (-6 -4318)))) (-2591 (((-371) $) 102) (((-218) $) 101) (((-861 (-371)) $) 91)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ (-548)) 100) (($ (-399 (-548))) 97)) (-3835 (((-745)) 28)) (-3897 (($ $) 88)) (-2245 (((-890)) 129) (((-890) (-890)) 126 (|has| $ (-6 -4318)))) (-3957 (((-890)) 132)) (-3290 (((-112) $ $) 37)) (-1446 (($ $) 112)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 105)) (-2241 (((-112) $ $) 104)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 106)) (-2234 (((-112) $ $) 103)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66) (($ $ (-399 (-548))) 92)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) +(((-396) (-138)) (T -396)) +((-1335 (*1 *1 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-396)))) (-1335 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-890)) (-4 *1 (-396)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) (-3957 (*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) (-2245 (*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) (-1340 (*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) (-2232 (*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-548)) (|has| *1 (-6 -4318)) (-4 *1 (-396)) (-5 *2 (-890)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-548)) (|has| *1 (-6 -4318)) (-4 *1 (-396)) (-5 *2 (-890)))) (-1795 (*1 *1) (-12 (-4 *1 (-396)) (-3958 (|has| *1 (-6 -4318))) (-3958 (|has| *1 (-6 -4310))))) (-3091 (*1 *1) (-12 (-4 *1 (-396)) (-3958 (|has| *1 (-6 -4318))) (-3958 (|has| *1 (-6 -4310)))))) +(-13 (-1025) (-10 -8 (-6 -2439) (-15 -1335 ($ (-548) (-548))) (-15 -1335 ($ (-548) (-548) (-890))) (-15 -1672 ((-548) $)) (-15 -3957 ((-890))) (-15 -3352 ((-548) $)) (-15 -1382 ((-548) $)) (-15 -2245 ((-890))) (-15 -1340 ((-890))) (-15 -2232 ((-890))) (IF (|has| $ (-6 -4318)) (PROGN (-15 -2245 ((-890) (-890))) (-15 -1340 ((-890) (-890))) (-15 -2232 ((-890) (-890))) (-15 -2237 ((-890) (-548))) (-15 -2226 ((-890) (-548)))) |%noBranch|) (IF (|has| $ (-6 -4310)) |%noBranch| (IF (|has| $ (-6 -4318)) |%noBranch| (PROGN (-15 -1795 ($)) (-15 -3091 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-169) . T) ((-593 (-218)) . T) ((-593 (-371)) . T) ((-593 (-861 (-371))) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-855 (-371)) . T) ((-889) . T) ((-971) . T) ((-991) . T) ((-1025) . T) ((-1007 (-399 (-548))) . T) ((-1007 (-548)) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-2540 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 20))) +(((-397 |#1| |#2|) (-10 -7 (-15 -2540 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-540) (-540)) (T -397)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-540)) (-4 *6 (-540)) (-5 *2 (-410 *6)) (-5 *1 (-397 *5 *6))))) +(-10 -7 (-15 -2540 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) +((-2540 (((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)) 13))) +(((-398 |#1| |#2|) (-10 -7 (-15 -2540 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) (-540) (-540)) (T -398)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-540)) (-4 *6 (-540)) (-5 *2 (-399 *6)) (-5 *1 (-398 *5 *6))))) +(-10 -7 (-15 -2540 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 13)) (-3875 ((|#1| $) 21 (|has| |#1| (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| |#1| (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 17) (((-3 (-1135) "failed") $) NIL (|has| |#1| (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) 70 (|has| |#1| (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548))))) (-2375 ((|#1| $) 15) (((-1135) $) NIL (|has| |#1| (-1007 (-1135)))) (((-399 (-548)) $) 67 (|has| |#1| (-1007 (-548)))) (((-548) $) NIL (|has| |#1| (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) 50)) (-2545 (($) NIL (|has| |#1| (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| |#1| (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| |#1| (-855 (-371))))) (-2266 (((-112) $) 64)) (-2002 (($ $) NIL)) (-2470 ((|#1| $) 71)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-3312 (((-112) $) NIL (|has| |#1| (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 97)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| |#1| (-299)))) (-3887 ((|#1| $) 28 (|has| |#1| (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 135 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 131 (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|)))) (-4077 (((-745) $) NIL)) (-3171 (($ $ |#1|) NIL (|has| |#1| (-278 |#1| |#1|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1993 (($ $) NIL)) (-2480 ((|#1| $) 73)) (-2591 (((-861 (-548)) $) NIL (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| |#1| (-593 (-861 (-371))))) (((-524) $) NIL (|has| |#1| (-593 (-524)))) (((-371) $) NIL (|has| |#1| (-991))) (((-218) $) NIL (|has| |#1| (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 10) (($ (-1135)) NIL (|has| |#1| (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) 99 (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 100)) (-3897 ((|#1| $) 26 (|has| |#1| (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| |#1| (-794)))) (-3107 (($) 22 T CONST)) (-3118 (($) 8 T CONST)) (-2739 (((-1118) $) 43 (-12 (|has| |#1| (-533)) (|has| |#1| (-802)))) (((-1118) $ (-112)) 44 (-12 (|has| |#1| (-533)) (|has| |#1| (-802)))) (((-1223) (-796) $) 45 (-12 (|has| |#1| (-533)) (|has| |#1| (-802)))) (((-1223) (-796) $ (-112)) 46 (-12 (|has| |#1| (-533)) (|has| |#1| (-802))))) (-3296 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 56)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) 24 (|has| |#1| (-821)))) (-2309 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2299 (($ $) 25) (($ $ $) 55)) (-2290 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 125)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 60) (($ $ $) 57) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-399 |#1|) (-13 (-961 |#1|) (-10 -7 (IF (|has| |#1| (-533)) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4314)) (IF (|has| |#1| (-443)) (IF (|has| |#1| (-6 -4325)) (-6 -4314) |%noBranch|) |%noBranch|) |%noBranch|))) (-540)) (T -399)) +NIL +(-13 (-961 |#1|) (-10 -7 (IF (|has| |#1| (-533)) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4314)) (IF (|has| |#1| (-443)) (IF (|has| |#1| (-6 -4325)) (-6 -4314) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2350 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 18)) (-2455 (($ (-1218 |#2|) (-1218 $)) NIL) (($ (-1218 |#2|)) 24)) (-2341 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 38)) (-2898 ((|#3| $) 60)) (-1566 ((|#2| (-1218 $)) NIL) ((|#2|) 20)) (-2447 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 22) (((-663 |#2|) (-1218 $)) 36)) (-2591 (((-1218 |#2|) $) 11) (($ (-1218 |#2|)) 13)) (-3780 ((|#3| $) 52))) +(((-400 |#1| |#2| |#3|) (-10 -8 (-15 -2341 ((-663 |#2|) |#1|)) (-15 -1566 (|#2|)) (-15 -2350 ((-663 |#2|))) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2898 (|#3| |#1|)) (-15 -3780 (|#3| |#1|)) (-15 -2350 ((-663 |#2|) (-1218 |#1|))) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2341 ((-663 |#2|) |#1| (-1218 |#1|)))) (-401 |#2| |#3|) (-169) (-1194 |#2|)) (T -400)) +((-2350 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)) (-5 *1 (-400 *3 *4 *5)) (-4 *3 (-401 *4 *5)))) (-1566 (*1 *2) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-169)) (-5 *1 (-400 *3 *2 *4)) (-4 *3 (-401 *2 *4))))) +(-10 -8 (-15 -2341 ((-663 |#2|) |#1|)) (-15 -1566 (|#2|)) (-15 -2350 ((-663 |#2|))) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2898 (|#3| |#1|)) (-15 -3780 (|#3| |#1|)) (-15 -2350 ((-663 |#2|) (-1218 |#1|))) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2341 ((-663 |#2|) |#1| (-1218 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2350 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2707 ((|#1| $) 50)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2455 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-2341 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-3859 (((-3 $ "failed") $) 32)) (-2103 (((-890)) 52)) (-2266 (((-112) $) 30)) (-3910 ((|#1| $) 49)) (-2898 ((|#2| $) 42 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1566 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2591 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35)) (-4017 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3780 ((|#2| $) 43)) (-3835 (((-745)) 28)) (-2877 (((-1218 $)) 65)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-401 |#1| |#2|) (-138) (-169) (-1194 |t#1|)) (T -401)) +((-2877 (*1 *2) (-12 (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *1)) (-4 *1 (-401 *3 *4)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *3)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-401 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-401 *3 *4)) (-4 *4 (-1194 *3)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *3)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-401 *3 *4)) (-4 *4 (-1194 *3)))) (-2350 (*1 *2) (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-663 *3)))) (-1566 (*1 *2) (-12 (-4 *1 (-401 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-663 *3))))) +(-13 (-362 |t#1| |t#2|) (-10 -8 (-15 -2877 ((-1218 $))) (-15 -2447 ((-1218 |t#1|) $)) (-15 -2447 ((-663 |t#1|) (-1218 $))) (-15 -2455 ($ (-1218 |t#1|))) (-15 -2591 ((-1218 |t#1|) $)) (-15 -2591 ($ (-1218 |t#1|))) (-15 -2350 ((-663 |t#1|))) (-15 -1566 (|t#1|)) (-15 -2341 ((-663 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-362 |#1| |#2|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) 27) (((-3 (-548) "failed") $) 19)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) 24) (((-548) $) 14)) (-3743 (($ |#2|) NIL) (($ (-399 (-548))) 22) (($ (-548)) 11))) +(((-402 |#1| |#2|) (-10 -8 (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -3743 (|#1| (-548))) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|))) (-403 |#2|) (-1172)) (T -402)) +NIL +(-10 -8 (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -3743 (|#1| (-548))) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|))) +((-2441 (((-3 |#1| "failed") $) 7) (((-3 (-399 (-548)) "failed") $) 16 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 13 (|has| |#1| (-1007 (-548))))) (-2375 ((|#1| $) 8) (((-399 (-548)) $) 15 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 12 (|has| |#1| (-1007 (-548))))) (-3743 (($ |#1|) 6) (($ (-399 (-548))) 17 (|has| |#1| (-1007 (-399 (-548))))) (($ (-548)) 14 (|has| |#1| (-1007 (-548)))))) +(((-403 |#1|) (-138) (-1172)) (T -403)) +NIL +(-13 (-1007 |t#1|) (-10 -7 (IF (|has| |t#1| (-1007 (-548))) (-6 (-1007 (-548))) |%noBranch|) (IF (|has| |t#1| (-1007 (-399 (-548)))) (-6 (-1007 (-399 (-548)))) |%noBranch|))) +(((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T)) +((-2540 (((-405 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-405 |#1| |#2| |#3| |#4|)) 33))) +(((-404 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2540 ((-405 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-405 |#1| |#2| |#3| |#4|)))) (-299) (-961 |#1|) (-1194 |#2|) (-13 (-401 |#2| |#3|) (-1007 |#2|)) (-299) (-961 |#5|) (-1194 |#6|) (-13 (-401 |#6| |#7|) (-1007 |#6|))) (T -404)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-405 *5 *6 *7 *8)) (-4 *5 (-299)) (-4 *6 (-961 *5)) (-4 *7 (-1194 *6)) (-4 *8 (-13 (-401 *6 *7) (-1007 *6))) (-4 *9 (-299)) (-4 *10 (-961 *9)) (-4 *11 (-1194 *10)) (-5 *2 (-405 *9 *10 *11 *12)) (-5 *1 (-404 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-401 *10 *11) (-1007 *10)))))) +(-10 -7 (-15 -2540 ((-405 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-405 |#1| |#2| |#3| |#4|)))) +((-3730 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2361 ((|#4| (-745) (-1218 |#4|)) 56)) (-2266 (((-112) $) NIL)) (-2470 (((-1218 |#4|) $) 17)) (-3910 ((|#2| $) 54)) (-2370 (($ $) 139)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 100)) (-3778 (($ (-1218 |#4|)) 99)) (-3932 (((-1082) $) NIL)) (-2480 ((|#1| $) 18)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 134)) (-2877 (((-1218 |#4|) $) 129)) (-3118 (($) 11 T CONST)) (-2214 (((-112) $ $) 40)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 122)) (* (($ $ $) 121))) +(((-405 |#1| |#2| |#3| |#4|) (-13 (-464) (-10 -8 (-15 -3778 ($ (-1218 |#4|))) (-15 -2877 ((-1218 |#4|) $)) (-15 -3910 (|#2| $)) (-15 -2470 ((-1218 |#4|) $)) (-15 -2480 (|#1| $)) (-15 -2370 ($ $)) (-15 -2361 (|#4| (-745) (-1218 |#4|))))) (-299) (-961 |#1|) (-1194 |#2|) (-13 (-401 |#2| |#3|) (-1007 |#2|))) (T -405)) +((-3778 (*1 *1 *2) (-12 (-5 *2 (-1218 *6)) (-4 *6 (-13 (-401 *4 *5) (-1007 *4))) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-299)) (-5 *1 (-405 *3 *4 *5 *6)))) (-2877 (*1 *2 *1) (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6)) (-4 *6 (-13 (-401 *4 *5) (-1007 *4))))) (-3910 (*1 *2 *1) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-405 *3 *2 *4 *5)) (-4 *3 (-299)) (-4 *5 (-13 (-401 *2 *4) (-1007 *2))))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6)) (-4 *6 (-13 (-401 *4 *5) (-1007 *4))))) (-2480 (*1 *2 *1) (-12 (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-4 *2 (-299)) (-5 *1 (-405 *2 *3 *4 *5)) (-4 *5 (-13 (-401 *3 *4) (-1007 *3))))) (-2370 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-5 *1 (-405 *2 *3 *4 *5)) (-4 *5 (-13 (-401 *3 *4) (-1007 *3))))) (-2361 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1218 *2)) (-4 *5 (-299)) (-4 *6 (-961 *5)) (-4 *2 (-13 (-401 *6 *7) (-1007 *6))) (-5 *1 (-405 *5 *6 *7 *2)) (-4 *7 (-1194 *6))))) +(-13 (-464) (-10 -8 (-15 -3778 ($ (-1218 |#4|))) (-15 -2877 ((-1218 |#4|) $)) (-15 -3910 (|#2| $)) (-15 -2470 ((-1218 |#4|) $)) (-15 -2480 (|#1| $)) (-15 -2370 ($ $)) (-15 -2361 (|#4| (-745) (-1218 |#4|))))) +((-3730 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-3910 ((|#2| $) 61)) (-2380 (($ (-1218 |#4|)) 25) (($ (-405 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1007 |#2|)))) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 34)) (-2877 (((-1218 |#4|) $) 26)) (-3118 (($) 23 T CONST)) (-2214 (((-112) $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ $ $) 72))) +(((-406 |#1| |#2| |#3| |#4| |#5|) (-13 (-701) (-10 -8 (-15 -2877 ((-1218 |#4|) $)) (-15 -3910 (|#2| $)) (-15 -2380 ($ (-1218 |#4|))) (IF (|has| |#4| (-1007 |#2|)) (-15 -2380 ($ (-405 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-299) (-961 |#1|) (-1194 |#2|) (-401 |#2| |#3|) (-1218 |#4|)) (T -406)) +((-2877 (*1 *2 *1) (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-406 *3 *4 *5 *6 *7)) (-4 *6 (-401 *4 *5)) (-14 *7 *2))) (-3910 (*1 *2 *1) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-406 *3 *2 *4 *5 *6)) (-4 *3 (-299)) (-4 *5 (-401 *2 *4)) (-14 *6 (-1218 *5)))) (-2380 (*1 *1 *2) (-12 (-5 *2 (-1218 *6)) (-4 *6 (-401 *4 *5)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-299)) (-5 *1 (-406 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2380 (*1 *1 *2) (-12 (-5 *2 (-405 *3 *4 *5 *6)) (-4 *6 (-1007 *4)) (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *6 (-401 *4 *5)) (-14 *7 (-1218 *6)) (-5 *1 (-406 *3 *4 *5 *6 *7))))) +(-13 (-701) (-10 -8 (-15 -2877 ((-1218 |#4|) $)) (-15 -3910 (|#2| $)) (-15 -2380 ($ (-1218 |#4|))) (IF (|has| |#4| (-1007 |#2|)) (-15 -2380 ($ (-405 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-2540 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-407 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) (-409 |#2|) (-169) (-409 |#4|) (-169)) (T -407)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-409 *6)) (-5 *1 (-407 *4 *5 *2 *6)) (-4 *4 (-409 *5))))) +(-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) +((-2265 (((-3 $ "failed")) 86)) (-2434 (((-1218 (-663 |#2|)) (-1218 $)) NIL) (((-1218 (-663 |#2|))) 91)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 85)) (-3991 (((-3 $ "failed")) 84)) (-2413 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 102)) (-2391 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 110)) (-4307 (((-1131 (-921 |#2|))) 55)) (-2432 ((|#2| (-1218 $)) NIL) ((|#2|) 106)) (-2455 (($ (-1218 |#2|) (-1218 $)) NIL) (($ (-1218 |#2|)) 112)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 83)) (-4003 (((-3 $ "failed")) 75)) (-2422 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 100)) (-2402 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 108)) (-1298 (((-1131 (-921 |#2|))) 54)) (-2444 ((|#2| (-1218 $)) NIL) ((|#2|) 104)) (-2447 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 111) (((-663 |#2|) (-1218 $)) 118)) (-2591 (((-1218 |#2|) $) 96) (($ (-1218 |#2|)) 98)) (-4218 (((-619 (-921 |#2|)) (-1218 $)) NIL) (((-619 (-921 |#2|))) 94)) (-3398 (($ (-663 |#2|) $) 90))) +(((-408 |#1| |#2|) (-10 -8 (-15 -3398 (|#1| (-663 |#2|) |#1|)) (-15 -4307 ((-1131 (-921 |#2|)))) (-15 -1298 ((-1131 (-921 |#2|)))) (-15 -2391 ((-663 |#2|) |#1|)) (-15 -2402 ((-663 |#2|) |#1|)) (-15 -2413 ((-663 |#2|))) (-15 -2422 ((-663 |#2|))) (-15 -2432 (|#2|)) (-15 -2444 (|#2|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -4218 ((-619 (-921 |#2|)))) (-15 -2434 ((-1218 (-663 |#2|)))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2265 ((-3 |#1| "failed"))) (-15 -3991 ((-3 |#1| "failed"))) (-15 -4003 ((-3 |#1| "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed"))) (-15 -1332 ((-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed"))) (-15 -2413 ((-663 |#2|) (-1218 |#1|))) (-15 -2422 ((-663 |#2|) (-1218 |#1|))) (-15 -2432 (|#2| (-1218 |#1|))) (-15 -2444 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2391 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2402 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2434 ((-1218 (-663 |#2|)) (-1218 |#1|))) (-15 -4218 ((-619 (-921 |#2|)) (-1218 |#1|)))) (-409 |#2|) (-169)) (T -408)) +((-2434 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-4218 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-2444 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-408 *3 *2)) (-4 *3 (-409 *2)))) (-2432 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-408 *3 *2)) (-4 *3 (-409 *2)))) (-2422 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-2413 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-1298 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-4307 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4))))) +(-10 -8 (-15 -3398 (|#1| (-663 |#2|) |#1|)) (-15 -4307 ((-1131 (-921 |#2|)))) (-15 -1298 ((-1131 (-921 |#2|)))) (-15 -2391 ((-663 |#2|) |#1|)) (-15 -2402 ((-663 |#2|) |#1|)) (-15 -2413 ((-663 |#2|))) (-15 -2422 ((-663 |#2|))) (-15 -2432 (|#2|)) (-15 -2444 (|#2|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -4218 ((-619 (-921 |#2|)))) (-15 -2434 ((-1218 (-663 |#2|)))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2265 ((-3 |#1| "failed"))) (-15 -3991 ((-3 |#1| "failed"))) (-15 -4003 ((-3 |#1| "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed"))) (-15 -1332 ((-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed"))) (-15 -2413 ((-663 |#2|) (-1218 |#1|))) (-15 -2422 ((-663 |#2|) (-1218 |#1|))) (-15 -2432 (|#2| (-1218 |#1|))) (-15 -2444 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2391 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2402 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2434 ((-1218 (-663 |#2|)) (-1218 |#1|))) (-15 -4218 ((-619 (-921 |#2|)) (-1218 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2265 (((-3 $ "failed")) 37 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-2434 (((-1218 (-663 |#1|)) (-1218 $)) 78) (((-1218 (-663 |#1|))) 100)) (-2968 (((-1218 $)) 81)) (-3030 (($) 17 T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 40 (|has| |#1| (-540)))) (-3991 (((-3 $ "failed")) 38 (|has| |#1| (-540)))) (-2413 (((-663 |#1|) (-1218 $)) 65) (((-663 |#1|)) 92)) (-2947 ((|#1| $) 74)) (-2391 (((-663 |#1|) $ (-1218 $)) 76) (((-663 |#1|) $) 90)) (-3399 (((-3 $ "failed") $) 45 (|has| |#1| (-540)))) (-4307 (((-1131 (-921 |#1|))) 88 (|has| |#1| (-355)))) (-2246 (($ $ (-890)) 28)) (-2925 ((|#1| $) 72)) (-2741 (((-1131 |#1|) $) 42 (|has| |#1| (-540)))) (-2432 ((|#1| (-1218 $)) 67) ((|#1|) 94)) (-2903 (((-1131 |#1|) $) 63)) (-2842 (((-112)) 57)) (-2455 (($ (-1218 |#1|) (-1218 $)) 69) (($ (-1218 |#1|)) 98)) (-3859 (((-3 $ "failed") $) 47 (|has| |#1| (-540)))) (-2103 (((-890)) 80)) (-2815 (((-112)) 54)) (-2468 (($ $ (-890)) 33)) (-2782 (((-112)) 50)) (-2766 (((-112)) 48)) (-2797 (((-112)) 52)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 41 (|has| |#1| (-540)))) (-4003 (((-3 $ "failed")) 39 (|has| |#1| (-540)))) (-2422 (((-663 |#1|) (-1218 $)) 66) (((-663 |#1|)) 93)) (-2958 ((|#1| $) 75)) (-2402 (((-663 |#1|) $ (-1218 $)) 77) (((-663 |#1|) $) 91)) (-3411 (((-3 $ "failed") $) 46 (|has| |#1| (-540)))) (-1298 (((-1131 (-921 |#1|))) 89 (|has| |#1| (-355)))) (-3424 (($ $ (-890)) 29)) (-2936 ((|#1| $) 73)) (-2750 (((-1131 |#1|) $) 43 (|has| |#1| (-540)))) (-2444 ((|#1| (-1218 $)) 68) ((|#1|) 95)) (-2914 (((-1131 |#1|) $) 64)) (-2851 (((-112)) 58)) (-2546 (((-1118) $) 9)) (-2774 (((-112)) 49)) (-2790 (((-112)) 51)) (-2806 (((-112)) 53)) (-3932 (((-1082) $) 10)) (-2832 (((-112)) 56)) (-3171 ((|#1| $ (-548)) 101)) (-2447 (((-1218 |#1|) $ (-1218 $)) 71) (((-663 |#1|) (-1218 $) (-1218 $)) 70) (((-1218 |#1|) $) 103) (((-663 |#1|) (-1218 $)) 102)) (-2591 (((-1218 |#1|) $) 97) (($ (-1218 |#1|)) 96)) (-4218 (((-619 (-921 |#1|)) (-1218 $)) 79) (((-619 (-921 |#1|))) 99)) (-3652 (($ $ $) 25)) (-2891 (((-112)) 62)) (-3743 (((-832) $) 11)) (-2877 (((-1218 $)) 104)) (-2759 (((-619 (-1218 |#1|))) 44 (|has| |#1| (-540)))) (-3664 (($ $ $ $) 26)) (-2871 (((-112)) 60)) (-3398 (($ (-663 |#1|) $) 87)) (-3639 (($ $ $) 24)) (-2881 (((-112)) 61)) (-2859 (((-112)) 59)) (-2823 (((-112)) 55)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-409 |#1|) (-138) (-169)) (T -409)) +((-2877 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-409 *3)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-409 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-409 *2)) (-4 *2 (-169)))) (-2434 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 (-663 *3))))) (-4218 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-619 (-921 *3))))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-409 *3)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-409 *3)))) (-2444 (*1 *2) (-12 (-4 *1 (-409 *2)) (-4 *2 (-169)))) (-2432 (*1 *2) (-12 (-4 *1 (-409 *2)) (-4 *2 (-169)))) (-2422 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2413 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-1298 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-4 *3 (-355)) (-5 *2 (-1131 (-921 *3))))) (-4307 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-4 *3 (-355)) (-5 *2 (-1131 (-921 *3))))) (-3398 (*1 *1 *2 *1) (-12 (-5 *2 (-663 *3)) (-4 *1 (-409 *3)) (-4 *3 (-169))))) +(-13 (-359 |t#1|) (-10 -8 (-15 -2877 ((-1218 $))) (-15 -2447 ((-1218 |t#1|) $)) (-15 -2447 ((-663 |t#1|) (-1218 $))) (-15 -3171 (|t#1| $ (-548))) (-15 -2434 ((-1218 (-663 |t#1|)))) (-15 -4218 ((-619 (-921 |t#1|)))) (-15 -2455 ($ (-1218 |t#1|))) (-15 -2591 ((-1218 |t#1|) $)) (-15 -2591 ($ (-1218 |t#1|))) (-15 -2444 (|t#1|)) (-15 -2432 (|t#1|)) (-15 -2422 ((-663 |t#1|))) (-15 -2413 ((-663 |t#1|))) (-15 -2402 ((-663 |t#1|) $)) (-15 -2391 ((-663 |t#1|) $)) (IF (|has| |t#1| (-355)) (PROGN (-15 -1298 ((-1131 (-921 |t#1|)))) (-15 -4307 ((-1131 (-921 |t#1|))))) |%noBranch|) (-15 -3398 ($ (-663 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-359 |#1|) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-719 |#1|) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 42)) (-2255 (($ $) 57)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 146)) (-3303 (($ $) NIL)) (-3279 (((-112) $) 36)) (-2265 ((|#1| $) 13)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-1176)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-1176)))) (-2283 (($ |#1| (-548)) 31)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 116)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 55)) (-3859 (((-3 $ "failed") $) 131)) (-4182 (((-3 (-399 (-548)) "failed") $) 63 (|has| |#1| (-533)))) (-4172 (((-112) $) 59 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 70 (|has| |#1| (-533)))) (-2293 (($ |#1| (-548)) 33)) (-1271 (((-112) $) 152 (|has| |#1| (-1176)))) (-2266 (((-112) $) 43)) (-1730 (((-745) $) 38)) (-2302 (((-3 "nil" "sqfr" "irred" "prime") $ (-548)) 137)) (-3224 ((|#1| $ (-548)) 136)) (-2312 (((-548) $ (-548)) 135)) (-2332 (($ |#1| (-548)) 30)) (-2540 (($ (-1 |#1| |#1|) $) 143)) (-1703 (($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548))))) 58)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-2322 (($ |#1| (-548)) 32)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) 147 (|has| |#1| (-443)))) (-2272 (($ |#1| (-548) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3213 (((-619 (-2 (|:| -1915 |#1|) (|:| -3352 (-548)))) $) 54)) (-3582 (((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))) $) 12)) (-1915 (((-410 $) $) NIL (|has| |#1| (-1176)))) (-1900 (((-3 $ "failed") $ $) 138)) (-3352 (((-548) $) 132)) (-1384 ((|#1| $) 56)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 79 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 85 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) $) NIL (|has| |#1| (-504 (-1135) $))) (($ $ (-619 (-1135)) (-619 $)) 86 (|has| |#1| (-504 (-1135) $))) (($ $ (-619 (-286 $))) 82 (|has| |#1| (-301 $))) (($ $ (-286 $)) NIL (|has| |#1| (-301 $))) (($ $ $ $) NIL (|has| |#1| (-301 $))) (($ $ (-619 $) (-619 $)) NIL (|has| |#1| (-301 $)))) (-3171 (($ $ |#1|) 71 (|has| |#1| (-278 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-278 $ $)))) (-4050 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2591 (((-524) $) 27 (|has| |#1| (-593 (-524)))) (((-371) $) 92 (|has| |#1| (-991))) (((-218) $) 95 (|has| |#1| (-991)))) (-3743 (((-832) $) 114) (($ (-548)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548)))))) (-3835 (((-745)) 48)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 40 T CONST)) (-3118 (($) 39 T CONST)) (-3296 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2214 (((-112) $ $) 96)) (-2299 (($ $) 128) (($ $ $) NIL)) (-2290 (($ $ $) 140)) (** (($ $ (-890)) NIL) (($ $ (-745)) 102)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-410 |#1|) (-13 (-540) (-224 |#1|) (-38 |#1|) (-330 |#1|) (-403 |#1|) (-10 -8 (-15 -1384 (|#1| $)) (-15 -3352 ((-548) $)) (-15 -1703 ($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))))) (-15 -3582 ((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))) $)) (-15 -2332 ($ |#1| (-548))) (-15 -3213 ((-619 (-2 (|:| -1915 |#1|) (|:| -3352 (-548)))) $)) (-15 -2322 ($ |#1| (-548))) (-15 -2312 ((-548) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -2302 ((-3 "nil" "sqfr" "irred" "prime") $ (-548))) (-15 -1730 ((-745) $)) (-15 -2293 ($ |#1| (-548))) (-15 -2283 ($ |#1| (-548))) (-15 -2272 ($ |#1| (-548) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2265 (|#1| $)) (-15 -2255 ($ $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-443)) (-6 (-443)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1176)) (-6 (-1176)) |%noBranch|) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-278 $ $)) (-6 (-278 $ $)) |%noBranch|) (IF (|has| |#1| (-301 $)) (-6 (-301 $)) |%noBranch|) (IF (|has| |#1| (-504 (-1135) $)) (-6 (-504 (-1135) $)) |%noBranch|))) (-540)) (T -410)) +((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-540)) (-5 *1 (-410 *3)))) (-1384 (*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-548))))) (-4 *2 (-540)) (-5 *1 (-410 *2)))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-548))))) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-2332 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -1915 *3) (|:| -3352 (-548))))) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-2322 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2312 (*1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-410 *4)) (-4 *4 (-540)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-2293 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2283 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-548)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2265 (*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-410 *3)) (-4 *3 (-533)) (-4 *3 (-540)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-410 *3)) (-4 *3 (-533)) (-4 *3 (-540)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-410 *3)) (-4 *3 (-533)) (-4 *3 (-540))))) +(-13 (-540) (-224 |#1|) (-38 |#1|) (-330 |#1|) (-403 |#1|) (-10 -8 (-15 -1384 (|#1| $)) (-15 -3352 ((-548) $)) (-15 -1703 ($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))))) (-15 -3582 ((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))) $)) (-15 -2332 ($ |#1| (-548))) (-15 -3213 ((-619 (-2 (|:| -1915 |#1|) (|:| -3352 (-548)))) $)) (-15 -2322 ($ |#1| (-548))) (-15 -2312 ((-548) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -2302 ((-3 "nil" "sqfr" "irred" "prime") $ (-548))) (-15 -1730 ((-745) $)) (-15 -2293 ($ |#1| (-548))) (-15 -2283 ($ |#1| (-548))) (-15 -2272 ($ |#1| (-548) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2265 (|#1| $)) (-15 -2255 ($ $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-443)) (-6 (-443)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1176)) (-6 (-1176)) |%noBranch|) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-278 $ $)) (-6 (-278 $ $)) |%noBranch|) (IF (|has| |#1| (-301 $)) (-6 (-301 $)) |%noBranch|) (IF (|has| |#1| (-504 (-1135) $)) (-6 (-504 (-1135) $)) |%noBranch|))) +((-3933 (((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|)) 21)) (-2467 (((-410 |#1|) (-410 |#1|) (-410 |#1|)) 16))) +(((-411 |#1|) (-10 -7 (-15 -3933 ((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|))) (-15 -2467 ((-410 |#1|) (-410 |#1|) (-410 |#1|)))) (-540)) (T -411)) +((-2467 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-540)) (-5 *1 (-411 *3)))) (-3933 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-410 *4) *4)) (-4 *4 (-540)) (-5 *2 (-410 *4)) (-5 *1 (-411 *4))))) +(-10 -7 (-15 -3933 ((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|))) (-15 -2467 ((-410 |#1|) (-410 |#1|) (-410 |#1|)))) +((-2518 ((|#2| |#2|) 166)) (-2488 (((-3 (|:| |%expansion| (-305 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112)) 57))) +(((-412 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2488 ((-3 (|:| |%expansion| (-305 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112))) (-15 -2518 (|#2| |#2|))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|)) (-1135) |#2|) (T -412)) +((-2518 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1157) (-422 *3))) (-14 *4 (-1135)) (-14 *5 *2))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |%expansion| (-305 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-412 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-14 *6 (-1135)) (-14 *7 *3)))) +(-10 -7 (-15 -2488 ((-3 (|:| |%expansion| (-305 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112))) (-15 -2518 (|#2| |#2|))) +((-2540 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-413 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1016) (-821)) (-422 |#1|) (-13 (-1016) (-821)) (-422 |#3|)) (T -413)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1016) (-821))) (-4 *6 (-13 (-1016) (-821))) (-4 *2 (-422 *6)) (-5 *1 (-413 *5 *4 *6 *2)) (-4 *4 (-422 *5))))) +(-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|))) +((-2518 ((|#2| |#2|) 90)) (-2499 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118)) 48)) (-2509 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118)) 154))) +(((-414 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2499 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -2509 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -2518 (|#2| |#2|))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|) (-10 -8 (-15 -3743 ($ |#3|)))) (-819) (-13 (-1196 |#2| |#3|) (-355) (-1157) (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $)))) (-952 |#4|) (-1135)) (T -414)) +((-2518 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-4 *2 (-13 (-27) (-1157) (-422 *3) (-10 -8 (-15 -3743 ($ *4))))) (-4 *4 (-819)) (-4 *5 (-13 (-1196 *2 *4) (-355) (-1157) (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) (-5 *1 (-414 *3 *2 *4 *5 *6 *7)) (-4 *6 (-952 *5)) (-14 *7 (-1135)))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-4 *3 (-13 (-27) (-1157) (-422 *6) (-10 -8 (-15 -3743 ($ *7))))) (-4 *7 (-819)) (-4 *8 (-13 (-1196 *3 *7) (-355) (-1157) (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-414 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) (-14 *10 (-1135)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-4 *3 (-13 (-27) (-1157) (-422 *6) (-10 -8 (-15 -3743 ($ *7))))) (-4 *7 (-819)) (-4 *8 (-13 (-1196 *3 *7) (-355) (-1157) (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-414 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) (-14 *10 (-1135))))) +(-10 -7 (-15 -2499 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -2509 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -2518 (|#2| |#2|))) +((-4040 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2061 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2540 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2061 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4040 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1063) (-417 |#1|) (-1063) (-417 |#3|)) (T -415)) +((-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1063)) (-4 *5 (-1063)) (-4 *2 (-417 *5)) (-5 *1 (-415 *6 *4 *5 *2)) (-4 *4 (-417 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1063)) (-4 *2 (-1063)) (-5 *1 (-415 *5 *4 *2 *6)) (-4 *4 (-417 *5)) (-4 *6 (-417 *2)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-417 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-417 *5))))) +(-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2061 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4040 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2528 (($) 44)) (-1434 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2501 (($ $ $) 39)) (-2491 (((-112) $ $) 28)) (-3423 (((-745)) 47)) (-2592 (($ (-619 |#2|)) 20) (($) NIL)) (-2545 (($) 53)) (-2531 (((-112) $ $) 13)) (-1795 ((|#2| $) 61)) (-3091 ((|#2| $) 59)) (-2855 (((-890) $) 55)) (-2520 (($ $ $) 35)) (-3337 (($ (-890)) 50)) (-2511 (($ $ |#2|) NIL) (($ $ $) 38)) (-3945 (((-745) (-1 (-112) |#2|) $) NIL) (((-745) |#2| $) 26)) (-3754 (($ (-619 |#2|)) 24)) (-2543 (($ $) 46)) (-3743 (((-832) $) 33)) (-2554 (((-745) $) 21)) (-4013 (($ (-619 |#2|)) 19) (($) NIL)) (-2214 (((-112) $ $) 16))) +(((-416 |#1| |#2|) (-10 -8 (-15 -3423 ((-745))) (-15 -3337 (|#1| (-890))) (-15 -2855 ((-890) |#1|)) (-15 -2545 (|#1|)) (-15 -1795 (|#2| |#1|)) (-15 -3091 (|#2| |#1|)) (-15 -2528 (|#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2554 ((-745) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2531 ((-112) |#1| |#1|)) (-15 -4013 (|#1|)) (-15 -4013 (|#1| (-619 |#2|))) (-15 -2592 (|#1|)) (-15 -2592 (|#1| (-619 |#2|))) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#2|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2491 ((-112) |#1| |#1|)) (-15 -1434 (|#1| |#1| |#1|)) (-15 -1434 (|#1| |#1| |#2|)) (-15 -1434 (|#1| |#2| |#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|))) (-417 |#2|) (-1063)) (T -416)) +((-3423 (*1 *2) (-12 (-4 *4 (-1063)) (-5 *2 (-745)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) +(-10 -8 (-15 -3423 ((-745))) (-15 -3337 (|#1| (-890))) (-15 -2855 ((-890) |#1|)) (-15 -2545 (|#1|)) (-15 -1795 (|#2| |#1|)) (-15 -3091 (|#2| |#1|)) (-15 -2528 (|#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2554 ((-745) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2531 ((-112) |#1| |#1|)) (-15 -4013 (|#1|)) (-15 -4013 (|#1| (-619 |#2|))) (-15 -2592 (|#1|)) (-15 -2592 (|#1| (-619 |#2|))) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#2|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2491 ((-112) |#1| |#1|)) (-15 -1434 (|#1| |#1| |#1|)) (-15 -1434 (|#1| |#1| |#2|)) (-15 -1434 (|#1| |#2| |#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|))) +((-3730 (((-112) $ $) 19)) (-2528 (($) 67 (|has| |#1| (-360)))) (-1434 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2501 (($ $ $) 78)) (-2491 (((-112) $ $) 79)) (-2028 (((-112) $ (-745)) 8)) (-3423 (((-745)) 61 (|has| |#1| (-360)))) (-2592 (($ (-619 |#1|)) 74) (($) 73)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-2545 (($) 64 (|has| |#1| (-360)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 70)) (-4282 (((-112) $ (-745)) 9)) (-1795 ((|#1| $) 65 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3091 ((|#1| $) 66 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-2855 (((-890) $) 63 (|has| |#1| (-360)))) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22)) (-2520 (($ $ $) 75)) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3337 (($ (-890)) 62 (|has| |#1| (-360)))) (-3932 (((-1082) $) 21)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2511 (($ $ |#1|) 77) (($ $ $) 76)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-2543 (($ $) 68 (|has| |#1| (-360)))) (-3743 (((-832) $) 18)) (-2554 (((-745) $) 69)) (-4013 (($ (-619 |#1|)) 72) (($) 71)) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-417 |#1|) (-138) (-1063)) (T -417)) +((-2554 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-1063)) (-5 *2 (-745)))) (-2543 (*1 *1 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-360)))) (-2528 (*1 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-360)) (-4 *2 (-1063)))) (-3091 (*1 *2 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-821))))) +(-13 (-222 |t#1|) (-1061 |t#1|) (-10 -8 (-6 -4327) (-15 -2554 ((-745) $)) (IF (|has| |t#1| (-360)) (PROGN (-6 (-360)) (-15 -2543 ($ $)) (-15 -2528 ($))) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-15 -3091 (|t#1| $)) (-15 -1795 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-222 |#1|) . T) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-360) |has| |#1| (-360)) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) +((-2564 (((-566 |#2|) |#2| (-1135)) 36)) (-2560 (((-566 |#2|) |#2| (-1135)) 20)) (-1787 ((|#2| |#2| (-1135)) 25))) +(((-418 |#1| |#2|) (-10 -7 (-15 -2560 ((-566 |#2|) |#2| (-1135))) (-15 -2564 ((-566 |#2|) |#2| (-1135))) (-15 -1787 (|#2| |#2| (-1135)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-29 |#1|))) (T -418)) +((-1787 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-418 *4 *2)) (-4 *2 (-13 (-1157) (-29 *4))))) (-2564 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-418 *5 *3)) (-4 *3 (-13 (-1157) (-29 *5))))) (-2560 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-418 *5 *3)) (-4 *3 (-13 (-1157) (-29 *5)))))) +(-10 -7 (-15 -2560 ((-566 |#2|) |#2| (-1135))) (-15 -2564 ((-566 |#2|) |#2| (-1135))) (-15 -1787 (|#2| |#2| (-1135)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2582 (($ |#2| |#1|) 35)) (-2573 (($ |#2| |#1|) 33)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-323 |#2|)) 25)) (-3835 (((-745)) NIL)) (-3107 (($) 10 T CONST)) (-3118 (($) 16 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-419 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4314)) (IF (|has| |#1| (-6 -4314)) (-6 -4314) |%noBranch|) |%noBranch|) (-15 -3743 ($ |#1|)) (-15 -3743 ($ (-323 |#2|))) (-15 -2582 ($ |#2| |#1|)) (-15 -2573 ($ |#2| |#1|)))) (-13 (-169) (-38 (-399 (-548)))) (-13 (-821) (-21))) (T -419)) +((-3743 (*1 *1 *2) (-12 (-5 *1 (-419 *2 *3)) (-4 *2 (-13 (-169) (-38 (-399 (-548))))) (-4 *3 (-13 (-821) (-21))))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-323 *4)) (-4 *4 (-13 (-821) (-21))) (-5 *1 (-419 *3 *4)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))))) (-2582 (*1 *1 *2 *3) (-12 (-5 *1 (-419 *3 *2)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))) (-4 *2 (-13 (-821) (-21))))) (-2573 (*1 *1 *2 *3) (-12 (-5 *1 (-419 *3 *2)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))) (-4 *2 (-13 (-821) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4314)) (IF (|has| |#1| (-6 -4314)) (-6 -4314) |%noBranch|) |%noBranch|) (-15 -3743 ($ |#1|)) (-15 -3743 ($ (-323 |#2|))) (-15 -2582 ($ |#2| |#1|)) (-15 -2573 ($ |#2| |#1|)))) +((-3810 (((-3 |#2| (-619 |#2|)) |#2| (-1135)) 109))) +(((-420 |#1| |#2|) (-10 -7 (-15 -3810 ((-3 |#2| (-619 |#2|)) |#2| (-1135)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-928) (-29 |#1|))) (T -420)) +((-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 *3 (-619 *3))) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1157) (-928) (-29 *5)))))) +(-10 -7 (-15 -3810 ((-3 |#2| (-619 |#2|)) |#2| (-1135)))) +((-2049 (((-619 (-1135)) $) 72)) (-1884 (((-399 (-1131 $)) $ (-591 $)) 273)) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-619 (-591 $)) (-619 $)) 237)) (-2441 (((-3 (-591 $) "failed") $) NIL) (((-3 (-1135) "failed") $) 75) (((-3 (-548) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-399 (-921 |#2|)) "failed") $) 324) (((-3 (-921 |#2|) "failed") $) 235) (((-3 (-399 (-548)) "failed") $) NIL)) (-2375 (((-591 $) $) NIL) (((-1135) $) 30) (((-548) $) NIL) ((|#2| $) 231) (((-399 (-921 |#2|)) $) 305) (((-921 |#2|) $) 232) (((-399 (-548)) $) NIL)) (-1402 (((-114) (-114)) 47)) (-2002 (($ $) 87)) (-1753 (((-3 (-591 $) "failed") $) 228)) (-1870 (((-619 (-591 $)) $) 229)) (-3939 (((-3 (-619 $) "failed") $) 247)) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $) 254)) (-3927 (((-3 (-619 $) "failed") $) 245)) (-2477 (((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $) 264)) (-3954 (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $) 251) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135)) 219)) (-2164 (((-112) $) 19)) (-2175 ((|#2| $) 21)) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) 236) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 96) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1135)) 57) (($ $ (-619 (-1135))) 240) (($ $) 241) (($ $ (-114) $ (-1135)) 60) (($ $ (-619 (-114)) (-619 $) (-1135)) 67) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 107) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 242) (($ $ (-1135) (-745) (-1 $ (-619 $))) 94) (($ $ (-1135) (-745) (-1 $ $)) 93)) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) 106)) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) 238)) (-1993 (($ $) 284)) (-2591 (((-861 (-548)) $) 257) (((-861 (-371)) $) 261) (($ (-410 $)) 320) (((-524) $) NIL)) (-3743 (((-832) $) 239) (($ (-591 $)) 84) (($ (-1135)) 26) (($ |#2|) NIL) (($ (-1087 |#2| (-591 $))) NIL) (($ (-399 |#2|)) 289) (($ (-921 (-399 |#2|))) 329) (($ (-399 (-921 (-399 |#2|)))) 301) (($ (-399 (-921 |#2|))) 295) (($ $) NIL) (($ (-921 |#2|)) 185) (($ (-399 (-548))) 334) (($ (-548)) NIL)) (-3835 (((-745)) 79)) (-1392 (((-112) (-114)) 41)) (-2201 (($ (-1135) $) 33) (($ (-1135) $ $) 34) (($ (-1135) $ $ $) 35) (($ (-1135) $ $ $ $) 36) (($ (-1135) (-619 $)) 39)) (* (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) +(((-421 |#1| |#2|) (-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3835 ((-745))) (-15 -3743 (|#1| (-548))) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-921 |#2|) |#1|)) (-15 -2441 ((-3 (-921 |#2|) "failed") |#1|)) (-15 -3743 (|#1| (-921 |#2|))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3743 (|#1| |#1|)) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2375 ((-399 (-921 |#2|)) |#1|)) (-15 -2441 ((-3 (-399 (-921 |#2|)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-921 |#2|)))) (-15 -1884 ((-399 (-1131 |#1|)) |#1| (-591 |#1|))) (-15 -3743 (|#1| (-399 (-921 (-399 |#2|))))) (-15 -3743 (|#1| (-921 (-399 |#2|)))) (-15 -3743 (|#1| (-399 |#2|))) (-15 -1993 (|#1| |#1|)) (-15 -2591 (|#1| (-410 |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-745) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-745) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| |#1|)))) (-15 -3968 ((-3 (-2 (|:| |val| |#1|) (|:| -3352 (-548))) "failed") |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1| (-1135))) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1| (-114))) (-15 -2002 (|#1| |#1|)) (-15 -3743 (|#1| (-1087 |#2| (-591 |#1|)))) (-15 -2477 ((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 |#1|))) "failed") |#1|)) (-15 -3927 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1|)) (-15 -3939 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 |#1|) (-1135))) (-15 -2460 (|#1| |#1| (-114) |#1| (-1135))) (-15 -2460 (|#1| |#1|)) (-15 -2460 (|#1| |#1| (-619 (-1135)))) (-15 -2460 (|#1| |#1| (-1135))) (-15 -2201 (|#1| (-1135) (-619 |#1|))) (-15 -2201 (|#1| (-1135) |#1| |#1| |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1| |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1|)) (-15 -2049 ((-619 (-1135)) |#1|)) (-15 -2175 (|#2| |#1|)) (-15 -2164 ((-112) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -3743 (|#1| (-1135))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1870 ((-619 (-591 |#1|)) |#1|)) (-15 -1753 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3854 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -3854 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -3854 (|#1| |#1| (-286 |#1|))) (-15 -3171 (|#1| (-114) (-619 |#1|))) (-15 -3171 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -2375 ((-591 |#1|) |#1|)) (-15 -2441 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3743 (|#1| (-591 |#1|))) (-15 -3743 ((-832) |#1|))) (-422 |#2|) (-821)) (T -421)) +((-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-821)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-421 *4 *5)) (-4 *4 (-422 *5)))) (-3835 (*1 *2) (-12 (-4 *4 (-821)) (-5 *2 (-745)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4))))) +(-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3835 ((-745))) (-15 -3743 (|#1| (-548))) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-921 |#2|) |#1|)) (-15 -2441 ((-3 (-921 |#2|) "failed") |#1|)) (-15 -3743 (|#1| (-921 |#2|))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3743 (|#1| |#1|)) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2375 ((-399 (-921 |#2|)) |#1|)) (-15 -2441 ((-3 (-399 (-921 |#2|)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-921 |#2|)))) (-15 -1884 ((-399 (-1131 |#1|)) |#1| (-591 |#1|))) (-15 -3743 (|#1| (-399 (-921 (-399 |#2|))))) (-15 -3743 (|#1| (-921 (-399 |#2|)))) (-15 -3743 (|#1| (-399 |#2|))) (-15 -1993 (|#1| |#1|)) (-15 -2591 (|#1| (-410 |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-745) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-745) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| |#1|)))) (-15 -3968 ((-3 (-2 (|:| |val| |#1|) (|:| -3352 (-548))) "failed") |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1| (-1135))) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1| (-114))) (-15 -2002 (|#1| |#1|)) (-15 -3743 (|#1| (-1087 |#2| (-591 |#1|)))) (-15 -2477 ((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 |#1|))) "failed") |#1|)) (-15 -3927 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1|)) (-15 -3939 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 |#1|) (-1135))) (-15 -2460 (|#1| |#1| (-114) |#1| (-1135))) (-15 -2460 (|#1| |#1|)) (-15 -2460 (|#1| |#1| (-619 (-1135)))) (-15 -2460 (|#1| |#1| (-1135))) (-15 -2201 (|#1| (-1135) (-619 |#1|))) (-15 -2201 (|#1| (-1135) |#1| |#1| |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1| |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1|)) (-15 -2049 ((-619 (-1135)) |#1|)) (-15 -2175 (|#2| |#1|)) (-15 -2164 ((-112) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -3743 (|#1| (-1135))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1870 ((-619 (-591 |#1|)) |#1|)) (-15 -1753 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3854 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -3854 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -3854 (|#1| |#1| (-286 |#1|))) (-15 -3171 (|#1| (-114) (-619 |#1|))) (-15 -3171 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -2375 ((-591 |#1|) |#1|)) (-15 -2441 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3743 (|#1| (-591 |#1|))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 113 (|has| |#1| (-25)))) (-2049 (((-619 (-1135)) $) 200)) (-1884 (((-399 (-1131 $)) $ (-591 $)) 168 (|has| |#1| (-540)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 140 (|has| |#1| (-540)))) (-3303 (($ $) 141 (|has| |#1| (-540)))) (-3279 (((-112) $) 143 (|has| |#1| (-540)))) (-1806 (((-619 (-591 $)) $) 44)) (-4104 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3854 (($ $ (-286 $)) 56) (($ $ (-619 (-286 $))) 55) (($ $ (-619 (-591 $)) (-619 $)) 54)) (-1688 (($ $) 160 (|has| |#1| (-540)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-540)))) (-4087 (((-112) $ $) 151 (|has| |#1| (-540)))) (-3030 (($) 101 (-1524 (|has| |#1| (-1075)) (|has| |#1| (-25))) CONST)) (-2441 (((-3 (-591 $) "failed") $) 69) (((-3 (-1135) "failed") $) 213) (((-3 (-548) "failed") $) 206 (|has| |#1| (-1007 (-548)))) (((-3 |#1| "failed") $) 204) (((-3 (-399 (-921 |#1|)) "failed") $) 166 (|has| |#1| (-540))) (((-3 (-921 |#1|) "failed") $) 120 (|has| |#1| (-1016))) (((-3 (-399 (-548)) "failed") $) 95 (-1524 (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548))))))) (-2375 (((-591 $) $) 68) (((-1135) $) 212) (((-548) $) 207 (|has| |#1| (-1007 (-548)))) ((|#1| $) 203) (((-399 (-921 |#1|)) $) 165 (|has| |#1| (-540))) (((-921 |#1|) $) 119 (|has| |#1| (-1016))) (((-399 (-548)) $) 94 (-1524 (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548))))))) (-1945 (($ $ $) 155 (|has| |#1| (-540)))) (-1608 (((-663 (-548)) (-663 $)) 134 (-1723 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 133 (-1723 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 132 (|has| |#1| (-1016))) (((-663 |#1|) (-663 $)) 131 (|has| |#1| (-1016)))) (-3859 (((-3 $ "failed") $) 103 (|has| |#1| (-1075)))) (-1922 (($ $ $) 154 (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-540)))) (-1271 (((-112) $) 162 (|has| |#1| (-540)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 209 (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 208 (|has| |#1| (-855 (-371))))) (-2142 (($ $) 51) (($ (-619 $)) 50)) (-1744 (((-619 (-114)) $) 43)) (-1402 (((-114) (-114)) 42)) (-2266 (((-112) $) 102 (|has| |#1| (-1075)))) (-3705 (((-112) $) 22 (|has| $ (-1007 (-548))))) (-2002 (($ $) 183 (|has| |#1| (-1016)))) (-2470 (((-1087 |#1| (-591 $)) $) 184 (|has| |#1| (-1016)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-540)))) (-1724 (((-1131 $) (-591 $)) 25 (|has| $ (-1016)))) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2540 (($ (-1 $ $) (-591 $)) 36)) (-1753 (((-3 (-591 $) "failed") $) 46)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-540))) (($ $ $) 146 (|has| |#1| (-540)))) (-2546 (((-1118) $) 9)) (-1870 (((-619 (-591 $)) $) 45)) (-1409 (($ (-114) $) 38) (($ (-114) (-619 $)) 37)) (-3939 (((-3 (-619 $) "failed") $) 189 (|has| |#1| (-1075)))) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $) 180 (|has| |#1| (-1016)))) (-3927 (((-3 (-619 $) "failed") $) 187 (|has| |#1| (-25)))) (-2477 (((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3954 (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $) 188 (|has| |#1| (-1075))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114)) 182 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135)) 181 (|has| |#1| (-1016)))) (-1518 (((-112) $ (-114)) 40) (((-112) $ (-1135)) 39)) (-2153 (($ $) 105 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540))))) (-3926 (((-745) $) 47)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 202)) (-2175 ((|#1| $) 201)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-540)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-540))) (($ $ $) 144 (|has| |#1| (-540)))) (-1734 (((-112) $ $) 35) (((-112) $ (-1135)) 34)) (-1915 (((-410 $) $) 159 (|has| |#1| (-540)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-540))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-540)))) (-1900 (((-3 $ "failed") $ $) 139 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-540)))) (-3718 (((-112) $) 23 (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) 67) (($ $ (-619 (-591 $)) (-619 $)) 66) (($ $ (-619 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-619 $) (-619 $)) 62) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 33) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 32) (($ $ (-1135) (-1 $ (-619 $))) 31) (($ $ (-1135) (-1 $ $)) 30) (($ $ (-619 (-114)) (-619 (-1 $ $))) 29) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 28) (($ $ (-114) (-1 $ (-619 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1135)) 194 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135))) 193 (|has| |#1| (-593 (-524)))) (($ $) 192 (|has| |#1| (-593 (-524)))) (($ $ (-114) $ (-1135)) 191 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-114)) (-619 $) (-1135)) 190 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 179 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 178 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) 177 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ $)) 176 (|has| |#1| (-1016)))) (-4077 (((-745) $) 152 (|has| |#1| (-540)))) (-3171 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-619 $)) 57)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-540)))) (-1762 (($ $) 49) (($ $ $) 48)) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 125 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 124 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 123 (|has| |#1| (-1016))) (($ $ (-1135)) 122 (|has| |#1| (-1016)))) (-1993 (($ $) 173 (|has| |#1| (-540)))) (-2480 (((-1087 |#1| (-591 $)) $) 174 (|has| |#1| (-540)))) (-3287 (($ $) 24 (|has| $ (-1016)))) (-2591 (((-861 (-548)) $) 211 (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) 210 (|has| |#1| (-593 (-861 (-371))))) (($ (-410 $)) 175 (|has| |#1| (-540))) (((-524) $) 97 (|has| |#1| (-593 (-524))))) (-2128 (($ $ $) 108 (|has| |#1| (-464)))) (-3652 (($ $ $) 109 (|has| |#1| (-464)))) (-3743 (((-832) $) 11) (($ (-591 $)) 70) (($ (-1135)) 214) (($ |#1|) 205) (($ (-1087 |#1| (-591 $))) 185 (|has| |#1| (-1016))) (($ (-399 |#1|)) 171 (|has| |#1| (-540))) (($ (-921 (-399 |#1|))) 170 (|has| |#1| (-540))) (($ (-399 (-921 (-399 |#1|)))) 169 (|has| |#1| (-540))) (($ (-399 (-921 |#1|))) 167 (|has| |#1| (-540))) (($ $) 138 (|has| |#1| (-540))) (($ (-921 |#1|)) 121 (|has| |#1| (-1016))) (($ (-399 (-548))) 96 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548)))))) (($ (-548)) 93 (-1524 (|has| |#1| (-1016)) (|has| |#1| (-1007 (-548)))))) (-4017 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3835 (((-745)) 130 (|has| |#1| (-1016)))) (-3528 (($ $) 53) (($ (-619 $)) 52)) (-1392 (((-112) (-114)) 41)) (-3290 (((-112) $ $) 142 (|has| |#1| (-540)))) (-2201 (($ (-1135) $) 199) (($ (-1135) $ $) 198) (($ (-1135) $ $ $) 197) (($ (-1135) $ $ $ $) 196) (($ (-1135) (-619 $)) 195)) (-3107 (($) 112 (|has| |#1| (-25)) CONST)) (-3118 (($) 100 (|has| |#1| (-1075)) CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 129 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 128 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 127 (|has| |#1| (-1016))) (($ $ (-1135)) 126 (|has| |#1| (-1016)))) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2309 (($ (-1087 |#1| (-591 $)) (-1087 |#1| (-591 $))) 172 (|has| |#1| (-540))) (($ $ $) 106 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540))))) (-2299 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2290 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-548)) 107 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540)))) (($ $ (-745)) 104 (|has| |#1| (-1075))) (($ $ (-890)) 99 (|has| |#1| (-1075)))) (* (($ (-399 (-548)) $) 164 (|has| |#1| (-540))) (($ $ (-399 (-548))) 163 (|has| |#1| (-540))) (($ |#1| $) 137 (|has| |#1| (-169))) (($ $ |#1|) 136 (|has| |#1| (-169))) (($ (-548) $) 118 (|has| |#1| (-21))) (($ (-745) $) 114 (|has| |#1| (-25))) (($ (-890) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1075))))) +(((-422 |#1|) (-138) (-821)) (T -422)) +((-2164 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-821)) (-5 *2 (-112)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-821)) (-5 *2 (-619 (-1135))))) (-2201 (*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) (-2201 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) (-2201 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) (-2201 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) (-2201 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 *1)) (-4 *1 (-422 *4)) (-4 *4 (-821)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)) (-4 *3 (-593 (-524))))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-4 *1 (-422 *3)) (-4 *3 (-821)) (-4 *3 (-593 (-524))))) (-2460 (*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-593 (-524))))) (-2460 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1135)) (-4 *1 (-422 *4)) (-4 *4 (-821)) (-4 *4 (-593 (-524))))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 *1)) (-5 *4 (-1135)) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-593 (-524))))) (-3939 (*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-422 *3)))) (-3954 (*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) (-4 *1 (-422 *3)))) (-3927 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-422 *3)))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1489 (-548)) (|:| |var| (-591 *1)))) (-4 *1 (-422 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1087 *3 (-591 *1))) (-4 *3 (-1016)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-591 *1))) (-4 *1 (-422 *3)))) (-2002 (*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-1016)))) (-3954 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1016)) (-4 *4 (-821)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) (-4 *1 (-422 *4)))) (-3954 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-1016)) (-4 *4 (-821)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) (-4 *1 (-422 *4)))) (-3968 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-2 (|:| |val| *1) (|:| -3352 (-548)))) (-4 *1 (-422 *3)))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) (-5 *4 (-619 (-1 *1 *1))) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) (-5 *4 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 (-619 *1))) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 *1)) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-422 *3)) (-4 *3 (-540)) (-4 *3 (-821)))) (-2480 (*1 *2 *1) (-12 (-4 *3 (-540)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-591 *1))) (-4 *1 (-422 *3)))) (-1993 (*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-540)))) (-2309 (*1 *1 *2 *2) (-12 (-5 *2 (-1087 *3 (-591 *1))) (-4 *3 (-540)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-540)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-921 (-399 *3))) (-4 *3 (-540)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-399 *3)))) (-4 *3 (-540)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-1884 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-422 *4)) (-4 *4 (-821)) (-4 *4 (-540)) (-5 *2 (-399 (-1131 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-422 *3)) (-4 *3 (-821)) (-4 *3 (-1075))))) +(-13 (-294) (-1007 (-1135)) (-853 |t#1|) (-392 |t#1|) (-403 |t#1|) (-10 -8 (-15 -2164 ((-112) $)) (-15 -2175 (|t#1| $)) (-15 -2049 ((-619 (-1135)) $)) (-15 -2201 ($ (-1135) $)) (-15 -2201 ($ (-1135) $ $)) (-15 -2201 ($ (-1135) $ $ $)) (-15 -2201 ($ (-1135) $ $ $ $)) (-15 -2201 ($ (-1135) (-619 $))) (IF (|has| |t#1| (-593 (-524))) (PROGN (-6 (-593 (-524))) (-15 -2460 ($ $ (-1135))) (-15 -2460 ($ $ (-619 (-1135)))) (-15 -2460 ($ $)) (-15 -2460 ($ $ (-114) $ (-1135))) (-15 -2460 ($ $ (-619 (-114)) (-619 $) (-1135)))) |%noBranch|) (IF (|has| |t#1| (-1075)) (PROGN (-6 (-701)) (-15 ** ($ $ (-745))) (-15 -3939 ((-3 (-619 $) "failed") $)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3927 ((-3 (-619 $) "failed") $)) (-15 -2477 ((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-1007 (-921 |t#1|))) (-6 (-869 (-1135))) (-6 (-369 |t#1|)) (-15 -3743 ($ (-1087 |t#1| (-591 $)))) (-15 -2470 ((-1087 |t#1| (-591 $)) $)) (-15 -2002 ($ $)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114))) (-15 -3954 ((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135))) (-15 -3968 ((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $)) (-15 -2460 ($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $)))) (-15 -2460 ($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $))))) (-15 -2460 ($ $ (-1135) (-745) (-1 $ (-619 $)))) (-15 -2460 ($ $ (-1135) (-745) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-6 (-355)) (-6 (-1007 (-399 (-921 |t#1|)))) (-15 -2591 ($ (-410 $))) (-15 -2480 ((-1087 |t#1| (-591 $)) $)) (-15 -1993 ($ $)) (-15 -2309 ($ (-1087 |t#1| (-591 $)) (-1087 |t#1| (-591 $)))) (-15 -3743 ($ (-399 |t#1|))) (-15 -3743 ($ (-921 (-399 |t#1|)))) (-15 -3743 ($ (-399 (-921 (-399 |t#1|))))) (-15 -1884 ((-399 (-1131 $)) $ (-591 $))) (IF (|has| |t#1| (-1007 (-548))) (-6 (-1007 (-399 (-548)))) |%noBranch|)) |%noBranch|))) +(((-21) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-399 (-548))) |has| |#1| (-540)) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-540)) ((-111 |#1| |#1|) |has| |#1| (-169)) ((-111 $ $) |has| |#1| (-540)) ((-130) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) |has| |#1| (-540)) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548)))) ((-236) |has| |#1| (-540)) ((-282) |has| |#1| (-540)) ((-299) |has| |#1| (-540)) ((-301 $) . T) ((-294) . T) ((-355) |has| |#1| (-540)) ((-369 |#1|) |has| |#1| (-1016)) ((-392 |#1|) . T) ((-403 |#1|) . T) ((-443) |has| |#1| (-540)) ((-464) |has| |#1| (-464)) ((-504 (-591 $) $) . T) ((-504 $ $) . T) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-540)) ((-622 |#1|) |has| |#1| (-169)) ((-622 $) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-615 (-548)) -12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) ((-615 |#1|) |has| |#1| (-1016)) ((-692 #0#) |has| |#1| (-540)) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) -1524 (|has| |#1| (-1075)) (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-464)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-821) . T) ((-869 (-1135)) |has| |#1| (-1016)) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-853 |#1|) . T) ((-889) |has| |#1| (-540)) ((-1007 (-399 (-548))) -1524 (|has| |#1| (-1007 (-399 (-548)))) (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) ((-1007 (-399 (-921 |#1|))) |has| |#1| (-540)) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 (-591 $)) . T) ((-1007 (-921 |#1|)) |has| |#1| (-1016)) ((-1007 (-1135)) . T) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-540)) ((-1022 |#1|) |has| |#1| (-169)) ((-1022 $) |has| |#1| (-540)) ((-1016) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1023) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1075) -1524 (|has| |#1| (-1075)) (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-464)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1063) . T) ((-1172) . T) ((-1176) |has| |#1| (-540))) +((-1478 ((|#2| |#2| |#2|) 33)) (-1402 (((-114) (-114)) 44)) (-2602 ((|#2| |#2|) 66)) (-2593 ((|#2| |#2|) 69)) (-1467 ((|#2| |#2|) 32)) (-1513 ((|#2| |#2| |#2|) 35)) (-1533 ((|#2| |#2| |#2|) 37)) (-1502 ((|#2| |#2| |#2|) 34)) (-1523 ((|#2| |#2| |#2|) 36)) (-1392 (((-112) (-114)) 42)) (-1551 ((|#2| |#2|) 39)) (-1542 ((|#2| |#2|) 38)) (-1446 ((|#2| |#2|) 27)) (-1491 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1456 ((|#2| |#2| |#2|) 31))) +(((-423 |#1| |#2|) (-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1446 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -1491 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1478 (|#2| |#2| |#2|)) (-15 -1502 (|#2| |#2| |#2|)) (-15 -1513 (|#2| |#2| |#2|)) (-15 -1523 (|#2| |#2| |#2|)) (-15 -1533 (|#2| |#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -2593 (|#2| |#2|)) (-15 -2602 (|#2| |#2|))) (-13 (-821) (-540)) (-422 |#1|)) (T -423)) +((-2602 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-2593 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1533 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1523 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1513 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1502 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1478 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1456 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1491 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1491 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *4)) (-4 *4 (-422 *3)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-423 *4 *5)) (-4 *5 (-422 *4))))) +(-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1446 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -1491 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1478 (|#2| |#2| |#2|)) (-15 -1502 (|#2| |#2| |#2|)) (-15 -1513 (|#2| |#2| |#2|)) (-15 -1523 (|#2| |#2| |#2|)) (-15 -1533 (|#2| |#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -2593 (|#2| |#2|)) (-15 -2602 (|#2| |#2|))) +((-2771 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|)) 61))) +(((-424 |#1| |#2|) (-10 -7 (-15 -2771 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|))) (IF (|has| |#2| (-27)) (-15 -2771 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-540) (-821) (-145)) (-422 |#1|)) (T -424)) +((-2771 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-540) (-821) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1131 *3)) (|:| |pol2| (-1131 *3)) (|:| |prim| (-1131 *3)))) (-5 *1 (-424 *4 *3)) (-4 *3 (-27)) (-4 *3 (-422 *4)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-422 *4)) (-4 *4 (-13 (-540) (-821) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-619 (-1131 *5))) (|:| |prim| (-1131 *5)))) (-5 *1 (-424 *4 *5))))) +(-10 -7 (-15 -2771 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|))) (IF (|has| |#2| (-27)) (-15 -2771 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2622 (((-1223)) 19)) (-2612 (((-1131 (-399 (-548))) |#2| (-591 |#2|)) 41) (((-399 (-548)) |#2|) 25))) +(((-425 |#1| |#2|) (-10 -7 (-15 -2612 ((-399 (-548)) |#2|)) (-15 -2612 ((-1131 (-399 (-548))) |#2| (-591 |#2|))) (-15 -2622 ((-1223)))) (-13 (-821) (-540) (-1007 (-548))) (-422 |#1|)) (T -425)) +((-2622 (*1 *2) (-12 (-4 *3 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-1223)) (-5 *1 (-425 *3 *4)) (-4 *4 (-422 *3)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-422 *5)) (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-425 *5 *3)))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-399 (-548))) (-5 *1 (-425 *4 *3)) (-4 *3 (-422 *4))))) +(-10 -7 (-15 -2612 ((-399 (-548)) |#2|)) (-15 -2612 ((-1131 (-399 (-548))) |#2| (-591 |#2|))) (-15 -2622 ((-1223)))) +((-2773 (((-112) $) 28)) (-2631 (((-112) $) 30)) (-2624 (((-112) $) 31)) (-2652 (((-112) $) 34)) (-2673 (((-112) $) 29)) (-2663 (((-112) $) 33)) (-3743 (((-832) $) 18) (($ (-1118)) 27) (($ (-1135)) 23) (((-1135) $) 22) (((-1067) $) 21)) (-2640 (((-112) $) 32)) (-2214 (((-112) $ $) 15))) +(((-426) (-13 (-592 (-832)) (-10 -8 (-15 -3743 ($ (-1118))) (-15 -3743 ($ (-1135))) (-15 -3743 ((-1135) $)) (-15 -3743 ((-1067) $)) (-15 -2773 ((-112) $)) (-15 -2673 ((-112) $)) (-15 -2624 ((-112) $)) (-15 -2663 ((-112) $)) (-15 -2652 ((-112) $)) (-15 -2640 ((-112) $)) (-15 -2631 ((-112) $)) (-15 -2214 ((-112) $ $))))) (T -426)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-426)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-426)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-426)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-426)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) +(-13 (-592 (-832)) (-10 -8 (-15 -3743 ($ (-1118))) (-15 -3743 ($ (-1135))) (-15 -3743 ((-1135) $)) (-15 -3743 ((-1067) $)) (-15 -2773 ((-112) $)) (-15 -2673 ((-112) $)) (-15 -2624 ((-112) $)) (-15 -2663 ((-112) $)) (-15 -2652 ((-112) $)) (-15 -2640 ((-112) $)) (-15 -2631 ((-112) $)) (-15 -2214 ((-112) $ $)))) +((-2692 (((-3 (-410 (-1131 (-399 (-548)))) "failed") |#3|) 70)) (-2681 (((-410 |#3|) |#3|) 34)) (-2708 (((-3 (-410 (-1131 (-48))) "failed") |#3|) 46 (|has| |#2| (-1007 (-48))))) (-2700 (((-3 (|:| |overq| (-1131 (-399 (-548)))) (|:| |overan| (-1131 (-48))) (|:| -4119 (-112))) |#3|) 37))) +(((-427 |#1| |#2| |#3|) (-10 -7 (-15 -2681 ((-410 |#3|) |#3|)) (-15 -2692 ((-3 (-410 (-1131 (-399 (-548)))) "failed") |#3|)) (-15 -2700 ((-3 (|:| |overq| (-1131 (-399 (-548)))) (|:| |overan| (-1131 (-48))) (|:| -4119 (-112))) |#3|)) (IF (|has| |#2| (-1007 (-48))) (-15 -2708 ((-3 (-410 (-1131 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-540) (-821) (-1007 (-548))) (-422 |#1|) (-1194 |#2|)) (T -427)) +((-2708 (*1 *2 *3) (|partial| -12 (-4 *5 (-1007 (-48))) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) (-5 *2 (-410 (-1131 (-48)))) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) (-5 *2 (-3 (|:| |overq| (-1131 (-399 (-548)))) (|:| |overan| (-1131 (-48))) (|:| -4119 (-112)))) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2692 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) (-5 *2 (-410 (-1131 (-399 (-548))))) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2681 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) (-5 *2 (-410 *3)) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -2681 ((-410 |#3|) |#3|)) (-15 -2692 ((-3 (-410 (-1131 (-399 (-548)))) "failed") |#3|)) (-15 -2700 ((-3 (|:| |overq| (-1131 (-399 (-548)))) (|:| |overan| (-1131 (-48))) (|:| -4119 (-112))) |#3|)) (IF (|has| |#2| (-1007 (-48))) (-15 -2708 ((-3 (-410 (-1131 (-48))) "failed") |#3|)) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-3930 (((-1118) $ (-1118)) NIL)) (-3981 (($ $ (-1118)) NIL)) (-3943 (((-1118) $) NIL)) (-1695 (((-380) (-380) (-380)) 17) (((-380) (-380)) 15)) (-1280 (($ (-380)) NIL) (($ (-380) (-1118)) NIL)) (-2275 (((-380) $) NIL)) (-2546 (((-1118) $) NIL)) (-3959 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1689 (((-1223) (-1118)) 9)) (-1681 (((-1223) (-1118)) 10)) (-1673 (((-1223)) 11)) (-3743 (((-832) $) NIL)) (-3972 (($ $) 35)) (-2214 (((-112) $ $) NIL))) +(((-428) (-13 (-356 (-380) (-1118)) (-10 -7 (-15 -1695 ((-380) (-380) (-380))) (-15 -1695 ((-380) (-380))) (-15 -1689 ((-1223) (-1118))) (-15 -1681 ((-1223) (-1118))) (-15 -1673 ((-1223)))))) (T -428)) +((-1695 (*1 *2 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-428)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-428)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-428)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-428)))) (-1673 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-428))))) +(-13 (-356 (-380) (-1118)) (-10 -7 (-15 -1695 ((-380) (-380) (-380))) (-15 -1695 ((-380) (-380))) (-15 -1689 ((-1223) (-1118))) (-15 -1681 ((-1223) (-1118))) (-15 -1673 ((-1223))))) +((-3730 (((-112) $ $) NIL)) (-1666 (((-3 (|:| |fst| (-426)) (|:| -2648 "void")) $) 11)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1649 (($) 32)) (-1624 (($) 38)) (-1634 (($) 34)) (-2725 (($) 36)) (-1641 (($) 33)) (-1612 (($) 35)) (-2716 (($) 37)) (-1658 (((-112) $) 8)) (-3618 (((-619 (-921 (-548))) $) 19)) (-3754 (($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-1135)) (-112)) 27) (($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-921 (-548))) (-112)) 28)) (-3743 (((-832) $) 23) (($ (-426)) 29)) (-2214 (((-112) $ $) NIL))) +(((-429) (-13 (-1063) (-10 -8 (-15 -3743 ((-832) $)) (-15 -3743 ($ (-426))) (-15 -1666 ((-3 (|:| |fst| (-426)) (|:| -2648 "void")) $)) (-15 -3618 ((-619 (-921 (-548))) $)) (-15 -1658 ((-112) $)) (-15 -3754 ($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-1135)) (-112))) (-15 -3754 ($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-921 (-548))) (-112))) (-15 -1649 ($)) (-15 -1641 ($)) (-15 -1634 ($)) (-15 -1624 ($)) (-15 -1612 ($)) (-15 -2725 ($)) (-15 -2716 ($))))) (T -429)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-429)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-426)) (-5 *1 (-429)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *1 (-429)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-619 (-921 (-548)))) (-5 *1 (-429)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *3 (-619 (-1135))) (-5 *4 (-112)) (-5 *1 (-429)))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-112)) (-5 *1 (-429)))) (-1649 (*1 *1) (-5 *1 (-429))) (-1641 (*1 *1) (-5 *1 (-429))) (-1634 (*1 *1) (-5 *1 (-429))) (-1624 (*1 *1) (-5 *1 (-429))) (-1612 (*1 *1) (-5 *1 (-429))) (-2725 (*1 *1) (-5 *1 (-429))) (-2716 (*1 *1) (-5 *1 (-429)))) +(-13 (-1063) (-10 -8 (-15 -3743 ((-832) $)) (-15 -3743 ($ (-426))) (-15 -1666 ((-3 (|:| |fst| (-426)) (|:| -2648 "void")) $)) (-15 -3618 ((-619 (-921 (-548))) $)) (-15 -1658 ((-112) $)) (-15 -3754 ($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-1135)) (-112))) (-15 -3754 ($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-921 (-548))) (-112))) (-15 -1649 ($)) (-15 -1641 ($)) (-15 -1634 ($)) (-15 -1624 ($)) (-15 -1612 ($)) (-15 -2725 ($)) (-15 -2716 ($)))) +((-3730 (((-112) $ $) NIL)) (-2275 (((-1135) $) 8)) (-2546 (((-1118) $) 16)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 13))) +(((-430 |#1|) (-13 (-1063) (-10 -8 (-15 -2275 ((-1135) $)))) (-1135)) (T -430)) +((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-430 *3)) (-14 *3 *2)))) +(-13 (-1063) (-10 -8 (-15 -2275 ((-1135) $)))) +((-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-1218 (-673))) 14) (($ (-619 (-322))) 13) (($ (-322)) 12) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 11))) +(((-431) (-138)) (T -431)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-673))) (-4 *1 (-431)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-431)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-431)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-431))))) +(-13 (-387) (-10 -8 (-15 -3743 ($ (-1218 (-673)))) (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))))) +(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) +((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 21) (((-3 $ "failed") (-1218 (-308 (-548)))) 19) (((-3 $ "failed") (-1218 (-921 (-371)))) 17) (((-3 $ "failed") (-1218 (-921 (-548)))) 15) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 13) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 11)) (-2375 (($ (-1218 (-308 (-371)))) 22) (($ (-1218 (-308 (-548)))) 20) (($ (-1218 (-921 (-371)))) 18) (($ (-1218 (-921 (-548)))) 16) (($ (-1218 (-399 (-921 (-371))))) 14) (($ (-1218 (-399 (-921 (-548))))) 12)) (-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-619 (-322))) 25) (($ (-322)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 23))) +(((-432) (-138)) (T -432)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-432)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-432)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-308 (-371)))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-308 (-371)))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-308 (-548)))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-308 (-548)))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-371)))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-921 (-371)))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-548)))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-921 (-548)))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 (-371))))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-399 (-921 (-371))))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 (-548))))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-399 (-921 (-548))))) (-4 *1 (-432))))) +(-13 (-387) (-10 -8 (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -2375 ($ (-1218 (-308 (-371))))) (-15 -2441 ((-3 $ "failed") (-1218 (-308 (-371))))) (-15 -2375 ($ (-1218 (-308 (-548))))) (-15 -2441 ((-3 $ "failed") (-1218 (-308 (-548))))) (-15 -2375 ($ (-1218 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-1218 (-921 (-371))))) (-15 -2375 ($ (-1218 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-1218 (-921 (-548))))) (-15 -2375 ($ (-1218 (-399 (-921 (-371)))))) (-15 -2441 ((-3 $ "failed") (-1218 (-399 (-921 (-371)))))) (-15 -2375 ($ (-1218 (-399 (-921 (-548)))))) (-15 -2441 ((-3 $ "failed") (-1218 (-399 (-921 (-548)))))))) +(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) +((-1749 (((-112)) 17)) (-1758 (((-112) (-112)) 18)) (-1767 (((-112)) 13)) (-1775 (((-112) (-112)) 14)) (-1791 (((-112)) 15)) (-1801 (((-112) (-112)) 16)) (-1720 (((-890) (-890)) 21) (((-890)) 20)) (-1730 (((-745) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548))))) 42)) (-1711 (((-890) (-890)) 23) (((-890)) 22)) (-1740 (((-2 (|:| -2198 (-548)) (|:| -3213 (-619 |#1|))) |#1|) 62)) (-1703 (((-410 |#1|) (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548))))))) 126)) (-1341 (((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112)) 152)) (-1329 (((-410 |#1|) |#1| (-745) (-745)) 165) (((-410 |#1|) |#1| (-619 (-745)) (-745)) 162) (((-410 |#1|) |#1| (-619 (-745))) 164) (((-410 |#1|) |#1| (-745)) 163) (((-410 |#1|) |#1|) 161)) (-1908 (((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112)) 167) (((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745)) 168) (((-3 |#1| "failed") (-890) |#1| (-619 (-745))) 170) (((-3 |#1| "failed") (-890) |#1| (-745)) 169) (((-3 |#1| "failed") (-890) |#1|) 171)) (-1915 (((-410 |#1|) |#1| (-745) (-745)) 160) (((-410 |#1|) |#1| (-619 (-745)) (-745)) 156) (((-410 |#1|) |#1| (-619 (-745))) 158) (((-410 |#1|) |#1| (-745)) 157) (((-410 |#1|) |#1|) 155)) (-1783 (((-112) |#1|) 37)) (-1896 (((-712 (-745)) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548))))) 67)) (-1811 (((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112) (-1065 (-745)) (-745)) 154))) +(((-433 |#1|) (-10 -7 (-15 -1703 ((-410 |#1|) (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))))) (-15 -1896 ((-712 (-745)) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))))) (-15 -1711 ((-890))) (-15 -1711 ((-890) (-890))) (-15 -1720 ((-890))) (-15 -1720 ((-890) (-890))) (-15 -1730 ((-745) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))))) (-15 -1740 ((-2 (|:| -2198 (-548)) (|:| -3213 (-619 |#1|))) |#1|)) (-15 -1749 ((-112))) (-15 -1758 ((-112) (-112))) (-15 -1767 ((-112))) (-15 -1775 ((-112) (-112))) (-15 -1783 ((-112) |#1|)) (-15 -1791 ((-112))) (-15 -1801 ((-112) (-112))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1915 ((-410 |#1|) |#1| (-745))) (-15 -1915 ((-410 |#1|) |#1| (-619 (-745)))) (-15 -1915 ((-410 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1915 ((-410 |#1|) |#1| (-745) (-745))) (-15 -1329 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1| (-745))) (-15 -1329 ((-410 |#1|) |#1| (-619 (-745)))) (-15 -1329 ((-410 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1329 ((-410 |#1|) |#1| (-745) (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1|)) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112))) (-15 -1341 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112))) (-15 -1811 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112) (-1065 (-745)) (-745)))) (-1194 (-548))) (T -433)) +((-1811 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1065 (-745))) (-5 *6 (-745)) (-5 *2 (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1908 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *6 (-112)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1908 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1908 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1908 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-745)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1908 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-890)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1329 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-745))) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-745))) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1801 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1791 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1783 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1767 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1749 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1740 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2198 (-548)) (|:| -3213 (-619 *3)))) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -1915 *4) (|:| -2512 (-548))))) (-4 *4 (-1194 (-548))) (-5 *2 (-745)) (-5 *1 (-433 *4)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1720 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1711 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -1915 *4) (|:| -2512 (-548))))) (-4 *4 (-1194 (-548))) (-5 *2 (-712 (-745))) (-5 *1 (-433 *4)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| *4) (|:| -3286 (-548))))))) (-4 *4 (-1194 (-548))) (-5 *2 (-410 *4)) (-5 *1 (-433 *4))))) +(-10 -7 (-15 -1703 ((-410 |#1|) (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))))) (-15 -1896 ((-712 (-745)) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))))) (-15 -1711 ((-890))) (-15 -1711 ((-890) (-890))) (-15 -1720 ((-890))) (-15 -1720 ((-890) (-890))) (-15 -1730 ((-745) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))))) (-15 -1740 ((-2 (|:| -2198 (-548)) (|:| -3213 (-619 |#1|))) |#1|)) (-15 -1749 ((-112))) (-15 -1758 ((-112) (-112))) (-15 -1767 ((-112))) (-15 -1775 ((-112) (-112))) (-15 -1783 ((-112) |#1|)) (-15 -1791 ((-112))) (-15 -1801 ((-112) (-112))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1915 ((-410 |#1|) |#1| (-745))) (-15 -1915 ((-410 |#1|) |#1| (-619 (-745)))) (-15 -1915 ((-410 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1915 ((-410 |#1|) |#1| (-745) (-745))) (-15 -1329 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1| (-745))) (-15 -1329 ((-410 |#1|) |#1| (-619 (-745)))) (-15 -1329 ((-410 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1329 ((-410 |#1|) |#1| (-745) (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1|)) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112))) (-15 -1341 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112))) (-15 -1811 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112) (-1065 (-745)) (-745)))) +((-1849 (((-548) |#2|) 48) (((-548) |#2| (-745)) 47)) (-1840 (((-548) |#2|) 55)) (-1858 ((|#3| |#2|) 25)) (-3910 ((|#3| |#2| (-890)) 14)) (-3198 ((|#3| |#2|) 15)) (-1867 ((|#3| |#2|) 9)) (-3926 ((|#3| |#2|) 10)) (-1832 ((|#3| |#2| (-890)) 62) ((|#3| |#2|) 30)) (-1822 (((-548) |#2|) 57))) +(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -1822 ((-548) |#2|)) (-15 -1832 (|#3| |#2|)) (-15 -1832 (|#3| |#2| (-890))) (-15 -1840 ((-548) |#2|)) (-15 -1849 ((-548) |#2| (-745))) (-15 -1849 ((-548) |#2|)) (-15 -3910 (|#3| |#2| (-890))) (-15 -1858 (|#3| |#2|)) (-15 -1867 (|#3| |#2|)) (-15 -3926 (|#3| |#2|)) (-15 -3198 (|#3| |#2|))) (-1016) (-1194 |#1|) (-13 (-396) (-1007 |#1|) (-355) (-1157) (-276))) (T -434)) +((-3198 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-3926 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *2 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))) (-5 *1 (-434 *5 *3 *2)) (-4 *3 (-1194 *5)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))))) (-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *5 *3 *6)) (-4 *3 (-1194 *5)) (-4 *6 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))))) (-1840 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))))) (-1832 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *2 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))) (-5 *1 (-434 *5 *3 *2)) (-4 *3 (-1194 *5)))) (-1832 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-1822 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276)))))) +(-10 -7 (-15 -1822 ((-548) |#2|)) (-15 -1832 (|#3| |#2|)) (-15 -1832 (|#3| |#2| (-890))) (-15 -1840 ((-548) |#2|)) (-15 -1849 ((-548) |#2| (-745))) (-15 -1849 ((-548) |#2|)) (-15 -3910 (|#3| |#2| (-890))) (-15 -1858 (|#3| |#2|)) (-15 -1867 (|#3| |#2|)) (-15 -3926 (|#3| |#2|)) (-15 -3198 (|#3| |#2|))) +((-4220 ((|#2| (-1218 |#1|)) 36)) (-1888 ((|#2| |#2| |#1|) 49)) (-1878 ((|#2| |#2| |#1|) 41)) (-2796 ((|#2| |#2|) 38)) (-3166 (((-112) |#2|) 30)) (-1919 (((-619 |#2|) (-890) (-410 |#2|)) 17)) (-1908 ((|#2| (-890) (-410 |#2|)) 21)) (-1896 (((-712 (-745)) (-410 |#2|)) 25))) +(((-435 |#1| |#2|) (-10 -7 (-15 -3166 ((-112) |#2|)) (-15 -4220 (|#2| (-1218 |#1|))) (-15 -2796 (|#2| |#2|)) (-15 -1878 (|#2| |#2| |#1|)) (-15 -1888 (|#2| |#2| |#1|)) (-15 -1896 ((-712 (-745)) (-410 |#2|))) (-15 -1908 (|#2| (-890) (-410 |#2|))) (-15 -1919 ((-619 |#2|) (-890) (-410 |#2|)))) (-1016) (-1194 |#1|)) (T -435)) +((-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-410 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-1016)) (-5 *2 (-619 *6)) (-5 *1 (-435 *5 *6)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-410 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-435 *5 *2)) (-4 *5 (-1016)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1016)) (-5 *2 (-712 (-745))) (-5 *1 (-435 *4 *5)))) (-1888 (*1 *2 *2 *3) (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3)))) (-1878 (*1 *2 *2 *3) (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3)))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-1016)) (-4 *2 (-1194 *4)) (-5 *1 (-435 *4 *2)))) (-3166 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -3166 ((-112) |#2|)) (-15 -4220 (|#2| (-1218 |#1|))) (-15 -2796 (|#2| |#2|)) (-15 -1878 (|#2| |#2| |#1|)) (-15 -1888 (|#2| |#2| |#1|)) (-15 -1896 ((-712 (-745)) (-410 |#2|))) (-15 -1908 (|#2| (-890) (-410 |#2|))) (-15 -1919 ((-619 |#2|) (-890) (-410 |#2|)))) +((-1953 (((-745)) 41)) (-1997 (((-745)) 23 (|has| |#1| (-396))) (((-745) (-745)) 22 (|has| |#1| (-396)))) (-1985 (((-548) |#1|) 18 (|has| |#1| (-396)))) (-1972 (((-548) |#1|) 20 (|has| |#1| (-396)))) (-1941 (((-745)) 40) (((-745) (-745)) 39)) (-1930 ((|#1| (-745) (-548)) 29)) (-1964 (((-1223)) 43))) +(((-436 |#1|) (-10 -7 (-15 -1930 (|#1| (-745) (-548))) (-15 -1941 ((-745) (-745))) (-15 -1941 ((-745))) (-15 -1953 ((-745))) (-15 -1964 ((-1223))) (IF (|has| |#1| (-396)) (PROGN (-15 -1972 ((-548) |#1|)) (-15 -1985 ((-548) |#1|)) (-15 -1997 ((-745) (-745))) (-15 -1997 ((-745)))) |%noBranch|)) (-1016)) (T -436)) +((-1997 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) (-1985 (*1 *2 *3) (-12 (-5 *2 (-548)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) (-1972 (*1 *2 *3) (-12 (-5 *2 (-548)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) (-1964 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) (-1953 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) (-1941 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-548)) (-5 *1 (-436 *2)) (-4 *2 (-1016))))) +(-10 -7 (-15 -1930 (|#1| (-745) (-548))) (-15 -1941 ((-745) (-745))) (-15 -1941 ((-745))) (-15 -1953 ((-745))) (-15 -1964 ((-1223))) (IF (|has| |#1| (-396)) (PROGN (-15 -1972 ((-548) |#1|)) (-15 -1985 ((-548) |#1|)) (-15 -1997 ((-745) (-745))) (-15 -1997 ((-745)))) |%noBranch|)) +((-2007 (((-619 (-548)) (-548)) 61)) (-1271 (((-112) (-166 (-548))) 65)) (-1915 (((-410 (-166 (-548))) (-166 (-548))) 60))) +(((-437) (-10 -7 (-15 -1915 ((-410 (-166 (-548))) (-166 (-548)))) (-15 -2007 ((-619 (-548)) (-548))) (-15 -1271 ((-112) (-166 (-548)))))) (T -437)) +((-1271 (*1 *2 *3) (-12 (-5 *3 (-166 (-548))) (-5 *2 (-112)) (-5 *1 (-437)))) (-2007 (*1 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-437)) (-5 *3 (-548)))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 (-166 (-548)))) (-5 *1 (-437)) (-5 *3 (-166 (-548)))))) +(-10 -7 (-15 -1915 ((-410 (-166 (-548))) (-166 (-548)))) (-15 -2007 ((-619 (-548)) (-548))) (-15 -1271 ((-112) (-166 (-548))))) +((-2018 ((|#4| |#4| (-619 |#4|)) 61)) (-2030 (((-619 |#4|) (-619 |#4|) (-1118) (-1118)) 17) (((-619 |#4|) (-619 |#4|) (-1118)) 16) (((-619 |#4|) (-619 |#4|)) 11))) +(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2018 (|#4| |#4| (-619 |#4|))) (-15 -2030 ((-619 |#4|) (-619 |#4|))) (-15 -2030 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -2030 ((-619 |#4|) (-619 |#4|) (-1118) (-1118)))) (-299) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -438)) +((-2030 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-438 *4 *5 *6 *7)))) (-2030 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-438 *4 *5 *6 *7)))) (-2030 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-438 *3 *4 *5 *6)))) (-2018 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-438 *4 *5 *6 *2))))) +(-10 -7 (-15 -2018 (|#4| |#4| (-619 |#4|))) (-15 -2030 ((-619 |#4|) (-619 |#4|))) (-15 -2030 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -2030 ((-619 |#4|) (-619 |#4|) (-1118) (-1118)))) +((-2055 (((-619 (-619 |#4|)) (-619 |#4|) (-112)) 73) (((-619 (-619 |#4|)) (-619 |#4|)) 72) (((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112)) 66) (((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|)) 67)) (-2041 (((-619 (-619 |#4|)) (-619 |#4|) (-112)) 42) (((-619 (-619 |#4|)) (-619 |#4|)) 63))) +(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2041 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2041 ((-619 (-619 |#4|)) (-619 |#4|) (-112))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-112)))) (-13 (-299) (-145)) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -439)) +((-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2055 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2055 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(-10 -7 (-15 -2041 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2041 ((-619 (-619 |#4|)) (-619 |#4|) (-112))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-112)))) +((-4207 (((-745) |#4|) 12)) (-4084 (((-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|)))) 31)) (-4103 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-4092 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2075 ((|#4| |#4| (-619 |#4|)) 40)) (-4063 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|)) 70)) (-4135 (((-1223) |#4|) 42)) (-4165 (((-1223) (-619 |#4|)) 51)) (-4145 (((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548)) 48)) (-4176 (((-1223) (-548)) 79)) (-4115 (((-619 |#4|) (-619 |#4|)) 77)) (-4196 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|)) |#4| (-745)) 25)) (-4127 (((-548) |#4|) 78)) (-4073 ((|#4| |#4|) 29)) (-2084 (((-619 |#4|) (-619 |#4|) (-548) (-548)) 56)) (-4155 (((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548) (-548)) 89)) (-4186 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2100 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2160 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2146 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2111 (((-112) |#2| |#2|) 57)) (-2134 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2123 (((-112) |#2| |#2| |#2| |#2|) 60)) (-2066 ((|#4| |#4| (-619 |#4|)) 71))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2066 (|#4| |#4| (-619 |#4|))) (-15 -2075 (|#4| |#4| (-619 |#4|))) (-15 -2084 ((-619 |#4|) (-619 |#4|) (-548) (-548))) (-15 -2100 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2111 ((-112) |#2| |#2|)) (-15 -2123 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2134 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2146 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2160 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4063 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|))) (-15 -4073 (|#4| |#4|)) (-15 -4084 ((-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))))) (-15 -4092 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4103 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4115 ((-619 |#4|) (-619 |#4|))) (-15 -4127 ((-548) |#4|)) (-15 -4135 ((-1223) |#4|)) (-15 -4145 ((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548))) (-15 -4155 ((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548) (-548))) (-15 -4165 ((-1223) (-619 |#4|))) (-15 -4176 ((-1223) (-548))) (-15 -4186 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4196 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|)) |#4| (-745))) (-15 -4207 ((-745) |#4|))) (-443) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -440)) +((-4207 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-745)) (|:| -2802 *4))) (-5 *5 (-745)) (-4 *4 (-918 *6 *7 *8)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-440 *6 *7 *8 *4)))) (-4186 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-440 *4 *5 *6 *7)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-548)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-440 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-440 *4 *5 *6 *7)))) (-4155 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-821)) (-5 *1 (-440 *5 *6 *7 *4)))) (-4145 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-821)) (-5 *1 (-440 *5 *6 *7 *4)))) (-4135 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-548)) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-4115 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6)))) (-4103 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-767)) (-4 *2 (-918 *4 *5 *6)) (-5 *1 (-440 *4 *5 *6 *2)) (-4 *4 (-443)) (-4 *6 (-821)))) (-4084 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 *3)))) (-5 *4 (-745)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-440 *5 *6 *7 *3)))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-440 *5 *6 *7 *3)))) (-2160 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-767)) (-4 *6 (-918 *4 *3 *5)) (-4 *4 (-443)) (-4 *5 (-821)) (-5 *1 (-440 *4 *3 *5 *6)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6)))) (-2134 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-767)) (-4 *3 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *3)))) (-2123 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-443)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-440 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))) (-2111 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-440 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2084 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-548)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2075 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2)))) (-2066 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2))))) +(-10 -7 (-15 -2066 (|#4| |#4| (-619 |#4|))) (-15 -2075 (|#4| |#4| (-619 |#4|))) (-15 -2084 ((-619 |#4|) (-619 |#4|) (-548) (-548))) (-15 -2100 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2111 ((-112) |#2| |#2|)) (-15 -2123 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2134 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2146 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2160 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4063 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|))) (-15 -4073 (|#4| |#4|)) (-15 -4084 ((-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))))) (-15 -4092 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4103 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4115 ((-619 |#4|) (-619 |#4|))) (-15 -4127 ((-548) |#4|)) (-15 -4135 ((-1223) |#4|)) (-15 -4145 ((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548))) (-15 -4155 ((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548) (-548))) (-15 -4165 ((-1223) (-619 |#4|))) (-15 -4176 ((-1223) (-548))) (-15 -4186 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4196 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|)) |#4| (-745))) (-15 -4207 ((-745) |#4|))) +((-2670 ((|#4| |#4| (-619 |#4|)) 22 (|has| |#1| (-355)))) (-1359 (((-619 |#4|) (-619 |#4|) (-1118) (-1118)) 41) (((-619 |#4|) (-619 |#4|) (-1118)) 40) (((-619 |#4|) (-619 |#4|)) 35))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1359 ((-619 |#4|) (-619 |#4|))) (-15 -1359 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -1359 ((-619 |#4|) (-619 |#4|) (-1118) (-1118))) (IF (|has| |#1| (-355)) (-15 -2670 (|#4| |#4| (-619 |#4|))) |%noBranch|)) (-443) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -441)) +((-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-355)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-441 *4 *5 *6 *2)))) (-1359 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-441 *4 *5 *6 *7)))) (-1359 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-441 *4 *5 *6 *7)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-441 *3 *4 *5 *6))))) +(-10 -7 (-15 -1359 ((-619 |#4|) (-619 |#4|))) (-15 -1359 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -1359 ((-619 |#4|) (-619 |#4|) (-1118) (-1118))) (IF (|has| |#1| (-355)) (-15 -2670 (|#4| |#4| (-619 |#4|))) |%noBranch|)) +((-3553 (($ $ $) 14) (($ (-619 $)) 21)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 41)) (-3587 (($ $ $) NIL) (($ (-619 $)) 22))) +(((-442 |#1|) (-10 -8 (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3553 (|#1| (-619 |#1|))) (-15 -3553 (|#1| |#1| |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|))) (-443)) (T -442)) +NIL +(-10 -8 (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3553 (|#1| (-619 |#1|))) (-15 -3553 (|#1| |#1| |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-443) (-138)) (T -443)) +((-3587 (*1 *1 *1 *1) (-4 *1 (-443))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-443)))) (-3553 (*1 *1 *1 *1) (-4 *1 (-443))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-443)))) (-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-443))))) +(-13 (-540) (-10 -8 (-15 -3587 ($ $ $)) (-15 -3587 ($ (-619 $))) (-15 -3553 ($ $ $)) (-15 -3553 ($ (-619 $))) (-15 -4081 ((-1131 $) (-1131 $) (-1131 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 (-399 (-921 |#1|)))) (-1218 $)) NIL) (((-1218 (-663 (-399 (-921 |#1|))))) NIL)) (-2968 (((-1218 $)) NIL)) (-3030 (($) NIL T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL)) (-3991 (((-3 $ "failed")) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-2413 (((-663 (-399 (-921 |#1|))) (-1218 $)) NIL) (((-663 (-399 (-921 |#1|)))) NIL)) (-2947 (((-399 (-921 |#1|)) $) NIL)) (-2391 (((-663 (-399 (-921 |#1|))) $ (-1218 $)) NIL) (((-663 (-399 (-921 |#1|))) $) NIL)) (-3399 (((-3 $ "failed") $) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-4307 (((-1131 (-921 (-399 (-921 |#1|))))) NIL (|has| (-399 (-921 |#1|)) (-355))) (((-1131 (-399 (-921 |#1|)))) 84 (|has| |#1| (-540)))) (-2246 (($ $ (-890)) NIL)) (-2925 (((-399 (-921 |#1|)) $) NIL)) (-2741 (((-1131 (-399 (-921 |#1|))) $) 82 (|has| (-399 (-921 |#1|)) (-540)))) (-2432 (((-399 (-921 |#1|)) (-1218 $)) NIL) (((-399 (-921 |#1|))) NIL)) (-2903 (((-1131 (-399 (-921 |#1|))) $) NIL)) (-2842 (((-112)) NIL)) (-2455 (($ (-1218 (-399 (-921 |#1|))) (-1218 $)) 103) (($ (-1218 (-399 (-921 |#1|)))) NIL)) (-3859 (((-3 $ "failed") $) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-2103 (((-890)) NIL)) (-2815 (((-112)) NIL)) (-2468 (($ $ (-890)) NIL)) (-2782 (((-112)) NIL)) (-2766 (((-112)) NIL)) (-2797 (((-112)) NIL)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL)) (-4003 (((-3 $ "failed")) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-2422 (((-663 (-399 (-921 |#1|))) (-1218 $)) NIL) (((-663 (-399 (-921 |#1|)))) NIL)) (-2958 (((-399 (-921 |#1|)) $) NIL)) (-2402 (((-663 (-399 (-921 |#1|))) $ (-1218 $)) NIL) (((-663 (-399 (-921 |#1|))) $) NIL)) (-3411 (((-3 $ "failed") $) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-1298 (((-1131 (-921 (-399 (-921 |#1|))))) NIL (|has| (-399 (-921 |#1|)) (-355))) (((-1131 (-399 (-921 |#1|)))) 83 (|has| |#1| (-540)))) (-3424 (($ $ (-890)) NIL)) (-2936 (((-399 (-921 |#1|)) $) NIL)) (-2750 (((-1131 (-399 (-921 |#1|))) $) 77 (|has| (-399 (-921 |#1|)) (-540)))) (-2444 (((-399 (-921 |#1|)) (-1218 $)) NIL) (((-399 (-921 |#1|))) NIL)) (-2914 (((-1131 (-399 (-921 |#1|))) $) NIL)) (-2851 (((-112)) NIL)) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) NIL)) (-2790 (((-112)) NIL)) (-2806 (((-112)) NIL)) (-3932 (((-1082) $) NIL)) (-4239 (((-399 (-921 |#1|)) $ $) 71 (|has| |#1| (-540)))) (-4284 (((-399 (-921 |#1|)) $) 93 (|has| |#1| (-540)))) (-4274 (((-399 (-921 |#1|)) $) 95 (|has| |#1| (-540)))) (-4295 (((-1131 (-399 (-921 |#1|))) $) 88 (|has| |#1| (-540)))) (-4228 (((-399 (-921 |#1|))) 72 (|has| |#1| (-540)))) (-4263 (((-399 (-921 |#1|)) $ $) 64 (|has| |#1| (-540)))) (-1275 (((-399 (-921 |#1|)) $) 92 (|has| |#1| (-540)))) (-1263 (((-399 (-921 |#1|)) $) 94 (|has| |#1| (-540)))) (-1286 (((-1131 (-399 (-921 |#1|))) $) 87 (|has| |#1| (-540)))) (-4250 (((-399 (-921 |#1|))) 68 (|has| |#1| (-540)))) (-1309 (($) 101) (($ (-1135)) 107) (($ (-1218 (-1135))) 106) (($ (-1218 $)) 96) (($ (-1135) (-1218 $)) 105) (($ (-1218 (-1135)) (-1218 $)) 104)) (-2832 (((-112)) NIL)) (-3171 (((-399 (-921 |#1|)) $ (-548)) NIL)) (-2447 (((-1218 (-399 (-921 |#1|))) $ (-1218 $)) 98) (((-663 (-399 (-921 |#1|))) (-1218 $) (-1218 $)) NIL) (((-1218 (-399 (-921 |#1|))) $) 40) (((-663 (-399 (-921 |#1|))) (-1218 $)) NIL)) (-2591 (((-1218 (-399 (-921 |#1|))) $) NIL) (($ (-1218 (-399 (-921 |#1|)))) 37)) (-4218 (((-619 (-921 (-399 (-921 |#1|)))) (-1218 $)) NIL) (((-619 (-921 (-399 (-921 |#1|))))) NIL) (((-619 (-921 |#1|)) (-1218 $)) 99 (|has| |#1| (-540))) (((-619 (-921 |#1|))) 100 (|has| |#1| (-540)))) (-3652 (($ $ $) NIL)) (-2891 (((-112)) NIL)) (-3743 (((-832) $) NIL) (($ (-1218 (-399 (-921 |#1|)))) NIL)) (-2877 (((-1218 $)) 60)) (-2759 (((-619 (-1218 (-399 (-921 |#1|))))) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) NIL)) (-3398 (($ (-663 (-399 (-921 |#1|))) $) NIL)) (-3639 (($ $ $) NIL)) (-2881 (((-112)) NIL)) (-2859 (((-112)) NIL)) (-2823 (((-112)) NIL)) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) 97)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 56) (($ $ (-399 (-921 |#1|))) NIL) (($ (-399 (-921 |#1|)) $) NIL) (($ (-1102 |#2| (-399 (-921 |#1|))) $) NIL))) +(((-444 |#1| |#2| |#3| |#4|) (-13 (-409 (-399 (-921 |#1|))) (-622 (-1102 |#2| (-399 (-921 |#1|)))) (-10 -8 (-15 -3743 ($ (-1218 (-399 (-921 |#1|))))) (-15 -1332 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1309 ($)) (-15 -1309 ($ (-1135))) (-15 -1309 ($ (-1218 (-1135)))) (-15 -1309 ($ (-1218 $))) (-15 -1309 ($ (-1135) (-1218 $))) (-15 -1309 ($ (-1218 (-1135)) (-1218 $))) (IF (|has| |#1| (-540)) (PROGN (-15 -1298 ((-1131 (-399 (-921 |#1|))))) (-15 -1286 ((-1131 (-399 (-921 |#1|))) $)) (-15 -1275 ((-399 (-921 |#1|)) $)) (-15 -1263 ((-399 (-921 |#1|)) $)) (-15 -4307 ((-1131 (-399 (-921 |#1|))))) (-15 -4295 ((-1131 (-399 (-921 |#1|))) $)) (-15 -4284 ((-399 (-921 |#1|)) $)) (-15 -4274 ((-399 (-921 |#1|)) $)) (-15 -4263 ((-399 (-921 |#1|)) $ $)) (-15 -4250 ((-399 (-921 |#1|)))) (-15 -4239 ((-399 (-921 |#1|)) $ $)) (-15 -4228 ((-399 (-921 |#1|)))) (-15 -4218 ((-619 (-921 |#1|)) (-1218 $))) (-15 -4218 ((-619 (-921 |#1|))))) |%noBranch|))) (-169) (-890) (-619 (-1135)) (-1218 (-663 |#1|))) (T -444)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 *3)))) (-4 *3 (-169)) (-14 *6 (-1218 (-663 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))))) (-1332 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-444 *3 *4 *5 *6)) (|:| -2877 (-619 (-444 *3 *4 *5 *6))))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1321 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-444 *3 *4 *5 *6)) (|:| -2877 (-619 (-444 *3 *4 *5 *6))))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1309 (*1 *1) (-12 (-5 *1 (-444 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-890)) (-14 *4 (-619 (-1135))) (-14 *5 (-1218 (-663 *2))))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 *2)) (-14 *6 (-1218 (-663 *3))))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-1218 (-1135))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-1218 (-444 *3 *4 *5 *6))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-444 *4 *5 *6 *7))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 *2)) (-14 *7 (-1218 (-663 *4))))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 (-1135))) (-5 *3 (-1218 (-444 *4 *5 *6 *7))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) (-1298 (*1 *2) (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4307 (*1 *2) (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4263 (*1 *2 *1 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4250 (*1 *2) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4239 (*1 *2 *1 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4228 (*1 *2) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-1218 (-444 *4 *5 *6 *7))) (-5 *2 (-619 (-921 *4))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-540)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) (-4218 (*1 *2) (-12 (-5 *2 (-619 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(-13 (-409 (-399 (-921 |#1|))) (-622 (-1102 |#2| (-399 (-921 |#1|)))) (-10 -8 (-15 -3743 ($ (-1218 (-399 (-921 |#1|))))) (-15 -1332 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1309 ($)) (-15 -1309 ($ (-1135))) (-15 -1309 ($ (-1218 (-1135)))) (-15 -1309 ($ (-1218 $))) (-15 -1309 ($ (-1135) (-1218 $))) (-15 -1309 ($ (-1218 (-1135)) (-1218 $))) (IF (|has| |#1| (-540)) (PROGN (-15 -1298 ((-1131 (-399 (-921 |#1|))))) (-15 -1286 ((-1131 (-399 (-921 |#1|))) $)) (-15 -1275 ((-399 (-921 |#1|)) $)) (-15 -1263 ((-399 (-921 |#1|)) $)) (-15 -4307 ((-1131 (-399 (-921 |#1|))))) (-15 -4295 ((-1131 (-399 (-921 |#1|))) $)) (-15 -4284 ((-399 (-921 |#1|)) $)) (-15 -4274 ((-399 (-921 |#1|)) $)) (-15 -4263 ((-399 (-921 |#1|)) $ $)) (-15 -4250 ((-399 (-921 |#1|)))) (-15 -4239 ((-399 (-921 |#1|)) $ $)) (-15 -4228 ((-399 (-921 |#1|)))) (-15 -4218 ((-619 (-921 |#1|)) (-1218 $))) (-15 -4218 ((-619 (-921 |#1|))))) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 13)) (-2049 (((-619 (-834 |#1|)) $) 75)) (-1884 (((-1131 $) $ (-834 |#1|)) 46) (((-1131 |#2|) $) 118)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) 21) (((-745) $ (-619 (-834 |#1|))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) 44) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2375 ((|#2| $) 42) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-834 |#1|) $) NIL)) (-1557 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3447 (($ $ (-619 (-548))) 80)) (-1872 (($ $) 68)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| |#3| $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) 58)) (-2036 (($ (-1131 |#2|) (-834 |#1|)) 123) (($ (-1131 $) (-834 |#1|)) 52)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) 59)) (-2024 (($ |#2| |#3|) 28) (($ $ (-834 |#1|) (-745)) 30) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-834 |#1|)) NIL)) (-3904 ((|#3| $) NIL) (((-745) $ (-834 |#1|)) 50) (((-619 (-745)) $ (-619 (-834 |#1|))) 57)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 |#3| |#3|) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3511 (((-3 (-834 |#1|) "failed") $) 39)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) 41)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 40)) (-2175 ((|#2| $) 116)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) 128 (|has| |#2| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) 87) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) 90) (($ $ (-834 |#1|) $) 85) (($ $ (-619 (-834 |#1|)) (-619 $)) 106)) (-1566 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-834 |#1|)) 53) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2512 ((|#3| $) 67) (((-745) $ (-834 |#1|)) 37) (((-619 (-745)) $ (-619 (-834 |#1|))) 56)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-834 |#1|) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) 125 (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) 145) (($ (-548)) NIL) (($ |#2|) 86) (($ (-834 |#1|)) 31) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#2| (-540)))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ |#3|) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) 17 T CONST)) (-3118 (($) 25 T CONST)) (-3296 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) 64 (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 111)) (** (($ $ (-890)) NIL) (($ $ (-745)) 109)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 29) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-445 |#1| |#2| |#3|) (-13 (-918 |#2| |#3| (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) (-619 (-1135)) (-1016) (-231 (-3643 |#1|) (-745))) (T -445)) +((-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-14 *3 (-619 (-1135))) (-5 *1 (-445 *3 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-231 (-3643 *3) (-745)))))) +(-13 (-918 |#2| |#3| (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) +((-1376 (((-112) |#1| (-619 |#2|)) 69)) (-1354 (((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|)) 78)) (-1364 (((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|))) 80)) (-3037 ((|#2| |#2| |#1|) 28)) (-1343 (((-745) |#2| (-619 |#2|)) 20))) +(((-446 |#1| |#2|) (-10 -7 (-15 -3037 (|#2| |#2| |#1|)) (-15 -1343 ((-745) |#2| (-619 |#2|))) (-15 -1354 ((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|))) (-15 -1364 ((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|)))) (-15 -1376 ((-112) |#1| (-619 |#2|)))) (-299) (-1194 |#1|)) (T -446)) +((-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-1194 *3)) (-4 *3 (-299)) (-5 *2 (-112)) (-5 *1 (-446 *3 *5)))) (-1364 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1218 (-619 *3))) (-4 *4 (-299)) (-5 *2 (-619 *3)) (-5 *1 (-446 *4 *3)) (-4 *3 (-1194 *4)))) (-1354 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-299)) (-4 *6 (-1194 *4)) (-5 *2 (-1218 (-619 *6))) (-5 *1 (-446 *4 *6)) (-5 *5 (-619 *6)))) (-1343 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-299)) (-5 *2 (-745)) (-5 *1 (-446 *5 *3)))) (-3037 (*1 *2 *2 *3) (-12 (-4 *3 (-299)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1194 *3))))) +(-10 -7 (-15 -3037 (|#2| |#2| |#1|)) (-15 -1343 ((-745) |#2| (-619 |#2|))) (-15 -1354 ((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|))) (-15 -1364 ((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|)))) (-15 -1376 ((-112) |#1| (-619 |#2|)))) +((-1915 (((-410 |#5|) |#5|) 24))) +(((-447 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1915 ((-410 |#5|) |#5|))) (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135))))) (-767) (-540) (-540) (-918 |#4| |#2| |#1|)) (T -447)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-4 *5 (-767)) (-4 *7 (-540)) (-5 *2 (-410 *3)) (-5 *1 (-447 *4 *5 *6 *7 *3)) (-4 *6 (-540)) (-4 *3 (-918 *7 *5 *4))))) +(-10 -7 (-15 -1915 ((-410 |#5|) |#5|))) +((-3994 ((|#3|) 37)) (-4081 (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 33))) +(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4081 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3994 (|#3|))) (-767) (-821) (-878) (-918 |#3| |#1| |#2|)) (T -448)) +((-3994 (*1 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) (-5 *1 (-448 *3 *4 *2 *5)) (-4 *5 (-918 *2 *3 *4)))) (-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-878)) (-5 *1 (-448 *3 *4 *5 *6))))) +(-10 -7 (-15 -4081 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3994 (|#3|))) +((-1915 (((-410 (-1131 |#1|)) (-1131 |#1|)) 43))) +(((-449 |#1|) (-10 -7 (-15 -1915 ((-410 (-1131 |#1|)) (-1131 |#1|)))) (-299)) (T -449)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-410 (-1131 *4))) (-5 *1 (-449 *4)) (-5 *3 (-1131 *4))))) +(-10 -7 (-15 -1915 ((-410 (-1131 |#1|)) (-1131 |#1|)))) +((-2107 (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-745))) 42) (((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-745))) 41) (((-52) |#2| (-1135) (-286 |#2|)) 35) (((-52) (-1 |#2| (-548)) (-286 |#2|)) 28)) (-1761 (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))) 80) (((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))) 79) (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548))) 78) (((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548))) 77) (((-52) |#2| (-1135) (-286 |#2|)) 72) (((-52) (-1 |#2| (-548)) (-286 |#2|)) 71)) (-2129 (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))) 66) (((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))) 64)) (-2119 (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548))) 48) (((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548))) 47))) +(((-450 |#1| |#2|) (-10 -7 (-15 -2107 ((-52) (-1 |#2| (-548)) (-286 |#2|))) (-15 -2107 ((-52) |#2| (-1135) (-286 |#2|))) (-15 -2107 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-745)))) (-15 -2107 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-745)))) (-15 -2119 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548)))) (-15 -2119 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548)))) (-15 -2129 ((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -2129 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -1761 ((-52) (-1 |#2| (-548)) (-286 |#2|))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|))) (-15 -1761 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548)))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548)))) (-15 -1761 ((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))))) (-13 (-540) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -450)) +((-1761 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-399 (-548)))) (-5 *7 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *8))) (-4 *8 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *8 *3)))) (-1761 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-399 (-548)))) (-5 *4 (-286 *8)) (-5 *5 (-1185 (-399 (-548)))) (-5 *6 (-399 (-548))) (-4 *8 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *8)))) (-1761 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-548))) (-4 *7 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *3)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-548))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *5 *6)))) (-2129 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-399 (-548)))) (-5 *7 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *8))) (-4 *8 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *8 *3)))) (-2129 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-399 (-548)))) (-5 *4 (-286 *8)) (-5 *5 (-1185 (-399 (-548)))) (-5 *6 (-399 (-548))) (-4 *8 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *8)))) (-2119 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-548))) (-4 *7 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) (-2107 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-745))) (-4 *3 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) (-2107 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-745))) (-4 *7 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) (-2107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *3)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-548))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *5 *6))))) +(-10 -7 (-15 -2107 ((-52) (-1 |#2| (-548)) (-286 |#2|))) (-15 -2107 ((-52) |#2| (-1135) (-286 |#2|))) (-15 -2107 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-745)))) (-15 -2107 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-745)))) (-15 -2119 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548)))) (-15 -2119 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548)))) (-15 -2129 ((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -2129 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -1761 ((-52) (-1 |#2| (-548)) (-286 |#2|))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|))) (-15 -1761 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548)))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548)))) (-15 -1761 ((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))))) +((-3037 ((|#2| |#2| |#1|) 15)) (-1398 (((-619 |#2|) |#2| (-619 |#2|) |#1| (-890)) 69)) (-1388 (((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890)) 60))) +(((-451 |#1| |#2|) (-10 -7 (-15 -1388 ((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890))) (-15 -1398 ((-619 |#2|) |#2| (-619 |#2|) |#1| (-890))) (-15 -3037 (|#2| |#2| |#1|))) (-299) (-1194 |#1|)) (T -451)) +((-3037 (*1 *2 *2 *3) (-12 (-4 *3 (-299)) (-5 *1 (-451 *3 *2)) (-4 *2 (-1194 *3)))) (-1398 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-619 *3)) (-5 *5 (-890)) (-4 *3 (-1194 *4)) (-4 *4 (-299)) (-5 *1 (-451 *4 *3)))) (-1388 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-890)) (-4 *5 (-299)) (-4 *3 (-1194 *5)) (-5 *2 (-2 (|:| |plist| (-619 *3)) (|:| |modulo| *5))) (-5 *1 (-451 *5 *3)) (-5 *4 (-619 *3))))) +(-10 -7 (-15 -1388 ((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890))) (-15 -1398 ((-619 |#2|) |#2| (-619 |#2|) |#1| (-890))) (-15 -3037 (|#2| |#2| |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 28)) (-2264 (($ |#3|) 25)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) 32)) (-1408 (($ |#2| |#4| $) 33)) (-2024 (($ |#2| (-688 |#3| |#4| |#5|)) 24)) (-2185 (((-688 |#3| |#4| |#5|) $) 15)) (-1431 ((|#3| $) 19)) (-1443 ((|#4| $) 17)) (-2197 ((|#2| $) 29)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-1420 (($ |#2| |#3| |#4|) 26)) (-3107 (($) 36 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 34)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-452 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-692 |#6|) (-692 |#2|) (-10 -8 (-15 -2197 (|#2| $)) (-15 -2185 ((-688 |#3| |#4| |#5|) $)) (-15 -1443 (|#4| $)) (-15 -1431 (|#3| $)) (-15 -1872 ($ $)) (-15 -2024 ($ |#2| (-688 |#3| |#4| |#5|))) (-15 -2264 ($ |#3|)) (-15 -1420 ($ |#2| |#3| |#4|)) (-15 -1408 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-619 (-1135)) (-169) (-821) (-231 (-3643 |#1|) (-745)) (-1 (-112) (-2 (|:| -3337 |#3|) (|:| -3352 |#4|)) (-2 (|:| -3337 |#3|) (|:| -3352 |#4|))) (-918 |#2| |#4| (-834 |#1|))) (T -452)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *6 (-231 (-3643 *3) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) (-2 (|:| -3337 *5) (|:| -3352 *6)))) (-5 *1 (-452 *3 *4 *5 *6 *7 *2)) (-4 *5 (-821)) (-4 *2 (-918 *4 *6 (-834 *3))))) (-2197 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *5 (-231 (-3643 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *4) (|:| -3352 *5)) (-2 (|:| -3337 *4) (|:| -3352 *5)))) (-4 *2 (-169)) (-5 *1 (-452 *3 *2 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *2 *5 (-834 *3))))) (-2185 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *6 (-231 (-3643 *3) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) (-2 (|:| -3337 *5) (|:| -3352 *6)))) (-5 *2 (-688 *5 *6 *7)) (-5 *1 (-452 *3 *4 *5 *6 *7 *8)) (-4 *5 (-821)) (-4 *8 (-918 *4 *6 (-834 *3))))) (-1443 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-14 *6 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *2)) (-2 (|:| -3337 *5) (|:| -3352 *2)))) (-4 *2 (-231 (-3643 *3) (-745))) (-5 *1 (-452 *3 *4 *5 *2 *6 *7)) (-4 *5 (-821)) (-4 *7 (-918 *4 *2 (-834 *3))))) (-1431 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *5 (-231 (-3643 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *5)) (-2 (|:| -3337 *2) (|:| -3352 *5)))) (-4 *2 (-821)) (-5 *1 (-452 *3 *4 *2 *5 *6 *7)) (-4 *7 (-918 *4 *5 (-834 *3))))) (-1872 (*1 *1 *1) (-12 (-14 *2 (-619 (-1135))) (-4 *3 (-169)) (-4 *5 (-231 (-3643 *2) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *4) (|:| -3352 *5)) (-2 (|:| -3337 *4) (|:| -3352 *5)))) (-5 *1 (-452 *2 *3 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *3 *5 (-834 *2))))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-688 *5 *6 *7)) (-4 *5 (-821)) (-4 *6 (-231 (-3643 *4) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) (-2 (|:| -3337 *5) (|:| -3352 *6)))) (-14 *4 (-619 (-1135))) (-4 *2 (-169)) (-5 *1 (-452 *4 *2 *5 *6 *7 *8)) (-4 *8 (-918 *2 *6 (-834 *4))))) (-2264 (*1 *1 *2) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *5 (-231 (-3643 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *5)) (-2 (|:| -3337 *2) (|:| -3352 *5)))) (-5 *1 (-452 *3 *4 *2 *5 *6 *7)) (-4 *2 (-821)) (-4 *7 (-918 *4 *5 (-834 *3))))) (-1420 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-619 (-1135))) (-4 *2 (-169)) (-4 *4 (-231 (-3643 *5) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *3) (|:| -3352 *4)) (-2 (|:| -3337 *3) (|:| -3352 *4)))) (-5 *1 (-452 *5 *2 *3 *4 *6 *7)) (-4 *3 (-821)) (-4 *7 (-918 *2 *4 (-834 *5))))) (-1408 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-619 (-1135))) (-4 *2 (-169)) (-4 *3 (-231 (-3643 *4) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *3)) (-2 (|:| -3337 *5) (|:| -3352 *3)))) (-5 *1 (-452 *4 *2 *5 *3 *6 *7)) (-4 *5 (-821)) (-4 *7 (-918 *2 *3 (-834 *4)))))) +(-13 (-692 |#6|) (-692 |#2|) (-10 -8 (-15 -2197 (|#2| $)) (-15 -2185 ((-688 |#3| |#4| |#5|) $)) (-15 -1443 (|#4| $)) (-15 -1431 (|#3| $)) (-15 -1872 ($ $)) (-15 -2024 ($ |#2| (-688 |#3| |#4| |#5|))) (-15 -2264 ($ |#3|)) (-15 -1420 ($ |#2| |#3| |#4|)) (-15 -1408 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-1454 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-453 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1454 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-767) (-821) (-540) (-918 |#3| |#1| |#2|) (-13 (-1007 (-399 (-548))) (-355) (-10 -8 (-15 -3743 ($ |#4|)) (-15 -2470 (|#4| $)) (-15 -2480 (|#4| $))))) (T -453)) +((-1454 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-821)) (-4 *5 (-767)) (-4 *6 (-540)) (-4 *7 (-918 *6 *5 *3)) (-5 *1 (-453 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1007 (-399 (-548))) (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $)))))))) +(-10 -7 (-15 -1454 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3730 (((-112) $ $) NIL)) (-2049 (((-619 |#3|) $) 41)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) NIL (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2213 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 47)) (-2375 (($ (-619 |#4|)) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327)))) (-1934 (((-619 |#4|) $) 18 (|has| $ (-6 -4327)))) (-3239 ((|#3| $) 45)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 14 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3960 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 21)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-3932 (((-1082) $) NIL)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 39)) (-3319 (($) 17)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) 16)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524)))) (($ (-619 |#4|)) 49)) (-3754 (($ (-619 |#4|)) 13)) (-2298 (($ $ |#3|) NIL)) (-2319 (($ $ |#3|) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) 38) (((-619 |#4|) $) 48)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 30)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-454 |#1| |#2| |#3| |#4|) (-13 (-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2591 ($ (-619 |#4|))) (-6 -4327) (-6 -4328))) (-1016) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -454)) +((-2591 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-454 *3 *4 *5 *6))))) +(-13 (-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2591 ($ (-619 |#4|))) (-6 -4327) (-6 -4328))) +((-3107 (($) 11)) (-3118 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-455 |#1| |#2| |#3|) (-10 -8 (-15 -3118 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3107 (|#1|))) (-456 |#2| |#3|) (-169) (-23)) (T -455)) +NIL +(-10 -8 (-15 -3118 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3107 (|#1|))) +((-3730 (((-112) $ $) 7)) (-2441 (((-3 |#1| "failed") $) 26)) (-2375 ((|#1| $) 25)) (-2481 (($ $ $) 23)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2512 ((|#2| $) 19)) (-3743 (((-832) $) 11) (($ |#1|) 27)) (-3107 (($) 18 T CONST)) (-3118 (($) 24 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 15) (($ $ $) 13)) (-2290 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-456 |#1| |#2|) (-138) (-169) (-23)) (T -456)) +((-3118 (*1 *1) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2481 (*1 *1 *1 *1) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) +(-13 (-461 |t#1| |t#2|) (-1007 |t#1|) (-10 -8 (-15 (-3118) ($) -2325) (-15 -2481 ($ $ $)))) +(((-101) . T) ((-592 (-832)) . T) ((-461 |#1| |#2|) . T) ((-1007 |#1|) . T) ((-1063) . T)) +((-1465 (((-1218 (-1218 (-548))) (-1218 (-1218 (-548))) (-890)) 18)) (-1476 (((-1218 (-1218 (-548))) (-890)) 16))) +(((-457) (-10 -7 (-15 -1465 ((-1218 (-1218 (-548))) (-1218 (-1218 (-548))) (-890))) (-15 -1476 ((-1218 (-1218 (-548))) (-890))))) (T -457)) +((-1476 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 (-548)))) (-5 *1 (-457)))) (-1465 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 (-1218 (-548)))) (-5 *3 (-890)) (-5 *1 (-457))))) +(-10 -7 (-15 -1465 ((-1218 (-1218 (-548))) (-1218 (-1218 (-548))) (-890))) (-15 -1476 ((-1218 (-1218 (-548))) (-890)))) +((-3477 (((-548) (-548)) 30) (((-548)) 22)) (-3417 (((-548) (-548)) 26) (((-548)) 18)) (-3502 (((-548) (-548)) 28) (((-548)) 20)) (-1500 (((-112) (-112)) 12) (((-112)) 10)) (-1488 (((-112) (-112)) 11) (((-112)) 9)) (-1511 (((-112) (-112)) 24) (((-112)) 15))) +(((-458) (-10 -7 (-15 -1488 ((-112))) (-15 -1500 ((-112))) (-15 -1488 ((-112) (-112))) (-15 -1500 ((-112) (-112))) (-15 -1511 ((-112))) (-15 -3502 ((-548))) (-15 -3417 ((-548))) (-15 -3477 ((-548))) (-15 -1511 ((-112) (-112))) (-15 -3502 ((-548) (-548))) (-15 -3417 ((-548) (-548))) (-15 -3477 ((-548) (-548))))) (T -458)) +((-3477 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-3477 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-3417 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-3502 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-1511 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-1500 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-1488 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458))))) +(-10 -7 (-15 -1488 ((-112))) (-15 -1500 ((-112))) (-15 -1488 ((-112) (-112))) (-15 -1500 ((-112) (-112))) (-15 -1511 ((-112))) (-15 -3502 ((-548))) (-15 -3417 ((-548))) (-15 -3477 ((-548))) (-15 -1511 ((-112) (-112))) (-15 -3502 ((-548) (-548))) (-15 -3417 ((-548) (-548))) (-15 -3477 ((-548) (-548)))) +((-3730 (((-112) $ $) NIL)) (-1841 (((-619 (-371)) $) 28) (((-619 (-371)) $ (-619 (-371))) 96)) (-1558 (((-619 (-1058 (-371))) $) 16) (((-619 (-1058 (-371))) $ (-619 (-1058 (-371)))) 94)) (-1531 (((-619 (-619 (-912 (-218)))) (-619 (-619 (-912 (-218)))) (-619 (-843))) 45)) (-1567 (((-619 (-619 (-912 (-218)))) $) 90)) (-1733 (((-1223) $ (-912 (-218)) (-843)) 108)) (-1576 (($ $) 89) (($ (-619 (-619 (-912 (-218))))) 99) (($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890))) 98) (($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-255))) 100)) (-2546 (((-1118) $) NIL)) (-3156 (((-548) $) 71)) (-3932 (((-1082) $) NIL)) (-1587 (($) 97)) (-1521 (((-619 (-218)) (-619 (-619 (-912 (-218))))) 56)) (-1549 (((-1223) $ (-619 (-912 (-218))) (-843) (-843) (-890)) 102) (((-1223) $ (-912 (-218))) 104) (((-1223) $ (-912 (-218)) (-843) (-843) (-890)) 103)) (-3743 (((-832) $) 114) (($ (-619 (-619 (-912 (-218))))) 109)) (-1540 (((-1223) $ (-912 (-218))) 107)) (-2214 (((-112) $ $) NIL))) +(((-459) (-13 (-1063) (-10 -8 (-15 -1587 ($)) (-15 -1576 ($ $)) (-15 -1576 ($ (-619 (-619 (-912 (-218)))))) (-15 -1576 ($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)))) (-15 -1576 ($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-255)))) (-15 -1567 ((-619 (-619 (-912 (-218)))) $)) (-15 -3156 ((-548) $)) (-15 -1558 ((-619 (-1058 (-371))) $)) (-15 -1558 ((-619 (-1058 (-371))) $ (-619 (-1058 (-371))))) (-15 -1841 ((-619 (-371)) $)) (-15 -1841 ((-619 (-371)) $ (-619 (-371)))) (-15 -1549 ((-1223) $ (-619 (-912 (-218))) (-843) (-843) (-890))) (-15 -1549 ((-1223) $ (-912 (-218)))) (-15 -1549 ((-1223) $ (-912 (-218)) (-843) (-843) (-890))) (-15 -1540 ((-1223) $ (-912 (-218)))) (-15 -1733 ((-1223) $ (-912 (-218)) (-843))) (-15 -3743 ($ (-619 (-619 (-912 (-218)))))) (-15 -3743 ((-832) $)) (-15 -1531 ((-619 (-619 (-912 (-218)))) (-619 (-619 (-912 (-218)))) (-619 (-843)))) (-15 -1521 ((-619 (-218)) (-619 (-619 (-912 (-218))))))))) (T -459)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-459)))) (-1587 (*1 *1) (-5 *1 (-459))) (-1576 (*1 *1 *1) (-5 *1 (-459))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) (-1576 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) (-5 *4 (-619 (-890))) (-5 *1 (-459)))) (-1576 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) (-5 *4 (-619 (-890))) (-5 *5 (-619 (-255))) (-5 *1 (-459)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-459)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-459)))) (-1558 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-459)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-459)))) (-1841 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-459)))) (-1549 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *2 (-1223)) (-5 *1 (-459)))) (-1549 (*1 *2 *1 *3) (-12 (-5 *3 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-459)))) (-1549 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-912 (-218))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *2 (-1223)) (-5 *1 (-459)))) (-1540 (*1 *2 *1 *3) (-12 (-5 *3 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-459)))) (-1733 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912 (-218))) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-459)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) (-1531 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) (-5 *1 (-459)))) (-1521 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-619 (-218))) (-5 *1 (-459))))) +(-13 (-1063) (-10 -8 (-15 -1587 ($)) (-15 -1576 ($ $)) (-15 -1576 ($ (-619 (-619 (-912 (-218)))))) (-15 -1576 ($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)))) (-15 -1576 ($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-255)))) (-15 -1567 ((-619 (-619 (-912 (-218)))) $)) (-15 -3156 ((-548) $)) (-15 -1558 ((-619 (-1058 (-371))) $)) (-15 -1558 ((-619 (-1058 (-371))) $ (-619 (-1058 (-371))))) (-15 -1841 ((-619 (-371)) $)) (-15 -1841 ((-619 (-371)) $ (-619 (-371)))) (-15 -1549 ((-1223) $ (-619 (-912 (-218))) (-843) (-843) (-890))) (-15 -1549 ((-1223) $ (-912 (-218)))) (-15 -1549 ((-1223) $ (-912 (-218)) (-843) (-843) (-890))) (-15 -1540 ((-1223) $ (-912 (-218)))) (-15 -1733 ((-1223) $ (-912 (-218)) (-843))) (-15 -3743 ($ (-619 (-619 (-912 (-218)))))) (-15 -3743 ((-832) $)) (-15 -1531 ((-619 (-619 (-912 (-218)))) (-619 (-619 (-912 (-218)))) (-619 (-843)))) (-15 -1521 ((-619 (-218)) (-619 (-619 (-912 (-218)))))))) +((-2299 (($ $) NIL) (($ $ $) 11))) +(((-460 |#1| |#2| |#3|) (-10 -8 (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|))) (-461 |#2| |#3|) (-169) (-23)) (T -460)) +NIL +(-10 -8 (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2512 ((|#2| $) 19)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 15) (($ $ $) 13)) (-2290 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-461 |#1| |#2|) (-138) (-169) (-23)) (T -461)) +((-2512 (*1 *2 *1) (-12 (-4 *1 (-461 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) (-3107 (*1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2290 (*1 *1 *1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) +(-13 (-1063) (-10 -8 (-15 -2512 (|t#2| $)) (-15 (-3107) ($) -2325) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2299 ($ $)) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3404 (((-3 (-619 (-472 |#1| |#2|)) "failed") (-619 (-472 |#1| |#2|)) (-619 (-834 |#1|))) 92)) (-1595 (((-619 (-619 (-240 |#1| |#2|))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|))) 90)) (-3416 (((-2 (|:| |dpolys| (-619 (-240 |#1| |#2|))) (|:| |coords| (-619 (-548)))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|))) 61))) +(((-462 |#1| |#2| |#3|) (-10 -7 (-15 -1595 ((-619 (-619 (-240 |#1| |#2|))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3404 ((-3 (-619 (-472 |#1| |#2|)) "failed") (-619 (-472 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3416 ((-2 (|:| |dpolys| (-619 (-240 |#1| |#2|))) (|:| |coords| (-619 (-548)))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|))))) (-619 (-1135)) (-443) (-443)) (T -462)) +((-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-2 (|:| |dpolys| (-619 (-240 *5 *6))) (|:| |coords| (-619 (-548))))) (-5 *1 (-462 *5 *6 *7)) (-5 *3 (-619 (-240 *5 *6))) (-4 *7 (-443)))) (-3404 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-472 *4 *5))) (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-462 *4 *5 *6)) (-4 *6 (-443)))) (-1595 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-619 (-619 (-240 *5 *6)))) (-5 *1 (-462 *5 *6 *7)) (-5 *3 (-619 (-240 *5 *6))) (-4 *7 (-443))))) +(-10 -7 (-15 -1595 ((-619 (-619 (-240 |#1| |#2|))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3404 ((-3 (-619 (-472 |#1| |#2|)) "failed") (-619 (-472 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3416 ((-2 (|:| |dpolys| (-619 (-240 |#1| |#2|))) (|:| |coords| (-619 (-548)))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|))))) +((-3859 (((-3 $ "failed") $) 11)) (-2128 (($ $ $) 18)) (-3652 (($ $ $) 19)) (-2309 (($ $ $) 9)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 17))) +(((-463 |#1|) (-10 -8 (-15 -3652 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -2309 (|#1| |#1| |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) (-464)) (T -463)) +NIL +(-10 -8 (-15 -3652 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -2309 (|#1| |#1| |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) +((-3730 (((-112) $ $) 7)) (-3030 (($) 18 T CONST)) (-3859 (((-3 $ "failed") $) 15)) (-2266 (((-112) $) 17)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 24)) (-3932 (((-1082) $) 10)) (-2128 (($ $ $) 21)) (-3652 (($ $ $) 20)) (-3743 (((-832) $) 11)) (-3118 (($) 19 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-745)) 16) (($ $ (-548)) 22)) (* (($ $ $) 14))) +(((-464) (-138)) (T -464)) +((-2153 (*1 *1 *1) (-4 *1 (-464))) (-2309 (*1 *1 *1 *1) (-4 *1 (-464))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-464)) (-5 *2 (-548)))) (-2128 (*1 *1 *1 *1) (-4 *1 (-464))) (-3652 (*1 *1 *1 *1) (-4 *1 (-464)))) +(-13 (-701) (-10 -8 (-15 -2153 ($ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ (-548))) (-6 -4324) (-15 -2128 ($ $ $)) (-15 -3652 ($ $ $)))) +(((-101) . T) ((-592 (-832)) . T) ((-701) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 17)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) NIL) (($ $ (-399 (-548)) (-399 (-548))) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) NIL) (((-399 (-548)) $ (-399 (-548))) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL) (($ $ (-399 (-548))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) NIL) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 22)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 26 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 33 (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 27 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) NIL) (($ $ $) NIL (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 25 (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $ (-1214 |#2|)) 15)) (-2512 (((-399 (-548)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1214 |#2|)) NIL) (($ (-1203 |#1| |#2| |#3|)) 9) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 18)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) 24)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-465 |#1| |#2| |#3|) (-13 (-1199 |#1|) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -3743 ($ (-1203 |#1| |#2| |#3|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -465)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-465 *3 *4 *5)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1199 |#1|) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -3743 ($ (-1203 |#1| |#2| |#3|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) 18)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) 19)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 16)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-466 |#1| |#2| |#3| |#4|) (-1148 |#1| |#2|) (-1063) (-1063) (-1148 |#1| |#2|) |#2|) (T -466)) +NIL +(-1148 |#1| |#2|) +((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2004 (((-619 $) (-619 |#4|)) NIL)) (-2049 (((-619 |#3|) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2073 ((|#4| |#4| $) NIL)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) 26 (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2213 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2375 (($ (-619 |#4|)) NIL)) (-3465 (((-3 $ "failed") $) 39)) (-2038 ((|#4| |#4| $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) NIL)) (-1934 (((-619 |#4|) $) 16 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3239 ((|#3| $) 33)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 17 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3960 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 21)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3724 (((-3 |#4| "failed") $) 37)) (-2179 (((-619 |#4|) $) NIL)) (-2109 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2052 ((|#4| |#4| $) NIL)) (-2199 (((-112) $ $) NIL)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2063 ((|#4| |#4| $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 |#4| "failed") $) 35)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1971 (((-3 $ "failed") $ |#4|) 47)) (-1656 (($ $ |#4|) NIL)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 15)) (-3319 (($) 13)) (-2512 (((-745) $) NIL)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) 12)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 20)) (-2298 (($ $ |#3|) 42)) (-2319 (($ $ |#3|) 44)) (-2027 (($ $) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) 31) (((-619 |#4|) $) 40)) (-1962 (((-745) $) NIL (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) NIL)) (-2406 (((-112) |#3| $) NIL)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-467 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|) (-540) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -467)) +NIL +(-1165 |#1| |#2| |#3| |#4|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-1365 (($) 18)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2591 (((-371) $) 22) (((-218) $) 25) (((-399 (-1131 (-548))) $) 19) (((-524) $) 52)) (-3743 (((-832) $) 50) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (((-218) $) 24) (((-371) $) 21)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 36 T CONST)) (-3118 (($) 11 T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) +(((-468) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))) (-991) (-592 (-218)) (-592 (-371)) (-593 (-399 (-1131 (-548)))) (-593 (-524)) (-10 -8 (-15 -1365 ($))))) (T -468)) +((-1365 (*1 *1) (-5 *1 (-468)))) +(-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))) (-991) (-592 (-218)) (-592 (-371)) (-593 (-399 (-1131 (-548)))) (-593 (-524)) (-10 -8 (-15 -1365 ($)))) +((-3730 (((-112) $ $) NIL)) (-1987 (((-1140) $) 11)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-469) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $))))) (T -469)) +((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-469)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-469))))) +(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $)))) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) 16)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) 20)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 18)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) 13)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 19)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 11 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) 15 (|has| $ (-6 -4327))))) +(((-470 |#1| |#2| |#3|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) (-1063) (-1063) (-1118)) (T -470)) +NIL +(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) +((-3429 (((-548) (-548) (-548)) 7)) (-3437 (((-112) (-548) (-548) (-548) (-548)) 11)) (-1350 (((-1218 (-619 (-548))) (-745) (-745)) 23))) +(((-471) (-10 -7 (-15 -3429 ((-548) (-548) (-548))) (-15 -3437 ((-112) (-548) (-548) (-548) (-548))) (-15 -1350 ((-1218 (-619 (-548))) (-745) (-745))))) (T -471)) +((-1350 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1218 (-619 (-548)))) (-5 *1 (-471)))) (-3437 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-112)) (-5 *1 (-471)))) (-3429 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-471))))) +(-10 -7 (-15 -3429 ((-548) (-548) (-548))) (-15 -3437 ((-112) (-548) (-548) (-548) (-548))) (-15 -1350 ((-1218 (-619 (-548))) (-745) (-745)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-834 |#1|)) $) NIL)) (-1884 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-834 |#1|) $) NIL)) (-1557 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3447 (($ $ (-619 (-548))) NIL)) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| (-473 (-3643 |#1|) (-745)) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#2| (-473 (-3643 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-834 |#1|)) NIL)) (-3904 (((-473 (-3643 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 (-473 (-3643 |#1|) (-745)) (-473 (-3643 |#1|) (-745))) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3511 (((-3 (-834 |#1|) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#2| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-1566 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2512 (((-473 (-3643 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-834 |#1|) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#2| (-540)))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-473 (-3643 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-472 |#1| |#2|) (-13 (-918 |#2| (-473 (-3643 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) (-619 (-1135)) (-1016)) (T -472)) +((-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-472 *3 *4)) (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) +(-13 (-918 |#2| (-473 (-3643 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) +((-3730 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-3324 (((-112) $) NIL (|has| |#2| (-130)))) (-2264 (($ (-890)) NIL (|has| |#2| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#2| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#2| (-360)))) (-2672 (((-548) $) NIL (|has| |#2| (-819)))) (-2089 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1063)))) (-2375 (((-548) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) ((|#2| $) NIL (|has| |#2| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3859 (((-3 $ "failed") $) NIL (|has| |#2| (-701)))) (-2545 (($) NIL (|has| |#2| (-360)))) (-3971 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ (-548)) 11)) (-3298 (((-112) $) NIL (|has| |#2| (-819)))) (-1934 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (|has| |#2| (-701)))) (-3312 (((-112) $) NIL (|has| |#2| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#2| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#2| (-1063)))) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#2| (-360)))) (-3932 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3453 ((|#2| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-548)) NIL)) (-4029 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-1957 (($ (-1218 |#2|)) NIL)) (-3402 (((-133)) NIL (|has| |#2| (-355)))) (-4050 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#2|) $) NIL) (($ (-548)) NIL (-1524 (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (($ |#2|) NIL (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-592 (-832))))) (-3835 (((-745)) NIL (|has| |#2| (-1016)))) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#2| (-819)))) (-3107 (($) NIL (|has| |#2| (-130)) CONST)) (-3118 (($) NIL (|has| |#2| (-701)) CONST)) (-3296 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2214 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-2252 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2234 (((-112) $ $) 15 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2290 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-548) $) NIL (|has| |#2| (-1016))) (($ $ $) NIL (|has| |#2| (-701))) (($ $ |#2|) NIL (|has| |#2| (-701))) (($ |#2| $) NIL (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-473 |#1| |#2|) (-231 |#1| |#2|) (-745) (-767)) (T -473)) +NIL +(-231 |#1| |#2|) +((-3730 (((-112) $ $) NIL)) (-3302 (((-619 (-496)) $) 11)) (-2275 (((-496) $) 10)) (-2546 (((-1118) $) NIL)) (-3458 (($ (-496) (-619 (-496))) 9)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-474) (-13 (-1047) (-10 -8 (-15 -3458 ($ (-496) (-619 (-496)))) (-15 -2275 ((-496) $)) (-15 -3302 ((-619 (-496)) $))))) (T -474)) +((-3458 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-496))) (-5 *2 (-496)) (-5 *1 (-474)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-474)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-474))))) +(-13 (-1047) (-10 -8 (-15 -3458 ($ (-496) (-619 (-496)))) (-15 -2275 ((-496) $)) (-15 -3302 ((-619 (-496)) $)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2965 (($ $ $) 32)) (-2913 (($ $ $) 31)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3091 ((|#1| $) 26)) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) 27)) (-2539 (($ |#1| $) 10)) (-3470 (($ (-619 |#1|)) 12)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1357 ((|#1| $) 23)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 9)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 29)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) 21 (|has| $ (-6 -4327))))) +(((-475 |#1|) (-13 (-937 |#1|) (-10 -8 (-15 -3470 ($ (-619 |#1|))))) (-821)) (T -475)) +((-3470 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-475 *3))))) +(-13 (-937 |#1|) (-10 -8 (-15 -3470 ($ (-619 |#1|))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2061 (($ $) 69)) (-1447 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-3778 (((-405 |#2| (-399 |#2|) |#3| |#4|) $) 44)) (-3932 (((-1082) $) NIL)) (-4160 (((-3 |#4| "failed") $) 107)) (-1457 (($ (-405 |#2| (-399 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-548)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3642 (((-2 (|:| -3514 (-405 |#2| (-399 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3743 (((-832) $) 102)) (-3107 (($) 33 T CONST)) (-2214 (((-112) $ $) 109)) (-2299 (($ $) 72) (($ $ $) NIL)) (-2290 (($ $ $) 70)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 73))) +(((-476 |#1| |#2| |#3| |#4|) (-327 |#1| |#2| |#3| |#4|) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -476)) +NIL +(-327 |#1| |#2| |#3| |#4|) +((-3513 (((-548) (-619 (-548))) 30)) (-3480 ((|#1| (-619 |#1|)) 56)) (-3505 (((-619 |#1|) (-619 |#1|)) 57)) (-3492 (((-619 |#1|) (-619 |#1|)) 59)) (-3587 ((|#1| (-619 |#1|)) 58)) (-3881 (((-619 (-548)) (-619 |#1|)) 33))) +(((-477 |#1|) (-10 -7 (-15 -3587 (|#1| (-619 |#1|))) (-15 -3480 (|#1| (-619 |#1|))) (-15 -3492 ((-619 |#1|) (-619 |#1|))) (-15 -3505 ((-619 |#1|) (-619 |#1|))) (-15 -3881 ((-619 (-548)) (-619 |#1|))) (-15 -3513 ((-548) (-619 (-548))))) (-1194 (-548))) (T -477)) +((-3513 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-548)) (-5 *1 (-477 *4)) (-4 *4 (-1194 *2)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1194 (-548))) (-5 *2 (-619 (-548))) (-5 *1 (-477 *4)))) (-3505 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-548))) (-5 *1 (-477 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-548))) (-5 *1 (-477 *3)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-477 *2)) (-4 *2 (-1194 (-548))))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-477 *2)) (-4 *2 (-1194 (-548)))))) +(-10 -7 (-15 -3587 (|#1| (-619 |#1|))) (-15 -3480 (|#1| (-619 |#1|))) (-15 -3492 ((-619 |#1|) (-619 |#1|))) (-15 -3505 ((-619 |#1|) (-619 |#1|))) (-15 -3881 ((-619 (-548)) (-619 |#1|))) (-15 -3513 ((-548) (-619 (-548))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-548) $) NIL (|has| (-548) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-548) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-548) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-548) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-548) (-1007 (-548))))) (-2375 (((-548) $) NIL) (((-1135) $) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-548) (-1007 (-548)))) (((-548) $) NIL (|has| (-548) (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-548) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-548) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-548) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-548) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-548) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-548) (-1111)))) (-3312 (((-112) $) NIL (|has| (-548) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-548) (-821)))) (-2540 (($ (-1 (-548) (-548)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-548) (-1111)) CONST)) (-3526 (($ (-399 (-548))) 9)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-548) (-299))) (((-399 (-548)) $) NIL)) (-3887 (((-548) $) NIL (|has| (-548) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-548)) (-619 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-548) (-548)) NIL (|has| (-548) (-301 (-548)))) (($ $ (-286 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-286 (-548)))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-1135)) (-619 (-548))) NIL (|has| (-548) (-504 (-1135) (-548)))) (($ $ (-1135) (-548)) NIL (|has| (-548) (-504 (-1135) (-548))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-548)) NIL (|has| (-548) (-278 (-548) (-548))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-548) $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| (-548) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-548) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-548) (-593 (-524)))) (((-371) $) NIL (|has| (-548) (-991))) (((-218) $) NIL (|has| (-548) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-548) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 8) (($ (-548)) NIL) (($ (-1135)) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL) (((-973 16) $) 10)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-548) (-878))) (|has| (-548) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-548) $) NIL (|has| (-548) (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-548) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2309 (($ $ $) NIL) (($ (-548) (-548)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-548) $) NIL) (($ $ (-548)) NIL))) +(((-478) (-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 16) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -3526 ($ (-399 (-548))))))) (T -478)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-973 16)) (-5 *1 (-478)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478))))) +(-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 16) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -3526 ($ (-399 (-548)))))) +((-2342 (((-619 |#2|) $) 23)) (-2556 (((-112) |#2| $) 28)) (-3537 (((-112) (-1 (-112) |#2|) $) 21)) (-2460 (($ $ (-619 (-286 |#2|))) 13) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-619 |#2|) (-619 |#2|)) NIL)) (-3945 (((-745) (-1 (-112) |#2|) $) 22) (((-745) |#2| $) 26)) (-3743 (((-832) $) 37)) (-3548 (((-112) (-1 (-112) |#2|) $) 20)) (-2214 (((-112) $ $) 31)) (-3643 (((-745) $) 17))) +(((-479 |#1| |#2|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -2342 ((-619 |#2|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|))) (-480 |#2|) (-1172)) (T -479)) +NIL +(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -2342 ((-619 |#2|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-480 |#1|) (-138) (-1172)) (T -480)) +((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-480 *3)) (-4 *3 (-1172)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4328)) (-4 *1 (-480 *3)) (-4 *3 (-1172)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-3537 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-3945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) (-4 *4 (-1172)) (-5 *2 (-745)))) (-1934 (*1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-2342 (*1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-3945 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-745)))) (-2556 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-1063)) (IF (|has| |t#1| (-301 |t#1|)) (-6 (-301 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4328)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4327)) (PROGN (-15 -3548 ((-112) (-1 (-112) |t#1|) $)) (-15 -3537 ((-112) (-1 (-112) |t#1|) $)) (-15 -3945 ((-745) (-1 (-112) |t#1|) $)) (-15 -1934 ((-619 |t#1|) $)) (-15 -2342 ((-619 |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -3945 ((-745) |t#1| $)) (-15 -2556 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3560 (($ (-1118)) 8)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 14) (((-1118) $) 11)) (-2214 (((-112) $ $) 10))) +(((-481) (-13 (-1063) (-592 (-1118)) (-10 -8 (-15 -3560 ($ (-1118)))))) (T -481)) +((-3560 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-481))))) +(-13 (-1063) (-592 (-1118)) (-10 -8 (-15 -3560 ($ (-1118))))) +((-2074 (($ $) 15)) (-2054 (($ $) 24)) (-2098 (($ $) 12)) (-2110 (($ $) 10)) (-2086 (($ $) 17)) (-2065 (($ $) 22))) +(((-482 |#1|) (-10 -8 (-15 -2065 (|#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|))) (-483)) (T -482)) +NIL +(-10 -8 (-15 -2065 (|#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|))) +((-2074 (($ $) 11)) (-2054 (($ $) 10)) (-2098 (($ $) 9)) (-2110 (($ $) 8)) (-2086 (($ $) 7)) (-2065 (($ $) 6))) +(((-483) (-138)) (T -483)) +((-2074 (*1 *1 *1) (-4 *1 (-483))) (-2054 (*1 *1 *1) (-4 *1 (-483))) (-2098 (*1 *1 *1) (-4 *1 (-483))) (-2110 (*1 *1 *1) (-4 *1 (-483))) (-2086 (*1 *1 *1) (-4 *1 (-483))) (-2065 (*1 *1 *1) (-4 *1 (-483)))) +(-13 (-10 -8 (-15 -2065 ($ $)) (-15 -2086 ($ $)) (-15 -2110 ($ $)) (-15 -2098 ($ $)) (-15 -2054 ($ $)) (-15 -2074 ($ $)))) +((-1915 (((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|)) 42))) +(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|)))) (-355) (-1194 |#1|) (-13 (-355) (-145) (-699 |#1| |#2|)) (-1194 |#3|)) (T -484)) +((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-4 *7 (-13 (-355) (-145) (-699 *5 *6))) (-5 *2 (-410 *3)) (-5 *1 (-484 *5 *6 *7 *3)) (-4 *3 (-1194 *7))))) +(-10 -7 (-15 -1915 ((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|)))) +((-3730 (((-112) $ $) NIL)) (-1786 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-1262 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-3324 (((-112) $) 39)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-3571 (((-112) $ $) 64)) (-1806 (((-619 (-591 $)) $) 48)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1274 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-3263 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-2441 (((-3 (-591 $) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL)) (-2375 (((-591 $) $) NIL) (((-548) $) NIL) (((-399 (-548)) $) 50)) (-1945 (($ $ $) NIL)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-399 (-548)))) (|:| |vec| (-1218 (-399 (-548))))) (-663 $) (-1218 $)) NIL) (((-663 (-399 (-548))) (-663 $)) NIL)) (-2061 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2142 (($ $) NIL) (($ (-619 $)) NIL)) (-1744 (((-619 (-114)) $) NIL)) (-1402 (((-114) (-114)) NIL)) (-2266 (((-112) $) 42)) (-3705 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2470 (((-1087 (-548) (-591 $)) $) 37)) (-2154 (($ $ (-548)) NIL)) (-3910 (((-1131 $) (-1131 $) (-591 $)) 78) (((-1131 $) (-1131 $) (-619 (-591 $))) 55) (($ $ (-591 $)) 67) (($ $ (-619 (-591 $))) 68)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1724 (((-1131 $) (-591 $)) 65 (|has| $ (-1016)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 $ $) (-591 $)) NIL)) (-1753 (((-3 (-591 $) "failed") $) NIL)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-1870 (((-619 (-591 $)) $) NIL)) (-1409 (($ (-114) $) NIL) (($ (-114) (-619 $)) NIL)) (-1518 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-2153 (($ $) NIL)) (-3926 (((-745) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1734 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4077 (((-745) $) NIL)) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1762 (($ $) NIL) (($ $ $) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) 36)) (-2480 (((-1087 (-548) (-591 $)) $) 20)) (-3287 (($ $) NIL (|has| $ (-1016)))) (-2591 (((-371) $) 92) (((-218) $) 100) (((-166 (-371)) $) 108)) (-3743 (((-832) $) NIL) (($ (-591 $)) NIL) (($ (-399 (-548))) NIL) (($ $) NIL) (($ (-548)) NIL) (($ (-1087 (-548) (-591 $))) 21)) (-3835 (((-745)) NIL)) (-3528 (($ $) NIL) (($ (-619 $)) NIL)) (-1392 (((-112) (-114)) 84)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 10 T CONST)) (-3118 (($) 22 T CONST)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 24)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2309 (($ $ $) 44)) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-399 (-548))) NIL) (($ $ (-548)) 46) (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ $ $) 27) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) +(((-485) (-13 (-294) (-27) (-1007 (-548)) (-1007 (-399 (-548))) (-615 (-548)) (-991) (-615 (-399 (-548))) (-145) (-593 (-166 (-371))) (-226) (-10 -8 (-15 -3743 ($ (-1087 (-548) (-591 $)))) (-15 -2470 ((-1087 (-548) (-591 $)) $)) (-15 -2480 ((-1087 (-548) (-591 $)) $)) (-15 -2061 ($ $)) (-15 -3571 ((-112) $ $)) (-15 -3910 ((-1131 $) (-1131 $) (-591 $))) (-15 -3910 ((-1131 $) (-1131 $) (-619 (-591 $)))) (-15 -3910 ($ $ (-591 $))) (-15 -3910 ($ $ (-619 (-591 $))))))) (T -485)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) (-2061 (*1 *1 *1) (-5 *1 (-485))) (-3571 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-485)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-485))) (-5 *3 (-591 (-485))) (-5 *1 (-485)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-485))) (-5 *3 (-619 (-591 (-485)))) (-5 *1 (-485)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-485))) (-5 *1 (-485)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-591 (-485)))) (-5 *1 (-485))))) +(-13 (-294) (-27) (-1007 (-548)) (-1007 (-399 (-548))) (-615 (-548)) (-991) (-615 (-399 (-548))) (-145) (-593 (-166 (-371))) (-226) (-10 -8 (-15 -3743 ($ (-1087 (-548) (-591 $)))) (-15 -2470 ((-1087 (-548) (-591 $)) $)) (-15 -2480 ((-1087 (-548) (-591 $)) $)) (-15 -2061 ($ $)) (-15 -3571 ((-112) $ $)) (-15 -3910 ((-1131 $) (-1131 $) (-591 $))) (-15 -3910 ((-1131 $) (-1131 $) (-619 (-591 $)))) (-15 -3910 ($ $ (-591 $))) (-15 -3910 ($ $ (-619 (-591 $)))))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) 25 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 22 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 21)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 14)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 12 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) 23 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) 10 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 13)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) 24) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 9 (|has| $ (-6 -4327))))) +(((-486 |#1| |#2|) (-19 |#1|) (-1172) (-548)) (T -486)) NIL (-19 |#1|) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL)) (-1282 (($ $ (-526) (-478 |#1| |#3|)) NIL)) (-1281 (($ $ (-526) (-478 |#1| |#2|)) NIL)) (-3855 (($) NIL T CONST)) (-3409 (((-478 |#1| |#3|) $ (-526)) NIL)) (-1613 ((|#1| $ (-526) (-526) |#1|) NIL)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3412 (((-735) $) NIL)) (-3936 (($ (-735) (-735) |#1|) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 (((-478 |#1| |#2|) $ (-526)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-479 |#1| |#2| |#3|) (-55 |#1| (-478 |#1| |#3|) (-478 |#1| |#2|)) (-1159) (-526) (-526)) (T -479)) -NIL -(-55 |#1| (-478 |#1| |#3|) (-478 |#1| |#2|)) -((-2052 (((-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-735) (-735)) 27)) (-2051 (((-607 (-1117 |#1|)) |#1| (-735) (-735) (-735)) 34)) (-2170 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-607 |#3|) (-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-735)) 85))) -(((-480 |#1| |#2| |#3|) (-10 -7 (-15 -2051 ((-607 (-1117 |#1|)) |#1| (-735) (-735) (-735))) (-15 -2052 ((-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-735) (-735))) (-15 -2170 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-607 |#3|) (-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-735)))) (-335) (-1181 |#1|) (-1181 |#2|)) (T -480)) -((-2170 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-2 (|:| -2104 (-653 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-653 *7))))) (-5 *5 (-735)) (-4 *8 (-1181 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-335)) (-5 *2 (-2 (|:| -2104 (-653 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-653 *7)))) (-5 *1 (-480 *6 *7 *8)))) (-2052 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-735)) (-4 *5 (-335)) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-2 (|:| -2104 (-653 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-653 *6))))) (-5 *1 (-480 *5 *6 *7)) (-5 *3 (-2 (|:| -2104 (-653 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-653 *6)))) (-4 *7 (-1181 *6)))) (-2051 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-735)) (-4 *3 (-335)) (-4 *5 (-1181 *3)) (-5 *2 (-607 (-1117 *3))) (-5 *1 (-480 *3 *5 *6)) (-4 *6 (-1181 *5))))) -(-10 -7 (-15 -2051 ((-607 (-1117 |#1|)) |#1| (-735) (-735) (-735))) (-15 -2052 ((-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-735) (-735))) (-15 -2170 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-607 |#3|) (-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-735)))) -((-2058 (((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|)))) 62)) (-2053 ((|#1| (-653 |#1|) |#1| (-735)) 25)) (-2055 (((-735) (-735) (-735)) 30)) (-2057 (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 42)) (-2056 (((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|) 50) (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 47)) (-2054 ((|#1| (-653 |#1|) (-653 |#1|) |#1| (-526)) 29)) (-3648 ((|#1| (-653 |#1|)) 18))) -(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -3648 (|#1| (-653 |#1|))) (-15 -2053 (|#1| (-653 |#1|) |#1| (-735))) (-15 -2054 (|#1| (-653 |#1|) (-653 |#1|) |#1| (-526))) (-15 -2055 ((-735) (-735) (-735))) (-15 -2056 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2056 ((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|)) (-15 -2057 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2058 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|)))))) (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $)))) (-1181 |#1|) (-395 |#1| |#2|)) (T -481)) -((-2058 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2056 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2056 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2055 (*1 *2 *2 *2) (-12 (-5 *2 (-735)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2054 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-653 *2)) (-5 *4 (-526)) (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *5 (-1181 *2)) (-5 *1 (-481 *2 *5 *6)) (-4 *6 (-395 *2 *5)))) (-2053 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-653 *2)) (-5 *4 (-735)) (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *5 (-1181 *2)) (-5 *1 (-481 *2 *5 *6)) (-4 *6 (-395 *2 *5)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *4 (-1181 *2)) (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-5 *1 (-481 *2 *4 *5)) (-4 *5 (-395 *2 *4))))) -(-10 -7 (-15 -3648 (|#1| (-653 |#1|))) (-15 -2053 (|#1| (-653 |#1|) |#1| (-735))) (-15 -2054 (|#1| (-653 |#1|) (-653 |#1|) |#1| (-526))) (-15 -2055 ((-735) (-735) (-735))) (-15 -2056 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2056 ((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|)) (-15 -2057 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2058 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|)))))) -((-2865 (((-111) $ $) NIL)) (-3639 (($ $) NIL)) (-3635 (($ $ $) 35)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| (-111) (-811))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-111) (-811)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4311)))) (-3209 (($ $) NIL (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-111) $ (-1172 (-526)) (-111)) NIL (|has| $ (-6 -4311))) (((-111) $ (-526) (-111)) 36 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-3725 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-4161 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-1613 (((-111) $ (-526) (-111)) NIL (|has| $ (-6 -4311)))) (-3410 (((-111) $ (-526)) NIL)) (-3738 (((-526) (-111) $ (-526)) NIL (|has| (-111) (-1052))) (((-526) (-111) $) NIL (|has| (-111) (-1052))) (((-526) (-1 (-111) (-111)) $) NIL)) (-2044 (((-607 (-111)) $) NIL (|has| $ (-6 -4310)))) (-3156 (($ $ $) 33)) (-3636 (($ $) NIL)) (-1337 (($ $ $) NIL)) (-3936 (($ (-735) (-111)) 23)) (-1338 (($ $ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 8 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL)) (-3832 (($ $ $) NIL (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-2480 (((-607 (-111)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL)) (-2048 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-111) (-111) (-111)) $ $) 30) (($ (-1 (-111) (-111)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ (-111) $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-111) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-2277 (($ $ (-111)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-111)) (-607 (-111))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-278 (-111))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-607 (-278 (-111)))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2283 (((-607 (-111)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 24)) (-4118 (($ $ (-1172 (-526))) NIL) (((-111) $ (-526)) 18) (((-111) $ (-526) (-111)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2045 (((-735) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052)))) (((-735) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) 25)) (-4287 (((-515) $) NIL (|has| (-111) (-584 (-515))))) (-3844 (($ (-607 (-111))) NIL)) (-4120 (($ (-607 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-4274 (((-823) $) 22)) (-2047 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-3155 (($ $ $) 31)) (-3641 (($ $ $) NIL)) (-3632 (($ $ $) 39)) (-3634 (($ $) 37)) (-3633 (($ $ $) 38)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 26)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 27)) (-3640 (($ $ $) NIL)) (-4273 (((-735) $) 10 (|has| $ (-6 -4310))))) -(((-482 |#1|) (-13 (-122) (-10 -8 (-15 -3634 ($ $)) (-15 -3632 ($ $ $)) (-15 -3633 ($ $ $)))) (-526)) (T -482)) -((-3634 (*1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) (-3632 (*1 *1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) (-3633 (*1 *1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526))))) -(-13 (-122) (-10 -8 (-15 -3634 ($ $)) (-15 -3632 ($ $ $)) (-15 -3633 ($ $ $)))) -((-2060 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1117 |#4|)) 35)) (-2059 (((-1117 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1117 |#4|)) 22)) (-2061 (((-3 (-653 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-653 (-1117 |#4|))) 46)) (-2062 (((-1117 (-1117 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-483 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2059 (|#2| (-1 |#1| |#4|) (-1117 |#4|))) (-15 -2059 ((-1117 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2060 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1117 |#4|))) (-15 -2061 ((-3 (-653 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-653 (-1117 |#4|)))) (-15 -2062 ((-1117 (-1117 |#4|)) (-1 |#4| |#1|) |#3|))) (-1004) (-1181 |#1|) (-1181 |#2|) (-1004)) (T -483)) -((-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *6 (-1181 *5)) (-5 *2 (-1117 (-1117 *7))) (-5 *1 (-483 *5 *6 *4 *7)) (-4 *4 (-1181 *6)))) (-2061 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-653 (-1117 *8))) (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-1181 *5)) (-5 *2 (-653 *6)) (-5 *1 (-483 *5 *6 *7 *8)) (-4 *7 (-1181 *6)))) (-2060 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1117 *7)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *2 (-1181 *5)) (-5 *1 (-483 *5 *2 *6 *7)) (-4 *6 (-1181 *2)))) (-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *4 (-1181 *5)) (-5 *2 (-1117 *7)) (-5 *1 (-483 *5 *4 *6 *7)) (-4 *6 (-1181 *4)))) (-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1117 *7)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *2 (-1181 *5)) (-5 *1 (-483 *5 *2 *6 *7)) (-4 *6 (-1181 *2))))) -(-10 -7 (-15 -2059 (|#2| (-1 |#1| |#4|) (-1117 |#4|))) (-15 -2059 ((-1117 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2060 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1117 |#4|))) (-15 -2061 ((-3 (-653 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-653 (-1117 |#4|)))) (-15 -2062 ((-1117 (-1117 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2063 (((-1211) $) 19)) (-4118 (((-1106) $ (-1123)) 23)) (-3939 (((-1211) $) 15)) (-4274 (((-823) $) 21) (($ (-1106)) 20)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 9)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 8))) -(((-484) (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $)) (-15 -4274 ($ (-1106)))))) (T -484)) -((-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1106)) (-5 *1 (-484)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-484)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-484)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-484))))) -(-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $)) (-15 -4274 ($ (-1106))))) -((-4060 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4058 ((|#1| |#4|) 10)) (-4059 ((|#3| |#4|) 17))) -(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4058 (|#1| |#4|)) (-15 -4059 (|#3| |#4|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-533) (-950 |#1|) (-357 |#1|) (-357 |#2|)) (T -485)) -((-4060 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-485 *4 *5 *6 *3)) (-4 *6 (-357 *4)) (-4 *3 (-357 *5)))) (-4059 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-4 *2 (-357 *4)) (-5 *1 (-485 *4 *5 *2 *3)) (-4 *3 (-357 *5)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-485 *2 *4 *5 *3)) (-4 *5 (-357 *2)) (-4 *3 (-357 *4))))) -(-10 -7 (-15 -4058 (|#1| |#4|)) (-15 -4059 (|#3| |#4|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2865 (((-111) $ $) NIL)) (-2073 (((-111) $ (-607 |#3|)) 105) (((-111) $) 106)) (-3502 (((-111) $) 149)) (-2065 (($ $ |#4|) 97) (($ $ |#4| (-607 |#3|)) 101)) (-2064 (((-1113 (-607 (-905 |#1|)) (-607 (-278 (-905 |#1|)))) (-607 |#4|)) 142 (|has| |#3| (-584 (-1123))))) (-2072 (($ $ $) 91) (($ $ |#4|) 89)) (-2471 (((-111) $) 148)) (-2069 (($ $) 109)) (-3554 (((-1106) $) NIL)) (-3550 (($ $ $) 83) (($ (-607 $)) 85)) (-2074 (((-111) |#4| $) 108)) (-2075 (((-111) $ $) 72)) (-2068 (($ (-607 |#4|)) 90)) (-3555 (((-1070) $) NIL)) (-2067 (($ (-607 |#4|)) 146)) (-2066 (((-111) $) 147)) (-2303 (($ $) 74)) (-2995 (((-607 |#4|) $) 63)) (-2071 (((-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)) $ (-607 |#3|)) NIL)) (-2076 (((-111) |#4| $) 77)) (-4230 (((-526) $ (-607 |#3|)) 110) (((-526) $) 111)) (-4274 (((-823) $) 145) (($ (-607 |#4|)) 86)) (-2070 (($ (-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $))) NIL)) (-3353 (((-111) $ $) 73)) (-4158 (($ $ $) 93)) (** (($ $ (-735)) 96)) (* (($ $ $) 95))) -(((-486 |#1| |#2| |#3| |#4|) (-13 (-1052) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-735))) (-15 -4158 ($ $ $)) (-15 -2471 ((-111) $)) (-15 -3502 ((-111) $)) (-15 -2076 ((-111) |#4| $)) (-15 -2075 ((-111) $ $)) (-15 -2074 ((-111) |#4| $)) (-15 -2073 ((-111) $ (-607 |#3|))) (-15 -2073 ((-111) $)) (-15 -3550 ($ $ $)) (-15 -3550 ($ (-607 $))) (-15 -2072 ($ $ $)) (-15 -2072 ($ $ |#4|)) (-15 -2303 ($ $)) (-15 -2071 ((-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)) $ (-607 |#3|))) (-15 -2070 ($ (-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)))) (-15 -4230 ((-526) $ (-607 |#3|))) (-15 -4230 ((-526) $)) (-15 -2069 ($ $)) (-15 -2068 ($ (-607 |#4|))) (-15 -2067 ($ (-607 |#4|))) (-15 -2066 ((-111) $)) (-15 -2995 ((-607 |#4|) $)) (-15 -4274 ($ (-607 |#4|))) (-15 -2065 ($ $ |#4|)) (-15 -2065 ($ $ |#4| (-607 |#3|))) (IF (|has| |#3| (-584 (-1123))) (-15 -2064 ((-1113 (-607 (-905 |#1|)) (-607 (-278 (-905 |#1|)))) (-607 |#4|))) |%noBranch|))) (-348) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -486)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-4158 (*1 *1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2471 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-3502 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2076 (*1 *2 *3 *1) (-12 (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-2075 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2074 (*1 *2 *3 *1) (-12 (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-2073 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) (-2073 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-3550 (*1 *1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-3550 (*1 *1 *2) (-12 (-5 *2 (-607 (-486 *3 *4 *5 *6))) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2072 (*1 *1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2072 (*1 *1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-909 *3 *4 *5)))) (-2303 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |mval| (-653 *4)) (|:| |invmval| (-653 *4)) (|:| |genIdeal| (-486 *4 *5 *6 *7)))) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-653 *3)) (|:| |invmval| (-653 *3)) (|:| |genIdeal| (-486 *3 *4 *5 *6)))) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) (-5 *2 (-526)) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) (-4230 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-526)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2069 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)))) (-2066 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2995 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *6)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)))) (-2065 (*1 *1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-909 *3 *4 *5)))) (-2065 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) (-5 *1 (-486 *4 *5 *6 *2)) (-4 *2 (-909 *4 *5 *6)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *6 (-584 (-1123))) (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1113 (-607 (-905 *4)) (-607 (-278 (-905 *4))))) (-5 *1 (-486 *4 *5 *6 *7))))) -(-13 (-1052) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-735))) (-15 -4158 ($ $ $)) (-15 -2471 ((-111) $)) (-15 -3502 ((-111) $)) (-15 -2076 ((-111) |#4| $)) (-15 -2075 ((-111) $ $)) (-15 -2074 ((-111) |#4| $)) (-15 -2073 ((-111) $ (-607 |#3|))) (-15 -2073 ((-111) $)) (-15 -3550 ($ $ $)) (-15 -3550 ($ (-607 $))) (-15 -2072 ($ $ $)) (-15 -2072 ($ $ |#4|)) (-15 -2303 ($ $)) (-15 -2071 ((-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)) $ (-607 |#3|))) (-15 -2070 ($ (-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)))) (-15 -4230 ((-526) $ (-607 |#3|))) (-15 -4230 ((-526) $)) (-15 -2069 ($ $)) (-15 -2068 ($ (-607 |#4|))) (-15 -2067 ($ (-607 |#4|))) (-15 -2066 ((-111) $)) (-15 -2995 ((-607 |#4|) $)) (-15 -4274 ($ (-607 |#4|))) (-15 -2065 ($ $ |#4|)) (-15 -2065 ($ $ |#4| (-607 |#3|))) (IF (|has| |#3| (-584 (-1123))) (-15 -2064 ((-1113 (-607 (-905 |#1|)) (-607 (-278 (-905 |#1|)))) (-607 |#4|))) |%noBranch|))) -((-2077 (((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) 150)) (-2078 (((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) 151)) (-2079 (((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) 108)) (-4045 (((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) NIL)) (-2080 (((-607 (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) 153)) (-2081 (((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-607 (-824 |#1|))) 165))) -(((-487 |#1| |#2|) (-10 -7 (-15 -2077 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2078 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -4045 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2079 ((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2080 ((-607 (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2081 ((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-607 (-824 |#1|))))) (-607 (-1123)) (-735)) (T -487)) -((-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) (-5 *3 (-607 (-824 *4))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *1 (-487 *4 *5)))) (-2080 (*1 *2 *3) (-12 (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-607 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526)))))) (-5 *1 (-487 *4 *5)) (-5 *3 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-486 (-392 (-526)) (-225 *4 (-735)) (-824 *3) (-233 *3 (-392 (-526))))) (-14 *3 (-607 (-1123))) (-14 *4 (-735)) (-5 *1 (-487 *3 *4)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) (-5 *1 (-487 *4 *5)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) (-5 *1 (-487 *4 *5)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) (-5 *1 (-487 *4 *5))))) -(-10 -7 (-15 -2077 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2078 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -4045 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2079 ((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2080 ((-607 (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2081 ((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-607 (-824 |#1|))))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11) (((-1128) $) NIL) (((-1123) $) 8)) (-3353 (((-111) $ $) NIL))) -(((-488) (-13 (-1035) (-583 (-1123)))) (T -488)) -NIL -(-13 (-1035) (-583 (-1123))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) 12 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) 11) (($ $ $) 24)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 18))) -(((-489 |#1| |#2|) (-13 (-21) (-491 |#1| |#2|)) (-21) (-811)) (T -489)) -NIL -(-13 (-21) (-491 |#1| |#2|)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 12)) (-3855 (($) NIL T CONST)) (-4276 (($ $) 28)) (-3193 (($ |#1| |#2|) 25)) (-4275 (($ (-1 |#1| |#1|) $) 27)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) 29)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) 10 T CONST)) (-3353 (((-111) $ $) NIL)) (-4158 (($ $ $) 18)) (* (($ (-878) $) NIL) (($ (-735) $) 23))) -(((-490 |#1| |#2|) (-13 (-23) (-491 |#1| |#2|)) (-23) (-811)) (T -490)) -NIL -(-13 (-23) (-491 |#1| |#2|)) -((-2865 (((-111) $ $) 7)) (-4276 (($ $) 13)) (-3193 (($ |#1| |#2|) 16)) (-4275 (($ (-1 |#1| |#1|) $) 17)) (-2082 ((|#2| $) 14)) (-3487 ((|#1| $) 15)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) -(((-491 |#1| |#2|) (-134) (-1052) (-811)) (T -491)) -((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-811)))) (-3193 (*1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-811)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-491 *2 *3)) (-4 *3 (-811)) (-4 *2 (-1052)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-491 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-811)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-811))))) -(-13 (-1052) (-10 -8 (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (-15 -3193 ($ |t#1| |t#2|)) (-15 -3487 (|t#1| $)) (-15 -2082 (|t#2| $)) (-15 -4276 ($ $)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-4276 (($ $) 25)) (-3193 (($ |#1| |#2|) 22)) (-4275 (($ (-1 |#1| |#1|) $) 24)) (-2082 ((|#2| $) 27)) (-3487 ((|#1| $) 26)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 21)) (-3353 (((-111) $ $) 14))) -(((-492 |#1| |#2|) (-491 |#1| |#2|) (-1052) (-811)) (T -492)) -NIL -(-491 |#1| |#2|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 13)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL))) -(((-493 |#1| |#2|) (-13 (-756) (-491 |#1| |#2|)) (-756) (-811)) (T -493)) -NIL -(-13 (-756) (-491 |#1| |#2|)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2702 (($ $ $) 16)) (-1345 (((-3 $ "failed") $ $) 13)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL))) -(((-494 |#1| |#2|) (-13 (-757) (-491 |#1| |#2|)) (-757) (-811)) (T -494)) -NIL -(-13 (-757) (-491 |#1| |#2|)) -((-4086 (($ $ (-607 |#2|) (-607 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-495 |#1| |#2| |#3|) (-10 -8 (-15 -4086 (|#1| |#1| |#2| |#3|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#3|)))) (-496 |#2| |#3|) (-1052) (-1159)) (T -495)) -NIL -(-10 -8 (-15 -4086 (|#1| |#1| |#2| |#3|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#3|)))) -((-4086 (($ $ (-607 |#1|) (-607 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-496 |#1| |#2|) (-134) (-1052) (-1159)) (T -496)) -((-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 *5)) (-4 *1 (-496 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1159)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-496 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1159))))) -(-13 (-10 -8 (-15 -4086 ($ $ |t#1| |t#2|)) (-15 -4086 ($ $ (-607 |t#1|) (-607 |t#2|))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 16)) (-4092 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $) 18)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-2737 ((|#1| $ (-526)) 23)) (-1695 ((|#2| $ (-526)) 21)) (-2340 (($ (-1 |#1| |#1|) $) 46)) (-1694 (($ (-1 |#2| |#2|) $) 43)) (-3554 (((-1106) $) NIL)) (-1693 (($ $ $) 53 (|has| |#2| (-756)))) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 42) (($ |#1|) NIL)) (-3999 ((|#2| |#1| $) 49)) (-2957 (($) 11 T CONST)) (-3353 (((-111) $ $) 29)) (-4158 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-878) $) NIL) (($ (-735) $) 36) (($ |#2| |#1|) 31))) -(((-497 |#1| |#2| |#3|) (-308 |#1| |#2|) (-1052) (-129) |#2|) (T -497)) -NIL -(-308 |#1| |#2|) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-2083 (((-111) (-111)) 25)) (-4106 ((|#1| $ (-526) |#1|) 28 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) 52)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-2424 (($ $) 56 (|has| |#1| (-1052)))) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) 44)) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2084 (($ $ (-526)) 13)) (-2085 (((-735) $) 11)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 23)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 21 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) 35)) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) 20 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3929 (($ $ $ (-526)) 51) (($ |#1| $ (-526)) 37)) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2086 (($ (-607 |#1|)) 29)) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) 19 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 40)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 16)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) 33) (($ $ (-1172 (-526))) NIL)) (-1608 (($ $ (-1172 (-526))) 50) (($ $ (-526)) 45)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) 41 (|has| $ (-6 -4311)))) (-3719 (($ $) 32)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4109 (($ $ $) 42) (($ $ |#1|) 39)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 17 (|has| $ (-6 -4310))))) -(((-498 |#1| |#2|) (-13 (-19 |#1|) (-267 |#1|) (-10 -8 (-15 -2086 ($ (-607 |#1|))) (-15 -2085 ((-735) $)) (-15 -2084 ($ $ (-526))) (-15 -2083 ((-111) (-111))))) (-1159) (-526)) (T -498)) -((-2086 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-498 *3 *4)) (-14 *4 (-526)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 (-526)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 *2))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 (-526))))) -(-13 (-19 |#1|) (-267 |#1|) (-10 -8 (-15 -2086 ($ (-607 |#1|))) (-15 -2085 ((-735) $)) (-15 -2084 ($ $ (-526))) (-15 -2083 ((-111) (-111))))) -((-2865 (((-111) $ $) NIL)) (-2088 (((-1128) $) 11)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2087 (((-1128) $) 13)) (-4239 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-499) (-13 (-1035) (-10 -8 (-15 -4239 ((-1128) $)) (-15 -2088 ((-1128) $)) (-15 -2087 ((-1128) $))))) (T -499)) -((-4239 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499))))) -(-13 (-1035) (-10 -8 (-15 -4239 ((-1128) $)) (-15 -2088 ((-1128) $)) (-15 -2087 ((-1128) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (((-554 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-554 |#1|) (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-554 |#1|) (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| (-554 |#1|) (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-554 |#1|) "failed") $) NIL)) (-3469 (((-554 |#1|) $) NIL)) (-1887 (($ (-1205 (-554 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-554 |#1|) (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-554 |#1|) (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| (-554 |#1|) (-353)))) (-1772 (((-111) $) NIL (|has| (-554 |#1|) (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353)))) (($ $) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| (-554 |#1|) (-353))) (((-796 (-878)) $) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| (-554 |#1|) (-353)))) (-2103 (((-111) $) NIL (|has| (-554 |#1|) (-353)))) (-3429 (((-554 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-554 |#1|) (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-554 |#1|) (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 (-554 |#1|)) $) NIL) (((-1117 $) $ (-878)) NIL (|has| (-554 |#1|) (-353)))) (-2102 (((-878) $) NIL (|has| (-554 |#1|) (-353)))) (-1700 (((-1117 (-554 |#1|)) $) NIL (|has| (-554 |#1|) (-353)))) (-1699 (((-1117 (-554 |#1|)) $) NIL (|has| (-554 |#1|) (-353))) (((-3 (-1117 (-554 |#1|)) "failed") $ $) NIL (|has| (-554 |#1|) (-353)))) (-1701 (($ $ (-1117 (-554 |#1|))) NIL (|has| (-554 |#1|) (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-554 |#1|) (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| (-554 |#1|) (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL (|has| (-554 |#1|) (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-554 |#1|) (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| (-554 |#1|) (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| (-554 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-554 |#1|) (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 (-554 |#1|))) NIL)) (-1766 (($) NIL (|has| (-554 |#1|) (-353)))) (-1702 (($) NIL (|has| (-554 |#1|) (-353)))) (-3537 (((-1205 (-554 |#1|)) $) NIL) (((-653 (-554 |#1|)) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-554 |#1|) (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-554 |#1|)) NIL)) (-3002 (($ $) NIL (|has| (-554 |#1|) (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| (-554 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-554 |#1|) (-353)))) (-2969 (($ $) NIL (|has| (-554 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-554 |#1|) (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ (-554 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-554 |#1|)) NIL) (($ (-554 |#1|) $) NIL))) -(((-500 |#1| |#2|) (-314 (-554 |#1|)) (-878) (-878)) (T -500)) -NIL -(-314 (-554 |#1|)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) 35)) (-1282 (($ $ (-526) |#4|) NIL)) (-1281 (($ $ (-526) |#5|) NIL)) (-3855 (($) NIL T CONST)) (-3409 ((|#4| $ (-526)) NIL)) (-1613 ((|#1| $ (-526) (-526) |#1|) 34)) (-3410 ((|#1| $ (-526) (-526)) 32)) (-2044 (((-607 |#1|) $) NIL)) (-3412 (((-735) $) 28)) (-3936 (($ (-735) (-735) |#1|) 25)) (-3411 (((-735) $) 30)) (-4041 (((-111) $ (-735)) NIL)) (-3416 (((-526) $) 26)) (-3414 (((-526) $) 27)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) 29)) (-3413 (((-526) $) 31)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) 38 (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 14)) (-3887 (($) 16)) (-4118 ((|#1| $ (-526) (-526)) 33) ((|#1| $ (-526) (-526) |#1|) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 ((|#5| $ (-526)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-501 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1159) (-526) (-526) (-357 |#1|) (-357 |#1|)) (T -501)) -NIL -(-55 |#1| |#4| |#5|) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-4115 (($ $) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 59 (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| |#1| (-811))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811)))) (($ (-1 (-111) |#1| |#1|) $) 57 (|has| $ (-6 -4311)))) (-3209 (($ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) 23 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 21 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) NIL)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4114 ((|#1| $) NIL)) (-3855 (($) NIL T CONST)) (-2346 (($ $) 28 (|has| $ (-6 -4311)))) (-2347 (($ $) 29)) (-4117 (($ $) 18) (($ $ (-735)) 32)) (-2424 (($ $) 55 (|has| |#1| (-1052)))) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) NIL)) (-3725 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-3738 (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052))) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) (-1 (-111) |#1|) $) NIL)) (-2044 (((-607 |#1|) $) 27 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 31 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) 58)) (-3832 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 53 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3856 (($ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) 51 (|has| |#1| (-1052)))) (-4116 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-3929 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) 13) (($ $ (-735)) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-3762 (((-111) $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 12)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) 17)) (-3887 (($) 16)) (-4118 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1172 (-526))) NIL) ((|#1| $ (-526)) NIL) ((|#1| $ (-526) |#1|) NIL)) (-3329 (((-526) $ $) NIL)) (-1608 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-3955 (((-111) $) 34)) (-4110 (($ $) NIL)) (-4108 (($ $) NIL (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) 36)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) 35)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 26)) (-4109 (($ $ $) 54) (($ $ |#1|) NIL)) (-4120 (($ $ $) NIL) (($ |#1| $) 10) (($ (-607 $)) NIL) (($ $ |#1|) NIL)) (-4274 (((-823) $) 46 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 48 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 9 (|has| $ (-6 -4310))))) -(((-502 |#1| |#2|) (-631 |#1|) (-1159) (-526)) (T -502)) -NIL -(-631 |#1|) -((-3407 ((|#4| |#4|) 27)) (-3406 (((-735) |#4|) 32)) (-3405 (((-735) |#4|) 33)) (-3404 (((-607 |#3|) |#4|) 40 (|has| |#3| (-6 -4311)))) (-3911 (((-3 |#4| "failed") |#4|) 51)) (-2089 ((|#4| |#4|) 44)) (-3647 ((|#1| |#4|) 43))) -(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3407 (|#4| |#4|)) (-15 -3406 ((-735) |#4|)) (-15 -3405 ((-735) |#4|)) (IF (|has| |#3| (-6 -4311)) (-15 -3404 ((-607 |#3|) |#4|)) |%noBranch|) (-15 -3647 (|#1| |#4|)) (-15 -2089 (|#4| |#4|)) (-15 -3911 ((-3 |#4| "failed") |#4|))) (-348) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|)) (T -503)) -((-3911 (*1 *2 *2) (|partial| -12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-2089 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-348)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) (-3404 (*1 *2 *3) (-12 (|has| *6 (-6 -4311)) (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-607 *6)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3405 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) -(-10 -7 (-15 -3407 (|#4| |#4|)) (-15 -3406 ((-735) |#4|)) (-15 -3405 ((-735) |#4|)) (IF (|has| |#3| (-6 -4311)) (-15 -3404 ((-607 |#3|) |#4|)) |%noBranch|) (-15 -3647 (|#1| |#4|)) (-15 -2089 (|#4| |#4|)) (-15 -3911 ((-3 |#4| "failed") |#4|))) -((-3407 ((|#8| |#4|) 20)) (-3404 (((-607 |#3|) |#4|) 29 (|has| |#7| (-6 -4311)))) (-3911 (((-3 |#8| "failed") |#4|) 23))) -(((-504 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3407 (|#8| |#4|)) (-15 -3911 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4311)) (-15 -3404 ((-607 |#3|) |#4|)) |%noBranch|)) (-533) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|) (-950 |#1|) (-357 |#5|) (-357 |#5|) (-650 |#5| |#6| |#7|)) (T -504)) -((-3404 (*1 *2 *3) (-12 (|has| *9 (-6 -4311)) (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-950 *4)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)) (-5 *2 (-607 *6)) (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-650 *4 *5 *6)) (-4 *10 (-650 *7 *8 *9)))) (-3911 (*1 *2 *3) (|partial| -12 (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-950 *4)) (-4 *2 (-650 *7 *8 *9)) (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-650 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) (-3407 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-950 *4)) (-4 *2 (-650 *7 *8 *9)) (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-650 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7))))) -(-10 -7 (-15 -3407 (|#8| |#4|)) (-15 -3911 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4311)) (-15 -3404 ((-607 |#3|) |#4|)) |%noBranch|)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735) (-735)) NIL)) (-2400 (($ $ $) NIL)) (-3733 (($ (-572 |#1| |#3|)) NIL) (($ $) NIL)) (-3418 (((-111) $) NIL)) (-2399 (($ $ (-526) (-526)) 12)) (-2398 (($ $ (-526) (-526)) NIL)) (-2397 (($ $ (-526) (-526) (-526) (-526)) NIL)) (-2402 (($ $) NIL)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-2396 (($ $ (-526) (-526) $) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526)) $) NIL)) (-1282 (($ $ (-526) (-572 |#1| |#3|)) NIL)) (-1281 (($ $ (-526) (-572 |#1| |#2|)) NIL)) (-3652 (($ (-735) |#1|) NIL)) (-3855 (($) NIL T CONST)) (-3407 (($ $) 21 (|has| |#1| (-292)))) (-3409 (((-572 |#1| |#3|) $ (-526)) NIL)) (-3406 (((-735) $) 24 (|has| |#1| (-533)))) (-1613 ((|#1| $ (-526) (-526) |#1|) NIL)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3405 (((-735) $) 26 (|has| |#1| (-533)))) (-3404 (((-607 (-572 |#1| |#2|)) $) 29 (|has| |#1| (-533)))) (-3412 (((-735) $) NIL)) (-3936 (($ (-735) (-735) |#1|) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#1| $) 19 (|has| |#1| (-6 (-4312 #1="*"))))) (-3416 (((-526) $) 10)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) 11)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#1|))) NIL)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3915 (((-607 (-607 |#1|)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3911 (((-3 $ #2="failed") $) 33 (|has| |#1| (-348)))) (-2401 (($ $ $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-3780 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-533)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526))) NIL)) (-3651 (($ (-607 |#1|)) NIL) (($ (-607 $)) NIL)) (-3419 (((-111) $) NIL)) (-3647 ((|#1| $) 17 (|has| |#1| (-6 (-4312 #1#))))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 (((-572 |#1| |#2|) $ (-526)) NIL)) (-4274 (($ (-572 |#1| |#2|)) NIL) (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-526) $) NIL) (((-572 |#1| |#2|) $ (-572 |#1| |#2|)) NIL) (((-572 |#1| |#3|) (-572 |#1| |#3|) $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-505 |#1| |#2| |#3|) (-650 |#1| (-572 |#1| |#3|) (-572 |#1| |#2|)) (-1004) (-526) (-526)) (T -505)) -NIL -(-650 |#1| (-572 |#1| |#3|) (-572 |#1| |#2|)) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2090 (((-607 (-1160)) $) 13)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL) (($ (-607 (-1160))) 11)) (-3353 (((-111) $ $) NIL))) -(((-506) (-13 (-1035) (-10 -8 (-15 -4274 ($ (-607 (-1160)))) (-15 -2090 ((-607 (-1160)) $))))) (T -506)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-506)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-506))))) -(-13 (-1035) (-10 -8 (-15 -4274 ($ (-607 (-1160)))) (-15 -2090 ((-607 (-1160)) $)))) -((-2865 (((-111) $ $) NIL)) (-2091 (((-1128) $) 13)) (-3554 (((-1106) $) NIL)) (-2092 (((-1123) $) 11)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-507) (-13 (-1035) (-10 -8 (-15 -2092 ((-1123) $)) (-15 -2091 ((-1128) $))))) (T -507)) -((-2092 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-507)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-507))))) -(-13 (-1035) (-10 -8 (-15 -2092 ((-1123) $)) (-15 -2091 ((-1128) $)))) -((-2093 (((-1070) $ (-128)) 17))) -(((-508 |#1|) (-10 -8 (-15 -2093 ((-1070) |#1| (-128)))) (-509)) (T -508)) -NIL -(-10 -8 (-15 -2093 ((-1070) |#1| (-128)))) -((-2093 (((-1070) $ (-128)) 7)) (-2094 (((-1070) $) 8)) (-1792 (($ $) 6))) -(((-509) (-134)) (T -509)) -((-2094 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-1070)))) (-2093 (*1 *2 *1 *3) (-12 (-4 *1 (-509)) (-5 *3 (-128)) (-5 *2 (-1070))))) -(-13 (-164) (-10 -8 (-15 -2094 ((-1070) $)) (-15 -2093 ((-1070) $ (-128))))) -(((-164) . T)) -((-2097 (((-1117 |#1|) (-735)) 76)) (-3649 (((-1205 |#1|) (-1205 |#1|) (-878)) 69)) (-2095 (((-1211) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) |#1|) 84)) (-2099 (((-1205 |#1|) (-1205 |#1|) (-735)) 36)) (-3294 (((-1205 |#1|) (-878)) 71)) (-2101 (((-1205 |#1|) (-1205 |#1|) (-526)) 24)) (-2096 (((-1117 |#1|) (-1205 |#1|)) 77)) (-2105 (((-1205 |#1|) (-878)) 95)) (-2103 (((-111) (-1205 |#1|)) 80)) (-3429 (((-1205 |#1|) (-1205 |#1|) (-878)) 62)) (-2106 (((-1117 |#1|) (-1205 |#1|)) 89)) (-2102 (((-878) (-1205 |#1|)) 59)) (-2703 (((-1205 |#1|) (-1205 |#1|)) 30)) (-2461 (((-1205 |#1|) (-878) (-878)) 97)) (-2100 (((-1205 |#1|) (-1205 |#1|) (-1070) (-1070)) 23)) (-2098 (((-1205 |#1|) (-1205 |#1|) (-735) (-1070)) 37)) (-2104 (((-1205 (-1205 |#1|)) (-878)) 94)) (-4265 (((-1205 |#1|) (-1205 |#1|) (-1205 |#1|)) 81)) (** (((-1205 |#1|) (-1205 |#1|) (-526)) 45)) (* (((-1205 |#1|) (-1205 |#1|) (-1205 |#1|)) 25))) -(((-510 |#1|) (-10 -7 (-15 -2095 ((-1211) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) |#1|)) (-15 -3294 ((-1205 |#1|) (-878))) (-15 -2461 ((-1205 |#1|) (-878) (-878))) (-15 -2096 ((-1117 |#1|) (-1205 |#1|))) (-15 -2097 ((-1117 |#1|) (-735))) (-15 -2098 ((-1205 |#1|) (-1205 |#1|) (-735) (-1070))) (-15 -2099 ((-1205 |#1|) (-1205 |#1|) (-735))) (-15 -2100 ((-1205 |#1|) (-1205 |#1|) (-1070) (-1070))) (-15 -2101 ((-1205 |#1|) (-1205 |#1|) (-526))) (-15 ** ((-1205 |#1|) (-1205 |#1|) (-526))) (-15 * ((-1205 |#1|) (-1205 |#1|) (-1205 |#1|))) (-15 -4265 ((-1205 |#1|) (-1205 |#1|) (-1205 |#1|))) (-15 -3429 ((-1205 |#1|) (-1205 |#1|) (-878))) (-15 -3649 ((-1205 |#1|) (-1205 |#1|) (-878))) (-15 -2703 ((-1205 |#1|) (-1205 |#1|))) (-15 -2102 ((-878) (-1205 |#1|))) (-15 -2103 ((-111) (-1205 |#1|))) (-15 -2104 ((-1205 (-1205 |#1|)) (-878))) (-15 -2105 ((-1205 |#1|) (-878))) (-15 -2106 ((-1117 |#1|) (-1205 |#1|)))) (-335)) (T -510)) -((-2106 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 (-1205 *4))) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-510 *4)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-878)) (-5 *1 (-510 *4)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) (-3649 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-878)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-878)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-4265 (*1 *2 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-526)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-2101 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-526)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-2100 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1070)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-2099 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-2098 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1205 *5)) (-5 *3 (-735)) (-5 *4 (-1070)) (-4 *5 (-335)) (-5 *1 (-510 *5)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4)))) (-2461 (*1 *2 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-2095 (*1 *2 *3 *4) (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-4 *4 (-335)) (-5 *2 (-1211)) (-5 *1 (-510 *4))))) -(-10 -7 (-15 -2095 ((-1211) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) |#1|)) (-15 -3294 ((-1205 |#1|) (-878))) (-15 -2461 ((-1205 |#1|) (-878) (-878))) (-15 -2096 ((-1117 |#1|) (-1205 |#1|))) (-15 -2097 ((-1117 |#1|) (-735))) (-15 -2098 ((-1205 |#1|) (-1205 |#1|) (-735) (-1070))) (-15 -2099 ((-1205 |#1|) (-1205 |#1|) (-735))) (-15 -2100 ((-1205 |#1|) (-1205 |#1|) (-1070) (-1070))) (-15 -2101 ((-1205 |#1|) (-1205 |#1|) (-526))) (-15 ** ((-1205 |#1|) (-1205 |#1|) (-526))) (-15 * ((-1205 |#1|) (-1205 |#1|) (-1205 |#1|))) (-15 -4265 ((-1205 |#1|) (-1205 |#1|) (-1205 |#1|))) (-15 -3429 ((-1205 |#1|) (-1205 |#1|) (-878))) (-15 -3649 ((-1205 |#1|) (-1205 |#1|) (-878))) (-15 -2703 ((-1205 |#1|) (-1205 |#1|))) (-15 -2102 ((-878) (-1205 |#1|))) (-15 -2103 ((-111) (-1205 |#1|))) (-15 -2104 ((-1205 (-1205 |#1|)) (-878))) (-15 -2105 ((-1205 |#1|) (-878))) (-15 -2106 ((-1117 |#1|) (-1205 |#1|)))) -((-2108 (((-1 |#1| |#1|) |#1|) 11)) (-2107 (((-1 |#1| |#1|)) 10))) -(((-511 |#1|) (-10 -7 (-15 -2107 ((-1 |#1| |#1|))) (-15 -2108 ((-1 |#1| |#1|) |#1|))) (-13 (-691) (-25))) (T -511)) -((-2108 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-511 *3)) (-4 *3 (-13 (-691) (-25))))) (-2107 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-511 *3)) (-4 *3 (-13 (-691) (-25)))))) -(-10 -7 (-15 -2107 ((-1 |#1| |#1|))) (-15 -2108 ((-1 |#1| |#1|) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2702 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ (-735) |#1|) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 (-735) (-735)) $) NIL)) (-2082 ((|#1| $) NIL)) (-3487 (((-735) $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 20)) (-2957 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL))) -(((-512 |#1|) (-13 (-757) (-491 (-735) |#1|)) (-811)) (T -512)) -NIL -(-13 (-757) (-491 (-735) |#1|)) -((-2110 (((-607 |#2|) (-1117 |#1|) |#3|) 83)) (-2111 (((-607 (-2 (|:| |outval| |#2|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#2|))))) (-653 |#1|) |#3| (-1 (-390 (-1117 |#1|)) (-1117 |#1|))) 100)) (-2109 (((-1117 |#1|) (-653 |#1|)) 95))) -(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2109 ((-1117 |#1|) (-653 |#1|))) (-15 -2110 ((-607 |#2|) (-1117 |#1|) |#3|)) (-15 -2111 ((-607 (-2 (|:| |outval| |#2|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#2|))))) (-653 |#1|) |#3| (-1 (-390 (-1117 |#1|)) (-1117 |#1|))))) (-348) (-348) (-13 (-348) (-809))) (T -513)) -((-2111 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *6)) (-5 *5 (-1 (-390 (-1117 *6)) (-1117 *6))) (-4 *6 (-348)) (-5 *2 (-607 (-2 (|:| |outval| *7) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 *7)))))) (-5 *1 (-513 *6 *7 *4)) (-4 *7 (-348)) (-4 *4 (-13 (-348) (-809))))) (-2110 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *5)) (-4 *5 (-348)) (-5 *2 (-607 *6)) (-5 *1 (-513 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809))))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-348)) (-5 *2 (-1117 *4)) (-5 *1 (-513 *4 *5 *6)) (-4 *5 (-348)) (-4 *6 (-13 (-348) (-809)))))) -(-10 -7 (-15 -2109 ((-1117 |#1|) (-653 |#1|))) (-15 -2110 ((-607 |#2|) (-1117 |#1|) |#3|)) (-15 -2111 ((-607 (-2 (|:| |outval| |#2|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#2|))))) (-653 |#1|) |#3| (-1 (-390 (-1117 |#1|)) (-1117 |#1|))))) -((-2832 (((-803 (-526))) 12)) (-2831 (((-803 (-526))) 14)) (-2817 (((-796 (-526))) 9))) -(((-514) (-10 -7 (-15 -2817 ((-796 (-526)))) (-15 -2832 ((-803 (-526)))) (-15 -2831 ((-803 (-526)))))) (T -514)) -((-2831 (*1 *2) (-12 (-5 *2 (-803 (-526))) (-5 *1 (-514)))) (-2832 (*1 *2) (-12 (-5 *2 (-803 (-526))) (-5 *1 (-514)))) (-2817 (*1 *2) (-12 (-5 *2 (-796 (-526))) (-5 *1 (-514))))) -(-10 -7 (-15 -2817 ((-796 (-526)))) (-15 -2832 ((-803 (-526)))) (-15 -2831 ((-803 (-526))))) -((-2865 (((-111) $ $) NIL)) (-2114 (((-1106) $) 48)) (-3572 (((-111) $) 43)) (-3568 (((-1123) $) 44)) (-3573 (((-111) $) 41)) (-3857 (((-1106) $) 42)) (-3575 (((-111) $) NIL)) (-3577 (((-111) $) NIL)) (-3574 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-2116 (($ $ (-607 (-1123))) 20)) (-2119 (((-50) $) 22)) (-3571 (((-111) $) NIL)) (-3567 (((-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-2444 (($ $ (-607 (-1123)) (-1123)) 60)) (-3570 (((-111) $) NIL)) (-3566 (((-211) $) NIL)) (-2115 (($ $) 38)) (-3565 (((-823) $) NIL)) (-3578 (((-111) $ $) NIL)) (-4118 (($ $ (-526)) NIL) (($ $ (-607 (-526))) NIL)) (-3569 (((-607 $) $) 28)) (-2113 (((-1123) (-607 $)) 49)) (-4287 (($ (-607 $)) 53) (($ (-1106)) NIL) (($ (-1123)) 18) (($ (-526)) 8) (($ (-211)) 25) (($ (-823)) NIL) (((-1054) $) 11) (($ (-1054)) 12)) (-2112 (((-1123) (-1123) (-607 $)) 52)) (-4274 (((-823) $) 46)) (-3563 (($ $) 51)) (-3564 (($ $) 50)) (-2117 (($ $ (-607 $)) 57)) (-3576 (((-111) $) 27)) (-2957 (($) 9 T CONST)) (-2964 (($) 10 T CONST)) (-3353 (((-111) $ $) 61)) (-4265 (($ $ $) 66)) (-4158 (($ $ $) 62)) (** (($ $ (-735)) 65) (($ $ (-526)) 64)) (* (($ $ $) 63)) (-4273 (((-526) $) NIL))) -(((-515) (-13 (-1055 (-1106) (-1123) (-526) (-211) (-823)) (-584 (-1054)) (-10 -8 (-15 -2119 ((-50) $)) (-15 -4287 ($ (-1054))) (-15 -2117 ($ $ (-607 $))) (-15 -2444 ($ $ (-607 (-1123)) (-1123))) (-15 -2116 ($ $ (-607 (-1123)))) (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ (-735))) (-15 ** ($ $ (-526))) (-15 0 ($) -4268) (-15 1 ($) -4268) (-15 -2115 ($ $)) (-15 -2114 ((-1106) $)) (-15 -2113 ((-1123) (-607 $))) (-15 -2112 ((-1123) (-1123) (-607 $)))))) (T -515)) -((-2119 (*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-515)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-515)))) (-2117 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-515))) (-5 *1 (-515)))) (-2444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-1123)) (-5 *1 (-515)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-515)))) (-4158 (*1 *1 *1 *1) (-5 *1 (-515))) (* (*1 *1 *1 *1) (-5 *1 (-515))) (-4265 (*1 *1 *1 *1) (-5 *1 (-515))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-515)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-515)))) (-2957 (*1 *1) (-5 *1 (-515))) (-2964 (*1 *1) (-5 *1 (-515))) (-2115 (*1 *1 *1) (-5 *1 (-515))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-515)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-607 (-515))) (-5 *2 (-1123)) (-5 *1 (-515)))) (-2112 (*1 *2 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-515))) (-5 *1 (-515))))) -(-13 (-1055 (-1106) (-1123) (-526) (-211) (-823)) (-584 (-1054)) (-10 -8 (-15 -2119 ((-50) $)) (-15 -4287 ($ (-1054))) (-15 -2117 ($ $ (-607 $))) (-15 -2444 ($ $ (-607 (-1123)) (-1123))) (-15 -2116 ($ $ (-607 (-1123)))) (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ (-735))) (-15 ** ($ $ (-526))) (-15 (-2957) ($) -4268) (-15 (-2964) ($) -4268) (-15 -2115 ($ $)) (-15 -2114 ((-1106) $)) (-15 -2113 ((-1123) (-607 $))) (-15 -2112 ((-1123) (-1123) (-607 $))))) -((-2118 (((-515) (-1123)) 15)) (-2119 ((|#1| (-515)) 20))) -(((-516 |#1|) (-10 -7 (-15 -2118 ((-515) (-1123))) (-15 -2119 (|#1| (-515)))) (-1159)) (T -516)) -((-2119 (*1 *2 *3) (-12 (-5 *3 (-515)) (-5 *1 (-516 *2)) (-4 *2 (-1159)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-515)) (-5 *1 (-516 *4)) (-4 *4 (-1159))))) -(-10 -7 (-15 -2118 ((-515) (-1123))) (-15 -2119 (|#1| (-515)))) -((-3767 ((|#2| |#2|) 17)) (-3765 ((|#2| |#2|) 13)) (-3768 ((|#2| |#2| (-526) (-526)) 20)) (-3766 ((|#2| |#2|) 15))) -(((-517 |#1| |#2|) (-10 -7 (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2| (-526) (-526)))) (-13 (-533) (-141)) (-1198 |#1|)) (T -517)) -((-3768 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-526)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-517 *4 *2)) (-4 *2 (-1198 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3))))) -(-10 -7 (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2| (-526) (-526)))) -((-2122 (((-607 (-278 (-905 |#2|))) (-607 |#2|) (-607 (-1123))) 32)) (-2120 (((-607 |#2|) (-905 |#1|) |#3|) 53) (((-607 |#2|) (-1117 |#1|) |#3|) 52)) (-2121 (((-607 (-607 |#2|)) (-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)) |#3|) 91))) -(((-518 |#1| |#2| |#3|) (-10 -7 (-15 -2120 ((-607 |#2|) (-1117 |#1|) |#3|)) (-15 -2120 ((-607 |#2|) (-905 |#1|) |#3|)) (-15 -2121 ((-607 (-607 |#2|)) (-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)) |#3|)) (-15 -2122 ((-607 (-278 (-905 |#2|))) (-607 |#2|) (-607 (-1123))))) (-436) (-348) (-13 (-348) (-809))) (T -518)) -((-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-1123))) (-4 *6 (-348)) (-5 *2 (-607 (-278 (-905 *6)))) (-5 *1 (-518 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-13 (-348) (-809))))) (-2121 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-4 *6 (-436)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-518 *6 *7 *5)) (-4 *7 (-348)) (-4 *5 (-13 (-348) (-809))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-4 *5 (-436)) (-5 *2 (-607 *6)) (-5 *1 (-518 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *5)) (-4 *5 (-436)) (-5 *2 (-607 *6)) (-5 *1 (-518 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809)))))) -(-10 -7 (-15 -2120 ((-607 |#2|) (-1117 |#1|) |#3|)) (-15 -2120 ((-607 |#2|) (-905 |#1|) |#3|)) (-15 -2121 ((-607 (-607 |#2|)) (-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)) |#3|)) (-15 -2122 ((-607 (-278 (-905 |#2|))) (-607 |#2|) (-607 (-1123))))) -((-2125 ((|#2| |#2| |#1|) 17)) (-2123 ((|#2| (-607 |#2|)) 27)) (-2124 ((|#2| (-607 |#2|)) 46))) -(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2123 (|#2| (-607 |#2|))) (-15 -2124 (|#2| (-607 |#2|))) (-15 -2125 (|#2| |#2| |#1|))) (-292) (-1181 |#1|) |#1| (-1 |#1| |#1| (-735))) (T -519)) -((-2125 (*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-735))) (-5 *1 (-519 *3 *2 *4 *5)) (-4 *2 (-1181 *3)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-519 *4 *2 *5 *6)) (-4 *4 (-292)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-735))))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-519 *4 *2 *5 *6)) (-4 *4 (-292)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-735)))))) -(-10 -7 (-15 -2123 (|#2| (-607 |#2|))) (-15 -2124 (|#2| (-607 |#2|))) (-15 -2125 (|#2| |#2| |#1|))) -((-4051 (((-390 (-1117 |#4|)) (-1117 |#4|) (-1 (-390 (-1117 |#3|)) (-1117 |#3|))) 80) (((-390 |#4|) |#4| (-1 (-390 (-1117 |#3|)) (-1117 |#3|))) 169))) -(((-520 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4| (-1 (-390 (-1117 |#3|)) (-1117 |#3|)))) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|) (-1 (-390 (-1117 |#3|)) (-1117 |#3|))))) (-811) (-757) (-13 (-292) (-141)) (-909 |#3| |#2| |#1|)) (T -520)) -((-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 (-1117 *7)) (-1117 *7))) (-4 *7 (-13 (-292) (-141))) (-4 *5 (-811)) (-4 *6 (-757)) (-4 *8 (-909 *7 *6 *5)) (-5 *2 (-390 (-1117 *8))) (-5 *1 (-520 *5 *6 *7 *8)) (-5 *3 (-1117 *8)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 (-1117 *7)) (-1117 *7))) (-4 *7 (-13 (-292) (-141))) (-4 *5 (-811)) (-4 *6 (-757)) (-5 *2 (-390 *3)) (-5 *1 (-520 *5 *6 *7 *3)) (-4 *3 (-909 *7 *6 *5))))) -(-10 -7 (-15 -4051 ((-390 |#4|) |#4| (-1 (-390 (-1117 |#3|)) (-1117 |#3|)))) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|) (-1 (-390 (-1117 |#3|)) (-1117 |#3|))))) -((-3767 ((|#4| |#4|) 74)) (-3765 ((|#4| |#4|) 70)) (-3768 ((|#4| |#4| (-526) (-526)) 76)) (-3766 ((|#4| |#4|) 72))) -(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3765 (|#4| |#4|)) (-15 -3766 (|#4| |#4|)) (-15 -3767 (|#4| |#4|)) (-15 -3768 (|#4| |#4| (-526) (-526)))) (-13 (-348) (-353) (-584 (-526))) (-1181 |#1|) (-689 |#1| |#2|) (-1198 |#3|)) (T -521)) -((-3768 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-526)) (-4 *4 (-13 (-348) (-353) (-584 *3))) (-4 *5 (-1181 *4)) (-4 *6 (-689 *4 *5)) (-5 *1 (-521 *4 *5 *6 *2)) (-4 *2 (-1198 *6)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5))))) -(-10 -7 (-15 -3765 (|#4| |#4|)) (-15 -3766 (|#4| |#4|)) (-15 -3767 (|#4| |#4|)) (-15 -3768 (|#4| |#4| (-526) (-526)))) -((-3767 ((|#2| |#2|) 27)) (-3765 ((|#2| |#2|) 23)) (-3768 ((|#2| |#2| (-526) (-526)) 29)) (-3766 ((|#2| |#2|) 25))) -(((-522 |#1| |#2|) (-10 -7 (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2| (-526) (-526)))) (-13 (-348) (-353) (-584 (-526))) (-1198 |#1|)) (T -522)) -((-3768 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-526)) (-4 *4 (-13 (-348) (-353) (-584 *3))) (-5 *1 (-522 *4 *2)) (-4 *2 (-1198 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) (-4 *2 (-1198 *3)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) (-4 *2 (-1198 *3)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) (-4 *2 (-1198 *3))))) -(-10 -7 (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2| (-526) (-526)))) -((-2126 (((-3 (-526) #1="failed") |#2| |#1| (-1 (-3 (-526) #1#) |#1|)) 14) (((-3 (-526) #1#) |#2| |#1| (-526) (-1 (-3 (-526) #1#) |#1|)) 13) (((-3 (-526) #1#) |#2| (-526) (-1 (-3 (-526) #1#) |#1|)) 26))) -(((-523 |#1| |#2|) (-10 -7 (-15 -2126 ((-3 (-526) #1="failed") |#2| (-526) (-1 (-3 (-526) #1#) |#1|))) (-15 -2126 ((-3 (-526) #1#) |#2| |#1| (-526) (-1 (-3 (-526) #1#) |#1|))) (-15 -2126 ((-3 (-526) #1#) |#2| |#1| (-1 (-3 (-526) #1#) |#1|)))) (-1004) (-1181 |#1|)) (T -523)) -((-2126 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-526) #1="failed") *4)) (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-523 *4 *3)) (-4 *3 (-1181 *4)))) (-2126 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-526) #1#) *4)) (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-523 *4 *3)) (-4 *3 (-1181 *4)))) (-2126 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-526) #1#) *5)) (-4 *5 (-1004)) (-5 *2 (-526)) (-5 *1 (-523 *5 *3)) (-4 *3 (-1181 *5))))) -(-10 -7 (-15 -2126 ((-3 (-526) #1="failed") |#2| (-526) (-1 (-3 (-526) #1#) |#1|))) (-15 -2126 ((-3 (-526) #1#) |#2| |#1| (-526) (-1 (-3 (-526) #1#) |#1|))) (-15 -2126 ((-3 (-526) #1#) |#2| |#1| (-1 (-3 (-526) #1#) |#1|)))) -((-2135 (($ $ $) 79)) (-4286 (((-390 $) $) 47)) (-3470 (((-3 (-526) "failed") $) 59)) (-3469 (((-526) $) 37)) (-3324 (((-3 (-392 (-526)) "failed") $) 74)) (-3323 (((-111) $) 24)) (-3322 (((-392 (-526)) $) 72)) (-4045 (((-111) $) 50)) (-2128 (($ $ $ $) 86)) (-3500 (((-111) $) 16)) (-1394 (($ $ $) 57)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 69)) (-3763 (((-3 $ "failed") $) 64)) (-2132 (($ $) 23)) (-2127 (($ $ $) 84)) (-3764 (($) 60)) (-1392 (($ $) 53)) (-4051 (((-390 $) $) 45)) (-2974 (((-111) $) 14)) (-1680 (((-735) $) 28)) (-4129 (($ $ (-735)) NIL) (($ $) 10)) (-3719 (($ $) 17)) (-4287 (((-526) $) NIL) (((-515) $) 36) (((-849 (-526)) $) 40) (((-363) $) 31) (((-211) $) 33)) (-3423 (((-735)) 8)) (-2137 (((-111) $ $) 20)) (-3399 (($ $ $) 55))) -(((-524 |#1|) (-10 -8 (-15 -2127 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -2137 ((-111) |#1| |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -3399 (|#1| |#1| |#1|)) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) "failed") |#1|)) (-15 -4287 ((-526) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -3500 ((-111) |#1|)) (-15 -1680 ((-735) |#1|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4045 ((-111) |#1|)) (-15 -3423 ((-735)))) (-525)) (T -524)) -((-3423 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-524 *3)) (-4 *3 (-525))))) -(-10 -8 (-15 -2127 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -2137 ((-111) |#1| |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -3399 (|#1| |#1| |#1|)) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) "failed") |#1|)) (-15 -4287 ((-526) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -3500 ((-111) |#1|)) (-15 -1680 ((-735) |#1|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4045 ((-111) |#1|)) (-15 -3423 ((-735)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-2135 (($ $ $) 83)) (-1345 (((-3 $ "failed") $ $) 19)) (-2130 (($ $ $ $) 71)) (-4093 (($ $) 49)) (-4286 (((-390 $) $) 50)) (-1681 (((-111) $ $) 123)) (-3945 (((-526) $) 112)) (-2659 (($ $ $) 86)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) "failed") $) 104)) (-3469 (((-526) $) 103)) (-2861 (($ $ $) 127)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 102) (((-653 (-526)) (-653 $)) 101)) (-3781 (((-3 $ "failed") $) 32)) (-3324 (((-3 (-392 (-526)) "failed") $) 80)) (-3323 (((-111) $) 82)) (-3322 (((-392 (-526)) $) 81)) (-3294 (($) 79) (($ $) 78)) (-2860 (($ $ $) 126)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 121)) (-4045 (((-111) $) 51)) (-2128 (($ $ $ $) 69)) (-2136 (($ $ $) 84)) (-3500 (((-111) $) 114)) (-1394 (($ $ $) 95)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 98)) (-2471 (((-111) $) 30)) (-2973 (((-111) $) 90)) (-3763 (((-3 $ "failed") $) 92)) (-3501 (((-111) $) 113)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 130)) (-2129 (($ $ $ $) 70)) (-3637 (($ $ $) 115)) (-3638 (($ $ $) 116)) (-2132 (($ $) 73)) (-4152 (($ $) 87)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2127 (($ $ $) 68)) (-3764 (($) 91 T CONST)) (-2134 (($ $) 75)) (-3555 (((-1070) $) 10) (($ $) 77)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1392 (($ $) 96)) (-4051 (((-390 $) $) 48)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 129) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 128)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 122)) (-2974 (((-111) $) 89)) (-1680 (((-735) $) 124)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 125)) (-4129 (($ $ (-735)) 109) (($ $) 107)) (-2133 (($ $) 74)) (-3719 (($ $) 76)) (-4287 (((-526) $) 106) (((-515) $) 100) (((-849 (-526)) $) 99) (((-363) $) 94) (((-211) $) 93)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-526)) 105)) (-3423 (((-735)) 28)) (-2137 (((-111) $ $) 85)) (-3399 (($ $ $) 97)) (-2994 (($) 88)) (-2150 (((-111) $ $) 37)) (-2131 (($ $ $ $) 72)) (-3702 (($ $) 111)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-735)) 110) (($ $) 108)) (-2863 (((-111) $ $) 118)) (-2864 (((-111) $ $) 119)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 117)) (-2985 (((-111) $ $) 120)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-525) (-134)) (T -525)) -((-2973 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) (-2994 (*1 *1) (-4 *1 (-525))) (-4152 (*1 *1 *1) (-4 *1 (-525))) (-2659 (*1 *1 *1 *1) (-4 *1 (-525))) (-2137 (*1 *2 *1 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) (-2136 (*1 *1 *1 *1) (-4 *1 (-525))) (-2135 (*1 *1 *1 *1) (-4 *1 (-525))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-392 (-526))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *1 (-525)) (-5 *2 (-392 (-526))))) (-3294 (*1 *1) (-4 *1 (-525))) (-3294 (*1 *1 *1) (-4 *1 (-525))) (-3555 (*1 *1 *1) (-4 *1 (-525))) (-3719 (*1 *1 *1) (-4 *1 (-525))) (-2134 (*1 *1 *1) (-4 *1 (-525))) (-2133 (*1 *1 *1) (-4 *1 (-525))) (-2132 (*1 *1 *1) (-4 *1 (-525))) (-2131 (*1 *1 *1 *1 *1) (-4 *1 (-525))) (-2130 (*1 *1 *1 *1 *1) (-4 *1 (-525))) (-2129 (*1 *1 *1 *1 *1) (-4 *1 (-525))) (-2128 (*1 *1 *1 *1 *1) (-4 *1 (-525))) (-2127 (*1 *1 *1 *1) (-4 *1 (-525)))) -(-13 (-1164) (-292) (-784) (-219) (-584 (-526)) (-995 (-526)) (-606 (-526)) (-584 (-515)) (-584 (-849 (-526))) (-845 (-526)) (-137) (-977) (-141) (-1099) (-10 -8 (-15 -2973 ((-111) $)) (-15 -2974 ((-111) $)) (-6 -4309) (-15 -2994 ($)) (-15 -4152 ($ $)) (-15 -2659 ($ $ $)) (-15 -2137 ((-111) $ $)) (-15 -2136 ($ $ $)) (-15 -2135 ($ $ $)) (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $)) (-15 -3294 ($)) (-15 -3294 ($ $)) (-15 -3555 ($ $)) (-15 -3719 ($ $)) (-15 -2134 ($ $)) (-15 -2133 ($ $)) (-15 -2132 ($ $)) (-15 -2131 ($ $ $ $)) (-15 -2130 ($ $ $ $)) (-15 -2129 ($ $ $ $)) (-15 -2128 ($ $ $ $)) (-15 -2127 ($ $ $)) (-6 -4308))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-137) . T) ((-163) . T) ((-584 (-211)) . T) ((-584 (-363)) . T) ((-584 (-515)) . T) ((-584 (-526)) . T) ((-584 (-849 (-526))) . T) ((-219) . T) ((-275) . T) ((-292) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-606 (-526)) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-784) . T) ((-809) . T) ((-811) . T) ((-845 (-526)) . T) ((-880) . T) ((-977) . T) ((-995 (-526)) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) . T) ((-1164) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 25)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 87)) (-2151 (($ $) 88)) (-2149 (((-111) $) NIL)) (-2135 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2130 (($ $ $ $) 42)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-2659 (($ $ $) 81)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) "failed") $) NIL)) (-3469 (((-526) $) NIL)) (-2861 (($ $ $) 80)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 61) (((-653 (-526)) (-653 $)) 57)) (-3781 (((-3 $ "failed") $) 84)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL)) (-3323 (((-111) $) NIL)) (-3322 (((-392 (-526)) $) NIL)) (-3294 (($) 63) (($ $) 64)) (-2860 (($ $ $) 79)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2128 (($ $ $ $) NIL)) (-2136 (($ $ $) 54)) (-3500 (((-111) $) NIL)) (-1394 (($ $ $) NIL)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL)) (-2471 (((-111) $) 26)) (-2973 (((-111) $) 74)) (-3763 (((-3 $ "failed") $) NIL)) (-3501 (((-111) $) 34)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2129 (($ $ $ $) 43)) (-3637 (($ $ $) 76)) (-3638 (($ $ $) 75)) (-2132 (($ $) NIL)) (-4152 (($ $) 40)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) 53)) (-2127 (($ $ $) NIL)) (-3764 (($) NIL T CONST)) (-2134 (($ $) 31)) (-3555 (((-1070) $) NIL) (($ $) 33)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 118)) (-3457 (($ $ $) 85) (($ (-607 $)) NIL)) (-1392 (($ $) NIL)) (-4051 (((-390 $) $) 104)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) 83)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 78)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-2133 (($ $) 32)) (-3719 (($ $) 30)) (-4287 (((-526) $) 39) (((-515) $) 51) (((-849 (-526)) $) NIL) (((-363) $) 46) (((-211) $) 48) (((-1106) $) 52)) (-4274 (((-823) $) 37) (($ (-526)) 38) (($ $) NIL) (($ (-526)) 38)) (-3423 (((-735)) NIL)) (-2137 (((-111) $ $) NIL)) (-3399 (($ $ $) NIL)) (-2994 (($) 29)) (-2150 (((-111) $ $) NIL)) (-2131 (($ $ $ $) 41)) (-3702 (($ $) 62)) (-2957 (($) 27 T CONST)) (-2964 (($) 28 T CONST)) (-2803 (((-1106) $) 20) (((-1106) $ (-111)) 22) (((-1211) (-787) $) 23) (((-1211) (-787) $ (-111)) 24)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 65)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 66)) (-4156 (($ $) 67) (($ $ $) 69)) (-4158 (($ $ $) 68)) (** (($ $ (-878)) NIL) (($ $ (-735)) 73)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 71) (($ $ $) 70))) -(((-526) (-13 (-525) (-584 (-1106)) (-785) (-10 -8 (-15 -3294 ($ $)) (-6 -4297) (-6 -4302) (-6 -4298) (-6 -4292)))) (T -526)) -((-3294 (*1 *1 *1) (-5 *1 (-526)))) -(-13 (-525) (-584 (-1106)) (-785) (-10 -8 (-15 -3294 ($ $)) (-6 -4297) (-6 -4302) (-6 -4298) (-6 -4292))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) NIL)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-527 |#1| |#2| |#3|) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) (-1052) (-1052) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310)))) (T -527)) -NIL -(-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) -((-2138 (((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-1 (-1117 |#2|) (-1117 |#2|))) 51))) -(((-528 |#1| |#2|) (-10 -7 (-15 -2138 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-1 (-1117 |#2|) (-1117 |#2|))))) (-13 (-811) (-533)) (-13 (-27) (-406 |#1|))) (T -528)) -((-2138 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-581 *3)) (-5 *5 (-1 (-1117 *3) (-1117 *3))) (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-811) (-533))) (-5 *2 (-556 *3)) (-5 *1 (-528 *6 *3))))) -(-10 -7 (-15 -2138 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-1 (-1117 |#2|) (-1117 |#2|))))) -((-2140 (((-556 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2141 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2139 (((-556 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-529 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2139 ((-556 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2140 ((-556 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2141 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-811) (-533) (-995 (-526))) (-13 (-27) (-406 |#1|)) (-1181 |#2|) (-1181 (-392 |#3|)) (-327 |#2| |#3| |#4|)) (T -529)) -((-2141 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-27) (-406 *4))) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-4 *7 (-1181 (-392 *6))) (-5 *1 (-529 *4 *5 *6 *7 *2)) (-4 *2 (-327 *5 *6 *7)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-4 *8 (-1181 (-392 *7))) (-5 *2 (-556 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-327 *6 *7 *8)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-4 *8 (-1181 (-392 *7))) (-5 *2 (-556 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-327 *6 *7 *8))))) -(-10 -7 (-15 -2139 ((-556 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2140 ((-556 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2141 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2144 (((-111) (-526) (-526)) 10)) (-2142 (((-526) (-526)) 7)) (-2143 (((-526) (-526) (-526)) 8))) -(((-530) (-10 -7 (-15 -2142 ((-526) (-526))) (-15 -2143 ((-526) (-526) (-526))) (-15 -2144 ((-111) (-526) (-526))))) (T -530)) -((-2144 (*1 *2 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-111)) (-5 *1 (-530)))) (-2143 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-530)))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-530))))) -(-10 -7 (-15 -2142 ((-526) (-526))) (-15 -2143 ((-526) (-526) (-526))) (-15 -2144 ((-111) (-526) (-526)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2901 ((|#1| $) 59)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-3806 (($ $) 89)) (-3961 (($ $) 72)) (-2702 ((|#1| $) 60)) (-1345 (((-3 $ "failed") $ $) 19)) (-3337 (($ $) 71)) (-3804 (($ $) 88)) (-3960 (($ $) 73)) (-3808 (($ $) 87)) (-3959 (($ $) 74)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) "failed") $) 67)) (-3469 (((-526) $) 66)) (-3781 (((-3 $ "failed") $) 32)) (-2147 (($ |#1| |#1|) 64)) (-3500 (((-111) $) 58)) (-3949 (($) 99)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 70)) (-3501 (((-111) $) 57)) (-3637 (($ $ $) 105)) (-3638 (($ $ $) 104)) (-4259 (($ $) 96)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2148 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-392 (-526))) 62)) (-2146 ((|#1| $) 61)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3780 (((-3 $ "failed") $ $) 40)) (-4260 (($ $) 97)) (-3809 (($ $) 86)) (-3958 (($ $) 75)) (-3807 (($ $) 85)) (-3957 (($ $) 76)) (-3805 (($ $) 84)) (-3956 (($ $) 77)) (-2145 (((-111) $ |#1|) 56)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-526)) 68)) (-3423 (((-735)) 28)) (-3812 (($ $) 95)) (-3800 (($ $) 83)) (-2150 (((-111) $ $) 37)) (-3810 (($ $) 94)) (-3798 (($ $) 82)) (-3814 (($ $) 93)) (-3802 (($ $) 81)) (-3815 (($ $) 92)) (-3803 (($ $) 80)) (-3813 (($ $) 91)) (-3801 (($ $) 79)) (-3811 (($ $) 90)) (-3799 (($ $) 78)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 102)) (-2864 (((-111) $ $) 101)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 103)) (-2985 (((-111) $ $) 100)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ $) 98) (($ $ (-392 (-526))) 69)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-531 |#1|) (-134) (-13 (-389) (-1145))) (T -531)) -((-2148 (*1 *1 *2 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2147 (*1 *1 *2 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2148 (*1 *1 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111)))) (-2145 (*1 *2 *1 *3) (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111))))) -(-13 (-436) (-811) (-1145) (-960) (-995 (-526)) (-10 -8 (-6 -4088) (-15 -2148 ($ |t#1| |t#1|)) (-15 -2147 ($ |t#1| |t#1|)) (-15 -2148 ($ |t#1|)) (-15 -2148 ($ (-392 (-526)))) (-15 -2146 (|t#1| $)) (-15 -2702 (|t#1| $)) (-15 -2901 (|t#1| $)) (-15 -3500 ((-111) $)) (-15 -3501 ((-111) $)) (-15 -2145 ((-111) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-269) . T) ((-275) . T) ((-436) . T) ((-475) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-811) . T) ((-960) . T) ((-995 (-526)) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) . T) ((-1148) . T)) -((-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 9)) (-2151 (($ $) 11)) (-2149 (((-111) $) 18)) (-3781 (((-3 $ "failed") $) 16)) (-2150 (((-111) $ $) 20))) -(((-532 |#1|) (-10 -8 (-15 -2149 ((-111) |#1|)) (-15 -2150 ((-111) |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|))) (-533)) (T -532)) -NIL -(-10 -8 (-15 -2149 ((-111) |#1|)) (-15 -2150 ((-111) |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-533) (-134)) (T -533)) -((-3780 (*1 *1 *1 *1) (|partial| -4 *1 (-533))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1868 *1) (|:| -4297 *1) (|:| |associate| *1))) (-4 *1 (-533)))) (-2151 (*1 *1 *1) (-4 *1 (-533))) (-2150 (*1 *2 *1 *1) (-12 (-4 *1 (-533)) (-5 *2 (-111)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-111))))) -(-13 (-163) (-37 $) (-275) (-10 -8 (-15 -3780 ((-3 $ "failed") $ $)) (-15 -2152 ((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $)) (-15 -2151 ($ $)) (-15 -2150 ((-111) $ $)) (-15 -2149 ((-111) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2154 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1123) (-607 |#2|)) 37)) (-2156 (((-556 |#2|) |#2| (-1123)) 62)) (-2155 (((-3 |#2| "failed") |#2| (-1123)) 152)) (-2157 (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1123) (-581 |#2|) (-607 (-581 |#2|))) 155)) (-2153 (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1123) |#2|) 40))) -(((-534 |#1| |#2|) (-10 -7 (-15 -2153 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1123) |#2|)) (-15 -2154 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1123) (-607 |#2|))) (-15 -2155 ((-3 |#2| "failed") |#2| (-1123))) (-15 -2156 ((-556 |#2|) |#2| (-1123))) (-15 -2157 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1123) (-581 |#2|) (-607 (-581 |#2|))))) (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -534)) -((-2157 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1123)) (-5 *6 (-607 (-581 *3))) (-5 *5 (-581 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-534 *7 *3)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-534 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2155 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *1 (-534 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-2154 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-534 *6 *3)))) (-2153 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-534 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) -(-10 -7 (-15 -2153 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1123) |#2|)) (-15 -2154 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1123) (-607 |#2|))) (-15 -2155 ((-3 |#2| "failed") |#2| (-1123))) (-15 -2156 ((-556 |#2|) |#2| (-1123))) (-15 -2157 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1123) (-581 |#2|) (-607 (-581 |#2|))))) -((-4286 (((-390 |#1|) |#1|) 18)) (-4051 (((-390 |#1|) |#1|) 33)) (-2159 (((-3 |#1| "failed") |#1|) 44)) (-2158 (((-390 |#1|) |#1|) 51))) -(((-535 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -2158 ((-390 |#1|) |#1|)) (-15 -2159 ((-3 |#1| "failed") |#1|))) (-525)) (T -535)) -((-2159 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-525)))) (-2158 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525)))) (-4286 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525)))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525))))) -(-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -2158 ((-390 |#1|) |#1|)) (-15 -2159 ((-3 |#1| "failed") |#1|))) -((-2160 (($) 9)) (-2163 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 35)) (-2713 (((-607 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $) 32)) (-3929 (($ (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2162 (($ (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2164 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 39)) (-2283 (((-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2161 (((-1211)) 12))) -(((-536) (-10 -8 (-15 -2160 ($)) (-15 -2161 ((-1211))) (-15 -2713 ((-607 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $)) (-15 -2162 ($ (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3929 ($ (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2163 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2283 ((-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2164 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (T -536)) -((-2164 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-536)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-536)))) (-2163 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-536)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-536)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-536)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-5 *1 (-536)))) (-2161 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-536)))) (-2160 (*1 *1) (-5 *1 (-536)))) -(-10 -8 (-15 -2160 ($)) (-15 -2161 ((-1211))) (-15 -2713 ((-607 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $)) (-15 -2162 ($ (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3929 ($ (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2163 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2283 ((-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2164 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) -((-3386 (((-1117 (-392 (-1117 |#2|))) |#2| (-581 |#2|) (-581 |#2|) (-1117 |#2|)) 32)) (-2167 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) |#2| (-1117 |#2|)) 110)) (-2165 (((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))) 80) (((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|)) 52)) (-2166 (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-581 |#2|) (-581 |#2|) |#2| (-581 |#2|) |#2| (-392 (-1117 |#2|))) 87) (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-581 |#2|) (-581 |#2|) |#2| |#2| (-1117 |#2|)) 109)) (-2168 (((-3 |#2| #3="failed") |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) (-581 |#2|) |#2| (-392 (-1117 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) |#2| (-1117 |#2|)) 111)) (-2169 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))) 128 (|has| |#3| (-623 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|)) 127 (|has| |#3| (-623 |#2|)))) (-3387 ((|#2| (-1117 (-392 (-1117 |#2|))) (-581 |#2|) |#2|) 50)) (-3379 (((-1117 (-392 (-1117 |#2|))) (-1117 |#2|) (-581 |#2|)) 31))) -(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2165 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|))) (-15 -2165 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2166 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-581 |#2|) (-581 |#2|) |#2| |#2| (-1117 |#2|))) (-15 -2166 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-581 |#2|) (-581 |#2|) |#2| (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) |#2| (-1117 |#2|))) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2168 ((-3 |#2| #3="failed") |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) |#2| (-1117 |#2|))) (-15 -2168 ((-3 |#2| #3#) |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -3386 ((-1117 (-392 (-1117 |#2|))) |#2| (-581 |#2|) (-581 |#2|) (-1117 |#2|))) (-15 -3387 (|#2| (-1117 (-392 (-1117 |#2|))) (-581 |#2|) |#2|)) (-15 -3379 ((-1117 (-392 (-1117 |#2|))) (-1117 |#2|) (-581 |#2|))) (IF (|has| |#3| (-623 |#2|)) (PROGN (-15 -2169 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|))) (-15 -2169 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))))) |%noBranch|)) (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526))) (-13 (-406 |#1|) (-27) (-1145)) (-1052)) (T -537)) -((-2169 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-581 *4)) (-5 *6 (-392 (-1117 *4))) (-4 *4 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-537 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052)))) (-2169 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-581 *4)) (-5 *6 (-1117 *4)) (-4 *4 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) (-5 *1 (-537 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052)))) (-3379 (*1 *2 *3 *4) (-12 (-5 *4 (-581 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-1117 (-392 (-1117 *6)))) (-5 *1 (-537 *5 *6 *7)) (-5 *3 (-1117 *6)) (-4 *7 (-1052)))) (-3387 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1117 (-392 (-1117 *2)))) (-5 *4 (-581 *2)) (-4 *2 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *1 (-537 *5 *2 *6)) (-4 *6 (-1052)))) (-3386 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-1117 (-392 (-1117 *3)))) (-5 *1 (-537 *6 *3 *7)) (-5 *5 (-1117 *3)) (-4 *7 (-1052)))) (-2168 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1123))) (-5 *5 (-392 (-1117 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *1 (-537 *6 *2 *7)) (-4 *7 (-1052)))) (-2168 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1123))) (-5 *5 (-1117 *2)) (-4 *2 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *1 (-537 *6 *2 *7)) (-4 *7 (-1052)))) (-2167 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-5 *6 (-392 (-1117 *3))) (-4 *3 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-537 *7 *3 *8)) (-4 *8 (-1052)))) (-2167 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-5 *6 (-1117 *3)) (-4 *3 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-537 *7 *3 *8)) (-4 *8 (-1052)))) (-2166 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-392 (-1117 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052)))) (-2166 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-1117 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052)))) (-2165 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-581 *3)) (-5 *5 (-392 (-1117 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052)))) (-2165 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-581 *3)) (-5 *5 (-1117 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052))))) -(-10 -7 (-15 -2165 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|))) (-15 -2165 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2166 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-581 |#2|) (-581 |#2|) |#2| |#2| (-1117 |#2|))) (-15 -2166 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-581 |#2|) (-581 |#2|) |#2| (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) |#2| (-1117 |#2|))) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2168 ((-3 |#2| #3="failed") |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) |#2| (-1117 |#2|))) (-15 -2168 ((-3 |#2| #3#) |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -3386 ((-1117 (-392 (-1117 |#2|))) |#2| (-581 |#2|) (-581 |#2|) (-1117 |#2|))) (-15 -3387 (|#2| (-1117 (-392 (-1117 |#2|))) (-581 |#2|) |#2|)) (-15 -3379 ((-1117 (-392 (-1117 |#2|))) (-1117 |#2|) (-581 |#2|))) (IF (|has| |#3| (-623 |#2|)) (PROGN (-15 -2169 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|))) (-15 -2169 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))))) |%noBranch|)) -((-2179 (((-526) (-526) (-735)) 66)) (-2178 (((-526) (-526)) 65)) (-2177 (((-526) (-526)) 64)) (-2176 (((-526) (-526)) 69)) (-3105 (((-526) (-526) (-526)) 49)) (-2175 (((-526) (-526) (-526)) 46)) (-2174 (((-392 (-526)) (-526)) 20)) (-2173 (((-526) (-526)) 21)) (-2172 (((-526) (-526)) 58)) (-3102 (((-526) (-526)) 32)) (-2171 (((-607 (-526)) (-526)) 63)) (-2170 (((-526) (-526) (-526) (-526) (-526)) 44)) (-3098 (((-392 (-526)) (-526)) 41))) -(((-538) (-10 -7 (-15 -3098 ((-392 (-526)) (-526))) (-15 -2170 ((-526) (-526) (-526) (-526) (-526))) (-15 -2171 ((-607 (-526)) (-526))) (-15 -3102 ((-526) (-526))) (-15 -2172 ((-526) (-526))) (-15 -2173 ((-526) (-526))) (-15 -2174 ((-392 (-526)) (-526))) (-15 -2175 ((-526) (-526) (-526))) (-15 -3105 ((-526) (-526) (-526))) (-15 -2176 ((-526) (-526))) (-15 -2177 ((-526) (-526))) (-15 -2178 ((-526) (-526))) (-15 -2179 ((-526) (-526) (-735))))) (T -538)) -((-2179 (*1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-735)) (-5 *1 (-538)))) (-2178 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2177 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-3105 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2175 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-538)) (-5 *3 (-526)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2172 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2171 (*1 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-538)) (-5 *3 (-526)))) (-2170 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-538)) (-5 *3 (-526))))) -(-10 -7 (-15 -3098 ((-392 (-526)) (-526))) (-15 -2170 ((-526) (-526) (-526) (-526) (-526))) (-15 -2171 ((-607 (-526)) (-526))) (-15 -3102 ((-526) (-526))) (-15 -2172 ((-526) (-526))) (-15 -2173 ((-526) (-526))) (-15 -2174 ((-392 (-526)) (-526))) (-15 -2175 ((-526) (-526) (-526))) (-15 -3105 ((-526) (-526) (-526))) (-15 -2176 ((-526) (-526))) (-15 -2177 ((-526) (-526))) (-15 -2178 ((-526) (-526))) (-15 -2179 ((-526) (-526) (-735)))) -((-2180 (((-2 (|:| |answer| |#4|) (|:| -2221 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2180 ((-2 (|:| |answer| |#4|) (|:| -2221 |#4|)) |#4| (-1 |#2| |#2|)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -539)) -((-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-4 *7 (-1181 (-392 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2221 *3))) (-5 *1 (-539 *5 *6 *7 *3)) (-4 *3 (-327 *5 *6 *7))))) -(-10 -7 (-15 -2180 ((-2 (|:| |answer| |#4|) (|:| -2221 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2180 (((-2 (|:| |answer| (-392 |#2|)) (|:| -2221 (-392 |#2|)) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|)) 18))) -(((-540 |#1| |#2|) (-10 -7 (-15 -2180 ((-2 (|:| |answer| (-392 |#2|)) (|:| -2221 (-392 |#2|)) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|)))) (-348) (-1181 |#1|)) (T -540)) -((-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |answer| (-392 *6)) (|:| -2221 (-392 *6)) (|:| |specpart| (-392 *6)) (|:| |polypart| *6))) (-5 *1 (-540 *5 *6)) (-5 *3 (-392 *6))))) -(-10 -7 (-15 -2180 ((-2 (|:| |answer| (-392 |#2|)) (|:| -2221 (-392 |#2|)) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|)))) -((-2968 (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733) (-1016)) 108) (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733)) 110)) (-4131 (((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1123)) 172) (((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1106)) 171) (((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363) (-1016)) 176) (((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363)) 177) (((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363)) 178) (((-992) (-299 (-363)) (-607 (-1041 (-803 (-363))))) 179) (((-992) (-299 (-363)) (-1041 (-803 (-363)))) 167) (((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363)) 166) (((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363)) 162) (((-992) (-733)) 155) (((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363) (-1016)) 161))) -(((-541) (-10 -7 (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363) (-1016))) (-15 -4131 ((-992) (-733))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363) (-1016))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733) (-1016))) (-15 -4131 ((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1106))) (-15 -4131 ((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1123))))) (T -541)) -((-4131 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-299 (-363))) (-5 *4 (-1044 (-803 (-363)))) (-5 *5 (-1123)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-299 (-363))) (-5 *4 (-1044 (-803 (-363)))) (-5 *5 (-1106)) (-5 *2 (-992)) (-5 *1 (-541)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-733)) (-5 *4 (-1016)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) (-5 *1 (-541)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-733)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) (-5 *5 (-363)) (-5 *6 (-1016)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-733)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) (-5 *6 (-1016)) (-5 *2 (-992)) (-5 *1 (-541))))) -(-10 -7 (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363) (-1016))) (-15 -4131 ((-992) (-733))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363) (-1016))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733) (-1016))) (-15 -4131 ((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1106))) (-15 -4131 ((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1123)))) -((-2183 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|)) 184)) (-2181 (((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|)) 98)) (-2182 (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-581 |#2|) (-581 |#2|) |#2|) 180)) (-2184 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1123))) 189)) (-2185 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-1123)) 197 (|has| |#3| (-623 |#2|))))) -(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -2181 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|))) (-15 -2182 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-581 |#2|) (-581 |#2|) |#2|)) (-15 -2183 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|))) (-15 -2184 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1123)))) (IF (|has| |#3| (-623 |#2|)) (-15 -2185 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-1123))) |%noBranch|)) (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526))) (-13 (-406 |#1|) (-27) (-1145)) (-1052)) (T -542)) -((-2185 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-581 *4)) (-5 *6 (-1123)) (-4 *4 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-542 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052)))) (-2184 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1123))) (-4 *2 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *1 (-542 *5 *2 *6)) (-4 *6 (-1052)))) (-2183 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-542 *6 *3 *7)) (-4 *7 (-1052)))) (-2182 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-542 *5 *3 *6)) (-4 *6 (-1052)))) (-2181 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-542 *5 *3 *6)) (-4 *6 (-1052))))) -(-10 -7 (-15 -2181 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|))) (-15 -2182 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-581 |#2|) (-581 |#2|) |#2|)) (-15 -2183 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|))) (-15 -2184 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1123)))) (IF (|has| |#3| (-623 |#2|)) (-15 -2185 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-1123))) |%noBranch|)) -((-2186 (((-2 (|:| -2388 |#2|) (|:| |nconst| |#2|)) |#2| (-1123)) 64)) (-2188 (((-3 |#2| "failed") |#2| (-1123) (-803 |#2|) (-803 |#2|)) 164 (-12 (|has| |#2| (-1087)) (|has| |#1| (-584 (-849 (-526)))) (|has| |#1| (-845 (-526))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)) 147 (-12 (|has| |#2| (-597)) (|has| |#1| (-584 (-849 (-526)))) (|has| |#1| (-845 (-526)))))) (-2187 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)) 148 (-12 (|has| |#2| (-597)) (|has| |#1| (-584 (-849 (-526)))) (|has| |#1| (-845 (-526))))))) -(((-543 |#1| |#2|) (-10 -7 (-15 -2186 ((-2 (|:| -2388 |#2|) (|:| |nconst| |#2|)) |#2| (-1123))) (IF (|has| |#1| (-584 (-849 (-526)))) (IF (|has| |#1| (-845 (-526))) (PROGN (IF (|has| |#2| (-597)) (PROGN (-15 -2187 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123))) (-15 -2188 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)))) |%noBranch|) (IF (|has| |#2| (-1087)) (-15 -2188 ((-3 |#2| "failed") |#2| (-1123) (-803 |#2|) (-803 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-811) (-995 (-526)) (-436) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -543)) -((-2188 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1123)) (-5 *4 (-803 *2)) (-4 *2 (-1087)) (-4 *2 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-584 (-849 (-526)))) (-4 *5 (-845 (-526))) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) (-5 *1 (-543 *5 *2)))) (-2188 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-584 (-849 (-526)))) (-4 *5 (-845 (-526))) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-597)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2187 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-584 (-849 (-526)))) (-4 *5 (-845 (-526))) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-597)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2186 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) (-5 *2 (-2 (|:| -2388 *3) (|:| |nconst| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) -(-10 -7 (-15 -2186 ((-2 (|:| -2388 |#2|) (|:| |nconst| |#2|)) |#2| (-1123))) (IF (|has| |#1| (-584 (-849 (-526)))) (IF (|has| |#1| (-845 (-526))) (PROGN (IF (|has| |#2| (-597)) (PROGN (-15 -2187 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123))) (-15 -2188 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)))) |%noBranch|) (IF (|has| |#2| (-1087)) (-15 -2188 ((-3 |#2| "failed") |#2| (-1123) (-803 |#2|) (-803 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2191 (((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-607 (-392 |#2|))) 41)) (-4131 (((-556 (-392 |#2|)) (-392 |#2|)) 28)) (-2189 (((-3 (-392 |#2|) "failed") (-392 |#2|)) 17)) (-2190 (((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-392 |#2|)) 48))) -(((-544 |#1| |#2|) (-10 -7 (-15 -4131 ((-556 (-392 |#2|)) (-392 |#2|))) (-15 -2189 ((-3 (-392 |#2|) "failed") (-392 |#2|))) (-15 -2190 ((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-392 |#2|))) (-15 -2191 ((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-607 (-392 |#2|))))) (-13 (-348) (-141) (-995 (-526))) (-1181 |#1|)) (T -544)) -((-2191 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-607 (-392 *6))) (-5 *3 (-392 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-544 *5 *6)))) (-2190 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -2222 (-392 *5)) (|:| |coeff| (-392 *5)))) (-5 *1 (-544 *4 *5)) (-5 *3 (-392 *5)))) (-2189 (*1 *2 *2) (|partial| -12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141) (-995 (-526)))) (-5 *1 (-544 *3 *4)))) (-4131 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) (-5 *2 (-556 (-392 *5))) (-5 *1 (-544 *4 *5)) (-5 *3 (-392 *5))))) -(-10 -7 (-15 -4131 ((-556 (-392 |#2|)) (-392 |#2|))) (-15 -2189 ((-3 (-392 |#2|) "failed") (-392 |#2|))) (-15 -2190 ((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-392 |#2|))) (-15 -2191 ((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-607 (-392 |#2|))))) -((-2192 (((-3 (-526) "failed") |#1|) 14)) (-3571 (((-111) |#1|) 13)) (-3567 (((-526) |#1|) 9))) -(((-545 |#1|) (-10 -7 (-15 -3567 ((-526) |#1|)) (-15 -3571 ((-111) |#1|)) (-15 -2192 ((-3 (-526) "failed") |#1|))) (-995 (-526))) (T -545)) -((-2192 (*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-545 *3)) (-4 *3 (-995 *2)))) (-3571 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-545 *3)) (-4 *3 (-995 (-526))))) (-3567 (*1 *2 *3) (-12 (-5 *2 (-526)) (-5 *1 (-545 *3)) (-4 *3 (-995 *2))))) -(-10 -7 (-15 -3567 ((-526) |#1|)) (-15 -3571 ((-111) |#1|)) (-15 -2192 ((-3 (-526) "failed") |#1|))) -((-2195 (((-3 (-2 (|:| |mainpart| (-392 (-905 |#1|))) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 (-905 |#1|))) (|:| |logand| (-392 (-905 |#1|))))))) "failed") (-392 (-905 |#1|)) (-1123) (-607 (-392 (-905 |#1|)))) 48)) (-2193 (((-556 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-1123)) 28)) (-2194 (((-3 (-392 (-905 |#1|)) "failed") (-392 (-905 |#1|)) (-1123)) 23)) (-2196 (((-3 (-2 (|:| -2222 (-392 (-905 |#1|))) (|:| |coeff| (-392 (-905 |#1|)))) "failed") (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|))) 35))) -(((-546 |#1|) (-10 -7 (-15 -2193 ((-556 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -2194 ((-3 (-392 (-905 |#1|)) "failed") (-392 (-905 |#1|)) (-1123))) (-15 -2195 ((-3 (-2 (|:| |mainpart| (-392 (-905 |#1|))) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 (-905 |#1|))) (|:| |logand| (-392 (-905 |#1|))))))) "failed") (-392 (-905 |#1|)) (-1123) (-607 (-392 (-905 |#1|))))) (-15 -2196 ((-3 (-2 (|:| -2222 (-392 (-905 |#1|))) (|:| |coeff| (-392 (-905 |#1|)))) "failed") (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|))))) (-13 (-533) (-995 (-526)) (-141))) (T -546)) -((-2196 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-995 (-526)) (-141))) (-5 *2 (-2 (|:| -2222 (-392 (-905 *5))) (|:| |coeff| (-392 (-905 *5))))) (-5 *1 (-546 *5)) (-5 *3 (-392 (-905 *5))))) (-2195 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 (-392 (-905 *6)))) (-5 *3 (-392 (-905 *6))) (-4 *6 (-13 (-533) (-995 (-526)) (-141))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *6)))) (-2194 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-392 (-905 *4))) (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-995 (-526)) (-141))) (-5 *1 (-546 *4)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-995 (-526)) (-141))) (-5 *2 (-556 (-392 (-905 *5)))) (-5 *1 (-546 *5)) (-5 *3 (-392 (-905 *5)))))) -(-10 -7 (-15 -2193 ((-556 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -2194 ((-3 (-392 (-905 |#1|)) "failed") (-392 (-905 |#1|)) (-1123))) (-15 -2195 ((-3 (-2 (|:| |mainpart| (-392 (-905 |#1|))) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 (-905 |#1|))) (|:| |logand| (-392 (-905 |#1|))))))) "failed") (-392 (-905 |#1|)) (-1123) (-607 (-392 (-905 |#1|))))) (-15 -2196 ((-3 (-2 (|:| -2222 (-392 (-905 |#1|))) (|:| |coeff| (-392 (-905 |#1|)))) "failed") (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|))))) -((-2865 (((-111) $ $) 58)) (-3502 (((-111) $) 36)) (-2901 ((|#1| $) 30)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) 62)) (-3806 (($ $) 122)) (-3961 (($ $) 102)) (-2702 ((|#1| $) 28)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL)) (-3804 (($ $) 124)) (-3960 (($ $) 98)) (-3808 (($ $) 126)) (-3959 (($ $) 106)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) "failed") $) 77)) (-3469 (((-526) $) 79)) (-3781 (((-3 $ "failed") $) 61)) (-2147 (($ |#1| |#1|) 26)) (-3500 (((-111) $) 33)) (-3949 (($) 88)) (-2471 (((-111) $) 43)) (-3311 (($ $ (-526)) NIL)) (-3501 (((-111) $) 34)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4259 (($ $) 90)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2148 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-392 (-526))) 76)) (-2146 ((|#1| $) 27)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) 64) (($ (-607 $)) NIL)) (-3780 (((-3 $ "failed") $ $) 63)) (-4260 (($ $) 92)) (-3809 (($ $) 130)) (-3958 (($ $) 104)) (-3807 (($ $) 132)) (-3957 (($ $) 108)) (-3805 (($ $) 128)) (-3956 (($ $) 100)) (-2145 (((-111) $ |#1|) 31)) (-4274 (((-823) $) 84) (($ (-526)) 66) (($ $) NIL) (($ (-526)) 66)) (-3423 (((-735)) 86)) (-3812 (($ $) 144)) (-3800 (($ $) 114)) (-2150 (((-111) $ $) NIL)) (-3810 (($ $) 142)) (-3798 (($ $) 110)) (-3814 (($ $) 140)) (-3802 (($ $) 120)) (-3815 (($ $) 138)) (-3803 (($ $) 118)) (-3813 (($ $) 136)) (-3801 (($ $) 116)) (-3811 (($ $) 134)) (-3799 (($ $) 112)) (-2957 (($) 21 T CONST)) (-2964 (($) 10 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 37)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 35)) (-4156 (($ $) 41) (($ $ $) 42)) (-4158 (($ $ $) 40)) (** (($ $ (-878)) 54) (($ $ (-735)) NIL) (($ $ $) 94) (($ $ (-392 (-526))) 146)) (* (($ (-878) $) 51) (($ (-735) $) NIL) (($ (-526) $) 50) (($ $ $) 48))) -(((-547 |#1|) (-531 |#1|) (-13 (-389) (-1145))) (T -547)) -NIL -(-531 |#1|) -((-3004 (((-3 (-607 (-1117 (-526))) "failed") (-607 (-1117 (-526))) (-1117 (-526))) 24))) -(((-548) (-10 -7 (-15 -3004 ((-3 (-607 (-1117 (-526))) "failed") (-607 (-1117 (-526))) (-1117 (-526)))))) (T -548)) -((-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 (-526)))) (-5 *3 (-1117 (-526))) (-5 *1 (-548))))) -(-10 -7 (-15 -3004 ((-3 (-607 (-1117 (-526))) "failed") (-607 (-1117 (-526))) (-1117 (-526))))) -((-2197 (((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-1123)) 19)) (-2200 (((-607 (-581 |#2|)) (-607 |#2|) (-1123)) 23)) (-3546 (((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-607 (-581 |#2|))) 11)) (-2201 ((|#2| |#2| (-1123)) 54 (|has| |#1| (-533)))) (-2202 ((|#2| |#2| (-1123)) 78 (-12 (|has| |#2| (-269)) (|has| |#1| (-436))))) (-2199 (((-581 |#2|) (-581 |#2|) (-607 (-581 |#2|)) (-1123)) 25)) (-2198 (((-581 |#2|) (-607 (-581 |#2|))) 24)) (-2203 (((-556 |#2|) |#2| (-1123) (-1 (-556 |#2|) |#2| (-1123)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123))) 103 (-12 (|has| |#2| (-269)) (|has| |#2| (-597)) (|has| |#2| (-995 (-1123))) (|has| |#1| (-584 (-849 (-526)))) (|has| |#1| (-436)) (|has| |#1| (-845 (-526))))))) -(((-549 |#1| |#2|) (-10 -7 (-15 -2197 ((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-1123))) (-15 -2198 ((-581 |#2|) (-607 (-581 |#2|)))) (-15 -2199 ((-581 |#2|) (-581 |#2|) (-607 (-581 |#2|)) (-1123))) (-15 -3546 ((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-607 (-581 |#2|)))) (-15 -2200 ((-607 (-581 |#2|)) (-607 |#2|) (-1123))) (IF (|has| |#1| (-533)) (-15 -2201 (|#2| |#2| (-1123))) |%noBranch|) (IF (|has| |#1| (-436)) (IF (|has| |#2| (-269)) (PROGN (-15 -2202 (|#2| |#2| (-1123))) (IF (|has| |#1| (-584 (-849 (-526)))) (IF (|has| |#1| (-845 (-526))) (IF (|has| |#2| (-597)) (IF (|has| |#2| (-995 (-1123))) (-15 -2203 ((-556 |#2|) |#2| (-1123) (-1 (-556 |#2|) |#2| (-1123)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-811) (-406 |#1|)) (T -549)) -((-2203 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-556 *3) *3 (-1123))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1123))) (-4 *3 (-269)) (-4 *3 (-597)) (-4 *3 (-995 *4)) (-4 *3 (-406 *7)) (-5 *4 (-1123)) (-4 *7 (-584 (-849 (-526)))) (-4 *7 (-436)) (-4 *7 (-845 (-526))) (-4 *7 (-811)) (-5 *2 (-556 *3)) (-5 *1 (-549 *7 *3)))) (-2202 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-436)) (-4 *4 (-811)) (-5 *1 (-549 *4 *2)) (-4 *2 (-269)) (-4 *2 (-406 *4)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-533)) (-4 *4 (-811)) (-5 *1 (-549 *4 *2)) (-4 *2 (-406 *4)))) (-2200 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-1123)) (-4 *6 (-406 *5)) (-4 *5 (-811)) (-5 *2 (-607 (-581 *6))) (-5 *1 (-549 *5 *6)))) (-3546 (*1 *2 *2 *2) (-12 (-5 *2 (-607 (-581 *4))) (-4 *4 (-406 *3)) (-4 *3 (-811)) (-5 *1 (-549 *3 *4)))) (-2199 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-607 (-581 *6))) (-5 *4 (-1123)) (-5 *2 (-581 *6)) (-4 *6 (-406 *5)) (-4 *5 (-811)) (-5 *1 (-549 *5 *6)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-607 (-581 *5))) (-4 *4 (-811)) (-5 *2 (-581 *5)) (-5 *1 (-549 *4 *5)) (-4 *5 (-406 *4)))) (-2197 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-581 *5))) (-5 *3 (-1123)) (-4 *5 (-406 *4)) (-4 *4 (-811)) (-5 *1 (-549 *4 *5))))) -(-10 -7 (-15 -2197 ((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-1123))) (-15 -2198 ((-581 |#2|) (-607 (-581 |#2|)))) (-15 -2199 ((-581 |#2|) (-581 |#2|) (-607 (-581 |#2|)) (-1123))) (-15 -3546 ((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-607 (-581 |#2|)))) (-15 -2200 ((-607 (-581 |#2|)) (-607 |#2|) (-1123))) (IF (|has| |#1| (-533)) (-15 -2201 (|#2| |#2| (-1123))) |%noBranch|) (IF (|has| |#1| (-436)) (IF (|has| |#2| (-269)) (PROGN (-15 -2202 (|#2| |#2| (-1123))) (IF (|has| |#1| (-584 (-849 (-526)))) (IF (|has| |#1| (-845 (-526))) (IF (|has| |#2| (-597)) (IF (|has| |#2| (-995 (-1123))) (-15 -2203 ((-556 |#2|) |#2| (-1123) (-1 (-556 |#2|) |#2| (-1123)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2206 (((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-607 |#1|) "failed") (-526) |#1| |#1|)) 172)) (-2209 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-607 (-392 |#2|))) 148)) (-2212 (((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-607 (-392 |#2|))) 145)) (-2213 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2204 (((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2211 (((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-392 |#2|)) 175)) (-2207 (((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-392 |#2|)) 178)) (-2215 (((-2 (|:| |ir| (-556 (-392 |#2|))) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|)) 84)) (-2216 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2210 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-607 (-392 |#2|))) 152)) (-2214 (((-3 (-590 |#1| |#2|) "failed") (-590 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|)) 137)) (-2205 (((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|)) 162)) (-2208 (((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-392 |#2|)) 183))) -(((-550 |#1| |#2|) (-10 -7 (-15 -2204 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2205 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|))) (-15 -2206 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-607 |#1|) "failed") (-526) |#1| |#1|))) (-15 -2207 ((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-392 |#2|))) (-15 -2208 ((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-392 |#2|))) (-15 -2209 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-607 (-392 |#2|)))) (-15 -2210 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-607 (-392 |#2|)))) (-15 -2211 ((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-392 |#2|))) (-15 -2212 ((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-607 (-392 |#2|)))) (-15 -2213 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2214 ((-3 (-590 |#1| |#2|) "failed") (-590 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|))) (-15 -2215 ((-2 (|:| |ir| (-556 (-392 |#2|))) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|))) (-15 -2216 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-348) (-1181 |#1|)) (T -550)) -((-2216 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-550 *5 *3)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |ir| (-556 (-392 *6))) (|:| |specpart| (-392 *6)) (|:| |polypart| *6))) (-5 *1 (-550 *5 *6)) (-5 *3 (-392 *6)))) (-2214 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-590 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3434 *4) (|:| |sol?| (-111))) (-526) *4)) (-4 *4 (-348)) (-4 *5 (-1181 *4)) (-5 *1 (-550 *4 *5)))) (-2213 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-348)) (-5 *1 (-550 *4 *2)) (-4 *2 (-1181 *4)))) (-2212 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-607 (-392 *7))) (-4 *7 (-1181 *6)) (-5 *3 (-392 *7)) (-4 *6 (-348)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-550 *6 *7)))) (-2211 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| -2222 (-392 *6)) (|:| |coeff| (-392 *6)))) (-5 *1 (-550 *5 *6)) (-5 *3 (-392 *6)))) (-2210 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3434 *7) (|:| |sol?| (-111))) (-526) *7)) (-5 *6 (-607 (-392 *8))) (-4 *7 (-348)) (-4 *8 (-1181 *7)) (-5 *3 (-392 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-550 *7 *8)))) (-2209 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2222 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-607 (-392 *8))) (-4 *7 (-348)) (-4 *8 (-1181 *7)) (-5 *3 (-392 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-550 *7 *8)))) (-2208 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3434 *6) (|:| |sol?| (-111))) (-526) *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-392 *7)) (|:| |a0| *6)) (-2 (|:| -2222 (-392 *7)) (|:| |coeff| (-392 *7))) "failed")) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7)))) (-2207 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2222 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-392 *7)) (|:| |a0| *6)) (-2 (|:| -2222 (-392 *7)) (|:| |coeff| (-392 *7))) "failed")) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7)))) (-2206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-607 *6) "failed") (-526) *6 *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7)))) (-2205 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3434 *6) (|:| |sol?| (-111))) (-526) *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7)))) (-2204 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2222 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) -(-10 -7 (-15 -2204 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2205 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|))) (-15 -2206 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-607 |#1|) "failed") (-526) |#1| |#1|))) (-15 -2207 ((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-392 |#2|))) (-15 -2208 ((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-392 |#2|))) (-15 -2209 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-607 (-392 |#2|)))) (-15 -2210 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-607 (-392 |#2|)))) (-15 -2211 ((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-392 |#2|))) (-15 -2212 ((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-607 (-392 |#2|)))) (-15 -2213 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2214 ((-3 (-590 |#1| |#2|) "failed") (-590 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|))) (-15 -2215 ((-2 (|:| |ir| (-556 (-392 |#2|))) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|))) (-15 -2216 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2217 (((-3 |#2| "failed") |#2| (-1123) (-1123)) 10))) -(((-551 |#1| |#2|) (-10 -7 (-15 -2217 ((-3 |#2| "failed") |#2| (-1123) (-1123)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-919) (-1087) (-29 |#1|))) (T -551)) -((-2217 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1123)) (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-1145) (-919) (-1087) (-29 *4)))))) -(-10 -7 (-15 -2217 ((-3 |#2| "failed") |#2| (-1123) (-1123)))) -((-2858 (((-1070) $ (-128)) 12)) (-2859 (((-1070) $ (-127)) 11)) (-2093 (((-1070) $ (-128)) 7)) (-2094 (((-1070) $) 8)) (-1792 (($ $) 6))) -(((-552) (-134)) (T -552)) -NIL -(-13 (-509) (-822)) -(((-164) . T) ((-509) . T) ((-822) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $ (-526)) 66)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2906 (($ (-1117 (-526)) (-526)) 72)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) 58)) (-2907 (($ $) 34)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4090 (((-735) $) 15)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 (((-526)) 29)) (-2908 (((-526) $) 32)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4087 (($ $ (-526)) 21)) (-3780 (((-3 $ "failed") $ $) 59)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) 16)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 61)) (-2910 (((-1101 (-526)) $) 18)) (-3191 (($ $) 23)) (-4274 (((-823) $) 87) (($ (-526)) 52) (($ $) NIL)) (-3423 (((-735)) 14)) (-2150 (((-111) $ $) NIL)) (-4088 (((-526) $ (-526)) 36)) (-2957 (($) 35 T CONST)) (-2964 (($) 19 T CONST)) (-3353 (((-111) $ $) 39)) (-4156 (($ $) 51) (($ $ $) 37)) (-4158 (($ $ $) 50)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 54) (($ $ $) 55))) -(((-553 |#1| |#2|) (-829 |#1|) (-526) (-111)) (T -553)) -NIL -(-829 |#1|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 21)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (($ $ (-878)) NIL (|has| $ (-353))) (($ $) NIL)) (-1767 (((-1132 (-878) (-735)) (-526)) 47)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) 75)) (-3469 (($ $) 74)) (-1887 (($ (-1205 $)) 73)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) 32)) (-3294 (($) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) 49)) (-1772 (((-111) $) NIL)) (-1862 (($ $) NIL) (($ $ (-735)) NIL)) (-4045 (((-111) $) NIL)) (-4090 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-2471 (((-111) $) NIL)) (-2105 (($) 37 (|has| $ (-353)))) (-2103 (((-111) $) NIL (|has| $ (-353)))) (-3429 (($ $ (-878)) NIL (|has| $ (-353))) (($ $) NIL)) (-3763 (((-3 $ "failed") $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 $) $ (-878)) NIL (|has| $ (-353))) (((-1117 $) $) 83)) (-2102 (((-878) $) 55)) (-1700 (((-1117 $) $) NIL (|has| $ (-353)))) (-1699 (((-3 (-1117 $) "failed") $ $) NIL (|has| $ (-353))) (((-1117 $) $) NIL (|has| $ (-353)))) (-1701 (($ $ (-1117 $)) NIL (|has| $ (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL T CONST)) (-2461 (($ (-878)) 48)) (-4248 (((-111) $) 67)) (-3555 (((-1070) $) NIL)) (-2470 (($) 19 (|has| $ (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 42)) (-4051 (((-390 $) $) NIL)) (-4247 (((-878)) 66) (((-796 (-878))) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-3 (-735) "failed") $ $) NIL) (((-735) $) NIL)) (-4230 (((-131)) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-4264 (((-878) $) 65) (((-796 (-878)) $) NIL)) (-3499 (((-1117 $)) 82)) (-1766 (($) 54)) (-1702 (($) 38 (|has| $ (-353)))) (-3537 (((-653 $) (-1205 $)) NIL) (((-1205 $) $) 71)) (-4287 (((-526) $) 28)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) 30) (($ $) NIL) (($ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3423 (((-735)) 39)) (-2104 (((-1205 $) (-878)) 77) (((-1205 $)) 76)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) 22 T CONST)) (-2964 (($) 18 T CONST)) (-4245 (($ $ (-735)) NIL (|has| $ (-353))) (($ $) NIL (|has| $ (-353)))) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 26)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 61) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) -(((-554 |#1|) (-13 (-335) (-314 $) (-584 (-526))) (-878)) (T -554)) -NIL -(-13 (-335) (-314 $) (-584 (-526))) -((-2218 (((-1211) (-1106)) 10))) -(((-555) (-10 -7 (-15 -2218 ((-1211) (-1106))))) (T -555)) -((-2218 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-555))))) -(-10 -7 (-15 -2218 ((-1211) (-1106)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) 69)) (-3469 ((|#1| $) NIL)) (-2222 ((|#1| $) 26)) (-2220 (((-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2223 (($ |#1| (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) (-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2221 (((-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) $) 27)) (-3554 (((-1106) $) NIL)) (-3132 (($ |#1| |#1|) 33) (($ |#1| (-1123)) 44 (|has| |#1| (-995 (-1123))))) (-3555 (((-1070) $) NIL)) (-2219 (((-111) $) 30)) (-4129 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1123)) 82 (|has| |#1| (-859 (-1123))))) (-4274 (((-823) $) 96) (($ |#1|) 25)) (-2957 (($) 16 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) 15) (($ $ $) NIL)) (-4158 (($ $ $) 78)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 14) (($ (-392 (-526)) $) 36) (($ $ (-392 (-526))) NIL))) -(((-556 |#1|) (-13 (-682 (-392 (-526))) (-995 |#1|) (-10 -8 (-15 -2223 ($ |#1| (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) (-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2222 (|#1| $)) (-15 -2221 ((-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) $)) (-15 -2220 ((-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2219 ((-111) $)) (-15 -3132 ($ |#1| |#1|)) (-15 -4129 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-859 (-1123))) (-15 -4129 (|#1| $ (-1123))) |%noBranch|) (IF (|has| |#1| (-995 (-1123))) (-15 -3132 ($ |#1| (-1123))) |%noBranch|))) (-348)) (T -556)) -((-2223 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 *2)) (|:| |logand| (-1117 *2))))) (-5 *4 (-607 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-348)) (-5 *1 (-556 *2)))) (-2222 (*1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-348)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 *3)) (|:| |logand| (-1117 *3))))) (-5 *1 (-556 *3)) (-4 *3 (-348)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-556 *3)) (-4 *3 (-348)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-556 *3)) (-4 *3 (-348)))) (-3132 (*1 *1 *2 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-348)))) (-4129 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-556 *2)) (-4 *2 (-348)))) (-4129 (*1 *2 *1 *3) (-12 (-4 *2 (-348)) (-4 *2 (-859 *3)) (-5 *1 (-556 *2)) (-5 *3 (-1123)))) (-3132 (*1 *1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *1 (-556 *2)) (-4 *2 (-995 *3)) (-4 *2 (-348))))) -(-13 (-682 (-392 (-526))) (-995 |#1|) (-10 -8 (-15 -2223 ($ |#1| (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) (-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2222 (|#1| $)) (-15 -2221 ((-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) $)) (-15 -2220 ((-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2219 ((-111) $)) (-15 -3132 ($ |#1| |#1|)) (-15 -4129 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-859 (-1123))) (-15 -4129 (|#1| $ (-1123))) |%noBranch|) (IF (|has| |#1| (-995 (-1123))) (-15 -3132 ($ |#1| (-1123))) |%noBranch|))) -((-4275 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-556 |#2|) (-1 |#2| |#1|) (-556 |#1|)) 30))) -(((-557 |#1| |#2|) (-10 -7 (-15 -4275 ((-556 |#2|) (-1 |#2| |#1|) (-556 |#1|))) (-15 -4275 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4275 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4275 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-348) (-348)) (T -557)) -((-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-348)) (-4 *6 (-348)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-557 *5 *6)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-348)) (-4 *2 (-348)) (-5 *1 (-557 *5 *2)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2222 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-348)) (-4 *6 (-348)) (-5 *2 (-2 (|:| -2222 *6) (|:| |coeff| *6))) (-5 *1 (-557 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-556 *5)) (-4 *5 (-348)) (-4 *6 (-348)) (-5 *2 (-556 *6)) (-5 *1 (-557 *5 *6))))) -(-10 -7 (-15 -4275 ((-556 |#2|) (-1 |#2| |#1|) (-556 |#1|))) (-15 -4275 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4275 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4275 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3737 (((-556 |#2|) (-556 |#2|)) 40)) (-4280 (((-607 |#2|) (-556 |#2|)) 42)) (-2231 ((|#2| (-556 |#2|)) 48))) -(((-558 |#1| |#2|) (-10 -7 (-15 -3737 ((-556 |#2|) (-556 |#2|))) (-15 -4280 ((-607 |#2|) (-556 |#2|))) (-15 -2231 (|#2| (-556 |#2|)))) (-13 (-436) (-995 (-526)) (-811) (-606 (-526))) (-13 (-29 |#1|) (-1145))) (T -558)) -((-2231 (*1 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-29 *4) (-1145))) (-5 *1 (-558 *4 *2)) (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-13 (-29 *4) (-1145))) (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-607 *5)) (-5 *1 (-558 *4 *5)))) (-3737 (*1 *2 *2) (-12 (-5 *2 (-556 *4)) (-4 *4 (-13 (-29 *3) (-1145))) (-4 *3 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *1 (-558 *3 *4))))) -(-10 -7 (-15 -3737 ((-556 |#2|) (-556 |#2|))) (-15 -4280 ((-607 |#2|) (-556 |#2|))) (-15 -2231 (|#2| (-556 |#2|)))) -((-2227 (((-111) |#1|) 16)) (-2228 (((-3 |#1| "failed") |#1|) 14)) (-2225 (((-2 (|:| -2994 |#1|) (|:| -2462 (-735))) |#1|) 31) (((-3 |#1| "failed") |#1| (-735)) 18)) (-2224 (((-111) |#1| (-735)) 19)) (-2229 ((|#1| |#1|) 32)) (-2226 ((|#1| |#1| (-735)) 34))) -(((-559 |#1|) (-10 -7 (-15 -2224 ((-111) |#1| (-735))) (-15 -2225 ((-3 |#1| "failed") |#1| (-735))) (-15 -2225 ((-2 (|:| -2994 |#1|) (|:| -2462 (-735))) |#1|)) (-15 -2226 (|#1| |#1| (-735))) (-15 -2227 ((-111) |#1|)) (-15 -2228 ((-3 |#1| "failed") |#1|)) (-15 -2229 (|#1| |#1|))) (-525)) (T -559)) -((-2229 (*1 *2 *2) (-12 (-5 *1 (-559 *2)) (-4 *2 (-525)))) (-2228 (*1 *2 *2) (|partial| -12 (-5 *1 (-559 *2)) (-4 *2 (-525)))) (-2227 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-559 *3)) (-4 *3 (-525)))) (-2226 (*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-559 *2)) (-4 *2 (-525)))) (-2225 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| -2462 (-735)))) (-5 *1 (-559 *3)) (-4 *3 (-525)))) (-2225 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-735)) (-5 *1 (-559 *2)) (-4 *2 (-525)))) (-2224 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-5 *2 (-111)) (-5 *1 (-559 *3)) (-4 *3 (-525))))) -(-10 -7 (-15 -2224 ((-111) |#1| (-735))) (-15 -2225 ((-3 |#1| "failed") |#1| (-735))) (-15 -2225 ((-2 (|:| -2994 |#1|) (|:| -2462 (-735))) |#1|)) (-15 -2226 (|#1| |#1| (-735))) (-15 -2227 ((-111) |#1|)) (-15 -2228 ((-3 |#1| "failed") |#1|)) (-15 -2229 (|#1| |#1|))) -((-2230 (((-1117 |#1|) (-878)) 27))) -(((-560 |#1|) (-10 -7 (-15 -2230 ((-1117 |#1|) (-878)))) (-335)) (T -560)) -((-2230 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-560 *4)) (-4 *4 (-335))))) -(-10 -7 (-15 -2230 ((-1117 |#1|) (-878)))) -((-3737 (((-556 (-392 (-905 |#1|))) (-556 (-392 (-905 |#1|)))) 27)) (-4131 (((-3 (-299 |#1|) (-607 (-299 |#1|))) (-392 (-905 |#1|)) (-1123)) 34 (|has| |#1| (-141)))) (-4280 (((-607 (-299 |#1|)) (-556 (-392 (-905 |#1|)))) 19)) (-2232 (((-299 |#1|) (-392 (-905 |#1|)) (-1123)) 32 (|has| |#1| (-141)))) (-2231 (((-299 |#1|) (-556 (-392 (-905 |#1|)))) 21))) -(((-561 |#1|) (-10 -7 (-15 -3737 ((-556 (-392 (-905 |#1|))) (-556 (-392 (-905 |#1|))))) (-15 -4280 ((-607 (-299 |#1|)) (-556 (-392 (-905 |#1|))))) (-15 -2231 ((-299 |#1|) (-556 (-392 (-905 |#1|))))) (IF (|has| |#1| (-141)) (PROGN (-15 -4131 ((-3 (-299 |#1|) (-607 (-299 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -2232 ((-299 |#1|) (-392 (-905 |#1|)) (-1123)))) |%noBranch|)) (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (T -561)) -((-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-141)) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-299 *5)) (-5 *1 (-561 *5)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-141)) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-3 (-299 *5) (-607 (-299 *5)))) (-5 *1 (-561 *5)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-556 (-392 (-905 *4)))) (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-299 *4)) (-5 *1 (-561 *4)))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-556 (-392 (-905 *4)))) (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-607 (-299 *4))) (-5 *1 (-561 *4)))) (-3737 (*1 *2 *2) (-12 (-5 *2 (-556 (-392 (-905 *3)))) (-4 *3 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *1 (-561 *3))))) -(-10 -7 (-15 -3737 ((-556 (-392 (-905 |#1|))) (-556 (-392 (-905 |#1|))))) (-15 -4280 ((-607 (-299 |#1|)) (-556 (-392 (-905 |#1|))))) (-15 -2231 ((-299 |#1|) (-556 (-392 (-905 |#1|))))) (IF (|has| |#1| (-141)) (PROGN (-15 -4131 ((-3 (-299 |#1|) (-607 (-299 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -2232 ((-299 |#1|) (-392 (-905 |#1|)) (-1123)))) |%noBranch|)) -((-2234 (((-607 (-653 (-526))) (-607 (-526)) (-607 (-861 (-526)))) 46) (((-607 (-653 (-526))) (-607 (-526))) 47) (((-653 (-526)) (-607 (-526)) (-861 (-526))) 42)) (-2233 (((-735) (-607 (-526))) 40))) -(((-562) (-10 -7 (-15 -2233 ((-735) (-607 (-526)))) (-15 -2234 ((-653 (-526)) (-607 (-526)) (-861 (-526)))) (-15 -2234 ((-607 (-653 (-526))) (-607 (-526)))) (-15 -2234 ((-607 (-653 (-526))) (-607 (-526)) (-607 (-861 (-526))))))) (T -562)) -((-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-526))) (-5 *4 (-607 (-861 (-526)))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-562)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-562)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-526))) (-5 *4 (-861 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-562)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-735)) (-5 *1 (-562))))) -(-10 -7 (-15 -2233 ((-735) (-607 (-526)))) (-15 -2234 ((-653 (-526)) (-607 (-526)) (-861 (-526)))) (-15 -2234 ((-607 (-653 (-526))) (-607 (-526)))) (-15 -2234 ((-607 (-653 (-526))) (-607 (-526)) (-607 (-861 (-526)))))) -((-3526 (((-607 |#5|) |#5| (-111)) 73)) (-2235 (((-111) |#5| (-607 |#5|)) 30))) -(((-563 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3526 ((-607 |#5|) |#5| (-111))) (-15 -2235 ((-111) |#5| (-607 |#5|)))) (-13 (-292) (-141)) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1060 |#1| |#2| |#3| |#4|)) (T -563)) -((-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1060 *5 *6 *7 *8)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-563 *5 *6 *7 *8 *3)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-607 *3)) (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-1060 *5 *6 *7 *8))))) -(-10 -7 (-15 -3526 ((-607 |#5|) |#5| (-111))) (-15 -2235 ((-111) |#5| (-607 |#5|)))) -((-2865 (((-111) $ $) NIL (|has| (-138) (-1052)))) (-3745 (($ $) 34)) (-3746 (($ $) NIL)) (-3736 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-3743 (((-111) $ $) 51)) (-3742 (((-111) $ $ (-526)) 46)) (-3737 (((-607 $) $ (-138)) 60) (((-607 $) $ (-135)) 61)) (-1824 (((-111) (-1 (-111) (-138) (-138)) $) NIL) (((-111) $) NIL (|has| (-138) (-811)))) (-1822 (($ (-1 (-111) (-138) (-138)) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-138) (-811))))) (-3209 (($ (-1 (-111) (-138) (-138)) $) NIL) (($ $) NIL (|has| (-138) (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-138) $ (-526) (-138)) 45 (|has| $ (-6 -4311))) (((-138) $ (-1172 (-526)) (-138)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-3734 (($ $ (-138)) 64) (($ $ (-135)) 65)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-3739 (($ $ (-1172 (-526)) $) 44)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3725 (($ (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-138) $ (-526) (-138)) NIL (|has| $ (-6 -4311)))) (-3410 (((-138) $ (-526)) NIL)) (-3744 (((-111) $ $) 72)) (-3738 (((-526) (-1 (-111) (-138)) $) NIL) (((-526) (-138) $) NIL (|has| (-138) (-1052))) (((-526) (-138) $ (-526)) 48 (|has| (-138) (-1052))) (((-526) $ $ (-526)) 47) (((-526) (-135) $ (-526)) 50)) (-2044 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-138)) 9)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 28 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| (-138) (-811)))) (-3832 (($ (-1 (-111) (-138) (-138)) $ $) NIL) (($ $ $) NIL (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2279 (((-526) $) 42 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-138) (-811)))) (-3740 (((-111) $ $ (-138)) 73)) (-3741 (((-735) $ $ (-138)) 70)) (-2048 (($ (-1 (-138) (-138)) $) 33 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) NIL) (($ (-1 (-138) (-138) (-138)) $ $) NIL)) (-3747 (($ $) 37)) (-3748 (($ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3735 (($ $ (-138)) 62) (($ $ (-135)) 63)) (-3554 (((-1106) $) 38 (|has| (-138) (-1052)))) (-2351 (($ (-138) $ (-526)) NIL) (($ $ $ (-526)) 23)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-526) $) 69) (((-1070) $) NIL (|has| (-138) (-1052)))) (-4119 (((-138) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-2277 (($ $ (-138)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-138)))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-138)) (-607 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2283 (((-607 (-138)) $) NIL)) (-3722 (((-111) $) 12)) (-3887 (($) 10)) (-4118 (((-138) $ (-526) (-138)) NIL) (((-138) $ (-526)) 52) (($ $ (-1172 (-526))) 21) (($ $ $) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310))) (((-735) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-1823 (($ $ $ (-526)) 66 (|has| $ (-6 -4311)))) (-3719 (($ $) 17)) (-4287 (((-515) $) NIL (|has| (-138) (-584 (-515))))) (-3844 (($ (-607 (-138))) NIL)) (-4120 (($ $ (-138)) NIL) (($ (-138) $) NIL) (($ $ $) 16) (($ (-607 $)) 67)) (-4274 (($ (-138)) NIL) (((-823) $) 27 (|has| (-138) (-583 (-823))))) (-2047 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| (-138) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-138) (-811)))) (-3353 (((-111) $ $) 14 (|has| (-138) (-1052)))) (-2984 (((-111) $ $) NIL (|has| (-138) (-811)))) (-2985 (((-111) $ $) 15 (|has| (-138) (-811)))) (-4273 (((-735) $) 13 (|has| $ (-6 -4310))))) -(((-564 |#1|) (-13 (-1092) (-10 -8 (-15 -3555 ((-526) $)))) (-526)) (T -564)) -((-3555 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-564 *3)) (-14 *3 *2)))) -(-13 (-1092) (-10 -8 (-15 -3555 ((-526) $)))) -((-3845 (((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2| (-1041 |#4|)) 32))) -(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3845 ((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2| (-1041 |#4|))) (-15 -3845 ((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2|))) (-757) (-811) (-533) (-909 |#3| |#1| |#2|)) (T -565)) -((-3845 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-533)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-526)))) (-5 *1 (-565 *5 *4 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) (-3845 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1041 *3)) (-4 *3 (-909 *7 *6 *4)) (-4 *6 (-757)) (-4 *4 (-811)) (-4 *7 (-533)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-526)))) (-5 *1 (-565 *6 *4 *7 *3))))) -(-10 -7 (-15 -3845 ((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2| (-1041 |#4|))) (-15 -3845 ((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 63)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-526)) 54) (($ $ (-526) (-526)) 55)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 60)) (-2266 (($ $) 100)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2264 (((-823) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) (-983 (-803 (-526))) (-1123) |#1| (-392 (-526))) 224)) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 34)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3192 (((-111) $) NIL)) (-4090 (((-526) $) 58) (((-526) $ (-526)) 59)) (-2471 (((-111) $) NIL)) (-4095 (($ $ (-878)) 76)) (-4134 (($ (-1 |#1| (-526)) $) 73)) (-4254 (((-111) $) 25)) (-3193 (($ |#1| (-526)) 22) (($ $ (-1033) (-526)) NIL) (($ $ (-607 (-1033)) (-607 (-526))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 67)) (-2270 (($ (-983 (-803 (-526))) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 13)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4131 (($ $) 150 (|has| |#1| (-37 (-392 (-526)))))) (-2267 (((-3 $ "failed") $ $ (-111)) 99)) (-2265 (($ $ $) 108)) (-3555 (((-1070) $) NIL)) (-2268 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 15)) (-2269 (((-983 (-803 (-526))) $) 14)) (-4087 (($ $ (-526)) 45)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-526)))))) (-4118 ((|#1| $ (-526)) 57) (($ $ $) NIL (|has| (-526) (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (-4264 (((-526) $) NIL)) (-3191 (($ $) 46)) (-4274 (((-823) $) NIL) (($ (-526)) 28) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) 27 (|has| |#1| (-163)))) (-3999 ((|#1| $ (-526)) 56)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 37)) (-4091 ((|#1| $) NIL)) (-2245 (($ $) 186 (|has| |#1| (-37 (-392 (-526)))))) (-2257 (($ $) 158 (|has| |#1| (-37 (-392 (-526)))))) (-2247 (($ $) 190 (|has| |#1| (-37 (-392 (-526)))))) (-2259 (($ $) 163 (|has| |#1| (-37 (-392 (-526)))))) (-2243 (($ $) 189 (|has| |#1| (-37 (-392 (-526)))))) (-2255 (($ $) 162 (|has| |#1| (-37 (-392 (-526)))))) (-2262 (($ $ (-392 (-526))) 166 (|has| |#1| (-37 (-392 (-526)))))) (-2263 (($ $ |#1|) 146 (|has| |#1| (-37 (-392 (-526)))))) (-2260 (($ $) 192 (|has| |#1| (-37 (-392 (-526)))))) (-2261 (($ $) 149 (|has| |#1| (-37 (-392 (-526)))))) (-2242 (($ $) 191 (|has| |#1| (-37 (-392 (-526)))))) (-2254 (($ $) 164 (|has| |#1| (-37 (-392 (-526)))))) (-2244 (($ $) 187 (|has| |#1| (-37 (-392 (-526)))))) (-2256 (($ $) 160 (|has| |#1| (-37 (-392 (-526)))))) (-2246 (($ $) 188 (|has| |#1| (-37 (-392 (-526)))))) (-2258 (($ $) 161 (|has| |#1| (-37 (-392 (-526)))))) (-2239 (($ $) 197 (|has| |#1| (-37 (-392 (-526)))))) (-2251 (($ $) 173 (|has| |#1| (-37 (-392 (-526)))))) (-2241 (($ $) 194 (|has| |#1| (-37 (-392 (-526)))))) (-2253 (($ $) 168 (|has| |#1| (-37 (-392 (-526)))))) (-2237 (($ $) 201 (|has| |#1| (-37 (-392 (-526)))))) (-2249 (($ $) 177 (|has| |#1| (-37 (-392 (-526)))))) (-2236 (($ $) 203 (|has| |#1| (-37 (-392 (-526)))))) (-2248 (($ $) 179 (|has| |#1| (-37 (-392 (-526)))))) (-2238 (($ $) 199 (|has| |#1| (-37 (-392 (-526)))))) (-2250 (($ $) 175 (|has| |#1| (-37 (-392 (-526)))))) (-2240 (($ $) 196 (|has| |#1| (-37 (-392 (-526)))))) (-2252 (($ $) 171 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-4088 ((|#1| $ (-526)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-2957 (($) 29 T CONST)) (-2964 (($) 38 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (-3353 (((-111) $ $) 65)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) 84) (($ $ $) 64)) (-4158 (($ $ $) 81)) (** (($ $ (-878)) NIL) (($ $ (-735)) 103)) (* (($ (-878) $) 89) (($ (-735) $) 87) (($ (-526) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-566 |#1|) (-13 (-1184 |#1| (-526)) (-10 -8 (-15 -2270 ($ (-983 (-803 (-526))) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))))) (-15 -2269 ((-983 (-803 (-526))) $)) (-15 -2268 ((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $)) (-15 -4137 ($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))))) (-15 -4254 ((-111) $)) (-15 -4134 ($ (-1 |#1| (-526)) $)) (-15 -2267 ((-3 $ "failed") $ $ (-111))) (-15 -2266 ($ $)) (-15 -2265 ($ $ $)) (-15 -2264 ((-823) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) (-983 (-803 (-526))) (-1123) |#1| (-392 (-526)))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (-15 -2263 ($ $ |#1|)) (-15 -2262 ($ $ (-392 (-526)))) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $)) (-15 -2252 ($ $)) (-15 -2251 ($ $)) (-15 -2250 ($ $)) (-15 -2249 ($ $)) (-15 -2248 ($ $)) (-15 -2247 ($ $)) (-15 -2246 ($ $)) (-15 -2245 ($ $)) (-15 -2244 ($ $)) (-15 -2243 ($ $)) (-15 -2242 ($ $)) (-15 -2241 ($ $)) (-15 -2240 ($ $)) (-15 -2239 ($ $)) (-15 -2238 ($ $)) (-15 -2237 ($ $)) (-15 -2236 ($ $))) |%noBranch|))) (-1004)) (T -566)) -((-4254 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) (-2270 (*1 *1 *2 *3) (-12 (-5 *2 (-983 (-803 (-526)))) (-5 *3 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *4)))) (-4 *4 (-1004)) (-5 *1 (-566 *4)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-983 (-803 (-526)))) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-4 *3 (-1004)) (-5 *1 (-566 *3)))) (-4134 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-526))) (-4 *3 (-1004)) (-5 *1 (-566 *3)))) (-2267 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1004)))) (-2265 (*1 *1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1004)))) (-2264 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *6)))) (-5 *4 (-983 (-803 (-526)))) (-5 *5 (-1123)) (-5 *7 (-392 (-526))) (-4 *6 (-1004)) (-5 *2 (-823)) (-5 *1 (-566 *6)))) (-4131 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2262 (*1 *1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-566 *3)) (-4 *3 (-37 *2)) (-4 *3 (-1004)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2259 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2258 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2254 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2253 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2252 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2251 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2250 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2249 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2247 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2245 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2244 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2243 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2242 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2241 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2240 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2239 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2238 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2237 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(-13 (-1184 |#1| (-526)) (-10 -8 (-15 -2270 ($ (-983 (-803 (-526))) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))))) (-15 -2269 ((-983 (-803 (-526))) $)) (-15 -2268 ((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $)) (-15 -4137 ($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))))) (-15 -4254 ((-111) $)) (-15 -4134 ($ (-1 |#1| (-526)) $)) (-15 -2267 ((-3 $ "failed") $ $ (-111))) (-15 -2266 ($ $)) (-15 -2265 ($ $ $)) (-15 -2264 ((-823) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) (-983 (-803 (-526))) (-1123) |#1| (-392 (-526)))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (-15 -2263 ($ $ |#1|)) (-15 -2262 ($ $ (-392 (-526)))) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $)) (-15 -2252 ($ $)) (-15 -2251 ($ $)) (-15 -2250 ($ $)) (-15 -2249 ($ $)) (-15 -2248 ($ $)) (-15 -2247 ($ $)) (-15 -2246 ($ $)) (-15 -2245 ($ $)) (-15 -2244 ($ $)) (-15 -2243 ($ $)) (-15 -2242 ($ $)) (-15 -2241 ($ $)) (-15 -2240 ($ $)) (-15 -2239 ($ $)) (-15 -2238 ($ $)) (-15 -2237 ($ $)) (-15 -2236 ($ $))) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4137 (($ (-1101 |#1|)) 9)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) 42)) (-3192 (((-111) $) 52)) (-4090 (((-735) $) 55) (((-735) $ (-735)) 54)) (-2471 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ "failed") $ $) 44 (|has| |#1| (-533)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-1101 |#1|) $) 23)) (-3423 (((-735)) 51)) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 10 T CONST)) (-2964 (($) 14 T CONST)) (-3353 (((-111) $ $) 22)) (-4156 (($ $) 30) (($ $ $) 16)) (-4158 (($ $ $) 25)) (** (($ $ (-878)) NIL) (($ $ (-735)) 49)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-526)) 36))) -(((-567 |#1|) (-13 (-1004) (-10 -8 (-15 -4136 ((-1101 |#1|) $)) (-15 -4137 ($ (-1101 |#1|))) (-15 -3192 ((-111) $)) (-15 -4090 ((-735) $)) (-15 -4090 ((-735) $ (-735))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-526))) (IF (|has| |#1| (-533)) (-6 (-533)) |%noBranch|))) (-1004)) (T -567)) -((-4136 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-567 *3)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) (-4090 (*1 *2 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1004)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1004)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-567 *3)) (-4 *3 (-1004))))) -(-13 (-1004) (-10 -8 (-15 -4136 ((-1101 |#1|) $)) (-15 -4137 ($ (-1101 |#1|))) (-15 -3192 ((-111) $)) (-15 -4090 ((-735) $)) (-15 -4090 ((-735) $ (-735))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-526))) (IF (|has| |#1| (-533)) (-6 (-533)) |%noBranch|))) -((-4275 (((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|)) 15))) -(((-568 |#1| |#2|) (-10 -7 (-15 -4275 ((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|)))) (-1159) (-1159)) (T -568)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-571 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-571 *6)) (-5 *1 (-568 *5 *6))))) -(-10 -7 (-15 -4275 ((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|)))) -((-4275 (((-1101 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-1101 |#2|)) 20) (((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-571 |#2|)) 19) (((-571 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-571 |#2|)) 18))) -(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-571 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-571 |#2|))) (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-571 |#2|))) (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-1101 |#2|)))) (-1159) (-1159) (-1159)) (T -569)) -((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-571 *6)) (-5 *5 (-1101 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) (-5 *1 (-569 *6 *7 *8)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1101 *6)) (-5 *5 (-571 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) (-5 *1 (-569 *6 *7 *8)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-571 *6)) (-5 *5 (-571 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-571 *8)) (-5 *1 (-569 *6 *7 *8))))) -(-10 -7 (-15 -4275 ((-571 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-571 |#2|))) (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-571 |#2|))) (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-1101 |#2|)))) -((-2275 ((|#3| |#3| (-607 (-581 |#3|)) (-607 (-1123))) 55)) (-2274 (((-159 |#2|) |#3|) 117)) (-2271 ((|#3| (-159 |#2|)) 44)) (-2272 ((|#2| |#3|) 19)) (-2273 ((|#3| |#2|) 33))) -(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -2271 (|#3| (-159 |#2|))) (-15 -2272 (|#2| |#3|)) (-15 -2273 (|#3| |#2|)) (-15 -2274 ((-159 |#2|) |#3|)) (-15 -2275 (|#3| |#3| (-607 (-581 |#3|)) (-607 (-1123))))) (-13 (-533) (-811)) (-13 (-406 |#1|) (-960) (-1145)) (-13 (-406 (-159 |#1|)) (-960) (-1145))) (T -570)) -((-2275 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-607 (-581 *2))) (-5 *4 (-607 (-1123))) (-4 *2 (-13 (-406 (-159 *5)) (-960) (-1145))) (-4 *5 (-13 (-533) (-811))) (-5 *1 (-570 *5 *6 *2)) (-4 *6 (-13 (-406 *5) (-960) (-1145))))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811))) (-5 *2 (-159 *5)) (-5 *1 (-570 *4 *5 *3)) (-4 *5 (-13 (-406 *4) (-960) (-1145))) (-4 *3 (-13 (-406 (-159 *4)) (-960) (-1145))))) (-2273 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 (-159 *4)) (-960) (-1145))) (-5 *1 (-570 *4 *3 *2)) (-4 *3 (-13 (-406 *4) (-960) (-1145))))) (-2272 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 *4) (-960) (-1145))) (-5 *1 (-570 *4 *2 *3)) (-4 *3 (-13 (-406 (-159 *4)) (-960) (-1145))))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-406 *4) (-960) (-1145))) (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 (-159 *4)) (-960) (-1145))) (-5 *1 (-570 *4 *5 *2))))) -(-10 -7 (-15 -2271 (|#3| (-159 |#2|))) (-15 -2272 (|#2| |#3|)) (-15 -2273 (|#3| |#2|)) (-15 -2274 ((-159 |#2|) |#3|)) (-15 -2275 (|#3| |#3| (-607 (-581 |#3|)) (-607 (-1123))))) -((-4032 (($ (-1 (-111) |#1|) $) 17)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3771 (($ (-1 |#1| |#1|) |#1|) 9)) (-3770 (($ (-1 (-111) |#1|) $) 13)) (-3769 (($ (-1 (-111) |#1|) $) 15)) (-3844 (((-1101 |#1|) $) 18)) (-4274 (((-823) $) NIL))) -(((-571 |#1|) (-13 (-583 (-823)) (-10 -8 (-15 -4275 ($ (-1 |#1| |#1|) $)) (-15 -3770 ($ (-1 (-111) |#1|) $)) (-15 -3769 ($ (-1 (-111) |#1|) $)) (-15 -4032 ($ (-1 (-111) |#1|) $)) (-15 -3771 ($ (-1 |#1| |#1|) |#1|)) (-15 -3844 ((-1101 |#1|) $)))) (-1159)) (T -571)) -((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-3770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-3769 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-3771 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-571 *3)) (-4 *3 (-1159))))) -(-13 (-583 (-823)) (-10 -8 (-15 -4275 ($ (-1 |#1| |#1|) $)) (-15 -3770 ($ (-1 (-111) |#1|) $)) (-15 -3769 ($ (-1 (-111) |#1|) $)) (-15 -4032 ($ (-1 (-111) |#1|) $)) (-15 -3771 ($ (-1 |#1| |#1|) |#1|)) (-15 -3844 ((-1101 |#1|) $)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735)) NIL (|has| |#1| (-23)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) NIL (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4151 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-4038 (((-111) $ (-735)) NIL)) (-4152 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4155 ((|#1| $ $) NIL (|has| |#1| (-1004)))) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4153 (($ $ $) NIL (|has| |#1| (-1004)))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4158 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-526) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-691))) (($ $ |#1|) NIL (|has| |#1| (-691)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-572 |#1| |#2|) (-1204 |#1|) (-1159) (-526)) (T -572)) -NIL -(-1204 |#1|) -((-2276 (((-1211) $ |#2| |#2|) 36)) (-2278 ((|#2| $) 23)) (-2279 ((|#2| $) 21)) (-2048 (($ (-1 |#3| |#3|) $) 32)) (-4275 (($ (-1 |#3| |#3|) $) 30)) (-4119 ((|#3| $) 26)) (-2277 (($ $ |#3|) 33)) (-2280 (((-111) |#3| $) 17)) (-2283 (((-607 |#3|) $) 15)) (-4118 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-573 |#1| |#2| |#3|) (-10 -8 (-15 -2276 ((-1211) |#1| |#2| |#2|)) (-15 -2277 (|#1| |#1| |#3|)) (-15 -4119 (|#3| |#1|)) (-15 -2278 (|#2| |#1|)) (-15 -2279 (|#2| |#1|)) (-15 -2280 ((-111) |#3| |#1|)) (-15 -2283 ((-607 |#3|) |#1|)) (-15 -4118 (|#3| |#1| |#2|)) (-15 -4118 (|#3| |#1| |#2| |#3|)) (-15 -2048 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4275 (|#1| (-1 |#3| |#3|) |#1|))) (-574 |#2| |#3|) (-1052) (-1159)) (T -573)) -NIL -(-10 -8 (-15 -2276 ((-1211) |#1| |#2| |#2|)) (-15 -2277 (|#1| |#1| |#3|)) (-15 -4119 (|#3| |#1|)) (-15 -2278 (|#2| |#1|)) (-15 -2279 (|#2| |#1|)) (-15 -2280 ((-111) |#3| |#1|)) (-15 -2283 ((-607 |#3|) |#1|)) (-15 -4118 (|#3| |#1| |#2|)) (-15 -4118 (|#3| |#1| |#2| |#3|)) (-15 -2048 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4275 (|#1| (-1 |#3| |#3|) |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#2| (-1052)))) (-2276 (((-1211) $ |#1| |#1|) 40 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-1613 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) 51)) (-2044 (((-607 |#2|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2278 ((|#1| $) 43 (|has| |#1| (-811)))) (-2480 (((-607 |#2|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-2279 ((|#1| $) 44 (|has| |#1| (-811)))) (-2048 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#2| (-1052)))) (-2281 (((-607 |#1|) $) 46)) (-2282 (((-111) |#1| $) 47)) (-3555 (((-1070) $) 21 (|has| |#2| (-1052)))) (-4119 ((|#2| $) 42 (|has| |#1| (-811)))) (-2277 (($ $ |#2|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) 26 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 25 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 23 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2045 (((-735) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4310))) (((-735) |#2| $) 28 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#2| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#2| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-574 |#1| |#2|) (-134) (-1052) (-1159)) (T -574)) -((-2283 (*1 *2 *1) (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-607 *4)))) (-2282 (*1 *2 *3 *1) (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-111)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-607 *3)))) (-2280 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-574 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-574 *2 *3)) (-4 *3 (-1159)) (-4 *2 (-1052)) (-4 *2 (-811)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-574 *2 *3)) (-4 *3 (-1159)) (-4 *2 (-1052)) (-4 *2 (-811)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-574 *3 *2)) (-4 *3 (-1052)) (-4 *3 (-811)) (-4 *2 (-1159)))) (-2277 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-574 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) (-2276 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-1211))))) -(-13 (-472 |t#2|) (-273 |t#1| |t#2|) (-10 -8 (-15 -2283 ((-607 |t#2|) $)) (-15 -2282 ((-111) |t#1| $)) (-15 -2281 ((-607 |t#1|) $)) (IF (|has| |t#2| (-1052)) (IF (|has| $ (-6 -4310)) (-15 -2280 ((-111) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-811)) (PROGN (-15 -2279 (|t#1| $)) (-15 -2278 (|t#1| $)) (-15 -4119 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4311)) (PROGN (-15 -2277 ($ $ |t#2|)) (-15 -2276 ((-1211) $ |t#1| |t#1|))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#2| (-1052)) ((-583 (-823)) -3850 (|has| |#2| (-1052)) (|has| |#2| (-583 (-823)))) ((-271 |#1| |#2|) . T) ((-273 |#1| |#2|) . T) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-472 |#2|) . T) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-1052) |has| |#2| (-1052)) ((-1159) . T)) -((-4274 (((-823) $) 19) (((-127) $) 14) (($ (-127)) 13))) -(((-575) (-13 (-583 (-823)) (-583 (-127)) (-10 -8 (-15 -4274 ($ (-127)))))) (T -575)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-575))))) -(-13 (-583 (-823)) (-583 (-127)) (-10 -8 (-15 -4274 ($ (-127))))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL) (((-1160) $) 14) (($ (-607 (-1160))) 13)) (-2284 (((-607 (-1160)) $) 10)) (-3353 (((-111) $ $) NIL))) -(((-576) (-13 (-1035) (-583 (-1160)) (-10 -8 (-15 -4274 ($ (-607 (-1160)))) (-15 -2284 ((-607 (-1160)) $))))) (T -576)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-576)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-576))))) -(-13 (-1035) (-583 (-1160)) (-10 -8 (-15 -4274 ($ (-607 (-1160)))) (-15 -2284 ((-607 (-1160)) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 |#1|))) NIL (|has| |#2| (-403 |#1|))) (((-1205 (-653 |#1|)) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1821 (((-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-3855 (($) NIL T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1795 (((-3 $ #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1883 (((-653 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1819 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1881 (((-653 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2465 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1998 (((-1117 (-905 |#1|))) NIL (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-348))))) (-2468 (($ $ (-878)) NIL)) (-1817 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1797 (((-1117 |#1|) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1885 ((|#1|) NIL (|has| |#2| (-403 |#1|))) ((|#1| (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1815 (((-1117 |#1|) $) NIL (|has| |#2| (-352 |#1|)))) (-1809 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1887 (($ (-1205 |#1|)) NIL (|has| |#2| (-403 |#1|))) (($ (-1205 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-3781 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-3406 (((-878)) NIL (|has| |#2| (-352 |#1|)))) (-1806 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2493 (($ $ (-878)) NIL)) (-1802 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1800 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1804 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1796 (((-3 $ #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1884 (((-653 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1820 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1882 (((-653 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2466 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-2002 (((-1117 (-905 |#1|))) NIL (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-348))))) (-2467 (($ $ (-878)) NIL)) (-1818 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1798 (((-1117 |#1|) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1886 ((|#1|) NIL (|has| |#2| (-403 |#1|))) ((|#1| (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1816 (((-1117 |#1|) $) NIL (|has| |#2| (-352 |#1|)))) (-1810 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1803 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1805 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-3555 (((-1070) $) NIL)) (-1808 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-4118 ((|#1| $ (-526)) NIL (|has| |#2| (-403 |#1|)))) (-3537 (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-403 |#1|))) (((-1205 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $) (-1205 $)) NIL (|has| |#2| (-352 |#1|))) (((-1205 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-4287 (($ (-1205 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-1205 |#1|) $) NIL (|has| |#2| (-403 |#1|)))) (-1990 (((-607 (-905 |#1|))) NIL (|has| |#2| (-403 |#1|))) (((-607 (-905 |#1|)) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2655 (($ $ $) NIL)) (-1814 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-4274 (((-823) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2104 (((-1205 $)) NIL (|has| |#2| (-403 |#1|)))) (-1799 (((-607 (-1205 |#1|))) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2849 (($ (-653 |#1|) $) NIL (|has| |#2| (-403 |#1|)))) (-2654 (($ $ $) NIL)) (-1813 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1811 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1807 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) 24)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-577 |#1| |#2|) (-13 (-709 |#1|) (-583 |#2|) (-10 -8 (-15 -4274 ($ |#2|)) (IF (|has| |#2| (-403 |#1|)) (-6 (-403 |#1|)) |%noBranch|) (IF (|has| |#2| (-352 |#1|)) (-6 (-352 |#1|)) |%noBranch|))) (-163) (-709 |#1|)) (T -577)) -((-4274 (*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-577 *3 *2)) (-4 *2 (-709 *3))))) -(-13 (-709 |#1|) (-583 |#2|) (-10 -8 (-15 -4274 ($ |#2|)) (IF (|has| |#2| (-403 |#1|)) (-6 (-403 |#1|)) |%noBranch|) (IF (|has| |#2| (-352 |#1|)) (-6 (-352 |#1|)) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-1789 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) 33)) (-3919 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL) (($) NIL)) (-2276 (((-1211) $ (-1106) (-1106)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-1106) |#1|) 43)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#1| #1="failed") (-1106) $) 46)) (-3855 (($) NIL T CONST)) (-1793 (($ $ (-1106)) 24)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-3724 (((-3 |#1| #1#) (-1106) $) 47) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (|has| $ (-6 -4310)))) (-3725 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-4161 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-1790 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) 32)) (-1613 ((|#1| $ (-1106) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-1106)) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-2324 (($ $) 48)) (-1794 (($ (-373)) 22) (($ (-373) (-1106)) 21)) (-3864 (((-373) $) 34)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (((-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-2279 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2713 (((-607 (-1106)) $) 39)) (-2286 (((-111) (-1106) $) NIL)) (-1791 (((-1106) $) 35)) (-1306 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-2281 (((-607 (-1106)) $) NIL)) (-2282 (((-111) (-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 ((|#1| $) NIL (|has| (-1106) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) "failed") (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-607 (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 37)) (-4118 ((|#1| $ (-1106) |#1|) NIL) ((|#1| $ (-1106)) 42)) (-1499 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL) (($) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (((-735) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (((-735) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-4274 (((-823) $) 20)) (-1792 (($ $) 25)) (-1308 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 19)) (-4273 (((-735) $) 41 (|has| $ (-6 -4310))))) -(((-578 |#1|) (-13 (-350 (-373) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) (-1136 (-1106) |#1|) (-10 -8 (-6 -4310) (-15 -2324 ($ $)))) (-1052)) (T -578)) -((-2324 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1052))))) -(-13 (-350 (-373) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) (-1136 (-1106) |#1|) (-10 -8 (-6 -4310) (-15 -2324 ($ $)))) -((-3557 (((-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 15)) (-2713 (((-607 |#2|) $) 19)) (-2286 (((-111) |#2| $) 12))) -(((-579 |#1| |#2| |#3|) (-10 -8 (-15 -2713 ((-607 |#2|) |#1|)) (-15 -2286 ((-111) |#2| |#1|)) (-15 -3557 ((-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|))) (-580 |#2| |#3|) (-1052) (-1052)) (T -579)) -NIL -(-10 -8 (-15 -2713 ((-607 |#2|) |#1|)) (-15 -2286 ((-111) |#2| |#1|)) (-15 -3557 ((-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|))) -((-2865 (((-111) $ $) 19 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 55 (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| "failed") |#1| $) 61)) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 46 (|has| $ (-6 -4310))) (((-3 |#2| "failed") |#1| $) 62)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 54 (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 56 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 53 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-2713 (((-607 |#1|) $) 63)) (-2286 (((-111) |#1| $) 64)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 39)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 40)) (-3555 (((-1070) $) 21 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 51)) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 41)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) 26 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 25 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 24 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 23 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-1499 (($) 49) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 48)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 31 (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 50)) (-4274 (((-823) $) 18 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 42)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-580 |#1| |#2|) (-134) (-1052) (-1052)) (T -580)) -((-2286 (*1 *2 *3 *1) (-12 (-4 *1 (-580 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-111)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-580 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-607 *3)))) (-3724 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-580 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-2285 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-580 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) -(-13 (-215 (-2 (|:| -4179 |t#1|) (|:| -2164 |t#2|))) (-10 -8 (-15 -2286 ((-111) |t#1| $)) (-15 -2713 ((-607 |t#1|) $)) (-15 -3724 ((-3 |t#2| "failed") |t#1| $)) (-15 -2285 ((-3 |t#2| "failed") |t#1| $)))) -(((-33) . T) ((-105 #1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((-100) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) ((-583 (-823)) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823)))) ((-145 #1#) . T) ((-584 (-515)) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))) ((-215 #1#) . T) ((-221 #1#) . T) ((-294 #1#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-472 #1#) . T) ((-496 #1# #1#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-1052) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-2287 (((-3 (-1123) "failed") $) 37)) (-1346 (((-1211) $ (-735)) 26)) (-3738 (((-735) $) 25)) (-2307 (((-112) $) 12)) (-3864 (((-1123) $) 20)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2288 (($ (-112) (-607 |#1|) (-735)) 30) (($ (-1123)) 31)) (-2930 (((-111) $ (-112)) 18) (((-111) $ (-1123)) 16)) (-2900 (((-735) $) 22)) (-3555 (((-1070) $) NIL)) (-4287 (((-849 (-526)) $) 77 (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) 84 (|has| |#1| (-584 (-849 (-363))))) (((-515) $) 69 (|has| |#1| (-584 (-515))))) (-4274 (((-823) $) 55)) (-2289 (((-607 |#1|) $) 24)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 41)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 42))) -(((-581 |#1|) (-13 (-130) (-843 |#1|) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -2307 ((-112) $)) (-15 -2289 ((-607 |#1|) $)) (-15 -2900 ((-735) $)) (-15 -2288 ($ (-112) (-607 |#1|) (-735))) (-15 -2288 ($ (-1123))) (-15 -2287 ((-3 (-1123) "failed") $)) (-15 -2930 ((-111) $ (-112))) (-15 -2930 ((-111) $ (-1123))) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) (-811)) (T -581)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-112)) (-5 *3 (-607 *5)) (-5 *4 (-735)) (-4 *5 (-811)) (-5 *1 (-581 *5)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2287 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-111)) (-5 *1 (-581 *4)) (-4 *4 (-811)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-111)) (-5 *1 (-581 *4)) (-4 *4 (-811))))) -(-13 (-130) (-843 |#1|) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -2307 ((-112) $)) (-15 -2289 ((-607 |#1|) $)) (-15 -2900 ((-735) $)) (-15 -2288 ($ (-112) (-607 |#1|) (-735))) (-15 -2288 ($ (-1123))) (-15 -2287 ((-3 (-1123) "failed") $)) (-15 -2930 ((-111) $ (-112))) (-15 -2930 ((-111) $ (-1123))) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) -((-2290 (((-581 |#2|) |#1|) 15)) (-2291 (((-3 |#1| "failed") (-581 |#2|)) 19))) -(((-582 |#1| |#2|) (-10 -7 (-15 -2290 ((-581 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed") (-581 |#2|)))) (-811) (-811)) (T -582)) -((-2291 (*1 *2 *3) (|partial| -12 (-5 *3 (-581 *4)) (-4 *4 (-811)) (-4 *2 (-811)) (-5 *1 (-582 *2 *4)))) (-2290 (*1 *2 *3) (-12 (-5 *2 (-581 *4)) (-5 *1 (-582 *3 *4)) (-4 *3 (-811)) (-4 *4 (-811))))) -(-10 -7 (-15 -2290 ((-581 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed") (-581 |#2|)))) -((-4274 ((|#1| $) 6))) -(((-583 |#1|) (-134) (-1159)) (T -583)) -((-4274 (*1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-1159))))) -(-13 (-10 -8 (-15 -4274 (|t#1| $)))) -((-4287 ((|#1| $) 6))) -(((-584 |#1|) (-134) (-1159)) (T -584)) -((-4287 (*1 *2 *1) (-12 (-4 *1 (-584 *2)) (-4 *2 (-1159))))) -(-13 (-10 -8 (-15 -4287 (|t#1| $)))) -((-2292 (((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 (-390 |#2|) |#2|)) 15) (((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|)) 16))) -(((-585 |#1| |#2|) (-10 -7 (-15 -2292 ((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|))) (-15 -2292 ((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 (-390 |#2|) |#2|)))) (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|)) (T -585)) -((-2292 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-1117 (-392 *6))) (-5 *1 (-585 *5 *6)) (-5 *3 (-392 *6)))) (-2292 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-1117 (-392 *5))) (-5 *1 (-585 *4 *5)) (-5 *3 (-392 *5))))) -(-10 -7 (-15 -2292 ((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|))) (-15 -2292 ((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 (-390 |#2|) |#2|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3945 (((-526) $) NIL (|has| |#1| (-809)))) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-3500 (((-111) $) NIL (|has| |#1| (-809)))) (-2471 (((-111) $) NIL)) (-3298 ((|#1| $) 13)) (-3501 (((-111) $) NIL (|has| |#1| (-809)))) (-3637 (($ $ $) NIL (|has| |#1| (-809)))) (-3638 (($ $ $) NIL (|has| |#1| (-809)))) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3297 ((|#3| $) 15)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL)) (-3423 (((-735)) 20)) (-3702 (($ $) NIL (|has| |#1| (-809)))) (-2957 (($) NIL T CONST)) (-2964 (($) 12 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-809)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-809)))) (-4265 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-586 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (-15 -4265 ($ $ |#3|)) (-15 -4265 ($ |#1| |#3|)) (-15 -3298 (|#1| $)) (-15 -3297 (|#3| $)))) (-37 |#2|) (-163) (|SubsetCategory| (-691) |#2|)) (T -586)) -((-4265 (*1 *1 *1 *2) (-12 (-4 *4 (-163)) (-5 *1 (-586 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-691) *4)))) (-4265 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-586 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-691) *4)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-37 *3)) (-5 *1 (-586 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-691) *3)))) (-3297 (*1 *2 *1) (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-691) *4)) (-5 *1 (-586 *3 *4 *2)) (-4 *3 (-37 *4))))) -(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (-15 -4265 ($ $ |#3|)) (-15 -4265 ($ |#1| |#3|)) (-15 -3298 (|#1| $)) (-15 -3297 (|#3| $)))) -((-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) 10))) -(((-587 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-588 |#2|) (-1004)) (T -587)) -NIL -(-10 -8 (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 34)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ |#1| $) 35))) -(((-588 |#1|) (-134) (-1004)) (T -588)) -((-4274 (*1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1004))))) -(-13 (-1004) (-613 |t#1|) (-10 -8 (-15 -4274 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2293 ((|#2| |#2| (-1123) (-1123)) 18))) -(((-589 |#1| |#2|) (-10 -7 (-15 -2293 (|#2| |#2| (-1123) (-1123)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-919) (-29 |#1|))) (T -589)) -((-2293 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1145) (-919) (-29 *4)))))) -(-10 -7 (-15 -2293 (|#2| |#2| (-1123) (-1123)))) -((-2865 (((-111) $ $) 56)) (-3502 (((-111) $) 52)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2294 ((|#1| $) 49)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-4070 (((-2 (|:| -1860 $) (|:| -1859 (-392 |#2|))) (-392 |#2|)) 97 (|has| |#1| (-348)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) 24)) (-3781 (((-3 $ "failed") $) 75)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4090 (((-526) $) 19)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) 36)) (-3193 (($ |#1| (-526)) 21)) (-3487 ((|#1| $) 51)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) 87 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ $) 79)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-1680 (((-735) $) 99 (|has| |#1| (-348)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 98 (|has| |#1| (-348)))) (-4129 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-4264 (((-526) $) 34)) (-4287 (((-392 |#2|) $) 42)) (-4274 (((-823) $) 62) (($ (-526)) 32) (($ $) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 31) (($ |#2|) 22)) (-3999 ((|#1| $ (-526)) 63)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 29)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 9 T CONST)) (-2964 (($) 12 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3353 (((-111) $ $) 17)) (-4156 (($ $) 46) (($ $ $) NIL)) (-4158 (($ $ $) 76)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 26) (($ $ $) 44))) -(((-590 |#1| |#2|) (-13 (-217 |#2|) (-533) (-584 (-392 |#2|)) (-397 |#1|) (-995 |#2|) (-10 -8 (-15 -4254 ((-111) $)) (-15 -4264 ((-526) $)) (-15 -4090 ((-526) $)) (-15 -4276 ($ $)) (-15 -3487 (|#1| $)) (-15 -2294 (|#1| $)) (-15 -3999 (|#1| $ (-526))) (-15 -3193 ($ |#1| (-526))) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-6 (-292)) (-15 -4070 ((-2 (|:| -1860 $) (|:| -1859 (-392 |#2|))) (-392 |#2|)))) |%noBranch|))) (-533) (-1181 |#1|)) (T -590)) -((-4254 (*1 *2 *1) (-12 (-4 *3 (-533)) (-5 *2 (-111)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) (-4264 (*1 *2 *1) (-12 (-4 *3 (-533)) (-5 *2 (-526)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) (-4090 (*1 *2 *1) (-12 (-4 *3 (-533)) (-5 *2 (-526)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) (-4276 (*1 *1 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) (-3487 (*1 *2 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) (-2294 (*1 *2 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *2 (-533)) (-5 *1 (-590 *2 *4)) (-4 *4 (-1181 *2)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-4 *2 (-533)) (-5 *1 (-590 *2 *4)) (-4 *4 (-1181 *2)))) (-4070 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *4 (-533)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -1860 (-590 *4 *5)) (|:| -1859 (-392 *5)))) (-5 *1 (-590 *4 *5)) (-5 *3 (-392 *5))))) -(-13 (-217 |#2|) (-533) (-584 (-392 |#2|)) (-397 |#1|) (-995 |#2|) (-10 -8 (-15 -4254 ((-111) $)) (-15 -4264 ((-526) $)) (-15 -4090 ((-526) $)) (-15 -4276 ($ $)) (-15 -3487 (|#1| $)) (-15 -2294 (|#1| $)) (-15 -3999 (|#1| $ (-526))) (-15 -3193 ($ |#1| (-526))) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-6 (-292)) (-15 -4070 ((-2 (|:| -1860 $) (|:| -1859 (-392 |#2|))) (-392 |#2|)))) |%noBranch|))) -((-4004 (((-607 |#6|) (-607 |#4|) (-111)) 47)) (-2295 ((|#6| |#6|) 40))) -(((-591 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2295 (|#6| |#6|)) (-15 -4004 ((-607 |#6|) (-607 |#4|) (-111)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|) (-1060 |#1| |#2| |#3| |#4|)) (T -591)) -((-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 *10)) (-5 *1 (-591 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *10 (-1060 *5 *6 *7 *8)))) (-2295 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-591 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *2 (-1060 *3 *4 *5 *6))))) -(-10 -7 (-15 -2295 (|#6| |#6|)) (-15 -4004 ((-607 |#6|) (-607 |#4|) (-111)))) -((-2296 (((-111) |#3| (-735) (-607 |#3|)) 23)) (-2297 (((-3 (-2 (|:| |polfac| (-607 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-607 (-1117 |#3|)))) "failed") |#3| (-607 (-1117 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2736 (-607 (-2 (|:| |irr| |#4|) (|:| -2456 (-526)))))) (-607 |#3|) (-607 |#1|) (-607 |#3|)) 55))) -(((-592 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-111) |#3| (-735) (-607 |#3|))) (-15 -2297 ((-3 (-2 (|:| |polfac| (-607 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-607 (-1117 |#3|)))) "failed") |#3| (-607 (-1117 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2736 (-607 (-2 (|:| |irr| |#4|) (|:| -2456 (-526)))))) (-607 |#3|) (-607 |#1|) (-607 |#3|)))) (-811) (-757) (-292) (-909 |#3| |#2| |#1|)) (T -592)) -((-2297 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2736 (-607 (-2 (|:| |irr| *10) (|:| -2456 (-526))))))) (-5 *6 (-607 *3)) (-5 *7 (-607 *8)) (-4 *8 (-811)) (-4 *3 (-292)) (-4 *10 (-909 *3 *9 *8)) (-4 *9 (-757)) (-5 *2 (-2 (|:| |polfac| (-607 *10)) (|:| |correct| *3) (|:| |corrfact| (-607 (-1117 *3))))) (-5 *1 (-592 *8 *9 *3 *10)) (-5 *4 (-607 (-1117 *3))))) (-2296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-735)) (-5 *5 (-607 *3)) (-4 *3 (-292)) (-4 *6 (-811)) (-4 *7 (-757)) (-5 *2 (-111)) (-5 *1 (-592 *6 *7 *3 *8)) (-4 *8 (-909 *3 *7 *6))))) -(-10 -7 (-15 -2296 ((-111) |#3| (-735) (-607 |#3|))) (-15 -2297 ((-3 (-2 (|:| |polfac| (-607 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-607 (-1117 |#3|)))) "failed") |#3| (-607 (-1117 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2736 (-607 (-2 (|:| |irr| |#4|) (|:| -2456 (-526)))))) (-607 |#3|) (-607 |#1|) (-607 |#3|)))) -((-2865 (((-111) $ $) NIL)) (-3842 (((-1128) $) 11)) (-3843 (((-1128) $) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-593) (-13 (-1035) (-10 -8 (-15 -3843 ((-1128) $)) (-15 -3842 ((-1128) $))))) (T -593)) -((-3843 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-593)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-593))))) -(-13 (-1035) (-10 -8 (-15 -3843 ((-1128) $)) (-15 -3842 ((-1128) $)))) -((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-4253 (($ $) 67)) (-4259 (((-629 |#1| |#2|) $) 52)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 70)) (-2298 (((-607 (-278 |#2|)) $ $) 33)) (-3555 (((-1070) $) NIL)) (-4260 (($ (-629 |#1| |#2|)) 48)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 58) (((-1220 |#1| |#2|) $) NIL) (((-1225 |#1| |#2|) $) 66)) (-2964 (($) 53 T CONST)) (-2299 (((-607 (-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|))) $) 31)) (-2300 (((-607 (-629 |#1| |#2|)) (-607 |#1|)) 65)) (-2963 (((-607 (-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|))) $) 37)) (-3353 (((-111) $ $) 54)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ $ $) 44))) -(((-594 |#1| |#2| |#3|) (-13 (-457) (-10 -8 (-15 -4260 ($ (-629 |#1| |#2|))) (-15 -4259 ((-629 |#1| |#2|) $)) (-15 -2963 ((-607 (-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|))) $)) (-15 -4274 ((-1220 |#1| |#2|) $)) (-15 -4274 ((-1225 |#1| |#2|) $)) (-15 -4253 ($ $)) (-15 -4251 ((-607 |#1|) $)) (-15 -2300 ((-607 (-629 |#1| |#2|)) (-607 |#1|))) (-15 -2299 ((-607 (-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|))) $)) (-15 -2298 ((-607 (-278 |#2|)) $ $)))) (-811) (-13 (-163) (-682 (-392 (-526)))) (-878)) (T -594)) -((-4260 (*1 *1 *2) (-12 (-5 *2 (-629 *3 *4)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-5 *1 (-594 *3 *4 *5)) (-14 *5 (-878)))) (-4259 (*1 *2 *1) (-12 (-5 *2 (-629 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |k| (-852 *3)) (|:| |c| *4)))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1225 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-4253 (*1 *1 *1) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-811)) (-4 *3 (-13 (-163) (-682 (-392 (-526))))) (-14 *4 (-878)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-811)) (-5 *2 (-607 (-629 *4 *5))) (-5 *1 (-594 *4 *5 *6)) (-4 *5 (-13 (-163) (-682 (-392 (-526))))) (-14 *6 (-878)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |k| (-637 *3)) (|:| |c| *4)))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-2298 (*1 *2 *1 *1) (-12 (-5 *2 (-607 (-278 *4))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878))))) -(-13 (-457) (-10 -8 (-15 -4260 ($ (-629 |#1| |#2|))) (-15 -4259 ((-629 |#1| |#2|) $)) (-15 -2963 ((-607 (-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|))) $)) (-15 -4274 ((-1220 |#1| |#2|) $)) (-15 -4274 ((-1225 |#1| |#2|) $)) (-15 -4253 ($ $)) (-15 -4251 ((-607 |#1|) $)) (-15 -2300 ((-607 (-629 |#1| |#2|)) (-607 |#1|))) (-15 -2299 ((-607 (-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|))) $)) (-15 -2298 ((-607 (-278 |#2|)) $ $)))) -((-4004 (((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111)) 72) (((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111)) 58)) (-2301 (((-111) (-607 (-744 |#1| (-824 |#2|)))) 23)) (-2305 (((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111)) 71)) (-2304 (((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111)) 57)) (-2303 (((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|)))) 27)) (-2302 (((-3 (-607 (-744 |#1| (-824 |#2|))) "failed") (-607 (-744 |#1| (-824 |#2|)))) 26))) -(((-595 |#1| |#2|) (-10 -7 (-15 -2301 ((-111) (-607 (-744 |#1| (-824 |#2|))))) (-15 -2302 ((-3 (-607 (-744 |#1| (-824 |#2|))) "failed") (-607 (-744 |#1| (-824 |#2|))))) (-15 -2303 ((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))))) (-15 -2304 ((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -2305 ((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -4004 ((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -4004 ((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111)))) (-436) (-607 (-1123))) (T -595)) -((-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1094 *5 (-512 (-824 *6)) (-824 *6) (-744 *5 (-824 *6))))) (-5 *1 (-595 *5 *6)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-595 *5 *6)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1094 *5 (-512 (-824 *6)) (-824 *6) (-744 *5 (-824 *6))))) (-5 *1 (-595 *5 *6)))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-595 *5 *6)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-607 (-744 *3 (-824 *4)))) (-4 *3 (-436)) (-14 *4 (-607 (-1123))) (-5 *1 (-595 *3 *4)))) (-2302 (*1 *2 *2) (|partial| -12 (-5 *2 (-607 (-744 *3 (-824 *4)))) (-4 *3 (-436)) (-14 *4 (-607 (-1123))) (-5 *1 (-595 *3 *4)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-607 (-744 *4 (-824 *5)))) (-4 *4 (-436)) (-14 *5 (-607 (-1123))) (-5 *2 (-111)) (-5 *1 (-595 *4 *5))))) -(-10 -7 (-15 -2301 ((-111) (-607 (-744 |#1| (-824 |#2|))))) (-15 -2302 ((-3 (-607 (-744 |#1| (-824 |#2|))) "failed") (-607 (-744 |#1| (-824 |#2|))))) (-15 -2303 ((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))))) (-15 -2304 ((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -2305 ((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -4004 ((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -4004 ((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111)))) -((-2307 (((-112) (-112)) 83)) (-2310 ((|#2| |#2|) 30)) (-3132 ((|#2| |#2| (-1044 |#2|)) 79) ((|#2| |#2| (-1123)) 52)) (-2308 ((|#2| |#2|) 29)) (-2309 ((|#2| |#2|) 31)) (-2306 (((-111) (-112)) 34)) (-2312 ((|#2| |#2|) 26)) (-2313 ((|#2| |#2|) 28)) (-2311 ((|#2| |#2|) 27))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -2313 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2311 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -2308 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -3132 (|#2| |#2| (-1123))) (-15 -3132 (|#2| |#2| (-1044 |#2|)))) (-13 (-811) (-533)) (-13 (-406 |#1|) (-960) (-1145))) (T -596)) -((-3132 (*1 *2 *2 *3) (-12 (-5 *3 (-1044 *2)) (-4 *2 (-13 (-406 *4) (-960) (-1145))) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-596 *4 *2)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-596 *4 *2)) (-4 *2 (-13 (-406 *4) (-960) (-1145))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2308 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2311 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *4)) (-4 *4 (-13 (-406 *3) (-960) (-1145))))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-596 *4 *5)) (-4 *5 (-13 (-406 *4) (-960) (-1145)))))) -(-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -2313 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2311 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -2308 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -3132 (|#2| |#2| (-1123))) (-15 -3132 (|#2| |#2| (-1044 |#2|)))) -((-3806 (($ $) 38)) (-3961 (($ $) 21)) (-3804 (($ $) 37)) (-3960 (($ $) 22)) (-3808 (($ $) 36)) (-3959 (($ $) 23)) (-3949 (($) 48)) (-4259 (($ $) 45)) (-2310 (($ $) 17)) (-3132 (($ $ (-1044 $)) 7) (($ $ (-1123)) 6)) (-4260 (($ $) 46)) (-2308 (($ $) 15)) (-2309 (($ $) 16)) (-3809 (($ $) 35)) (-3958 (($ $) 24)) (-3807 (($ $) 34)) (-3957 (($ $) 25)) (-3805 (($ $) 33)) (-3956 (($ $) 26)) (-3812 (($ $) 44)) (-3800 (($ $) 32)) (-3810 (($ $) 43)) (-3798 (($ $) 31)) (-3814 (($ $) 42)) (-3802 (($ $) 30)) (-3815 (($ $) 41)) (-3803 (($ $) 29)) (-3813 (($ $) 40)) (-3801 (($ $) 28)) (-3811 (($ $) 39)) (-3799 (($ $) 27)) (-2312 (($ $) 19)) (-2313 (($ $) 20)) (-2311 (($ $) 18)) (** (($ $ $) 47))) -(((-597) (-134)) (T -597)) -((-2313 (*1 *1 *1) (-4 *1 (-597))) (-2312 (*1 *1 *1) (-4 *1 (-597))) (-2311 (*1 *1 *1) (-4 *1 (-597))) (-2310 (*1 *1 *1) (-4 *1 (-597))) (-2309 (*1 *1 *1) (-4 *1 (-597))) (-2308 (*1 *1 *1) (-4 *1 (-597)))) -(-13 (-919) (-1145) (-10 -8 (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -2311 ($ $)) (-15 -2310 ($ $)) (-15 -2309 ($ $)) (-15 -2308 ($ $)))) -(((-34) . T) ((-93) . T) ((-269) . T) ((-475) . T) ((-919) . T) ((-1145) . T) ((-1148) . T)) -((-2323 (((-464 |#1| |#2|) (-233 |#1| |#2|)) 53)) (-2316 (((-607 (-233 |#1| |#2|)) (-607 (-464 |#1| |#2|))) 68)) (-2317 (((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-824 |#1|)) 70) (((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)) (-824 |#1|)) 69)) (-2314 (((-2 (|:| |gblist| (-607 (-233 |#1| |#2|))) (|:| |gvlist| (-607 (-526)))) (-607 (-464 |#1| |#2|))) 108)) (-2321 (((-607 (-464 |#1| |#2|)) (-824 |#1|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|))) 83)) (-2315 (((-2 (|:| |glbase| (-607 (-233 |#1| |#2|))) (|:| |glval| (-607 (-526)))) (-607 (-233 |#1| |#2|))) 118)) (-2319 (((-1205 |#2|) (-464 |#1| |#2|) (-607 (-464 |#1| |#2|))) 58)) (-2318 (((-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|))) 41)) (-2322 (((-233 |#1| |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|))) 50)) (-2320 (((-233 |#1| |#2|) (-607 |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|))) 91))) -(((-598 |#1| |#2|) (-10 -7 (-15 -2314 ((-2 (|:| |gblist| (-607 (-233 |#1| |#2|))) (|:| |gvlist| (-607 (-526)))) (-607 (-464 |#1| |#2|)))) (-15 -2315 ((-2 (|:| |glbase| (-607 (-233 |#1| |#2|))) (|:| |glval| (-607 (-526)))) (-607 (-233 |#1| |#2|)))) (-15 -2316 ((-607 (-233 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2317 ((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)) (-824 |#1|))) (-15 -2317 ((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-824 |#1|))) (-15 -2318 ((-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2319 ((-1205 |#2|) (-464 |#1| |#2|) (-607 (-464 |#1| |#2|)))) (-15 -2320 ((-233 |#1| |#2|) (-607 |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|)))) (-15 -2321 ((-607 (-464 |#1| |#2|)) (-824 |#1|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2322 ((-233 |#1| |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|)))) (-15 -2323 ((-464 |#1| |#2|) (-233 |#1| |#2|)))) (-607 (-1123)) (-436)) (T -598)) -((-2323 (*1 *2 *3) (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *2 (-464 *4 *5)) (-5 *1 (-598 *4 *5)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-233 *4 *5))) (-5 *2 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *1 (-598 *4 *5)))) (-2321 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-607 (-464 *4 *5))) (-5 *3 (-824 *4)) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *1 (-598 *4 *5)))) (-2320 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-233 *5 *6))) (-4 *6 (-436)) (-5 *2 (-233 *5 *6)) (-14 *5 (-607 (-1123))) (-5 *1 (-598 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-464 *5 *6))) (-5 *3 (-464 *5 *6)) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) (-5 *2 (-1205 *6)) (-5 *1 (-598 *5 *6)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-607 (-464 *3 *4))) (-14 *3 (-607 (-1123))) (-4 *4 (-436)) (-5 *1 (-598 *3 *4)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-464 *5 *6))) (-5 *4 (-824 *5)) (-14 *5 (-607 (-1123))) (-5 *2 (-464 *5 *6)) (-5 *1 (-598 *5 *6)) (-4 *6 (-436)))) (-2317 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-607 (-464 *5 *6))) (-5 *4 (-824 *5)) (-14 *5 (-607 (-1123))) (-5 *2 (-464 *5 *6)) (-5 *1 (-598 *5 *6)) (-4 *6 (-436)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-607 (-464 *4 *5))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *2 (-607 (-233 *4 *5))) (-5 *1 (-598 *4 *5)))) (-2315 (*1 *2 *3) (-12 (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *2 (-2 (|:| |glbase| (-607 (-233 *4 *5))) (|:| |glval| (-607 (-526))))) (-5 *1 (-598 *4 *5)) (-5 *3 (-607 (-233 *4 *5))))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-607 (-464 *4 *5))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *2 (-2 (|:| |gblist| (-607 (-233 *4 *5))) (|:| |gvlist| (-607 (-526))))) (-5 *1 (-598 *4 *5))))) -(-10 -7 (-15 -2314 ((-2 (|:| |gblist| (-607 (-233 |#1| |#2|))) (|:| |gvlist| (-607 (-526)))) (-607 (-464 |#1| |#2|)))) (-15 -2315 ((-2 (|:| |glbase| (-607 (-233 |#1| |#2|))) (|:| |glval| (-607 (-526)))) (-607 (-233 |#1| |#2|)))) (-15 -2316 ((-607 (-233 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2317 ((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)) (-824 |#1|))) (-15 -2317 ((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-824 |#1|))) (-15 -2318 ((-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2319 ((-1205 |#2|) (-464 |#1| |#2|) (-607 (-464 |#1| |#2|)))) (-15 -2320 ((-233 |#1| |#2|) (-607 |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|)))) (-15 -2321 ((-607 (-464 |#1| |#2|)) (-824 |#1|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2322 ((-233 |#1| |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|)))) (-15 -2323 ((-464 |#1| |#2|) (-233 |#1| |#2|)))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL)) (-2276 (((-1211) $ (-1106) (-1106)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-50) $ (-1106) (-50)) 16) (((-50) $ (-1123) (-50)) 17)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 (-50) #1="failed") (-1106) $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-3724 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-3 (-50) #1#) (-1106) $) NIL)) (-3725 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-50) $ (-1106) (-50)) NIL (|has| $ (-6 -4311)))) (-3410 (((-50) $ (-1106)) NIL)) (-2044 (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-2324 (($ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2480 (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2279 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-2325 (($ (-373)) 9)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-2713 (((-607 (-1106)) $) NIL)) (-2286 (((-111) (-1106) $) NIL)) (-1306 (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL)) (-2281 (((-607 (-1106)) $) NIL)) (-2282 (((-111) (-1106) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-4119 (((-50) $) NIL (|has| (-1106) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) "failed") (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL)) (-2277 (($ $ (-50)) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ $ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-50)) (-607 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-278 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-607 (-278 (-50)))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2283 (((-607 (-50)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-50) $ (-1106)) 14) (((-50) $ (-1106) (-50)) NIL) (((-50) $ (-1123)) 15)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (((-735) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052)))) (((-735) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-583 (-823))) (|has| (-50) (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-599) (-13 (-1136 (-1106) (-50)) (-10 -8 (-15 -2325 ($ (-373))) (-15 -2324 ($ $)) (-15 -4118 ((-50) $ (-1123))) (-15 -4106 ((-50) $ (-1123) (-50)))))) (T -599)) -((-2325 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-599)))) (-2324 (*1 *1 *1) (-5 *1 (-599))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-50)) (-5 *1 (-599)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1123)) (-5 *1 (-599))))) -(-13 (-1136 (-1106) (-50)) (-10 -8 (-15 -2325 ($ (-373))) (-15 -2324 ($ $)) (-15 -4118 ((-50) $ (-1123))) (-15 -4106 ((-50) $ (-1123) (-50))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 |#1|))) NIL (|has| |#2| (-403 |#1|))) (((-1205 (-653 |#1|)) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1821 (((-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-3855 (($) NIL T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1795 (((-3 $ #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1883 (((-653 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1819 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1881 (((-653 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2465 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1998 (((-1117 (-905 |#1|))) NIL (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-348))))) (-2468 (($ $ (-878)) NIL)) (-1817 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1797 (((-1117 |#1|) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1885 ((|#1|) NIL (|has| |#2| (-403 |#1|))) ((|#1| (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1815 (((-1117 |#1|) $) NIL (|has| |#2| (-352 |#1|)))) (-1809 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1887 (($ (-1205 |#1|)) NIL (|has| |#2| (-403 |#1|))) (($ (-1205 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-3781 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-3406 (((-878)) NIL (|has| |#2| (-352 |#1|)))) (-1806 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2493 (($ $ (-878)) NIL)) (-1802 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1800 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1804 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1796 (((-3 $ #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1884 (((-653 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1820 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1882 (((-653 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2466 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-2002 (((-1117 (-905 |#1|))) NIL (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-348))))) (-2467 (($ $ (-878)) NIL)) (-1818 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1798 (((-1117 |#1|) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1886 ((|#1|) NIL (|has| |#2| (-403 |#1|))) ((|#1| (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1816 (((-1117 |#1|) $) NIL (|has| |#2| (-352 |#1|)))) (-1810 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1803 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1805 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-3555 (((-1070) $) NIL)) (-1808 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-4118 ((|#1| $ (-526)) NIL (|has| |#2| (-403 |#1|)))) (-3537 (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-403 |#1|))) (((-1205 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $) (-1205 $)) NIL (|has| |#2| (-352 |#1|))) (((-1205 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-4287 (($ (-1205 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-1205 |#1|) $) NIL (|has| |#2| (-403 |#1|)))) (-1990 (((-607 (-905 |#1|))) NIL (|has| |#2| (-403 |#1|))) (((-607 (-905 |#1|)) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2655 (($ $ $) NIL)) (-1814 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-4274 (((-823) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2104 (((-1205 $)) NIL (|has| |#2| (-403 |#1|)))) (-1799 (((-607 (-1205 |#1|))) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2849 (($ (-653 |#1|) $) NIL (|has| |#2| (-403 |#1|)))) (-2654 (($ $ $) NIL)) (-1813 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1811 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1807 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2957 (($) 15 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) 17)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-600 |#1| |#2|) (-13 (-709 |#1|) (-583 |#2|) (-10 -8 (-15 -4274 ($ |#2|)) (IF (|has| |#2| (-403 |#1|)) (-6 (-403 |#1|)) |%noBranch|) (IF (|has| |#2| (-352 |#1|)) (-6 (-352 |#1|)) |%noBranch|))) (-163) (-709 |#1|)) (T -600)) -((-4274 (*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-600 *3 *2)) (-4 *2 (-709 *3))))) -(-13 (-709 |#1|) (-583 |#2|) (-10 -8 (-15 -4274 ($ |#2|)) (IF (|has| |#2| (-403 |#1|)) (-6 (-403 |#1|)) |%noBranch|) (IF (|has| |#2| (-352 |#1|)) (-6 (-352 |#1|)) |%noBranch|))) -((-4265 (($ $ |#2|) 10))) -(((-601 |#1| |#2|) (-10 -8 (-15 -4265 (|#1| |#1| |#2|))) (-602 |#2|) (-163)) (T -601)) -NIL -(-10 -8 (-15 -4265 (|#1| |#1| |#2|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3844 (($ $ $) 29)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 28 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-602 |#1|) (-134) (-163)) (T -602)) -((-3844 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-163)))) (-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-163)) (-4 *2 (-348))))) -(-13 (-682 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3844 ($ $ $)) (IF (|has| |t#1| (-348)) (-15 -4265 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-1010 |#1|) . T) ((-1052) . T)) -((-2327 (((-3 (-803 |#2|) #1="failed") |#2| (-278 |#2|) (-1106)) 82) (((-3 (-803 |#2|) (-2 (|:| |leftHandLimit| (-3 (-803 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-803 |#2|) #1#))) "failed") |#2| (-278 (-803 |#2|))) 104)) (-2326 (((-3 (-796 |#2|) "failed") |#2| (-278 (-796 |#2|))) 109))) -(((-603 |#1| |#2|) (-10 -7 (-15 -2327 ((-3 (-803 |#2|) (-2 (|:| |leftHandLimit| (-3 (-803 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-803 |#2|) #1#))) "failed") |#2| (-278 (-803 |#2|)))) (-15 -2326 ((-3 (-796 |#2|) "failed") |#2| (-278 (-796 |#2|)))) (-15 -2327 ((-3 (-803 |#2|) #1#) |#2| (-278 |#2|) (-1106)))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -603)) -((-2327 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-278 *3)) (-5 *5 (-1106)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-803 *3)) (-5 *1 (-603 *6 *3)))) (-2326 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-278 (-796 *3))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-796 *3)) (-5 *1 (-603 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-803 *3))) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (-803 *3) (-2 (|:| |leftHandLimit| (-3 (-803 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-803 *3) #1#))) "failed")) (-5 *1 (-603 *5 *3))))) -(-10 -7 (-15 -2327 ((-3 (-803 |#2|) (-2 (|:| |leftHandLimit| (-3 (-803 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-803 |#2|) #1#))) "failed") |#2| (-278 (-803 |#2|)))) (-15 -2326 ((-3 (-796 |#2|) "failed") |#2| (-278 (-796 |#2|)))) (-15 -2327 ((-3 (-803 |#2|) #1#) |#2| (-278 |#2|) (-1106)))) -((-2327 (((-3 (-803 (-392 (-905 |#1|))) #1="failed") (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))) (-1106)) 80) (((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2="failed") (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|)))) 20) (((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2#) (-392 (-905 |#1|)) (-278 (-803 (-905 |#1|)))) 35)) (-2326 (((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|)))) 23) (((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-796 (-905 |#1|)))) 43))) -(((-604 |#1|) (-10 -7 (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2="failed") (-392 (-905 |#1|)) (-278 (-803 (-905 |#1|))))) (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2#) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -2326 ((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-796 (-905 |#1|))))) (-15 -2326 ((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) #1#) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))) (-1106)))) (-436)) (T -604)) -((-2327 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-278 (-392 (-905 *6)))) (-5 *5 (-1106)) (-5 *3 (-392 (-905 *6))) (-4 *6 (-436)) (-5 *2 (-803 *3)) (-5 *1 (-604 *6)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-436)) (-5 *2 (-796 *3)) (-5 *1 (-604 *5)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-796 (-905 *5)))) (-4 *5 (-436)) (-5 *2 (-796 (-392 (-905 *5)))) (-5 *1 (-604 *5)) (-5 *3 (-392 (-905 *5))))) (-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-436)) (-5 *2 (-3 (-803 *3) (-2 (|:| |leftHandLimit| (-3 (-803 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-803 *3) #1#))) #2="failed")) (-5 *1 (-604 *5)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-803 (-905 *5)))) (-4 *5 (-436)) (-5 *2 (-3 (-803 (-392 (-905 *5))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 *5))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 *5))) #1#))) #2#)) (-5 *1 (-604 *5)) (-5 *3 (-392 (-905 *5)))))) -(-10 -7 (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2="failed") (-392 (-905 |#1|)) (-278 (-803 (-905 |#1|))))) (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2#) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -2326 ((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-796 (-905 |#1|))))) (-15 -2326 ((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) #1#) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))) (-1106)))) -((-2330 (((-3 (-1205 (-392 |#1|)) "failed") (-1205 |#2|) |#2|) 57 (-3636 (|has| |#1| (-348)))) (((-3 (-1205 |#1|) "failed") (-1205 |#2|) |#2|) 42 (|has| |#1| (-348)))) (-2328 (((-111) (-1205 |#2|)) 30)) (-2329 (((-3 (-1205 |#1|) "failed") (-1205 |#2|)) 33))) -(((-605 |#1| |#2|) (-10 -7 (-15 -2328 ((-111) (-1205 |#2|))) (-15 -2329 ((-3 (-1205 |#1|) "failed") (-1205 |#2|))) (IF (|has| |#1| (-348)) (-15 -2330 ((-3 (-1205 |#1|) "failed") (-1205 |#2|) |#2|)) (-15 -2330 ((-3 (-1205 (-392 |#1|)) "failed") (-1205 |#2|) |#2|)))) (-533) (-606 |#1|)) (T -605)) -((-2330 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 *5)) (-3636 (-4 *5 (-348))) (-4 *5 (-533)) (-5 *2 (-1205 (-392 *5))) (-5 *1 (-605 *5 *4)))) (-2330 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 *5)) (-4 *5 (-348)) (-4 *5 (-533)) (-5 *2 (-1205 *5)) (-5 *1 (-605 *5 *4)))) (-2329 (*1 *2 *3) (|partial| -12 (-5 *3 (-1205 *5)) (-4 *5 (-606 *4)) (-4 *4 (-533)) (-5 *2 (-1205 *4)) (-5 *1 (-605 *4 *5)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1205 *5)) (-4 *5 (-606 *4)) (-4 *4 (-533)) (-5 *2 (-111)) (-5 *1 (-605 *4 *5))))) -(-10 -7 (-15 -2328 ((-111) (-1205 |#2|))) (-15 -2329 ((-3 (-1205 |#1|) "failed") (-1205 |#2|))) (IF (|has| |#1| (-348)) (-15 -2330 ((-3 (-1205 |#1|) "failed") (-1205 |#2|) |#2|)) (-15 -2330 ((-3 (-1205 (-392 |#1|)) "failed") (-1205 |#2|) |#2|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2331 (((-653 |#1|) (-653 $)) 34) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 33)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-606 |#1|) (-134) (-1004)) (T -606)) -((-2331 (*1 *2 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-606 *4)) (-4 *4 (-1004)) (-5 *2 (-653 *4)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *1)) (-5 *4 (-1205 *1)) (-4 *1 (-606 *5)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -1676 (-653 *5)) (|:| |vec| (-1205 *5))))))) -(-13 (-1004) (-10 -8 (-15 -2331 ((-653 |t#1|) (-653 $))) (-15 -2331 ((-2 (|:| -1676 (-653 |t#1|)) (|:| |vec| (-1205 |t#1|))) (-653 $) (-1205 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-4115 (($ $) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| |#1| (-811))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-3209 (($ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) NIL (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-2334 (($ $ $) 32 (|has| |#1| (-1052)))) (-2333 (($ $ $) 34 (|has| |#1| (-1052)))) (-2332 (($ $ $) 37 (|has| |#1| (-1052)))) (-1607 (($ (-1 (-111) |#1|) $) NIL)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4114 ((|#1| $) NIL)) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-4117 (($ $) NIL) (($ $ (-735)) NIL)) (-2424 (($ $) NIL (|has| |#1| (-1052)))) (-1375 (($ $) 31 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) NIL)) (-3725 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-3738 (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052))) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) (-1 (-111) |#1|) $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-2336 (((-111) $) 9)) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2337 (($) 7)) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3832 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 33 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3856 (($ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-4116 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-3929 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-3762 (((-111) $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1172 (-526))) NIL) ((|#1| $ (-526)) 36) ((|#1| $ (-526) |#1|) NIL)) (-3329 (((-526) $ $) NIL)) (-1608 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-3955 (((-111) $) NIL)) (-4110 (($ $) NIL)) (-4108 (($ $) NIL (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 45 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-3775 (($ |#1| $) 10)) (-4109 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4120 (($ $ $) 30) (($ |#1| $) NIL) (($ (-607 $)) NIL) (($ $ |#1|) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2335 (($ $ $) 11)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2803 (((-1106) $) 26 (|has| |#1| (-785))) (((-1106) $ (-111)) 27 (|has| |#1| (-785))) (((-1211) (-787) $) 28 (|has| |#1| (-785))) (((-1211) (-787) $ (-111)) 29 (|has| |#1| (-785)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-607 |#1|) (-13 (-631 |#1|) (-10 -8 (-15 -2337 ($)) (-15 -2336 ((-111) $)) (-15 -3775 ($ |#1| $)) (-15 -2335 ($ $ $)) (IF (|has| |#1| (-1052)) (PROGN (-15 -2334 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2332 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|))) (-1159)) (T -607)) -((-2337 (*1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-607 *3)) (-4 *3 (-1159)))) (-3775 (*1 *1 *2 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159)))) (-2335 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159)))) (-2334 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159)))) (-2333 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159)))) (-2332 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159))))) -(-13 (-631 |#1|) (-10 -8 (-15 -2337 ($)) (-15 -2336 ((-111) $)) (-15 -3775 ($ |#1| $)) (-15 -2335 ($ $ $)) (IF (|has| |#1| (-1052)) (PROGN (-15 -2334 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2332 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|))) -((-4160 (((-607 |#2|) (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|) 16)) (-4161 ((|#2| (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|) 18)) (-4275 (((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)) 13))) -(((-608 |#1| |#2|) (-10 -7 (-15 -4160 ((-607 |#2|) (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|)) (-15 -4275 ((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)))) (-1159) (-1159)) (T -608)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-607 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-607 *6)) (-5 *1 (-608 *5 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-607 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-608 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-607 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-5 *2 (-607 *5)) (-5 *1 (-608 *6 *5))))) -(-10 -7 (-15 -4160 ((-607 |#2|) (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|)) (-15 -4275 ((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)))) -((-3741 ((|#2| (-607 |#1|) (-607 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-607 |#1|) (-607 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) |#2|) 17) ((|#2| (-607 |#1|) (-607 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|)) 12))) -(((-609 |#1| |#2|) (-10 -7 (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|))) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1|)) (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) |#2|)) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1| |#2|)) (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) (-1 |#2| |#1|))) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1| (-1 |#2| |#1|)))) (-1052) (-1159)) (T -609)) -((-3741 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1052)) (-4 *2 (-1159)) (-5 *1 (-609 *5 *2)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-607 *5)) (-5 *4 (-607 *6)) (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *1 (-609 *5 *6)))) (-3741 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-4 *5 (-1052)) (-4 *2 (-1159)) (-5 *1 (-609 *5 *2)))) (-3741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 *5)) (-4 *6 (-1052)) (-4 *5 (-1159)) (-5 *2 (-1 *5 *6)) (-5 *1 (-609 *6 *5)))) (-3741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-4 *5 (-1052)) (-4 *2 (-1159)) (-5 *1 (-609 *5 *2)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *6)) (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *2 (-1 *6 *5)) (-5 *1 (-609 *5 *6))))) -(-10 -7 (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|))) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1|)) (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) |#2|)) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1| |#2|)) (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) (-1 |#2| |#1|))) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1| (-1 |#2| |#1|)))) -((-4275 (((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|)) 13))) -(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|)))) (-1159) (-1159) (-1159)) (T -610)) -((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-607 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-607 *8)) (-5 *1 (-610 *6 *7 *8))))) -(-10 -7 (-15 -4275 ((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|)))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11) (((-1128) $) NIL) ((|#1| $) 8)) (-3353 (((-111) $ $) NIL))) -(((-611 |#1|) (-13 (-1035) (-583 |#1|)) (-1052)) (T -611)) -NIL -(-13 (-1035) (-583 |#1|)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2338 (($ |#1| |#1| $) 43)) (-1244 (((-111) $ (-735)) NIL)) (-1607 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2424 (($ $) 45)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) 52 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 9 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 37)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) 46)) (-3929 (($ |#1| $) 26) (($ |#1| $ (-735)) 42)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1307 ((|#1| $) 48)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 21)) (-3887 (($) 25)) (-2339 (((-111) $) 50)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 59)) (-1499 (($) 23) (($ (-607 |#1|)) 18)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) 56 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 19)) (-4287 (((-515) $) 34 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4274 (((-823) $) 14 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 22)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 61 (|has| |#1| (-1052)))) (-4273 (((-735) $) 16 (|has| $ (-6 -4310))))) -(((-612 |#1|) (-13 (-659 |#1|) (-10 -8 (-6 -4310) (-15 -2339 ((-111) $)) (-15 -2338 ($ |#1| |#1| $)))) (-1052)) (T -612)) -((-2339 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-612 *3)) (-4 *3 (-1052)))) (-2338 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-1052))))) -(-13 (-659 |#1|) (-10 -8 (-6 -4310) (-15 -2339 ((-111) $)) (-15 -2338 ($ |#1| |#1| $)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23))) -(((-613 |#1|) (-134) (-1011)) (T -613)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1011))))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL)) (-4141 (($ $ (-548) (-486 |#1| |#3|)) NIL)) (-4131 (($ $ (-548) (-486 |#1| |#2|)) NIL)) (-3030 (($) NIL T CONST)) (-3717 (((-486 |#1| |#3|) $ (-548)) NIL)) (-3971 ((|#1| $ (-548) (-548) |#1|) NIL)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-4205 (((-745) $) NIL)) (-3550 (($ (-745) (-745) |#1|) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 (((-486 |#1| |#2|) $ (-548)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-487 |#1| |#2| |#3|) (-56 |#1| (-486 |#1| |#3|) (-486 |#1| |#2|)) (-1172) (-548) (-548)) (T -487)) +NIL +(-56 |#1| (-486 |#1| |#3|) (-486 |#1| |#2|)) +((-3594 (((-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745)) 27)) (-3582 (((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745)) 34)) (-2318 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)) 85))) +(((-488 |#1| |#2| |#3|) (-10 -7 (-15 -3582 ((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745))) (-15 -3594 ((-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745))) (-15 -2318 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)))) (-341) (-1194 |#1|) (-1194 |#2|)) (T -488)) +((-2318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-2 (|:| -2877 (-663 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-663 *7))))) (-5 *5 (-745)) (-4 *8 (-1194 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| -2877 (-663 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-663 *7)))) (-5 *1 (-488 *6 *7 *8)))) (-3594 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-4 *5 (-341)) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2877 (-663 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-663 *6))))) (-5 *1 (-488 *5 *6 *7)) (-5 *3 (-2 (|:| -2877 (-663 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-663 *6)))) (-4 *7 (-1194 *6)))) (-3582 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-745)) (-4 *3 (-341)) (-4 *5 (-1194 *3)) (-5 *2 (-619 (-1131 *3))) (-5 *1 (-488 *3 *5 *6)) (-4 *6 (-1194 *5))))) +(-10 -7 (-15 -3582 ((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745))) (-15 -3594 ((-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745))) (-15 -2318 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)))) +((-3661 (((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))) 62)) (-3606 ((|#1| (-663 |#1|) |#1| (-745)) 25)) (-3627 (((-745) (-745) (-745)) 30)) (-3650 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 42)) (-3638 (((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|) 50) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 47)) (-3616 ((|#1| (-663 |#1|) (-663 |#1|) |#1| (-548)) 29)) (-2077 ((|#1| (-663 |#1|)) 18))) +(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -2077 (|#1| (-663 |#1|))) (-15 -3606 (|#1| (-663 |#1|) |#1| (-745))) (-15 -3616 (|#1| (-663 |#1|) (-663 |#1|) |#1| (-548))) (-15 -3627 ((-745) (-745) (-745))) (-15 -3638 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3638 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -3650 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3661 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))))) (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $)))) (-1194 |#1|) (-401 |#1| |#2|)) (T -489)) +((-3661 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3650 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3638 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3638 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3627 (*1 *2 *2 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3616 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-548)) (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *5 (-1194 *2)) (-5 *1 (-489 *2 *5 *6)) (-4 *6 (-401 *2 *5)))) (-3606 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-745)) (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *5 (-1194 *2)) (-5 *1 (-489 *2 *5 *6)) (-4 *6 (-401 *2 *5)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *4 (-1194 *2)) (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-5 *1 (-489 *2 *4 *5)) (-4 *5 (-401 *2 *4))))) +(-10 -7 (-15 -2077 (|#1| (-663 |#1|))) (-15 -3606 (|#1| (-663 |#1|) |#1| (-745))) (-15 -3616 (|#1| (-663 |#1|) (-663 |#1|) |#1| (-548))) (-15 -3627 ((-745) (-745) (-745))) (-15 -3638 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3638 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -3650 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3661 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))))) +((-3730 (((-112) $ $) NIL)) (-1258 (($ $) NIL)) (-2218 (($ $ $) 35)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-821)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2490 (($ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-112) $ (-1185 (-548)) (-112)) NIL (|has| $ (-6 -4328))) (((-112) $ (-548) (-112)) 36 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-3699 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-2061 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-3971 (((-112) $ (-548) (-112)) NIL (|has| $ (-6 -4328)))) (-3899 (((-112) $ (-548)) NIL)) (-2621 (((-548) (-112) $ (-548)) NIL (|has| (-112) (-1063))) (((-548) (-112) $) NIL (|has| (-112) (-1063))) (((-548) (-1 (-112) (-112)) $) NIL)) (-1934 (((-619 (-112)) $) NIL (|has| $ (-6 -4327)))) (-4168 (($ $ $) 33)) (-3958 (($ $) NIL)) (-4078 (($ $ $) NIL)) (-3550 (($ (-745) (-112)) 23)) (-4293 (($ $ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 8 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL)) (-2913 (($ $ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2342 (((-619 (-112)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL)) (-3960 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ (-112) $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-112) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4159 (($ $ (-112)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-112)) (-619 (-112))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-286 (-112)))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4223 (((-619 (-112)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 24)) (-3171 (($ $ (-1185 (-548))) NIL) (((-112) $ (-548)) 18) (((-112) $ (-548) (-112)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-3945 (((-745) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063)))) (((-745) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) 25)) (-2591 (((-524) $) NIL (|has| (-112) (-593 (-524))))) (-3754 (($ (-619 (-112))) NIL)) (-1831 (($ (-619 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3743 (((-832) $) 22)) (-3548 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-1723 (($ $ $) 31)) (-2818 (($ $ $) NIL)) (-3363 (($ $ $) 39)) (-3381 (($ $) 37)) (-3348 (($ $ $) 38)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 26)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 27)) (-2809 (($ $ $) NIL)) (-3643 (((-745) $) 10 (|has| $ (-6 -4327))))) +(((-490 |#1|) (-13 (-123) (-10 -8 (-15 -3381 ($ $)) (-15 -3363 ($ $ $)) (-15 -3348 ($ $ $)))) (-548)) (T -490)) +((-3381 (*1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) (-3363 (*1 *1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) (-3348 (*1 *1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548))))) +(-13 (-123) (-10 -8 (-15 -3381 ($ $)) (-15 -3363 ($ $ $)) (-15 -3348 ($ $ $)))) +((-3685 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|)) 35)) (-3674 (((-1131 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1131 |#4|)) 22)) (-3696 (((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|))) 46)) (-3709 (((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-491 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3674 (|#2| (-1 |#1| |#4|) (-1131 |#4|))) (-15 -3674 ((-1131 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3685 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|))) (-15 -3696 ((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|)))) (-15 -3709 ((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|))) (-1016) (-1194 |#1|) (-1194 |#2|) (-1016)) (T -491)) +((-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *7))) (-5 *1 (-491 *5 *6 *4 *7)) (-4 *4 (-1194 *6)))) (-3696 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-663 (-1131 *8))) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-1194 *5)) (-5 *2 (-663 *6)) (-5 *1 (-491 *5 *6 *7 *8)) (-4 *7 (-1194 *6)))) (-3685 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-491 *5 *2 *6 *7)) (-4 *6 (-1194 *2)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *4 (-1194 *5)) (-5 *2 (-1131 *7)) (-5 *1 (-491 *5 *4 *6 *7)) (-4 *6 (-1194 *4)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-491 *5 *2 *6 *7)) (-4 *6 (-1194 *2))))) +(-10 -7 (-15 -3674 (|#2| (-1 |#1| |#4|) (-1131 |#4|))) (-15 -3674 ((-1131 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3685 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|))) (-15 -3696 ((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|)))) (-15 -3709 ((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3721 (((-1223) $) 19)) (-3171 (((-1118) $ (-1135)) 23)) (-2487 (((-1223) $) 15)) (-3743 (((-832) $) 21) (($ (-1118)) 20)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 9)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 8))) +(((-492) (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $)) (-15 -3743 ($ (-1118)))))) (T -492)) +((-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1118)) (-5 *1 (-492)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-492)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-492)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-492))))) +(-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $)) (-15 -3743 ($ (-1118))))) +((-1396 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1374 ((|#1| |#4|) 10)) (-1386 ((|#3| |#4|) 17))) +(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1374 (|#1| |#4|)) (-15 -1386 (|#3| |#4|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-540) (-961 |#1|) (-365 |#1|) (-365 |#2|)) (T -493)) +((-1396 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-493 *4 *5 *6 *3)) (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) (-1386 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-4 *2 (-365 *4)) (-5 *1 (-493 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-493 *2 *4 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-365 *4))))) +(-10 -7 (-15 -1374 (|#1| |#4|)) (-15 -1386 (|#3| |#4|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3730 (((-112) $ $) NIL)) (-3841 (((-112) $ (-619 |#3|)) 105) (((-112) $) 106)) (-3324 (((-112) $) 149)) (-3747 (($ $ |#4|) 97) (($ $ |#4| (-619 |#3|)) 101)) (-3735 (((-1125 (-619 (-921 |#1|)) (-619 (-286 (-921 |#1|)))) (-619 |#4|)) 142 (|has| |#3| (-593 (-1135))))) (-3826 (($ $ $) 91) (($ $ |#4|) 89)) (-2266 (((-112) $) 148)) (-3790 (($ $) 109)) (-2546 (((-1118) $) NIL)) (-2520 (($ $ $) 83) (($ (-619 $)) 85)) (-3855 (((-112) |#4| $) 108)) (-3866 (((-112) $ $) 72)) (-3778 (($ (-619 |#4|)) 90)) (-3932 (((-1082) $) NIL)) (-3768 (($ (-619 |#4|)) 146)) (-3758 (((-112) $) 147)) (-1359 (($ $) 74)) (-3935 (((-619 |#4|) $) 63)) (-3813 (((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|)) NIL)) (-3880 (((-112) |#4| $) 77)) (-3402 (((-548) $ (-619 |#3|)) 110) (((-548) $) 111)) (-3743 (((-832) $) 145) (($ (-619 |#4|)) 86)) (-3801 (($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $))) NIL)) (-2214 (((-112) $ $) 73)) (-2290 (($ $ $) 93)) (** (($ $ (-745)) 96)) (* (($ $ $) 95))) +(((-494 |#1| |#2| |#3| |#4|) (-13 (-1063) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 -2290 ($ $ $)) (-15 -2266 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -3880 ((-112) |#4| $)) (-15 -3866 ((-112) $ $)) (-15 -3855 ((-112) |#4| $)) (-15 -3841 ((-112) $ (-619 |#3|))) (-15 -3841 ((-112) $)) (-15 -2520 ($ $ $)) (-15 -2520 ($ (-619 $))) (-15 -3826 ($ $ $)) (-15 -3826 ($ $ |#4|)) (-15 -1359 ($ $)) (-15 -3813 ((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|))) (-15 -3801 ($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)))) (-15 -3402 ((-548) $ (-619 |#3|))) (-15 -3402 ((-548) $)) (-15 -3790 ($ $)) (-15 -3778 ($ (-619 |#4|))) (-15 -3768 ($ (-619 |#4|))) (-15 -3758 ((-112) $)) (-15 -3935 ((-619 |#4|) $)) (-15 -3743 ($ (-619 |#4|))) (-15 -3747 ($ $ |#4|)) (-15 -3747 ($ $ |#4| (-619 |#3|))) (IF (|has| |#3| (-593 (-1135))) (-15 -3735 ((-1125 (-619 (-921 |#1|)) (-619 (-286 (-921 |#1|)))) (-619 |#4|))) |%noBranch|))) (-355) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -494)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2290 (*1 *1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2266 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3324 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3880 (*1 *2 *3 *1) (-12 (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3866 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3855 (*1 *2 *3 *1) (-12 (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3841 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3841 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2520 (*1 *1 *2) (-12 (-5 *2 (-619 (-494 *3 *4 *5 *6))) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3826 (*1 *1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3826 (*1 *1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-1359 (*1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) (-5 *2 (-2 (|:| |mval| (-663 *4)) (|:| |invmval| (-663 *4)) (|:| |genIdeal| (-494 *4 *5 *6 *7)))) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-663 *3)) (|:| |invmval| (-663 *3)) (|:| |genIdeal| (-494 *3 *4 *5 *6)))) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3402 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) (-5 *2 (-548)) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3402 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-548)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3790 (*1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)))) (-3758 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3935 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *6)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)))) (-3747 (*1 *1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-3747 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) (-5 *1 (-494 *4 *5 *6 *2)) (-4 *2 (-918 *4 *5 *6)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *6 (-593 (-1135))) (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1125 (-619 (-921 *4)) (-619 (-286 (-921 *4))))) (-5 *1 (-494 *4 *5 *6 *7))))) +(-13 (-1063) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 -2290 ($ $ $)) (-15 -2266 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -3880 ((-112) |#4| $)) (-15 -3866 ((-112) $ $)) (-15 -3855 ((-112) |#4| $)) (-15 -3841 ((-112) $ (-619 |#3|))) (-15 -3841 ((-112) $)) (-15 -2520 ($ $ $)) (-15 -2520 ($ (-619 $))) (-15 -3826 ($ $ $)) (-15 -3826 ($ $ |#4|)) (-15 -1359 ($ $)) (-15 -3813 ((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|))) (-15 -3801 ($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)))) (-15 -3402 ((-548) $ (-619 |#3|))) (-15 -3402 ((-548) $)) (-15 -3790 ($ $)) (-15 -3778 ($ (-619 |#4|))) (-15 -3768 ($ (-619 |#4|))) (-15 -3758 ((-112) $)) (-15 -3935 ((-619 |#4|) $)) (-15 -3743 ($ (-619 |#4|))) (-15 -3747 ($ $ |#4|)) (-15 -3747 ($ $ |#4| (-619 |#3|))) (IF (|has| |#3| (-593 (-1135))) (-15 -3735 ((-1125 (-619 (-921 |#1|)) (-619 (-286 (-921 |#1|)))) (-619 |#4|))) |%noBranch|))) +((-3891 (((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) 150)) (-3903 (((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) 151)) (-3715 (((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) 108)) (-1271 (((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) NIL)) (-3914 (((-619 (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) 153)) (-3925 (((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-619 (-834 |#1|))) 165))) +(((-495 |#1| |#2|) (-10 -7 (-15 -3891 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3903 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -1271 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3715 ((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3914 ((-619 (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3925 ((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-619 (-834 |#1|))))) (-619 (-1135)) (-745)) (T -495)) +((-3925 (*1 *2 *2 *3) (-12 (-5 *2 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))) (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *1 (-495 *4 *5)))) (-3914 (*1 *2 *3) (-12 (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-619 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548)))))) (-5 *1 (-495 *4 *5)) (-5 *3 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))))) (-3715 (*1 *2 *2) (-12 (-5 *2 (-494 (-399 (-548)) (-233 *4 (-745)) (-834 *3) (-240 *3 (-399 (-548))))) (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-495 *3 *4)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5))))) +(-10 -7 (-15 -3891 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3903 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -1271 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3715 ((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3914 ((-619 (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3925 ((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-619 (-834 |#1|))))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11) (((-1140) $) NIL) (((-1135) $) 8)) (-2214 (((-112) $ $) NIL))) +(((-496) (-13 (-1047) (-592 (-1135)))) (T -496)) +NIL +(-13 (-1047) (-592 (-1135))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) 12 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) 11) (($ $ $) 24)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 18))) +(((-497 |#1| |#2|) (-13 (-21) (-499 |#1| |#2|)) (-21) (-821)) (T -497)) +NIL +(-13 (-21) (-499 |#1| |#2|)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 12)) (-3030 (($) NIL T CONST)) (-1872 (($ $) 28)) (-2024 (($ |#1| |#2|) 25)) (-2540 (($ (-1 |#1| |#1|) $) 27)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) 29)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) 10 T CONST)) (-2214 (((-112) $ $) NIL)) (-2290 (($ $ $) 18)) (* (($ (-890) $) NIL) (($ (-745) $) 23))) +(((-498 |#1| |#2|) (-13 (-23) (-499 |#1| |#2|)) (-23) (-821)) (T -498)) +NIL +(-13 (-23) (-499 |#1| |#2|)) +((-3730 (((-112) $ $) 7)) (-1872 (($ $) 13)) (-2024 (($ |#1| |#2|) 16)) (-2540 (($ (-1 |#1| |#1|) $) 17)) (-3938 ((|#2| $) 14)) (-2197 ((|#1| $) 15)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(((-499 |#1| |#2|) (-138) (-1063) (-821)) (T -499)) +((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-821)))) (-2024 (*1 *1 *2 *3) (-12 (-4 *1 (-499 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-499 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1063)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-499 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-821)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-499 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821))))) +(-13 (-1063) (-10 -8 (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -2024 ($ |t#1| |t#2|)) (-15 -2197 (|t#1| $)) (-15 -3938 (|t#2| $)) (-15 -1872 ($ $)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 13)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) +(((-500 |#1| |#2|) (-13 (-766) (-499 |#1| |#2|)) (-766) (-821)) (T -500)) +NIL +(-13 (-766) (-499 |#1| |#2|)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2857 (($ $ $) 16)) (-4104 (((-3 $ "failed") $ $) 13)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) +(((-501 |#1| |#2|) (-13 (-767) (-499 |#1| |#2|)) (-767) (-821)) (T -501)) +NIL +(-13 (-767) (-499 |#1| |#2|)) +((-3730 (((-112) $ $) NIL)) (-1872 (($ $) 25)) (-2024 (($ |#1| |#2|) 22)) (-2540 (($ (-1 |#1| |#1|) $) 24)) (-3938 ((|#2| $) 27)) (-2197 ((|#1| $) 26)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 21)) (-2214 (((-112) $ $) 14))) +(((-502 |#1| |#2|) (-499 |#1| |#2|) (-1063) (-821)) (T -502)) +NIL +(-499 |#1| |#2|) +((-2460 (($ $ (-619 |#2|) (-619 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-503 |#1| |#2| |#3|) (-10 -8 (-15 -2460 (|#1| |#1| |#2| |#3|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#3|)))) (-504 |#2| |#3|) (-1063) (-1172)) (T -503)) +NIL +(-10 -8 (-15 -2460 (|#1| |#1| |#2| |#3|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#3|)))) +((-2460 (($ $ (-619 |#1|) (-619 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-504 |#1| |#2|) (-138) (-1063) (-1172)) (T -504)) +((-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *5)) (-4 *1 (-504 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1172)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-504 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1172))))) +(-13 (-10 -8 (-15 -2460 ($ $ |t#1| |t#2|)) (-15 -2460 ($ $ (-619 |t#1|) (-619 |t#2|))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 16)) (-1680 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $) 18)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3224 ((|#1| $ (-548)) 23)) (-4232 ((|#2| $ (-548)) 21)) (-1628 (($ (-1 |#1| |#1|) $) 46)) (-4222 (($ (-1 |#2| |#2|) $) 43)) (-2546 (((-1118) $) NIL)) (-4211 (($ $ $) 53 (|has| |#2| (-766)))) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 42) (($ |#1|) NIL)) (-1951 ((|#2| |#1| $) 49)) (-3107 (($) 11 T CONST)) (-2214 (((-112) $ $) 29)) (-2290 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-890) $) NIL) (($ (-745) $) 36) (($ |#2| |#1|) 31))) +(((-505 |#1| |#2| |#3|) (-315 |#1| |#2|) (-1063) (-130) |#2|) (T -505)) +NIL +(-315 |#1| |#2|) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-3952 (((-112) (-112)) 25)) (-2089 ((|#1| $ (-548) |#1|) 28 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) 52)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-2969 (($ $) 56 (|has| |#1| (-1063)))) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) 44)) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-3967 (($ $ (-548)) 13)) (-3977 (((-745) $) 11)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 23)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 21 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) 20 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2539 (($ $ $ (-548)) 51) (($ |#1| $ (-548)) 37)) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3987 (($ (-619 |#1|)) 29)) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) 19 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 40)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 16)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) 33) (($ $ (-1185 (-548))) NIL)) (-2668 (($ $ (-1185 (-548))) 50) (($ $ (-548)) 45)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) 41 (|has| $ (-6 -4328)))) (-2113 (($ $) 32)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-3659 (($ $ $) 42) (($ $ |#1|) 39)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 17 (|has| $ (-6 -4327))))) +(((-506 |#1| |#2|) (-13 (-19 |#1|) (-274 |#1|) (-10 -8 (-15 -3987 ($ (-619 |#1|))) (-15 -3977 ((-745) $)) (-15 -3967 ($ $ (-548))) (-15 -3952 ((-112) (-112))))) (-1172) (-548)) (T -506)) +((-3987 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-506 *3 *4)) (-14 *4 (-548)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) (-14 *4 (-548)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) (-14 *4 *2))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) (-14 *4 (-548))))) +(-13 (-19 |#1|) (-274 |#1|) (-10 -8 (-15 -3987 ($ (-619 |#1|))) (-15 -3977 ((-745) $)) (-15 -3967 ($ $ (-548))) (-15 -3952 ((-112) (-112))))) +((-3730 (((-112) $ $) NIL)) (-4009 (((-1140) $) 11)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3998 (((-1140) $) 13)) (-2897 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-507) (-13 (-1047) (-10 -8 (-15 -2897 ((-1140) $)) (-15 -4009 ((-1140) $)) (-15 -3998 ((-1140) $))))) (T -507)) +((-2897 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507))))) +(-13 (-1047) (-10 -8 (-15 -2897 ((-1140) $)) (-15 -4009 ((-1140) $)) (-15 -3998 ((-1140) $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (((-562 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-562 |#1|) (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-562 |#1|) (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| (-562 |#1|) (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-562 |#1|) "failed") $) NIL)) (-2375 (((-562 |#1|) $) NIL)) (-2455 (($ (-1218 (-562 |#1|))) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-562 |#1|) (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-562 |#1|) (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| (-562 |#1|) (-360)))) (-3727 (((-112) $) NIL (|has| (-562 |#1|) (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360)))) (($ $) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| (-562 |#1|) (-360))) (((-807 (-890)) $) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| (-562 |#1|) (-360)))) (-2866 (((-112) $) NIL (|has| (-562 |#1|) (-360)))) (-3910 (((-562 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-562 |#1|) (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-562 |#1|) (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 (-562 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-562 |#1|) (-360)))) (-2855 (((-890) $) NIL (|has| (-562 |#1|) (-360)))) (-4288 (((-1131 (-562 |#1|)) $) NIL (|has| (-562 |#1|) (-360)))) (-4278 (((-1131 (-562 |#1|)) $) NIL (|has| (-562 |#1|) (-360))) (((-3 (-1131 (-562 |#1|)) "failed") $ $) NIL (|has| (-562 |#1|) (-360)))) (-4300 (($ $ (-1131 (-562 |#1|))) NIL (|has| (-562 |#1|) (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-562 |#1|) (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| (-562 |#1|) (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL (|has| (-562 |#1|) (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-562 |#1|) (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| (-562 |#1|) (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| (-562 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-562 |#1|) (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 (-562 |#1|))) NIL)) (-3655 (($) NIL (|has| (-562 |#1|) (-360)))) (-1255 (($) NIL (|has| (-562 |#1|) (-360)))) (-2447 (((-1218 (-562 |#1|)) $) NIL) (((-663 (-562 |#1|)) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-562 |#1|) (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-562 |#1|)) NIL)) (-4017 (($ $) NIL (|has| (-562 |#1|) (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| (-562 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-562 |#1|) (-360)))) (-3296 (($ $) NIL (|has| (-562 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-562 |#1|) (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ (-562 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-562 |#1|)) NIL) (($ (-562 |#1|) $) NIL))) +(((-508 |#1| |#2|) (-321 (-562 |#1|)) (-890) (-890)) (T -508)) +NIL +(-321 (-562 |#1|)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) 35)) (-4141 (($ $ (-548) |#4|) NIL)) (-4131 (($ $ (-548) |#5|) NIL)) (-3030 (($) NIL T CONST)) (-3717 ((|#4| $ (-548)) NIL)) (-3971 ((|#1| $ (-548) (-548) |#1|) 34)) (-3899 ((|#1| $ (-548) (-548)) 32)) (-1934 (((-619 |#1|) $) NIL)) (-4205 (((-745) $) 28)) (-3550 (($ (-745) (-745) |#1|) 25)) (-4216 (((-745) $) 30)) (-4282 (((-112) $ (-745)) NIL)) (-3764 (((-548) $) 26)) (-3742 (((-548) $) 27)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) 29)) (-3729 (((-548) $) 31)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) 38 (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 14)) (-3319 (($) 16)) (-3171 ((|#1| $ (-548) (-548)) 33) ((|#1| $ (-548) (-548) |#1|) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 ((|#5| $ (-548)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-509 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1172) (-548) (-548) (-365 |#1|) (-365 |#1|)) (T -509)) +NIL +(-56 |#1| |#4| |#5|) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-1988 ((|#1| $) NIL)) (-1272 (($ $) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 59 (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4328)))) (-2490 (($ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) 23 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 21 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4328))) (($ $ "rest" $) 24 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-1975 ((|#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3499 (($ $) 28 (|has| $ (-6 -4328)))) (-2796 (($ $) 29)) (-3465 (($ $) 18) (($ $ (-745)) 32)) (-2969 (($ $) 55 (|has| |#1| (-1063)))) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3699 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-2621 (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063))) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) (-1 (-112) |#1|) $) NIL)) (-1934 (((-619 |#1|) $) 27 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 31 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2913 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (($ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) 51 (|has| |#1| (-1063)))) (-3724 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2539 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) 13) (($ $ (-745)) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3712 (((-112) $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 12)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) 17)) (-3319 (($) 16)) (-3171 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1185 (-548))) NIL) ((|#1| $ (-548)) NIL) ((|#1| $ (-548) |#1|) NIL)) (-4234 (((-548) $ $) NIL)) (-2668 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2740 (((-112) $) 34)) (-3672 (($ $) NIL)) (-3648 (($ $) NIL (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) 36)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) 35)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 26)) (-3659 (($ $ $) 54) (($ $ |#1|) NIL)) (-1831 (($ $ $) NIL) (($ |#1| $) 10) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3743 (((-832) $) 46 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 48 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 9 (|has| $ (-6 -4327))))) +(((-510 |#1| |#2|) (-640 |#1|) (-1172) (-548)) (T -510)) +NIL +(-640 |#1|) +((-3691 ((|#4| |#4|) 27)) (-2103 (((-745) |#4|) 32)) (-3681 (((-745) |#4|) 33)) (-3669 (((-619 |#3|) |#4|) 40 (|has| |#3| (-6 -4328)))) (-2369 (((-3 |#4| "failed") |#4|) 51)) (-4020 ((|#4| |#4|) 44)) (-2068 ((|#1| |#4|) 43))) +(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3691 (|#4| |#4|)) (-15 -2103 ((-745) |#4|)) (-15 -3681 ((-745) |#4|)) (IF (|has| |#3| (-6 -4328)) (-15 -3669 ((-619 |#3|) |#4|)) |%noBranch|) (-15 -2068 (|#1| |#4|)) (-15 -4020 (|#4| |#4|)) (-15 -2369 ((-3 |#4| "failed") |#4|))) (-355) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|)) (T -511)) +((-2369 (*1 *2 *2) (|partial| -12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-355)) (-5 *1 (-511 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) (-3669 (*1 *2 *3) (-12 (|has| *6 (-6 -4328)) (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-619 *6)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2103 (*1 *2 *3) (-12 (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(-10 -7 (-15 -3691 (|#4| |#4|)) (-15 -2103 ((-745) |#4|)) (-15 -3681 ((-745) |#4|)) (IF (|has| |#3| (-6 -4328)) (-15 -3669 ((-619 |#3|) |#4|)) |%noBranch|) (-15 -2068 (|#1| |#4|)) (-15 -4020 (|#4| |#4|)) (-15 -2369 ((-3 |#4| "failed") |#4|))) +((-3691 ((|#8| |#4|) 20)) (-3669 (((-619 |#3|) |#4|) 29 (|has| |#7| (-6 -4328)))) (-2369 (((-3 |#8| "failed") |#4|) 23))) +(((-512 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3691 (|#8| |#4|)) (-15 -2369 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4328)) (-15 -3669 ((-619 |#3|) |#4|)) |%noBranch|)) (-540) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|) (-961 |#1|) (-365 |#5|) (-365 |#5|) (-661 |#5| |#6| |#7|)) (T -512)) +((-3669 (*1 *2 *3) (-12 (|has| *9 (-6 -4328)) (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-961 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-619 *6)) (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-661 *4 *5 *6)) (-4 *10 (-661 *7 *8 *9)))) (-2369 (*1 *2 *3) (|partial| -12 (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) (-3691 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7))))) +(-10 -7 (-15 -3691 (|#8| |#4|)) (-15 -2369 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4328)) (-15 -3669 ((-619 |#3|) |#4|)) |%noBranch|)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745) (-745)) NIL)) (-4025 (($ $ $) NIL)) (-3508 (($ (-581 |#1| |#3|)) NIL) (($ $) NIL)) (-3785 (((-112) $) NIL)) (-4015 (($ $ (-548) (-548)) 12)) (-4004 (($ $ (-548) (-548)) NIL)) (-3992 (($ $ (-548) (-548) (-548) (-548)) NIL)) (-4048 (($ $) NIL)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3982 (($ $ (-548) (-548) $) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548)) $) NIL)) (-4141 (($ $ (-548) (-581 |#1| |#3|)) NIL)) (-4131 (($ $ (-548) (-581 |#1| |#2|)) NIL)) (-2114 (($ (-745) |#1|) NIL)) (-3030 (($) NIL T CONST)) (-3691 (($ $) 21 (|has| |#1| (-299)))) (-3717 (((-581 |#1| |#3|) $ (-548)) NIL)) (-2103 (((-745) $) 24 (|has| |#1| (-540)))) (-3971 ((|#1| $ (-548) (-548) |#1|) NIL)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-3681 (((-745) $) 26 (|has| |#1| (-540)))) (-3669 (((-619 (-581 |#1| |#2|)) $) 29 (|has| |#1| (-540)))) (-4205 (((-745) $) NIL)) (-3550 (($ (-745) (-745) |#1|) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#1| $) 19 (|has| |#1| (-6 (-4329 "*"))))) (-3764 (((-548) $) 10)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) 11)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#1|))) NIL)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2401 (((-619 (-619 |#1|)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2369 (((-3 $ "failed") $) 33 (|has| |#1| (-355)))) (-4036 (($ $ $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548))) NIL)) (-2102 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL)) (-3797 (((-112) $) NIL)) (-2068 ((|#1| $) 17 (|has| |#1| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 (((-581 |#1| |#2|) $ (-548)) NIL)) (-3743 (($ (-581 |#1| |#2|)) NIL) (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-548) $) NIL) (((-581 |#1| |#2|) $ (-581 |#1| |#2|)) NIL) (((-581 |#1| |#3|) (-581 |#1| |#3|) $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-513 |#1| |#2| |#3|) (-661 |#1| (-581 |#1| |#3|) (-581 |#1| |#2|)) (-1016) (-548) (-548)) (T -513)) +NIL +(-661 |#1| (-581 |#1| |#3|) (-581 |#1| |#2|)) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-4031 (((-619 (-1171)) $) 13)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL) (($ (-619 (-1171))) 11)) (-2214 (((-112) $ $) NIL))) +(((-514) (-13 (-1047) (-10 -8 (-15 -3743 ($ (-619 (-1171)))) (-15 -4031 ((-619 (-1171)) $))))) (T -514)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-514)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-514))))) +(-13 (-1047) (-10 -8 (-15 -3743 ($ (-619 (-1171)))) (-15 -4031 ((-619 (-1171)) $)))) +((-3730 (((-112) $ $) NIL)) (-4042 (((-1140) $) 13)) (-2546 (((-1118) $) NIL)) (-2770 (((-1135) $) 11)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-515) (-13 (-1047) (-10 -8 (-15 -2770 ((-1135) $)) (-15 -4042 ((-1140) $))))) (T -515)) +((-2770 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-515)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-515))))) +(-13 (-1047) (-10 -8 (-15 -2770 ((-1135) $)) (-15 -4042 ((-1140) $)))) +((-2778 (((-1082) $ (-128)) 17))) +(((-516 |#1|) (-10 -8 (-15 -2778 ((-1082) |#1| (-128)))) (-517)) (T -516)) +NIL +(-10 -8 (-15 -2778 ((-1082) |#1| (-128)))) +((-2778 (((-1082) $ (-128)) 7)) (-2786 (((-1082) $) 8)) (-3972 (($ $) 6))) +(((-517) (-138)) (T -517)) +((-2786 (*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-1082)))) (-2778 (*1 *2 *1 *3) (-12 (-4 *1 (-517)) (-5 *3 (-128)) (-5 *2 (-1082))))) +(-13 (-170) (-10 -8 (-15 -2786 ((-1082) $)) (-15 -2778 ((-1082) $ (-128))))) +(((-170) . T)) +((-2811 (((-1131 |#1|) (-745)) 76)) (-2707 (((-1218 |#1|) (-1218 |#1|) (-890)) 69)) (-2792 (((-1223) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) |#1|) 84)) (-2827 (((-1218 |#1|) (-1218 |#1|) (-745)) 36)) (-2545 (((-1218 |#1|) (-890)) 71)) (-2847 (((-1218 |#1|) (-1218 |#1|) (-548)) 24)) (-2802 (((-1131 |#1|) (-1218 |#1|)) 77)) (-2887 (((-1218 |#1|) (-890)) 95)) (-2866 (((-112) (-1218 |#1|)) 80)) (-3910 (((-1218 |#1|) (-1218 |#1|) (-890)) 62)) (-2898 (((-1131 |#1|) (-1218 |#1|)) 89)) (-2855 (((-890) (-1218 |#1|)) 59)) (-2153 (((-1218 |#1|) (-1218 |#1|)) 30)) (-3337 (((-1218 |#1|) (-890) (-890)) 97)) (-2837 (((-1218 |#1|) (-1218 |#1|) (-1082) (-1082)) 23)) (-2821 (((-1218 |#1|) (-1218 |#1|) (-745) (-1082)) 37)) (-2877 (((-1218 (-1218 |#1|)) (-890)) 94)) (-2309 (((-1218 |#1|) (-1218 |#1|) (-1218 |#1|)) 81)) (** (((-1218 |#1|) (-1218 |#1|) (-548)) 45)) (* (((-1218 |#1|) (-1218 |#1|) (-1218 |#1|)) 25))) +(((-518 |#1|) (-10 -7 (-15 -2792 ((-1223) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) |#1|)) (-15 -2545 ((-1218 |#1|) (-890))) (-15 -3337 ((-1218 |#1|) (-890) (-890))) (-15 -2802 ((-1131 |#1|) (-1218 |#1|))) (-15 -2811 ((-1131 |#1|) (-745))) (-15 -2821 ((-1218 |#1|) (-1218 |#1|) (-745) (-1082))) (-15 -2827 ((-1218 |#1|) (-1218 |#1|) (-745))) (-15 -2837 ((-1218 |#1|) (-1218 |#1|) (-1082) (-1082))) (-15 -2847 ((-1218 |#1|) (-1218 |#1|) (-548))) (-15 ** ((-1218 |#1|) (-1218 |#1|) (-548))) (-15 * ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -2309 ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -3910 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2707 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2153 ((-1218 |#1|) (-1218 |#1|))) (-15 -2855 ((-890) (-1218 |#1|))) (-15 -2866 ((-112) (-1218 |#1|))) (-15 -2877 ((-1218 (-1218 |#1|)) (-890))) (-15 -2887 ((-1218 |#1|) (-890))) (-15 -2898 ((-1131 |#1|) (-1218 |#1|)))) (-341)) (T -518)) +((-2898 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-1131 *4)) (-5 *1 (-518 *4)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 *4))) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-518 *4)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-890)) (-5 *1 (-518 *4)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2309 (*1 *2 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-548)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2847 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-548)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2837 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1082)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2827 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2821 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1218 *5)) (-5 *3 (-745)) (-5 *4 (-1082)) (-4 *5 (-341)) (-5 *1 (-518 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1131 *4)) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-1131 *4)) (-5 *1 (-518 *4)))) (-3337 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-4 *4 (-341)) (-5 *2 (-1223)) (-5 *1 (-518 *4))))) +(-10 -7 (-15 -2792 ((-1223) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) |#1|)) (-15 -2545 ((-1218 |#1|) (-890))) (-15 -3337 ((-1218 |#1|) (-890) (-890))) (-15 -2802 ((-1131 |#1|) (-1218 |#1|))) (-15 -2811 ((-1131 |#1|) (-745))) (-15 -2821 ((-1218 |#1|) (-1218 |#1|) (-745) (-1082))) (-15 -2827 ((-1218 |#1|) (-1218 |#1|) (-745))) (-15 -2837 ((-1218 |#1|) (-1218 |#1|) (-1082) (-1082))) (-15 -2847 ((-1218 |#1|) (-1218 |#1|) (-548))) (-15 ** ((-1218 |#1|) (-1218 |#1|) (-548))) (-15 * ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -2309 ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -3910 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2707 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2153 ((-1218 |#1|) (-1218 |#1|))) (-15 -2855 ((-890) (-1218 |#1|))) (-15 -2866 ((-112) (-1218 |#1|))) (-15 -2877 ((-1218 (-1218 |#1|)) (-890))) (-15 -2887 ((-1218 |#1|) (-890))) (-15 -2898 ((-1131 |#1|) (-1218 |#1|)))) +((-1370 (((-1 |#1| |#1|) |#1|) 11)) (-2910 (((-1 |#1| |#1|)) 10))) +(((-519 |#1|) (-10 -7 (-15 -2910 ((-1 |#1| |#1|))) (-15 -1370 ((-1 |#1| |#1|) |#1|))) (-13 (-701) (-25))) (T -519)) +((-1370 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-519 *3)) (-4 *3 (-13 (-701) (-25))))) (-2910 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-519 *3)) (-4 *3 (-13 (-701) (-25)))))) +(-10 -7 (-15 -2910 ((-1 |#1| |#1|))) (-15 -1370 ((-1 |#1| |#1|) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2857 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ (-745) |#1|) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 (-745) (-745)) $) NIL)) (-3938 ((|#1| $) NIL)) (-2197 (((-745) $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 20)) (-3107 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) +(((-520 |#1|) (-13 (-767) (-499 (-745) |#1|)) (-821)) (T -520)) +NIL +(-13 (-767) (-499 (-745) |#1|)) +((-2931 (((-619 |#2|) (-1131 |#1|) |#3|) 83)) (-2942 (((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-410 (-1131 |#1|)) (-1131 |#1|))) 100)) (-2920 (((-1131 |#1|) (-663 |#1|)) 95))) +(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -2920 ((-1131 |#1|) (-663 |#1|))) (-15 -2931 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2942 ((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-410 (-1131 |#1|)) (-1131 |#1|))))) (-355) (-355) (-13 (-355) (-819))) (T -521)) +((-2942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *6)) (-5 *5 (-1 (-410 (-1131 *6)) (-1131 *6))) (-4 *6 (-355)) (-5 *2 (-619 (-2 (|:| |outval| *7) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 *7)))))) (-5 *1 (-521 *6 *7 *4)) (-4 *7 (-355)) (-4 *4 (-13 (-355) (-819))))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *5)) (-4 *5 (-355)) (-5 *2 (-619 *6)) (-5 *1 (-521 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819))))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-355)) (-5 *2 (-1131 *4)) (-5 *1 (-521 *4 *5 *6)) (-4 *5 (-355)) (-4 *6 (-13 (-355) (-819)))))) +(-10 -7 (-15 -2920 ((-1131 |#1|) (-663 |#1|))) (-15 -2931 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2942 ((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-410 (-1131 |#1|)) (-1131 |#1|))))) +((-2835 (((-814 (-548))) 12)) (-2845 (((-814 (-548))) 14)) (-1377 (((-807 (-548))) 9))) +(((-522) (-10 -7 (-15 -1377 ((-807 (-548)))) (-15 -2835 ((-814 (-548)))) (-15 -2845 ((-814 (-548)))))) (T -522)) +((-2845 (*1 *2) (-12 (-5 *2 (-814 (-548))) (-5 *1 (-522)))) (-2835 (*1 *2) (-12 (-5 *2 (-814 (-548))) (-5 *1 (-522)))) (-1377 (*1 *2) (-12 (-5 *2 (-807 (-548))) (-5 *1 (-522))))) +(-10 -7 (-15 -1377 ((-807 (-548)))) (-15 -2835 ((-814 (-548)))) (-15 -2845 ((-814 (-548))))) +((-2975 (((-524) (-1135)) 15)) (-2607 ((|#1| (-524)) 20))) +(((-523 |#1|) (-10 -7 (-15 -2975 ((-524) (-1135))) (-15 -2607 (|#1| (-524)))) (-1172)) (T -523)) +((-2607 (*1 *2 *3) (-12 (-5 *3 (-524)) (-5 *1 (-523 *2)) (-4 *2 (-1172)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-524)) (-5 *1 (-523 *4)) (-4 *4 (-1172))))) +(-10 -7 (-15 -2975 ((-524) (-1135))) (-15 -2607 (|#1| (-524)))) +((-3730 (((-112) $ $) NIL)) (-2953 (((-1118) $) 48)) (-2633 (((-112) $) 43)) (-3803 (((-1135) $) 44)) (-2643 (((-112) $) 41)) (-1504 (((-1118) $) 42)) (-3740 (($ (-1118)) 49)) (-2666 (((-112) $) NIL)) (-2684 (((-112) $) NIL)) (-2654 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-2860 (($ $ (-619 (-1135))) 20)) (-2607 (((-52) $) 22)) (-2624 (((-112) $) NIL)) (-3829 (((-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-3418 (($ $ (-619 (-1135)) (-1135)) 61)) (-2614 (((-112) $) NIL)) (-1335 (((-218) $) NIL)) (-3827 (($ $) 38)) (-2720 (((-832) $) NIL)) (-2383 (((-112) $ $) NIL)) (-3171 (($ $ (-548)) NIL) (($ $ (-619 (-548))) NIL)) (-1981 (((-619 $) $) 28)) (-3334 (((-1135) (-619 $)) 50)) (-2591 (($ (-619 $)) 54) (($ (-1118)) NIL) (($ (-1135)) 18) (($ (-548)) 8) (($ (-218)) 25) (($ (-832)) NIL) (((-1067) $) 11) (($ (-1067)) 12)) (-1899 (((-1135) (-1135) (-619 $)) 53)) (-3743 (((-832) $) 46)) (-3336 (($ $) 52)) (-3322 (($ $) 51)) (-2964 (($ $ (-619 $)) 58)) (-2675 (((-112) $) 27)) (-3107 (($) 9 T CONST)) (-3118 (($) 10 T CONST)) (-2214 (((-112) $ $) 62)) (-2309 (($ $ $) 67)) (-2290 (($ $ $) 63)) (** (($ $ (-745)) 66) (($ $ (-548)) 65)) (* (($ $ $) 64)) (-3643 (((-548) $) NIL))) +(((-524) (-13 (-1066 (-1118) (-1135) (-548) (-218) (-832)) (-593 (-1067)) (-10 -8 (-15 -2607 ((-52) $)) (-15 -2591 ($ (-1067))) (-15 -2964 ($ $ (-619 $))) (-15 -3418 ($ $ (-619 (-1135)) (-1135))) (-15 -2860 ($ $ (-619 (-1135)))) (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ (-548))) (-15 0 ($) -2325) (-15 1 ($) -2325) (-15 -3827 ($ $)) (-15 -2953 ((-1118) $)) (-15 -3740 ($ (-1118))) (-15 -3334 ((-1135) (-619 $))) (-15 -1899 ((-1135) (-1135) (-619 $)))))) (T -524)) +((-2607 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-524)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-524)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-524))) (-5 *1 (-524)))) (-3418 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1135)) (-5 *1 (-524)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-524)))) (-2290 (*1 *1 *1 *1) (-5 *1 (-524))) (* (*1 *1 *1 *1) (-5 *1 (-524))) (-2309 (*1 *1 *1 *1) (-5 *1 (-524))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-524)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-524)))) (-3107 (*1 *1) (-5 *1 (-524))) (-3118 (*1 *1) (-5 *1 (-524))) (-3827 (*1 *1 *1) (-5 *1 (-524))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-524)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-524)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-619 (-524))) (-5 *2 (-1135)) (-5 *1 (-524)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-524))) (-5 *1 (-524))))) +(-13 (-1066 (-1118) (-1135) (-548) (-218) (-832)) (-593 (-1067)) (-10 -8 (-15 -2607 ((-52) $)) (-15 -2591 ($ (-1067))) (-15 -2964 ($ $ (-619 $))) (-15 -3418 ($ $ (-619 (-1135)) (-1135))) (-15 -2860 ($ $ (-619 (-1135)))) (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ (-548))) (-15 (-3107) ($) -2325) (-15 (-3118) ($) -2325) (-15 -3827 ($ $)) (-15 -2953 ((-1118) $)) (-15 -3740 ($ (-1118))) (-15 -3334 ((-1135) (-619 $))) (-15 -1899 ((-1135) (-1135) (-619 $))))) +((-3761 ((|#2| |#2|) 17)) (-3738 ((|#2| |#2|) 13)) (-3771 ((|#2| |#2| (-548) (-548)) 20)) (-3750 ((|#2| |#2|) 15))) +(((-525 |#1| |#2|) (-10 -7 (-15 -3738 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3771 (|#2| |#2| (-548) (-548)))) (-13 (-540) (-145)) (-1209 |#1|)) (T -525)) +((-3771 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-548)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-525 *4 *2)) (-4 *2 (-1209 *4)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) (-4 *2 (-1209 *3)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) (-4 *2 (-1209 *3)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) (-4 *2 (-1209 *3))))) +(-10 -7 (-15 -3738 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3771 (|#2| |#2| (-548) (-548)))) +((-3007 (((-619 (-286 (-921 |#2|))) (-619 |#2|) (-619 (-1135))) 32)) (-2986 (((-619 |#2|) (-921 |#1|) |#3|) 53) (((-619 |#2|) (-1131 |#1|) |#3|) 52)) (-2996 (((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|) 91))) +(((-526 |#1| |#2| |#3|) (-10 -7 (-15 -2986 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2986 ((-619 |#2|) (-921 |#1|) |#3|)) (-15 -2996 ((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|)) (-15 -3007 ((-619 (-286 (-921 |#2|))) (-619 |#2|) (-619 (-1135))))) (-443) (-355) (-13 (-355) (-819))) (T -526)) +((-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1135))) (-4 *6 (-355)) (-5 *2 (-619 (-286 (-921 *6)))) (-5 *1 (-526 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-13 (-355) (-819))))) (-2996 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-526 *6 *7 *5)) (-4 *7 (-355)) (-4 *5 (-13 (-355) (-819))))) (-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-4 *5 (-443)) (-5 *2 (-619 *6)) (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819))))) (-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *5)) (-4 *5 (-443)) (-5 *2 (-619 *6)) (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819)))))) +(-10 -7 (-15 -2986 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2986 ((-619 |#2|) (-921 |#1|) |#3|)) (-15 -2996 ((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|)) (-15 -3007 ((-619 (-286 (-921 |#2|))) (-619 |#2|) (-619 (-1135))))) +((-3037 ((|#2| |#2| |#1|) 17)) (-3017 ((|#2| (-619 |#2|)) 27)) (-3027 ((|#2| (-619 |#2|)) 46))) +(((-527 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3017 (|#2| (-619 |#2|))) (-15 -3027 (|#2| (-619 |#2|))) (-15 -3037 (|#2| |#2| |#1|))) (-299) (-1194 |#1|) |#1| (-1 |#1| |#1| (-745))) (T -527)) +((-3037 (*1 *2 *2 *3) (-12 (-4 *3 (-299)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-745))) (-5 *1 (-527 *3 *2 *4 *5)) (-4 *2 (-1194 *3)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-527 *4 *2 *5 *6)) (-4 *4 (-299)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745))))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-527 *4 *2 *5 *6)) (-4 *4 (-299)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) +(-10 -7 (-15 -3017 (|#2| (-619 |#2|))) (-15 -3027 (|#2| (-619 |#2|))) (-15 -3037 (|#2| |#2| |#1|))) +((-1915 (((-410 (-1131 |#4|)) (-1131 |#4|) (-1 (-410 (-1131 |#3|)) (-1131 |#3|))) 80) (((-410 |#4|) |#4| (-1 (-410 (-1131 |#3|)) (-1131 |#3|))) 169))) +(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4| (-1 (-410 (-1131 |#3|)) (-1131 |#3|)))) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|) (-1 (-410 (-1131 |#3|)) (-1131 |#3|))))) (-821) (-767) (-13 (-299) (-145)) (-918 |#3| |#2| |#1|)) (T -528)) +((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 (-1131 *7)) (-1131 *7))) (-4 *7 (-13 (-299) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *8 (-918 *7 *6 *5)) (-5 *2 (-410 (-1131 *8))) (-5 *1 (-528 *5 *6 *7 *8)) (-5 *3 (-1131 *8)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 (-1131 *7)) (-1131 *7))) (-4 *7 (-13 (-299) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *2 (-410 *3)) (-5 *1 (-528 *5 *6 *7 *3)) (-4 *3 (-918 *7 *6 *5))))) +(-10 -7 (-15 -1915 ((-410 |#4|) |#4| (-1 (-410 (-1131 |#3|)) (-1131 |#3|)))) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|) (-1 (-410 (-1131 |#3|)) (-1131 |#3|))))) +((-3761 ((|#4| |#4|) 74)) (-3738 ((|#4| |#4|) 70)) (-3771 ((|#4| |#4| (-548) (-548)) 76)) (-3750 ((|#4| |#4|) 72))) +(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 (|#4| |#4|)) (-15 -3750 (|#4| |#4|)) (-15 -3761 (|#4| |#4|)) (-15 -3771 (|#4| |#4| (-548) (-548)))) (-13 (-355) (-360) (-593 (-548))) (-1194 |#1|) (-699 |#1| |#2|) (-1209 |#3|)) (T -529)) +((-3771 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-548)) (-4 *4 (-13 (-355) (-360) (-593 *3))) (-4 *5 (-1194 *4)) (-4 *6 (-699 *4 *5)) (-5 *1 (-529 *4 *5 *6 *2)) (-4 *2 (-1209 *6)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5))))) +(-10 -7 (-15 -3738 (|#4| |#4|)) (-15 -3750 (|#4| |#4|)) (-15 -3761 (|#4| |#4|)) (-15 -3771 (|#4| |#4| (-548) (-548)))) +((-3761 ((|#2| |#2|) 27)) (-3738 ((|#2| |#2|) 23)) (-3771 ((|#2| |#2| (-548) (-548)) 29)) (-3750 ((|#2| |#2|) 25))) +(((-530 |#1| |#2|) (-10 -7 (-15 -3738 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3771 (|#2| |#2| (-548) (-548)))) (-13 (-355) (-360) (-593 (-548))) (-1209 |#1|)) (T -530)) +((-3771 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-548)) (-4 *4 (-13 (-355) (-360) (-593 *3))) (-5 *1 (-530 *4 *2)) (-4 *2 (-1209 *4)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1209 *3)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1209 *3)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1209 *3))))) +(-10 -7 (-15 -3738 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3771 (|#2| |#2| (-548) (-548)))) +((-3050 (((-3 (-548) "failed") |#2| |#1| (-1 (-3 (-548) "failed") |#1|)) 14) (((-3 (-548) "failed") |#2| |#1| (-548) (-1 (-3 (-548) "failed") |#1|)) 13) (((-3 (-548) "failed") |#2| (-548) (-1 (-3 (-548) "failed") |#1|)) 26))) +(((-531 |#1| |#2|) (-10 -7 (-15 -3050 ((-3 (-548) "failed") |#2| (-548) (-1 (-3 (-548) "failed") |#1|))) (-15 -3050 ((-3 (-548) "failed") |#2| |#1| (-548) (-1 (-3 (-548) "failed") |#1|))) (-15 -3050 ((-3 (-548) "failed") |#2| |#1| (-1 (-3 (-548) "failed") |#1|)))) (-1016) (-1194 |#1|)) (T -531)) +((-3050 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-548) "failed") *4)) (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-531 *4 *3)) (-4 *3 (-1194 *4)))) (-3050 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-548) "failed") *4)) (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-531 *4 *3)) (-4 *3 (-1194 *4)))) (-3050 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-548) "failed") *5)) (-4 *5 (-1016)) (-5 *2 (-548)) (-5 *1 (-531 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -3050 ((-3 (-548) "failed") |#2| (-548) (-1 (-3 (-548) "failed") |#1|))) (-15 -3050 ((-3 (-548) "failed") |#2| |#1| (-548) (-1 (-3 (-548) "failed") |#1|))) (-15 -3050 ((-3 (-548) "failed") |#2| |#1| (-1 (-3 (-548) "failed") |#1|)))) +((-3119 (($ $ $) 79)) (-2634 (((-410 $) $) 47)) (-2441 (((-3 (-548) "failed") $) 59)) (-2375 (((-548) $) 37)) (-4182 (((-3 (-399 (-548)) "failed") $) 74)) (-4172 (((-112) $) 24)) (-4161 (((-399 (-548)) $) 72)) (-1271 (((-112) $) 50)) (-3071 (($ $ $ $) 86)) (-3298 (((-112) $) 16)) (-4206 (($ $ $) 57)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 69)) (-3725 (((-3 $ "failed") $) 64)) (-2742 (($ $) 23)) (-3060 (($ $ $) 84)) (-3410 (($) 60)) (-4185 (($ $) 53)) (-1915 (((-410 $) $) 45)) (-3718 (((-112) $) 14)) (-4077 (((-745) $) 28)) (-4050 (($ $ (-745)) NIL) (($ $) 10)) (-2113 (($ $) 17)) (-2591 (((-548) $) NIL) (((-524) $) 36) (((-861 (-548)) $) 40) (((-371) $) 31) (((-218) $) 33)) (-3835 (((-745)) 8)) (-3139 (((-112) $ $) 20)) (-3612 (($ $ $) 55))) +(((-532 |#1|) (-10 -8 (-15 -3060 (|#1| |#1| |#1|)) (-15 -3071 (|#1| |#1| |#1| |#1|)) (-15 -2742 (|#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -3119 (|#1| |#1| |#1|)) (-15 -3139 ((-112) |#1| |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2591 ((-548) |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3298 ((-112) |#1|)) (-15 -4077 ((-745) |#1|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1271 ((-112) |#1|)) (-15 -3835 ((-745)))) (-533)) (T -532)) +((-3835 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-532 *3)) (-4 *3 (-533))))) +(-10 -8 (-15 -3060 (|#1| |#1| |#1|)) (-15 -3071 (|#1| |#1| |#1| |#1|)) (-15 -2742 (|#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -3119 (|#1| |#1| |#1|)) (-15 -3139 ((-112) |#1| |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2591 ((-548) |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3298 ((-112) |#1|)) (-15 -4077 ((-745) |#1|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1271 ((-112) |#1|)) (-15 -3835 ((-745)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-3119 (($ $ $) 82)) (-4104 (((-3 $ "failed") $ $) 19)) (-3096 (($ $ $ $) 71)) (-1688 (($ $) 49)) (-2634 (((-410 $) $) 50)) (-4087 (((-112) $ $) 122)) (-2672 (((-548) $) 111)) (-2970 (($ $ $) 85)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 103)) (-2375 (((-548) $) 102)) (-1945 (($ $ $) 126)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 101) (((-663 (-548)) (-663 $)) 100)) (-3859 (((-3 $ "failed") $) 32)) (-4182 (((-3 (-399 (-548)) "failed") $) 79)) (-4172 (((-112) $) 81)) (-4161 (((-399 (-548)) $) 80)) (-2545 (($) 78) (($ $) 77)) (-1922 (($ $ $) 125)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 120)) (-1271 (((-112) $) 51)) (-3071 (($ $ $ $) 69)) (-3129 (($ $ $) 83)) (-3298 (((-112) $) 113)) (-4206 (($ $ $) 94)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 97)) (-2266 (((-112) $) 30)) (-3705 (((-112) $) 89)) (-3725 (((-3 $ "failed") $) 91)) (-3312 (((-112) $) 112)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 129)) (-3082 (($ $ $ $) 70)) (-1795 (($ $ $) 114)) (-3091 (($ $ $) 115)) (-2742 (($ $) 73)) (-3198 (($ $) 86)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3060 (($ $ $) 68)) (-3410 (($) 90 T CONST)) (-3595 (($ $) 75)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-4185 (($ $) 95)) (-1915 (((-410 $) $) 48)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 127)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 121)) (-3718 (((-112) $) 88)) (-4077 (((-745) $) 123)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 124)) (-4050 (($ $ (-745)) 108) (($ $) 106)) (-2445 (($ $) 74)) (-2113 (($ $) 76)) (-2591 (((-548) $) 105) (((-524) $) 99) (((-861 (-548)) $) 98) (((-371) $) 93) (((-218) $) 92)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-548)) 104)) (-3835 (((-745)) 28)) (-3139 (((-112) $ $) 84)) (-3612 (($ $ $) 96)) (-3957 (($) 87)) (-3290 (((-112) $ $) 37)) (-3106 (($ $ $ $) 72)) (-1446 (($ $) 110)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-745)) 109) (($ $) 107)) (-2262 (((-112) $ $) 117)) (-2241 (((-112) $ $) 118)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 116)) (-2234 (((-112) $ $) 119)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-533) (-138)) (T -533)) +((-3705 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) (-3957 (*1 *1) (-4 *1 (-533))) (-3198 (*1 *1 *1) (-4 *1 (-533))) (-2970 (*1 *1 *1 *1) (-4 *1 (-533))) (-3139 (*1 *2 *1 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) (-3129 (*1 *1 *1 *1) (-4 *1 (-533))) (-3119 (*1 *1 *1 *1) (-4 *1 (-533))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-399 (-548))))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-533)) (-5 *2 (-399 (-548))))) (-2545 (*1 *1) (-4 *1 (-533))) (-2545 (*1 *1 *1) (-4 *1 (-533))) (-2113 (*1 *1 *1) (-4 *1 (-533))) (-3595 (*1 *1 *1) (-4 *1 (-533))) (-2445 (*1 *1 *1) (-4 *1 (-533))) (-2742 (*1 *1 *1) (-4 *1 (-533))) (-3106 (*1 *1 *1 *1 *1) (-4 *1 (-533))) (-3096 (*1 *1 *1 *1 *1) (-4 *1 (-533))) (-3082 (*1 *1 *1 *1 *1) (-4 *1 (-533))) (-3071 (*1 *1 *1 *1 *1) (-4 *1 (-533))) (-3060 (*1 *1 *1 *1) (-4 *1 (-533)))) +(-13 (-1176) (-299) (-794) (-226) (-593 (-548)) (-1007 (-548)) (-615 (-548)) (-593 (-524)) (-593 (-861 (-548))) (-855 (-548)) (-141) (-991) (-145) (-1111) (-10 -8 (-15 -3705 ((-112) $)) (-15 -3718 ((-112) $)) (-6 -4326) (-15 -3957 ($)) (-15 -3198 ($ $)) (-15 -2970 ($ $ $)) (-15 -3139 ((-112) $ $)) (-15 -3129 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $)) (-15 -2545 ($)) (-15 -2545 ($ $)) (-15 -2113 ($ $)) (-15 -3595 ($ $)) (-15 -2445 ($ $)) (-15 -2742 ($ $)) (-15 -3106 ($ $ $ $)) (-15 -3096 ($ $ $ $)) (-15 -3082 ($ $ $ $)) (-15 -3071 ($ $ $ $)) (-15 -3060 ($ $ $)) (-6 -4325))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-141) . T) ((-169) . T) ((-593 (-218)) . T) ((-593 (-371)) . T) ((-593 (-524)) . T) ((-593 (-548)) . T) ((-593 (-861 (-548))) . T) ((-226) . T) ((-282) . T) ((-299) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-615 (-548)) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-794) . T) ((-819) . T) ((-821) . T) ((-855 (-548)) . T) ((-889) . T) ((-991) . T) ((-1007 (-548)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) . T) ((-1176) . T)) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) NIL)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-534 |#1| |#2| |#3|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) (-1063) (-1063) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327)))) (T -534)) +NIL +(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) +((-3149 (((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))) 51))) +(((-535 |#1| |#2|) (-10 -7 (-15 -3149 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))))) (-13 (-821) (-540)) (-13 (-27) (-422 |#1|))) (T -535)) +((-3149 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-1 (-1131 *3) (-1131 *3))) (-4 *3 (-13 (-27) (-422 *6))) (-4 *6 (-13 (-821) (-540))) (-5 *2 (-566 *3)) (-5 *1 (-535 *6 *3))))) +(-10 -7 (-15 -3149 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))))) +((-3170 (((-566 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3183 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3160 (((-566 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-536 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3160 ((-566 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3170 ((-566 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3183 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-821) (-540) (-1007 (-548))) (-13 (-27) (-422 |#1|)) (-1194 |#2|) (-1194 (-399 |#3|)) (-334 |#2| |#3| |#4|)) (T -536)) +((-3183 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-27) (-422 *4))) (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-4 *7 (-1194 (-399 *6))) (-5 *1 (-536 *4 *5 *6 *7 *2)) (-4 *2 (-334 *5 *6 *7)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-27) (-422 *5))) (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-4 *8 (-1194 (-399 *7))) (-5 *2 (-566 *3)) (-5 *1 (-536 *5 *6 *7 *8 *3)) (-4 *3 (-334 *6 *7 *8)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-27) (-422 *5))) (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-4 *8 (-1194 (-399 *7))) (-5 *2 (-566 *3)) (-5 *1 (-536 *5 *6 *7 *8 *3)) (-4 *3 (-334 *6 *7 *8))))) +(-10 -7 (-15 -3160 ((-566 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3170 ((-566 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3183 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3222 (((-112) (-548) (-548)) 10)) (-3195 (((-548) (-548)) 7)) (-3208 (((-548) (-548) (-548)) 8))) +(((-537) (-10 -7 (-15 -3195 ((-548) (-548))) (-15 -3208 ((-548) (-548) (-548))) (-15 -3222 ((-112) (-548) (-548))))) (T -537)) +((-3222 (*1 *2 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-112)) (-5 *1 (-537)))) (-3208 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-537)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-537))))) +(-10 -7 (-15 -3195 ((-548) (-548))) (-15 -3208 ((-548) (-548) (-548))) (-15 -3222 ((-112) (-548) (-548)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2094 ((|#1| $) 59)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-2074 (($ $) 89)) (-1940 (($ $) 72)) (-2857 ((|#1| $) 60)) (-4104 (((-3 $ "failed") $ $) 19)) (-1926 (($ $) 71)) (-2054 (($ $) 88)) (-1918 (($ $) 73)) (-2098 (($ $) 87)) (-1963 (($ $) 74)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 67)) (-2375 (((-548) $) 66)) (-3859 (((-3 $ "failed") $) 32)) (-3254 (($ |#1| |#1|) 64)) (-3298 (((-112) $) 58)) (-1365 (($) 99)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 70)) (-3312 (((-112) $) 57)) (-1795 (($ $ $) 105)) (-3091 (($ $ $) 104)) (-3496 (($ $) 96)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3267 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-399 (-548))) 62)) (-3243 ((|#1| $) 61)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1900 (((-3 $ "failed") $ $) 40)) (-2458 (($ $) 97)) (-2110 (($ $) 86)) (-1973 (($ $) 75)) (-2086 (($ $) 85)) (-1952 (($ $) 76)) (-2065 (($ $) 84)) (-1929 (($ $) 77)) (-3233 (((-112) $ |#1|) 56)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-548)) 68)) (-3835 (((-745)) 28)) (-2145 (($ $) 95)) (-2006 (($ $) 83)) (-3290 (((-112) $ $) 37)) (-2122 (($ $) 94)) (-1986 (($ $) 82)) (-2170 (($ $) 93)) (-2029 (($ $) 81)) (-4026 (($ $) 92)) (-2040 (($ $) 80)) (-2158 (($ $) 91)) (-2017 (($ $) 79)) (-2132 (($ $) 90)) (-1996 (($ $) 78)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 102)) (-2241 (((-112) $ $) 101)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 103)) (-2234 (((-112) $ $) 100)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ $) 98) (($ $ (-399 (-548))) 69)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-538 |#1|) (-138) (-13 (-396) (-1157))) (T -538)) +((-3267 (*1 *1 *2 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-3254 (*1 *1 *2 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-3267 (*1 *1 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-2094 (*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112)))) (-3233 (*1 *2 *1 *3) (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112))))) +(-13 (-443) (-821) (-1157) (-971) (-1007 (-548)) (-10 -8 (-6 -2439) (-15 -3267 ($ |t#1| |t#1|)) (-15 -3254 ($ |t#1| |t#1|)) (-15 -3267 ($ |t#1|)) (-15 -3267 ($ (-399 (-548)))) (-15 -3243 (|t#1| $)) (-15 -2857 (|t#1| $)) (-15 -2094 (|t#1| $)) (-15 -3298 ((-112) $)) (-15 -3312 ((-112) $)) (-15 -3233 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-276) . T) ((-282) . T) ((-443) . T) ((-483) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-971) . T) ((-1007 (-548)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) . T) ((-1160) . T)) +((-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 9)) (-3303 (($ $) 11)) (-3279 (((-112) $) 18)) (-3859 (((-3 $ "failed") $) 16)) (-3290 (((-112) $ $) 20))) +(((-539 |#1|) (-10 -8 (-15 -3279 ((-112) |#1|)) (-15 -3290 ((-112) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|))) (-540)) (T -539)) +NIL +(-10 -8 (-15 -3279 ((-112) |#1|)) (-15 -3290 ((-112) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-540) (-138)) (T -540)) +((-1900 (*1 *1 *1 *1) (|partial| -4 *1 (-540))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2265 *1) (|:| -4314 *1) (|:| |associate| *1))) (-4 *1 (-540)))) (-3303 (*1 *1 *1) (-4 *1 (-540))) (-3290 (*1 *2 *1 *1) (-12 (-4 *1 (-540)) (-5 *2 (-112)))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-112))))) +(-13 (-169) (-38 $) (-282) (-10 -8 (-15 -1900 ((-3 $ "failed") $ $)) (-15 -3316 ((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $)) (-15 -3303 ($ $)) (-15 -3290 ((-112) $ $)) (-15 -3279 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3343 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|)) 37)) (-3375 (((-566 |#2|) |#2| (-1135)) 62)) (-3358 (((-3 |#2| "failed") |#2| (-1135)) 152)) (-2212 (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-591 |#2|) (-619 (-591 |#2|))) 155)) (-3329 (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|) 40))) +(((-541 |#1| |#2|) (-10 -7 (-15 -3329 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|)) (-15 -3343 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|))) (-15 -3358 ((-3 |#2| "failed") |#2| (-1135))) (-15 -3375 ((-566 |#2|) |#2| (-1135))) (-15 -2212 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-591 |#2|) (-619 (-591 |#2|))))) (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -541)) +((-2212 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1135)) (-5 *6 (-619 (-591 *3))) (-5 *5 (-591 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-541 *7 *3)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-541 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-3358 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-3343 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-541 *6 *3)))) (-3329 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-541 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) +(-10 -7 (-15 -3329 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|)) (-15 -3343 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|))) (-15 -3358 ((-3 |#2| "failed") |#2| (-1135))) (-15 -3375 ((-566 |#2|) |#2| (-1135))) (-15 -2212 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-591 |#2|) (-619 (-591 |#2|))))) +((-2634 (((-410 |#1|) |#1|) 18)) (-1915 (((-410 |#1|) |#1|) 33)) (-2231 (((-3 |#1| "failed") |#1|) 44)) (-2222 (((-410 |#1|) |#1|) 51))) +(((-542 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -2222 ((-410 |#1|) |#1|)) (-15 -2231 ((-3 |#1| "failed") |#1|))) (-533)) (T -542)) +((-2231 (*1 *2 *2) (|partial| -12 (-5 *1 (-542 *2)) (-4 *2 (-533)))) (-2222 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533)))) (-2634 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533)))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533))))) +(-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -2222 ((-410 |#1|) |#1|)) (-15 -2231 ((-3 |#1| "failed") |#1|))) +((-2239 (($) 9)) (-2559 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 35)) (-4043 (((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $) 32)) (-2539 (($ (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2260 (($ (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1657 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 39)) (-4223 (((-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2249 (((-1223)) 12))) +(((-543) (-10 -8 (-15 -2239 ($)) (-15 -2249 ((-1223))) (-15 -4043 ((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $)) (-15 -2260 ($ (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2539 ($ (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2559 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -4223 ((-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1657 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (T -543)) +((-1657 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-543)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-543)))) (-2559 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-543)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-543)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-543)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-5 *1 (-543)))) (-2249 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-543)))) (-2239 (*1 *1) (-5 *1 (-543)))) +(-10 -8 (-15 -2239 ($)) (-15 -2249 ((-1223))) (-15 -4043 ((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $)) (-15 -2260 ($ (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2539 ($ (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2559 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -4223 ((-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1657 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) +((-1884 (((-1131 (-399 (-1131 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1131 |#2|)) 32)) (-2288 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) |#2| (-1131 |#2|)) 110)) (-2270 (((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))) 80) (((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|)) 52)) (-2279 (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-399 (-1131 |#2|))) 87) (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1131 |#2|)) 109)) (-2297 (((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-591 |#2|) |#2| (-399 (-1131 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|)) 111)) (-2307 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))) 128 (|has| |#3| (-630 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|)) 127 (|has| |#3| (-630 |#2|)))) (-2036 ((|#2| (-1131 (-399 (-1131 |#2|))) (-591 |#2|) |#2|) 50)) (-2050 (((-1131 (-399 (-1131 |#2|))) (-1131 |#2|) (-591 |#2|)) 31))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|))) (-15 -2270 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2279 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1131 |#2|))) (-15 -2279 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) |#2| (-1131 |#2|))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2297 ((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|))) (-15 -2297 ((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -1884 ((-1131 (-399 (-1131 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1131 |#2|))) (-15 -2036 (|#2| (-1131 (-399 (-1131 |#2|))) (-591 |#2|) |#2|)) (-15 -2050 ((-1131 (-399 (-1131 |#2|))) (-1131 |#2|) (-591 |#2|))) (IF (|has| |#3| (-630 |#2|)) (PROGN (-15 -2307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|))) (-15 -2307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))))) |%noBranch|)) (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548))) (-13 (-422 |#1|) (-27) (-1157)) (-1063)) (T -544)) +((-2307 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-399 (-1131 *4))) (-4 *4 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-544 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2307 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-1131 *4)) (-4 *4 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-544 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *6)) (-4 *6 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-1131 (-399 (-1131 *6)))) (-5 *1 (-544 *5 *6 *7)) (-5 *3 (-1131 *6)) (-4 *7 (-1063)))) (-2036 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1131 (-399 (-1131 *2)))) (-5 *4 (-591 *2)) (-4 *2 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *1 (-544 *5 *2 *6)) (-4 *6 (-1063)))) (-1884 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-1131 (-399 (-1131 *3)))) (-5 *1 (-544 *6 *3 *7)) (-5 *5 (-1131 *3)) (-4 *7 (-1063)))) (-2297 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-399 (-1131 *2))) (-4 *2 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *1 (-544 *6 *2 *7)) (-4 *7 (-1063)))) (-2297 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-1131 *2)) (-4 *2 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *1 (-544 *6 *2 *7)) (-4 *7 (-1063)))) (-2288 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) (-5 *6 (-399 (-1131 *3))) (-4 *3 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-544 *7 *3 *8)) (-4 *8 (-1063)))) (-2288 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) (-5 *6 (-1131 *3)) (-4 *3 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-544 *7 *3 *8)) (-4 *8 (-1063)))) (-2279 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-399 (-1131 *3))) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) (-2279 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-1131 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) (-2270 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-399 (-1131 *3))) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) (-2270 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-1131 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063))))) +(-10 -7 (-15 -2270 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|))) (-15 -2270 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2279 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1131 |#2|))) (-15 -2279 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) |#2| (-1131 |#2|))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2297 ((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|))) (-15 -2297 ((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -1884 ((-1131 (-399 (-1131 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1131 |#2|))) (-15 -2036 (|#2| (-1131 (-399 (-1131 |#2|))) (-591 |#2|) |#2|)) (-15 -2050 ((-1131 (-399 (-1131 |#2|))) (-1131 |#2|) (-591 |#2|))) (IF (|has| |#3| (-630 |#2|)) (PROGN (-15 -2307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|))) (-15 -2307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))))) |%noBranch|)) +((-2408 (((-548) (-548) (-745)) 66)) (-2398 (((-548) (-548)) 65)) (-2386 (((-548) (-548)) 64)) (-2376 (((-548) (-548)) 69)) (-3736 (((-548) (-548) (-548)) 49)) (-2366 (((-548) (-548) (-548)) 46)) (-2357 (((-399 (-548)) (-548)) 20)) (-2346 (((-548) (-548)) 21)) (-2337 (((-548) (-548)) 58)) (-3698 (((-548) (-548)) 32)) (-2328 (((-619 (-548)) (-548)) 63)) (-2318 (((-548) (-548) (-548) (-548) (-548)) 44)) (-3651 (((-399 (-548)) (-548)) 41))) +(((-545) (-10 -7 (-15 -3651 ((-399 (-548)) (-548))) (-15 -2318 ((-548) (-548) (-548) (-548) (-548))) (-15 -2328 ((-619 (-548)) (-548))) (-15 -3698 ((-548) (-548))) (-15 -2337 ((-548) (-548))) (-15 -2346 ((-548) (-548))) (-15 -2357 ((-399 (-548)) (-548))) (-15 -2366 ((-548) (-548) (-548))) (-15 -3736 ((-548) (-548) (-548))) (-15 -2376 ((-548) (-548))) (-15 -2386 ((-548) (-548))) (-15 -2398 ((-548) (-548))) (-15 -2408 ((-548) (-548) (-745))))) (T -545)) +((-2408 (*1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-745)) (-5 *1 (-545)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-3736 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2366 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2357 (*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-545)) (-5 *3 (-548)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2337 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2328 (*1 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-545)) (-5 *3 (-548)))) (-2318 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-545)) (-5 *3 (-548))))) +(-10 -7 (-15 -3651 ((-399 (-548)) (-548))) (-15 -2318 ((-548) (-548) (-548) (-548) (-548))) (-15 -2328 ((-619 (-548)) (-548))) (-15 -3698 ((-548) (-548))) (-15 -2337 ((-548) (-548))) (-15 -2346 ((-548) (-548))) (-15 -2357 ((-399 (-548)) (-548))) (-15 -2366 ((-548) (-548) (-548))) (-15 -3736 ((-548) (-548) (-548))) (-15 -2376 ((-548) (-548))) (-15 -2386 ((-548) (-548))) (-15 -2398 ((-548) (-548))) (-15 -2408 ((-548) (-548) (-745)))) +((-2418 (((-2 (|:| |answer| |#4|) (|:| -1693 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2418 ((-2 (|:| |answer| |#4|) (|:| -1693 |#4|)) |#4| (-1 |#2| |#2|)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -546)) +((-2418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-4 *7 (-1194 (-399 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1693 *3))) (-5 *1 (-546 *5 *6 *7 *3)) (-4 *3 (-334 *5 *6 *7))))) +(-10 -7 (-15 -2418 ((-2 (|:| |answer| |#4|) (|:| -1693 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2418 (((-2 (|:| |answer| (-399 |#2|)) (|:| -1693 (-399 |#2|)) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|)) 18))) +(((-547 |#1| |#2|) (-10 -7 (-15 -2418 ((-2 (|:| |answer| (-399 |#2|)) (|:| -1693 (-399 |#2|)) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|)))) (-355) (-1194 |#1|)) (T -547)) +((-2418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |answer| (-399 *6)) (|:| -1693 (-399 *6)) (|:| |specpart| (-399 *6)) (|:| |polypart| *6))) (-5 *1 (-547 *5 *6)) (-5 *3 (-399 *6))))) +(-10 -7 (-15 -2418 ((-2 (|:| |answer| (-399 |#2|)) (|:| -1693 (-399 |#2|)) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 25)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 88)) (-3303 (($ $) 89)) (-3279 (((-112) $) NIL)) (-3119 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3096 (($ $ $ $) 43)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-2970 (($ $ $) 82)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL)) (-2375 (((-548) $) NIL)) (-1945 (($ $ $) 81)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 62) (((-663 (-548)) (-663 $)) 58)) (-3859 (((-3 $ "failed") $) 85)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL)) (-4172 (((-112) $) NIL)) (-4161 (((-399 (-548)) $) NIL)) (-2545 (($) 64) (($ $) 65)) (-1922 (($ $ $) 80)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3071 (($ $ $ $) NIL)) (-3129 (($ $ $) 55)) (-3298 (((-112) $) NIL)) (-4206 (($ $ $) NIL)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL)) (-2266 (((-112) $) 26)) (-3705 (((-112) $) 75)) (-3725 (((-3 $ "failed") $) NIL)) (-3312 (((-112) $) 35)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3082 (($ $ $ $) 44)) (-1795 (($ $ $) 77)) (-3091 (($ $ $) 76)) (-2742 (($ $) NIL)) (-3198 (($ $) 41)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) 54)) (-3060 (($ $ $) NIL)) (-3410 (($) NIL T CONST)) (-3595 (($ $) 31)) (-3932 (((-1082) $) 34)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 119)) (-3587 (($ $ $) 86) (($ (-619 $)) NIL)) (-4185 (($ $) NIL)) (-1915 (((-410 $) $) 105)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) 84)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 79)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2445 (($ $) 32)) (-2113 (($ $) 30)) (-2591 (((-548) $) 40) (((-524) $) 52) (((-861 (-548)) $) NIL) (((-371) $) 47) (((-218) $) 49) (((-1118) $) 53)) (-3743 (((-832) $) 38) (($ (-548)) 39) (($ $) NIL) (($ (-548)) 39)) (-3835 (((-745)) NIL)) (-3139 (((-112) $ $) NIL)) (-3612 (($ $ $) NIL)) (-3957 (($) 29)) (-3290 (((-112) $ $) NIL)) (-3106 (($ $ $ $) 42)) (-1446 (($ $) 63)) (-3107 (($) 27 T CONST)) (-3118 (($) 28 T CONST)) (-2739 (((-1118) $) 20) (((-1118) $ (-112)) 22) (((-1223) (-796) $) 23) (((-1223) (-796) $ (-112)) 24)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 66)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 67)) (-2299 (($ $) 68) (($ $ $) 70)) (-2290 (($ $ $) 69)) (** (($ $ (-890)) NIL) (($ $ (-745)) 74)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 72) (($ $ $) 71))) +(((-548) (-13 (-533) (-593 (-1118)) (-802) (-10 -8 (-15 -2545 ($ $)) (-6 -4314) (-6 -4319) (-6 -4315) (-6 -4309)))) (T -548)) +((-2545 (*1 *1 *1) (-5 *1 (-548)))) +(-13 (-533) (-593 (-1118)) (-802) (-10 -8 (-15 -2545 ($ $)) (-6 -4314) (-6 -4319) (-6 -4315) (-6 -4309))) +((-3671 (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028)) 108) (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743)) 110)) (-3810 (((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1135)) 172) (((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1118)) 171) (((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371) (-1028)) 176) (((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371)) 177) (((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371)) 178) (((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371))))) 179) (((-1004) (-308 (-371)) (-1058 (-814 (-371)))) 167) (((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371)) 166) (((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371)) 162) (((-1004) (-743)) 155) (((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371) (-1028)) 161))) +(((-549) (-10 -7 (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371) (-1028))) (-15 -3810 ((-1004) (-743))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371) (-1028))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028))) (-15 -3810 ((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1118))) (-15 -3810 ((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1135))))) (T -549)) +((-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-308 (-371))) (-5 *4 (-1056 (-814 (-371)))) (-5 *5 (-1135)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-308 (-371))) (-5 *4 (-1056 (-814 (-371)))) (-5 *5 (-1118)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-743)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *1 (-549)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) (-5 *5 (-371)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) (-5 *5 (-371)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-549))))) +(-10 -7 (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371) (-1028))) (-15 -3810 ((-1004) (-743))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371) (-1028))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028))) (-15 -3810 ((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1118))) (-15 -3810 ((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1135)))) +((-2450 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|)) 184)) (-2427 (((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|)) 98)) (-2437 (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|) 180)) (-2462 (((-3 |#2| "failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135))) 189)) (-2473 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1135)) 197 (|has| |#3| (-630 |#2|))))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2427 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|))) (-15 -2437 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|)) (-15 -2450 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|))) (-15 -2462 ((-3 |#2| "failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)))) (IF (|has| |#3| (-630 |#2|)) (-15 -2473 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1135))) |%noBranch|)) (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548))) (-13 (-422 |#1|) (-27) (-1157)) (-1063)) (T -550)) +((-2473 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-1135)) (-4 *4 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2462 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-4 *2 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *1 (-550 *5 *2 *6)) (-4 *6 (-1063)))) (-2450 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1063)))) (-2437 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-550 *5 *3 *6)) (-4 *6 (-1063)))) (-2427 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-550 *5 *3 *6)) (-4 *6 (-1063))))) +(-10 -7 (-15 -2427 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|))) (-15 -2437 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|)) (-15 -2450 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|))) (-15 -2462 ((-3 |#2| "failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)))) (IF (|has| |#3| (-630 |#2|)) (-15 -2473 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1135))) |%noBranch|)) +((-2483 (((-2 (|:| -3886 |#2|) (|:| |nconst| |#2|)) |#2| (-1135)) 64)) (-2505 (((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|)) 164 (-12 (|has| |#2| (-1099)) (|has| |#1| (-593 (-861 (-548)))) (|has| |#1| (-855 (-548))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)) 147 (-12 (|has| |#2| (-605)) (|has| |#1| (-593 (-861 (-548)))) (|has| |#1| (-855 (-548)))))) (-2495 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)) 148 (-12 (|has| |#2| (-605)) (|has| |#1| (-593 (-861 (-548)))) (|has| |#1| (-855 (-548))))))) +(((-551 |#1| |#2|) (-10 -7 (-15 -2483 ((-2 (|:| -3886 |#2|) (|:| |nconst| |#2|)) |#2| (-1135))) (IF (|has| |#1| (-593 (-861 (-548)))) (IF (|has| |#1| (-855 (-548))) (PROGN (IF (|has| |#2| (-605)) (PROGN (-15 -2495 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) (-15 -2505 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) (IF (|has| |#2| (-1099)) (-15 -2505 ((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-821) (-1007 (-548)) (-443) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -551)) +((-2505 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1135)) (-5 *4 (-814 *2)) (-4 *2 (-1099)) (-4 *2 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-593 (-861 (-548)))) (-4 *5 (-855 (-548))) (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) (-5 *1 (-551 *5 *2)))) (-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-593 (-861 (-548)))) (-4 *5 (-855 (-548))) (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-605)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2495 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-593 (-861 (-548)))) (-4 *5 (-855 (-548))) (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-605)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2483 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) (-5 *2 (-2 (|:| -3886 *3) (|:| |nconst| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) +(-10 -7 (-15 -2483 ((-2 (|:| -3886 |#2|) (|:| |nconst| |#2|)) |#2| (-1135))) (IF (|has| |#1| (-593 (-861 (-548)))) (IF (|has| |#1| (-855 (-548))) (PROGN (IF (|has| |#2| (-605)) (PROGN (-15 -2495 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) (-15 -2505 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) (IF (|has| |#2| (-1099)) (-15 -2505 ((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2536 (((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-619 (-399 |#2|))) 41)) (-3810 (((-566 (-399 |#2|)) (-399 |#2|)) 28)) (-2514 (((-3 (-399 |#2|) "failed") (-399 |#2|)) 17)) (-2524 (((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-399 |#2|)) 48))) +(((-552 |#1| |#2|) (-10 -7 (-15 -3810 ((-566 (-399 |#2|)) (-399 |#2|))) (-15 -2514 ((-3 (-399 |#2|) "failed") (-399 |#2|))) (-15 -2524 ((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-399 |#2|))) (-15 -2536 ((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-619 (-399 |#2|))))) (-13 (-355) (-145) (-1007 (-548))) (-1194 |#1|)) (T -552)) +((-2536 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-619 (-399 *6))) (-5 *3 (-399 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-552 *5 *6)))) (-2524 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -1699 (-399 *5)) (|:| |coeff| (-399 *5)))) (-5 *1 (-552 *4 *5)) (-5 *3 (-399 *5)))) (-2514 (*1 *2 *2) (|partial| -12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145) (-1007 (-548)))) (-5 *1 (-552 *3 *4)))) (-3810 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) (-5 *2 (-566 (-399 *5))) (-5 *1 (-552 *4 *5)) (-5 *3 (-399 *5))))) +(-10 -7 (-15 -3810 ((-566 (-399 |#2|)) (-399 |#2|))) (-15 -2514 ((-3 (-399 |#2|) "failed") (-399 |#2|))) (-15 -2524 ((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-399 |#2|))) (-15 -2536 ((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-619 (-399 |#2|))))) +((-2549 (((-3 (-548) "failed") |#1|) 14)) (-2624 (((-112) |#1|) 13)) (-3829 (((-548) |#1|) 9))) +(((-553 |#1|) (-10 -7 (-15 -3829 ((-548) |#1|)) (-15 -2624 ((-112) |#1|)) (-15 -2549 ((-3 (-548) "failed") |#1|))) (-1007 (-548))) (T -553)) +((-2549 (*1 *2 *3) (|partial| -12 (-5 *2 (-548)) (-5 *1 (-553 *3)) (-4 *3 (-1007 *2)))) (-2624 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-553 *3)) (-4 *3 (-1007 (-548))))) (-3829 (*1 *2 *3) (-12 (-5 *2 (-548)) (-5 *1 (-553 *3)) (-4 *3 (-1007 *2))))) +(-10 -7 (-15 -3829 ((-548) |#1|)) (-15 -2624 ((-112) |#1|)) (-15 -2549 ((-3 (-548) "failed") |#1|))) +((-2578 (((-3 (-2 (|:| |mainpart| (-399 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 (-921 |#1|))) (|:| |logand| (-399 (-921 |#1|))))))) "failed") (-399 (-921 |#1|)) (-1135) (-619 (-399 (-921 |#1|)))) 48)) (-2560 (((-566 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-1135)) 28)) (-2569 (((-3 (-399 (-921 |#1|)) "failed") (-399 (-921 |#1|)) (-1135)) 23)) (-2587 (((-3 (-2 (|:| -1699 (-399 (-921 |#1|))) (|:| |coeff| (-399 (-921 |#1|)))) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|))) 35))) +(((-554 |#1|) (-10 -7 (-15 -2560 ((-566 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -2569 ((-3 (-399 (-921 |#1|)) "failed") (-399 (-921 |#1|)) (-1135))) (-15 -2578 ((-3 (-2 (|:| |mainpart| (-399 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 (-921 |#1|))) (|:| |logand| (-399 (-921 |#1|))))))) "failed") (-399 (-921 |#1|)) (-1135) (-619 (-399 (-921 |#1|))))) (-15 -2587 ((-3 (-2 (|:| -1699 (-399 (-921 |#1|))) (|:| |coeff| (-399 (-921 |#1|)))) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|))))) (-13 (-540) (-1007 (-548)) (-145))) (T -554)) +((-2587 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-1007 (-548)) (-145))) (-5 *2 (-2 (|:| -1699 (-399 (-921 *5))) (|:| |coeff| (-399 (-921 *5))))) (-5 *1 (-554 *5)) (-5 *3 (-399 (-921 *5))))) (-2578 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 (-399 (-921 *6)))) (-5 *3 (-399 (-921 *6))) (-4 *6 (-13 (-540) (-1007 (-548)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6)))) (-2569 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-399 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-1007 (-548)) (-145))) (-5 *1 (-554 *4)))) (-2560 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-1007 (-548)) (-145))) (-5 *2 (-566 (-399 (-921 *5)))) (-5 *1 (-554 *5)) (-5 *3 (-399 (-921 *5)))))) +(-10 -7 (-15 -2560 ((-566 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -2569 ((-3 (-399 (-921 |#1|)) "failed") (-399 (-921 |#1|)) (-1135))) (-15 -2578 ((-3 (-2 (|:| |mainpart| (-399 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 (-921 |#1|))) (|:| |logand| (-399 (-921 |#1|))))))) "failed") (-399 (-921 |#1|)) (-1135) (-619 (-399 (-921 |#1|))))) (-15 -2587 ((-3 (-2 (|:| -1699 (-399 (-921 |#1|))) (|:| |coeff| (-399 (-921 |#1|)))) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|))))) +((-3730 (((-112) $ $) 58)) (-3324 (((-112) $) 36)) (-2094 ((|#1| $) 30)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) 62)) (-2074 (($ $) 122)) (-1940 (($ $) 102)) (-2857 ((|#1| $) 28)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL)) (-2054 (($ $) 124)) (-1918 (($ $) 98)) (-2098 (($ $) 126)) (-1963 (($ $) 106)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) 77)) (-2375 (((-548) $) 79)) (-3859 (((-3 $ "failed") $) 61)) (-3254 (($ |#1| |#1|) 26)) (-3298 (((-112) $) 33)) (-1365 (($) 88)) (-2266 (((-112) $) 43)) (-2154 (($ $ (-548)) NIL)) (-3312 (((-112) $) 34)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3496 (($ $) 90)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3267 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-399 (-548))) 76)) (-3243 ((|#1| $) 27)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) 64) (($ (-619 $)) NIL)) (-1900 (((-3 $ "failed") $ $) 63)) (-2458 (($ $) 92)) (-2110 (($ $) 130)) (-1973 (($ $) 104)) (-2086 (($ $) 132)) (-1952 (($ $) 108)) (-2065 (($ $) 128)) (-1929 (($ $) 100)) (-3233 (((-112) $ |#1|) 31)) (-3743 (((-832) $) 84) (($ (-548)) 66) (($ $) NIL) (($ (-548)) 66)) (-3835 (((-745)) 86)) (-2145 (($ $) 144)) (-2006 (($ $) 114)) (-3290 (((-112) $ $) NIL)) (-2122 (($ $) 142)) (-1986 (($ $) 110)) (-2170 (($ $) 140)) (-2029 (($ $) 120)) (-4026 (($ $) 138)) (-2040 (($ $) 118)) (-2158 (($ $) 136)) (-2017 (($ $) 116)) (-2132 (($ $) 134)) (-1996 (($ $) 112)) (-3107 (($) 21 T CONST)) (-3118 (($) 10 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 37)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 35)) (-2299 (($ $) 41) (($ $ $) 42)) (-2290 (($ $ $) 40)) (** (($ $ (-890)) 54) (($ $ (-745)) NIL) (($ $ $) 94) (($ $ (-399 (-548))) 146)) (* (($ (-890) $) 51) (($ (-745) $) NIL) (($ (-548) $) 50) (($ $ $) 48))) +(((-555 |#1|) (-538 |#1|) (-13 (-396) (-1157))) (T -555)) +NIL +(-538 |#1|) +((-4039 (((-3 (-619 (-1131 (-548))) "failed") (-619 (-1131 (-548))) (-1131 (-548))) 24))) +(((-556) (-10 -7 (-15 -4039 ((-3 (-619 (-1131 (-548))) "failed") (-619 (-1131 (-548))) (-1131 (-548)))))) (T -556)) +((-4039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 (-548)))) (-5 *3 (-1131 (-548))) (-5 *1 (-556))))) +(-10 -7 (-15 -4039 ((-3 (-619 (-1131 (-548))) "failed") (-619 (-1131 (-548))) (-1131 (-548))))) +((-2598 (((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-1135)) 19)) (-2627 (((-619 (-591 |#2|)) (-619 |#2|) (-1135)) 23)) (-1434 (((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-619 (-591 |#2|))) 11)) (-2636 ((|#2| |#2| (-1135)) 54 (|has| |#1| (-540)))) (-2647 ((|#2| |#2| (-1135)) 78 (-12 (|has| |#2| (-276)) (|has| |#1| (-443))))) (-2617 (((-591 |#2|) (-591 |#2|) (-619 (-591 |#2|)) (-1135)) 25)) (-2608 (((-591 |#2|) (-619 (-591 |#2|))) 24)) (-2658 (((-566 |#2|) |#2| (-1135) (-1 (-566 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) 103 (-12 (|has| |#2| (-276)) (|has| |#2| (-605)) (|has| |#2| (-1007 (-1135))) (|has| |#1| (-593 (-861 (-548)))) (|has| |#1| (-443)) (|has| |#1| (-855 (-548))))))) +(((-557 |#1| |#2|) (-10 -7 (-15 -2598 ((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-1135))) (-15 -2608 ((-591 |#2|) (-619 (-591 |#2|)))) (-15 -2617 ((-591 |#2|) (-591 |#2|) (-619 (-591 |#2|)) (-1135))) (-15 -1434 ((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-619 (-591 |#2|)))) (-15 -2627 ((-619 (-591 |#2|)) (-619 |#2|) (-1135))) (IF (|has| |#1| (-540)) (-15 -2636 (|#2| |#2| (-1135))) |%noBranch|) (IF (|has| |#1| (-443)) (IF (|has| |#2| (-276)) (PROGN (-15 -2647 (|#2| |#2| (-1135))) (IF (|has| |#1| (-593 (-861 (-548)))) (IF (|has| |#1| (-855 (-548))) (IF (|has| |#2| (-605)) (IF (|has| |#2| (-1007 (-1135))) (-15 -2658 ((-566 |#2|) |#2| (-1135) (-1 (-566 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-821) (-422 |#1|)) (T -557)) +((-2658 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-566 *3) *3 (-1135))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1135))) (-4 *3 (-276)) (-4 *3 (-605)) (-4 *3 (-1007 *4)) (-4 *3 (-422 *7)) (-5 *4 (-1135)) (-4 *7 (-593 (-861 (-548)))) (-4 *7 (-443)) (-4 *7 (-855 (-548))) (-4 *7 (-821)) (-5 *2 (-566 *3)) (-5 *1 (-557 *7 *3)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-443)) (-4 *4 (-821)) (-5 *1 (-557 *4 *2)) (-4 *2 (-276)) (-4 *2 (-422 *4)))) (-2636 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-540)) (-4 *4 (-821)) (-5 *1 (-557 *4 *2)) (-4 *2 (-422 *4)))) (-2627 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-1135)) (-4 *6 (-422 *5)) (-4 *5 (-821)) (-5 *2 (-619 (-591 *6))) (-5 *1 (-557 *5 *6)))) (-1434 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-591 *4))) (-4 *4 (-422 *3)) (-4 *3 (-821)) (-5 *1 (-557 *3 *4)))) (-2617 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-591 *6))) (-5 *4 (-1135)) (-5 *2 (-591 *6)) (-4 *6 (-422 *5)) (-4 *5 (-821)) (-5 *1 (-557 *5 *6)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-619 (-591 *5))) (-4 *4 (-821)) (-5 *2 (-591 *5)) (-5 *1 (-557 *4 *5)) (-4 *5 (-422 *4)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-591 *5))) (-5 *3 (-1135)) (-4 *5 (-422 *4)) (-4 *4 (-821)) (-5 *1 (-557 *4 *5))))) +(-10 -7 (-15 -2598 ((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-1135))) (-15 -2608 ((-591 |#2|) (-619 (-591 |#2|)))) (-15 -2617 ((-591 |#2|) (-591 |#2|) (-619 (-591 |#2|)) (-1135))) (-15 -1434 ((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-619 (-591 |#2|)))) (-15 -2627 ((-619 (-591 |#2|)) (-619 |#2|) (-1135))) (IF (|has| |#1| (-540)) (-15 -2636 (|#2| |#2| (-1135))) |%noBranch|) (IF (|has| |#1| (-443)) (IF (|has| |#2| (-276)) (PROGN (-15 -2647 (|#2| |#2| (-1135))) (IF (|has| |#1| (-593 (-861 (-548)))) (IF (|has| |#1| (-855 (-548))) (IF (|has| |#2| (-605)) (IF (|has| |#2| (-1007 (-1135))) (-15 -2658 ((-566 |#2|) |#2| (-1135) (-1 (-566 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2687 (((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-548) |#1| |#1|)) 172)) (-2712 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-399 |#2|))) 148)) (-2737 (((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-619 (-399 |#2|))) 145)) (-2746 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2669 (((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2729 (((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-399 |#2|)) 175)) (-2696 (((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-399 |#2|)) 178)) (-1645 (((-2 (|:| |ir| (-566 (-399 |#2|))) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|)) 84)) (-1653 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2721 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-619 (-399 |#2|))) 152)) (-2755 (((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|)) 137)) (-2677 (((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|)) 162)) (-2703 (((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-399 |#2|)) 183))) +(((-558 |#1| |#2|) (-10 -7 (-15 -2669 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2677 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|))) (-15 -2687 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-548) |#1| |#1|))) (-15 -2696 ((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-399 |#2|))) (-15 -2703 ((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-399 |#2|))) (-15 -2712 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-399 |#2|)))) (-15 -2721 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-619 (-399 |#2|)))) (-15 -2729 ((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-399 |#2|))) (-15 -2737 ((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-619 (-399 |#2|)))) (-15 -2746 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2755 ((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|))) (-15 -1645 ((-2 (|:| |ir| (-566 (-399 |#2|))) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1653 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-355) (-1194 |#1|)) (T -558)) +((-1653 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-558 *5 *3)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |ir| (-566 (-399 *6))) (|:| |specpart| (-399 *6)) (|:| |polypart| *6))) (-5 *1 (-558 *5 *6)) (-5 *3 (-399 *6)))) (-2755 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3676 *4) (|:| |sol?| (-112))) (-548) *4)) (-4 *4 (-355)) (-4 *5 (-1194 *4)) (-5 *1 (-558 *4 *5)))) (-2746 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-355)) (-5 *1 (-558 *4 *2)) (-4 *2 (-1194 *4)))) (-2737 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-619 (-399 *7))) (-4 *7 (-1194 *6)) (-5 *3 (-399 *7)) (-4 *6 (-355)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6 *7)))) (-2729 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| -1699 (-399 *6)) (|:| |coeff| (-399 *6)))) (-5 *1 (-558 *5 *6)) (-5 *3 (-399 *6)))) (-2721 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3676 *7) (|:| |sol?| (-112))) (-548) *7)) (-5 *6 (-619 (-399 *8))) (-4 *7 (-355)) (-4 *8 (-1194 *7)) (-5 *3 (-399 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-558 *7 *8)))) (-2712 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1699 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-619 (-399 *8))) (-4 *7 (-355)) (-4 *8 (-1194 *7)) (-5 *3 (-399 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-558 *7 *8)))) (-2703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3676 *6) (|:| |sol?| (-112))) (-548) *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-399 *7)) (|:| |a0| *6)) (-2 (|:| -1699 (-399 *7)) (|:| |coeff| (-399 *7))) "failed")) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7)))) (-2696 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1699 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-399 *7)) (|:| |a0| *6)) (-2 (|:| -1699 (-399 *7)) (|:| |coeff| (-399 *7))) "failed")) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7)))) (-2687 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-619 *6) "failed") (-548) *6 *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7)))) (-2677 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3676 *6) (|:| |sol?| (-112))) (-548) *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7)))) (-2669 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1699 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) +(-10 -7 (-15 -2669 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2677 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|))) (-15 -2687 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-548) |#1| |#1|))) (-15 -2696 ((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-399 |#2|))) (-15 -2703 ((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-399 |#2|))) (-15 -2712 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-399 |#2|)))) (-15 -2721 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-619 (-399 |#2|)))) (-15 -2729 ((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-399 |#2|))) (-15 -2737 ((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-619 (-399 |#2|)))) (-15 -2746 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2755 ((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|))) (-15 -1645 ((-2 (|:| |ir| (-566 (-399 |#2|))) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1653 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-1662 (((-3 |#2| "failed") |#2| (-1135) (-1135)) 10))) +(((-559 |#1| |#2|) (-10 -7 (-15 -1662 ((-3 |#2| "failed") |#2| (-1135) (-1135)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-928) (-1099) (-29 |#1|))) (T -559)) +((-1662 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-1099) (-29 *4)))))) +(-10 -7 (-15 -1662 ((-3 |#2| "failed") |#2| (-1135) (-1135)))) +((-2072 (((-1082) $ (-128)) 12)) (-2081 (((-1082) $ (-129)) 11)) (-2778 (((-1082) $ (-128)) 7)) (-2786 (((-1082) $) 8)) (-3972 (($ $) 6))) +(((-560) (-138)) (T -560)) +NIL +(-13 (-517) (-831)) +(((-170) . T) ((-517) . T) ((-831) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $ (-548)) 66)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1294 (($ (-1131 (-548)) (-548)) 72)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) 58)) (-1305 (($ $) 34)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1672 (((-745) $) 15)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 (((-548)) 29)) (-1317 (((-548) $) 32)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1656 (($ $ (-548)) 21)) (-1900 (((-3 $ "failed") $ $) 59)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) 16)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 61)) (-1340 (((-1116 (-548)) $) 18)) (-3330 (($ $) 23)) (-3743 (((-832) $) 87) (($ (-548)) 52) (($ $) NIL)) (-3835 (((-745)) 14)) (-3290 (((-112) $ $) NIL)) (-2439 (((-548) $ (-548)) 36)) (-3107 (($) 35 T CONST)) (-3118 (($) 19 T CONST)) (-2214 (((-112) $ $) 39)) (-2299 (($ $) 51) (($ $ $) 37)) (-2290 (($ $ $) 50)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 54) (($ $ $) 55))) +(((-561 |#1| |#2|) (-838 |#1|) (-548) (-112)) (T -561)) +NIL +(-838 |#1|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 21)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (($ $ (-890)) NIL (|has| $ (-360))) (($ $) NIL)) (-3667 (((-1145 (-890) (-745)) (-548)) 47)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 $ "failed") $) 75)) (-2375 (($ $) 74)) (-2455 (($ (-1218 $)) 73)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) 32)) (-2545 (($) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) 49)) (-3727 (((-112) $) NIL)) (-2208 (($ $) NIL) (($ $ (-745)) NIL)) (-1271 (((-112) $) NIL)) (-1672 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-2266 (((-112) $) NIL)) (-2887 (($) 37 (|has| $ (-360)))) (-2866 (((-112) $) NIL (|has| $ (-360)))) (-3910 (($ $ (-890)) NIL (|has| $ (-360))) (($ $) NIL)) (-3725 (((-3 $ "failed") $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 $) $ (-890)) NIL (|has| $ (-360))) (((-1131 $) $) 83)) (-2855 (((-890) $) 55)) (-4288 (((-1131 $) $) NIL (|has| $ (-360)))) (-4278 (((-3 (-1131 $) "failed") $ $) NIL (|has| $ (-360))) (((-1131 $) $) NIL (|has| $ (-360)))) (-4300 (($ $ (-1131 $)) NIL (|has| $ (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL T CONST)) (-3337 (($ (-890)) 48)) (-2384 (((-112) $) 67)) (-3932 (((-1082) $) NIL)) (-4160 (($) 19 (|has| $ (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 42)) (-1915 (((-410 $) $) NIL)) (-2373 (((-890)) 66) (((-807 (-890))) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-3 (-745) "failed") $ $) NIL) (((-745) $) NIL)) (-3402 (((-133)) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2512 (((-890) $) 65) (((-807 (-890)) $) NIL)) (-3287 (((-1131 $)) 82)) (-3655 (($) 54)) (-1255 (($) 38 (|has| $ (-360)))) (-2447 (((-663 $) (-1218 $)) NIL) (((-1218 $) $) 71)) (-2591 (((-548) $) 28)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) 30) (($ $) NIL) (($ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3835 (((-745)) 39)) (-2877 (((-1218 $) (-890)) 77) (((-1218 $)) 76)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) 22 T CONST)) (-3118 (($) 18 T CONST)) (-2354 (($ $ (-745)) NIL (|has| $ (-360))) (($ $) NIL (|has| $ (-360)))) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 26)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 61) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) +(((-562 |#1|) (-13 (-341) (-321 $) (-593 (-548))) (-890)) (T -562)) +NIL +(-13 (-341) (-321 $) (-593 (-548))) +((-1669 (((-1223) (-1118)) 10))) +(((-563) (-10 -7 (-15 -1669 ((-1223) (-1118))))) (T -563)) +((-1669 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-563))))) +(-10 -7 (-15 -1669 ((-1223) (-1118)))) +((-3530 (((-566 |#2|) (-566 |#2|)) 40)) (-1384 (((-619 |#2|) (-566 |#2|)) 42)) (-1779 ((|#2| (-566 |#2|)) 48))) +(((-564 |#1| |#2|) (-10 -7 (-15 -3530 ((-566 |#2|) (-566 |#2|))) (-15 -1384 ((-619 |#2|) (-566 |#2|))) (-15 -1779 (|#2| (-566 |#2|)))) (-13 (-443) (-1007 (-548)) (-821) (-615 (-548))) (-13 (-29 |#1|) (-1157))) (T -564)) +((-1779 (*1 *2 *3) (-12 (-5 *3 (-566 *2)) (-4 *2 (-13 (-29 *4) (-1157))) (-5 *1 (-564 *4 *2)) (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-566 *5)) (-4 *5 (-13 (-29 *4) (-1157))) (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-619 *5)) (-5 *1 (-564 *4 *5)))) (-3530 (*1 *2 *2) (-12 (-5 *2 (-566 *4)) (-4 *4 (-13 (-29 *3) (-1157))) (-4 *3 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *1 (-564 *3 *4))))) +(-10 -7 (-15 -3530 ((-566 |#2|) (-566 |#2|))) (-15 -1384 ((-619 |#2|) (-566 |#2|))) (-15 -1779 (|#2| (-566 |#2|)))) +((-2540 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-566 |#2|) (-1 |#2| |#1|) (-566 |#1|)) 30))) +(((-565 |#1| |#2|) (-10 -7 (-15 -2540 ((-566 |#2|) (-1 |#2| |#1|) (-566 |#1|))) (-15 -2540 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2540 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2540 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-355) (-355)) (T -565)) +((-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-355)) (-4 *6 (-355)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-565 *5 *6)))) (-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-355)) (-4 *2 (-355)) (-5 *1 (-565 *5 *2)))) (-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1699 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-355)) (-4 *6 (-355)) (-5 *2 (-2 (|:| -1699 *6) (|:| |coeff| *6))) (-5 *1 (-565 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-566 *5)) (-4 *5 (-355)) (-4 *6 (-355)) (-5 *2 (-566 *6)) (-5 *1 (-565 *5 *6))))) +(-10 -7 (-15 -2540 ((-566 |#2|) (-1 |#2| |#1|) (-566 |#1|))) (-15 -2540 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2540 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2540 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 69)) (-2375 ((|#1| $) NIL)) (-1699 ((|#1| $) 26)) (-1685 (((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-1707 (($ |#1| (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1693 (((-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $) 27)) (-2546 (((-1118) $) NIL)) (-4044 (($ |#1| |#1|) 33) (($ |#1| (-1135)) 44 (|has| |#1| (-1007 (-1135))))) (-3932 (((-1082) $) NIL)) (-1677 (((-112) $) 30)) (-4050 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1135)) 82 (|has| |#1| (-869 (-1135))))) (-3743 (((-832) $) 96) (($ |#1|) 25)) (-3107 (($) 16 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) 15) (($ $ $) NIL)) (-2290 (($ $ $) 78)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 14) (($ (-399 (-548)) $) 36) (($ $ (-399 (-548))) NIL))) +(((-566 |#1|) (-13 (-692 (-399 (-548))) (-1007 |#1|) (-10 -8 (-15 -1707 ($ |#1| (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1699 (|#1| $)) (-15 -1693 ((-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $)) (-15 -1685 ((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1677 ((-112) $)) (-15 -4044 ($ |#1| |#1|)) (-15 -4050 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-869 (-1135))) (-15 -4050 (|#1| $ (-1135))) |%noBranch|) (IF (|has| |#1| (-1007 (-1135))) (-15 -4044 ($ |#1| (-1135))) |%noBranch|))) (-355)) (T -566)) +((-1707 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 *2)) (|:| |logand| (-1131 *2))))) (-5 *4 (-619 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-355)) (-5 *1 (-566 *2)))) (-1699 (*1 *2 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-355)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 *3)) (|:| |logand| (-1131 *3))))) (-5 *1 (-566 *3)) (-4 *3 (-355)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-566 *3)) (-4 *3 (-355)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-355)))) (-4044 (*1 *1 *2 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-355)))) (-4050 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-566 *2)) (-4 *2 (-355)))) (-4050 (*1 *2 *1 *3) (-12 (-4 *2 (-355)) (-4 *2 (-869 *3)) (-5 *1 (-566 *2)) (-5 *3 (-1135)))) (-4044 (*1 *1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *1 (-566 *2)) (-4 *2 (-1007 *3)) (-4 *2 (-355))))) +(-13 (-692 (-399 (-548))) (-1007 |#1|) (-10 -8 (-15 -1707 ($ |#1| (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1699 (|#1| $)) (-15 -1693 ((-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $)) (-15 -1685 ((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1677 ((-112) $)) (-15 -4044 ($ |#1| |#1|)) (-15 -4050 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-869 (-1135))) (-15 -4050 (|#1| $ (-1135))) |%noBranch|) (IF (|has| |#1| (-1007 (-1135))) (-15 -4044 ($ |#1| (-1135))) |%noBranch|))) +((-1745 (((-112) |#1|) 16)) (-1754 (((-3 |#1| "failed") |#1|) 14)) (-1725 (((-2 (|:| -3957 |#1|) (|:| -3352 (-745))) |#1|) 31) (((-3 |#1| "failed") |#1| (-745)) 18)) (-1716 (((-112) |#1| (-745)) 19)) (-1763 ((|#1| |#1|) 32)) (-1735 ((|#1| |#1| (-745)) 34))) +(((-567 |#1|) (-10 -7 (-15 -1716 ((-112) |#1| (-745))) (-15 -1725 ((-3 |#1| "failed") |#1| (-745))) (-15 -1725 ((-2 (|:| -3957 |#1|) (|:| -3352 (-745))) |#1|)) (-15 -1735 (|#1| |#1| (-745))) (-15 -1745 ((-112) |#1|)) (-15 -1754 ((-3 |#1| "failed") |#1|)) (-15 -1763 (|#1| |#1|))) (-533)) (T -567)) +((-1763 (*1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-533)))) (-1754 (*1 *2 *2) (|partial| -12 (-5 *1 (-567 *2)) (-4 *2 (-533)))) (-1745 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-533)))) (-1735 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-567 *2)) (-4 *2 (-533)))) (-1725 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3957 *3) (|:| -3352 (-745)))) (-5 *1 (-567 *3)) (-4 *3 (-533)))) (-1725 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-5 *1 (-567 *2)) (-4 *2 (-533)))) (-1716 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-533))))) +(-10 -7 (-15 -1716 ((-112) |#1| (-745))) (-15 -1725 ((-3 |#1| "failed") |#1| (-745))) (-15 -1725 ((-2 (|:| -3957 |#1|) (|:| -3352 (-745))) |#1|)) (-15 -1735 (|#1| |#1| (-745))) (-15 -1745 ((-112) |#1|)) (-15 -1754 ((-3 |#1| "failed") |#1|)) (-15 -1763 (|#1| |#1|))) +((-1771 (((-1131 |#1|) (-890)) 27))) +(((-568 |#1|) (-10 -7 (-15 -1771 ((-1131 |#1|) (-890)))) (-341)) (T -568)) +((-1771 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-568 *4)) (-4 *4 (-341))))) +(-10 -7 (-15 -1771 ((-1131 |#1|) (-890)))) +((-3530 (((-566 (-399 (-921 |#1|))) (-566 (-399 (-921 |#1|)))) 27)) (-3810 (((-3 (-308 |#1|) (-619 (-308 |#1|))) (-399 (-921 |#1|)) (-1135)) 34 (|has| |#1| (-145)))) (-1384 (((-619 (-308 |#1|)) (-566 (-399 (-921 |#1|)))) 19)) (-1787 (((-308 |#1|) (-399 (-921 |#1|)) (-1135)) 32 (|has| |#1| (-145)))) (-1779 (((-308 |#1|) (-566 (-399 (-921 |#1|)))) 21))) +(((-569 |#1|) (-10 -7 (-15 -3530 ((-566 (-399 (-921 |#1|))) (-566 (-399 (-921 |#1|))))) (-15 -1384 ((-619 (-308 |#1|)) (-566 (-399 (-921 |#1|))))) (-15 -1779 ((-308 |#1|) (-566 (-399 (-921 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -3810 ((-3 (-308 |#1|) (-619 (-308 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -1787 ((-308 |#1|) (-399 (-921 |#1|)) (-1135)))) |%noBranch|)) (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (T -569)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-308 *5)) (-5 *1 (-569 *5)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-3 (-308 *5) (-619 (-308 *5)))) (-5 *1 (-569 *5)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-566 (-399 (-921 *4)))) (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-308 *4)) (-5 *1 (-569 *4)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-566 (-399 (-921 *4)))) (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-619 (-308 *4))) (-5 *1 (-569 *4)))) (-3530 (*1 *2 *2) (-12 (-5 *2 (-566 (-399 (-921 *3)))) (-4 *3 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *1 (-569 *3))))) +(-10 -7 (-15 -3530 ((-566 (-399 (-921 |#1|))) (-566 (-399 (-921 |#1|))))) (-15 -1384 ((-619 (-308 |#1|)) (-566 (-399 (-921 |#1|))))) (-15 -1779 ((-308 |#1|) (-566 (-399 (-921 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -3810 ((-3 (-308 |#1|) (-619 (-308 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -1787 ((-308 |#1|) (-399 (-921 |#1|)) (-1135)))) |%noBranch|)) +((-1807 (((-619 (-663 (-548))) (-619 (-548)) (-619 (-874 (-548)))) 46) (((-619 (-663 (-548))) (-619 (-548))) 47) (((-663 (-548)) (-619 (-548)) (-874 (-548))) 42)) (-1797 (((-745) (-619 (-548))) 40))) +(((-570) (-10 -7 (-15 -1797 ((-745) (-619 (-548)))) (-15 -1807 ((-663 (-548)) (-619 (-548)) (-874 (-548)))) (-15 -1807 ((-619 (-663 (-548))) (-619 (-548)))) (-15 -1807 ((-619 (-663 (-548))) (-619 (-548)) (-619 (-874 (-548))))))) (T -570)) +((-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-548))) (-5 *4 (-619 (-874 (-548)))) (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-570)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-570)))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-548))) (-5 *4 (-874 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-570)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-745)) (-5 *1 (-570))))) +(-10 -7 (-15 -1797 ((-745) (-619 (-548)))) (-15 -1807 ((-663 (-548)) (-619 (-548)) (-874 (-548)))) (-15 -1807 ((-619 (-663 (-548))) (-619 (-548)))) (-15 -1807 ((-619 (-663 (-548))) (-619 (-548)) (-619 (-874 (-548)))))) +((-2352 (((-619 |#5|) |#5| (-112)) 73)) (-1818 (((-112) |#5| (-619 |#5|)) 30))) +(((-571 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2352 ((-619 |#5|) |#5| (-112))) (-15 -1818 ((-112) |#5| (-619 |#5|)))) (-13 (-299) (-145)) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -571)) +((-1818 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-571 *5 *6 *7 *8 *3)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-619 *3)) (-5 *1 (-571 *5 *6 *7 *8 *3)) (-4 *3 (-1072 *5 *6 *7 *8))))) +(-10 -7 (-15 -2352 ((-619 |#5|) |#5| (-112))) (-15 -1818 ((-112) |#5| (-619 |#5|)))) +((-3730 (((-112) $ $) NIL)) (-1987 (((-1140) $) 11)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-572) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $))))) (T -572)) +((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-572)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-572))))) +(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $)))) +((-3730 (((-112) $ $) NIL (|has| (-142) (-1063)))) (-3541 (($ $) 34)) (-3552 (($ $) NIL)) (-3517 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2665 (((-112) $ $) 51)) (-2642 (((-112) $ $ (-548)) 46)) (-3530 (((-619 $) $ (-142)) 60) (((-619 $) $ (-139)) 61)) (-3001 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-821)))) (-2980 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-821))))) (-2490 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-142) $ (-548) (-142)) 45 (|has| $ (-6 -4328))) (((-142) $ (-1185 (-548)) (-142)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3377 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-2541 (($ $ (-1185 (-548)) $) 44)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-3699 (($ (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-142) $ (-548) (-142)) NIL (|has| $ (-6 -4328)))) (-3899 (((-142) $ (-548)) NIL)) (-2683 (((-112) $ $) 72)) (-2621 (((-548) (-1 (-112) (-142)) $) NIL) (((-548) (-142) $) NIL (|has| (-142) (-1063))) (((-548) (-142) $ (-548)) 48 (|has| (-142) (-1063))) (((-548) $ $ (-548)) 47) (((-548) (-139) $ (-548)) 50)) (-1934 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-142)) 9)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 28 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| (-142) (-821)))) (-2913 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4181 (((-548) $) 42 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-142) (-821)))) (-2141 (((-112) $ $ (-142)) 73)) (-3407 (((-745) $ $ (-142)) 70)) (-3960 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3563 (($ $) 37)) (-3574 (($ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3392 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-2546 (((-1118) $) 38 (|has| (-142) (-1063)))) (-2387 (($ (-142) $ (-548)) NIL) (($ $ $ (-548)) 23)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-548) $) 69) (((-1082) $) NIL (|has| (-142) (-1063)))) (-3453 (((-142) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-4159 (($ $ (-142)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-142)))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4223 (((-619 (-142)) $) NIL)) (-1616 (((-112) $) 12)) (-3319 (($) 10)) (-3171 (((-142) $ (-548) (-142)) NIL) (((-142) $ (-548)) 52) (($ $ (-1185 (-548))) 21) (($ $ $) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327))) (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-2990 (($ $ $ (-548)) 66 (|has| $ (-6 -4328)))) (-2113 (($ $) 17)) (-2591 (((-524) $) NIL (|has| (-142) (-593 (-524))))) (-3754 (($ (-619 (-142))) NIL)) (-1831 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-619 $)) 67)) (-3743 (($ (-142)) NIL) (((-832) $) 27 (|has| (-142) (-592 (-832))))) (-3548 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2214 (((-112) $ $) 14 (|has| (-142) (-1063)))) (-2252 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2234 (((-112) $ $) 15 (|has| (-142) (-821)))) (-3643 (((-745) $) 13 (|has| $ (-6 -4327))))) +(((-573 |#1|) (-13 (-1104) (-10 -8 (-15 -3932 ((-548) $)))) (-548)) (T -573)) +((-3932 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-573 *3)) (-14 *3 *2)))) +(-13 (-1104) (-10 -8 (-15 -3932 ((-548) $)))) +((-3087 (((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2| (-1058 |#4|)) 32))) +(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3087 ((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2| (-1058 |#4|))) (-15 -3087 ((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2|))) (-767) (-821) (-540) (-918 |#3| |#1| |#2|)) (T -574)) +((-3087 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-540)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-548)))) (-5 *1 (-574 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) (-3087 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1058 *3)) (-4 *3 (-918 *7 *6 *4)) (-4 *6 (-767)) (-4 *4 (-821)) (-4 *7 (-540)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-548)))) (-5 *1 (-574 *6 *4 *7 *3))))) +(-10 -7 (-15 -3087 ((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2| (-1058 |#4|))) (-15 -3087 ((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 63)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-548)) 54) (($ $ (-548) (-548)) 55)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 60)) (-2152 (($ $) 100)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2127 (((-832) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) (-995 (-814 (-548))) (-1135) |#1| (-399 (-548))) 224)) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 34)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3345 (((-112) $) NIL)) (-1672 (((-548) $) 58) (((-548) $ (-548)) 59)) (-2266 (((-112) $) NIL)) (-3535 (($ $ (-890)) 76)) (-3823 (($ (-1 |#1| (-548)) $) 73)) (-2435 (((-112) $) 25)) (-2024 (($ |#1| (-548)) 22) (($ $ (-1045) (-548)) NIL) (($ $ (-619 (-1045)) (-619 (-548))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 67)) (-2195 (($ (-995 (-814 (-548))) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 13)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3810 (($ $) 150 (|has| |#1| (-38 (-399 (-548)))))) (-2165 (((-3 $ "failed") $ $ (-112)) 99)) (-2139 (($ $ $) 108)) (-3932 (((-1082) $) NIL)) (-2176 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 15)) (-2184 (((-995 (-814 (-548))) $) 14)) (-1656 (($ $ (-548)) 45)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-548)))))) (-3171 ((|#1| $ (-548)) 57) (($ $ $) NIL (|has| (-548) (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-548) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (-2512 (((-548) $) NIL)) (-3330 (($ $) 46)) (-3743 (((-832) $) NIL) (($ (-548)) 28) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) 27 (|has| |#1| (-169)))) (-1951 ((|#1| $ (-548)) 56)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 37)) (-2278 ((|#1| $) NIL)) (-1913 (($ $) 186 (|has| |#1| (-38 (-399 (-548)))))) (-2047 (($ $) 158 (|has| |#1| (-38 (-399 (-548)))))) (-1935 (($ $) 190 (|has| |#1| (-38 (-399 (-548)))))) (-2070 (($ $) 163 (|has| |#1| (-38 (-399 (-548)))))) (-1892 (($ $) 189 (|has| |#1| (-38 (-399 (-548)))))) (-2023 (($ $) 162 (|has| |#1| (-38 (-399 (-548)))))) (-2105 (($ $ (-399 (-548))) 166 (|has| |#1| (-38 (-399 (-548)))))) (-2117 (($ $ |#1|) 146 (|has| |#1| (-38 (-399 (-548)))))) (-2079 (($ $) 192 (|has| |#1| (-38 (-399 (-548)))))) (-2092 (($ $) 149 (|has| |#1| (-38 (-399 (-548)))))) (-1882 (($ $) 191 (|has| |#1| (-38 (-399 (-548)))))) (-2012 (($ $) 164 (|has| |#1| (-38 (-399 (-548)))))) (-1903 (($ $) 187 (|has| |#1| (-38 (-399 (-548)))))) (-2034 (($ $) 160 (|has| |#1| (-38 (-399 (-548)))))) (-1924 (($ $) 188 (|has| |#1| (-38 (-399 (-548)))))) (-2059 (($ $) 161 (|has| |#1| (-38 (-399 (-548)))))) (-1853 (($ $) 197 (|has| |#1| (-38 (-399 (-548)))))) (-1979 (($ $) 173 (|has| |#1| (-38 (-399 (-548)))))) (-1873 (($ $) 194 (|has| |#1| (-38 (-399 (-548)))))) (-2001 (($ $) 168 (|has| |#1| (-38 (-399 (-548)))))) (-1836 (($ $) 201 (|has| |#1| (-38 (-399 (-548)))))) (-1959 (($ $) 177 (|has| |#1| (-38 (-399 (-548)))))) (-1827 (($ $) 203 (|has| |#1| (-38 (-399 (-548)))))) (-1946 (($ $) 179 (|has| |#1| (-38 (-399 (-548)))))) (-1845 (($ $) 199 (|has| |#1| (-38 (-399 (-548)))))) (-1968 (($ $) 175 (|has| |#1| (-38 (-399 (-548)))))) (-1863 (($ $) 196 (|has| |#1| (-38 (-399 (-548)))))) (-1992 (($ $) 171 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2439 ((|#1| $ (-548)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-3107 (($) 29 T CONST)) (-3118 (($) 38 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-548) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (-2214 (((-112) $ $) 65)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) 84) (($ $ $) 64)) (-2290 (($ $ $) 81)) (** (($ $ (-890)) NIL) (($ $ (-745)) 103)) (* (($ (-890) $) 89) (($ (-745) $) 87) (($ (-548) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-575 |#1|) (-13 (-1196 |#1| (-548)) (-10 -8 (-15 -2195 ($ (-995 (-814 (-548))) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))))) (-15 -2184 ((-995 (-814 (-548))) $)) (-15 -2176 ((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $)) (-15 -1761 ($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))))) (-15 -2435 ((-112) $)) (-15 -3823 ($ (-1 |#1| (-548)) $)) (-15 -2165 ((-3 $ "failed") $ $ (-112))) (-15 -2152 ($ $)) (-15 -2139 ($ $ $)) (-15 -2127 ((-832) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) (-995 (-814 (-548))) (-1135) |#1| (-399 (-548)))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (-15 -2117 ($ $ |#1|)) (-15 -2105 ($ $ (-399 (-548)))) (-15 -2092 ($ $)) (-15 -2079 ($ $)) (-15 -2070 ($ $)) (-15 -2059 ($ $)) (-15 -2047 ($ $)) (-15 -2034 ($ $)) (-15 -2023 ($ $)) (-15 -2012 ($ $)) (-15 -2001 ($ $)) (-15 -1992 ($ $)) (-15 -1979 ($ $)) (-15 -1968 ($ $)) (-15 -1959 ($ $)) (-15 -1946 ($ $)) (-15 -1935 ($ $)) (-15 -1924 ($ $)) (-15 -1913 ($ $)) (-15 -1903 ($ $)) (-15 -1892 ($ $)) (-15 -1882 ($ $)) (-15 -1873 ($ $)) (-15 -1863 ($ $)) (-15 -1853 ($ $)) (-15 -1845 ($ $)) (-15 -1836 ($ $)) (-15 -1827 ($ $))) |%noBranch|))) (-1016)) (T -575)) +((-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-2195 (*1 *1 *2 *3) (-12 (-5 *2 (-995 (-814 (-548)))) (-5 *3 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *4)))) (-4 *4 (-1016)) (-5 *1 (-575 *4)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-995 (-814 (-548)))) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-548))) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) (-2165 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) (-2139 (*1 *1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) (-2127 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *6)))) (-5 *4 (-995 (-814 (-548)))) (-5 *5 (-1135)) (-5 *7 (-399 (-548))) (-4 *6 (-1016)) (-5 *2 (-832)) (-5 *1 (-575 *6)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2117 (*1 *1 *1 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-575 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1016)))) (-2092 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2079 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2059 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2047 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2034 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2023 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2012 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2001 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1992 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1979 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1968 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1959 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1946 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1935 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1913 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1903 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1892 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1882 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1873 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1863 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1845 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1836 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1827 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(-13 (-1196 |#1| (-548)) (-10 -8 (-15 -2195 ($ (-995 (-814 (-548))) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))))) (-15 -2184 ((-995 (-814 (-548))) $)) (-15 -2176 ((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $)) (-15 -1761 ($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))))) (-15 -2435 ((-112) $)) (-15 -3823 ($ (-1 |#1| (-548)) $)) (-15 -2165 ((-3 $ "failed") $ $ (-112))) (-15 -2152 ($ $)) (-15 -2139 ($ $ $)) (-15 -2127 ((-832) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) (-995 (-814 (-548))) (-1135) |#1| (-399 (-548)))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (-15 -2117 ($ $ |#1|)) (-15 -2105 ($ $ (-399 (-548)))) (-15 -2092 ($ $)) (-15 -2079 ($ $)) (-15 -2070 ($ $)) (-15 -2059 ($ $)) (-15 -2047 ($ $)) (-15 -2034 ($ $)) (-15 -2023 ($ $)) (-15 -2012 ($ $)) (-15 -2001 ($ $)) (-15 -1992 ($ $)) (-15 -1979 ($ $)) (-15 -1968 ($ $)) (-15 -1959 ($ $)) (-15 -1946 ($ $)) (-15 -1935 ($ $)) (-15 -1924 ($ $)) (-15 -1913 ($ $)) (-15 -1903 ($ $)) (-15 -1892 ($ $)) (-15 -1882 ($ $)) (-15 -1873 ($ $)) (-15 -1863 ($ $)) (-15 -1853 ($ $)) (-15 -1845 ($ $)) (-15 -1836 ($ $)) (-15 -1827 ($ $))) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1761 (($ (-1116 |#1|)) 9)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) 42)) (-3345 (((-112) $) 52)) (-1672 (((-745) $) 55) (((-745) $ (-745)) 54)) (-2266 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ $) 44 (|has| |#1| (-540)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-1116 |#1|) $) 23)) (-3835 (((-745)) 51)) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 10 T CONST)) (-3118 (($) 14 T CONST)) (-2214 (((-112) $ $) 22)) (-2299 (($ $) 30) (($ $ $) 16)) (-2290 (($ $ $) 25)) (** (($ $ (-890)) NIL) (($ $ (-745)) 49)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-548)) 36))) +(((-576 |#1|) (-13 (-1016) (-10 -8 (-15 -3852 ((-1116 |#1|) $)) (-15 -1761 ($ (-1116 |#1|))) (-15 -3345 ((-112) $)) (-15 -1672 ((-745) $)) (-15 -1672 ((-745) $ (-745))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-548))) (IF (|has| |#1| (-540)) (-6 (-540)) |%noBranch|))) (-1016)) (T -576)) +((-3852 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-576 *3)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) (-1672 (*1 *2 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-576 *3)) (-4 *3 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -3852 ((-1116 |#1|) $)) (-15 -1761 ($ (-1116 |#1|))) (-15 -3345 ((-112) $)) (-15 -1672 ((-745) $)) (-15 -1672 ((-745) $ (-745))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-548))) (IF (|has| |#1| (-540)) (-6 (-540)) |%noBranch|))) +((-2540 (((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)) 15))) +(((-577 |#1| |#2|) (-10 -7 (-15 -2540 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)))) (-1172) (-1172)) (T -577)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-580 *6)) (-5 *1 (-577 *5 *6))))) +(-10 -7 (-15 -2540 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)))) +((-2540 (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-1116 |#2|)) 20) (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-580 |#2|)) 19) (((-580 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-580 |#2|)) 18))) +(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-580 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-580 |#2|))) (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-580 |#2|))) (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-1116 |#2|)))) (-1172) (-1172) (-1172)) (T -578)) +((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-1116 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-578 *6 *7 *8)))) (-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-580 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-578 *6 *7 *8)))) (-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-580 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-580 *8)) (-5 *1 (-578 *6 *7 *8))))) +(-10 -7 (-15 -2540 ((-580 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-580 |#2|))) (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-580 |#2|))) (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-1116 |#2|)))) +((-4139 ((|#3| |#3| (-619 (-591 |#3|)) (-619 (-1135))) 55)) (-4129 (((-166 |#2|) |#3|) 117)) (-4096 ((|#3| (-166 |#2|)) 44)) (-4109 ((|#2| |#3|) 19)) (-4121 ((|#3| |#2|) 33))) +(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -4096 (|#3| (-166 |#2|))) (-15 -4109 (|#2| |#3|)) (-15 -4121 (|#3| |#2|)) (-15 -4129 ((-166 |#2|) |#3|)) (-15 -4139 (|#3| |#3| (-619 (-591 |#3|)) (-619 (-1135))))) (-13 (-540) (-821)) (-13 (-422 |#1|) (-971) (-1157)) (-13 (-422 (-166 |#1|)) (-971) (-1157))) (T -579)) +((-4139 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-591 *2))) (-5 *4 (-619 (-1135))) (-4 *2 (-13 (-422 (-166 *5)) (-971) (-1157))) (-4 *5 (-13 (-540) (-821))) (-5 *1 (-579 *5 *6 *2)) (-4 *6 (-13 (-422 *5) (-971) (-1157))))) (-4129 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821))) (-5 *2 (-166 *5)) (-5 *1 (-579 *4 *5 *3)) (-4 *5 (-13 (-422 *4) (-971) (-1157))) (-4 *3 (-13 (-422 (-166 *4)) (-971) (-1157))))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821))) (-4 *2 (-13 (-422 (-166 *4)) (-971) (-1157))) (-5 *1 (-579 *4 *3 *2)) (-4 *3 (-13 (-422 *4) (-971) (-1157))))) (-4109 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821))) (-4 *2 (-13 (-422 *4) (-971) (-1157))) (-5 *1 (-579 *4 *2 *3)) (-4 *3 (-13 (-422 (-166 *4)) (-971) (-1157))))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-422 *4) (-971) (-1157))) (-4 *4 (-13 (-540) (-821))) (-4 *2 (-13 (-422 (-166 *4)) (-971) (-1157))) (-5 *1 (-579 *4 *5 *2))))) +(-10 -7 (-15 -4096 (|#3| (-166 |#2|))) (-15 -4109 (|#2| |#3|)) (-15 -4121 (|#3| |#2|)) (-15 -4129 ((-166 |#2|) |#3|)) (-15 -4139 (|#3| |#3| (-619 (-591 |#3|)) (-619 (-1135))))) +((-1415 (($ (-1 (-112) |#1|) $) 17)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-1350 (($ (-1 |#1| |#1|) |#1|) 9)) (-1394 (($ (-1 (-112) |#1|) $) 13)) (-1404 (($ (-1 (-112) |#1|) $) 15)) (-3754 (((-1116 |#1|) $) 18)) (-3743 (((-832) $) NIL))) +(((-580 |#1|) (-13 (-592 (-832)) (-10 -8 (-15 -2540 ($ (-1 |#1| |#1|) $)) (-15 -1394 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)) (-15 -1415 ($ (-1 (-112) |#1|) $)) (-15 -1350 ($ (-1 |#1| |#1|) |#1|)) (-15 -3754 ((-1116 |#1|) $)))) (-1172)) (T -580)) +((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-1394 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-1404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-580 *3)) (-4 *3 (-1172))))) +(-13 (-592 (-832)) (-10 -8 (-15 -2540 ($ (-1 |#1| |#1|) $)) (-15 -1394 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)) (-15 -1415 ($ (-1 (-112) |#1|) $)) (-15 -1350 ($ (-1 |#1| |#1|) |#1|)) (-15 -3754 ((-1116 |#1|) $)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745)) NIL (|has| |#1| (-23)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4007 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-4248 (((-112) $ (-745)) NIL)) (-3198 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4029 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4018 (($ $ $) NIL (|has| |#1| (-1016)))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2290 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-548) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-581 |#1| |#2|) (-1216 |#1|) (-1172) (-548)) (T -581)) +NIL +(-1216 |#1|) +((-4149 (((-1223) $ |#2| |#2|) 36)) (-4171 ((|#2| $) 23)) (-4181 ((|#2| $) 21)) (-3960 (($ (-1 |#3| |#3|) $) 32)) (-2540 (($ (-1 |#3| |#3|) $) 30)) (-3453 ((|#3| $) 26)) (-4159 (($ $ |#3|) 33)) (-4191 (((-112) |#3| $) 17)) (-4223 (((-619 |#3|) $) 15)) (-3171 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-582 |#1| |#2| |#3|) (-10 -8 (-15 -4149 ((-1223) |#1| |#2| |#2|)) (-15 -4159 (|#1| |#1| |#3|)) (-15 -3453 (|#3| |#1|)) (-15 -4171 (|#2| |#1|)) (-15 -4181 (|#2| |#1|)) (-15 -4191 ((-112) |#3| |#1|)) (-15 -4223 ((-619 |#3|) |#1|)) (-15 -3171 (|#3| |#1| |#2|)) (-15 -3171 (|#3| |#1| |#2| |#3|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|))) (-583 |#2| |#3|) (-1063) (-1172)) (T -582)) +NIL +(-10 -8 (-15 -4149 ((-1223) |#1| |#2| |#2|)) (-15 -4159 (|#1| |#1| |#3|)) (-15 -3453 (|#3| |#1|)) (-15 -4171 (|#2| |#1|)) (-15 -4181 (|#2| |#1|)) (-15 -4191 ((-112) |#3| |#1|)) (-15 -4223 ((-619 |#3|) |#1|)) (-15 -3171 (|#3| |#1| |#2|)) (-15 -3171 (|#3| |#1| |#2| |#3|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#2| (-1063)))) (-4149 (((-1223) $ |#1| |#1|) 40 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-3971 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) 51)) (-1934 (((-619 |#2|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-4171 ((|#1| $) 43 (|has| |#1| (-821)))) (-2342 (((-619 |#2|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-4181 ((|#1| $) 44 (|has| |#1| (-821)))) (-3960 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#2| (-1063)))) (-4201 (((-619 |#1|) $) 46)) (-4212 (((-112) |#1| $) 47)) (-3932 (((-1082) $) 21 (|has| |#2| (-1063)))) (-3453 ((|#2| $) 42 (|has| |#1| (-821)))) (-4159 (($ $ |#2|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) 26 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 23 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3945 (((-745) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4327))) (((-745) |#2| $) 28 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#2| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#2| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-583 |#1| |#2|) (-138) (-1063) (-1172)) (T -583)) +((-4223 (*1 *2 *1) (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-619 *4)))) (-4212 (*1 *2 *3 *1) (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-619 *3)))) (-4191 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-583 *4 *3)) (-4 *4 (-1063)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-583 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-583 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-583 *3 *2)) (-4 *3 (-1063)) (-4 *3 (-821)) (-4 *2 (-1172)))) (-4159 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-583 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-4149 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-1223))))) +(-13 (-480 |t#2|) (-280 |t#1| |t#2|) (-10 -8 (-15 -4223 ((-619 |t#2|) $)) (-15 -4212 ((-112) |t#1| $)) (-15 -4201 ((-619 |t#1|) $)) (IF (|has| |t#2| (-1063)) (IF (|has| $ (-6 -4327)) (-15 -4191 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-15 -4181 (|t#1| $)) (-15 -4171 (|t#1| $)) (-15 -3453 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4328)) (PROGN (-15 -4159 ($ $ |t#2|)) (-15 -4149 ((-1223) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#2| (-1063)) ((-592 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-592 (-832)))) ((-278 |#1| |#2|) . T) ((-280 |#1| |#2|) . T) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-480 |#2|) . T) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-1063) |has| |#2| (-1063)) ((-1172) . T)) +((-3743 (((-832) $) 19) (((-129) $) 14) (($ (-129)) 13))) +(((-584) (-13 (-592 (-832)) (-592 (-129)) (-10 -8 (-15 -3743 ($ (-129)))))) (T -584)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-584))))) +(-13 (-592 (-832)) (-592 (-129)) (-10 -8 (-15 -3743 ($ (-129))))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL) (((-1171) $) 14) (($ (-619 (-1171))) 13)) (-3108 (((-619 (-1171)) $) 10)) (-2214 (((-112) $ $) NIL))) +(((-585) (-13 (-1047) (-592 (-1171)) (-10 -8 (-15 -3743 ($ (-619 (-1171)))) (-15 -3108 ((-619 (-1171)) $))))) (T -585)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-585)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-585))))) +(-13 (-1047) (-592 (-1171)) (-10 -8 (-15 -3743 ($ (-619 (-1171)))) (-15 -3108 ((-619 (-1171)) $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 |#1|))) NIL (|has| |#2| (-409 |#1|))) (((-1218 (-663 |#1|)) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2968 (((-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3030 (($) NIL T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-3991 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2413 (((-663 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2947 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2391 (((-663 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3399 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4307 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-355))))) (-2246 (($ $ (-890)) NIL)) (-2925 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2741 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2432 ((|#1|) NIL (|has| |#2| (-409 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2903 (((-1131 |#1|) $) NIL (|has| |#2| (-359 |#1|)))) (-2842 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2455 (($ (-1218 |#1|)) NIL (|has| |#2| (-409 |#1|))) (($ (-1218 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2103 (((-890)) NIL (|has| |#2| (-359 |#1|)))) (-2815 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2468 (($ $ (-890)) NIL)) (-2782 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2766 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2797 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4003 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2422 (((-663 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2958 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2402 (((-663 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3411 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-1298 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-355))))) (-3424 (($ $ (-890)) NIL)) (-2936 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2750 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2444 ((|#1|) NIL (|has| |#2| (-409 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2914 (((-1131 |#1|) $) NIL (|has| |#2| (-359 |#1|)))) (-2851 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2790 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2806 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3932 (((-1082) $) NIL)) (-2832 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3171 ((|#1| $ (-548)) NIL (|has| |#2| (-409 |#1|)))) (-2447 (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-409 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $) (-1218 $)) NIL (|has| |#2| (-359 |#1|))) (((-1218 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2591 (($ (-1218 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-409 |#1|)))) (-4218 (((-619 (-921 |#1|))) NIL (|has| |#2| (-409 |#1|))) (((-619 (-921 |#1|)) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3652 (($ $ $) NIL)) (-2891 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3743 (((-832) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2877 (((-1218 $)) NIL (|has| |#2| (-409 |#1|)))) (-2759 (((-619 (-1218 |#1|))) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3398 (($ (-663 |#1|) $) NIL (|has| |#2| (-409 |#1|)))) (-3639 (($ $ $) NIL)) (-2881 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2859 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2823 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) 24)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-586 |#1| |#2|) (-13 (-719 |#1|) (-592 |#2|) (-10 -8 (-15 -3743 ($ |#2|)) (IF (|has| |#2| (-409 |#1|)) (-6 (-409 |#1|)) |%noBranch|) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|))) (-169) (-719 |#1|)) (T -586)) +((-3743 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-586 *3 *2)) (-4 *2 (-719 *3))))) +(-13 (-719 |#1|) (-592 |#2|) (-10 -8 (-15 -3743 ($ |#2|)) (IF (|has| |#2| (-409 |#1|)) (-6 (-409 |#1|)) |%noBranch|) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-3930 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) 33)) (-3539 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL) (($) NIL)) (-4149 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-1118) |#1|) 43)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#1| "failed") (-1118) $) 46)) (-3030 (($) NIL T CONST)) (-3981 (($ $ (-1118)) 24)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-1636 (((-3 |#1| "failed") (-1118) $) 47) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (|has| $ (-6 -4327)))) (-3699 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-2061 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-3943 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) 32)) (-3971 ((|#1| $ (-1118) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-1118)) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-1554 (($ $) 48)) (-1280 (($ (-380)) 22) (($ (-380) (-1118)) 21)) (-2275 (((-380) $) 34)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1118) $) NIL (|has| (-1118) (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (((-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-4181 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-4043 (((-619 (-1118)) $) 39)) (-4233 (((-112) (-1118) $) NIL)) (-3959 (((-1118) $) 35)) (-1346 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-4201 (((-619 (-1118)) $) NIL)) (-4212 (((-112) (-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 ((|#1| $) NIL (|has| (-1118) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) "failed") (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-619 (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 37)) (-3171 ((|#1| $ (-1118) |#1|) NIL) ((|#1| $ (-1118)) 42)) (-2801 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL) (($) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (((-745) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (((-745) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3743 (((-832) $) 20)) (-3972 (($ $) 25)) (-1368 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 19)) (-3643 (((-745) $) 41 (|has| $ (-6 -4327))))) +(((-587 |#1|) (-13 (-356 (-380) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) (-1148 (-1118) |#1|) (-10 -8 (-6 -4327) (-15 -1554 ($ $)))) (-1063)) (T -587)) +((-1554 (*1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1063))))) +(-13 (-356 (-380) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) (-1148 (-1118) |#1|) (-10 -8 (-6 -4327) (-15 -1554 ($ $)))) +((-2556 (((-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 15)) (-4043 (((-619 |#2|) $) 19)) (-4233 (((-112) |#2| $) 12))) +(((-588 |#1| |#2| |#3|) (-10 -8 (-15 -4043 ((-619 |#2|) |#1|)) (-15 -4233 ((-112) |#2| |#1|)) (-15 -2556 ((-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|))) (-589 |#2| |#3|) (-1063) (-1063)) (T -588)) +NIL +(-10 -8 (-15 -4043 ((-619 |#2|) |#1|)) (-15 -4233 ((-112) |#2| |#1|)) (-15 -2556 ((-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|))) +((-3730 (((-112) $ $) 19 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 55 (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) 61)) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 46 (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 62)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 54 (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 56 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 53 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-4043 (((-619 |#1|) $) 63)) (-4233 (((-112) |#1| $) 64)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 39)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 40)) (-3932 (((-1082) $) 21 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 51)) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 41)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) 26 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 25 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 24 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 23 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2801 (($) 49) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 48)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 31 (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 50)) (-3743 (((-832) $) 18 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 42)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-589 |#1| |#2|) (-138) (-1063) (-1063)) (T -589)) +((-4233 (*1 *2 *3 *1) (-12 (-4 *1 (-589 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-112)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-589 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-619 *3)))) (-1636 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-589 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3255 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-589 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(-13 (-222 (-2 (|:| -3156 |t#1|) (|:| -1657 |t#2|))) (-10 -8 (-15 -4233 ((-112) |t#1| $)) (-15 -4043 ((-619 |t#1|) $)) (-15 -1636 ((-3 |t#2| "failed") |t#1| $)) (-15 -3255 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((-101) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) ((-592 (-832)) -1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))) ((-149 #0#) . T) ((-593 (-524)) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))) ((-222 #0#) . T) ((-228 #0#) . T) ((-301 #0#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-480 #0#) . T) ((-504 #0# #0#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-1063) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) ((-1172) . T)) +((-4268 (((-591 |#2|) |#1|) 15)) (-4279 (((-3 |#1| "failed") (-591 |#2|)) 19))) +(((-590 |#1| |#2|) (-10 -7 (-15 -4268 ((-591 |#2|) |#1|)) (-15 -4279 ((-3 |#1| "failed") (-591 |#2|)))) (-821) (-821)) (T -590)) +((-4279 (*1 *2 *3) (|partial| -12 (-5 *3 (-591 *4)) (-4 *4 (-821)) (-4 *2 (-821)) (-5 *1 (-590 *2 *4)))) (-4268 (*1 *2 *3) (-12 (-5 *2 (-591 *4)) (-5 *1 (-590 *3 *4)) (-4 *3 (-821)) (-4 *4 (-821))))) +(-10 -7 (-15 -4268 ((-591 |#2|) |#1|)) (-15 -4279 ((-3 |#1| "failed") (-591 |#2|)))) +((-3730 (((-112) $ $) NIL)) (-4244 (((-3 (-1135) "failed") $) 37)) (-4116 (((-1223) $ (-745)) 26)) (-2621 (((-745) $) 25)) (-1402 (((-114) $) 12)) (-2275 (((-1135) $) 20)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-1409 (($ (-114) (-619 |#1|) (-745)) 30) (($ (-1135)) 31)) (-1518 (((-112) $ (-114)) 18) (((-112) $ (-1135)) 16)) (-3926 (((-745) $) 22)) (-3932 (((-1082) $) NIL)) (-2591 (((-861 (-548)) $) 77 (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) 84 (|has| |#1| (-593 (-861 (-371))))) (((-524) $) 69 (|has| |#1| (-593 (-524))))) (-3743 (((-832) $) 55)) (-4257 (((-619 |#1|) $) 24)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 41)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 42))) +(((-591 |#1|) (-13 (-131) (-853 |#1|) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -1402 ((-114) $)) (-15 -4257 ((-619 |#1|) $)) (-15 -3926 ((-745) $)) (-15 -1409 ($ (-114) (-619 |#1|) (-745))) (-15 -1409 ($ (-1135))) (-15 -4244 ((-3 (-1135) "failed") $)) (-15 -1518 ((-112) $ (-114))) (-15 -1518 ((-112) $ (-1135))) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) (-821)) (T -591)) +((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-1409 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-821)) (-5 *1 (-591 *5)))) (-1409 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-4244 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-1518 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-821)))) (-1518 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-821))))) +(-13 (-131) (-853 |#1|) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -1402 ((-114) $)) (-15 -4257 ((-619 |#1|) $)) (-15 -3926 ((-745) $)) (-15 -1409 ($ (-114) (-619 |#1|) (-745))) (-15 -1409 ($ (-1135))) (-15 -4244 ((-3 (-1135) "failed") $)) (-15 -1518 ((-112) $ (-114))) (-15 -1518 ((-112) $ (-1135))) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) +((-3743 ((|#1| $) 6))) +(((-592 |#1|) (-138) (-1172)) (T -592)) +((-3743 (*1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1172))))) +(-13 (-10 -8 (-15 -3743 (|t#1| $)))) +((-2591 ((|#1| $) 6))) +(((-593 |#1|) (-138) (-1172)) (T -593)) +((-2591 (*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1172))))) +(-13 (-10 -8 (-15 -2591 (|t#1| $)))) +((-4289 (((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 (-410 |#2|) |#2|)) 15) (((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|)) 16))) +(((-594 |#1| |#2|) (-10 -7 (-15 -4289 ((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|))) (-15 -4289 ((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 (-410 |#2|) |#2|)))) (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -594)) +((-4289 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-1131 (-399 *6))) (-5 *1 (-594 *5 *6)) (-5 *3 (-399 *6)))) (-4289 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-1131 (-399 *5))) (-5 *1 (-594 *4 *5)) (-5 *3 (-399 *5))))) +(-10 -7 (-15 -4289 ((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|))) (-15 -4289 ((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 (-410 |#2|) |#2|)))) +((-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) 10))) +(((-595 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-596 |#2|) (-1016)) (T -595)) +NIL +(-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 34)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +(((-596 |#1|) (-138) (-1016)) (T -596)) +((-3743 (*1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-622 |t#1|) (-10 -8 (-15 -3743 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2672 (((-548) $) NIL (|has| |#1| (-819)))) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-3298 (((-112) $) NIL (|has| |#1| (-819)))) (-2266 (((-112) $) NIL)) (-2470 ((|#1| $) 13)) (-3312 (((-112) $) NIL (|has| |#1| (-819)))) (-1795 (($ $ $) NIL (|has| |#1| (-819)))) (-3091 (($ $ $) NIL (|has| |#1| (-819)))) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2480 ((|#3| $) 15)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL)) (-3835 (((-745)) 20)) (-1446 (($ $) NIL (|has| |#1| (-819)))) (-3107 (($) NIL T CONST)) (-3118 (($) 12 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2309 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-597 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (-15 -2309 ($ $ |#3|)) (-15 -2309 ($ |#1| |#3|)) (-15 -2470 (|#1| $)) (-15 -2480 (|#3| $)))) (-38 |#2|) (-169) (|SubsetCategory| (-701) |#2|)) (T -597)) +((-2309 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) (-2309 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-701) *3)))) (-2480 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (-15 -2309 ($ $ |#3|)) (-15 -2309 ($ |#1| |#3|)) (-15 -2470 (|#1| $)) (-15 -2480 (|#3| $)))) +((-4301 ((|#2| |#2| (-1135) (-1135)) 18))) +(((-598 |#1| |#2|) (-10 -7 (-15 -4301 (|#2| |#2| (-1135) (-1135)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-928) (-29 |#1|))) (T -598)) +((-4301 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-598 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-29 *4)))))) +(-10 -7 (-15 -4301 (|#2| |#2| (-1135) (-1135)))) +((-3730 (((-112) $ $) 56)) (-3324 (((-112) $) 52)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1256 ((|#1| $) 49)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-1508 (((-2 (|:| -2189 $) (|:| -2180 (-399 |#2|))) (-399 |#2|)) 97 (|has| |#1| (-355)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) 24)) (-3859 (((-3 $ "failed") $) 75)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1672 (((-548) $) 19)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) 36)) (-2024 (($ |#1| (-548)) 21)) (-2197 ((|#1| $) 51)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) 87 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ $) 79)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-4077 (((-745) $) 99 (|has| |#1| (-355)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 98 (|has| |#1| (-355)))) (-4050 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2512 (((-548) $) 34)) (-2591 (((-399 |#2|) $) 42)) (-3743 (((-832) $) 62) (($ (-548)) 32) (($ $) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 31) (($ |#2|) 22)) (-1951 ((|#1| $ (-548)) 63)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 29)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 9 T CONST)) (-3118 (($) 12 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2214 (((-112) $ $) 17)) (-2299 (($ $) 46) (($ $ $) NIL)) (-2290 (($ $ $) 76)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 26) (($ $ $) 44))) +(((-599 |#1| |#2|) (-13 (-224 |#2|) (-540) (-593 (-399 |#2|)) (-403 |#1|) (-1007 |#2|) (-10 -8 (-15 -2435 ((-112) $)) (-15 -2512 ((-548) $)) (-15 -1672 ((-548) $)) (-15 -1872 ($ $)) (-15 -2197 (|#1| $)) (-15 -1256 (|#1| $)) (-15 -1951 (|#1| $ (-548))) (-15 -2024 ($ |#1| (-548))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-6 (-299)) (-15 -1508 ((-2 (|:| -2189 $) (|:| -2180 (-399 |#2|))) (-399 |#2|)))) |%noBranch|))) (-540) (-1194 |#1|)) (T -599)) +((-2435 (*1 *2 *1) (-12 (-4 *3 (-540)) (-5 *2 (-112)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *3 (-540)) (-5 *2 (-548)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-1672 (*1 *2 *1) (-12 (-4 *3 (-540)) (-5 *2 (-548)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-1872 (*1 *1 *1) (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-2197 (*1 *2 *1) (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-1256 (*1 *2 *1) (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *2 (-540)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1194 *2)))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-4 *2 (-540)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1194 *2)))) (-1508 (*1 *2 *3) (-12 (-4 *4 (-355)) (-4 *4 (-540)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -2189 (-599 *4 *5)) (|:| -2180 (-399 *5)))) (-5 *1 (-599 *4 *5)) (-5 *3 (-399 *5))))) +(-13 (-224 |#2|) (-540) (-593 (-399 |#2|)) (-403 |#1|) (-1007 |#2|) (-10 -8 (-15 -2435 ((-112) $)) (-15 -2512 ((-548) $)) (-15 -1672 ((-548) $)) (-15 -1872 ($ $)) (-15 -2197 (|#1| $)) (-15 -1256 (|#1| $)) (-15 -1951 (|#1| $ (-548))) (-15 -2024 ($ |#1| (-548))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-6 (-299)) (-15 -1508 ((-2 (|:| -2189 $) (|:| -2180 (-399 |#2|))) (-399 |#2|)))) |%noBranch|))) +((-2004 (((-619 |#6|) (-619 |#4|) (-112)) 47)) (-1268 ((|#6| |#6|) 40))) +(((-600 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1268 (|#6| |#6|)) (-15 -2004 ((-619 |#6|) (-619 |#4|) (-112)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|) (-1072 |#1| |#2| |#3| |#4|)) (T -600)) +((-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *10)) (-5 *1 (-600 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *10 (-1072 *5 *6 *7 *8)))) (-1268 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-600 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *2 (-1072 *3 *4 *5 *6))))) +(-10 -7 (-15 -1268 (|#6| |#6|)) (-15 -2004 ((-619 |#6|) (-619 |#4|) (-112)))) +((-1281 (((-112) |#3| (-745) (-619 |#3|)) 23)) (-1292 (((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3213 (-619 (-2 (|:| |irr| |#4|) (|:| -3286 (-548)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)) 55))) +(((-601 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1281 ((-112) |#3| (-745) (-619 |#3|))) (-15 -1292 ((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3213 (-619 (-2 (|:| |irr| |#4|) (|:| -3286 (-548)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)))) (-821) (-767) (-299) (-918 |#3| |#2| |#1|)) (T -601)) +((-1292 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3213 (-619 (-2 (|:| |irr| *10) (|:| -3286 (-548))))))) (-5 *6 (-619 *3)) (-5 *7 (-619 *8)) (-4 *8 (-821)) (-4 *3 (-299)) (-4 *10 (-918 *3 *9 *8)) (-4 *9 (-767)) (-5 *2 (-2 (|:| |polfac| (-619 *10)) (|:| |correct| *3) (|:| |corrfact| (-619 (-1131 *3))))) (-5 *1 (-601 *8 *9 *3 *10)) (-5 *4 (-619 (-1131 *3))))) (-1281 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-745)) (-5 *5 (-619 *3)) (-4 *3 (-299)) (-4 *6 (-821)) (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-601 *6 *7 *3 *8)) (-4 *8 (-918 *3 *7 *6))))) +(-10 -7 (-15 -1281 ((-112) |#3| (-745) (-619 |#3|))) (-15 -1292 ((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3213 (-619 (-2 (|:| |irr| |#4|) (|:| -3286 (-548)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)))) +((-3730 (((-112) $ $) NIL)) (-1987 (((-1140) $) 11)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-602) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $))))) (T -602)) +((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602))))) +(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $)))) +((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2425 (($ $) 67)) (-3496 (((-638 |#1| |#2|) $) 52)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 70)) (-1303 (((-619 (-286 |#2|)) $ $) 33)) (-3932 (((-1082) $) NIL)) (-2458 (($ (-638 |#1| |#2|)) 48)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 58) (((-1233 |#1| |#2|) $) NIL) (((-1238 |#1| |#2|) $) 66)) (-3118 (($) 53 T CONST)) (-1315 (((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $) 31)) (-1326 (((-619 (-638 |#1| |#2|)) (-619 |#1|)) 65)) (-3623 (((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $) 37)) (-2214 (((-112) $ $) 54)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ $ $) 44))) +(((-603 |#1| |#2| |#3|) (-13 (-464) (-10 -8 (-15 -2458 ($ (-638 |#1| |#2|))) (-15 -3496 ((-638 |#1| |#2|) $)) (-15 -3623 ((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $)) (-15 -3743 ((-1233 |#1| |#2|) $)) (-15 -3743 ((-1238 |#1| |#2|) $)) (-15 -2425 ($ $)) (-15 -3065 ((-619 |#1|) $)) (-15 -1326 ((-619 (-638 |#1| |#2|)) (-619 |#1|))) (-15 -1315 ((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $)) (-15 -1303 ((-619 (-286 |#2|)) $ $)))) (-821) (-13 (-169) (-692 (-399 (-548)))) (-890)) (T -603)) +((-2458 (*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-5 *1 (-603 *3 *4 *5)) (-14 *5 (-890)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-638 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-862 *3)) (|:| |c| *4)))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1238 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-603 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-13 (-169) (-692 (-399 (-548))))) (-14 *4 (-890)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-638 *4 *5))) (-5 *1 (-603 *4 *5 *6)) (-4 *5 (-13 (-169) (-692 (-399 (-548))))) (-14 *6 (-890)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-646 *3)) (|:| |c| *4)))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-1303 (*1 *2 *1 *1) (-12 (-5 *2 (-619 (-286 *4))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890))))) +(-13 (-464) (-10 -8 (-15 -2458 ($ (-638 |#1| |#2|))) (-15 -3496 ((-638 |#1| |#2|) $)) (-15 -3623 ((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $)) (-15 -3743 ((-1233 |#1| |#2|) $)) (-15 -3743 ((-1238 |#1| |#2|) $)) (-15 -2425 ($ $)) (-15 -3065 ((-619 |#1|) $)) (-15 -1326 ((-619 (-638 |#1| |#2|)) (-619 |#1|))) (-15 -1315 ((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $)) (-15 -1303 ((-619 (-286 |#2|)) $ $)))) +((-2004 (((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)) 72) (((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112)) 58)) (-1338 (((-112) (-619 (-754 |#1| (-834 |#2|)))) 23)) (-1381 (((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)) 71)) (-1371 (((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112)) 57)) (-1359 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|)))) 27)) (-1348 (((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|)))) 26))) +(((-604 |#1| |#2|) (-10 -7 (-15 -1338 ((-112) (-619 (-754 |#1| (-834 |#2|))))) (-15 -1348 ((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|))))) (-15 -1359 ((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))))) (-15 -1371 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -1381 ((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2004 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2004 ((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)))) (-443) (-619 (-1135))) (T -604)) +((-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1106 *5 (-520 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) (-5 *1 (-604 *5 *6)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-604 *5 *6)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1106 *5 (-520 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) (-5 *1 (-604 *5 *6)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-604 *5 *6)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-443)) (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4)))) (-1348 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-443)) (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-619 (-754 *4 (-834 *5)))) (-4 *4 (-443)) (-14 *5 (-619 (-1135))) (-5 *2 (-112)) (-5 *1 (-604 *4 *5))))) +(-10 -7 (-15 -1338 ((-112) (-619 (-754 |#1| (-834 |#2|))))) (-15 -1348 ((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|))))) (-15 -1359 ((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))))) (-15 -1371 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -1381 ((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2004 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2004 ((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)))) +((-2074 (($ $) 38)) (-1940 (($ $) 21)) (-2054 (($ $) 37)) (-1918 (($ $) 22)) (-2098 (($ $) 36)) (-1963 (($ $) 23)) (-1365 (($) 48)) (-3496 (($ $) 45)) (-1613 (($ $) 17)) (-4044 (($ $ (-1056 $)) 7) (($ $ (-1135)) 6)) (-2458 (($ $) 46)) (-1877 (($ $) 15)) (-1907 (($ $) 16)) (-2110 (($ $) 35)) (-1973 (($ $) 24)) (-2086 (($ $) 34)) (-1952 (($ $) 25)) (-2065 (($ $) 33)) (-1929 (($ $) 26)) (-2145 (($ $) 44)) (-2006 (($ $) 32)) (-2122 (($ $) 43)) (-1986 (($ $) 31)) (-2170 (($ $) 42)) (-2029 (($ $) 30)) (-4026 (($ $) 41)) (-2040 (($ $) 29)) (-2158 (($ $) 40)) (-2017 (($ $) 28)) (-2132 (($ $) 39)) (-1996 (($ $) 27)) (-1424 (($ $) 19)) (-1437 (($ $) 20)) (-1413 (($ $) 18)) (** (($ $ $) 47))) +(((-605) (-138)) (T -605)) +((-1437 (*1 *1 *1) (-4 *1 (-605))) (-1424 (*1 *1 *1) (-4 *1 (-605))) (-1413 (*1 *1 *1) (-4 *1 (-605))) (-1613 (*1 *1 *1) (-4 *1 (-605))) (-1907 (*1 *1 *1) (-4 *1 (-605))) (-1877 (*1 *1 *1) (-4 *1 (-605)))) +(-13 (-928) (-1157) (-10 -8 (-15 -1437 ($ $)) (-15 -1424 ($ $)) (-15 -1413 ($ $)) (-15 -1613 ($ $)) (-15 -1907 ($ $)) (-15 -1877 ($ $)))) +(((-35) . T) ((-94) . T) ((-276) . T) ((-483) . T) ((-928) . T) ((-1157) . T) ((-1160) . T)) +((-1402 (((-114) (-114)) 83)) (-1613 ((|#2| |#2|) 30)) (-4044 ((|#2| |#2| (-1056 |#2|)) 79) ((|#2| |#2| (-1135)) 52)) (-1877 ((|#2| |#2|) 29)) (-1907 ((|#2| |#2|) 31)) (-1392 (((-112) (-114)) 34)) (-1424 ((|#2| |#2|) 26)) (-1437 ((|#2| |#2|) 28)) (-1413 ((|#2| |#2|) 27))) +(((-606 |#1| |#2|) (-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1437 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -1907 (|#2| |#2|)) (-15 -4044 (|#2| |#2| (-1135))) (-15 -4044 (|#2| |#2| (-1056 |#2|)))) (-13 (-821) (-540)) (-13 (-422 |#1|) (-971) (-1157))) (T -606)) +((-4044 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-422 *4) (-971) (-1157))) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-606 *4 *2)))) (-4044 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-422 *4) (-971) (-1157))))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1424 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1437 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *4)) (-4 *4 (-13 (-422 *3) (-971) (-1157))))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)) (-4 *5 (-13 (-422 *4) (-971) (-1157)))))) +(-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1437 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -1907 (|#2| |#2|)) (-15 -4044 (|#2| |#2| (-1135))) (-15 -4044 (|#2| |#2| (-1056 |#2|)))) +((-1545 (((-472 |#1| |#2|) (-240 |#1| |#2|)) 53)) (-1470 (((-619 (-240 |#1| |#2|)) (-619 (-472 |#1| |#2|))) 68)) (-1480 (((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-834 |#1|)) 70) (((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)) (-834 |#1|)) 69)) (-1448 (((-2 (|:| |gblist| (-619 (-240 |#1| |#2|))) (|:| |gvlist| (-619 (-548)))) (-619 (-472 |#1| |#2|))) 108)) (-1526 (((-619 (-472 |#1| |#2|)) (-834 |#1|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|))) 83)) (-1458 (((-2 (|:| |glbase| (-619 (-240 |#1| |#2|))) (|:| |glval| (-619 (-548)))) (-619 (-240 |#1| |#2|))) 118)) (-1505 (((-1218 |#2|) (-472 |#1| |#2|) (-619 (-472 |#1| |#2|))) 58)) (-1493 (((-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|))) 41)) (-1536 (((-240 |#1| |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|))) 50)) (-1516 (((-240 |#1| |#2|) (-619 |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|))) 91))) +(((-607 |#1| |#2|) (-10 -7 (-15 -1448 ((-2 (|:| |gblist| (-619 (-240 |#1| |#2|))) (|:| |gvlist| (-619 (-548)))) (-619 (-472 |#1| |#2|)))) (-15 -1458 ((-2 (|:| |glbase| (-619 (-240 |#1| |#2|))) (|:| |glval| (-619 (-548)))) (-619 (-240 |#1| |#2|)))) (-15 -1470 ((-619 (-240 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1480 ((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)) (-834 |#1|))) (-15 -1480 ((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-834 |#1|))) (-15 -1493 ((-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1505 ((-1218 |#2|) (-472 |#1| |#2|) (-619 (-472 |#1| |#2|)))) (-15 -1516 ((-240 |#1| |#2|) (-619 |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|)))) (-15 -1526 ((-619 (-472 |#1| |#2|)) (-834 |#1|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1536 ((-240 |#1| |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|)))) (-15 -1545 ((-472 |#1| |#2|) (-240 |#1| |#2|)))) (-619 (-1135)) (-443)) (T -607)) +((-1545 (*1 *2 *3) (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 (-472 *4 *5)) (-5 *1 (-607 *4 *5)))) (-1536 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-240 *4 *5))) (-5 *2 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-607 *4 *5)))) (-1526 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-619 (-472 *4 *5))) (-5 *3 (-834 *4)) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-607 *4 *5)))) (-1516 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-240 *5 *6))) (-4 *6 (-443)) (-5 *2 (-240 *5 *6)) (-14 *5 (-619 (-1135))) (-5 *1 (-607 *5 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-472 *5 *6))) (-5 *3 (-472 *5 *6)) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-1218 *6)) (-5 *1 (-607 *5 *6)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-619 (-472 *3 *4))) (-14 *3 (-619 (-1135))) (-4 *4 (-443)) (-5 *1 (-607 *3 *4)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-472 *5 *6))) (-5 *4 (-834 *5)) (-14 *5 (-619 (-1135))) (-5 *2 (-472 *5 *6)) (-5 *1 (-607 *5 *6)) (-4 *6 (-443)))) (-1480 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-472 *5 *6))) (-5 *4 (-834 *5)) (-14 *5 (-619 (-1135))) (-5 *2 (-472 *5 *6)) (-5 *1 (-607 *5 *6)) (-4 *6 (-443)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-619 (-472 *4 *5))) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 (-619 (-240 *4 *5))) (-5 *1 (-607 *4 *5)))) (-1458 (*1 *2 *3) (-12 (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 (-2 (|:| |glbase| (-619 (-240 *4 *5))) (|:| |glval| (-619 (-548))))) (-5 *1 (-607 *4 *5)) (-5 *3 (-619 (-240 *4 *5))))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-619 (-472 *4 *5))) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 (-2 (|:| |gblist| (-619 (-240 *4 *5))) (|:| |gvlist| (-619 (-548))))) (-5 *1 (-607 *4 *5))))) +(-10 -7 (-15 -1448 ((-2 (|:| |gblist| (-619 (-240 |#1| |#2|))) (|:| |gvlist| (-619 (-548)))) (-619 (-472 |#1| |#2|)))) (-15 -1458 ((-2 (|:| |glbase| (-619 (-240 |#1| |#2|))) (|:| |glval| (-619 (-548)))) (-619 (-240 |#1| |#2|)))) (-15 -1470 ((-619 (-240 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1480 ((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)) (-834 |#1|))) (-15 -1480 ((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-834 |#1|))) (-15 -1493 ((-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1505 ((-1218 |#2|) (-472 |#1| |#2|) (-619 (-472 |#1| |#2|)))) (-15 -1516 ((-240 |#1| |#2|) (-619 |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|)))) (-15 -1526 ((-619 (-472 |#1| |#2|)) (-834 |#1|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1536 ((-240 |#1| |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|)))) (-15 -1545 ((-472 |#1| |#2|) (-240 |#1| |#2|)))) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL)) (-4149 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-52) $ (-1118) (-52)) 16) (((-52) $ (-1135) (-52)) 17)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 (-52) "failed") (-1118) $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-1636 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-3 (-52) "failed") (-1118) $) NIL)) (-3699 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-52) $ (-1118) (-52)) NIL (|has| $ (-6 -4328)))) (-3899 (((-52) $ (-1118)) NIL)) (-1934 (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-1554 (($ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1118) $) NIL (|has| (-1118) (-821)))) (-2342 (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4181 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2553 (($ (-380)) 9)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-4043 (((-619 (-1118)) $) NIL)) (-4233 (((-112) (-1118) $) NIL)) (-1346 (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL)) (-4201 (((-619 (-1118)) $) NIL)) (-4212 (((-112) (-1118) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-3453 (((-52) $) NIL (|has| (-1118) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) "failed") (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL)) (-4159 (($ $ (-52)) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ $ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-286 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-286 (-52)))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4223 (((-619 (-52)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-52) $ (-1118)) 14) (((-52) $ (-1118) (-52)) NIL) (((-52) $ (-1135)) 15)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-52) (-592 (-832))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-608) (-13 (-1148 (-1118) (-52)) (-10 -8 (-15 -2553 ($ (-380))) (-15 -1554 ($ $)) (-15 -3171 ((-52) $ (-1135))) (-15 -2089 ((-52) $ (-1135) (-52)))))) (T -608)) +((-2553 (*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-608)))) (-1554 (*1 *1 *1) (-5 *1 (-608))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-52)) (-5 *1 (-608)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1135)) (-5 *1 (-608))))) +(-13 (-1148 (-1118) (-52)) (-10 -8 (-15 -2553 ($ (-380))) (-15 -1554 ($ $)) (-15 -3171 ((-52) $ (-1135))) (-15 -2089 ((-52) $ (-1135) (-52))))) +((-2309 (($ $ |#2|) 10))) +(((-609 |#1| |#2|) (-10 -8 (-15 -2309 (|#1| |#1| |#2|))) (-610 |#2|) (-169)) (T -609)) +NIL +(-10 -8 (-15 -2309 (|#1| |#1| |#2|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3754 (($ $ $) 29)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 28 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-610 |#1|) (-138) (-169)) (T -610)) +((-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)) (-4 *2 (-355))))) +(-13 (-692 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3754 ($ $ $)) (IF (|has| |t#1| (-355)) (-15 -2309 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 |#1|))) NIL (|has| |#2| (-409 |#1|))) (((-1218 (-663 |#1|)) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2968 (((-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3030 (($) NIL T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-3991 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2413 (((-663 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2947 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2391 (((-663 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3399 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4307 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-355))))) (-2246 (($ $ (-890)) NIL)) (-2925 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2741 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2432 ((|#1|) NIL (|has| |#2| (-409 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2903 (((-1131 |#1|) $) NIL (|has| |#2| (-359 |#1|)))) (-2842 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2455 (($ (-1218 |#1|)) NIL (|has| |#2| (-409 |#1|))) (($ (-1218 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2103 (((-890)) NIL (|has| |#2| (-359 |#1|)))) (-2815 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2468 (($ $ (-890)) NIL)) (-2782 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2766 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2797 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4003 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2422 (((-663 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2958 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2402 (((-663 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3411 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-1298 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-355))))) (-3424 (($ $ (-890)) NIL)) (-2936 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2750 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2444 ((|#1|) NIL (|has| |#2| (-409 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2914 (((-1131 |#1|) $) NIL (|has| |#2| (-359 |#1|)))) (-2851 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2790 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2806 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3932 (((-1082) $) NIL)) (-2832 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3171 ((|#1| $ (-548)) NIL (|has| |#2| (-409 |#1|)))) (-2447 (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-409 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $) (-1218 $)) NIL (|has| |#2| (-359 |#1|))) (((-1218 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2591 (($ (-1218 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-409 |#1|)))) (-4218 (((-619 (-921 |#1|))) NIL (|has| |#2| (-409 |#1|))) (((-619 (-921 |#1|)) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3652 (($ $ $) NIL)) (-2891 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3743 (((-832) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2877 (((-1218 $)) NIL (|has| |#2| (-409 |#1|)))) (-2759 (((-619 (-1218 |#1|))) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3398 (($ (-663 |#1|) $) NIL (|has| |#2| (-409 |#1|)))) (-3639 (($ $ $) NIL)) (-2881 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2859 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2823 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3107 (($) 15 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) 17)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-611 |#1| |#2|) (-13 (-719 |#1|) (-592 |#2|) (-10 -8 (-15 -3743 ($ |#2|)) (IF (|has| |#2| (-409 |#1|)) (-6 (-409 |#1|)) |%noBranch|) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|))) (-169) (-719 |#1|)) (T -611)) +((-3743 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-611 *3 *2)) (-4 *2 (-719 *3))))) +(-13 (-719 |#1|) (-592 |#2|) (-10 -8 (-15 -3743 ($ |#2|)) (IF (|has| |#2| (-409 |#1|)) (-6 (-409 |#1|)) |%noBranch|) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|))) +((-1571 (((-3 (-814 |#2|) "failed") |#2| (-286 |#2|) (-1118)) 82) (((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-286 (-814 |#2|))) 104)) (-1563 (((-3 (-807 |#2|) "failed") |#2| (-286 (-807 |#2|))) 109))) +(((-612 |#1| |#2|) (-10 -7 (-15 -1571 ((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-286 (-814 |#2|)))) (-15 -1563 ((-3 (-807 |#2|) "failed") |#2| (-286 (-807 |#2|)))) (-15 -1571 ((-3 (-814 |#2|) "failed") |#2| (-286 |#2|) (-1118)))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -612)) +((-1571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1118)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-814 *3)) (-5 *1 (-612 *6 *3)))) (-1563 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-286 (-807 *3))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-807 *3)) (-5 *1 (-612 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-814 *3))) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (-814 *3) (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) "failed")) (-5 *1 (-612 *5 *3))))) +(-10 -7 (-15 -1571 ((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-286 (-814 |#2|)))) (-15 -1563 ((-3 (-807 |#2|) "failed") |#2| (-286 (-807 |#2|)))) (-15 -1571 ((-3 (-814 |#2|) "failed") |#2| (-286 |#2|) (-1118)))) +((-1571 (((-3 (-814 (-399 (-921 |#1|))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))) (-1118)) 80) (((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|)))) 20) (((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-814 (-921 |#1|)))) 35)) (-1563 (((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|)))) 23) (((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-807 (-921 |#1|)))) 43))) +(((-613 |#1|) (-10 -7 (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-814 (-921 |#1|))))) (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -1563 ((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-807 (-921 |#1|))))) (-15 -1563 ((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))) (-1118)))) (-443)) (T -613)) +((-1571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 (-399 (-921 *6)))) (-5 *5 (-1118)) (-5 *3 (-399 (-921 *6))) (-4 *6 (-443)) (-5 *2 (-814 *3)) (-5 *1 (-613 *6)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) (-4 *5 (-443)) (-5 *2 (-807 *3)) (-5 *1 (-613 *5)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-807 (-921 *5)))) (-4 *5 (-443)) (-5 *2 (-807 (-399 (-921 *5)))) (-5 *1 (-613 *5)) (-5 *3 (-399 (-921 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) (-4 *5 (-443)) (-5 *2 (-3 (-814 *3) (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) "failed")) (-5 *1 (-613 *5)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-814 (-921 *5)))) (-4 *5 (-443)) (-5 *2 (-3 (-814 (-399 (-921 *5))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 *5))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 *5))) "failed"))) "failed")) (-5 *1 (-613 *5)) (-5 *3 (-399 (-921 *5)))))) +(-10 -7 (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-814 (-921 |#1|))))) (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -1563 ((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-807 (-921 |#1|))))) (-15 -1563 ((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))) (-1118)))) +((-1599 (((-3 (-1218 (-399 |#1|)) "failed") (-1218 |#2|) |#2|) 57 (-3958 (|has| |#1| (-355)))) (((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|) 42 (|has| |#1| (-355)))) (-1581 (((-112) (-1218 |#2|)) 30)) (-1591 (((-3 (-1218 |#1|) "failed") (-1218 |#2|)) 33))) +(((-614 |#1| |#2|) (-10 -7 (-15 -1581 ((-112) (-1218 |#2|))) (-15 -1591 ((-3 (-1218 |#1|) "failed") (-1218 |#2|))) (IF (|has| |#1| (-355)) (-15 -1599 ((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|)) (-15 -1599 ((-3 (-1218 (-399 |#1|)) "failed") (-1218 |#2|) |#2|)))) (-540) (-615 |#1|)) (T -614)) +((-1599 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-3958 (-4 *5 (-355))) (-4 *5 (-540)) (-5 *2 (-1218 (-399 *5))) (-5 *1 (-614 *5 *4)))) (-1599 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-4 *5 (-355)) (-4 *5 (-540)) (-5 *2 (-1218 *5)) (-5 *1 (-614 *5 *4)))) (-1591 (*1 *2 *3) (|partial| -12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-540)) (-5 *2 (-1218 *4)) (-5 *1 (-614 *4 *5)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-540)) (-5 *2 (-112)) (-5 *1 (-614 *4 *5))))) +(-10 -7 (-15 -1581 ((-112) (-1218 |#2|))) (-15 -1591 ((-3 (-1218 |#1|) "failed") (-1218 |#2|))) (IF (|has| |#1| (-355)) (-15 -1599 ((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|)) (-15 -1599 ((-3 (-1218 (-399 |#1|)) "failed") (-1218 |#2|) |#2|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1608 (((-663 |#1|) (-663 $)) 34) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 33)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-615 |#1|) (-138) (-1016)) (T -615)) +((-1608 (*1 *2 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-615 *4)) (-4 *4 (-1016)) (-5 *2 (-663 *4)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *1)) (-5 *4 (-1218 *1)) (-4 *1 (-615 *5)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -4035 (-663 *5)) (|:| |vec| (-1218 *5))))))) +(-13 (-1016) (-10 -8 (-15 -1608 ((-663 |t#1|) (-663 $))) (-15 -1608 ((-2 (|:| -4035 (-663 |t#1|)) (|:| |vec| (-1218 |t#1|))) (-663 $) (-1218 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3407 ((|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|) 17) ((|#2| (-619 |#1|) (-619 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|)) 12))) +(((-616 |#1| |#2|) (-10 -7 (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|))) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1|)) (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|)) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|)) (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|))) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)))) (-1063) (-1172)) (T -616)) +((-3407 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-3407 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-616 *5 *6)))) (-3407 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-3407 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 *5)) (-4 *6 (-1063)) (-4 *5 (-1172)) (-5 *2 (-1 *5 *6)) (-5 *1 (-616 *6 *5)))) (-3407 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *6))))) +(-10 -7 (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|))) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1|)) (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|)) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|)) (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|))) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)))) +((-4040 (((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|) 16)) (-2061 ((|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|) 18)) (-2540 (((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)) 13))) +(((-617 |#1| |#2|) (-10 -7 (-15 -4040 ((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2540 ((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)))) (-1172) (-1172)) (T -617)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-619 *6)) (-5 *1 (-617 *5 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-617 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-619 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-619 *5)) (-5 *1 (-617 *6 *5))))) +(-10 -7 (-15 -4040 ((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2540 ((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)))) +((-2540 (((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)) 13))) +(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)))) (-1172) (-1172) (-1172)) (T -618)) +((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-619 *6)) (-5 *5 (-619 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-619 *8)) (-5 *1 (-618 *6 *7 *8))))) +(-10 -7 (-15 -2540 ((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-1988 ((|#1| $) NIL)) (-1272 (($ $) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2490 (($ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) NIL (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "rest" $) NIL (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3384 (($ $ $) 32 (|has| |#1| (-1063)))) (-3367 (($ $ $) 34 (|has| |#1| (-1063)))) (-3351 (($ $ $) 37 (|has| |#1| (-1063)))) (-2657 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-1975 ((|#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3465 (($ $) NIL) (($ $ (-745)) NIL)) (-2969 (($ $) NIL (|has| |#1| (-1063)))) (-3484 (($ $) 31 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3699 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-2621 (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063))) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) (-1 (-112) |#1|) $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3081 (((-112) $) 9)) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2409 (($) 7)) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (($ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3724 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2539 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3712 (((-112) $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-548))) NIL) ((|#1| $ (-548)) 36) ((|#1| $ (-548) |#1|) NIL)) (-4234 (((-548) $ $) NIL)) (-2668 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2740 (((-112) $) NIL)) (-3672 (($ $) NIL)) (-3648 (($ $) NIL (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 45 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-2979 (($ |#1| $) 10)) (-3659 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1831 (($ $ $) 30) (($ |#1| $) NIL) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3575 (($ $ $) 11)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2739 (((-1118) $) 26 (|has| |#1| (-802))) (((-1118) $ (-112)) 27 (|has| |#1| (-802))) (((-1223) (-796) $) 28 (|has| |#1| (-802))) (((-1223) (-796) $ (-112)) 29 (|has| |#1| (-802)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-619 |#1|) (-13 (-640 |#1|) (-10 -8 (-15 -2409 ($)) (-15 -3081 ((-112) $)) (-15 -2979 ($ |#1| $)) (-15 -3575 ($ $ $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -3384 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -3351 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) (-1172)) (T -619)) +((-2409 (*1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-619 *3)) (-4 *3 (-1172)))) (-2979 (*1 *1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3575 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3384 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)))) (-3367 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)))) (-3351 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) +(-13 (-640 |#1|) (-10 -8 (-15 -2409 ($)) (-15 -3081 ((-112) $)) (-15 -2979 ($ |#1| $)) (-15 -3575 ($ $ $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -3384 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -3351 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11) (((-1140) $) NIL) ((|#1| $) 8)) (-2214 (((-112) $ $) NIL))) +(((-620 |#1|) (-13 (-1047) (-592 |#1|)) (-1063)) (T -620)) +NIL +(-13 (-1047) (-592 |#1|)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3474 (($ |#1| |#1| $) 43)) (-2028 (((-112) $ (-745)) NIL)) (-2657 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-2969 (($ $) 45)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) 52 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 9 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 37)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) 46)) (-2539 (($ |#1| $) 26) (($ |#1| $ (-745)) 42)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1357 ((|#1| $) 48)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 21)) (-3319 (($) 25)) (-1620 (((-112) $) 50)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 59)) (-2801 (($) 23) (($ (-619 |#1|)) 18)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) 56 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 19)) (-2591 (((-524) $) 34 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-3743 (((-832) $) 14 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 22)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 61 (|has| |#1| (-1063)))) (-3643 (((-745) $) 16 (|has| $ (-6 -4327))))) +(((-621 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4327) (-15 -1620 ((-112) $)) (-15 -3474 ($ |#1| |#1| $)))) (-1063)) (T -621)) +((-1620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1063)))) (-3474 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1063))))) +(-13 (-669 |#1|) (-10 -8 (-6 -4327) (-15 -1620 ((-112) $)) (-15 -3474 ($ |#1| |#1| $)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23))) +(((-622 |#1|) (-138) (-1023)) (T -622)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1023))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3433 (((-735) $) 15)) (-2344 (($ $ |#1|) 56)) (-2346 (($ $) 32)) (-2347 (($ $) 31)) (-3470 (((-3 |#1| "failed") $) 48)) (-3469 ((|#1| $) NIL)) (-2376 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3846 (((-823) $ (-1 (-823) (-823) (-823)) (-1 (-823) (-823) (-823)) (-526)) 46)) (-2737 ((|#1| $ (-526)) 30)) (-2738 ((|#2| $ (-526)) 29)) (-2340 (($ (-1 |#1| |#1|) $) 34)) (-2341 (($ (-1 |#2| |#2|) $) 38)) (-2345 (($) 10)) (-2349 (($ |#1| |#2|) 22)) (-2348 (($ (-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|)))) 23)) (-2350 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $) 13)) (-2343 (($ |#1| $) 57)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2342 (((-111) $ $) 60)) (-4274 (((-823) $) 19) (($ |#1|) 16)) (-3353 (((-111) $ $) 25))) -(((-614 |#1| |#2| |#3|) (-13 (-1052) (-995 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-1 (-823) (-823) (-823)) (-1 (-823) (-823) (-823)) (-526))) (-15 -2350 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $)) (-15 -2349 ($ |#1| |#2|)) (-15 -2348 ($ (-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))))) (-15 -2738 (|#2| $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -3433 ((-735) $)) (-15 -2345 ($)) (-15 -2344 ($ $ |#1|)) (-15 -2343 ($ |#1| $)) (-15 -2376 ($ |#1| |#2| $)) (-15 -2376 ($ $ $)) (-15 -2342 ((-111) $ $)) (-15 -2341 ($ (-1 |#2| |#2|) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)))) (-1052) (-23) |#2|) (T -614)) -((-3846 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-823) (-823) (-823))) (-5 *4 (-526)) (-5 *2 (-823)) (-5 *1 (-614 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-23)) (-14 *7 *6))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4))) (-2349 (*1 *1 *2 *3) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2348 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-614 *3 *4 *5)))) (-2738 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *2 (-23)) (-5 *1 (-614 *4 *2 *5)) (-4 *4 (-1052)) (-14 *5 *2))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *2 (-1052)) (-5 *1 (-614 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2347 (*1 *1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2346 (*1 *1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4))) (-2345 (*1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2344 (*1 *1 *1 *2) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2343 (*1 *1 *2 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2376 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2376 (*1 *1 *1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2342 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-614 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1052) (-995 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-1 (-823) (-823) (-823)) (-1 (-823) (-823) (-823)) (-526))) (-15 -2350 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $)) (-15 -2349 ($ |#1| |#2|)) (-15 -2348 ($ (-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))))) (-15 -2738 (|#2| $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -3433 ((-735) $)) (-15 -2345 ($)) (-15 -2344 ($ $ |#1|)) (-15 -2343 ($ |#1| $)) (-15 -2376 ($ |#1| |#2| $)) (-15 -2376 ($ $ $)) (-15 -2342 ((-111) $ $)) (-15 -2341 ($ (-1 |#2| |#2|) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)))) -((-2279 (((-526) $) 24)) (-2351 (($ |#2| $ (-526)) 22) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) 12)) (-2282 (((-111) (-526) $) 15)) (-4120 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-607 $)) NIL))) -(((-615 |#1| |#2|) (-10 -8 (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -2279 ((-526) |#1|)) (-15 -2281 ((-607 (-526)) |#1|)) (-15 -2282 ((-111) (-526) |#1|))) (-616 |#2|) (-1159)) (T -615)) -NIL -(-10 -8 (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -2279 ((-526) |#1|)) (-15 -2281 ((-607 (-526)) |#1|)) (-15 -2282 ((-111) (-526) |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-616 |#1|) (-134) (-1159)) (T -616)) -((-3936 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-4120 (*1 *1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) (-4120 (*1 *1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) (-4120 (*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) (-4120 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-4275 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-2351 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-616 *2)) (-4 *2 (-1159)))) (-2351 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1172 (-526))) (|has| *1 (-6 -4311)) (-4 *1 (-616 *2)) (-4 *2 (-1159))))) -(-13 (-574 (-526) |t#1|) (-145 |t#1|) (-10 -8 (-15 -3936 ($ (-735) |t#1|)) (-15 -4120 ($ $ |t#1|)) (-15 -4120 ($ |t#1| $)) (-15 -4120 ($ $ $)) (-15 -4120 ($ (-607 $))) (-15 -4275 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4118 ($ $ (-1172 (-526)))) (-15 -2352 ($ $ (-526))) (-15 -2352 ($ $ (-1172 (-526)))) (-15 -2351 ($ |t#1| $ (-526))) (-15 -2351 ($ $ $ (-526))) (IF (|has| $ (-6 -4311)) (-15 -4106 (|t#1| $ (-1172 (-526)) |t#1|)) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 15)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3298 ((|#1| $) 21)) (-3637 (($ $ $) NIL (|has| |#1| (-755)))) (-3638 (($ $ $) NIL (|has| |#1| (-755)))) (-3554 (((-1106) $) 46)) (-3555 (((-1070) $) NIL)) (-3297 ((|#3| $) 22)) (-4274 (((-823) $) 42)) (-2957 (($) 10 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-755)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-755)))) (-3353 (((-111) $ $) 20)) (-2984 (((-111) $ $) NIL (|has| |#1| (-755)))) (-2985 (((-111) $ $) 24 (|has| |#1| (-755)))) (-4265 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4156 (($ $) 17) (($ $ $) NIL)) (-4158 (($ $ $) 27)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-617 |#1| |#2| |#3|) (-13 (-682 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -4265 ($ $ |#3|)) (-15 -4265 ($ |#1| |#3|)) (-15 -3298 (|#1| $)) (-15 -3297 (|#3| $)))) (-682 |#2|) (-163) (|SubsetCategory| (-691) |#2|)) (T -617)) -((-4265 (*1 *1 *1 *2) (-12 (-4 *4 (-163)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-682 *4)) (-4 *2 (|SubsetCategory| (-691) *4)))) (-4265 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-617 *2 *4 *3)) (-4 *2 (-682 *4)) (-4 *3 (|SubsetCategory| (-691) *4)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-682 *3)) (-5 *1 (-617 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-691) *3)))) (-3297 (*1 *2 *1) (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-691) *4)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-682 *4))))) -(-13 (-682 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -4265 ($ $ |#3|)) (-15 -4265 ($ |#1| |#3|)) (-15 -3298 (|#1| $)) (-15 -3297 (|#3| $)))) -((-3895 (((-3 |#2| "failed") |#3| |#2| (-1123) |#2| (-607 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) "failed") |#3| |#2| (-1123)) 44))) -(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) "failed") |#3| |#2| (-1123))) (-15 -3895 ((-3 |#2| "failed") |#3| |#2| (-1123) |#2| (-607 |#2|)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919)) (-623 |#2|)) (T -618)) -((-3895 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 *2)) (-4 *2 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-618 *6 *2 *3)) (-4 *3 (-623 *2)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1123)) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-4 *4 (-13 (-29 *6) (-1145) (-919))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-607 *4)))) (-5 *1 (-618 *6 *4 *3)) (-4 *3 (-623 *4))))) -(-10 -7 (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) "failed") |#3| |#2| (-1123))) (-15 -3895 ((-3 |#2| "failed") |#3| |#2| (-1123) |#2| (-607 |#2|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2353 (($ $) NIL (|has| |#1| (-348)))) (-2355 (($ $ $) 28 (|has| |#1| (-348)))) (-2356 (($ $ (-735)) 31 (|has| |#1| (-348)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#1| (-348)))) (-2841 (($ $ $) NIL (|has| |#1| (-348)))) (-2842 (($ $ $) NIL (|has| |#1| (-348)))) (-2838 (($ $ $) NIL (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-2471 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#1| (-348)))) (-2847 (($ $ $) NIL (|has| |#1| (-348)))) (-2836 (($ $ $) NIL (|has| |#1| (-348)))) (-2844 (($ $ $) NIL (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-533)))) (-4118 ((|#1| $ |#1|) 24)) (-2357 (($ $ $) 33 (|has| |#1| (-348)))) (-4264 (((-735) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) 20) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#1| $ |#1| |#1|) 23)) (-2823 (($ $) NIL)) (-2957 (($) 21 T CONST)) (-2964 (($) 8 T CONST)) (-2969 (($) NIL)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-623 |#1|) (-1004) (-1 |#1| |#1|)) (T -619)) -NIL -(-623 |#1|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2353 (($ $) NIL (|has| |#1| (-348)))) (-2355 (($ $ $) NIL (|has| |#1| (-348)))) (-2356 (($ $ (-735)) NIL (|has| |#1| (-348)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#1| (-348)))) (-2841 (($ $ $) NIL (|has| |#1| (-348)))) (-2842 (($ $ $) NIL (|has| |#1| (-348)))) (-2838 (($ $ $) NIL (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-2471 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#1| (-348)))) (-2847 (($ $ $) NIL (|has| |#1| (-348)))) (-2836 (($ $ $) NIL (|has| |#1| (-348)))) (-2844 (($ $ $) NIL (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-533)))) (-4118 ((|#1| $ |#1|) NIL)) (-2357 (($ $ $) NIL (|has| |#1| (-348)))) (-4264 (((-735) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#1| $ |#1| |#1|) NIL)) (-2823 (($ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($) NIL)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-620 |#1|) (-623 |#1|) (-219)) (T -620)) -NIL -(-623 |#1|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2353 (($ $) NIL (|has| |#1| (-348)))) (-2355 (($ $ $) NIL (|has| |#1| (-348)))) (-2356 (($ $ (-735)) NIL (|has| |#1| (-348)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#1| (-348)))) (-2841 (($ $ $) NIL (|has| |#1| (-348)))) (-2842 (($ $ $) NIL (|has| |#1| (-348)))) (-2838 (($ $ $) NIL (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-2471 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#1| (-348)))) (-2847 (($ $ $) NIL (|has| |#1| (-348)))) (-2836 (($ $ $) NIL (|has| |#1| (-348)))) (-2844 (($ $ $) NIL (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-533)))) (-4118 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2357 (($ $ $) NIL (|has| |#1| (-348)))) (-4264 (((-735) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#1| $ |#1| |#1|) NIL)) (-2823 (($ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($) NIL)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-621 |#1| |#2|) (-13 (-623 |#1|) (-271 |#2| |#2|)) (-219) (-13 (-613 |#1|) (-10 -8 (-15 -4129 ($ $))))) (T -621)) -NIL -(-13 (-623 |#1|) (-271 |#2| |#2|)) -((-2353 (($ $) 26)) (-2823 (($ $) 24)) (-2969 (($) 12))) -(((-622 |#1| |#2|) (-10 -8 (-15 -2353 (|#1| |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -2969 (|#1|))) (-623 |#2|) (-1004)) (T -622)) -NIL -(-10 -8 (-15 -2353 (|#1| |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -2969 (|#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2353 (($ $) 80 (|has| |#1| (-348)))) (-2355 (($ $ $) 82 (|has| |#1| (-348)))) (-2356 (($ $ (-735)) 81 (|has| |#1| (-348)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2840 (($ $ $) 43 (|has| |#1| (-348)))) (-2841 (($ $ $) 44 (|has| |#1| (-348)))) (-2842 (($ $ $) 46 (|has| |#1| (-348)))) (-2838 (($ $ $) 41 (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 40 (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) 42 (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 45 (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) 72 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) 70 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) 67)) (-3469 (((-526) $) 73 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 71 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 66)) (-4276 (($ $) 62)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 53 (|has| |#1| (-436)))) (-2471 (((-111) $) 30)) (-3193 (($ |#1| (-735)) 60)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55 (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 56 (|has| |#1| (-533)))) (-3120 (((-735) $) 64)) (-2846 (($ $ $) 50 (|has| |#1| (-348)))) (-2847 (($ $ $) 51 (|has| |#1| (-348)))) (-2836 (($ $ $) 39 (|has| |#1| (-348)))) (-2844 (($ $ $) 48 (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 47 (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) 49 (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 52 (|has| |#1| (-348)))) (-3487 ((|#1| $) 63)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ #1#) $ |#1|) 57 (|has| |#1| (-533)))) (-4118 ((|#1| $ |#1|) 85)) (-2357 (($ $ $) 79 (|has| |#1| (-348)))) (-4264 (((-735) $) 65)) (-3117 ((|#1| $) 54 (|has| |#1| (-436)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 69 (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 68)) (-4136 (((-607 |#1|) $) 59)) (-3999 ((|#1| $ (-735)) 61)) (-3423 (((-735)) 28)) (-2849 ((|#1| $ |#1| |#1|) 58)) (-2823 (($ $) 83)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($) 84)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-623 |#1|) (-134) (-1004)) (T -623)) -((-2969 (*1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)))) (-2823 (*1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)))) (-2355 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-623 *3)) (-4 *3 (-1004)) (-4 *3 (-348)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2357 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(-13 (-813 |t#1|) (-271 |t#1| |t#1|) (-10 -8 (-15 -2969 ($)) (-15 -2823 ($ $)) (IF (|has| |t#1| (-348)) (PROGN (-15 -2355 ($ $ $)) (-15 -2356 ($ $ (-735))) (-15 -2353 ($ $)) (-15 -2357 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-271 |#1| |#1|) . T) ((-397 |#1|) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) |has| |#1| (-163)) ((-691) . T) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-813 |#1|) . T)) -((-2354 (((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|))) 74 (|has| |#1| (-27)))) (-4051 (((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|))) 73 (|has| |#1| (-27))) (((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|)) 17))) -(((-624 |#1| |#2|) (-10 -7 (-15 -4051 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4051 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)))) (-15 -2354 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|))))) |%noBranch|)) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|)) (T -624)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-620 (-392 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-620 (-392 *5))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-620 (-392 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-620 (-392 *5))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-620 (-392 *6)))) (-5 *1 (-624 *5 *6)) (-5 *3 (-620 (-392 *6)))))) -(-10 -7 (-15 -4051 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4051 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)))) (-15 -2354 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|))))) |%noBranch|)) -((-2355 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2356 ((|#2| |#2| (-735) (-1 |#1| |#1|)) 40)) (-2357 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-625 |#1| |#2|) (-10 -7 (-15 -2355 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2356 (|#2| |#2| (-735) (-1 |#1| |#1|))) (-15 -2357 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-348) (-623 |#1|)) (T -625)) -((-2357 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-348)) (-5 *1 (-625 *4 *2)) (-4 *2 (-623 *4)))) (-2356 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-735)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) (-5 *1 (-625 *5 *2)) (-4 *2 (-623 *5)))) (-2355 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-348)) (-5 *1 (-625 *4 *2)) (-4 *2 (-623 *4))))) -(-10 -7 (-15 -2355 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2356 (|#2| |#2| (-735) (-1 |#1| |#1|))) (-15 -2357 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3641 (($ $ $) 9))) -(((-626 |#1|) (-10 -8 (-15 -3641 (|#1| |#1| |#1|))) (-627)) (T -626)) -NIL -(-10 -8 (-15 -3641 (|#1| |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3639 (($ $) 10)) (-3641 (($ $ $) 8)) (-3353 (((-111) $ $) 6)) (-3640 (($ $ $) 9))) -(((-627) (-134)) (T -627)) -((-3639 (*1 *1 *1) (-4 *1 (-627))) (-3640 (*1 *1 *1 *1) (-4 *1 (-627))) (-3641 (*1 *1 *1 *1) (-4 *1 (-627)))) -(-13 (-100) (-10 -8 (-15 -3639 ($ $)) (-15 -3640 ($ $ $)) (-15 -3641 ($ $ $)))) -(((-100) . T)) -((-2358 (((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|)) 33))) -(((-628 |#1|) (-10 -7 (-15 -2358 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|)))) (-869)) (T -628)) -((-2358 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *4))) (-5 *3 (-1117 *4)) (-4 *4 (-869)) (-5 *1 (-628 *4))))) -(-10 -7 (-15 -2358 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4251 (((-607 |#1|) $) 82)) (-4263 (($ $ (-735)) 90)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4256 (((-1229 |#1| |#2|) (-1229 |#1| |#2|) $) 48)) (-3470 (((-3 (-637 |#1|) "failed") $) NIL)) (-3469 (((-637 |#1|) $) NIL)) (-4276 (($ $) 89)) (-2479 (((-735) $) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-637 |#1|) |#2|) 68)) (-4253 (($ $) 86)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-4257 (((-1229 |#1| |#2|) (-1229 |#1| |#2|) $) 47)) (-1841 (((-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3194 (((-637 |#1|) $) NIL)) (-3487 ((|#2| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4086 (($ $ |#1| $) 30) (($ $ (-607 |#1|) (-607 $)) 32)) (-4264 (((-735) $) 88)) (-3844 (($ $ $) 20) (($ (-637 |#1|) (-637 |#1|)) 77) (($ (-637 |#1|) $) 75) (($ $ (-637 |#1|)) 76)) (-4274 (((-823) $) NIL) (($ |#1|) 74) (((-1220 |#1| |#2|) $) 58) (((-1229 |#1| |#2|) $) 41) (($ (-637 |#1|)) 25)) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-637 |#1|)) NIL)) (-4270 ((|#2| (-1229 |#1| |#2|) $) 43)) (-2957 (($) 23 T CONST)) (-2963 (((-607 (-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4262 (((-3 $ "failed") (-1220 |#1| |#2|)) 60)) (-1825 (($ (-637 |#1|)) 14)) (-3353 (((-111) $ $) 44)) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) 66) (($ $ $) NIL)) (-4158 (($ $ $) 29)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-637 |#1|)) NIL))) -(((-629 |#1| |#2|) (-13 (-359 |#1| |#2|) (-369 |#2| (-637 |#1|)) (-10 -8 (-15 -4262 ((-3 $ "failed") (-1220 |#1| |#2|))) (-15 -3844 ($ (-637 |#1|) (-637 |#1|))) (-15 -3844 ($ (-637 |#1|) $)) (-15 -3844 ($ $ (-637 |#1|))))) (-811) (-163)) (T -629)) -((-4262 (*1 *1 *2) (|partial| -12 (-5 *2 (-1220 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *1 (-629 *3 *4)))) (-3844 (*1 *1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) (-3844 (*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163))))) -(-13 (-359 |#1| |#2|) (-369 |#2| (-637 |#1|)) (-10 -8 (-15 -4262 ((-3 $ "failed") (-1220 |#1| |#2|))) (-15 -3844 ($ (-637 |#1|) (-637 |#1|))) (-15 -3844 ($ (-637 |#1|) $)) (-15 -3844 ($ $ (-637 |#1|))))) -((-1824 (((-111) $) NIL) (((-111) (-1 (-111) |#2| |#2|) $) 50)) (-1822 (($ $) NIL) (($ (-1 (-111) |#2| |#2|) $) 12)) (-1607 (($ (-1 (-111) |#2|) $) 28)) (-2346 (($ $) 56)) (-2424 (($ $) 64)) (-3724 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 37)) (-4161 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3738 (((-526) |#2| $ (-526)) 61) (((-526) |#2| $) NIL) (((-526) (-1 (-111) |#2|) $) 47)) (-3936 (($ (-735) |#2|) 54)) (-3159 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 30)) (-3832 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 24)) (-4275 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3856 (($ |#2|) 15)) (-3929 (($ $ $ (-526)) 36) (($ |#2| $ (-526)) 34)) (-1376 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 46)) (-1608 (($ $ (-1172 (-526))) 44) (($ $ (-526)) 38)) (-1823 (($ $ $ (-526)) 60)) (-3719 (($ $) 58)) (-2985 (((-111) $ $) 66))) -(((-630 |#1| |#2|) (-10 -8 (-15 -3856 (|#1| |#2|)) (-15 -1608 (|#1| |#1| (-526))) (-15 -1608 (|#1| |#1| (-1172 (-526)))) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3929 (|#1| |#2| |#1| (-526))) (-15 -3929 (|#1| |#1| |#1| (-526))) (-15 -3159 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1607 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3832 (|#1| |#1| |#1|)) (-15 -1824 ((-111) |#1|)) (-15 -1823 (|#1| |#1| |#1| (-526))) (-15 -2346 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3936 (|#1| (-735) |#2|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1|))) (-631 |#2|) (-1159)) (T -630)) -NIL -(-10 -8 (-15 -3856 (|#1| |#2|)) (-15 -1608 (|#1| |#1| (-526))) (-15 -1608 (|#1| |#1| (-1172 (-526)))) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3929 (|#1| |#2| |#1| (-526))) (-15 -3929 (|#1| |#1| |#1| (-526))) (-15 -3159 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1607 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3832 (|#1| |#1| |#1|)) (-15 -1824 ((-111) |#1|)) (-15 -1823 (|#1| |#1| |#1| (-526))) (-15 -2346 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3936 (|#1| (-735) |#2|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4113 ((|#1| $) 65)) (-4115 (($ $) 67)) (-2276 (((-1211) $ (-526) (-526)) 97 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 52 (|has| $ (-6 -4311)))) (-1824 (((-111) $) 142 (|has| |#1| (-811))) (((-111) (-1 (-111) |#1| |#1|) $) 136)) (-1822 (($ $) 146 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311)))) (($ (-1 (-111) |#1| |#1|) $) 145 (|has| $ (-6 -4311)))) (-3209 (($ $) 141 (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $) 135)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 56 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) 54 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 58 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 117 (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) 86 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) 129)) (-4032 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4310)))) (-4114 ((|#1| $) 66)) (-3855 (($) 7 T CONST)) (-2346 (($ $) 144 (|has| $ (-6 -4311)))) (-2347 (($ $) 134)) (-4117 (($ $) 73) (($ $ (-735)) 71)) (-2424 (($ $) 131 (|has| |#1| (-1052)))) (-1375 (($ $) 99 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 130 (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) 125)) (-3725 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4310))) (($ |#1| $) 100 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1613 ((|#1| $ (-526) |#1|) 85 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 87)) (-3761 (((-111) $) 83)) (-3738 (((-526) |#1| $ (-526)) 139 (|has| |#1| (-1052))) (((-526) |#1| $) 138 (|has| |#1| (-1052))) (((-526) (-1 (-111) |#1|) $) 137)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) 108)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 95 (|has| (-526) (-811)))) (-3637 (($ $ $) 147 (|has| |#1| (-811)))) (-3159 (($ $ $) 132 (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) 128)) (-3832 (($ $ $) 140 (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) 133)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 94 (|has| (-526) (-811)))) (-3638 (($ $ $) 148 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3856 (($ |#1|) 122)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 70) (($ $ (-735)) 68)) (-3929 (($ $ $ (-526)) 127) (($ |#1| $ (-526)) 126)) (-2351 (($ $ $ (-526)) 116) (($ |#1| $ (-526)) 115)) (-2281 (((-607 (-526)) $) 92)) (-2282 (((-111) (-526) $) 91)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 76) (($ $ (-735)) 74)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2277 (($ $ |#1|) 96 (|has| $ (-6 -4311)))) (-3762 (((-111) $) 84)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 90)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1172 (-526))) 112) ((|#1| $ (-526)) 89) ((|#1| $ (-526) |#1|) 88)) (-3329 (((-526) $ $) 44)) (-1608 (($ $ (-1172 (-526))) 124) (($ $ (-526)) 123)) (-2352 (($ $ (-1172 (-526))) 114) (($ $ (-526)) 113)) (-3955 (((-111) $) 46)) (-4110 (($ $) 62)) (-4108 (($ $) 59 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 63)) (-4112 (($ $) 64)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 143 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 98 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 107)) (-4109 (($ $ $) 61) (($ $ |#1|) 60)) (-4120 (($ $ $) 78) (($ |#1| $) 77) (($ (-607 $)) 110) (($ $ |#1|) 109)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 150 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 151 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 149 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 152 (|has| |#1| (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-631 |#1|) (-134) (-1159)) (T -631)) -((-3856 (*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1159))))) -(-13 (-1097 |t#1|) (-357 |t#1|) (-267 |t#1|) (-10 -8 (-15 -3856 ($ |t#1|)))) -(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-267 |#1|) . T) ((-357 |#1|) . T) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-811) |has| |#1| (-811)) ((-968 |#1|) . T) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1097 |#1|) . T) ((-1159) . T) ((-1194 |#1|) . T)) -((-3895 (((-607 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2104 (-607 |#3|)))) |#4| (-607 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2104 (-607 |#3|))) |#4| |#3|) 45)) (-3406 (((-735) |#4| |#3|) 17)) (-3659 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2359 (((-111) |#4| |#3|) 13))) -(((-632 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3895 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|)) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2104 (-607 |#3|)))) |#4| (-607 |#3|))) (-15 -3659 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2359 ((-111) |#4| |#3|)) (-15 -3406 ((-735) |#4| |#3|))) (-348) (-13 (-357 |#1|) (-10 -7 (-6 -4311))) (-13 (-357 |#1|) (-10 -7 (-6 -4311))) (-650 |#1| |#2| |#3|)) (T -632)) -((-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-735)) (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) (-2359 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-111)) (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) (-3659 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-348)) (-4 *5 (-13 (-357 *4) (-10 -7 (-6 -4311)))) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311)))) (-5 *1 (-632 *4 *5 *2 *3)) (-4 *3 (-650 *4 *5 *2)))) (-3895 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-4 *7 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-607 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2104 (-607 *7))))) (-5 *1 (-632 *5 *6 *7 *3)) (-5 *4 (-607 *7)) (-4 *3 (-650 *5 *6 *7)))) (-3895 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4))))) -(-10 -7 (-15 -3895 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|)) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2104 (-607 |#3|)))) |#4| (-607 |#3|))) (-15 -3659 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2359 ((-111) |#4| |#3|)) (-15 -3406 ((-735) |#4| |#3|))) -((-3895 (((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1="failed")) (|:| -2104 (-607 (-1205 |#1|))))) (-607 (-607 |#1|)) (-607 (-1205 |#1|))) 22) (((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-653 |#1|) (-607 (-1205 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|)))) (-607 (-607 |#1|)) (-1205 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|)) 14)) (-3406 (((-735) (-653 |#1|) (-1205 |#1|)) 30)) (-3659 (((-3 (-1205 |#1|) #1#) (-653 |#1|) (-1205 |#1|)) 24)) (-2359 (((-111) (-653 |#1|) (-1205 |#1|)) 27))) -(((-633 |#1|) (-10 -7 (-15 -3895 ((-2 (|:| |particular| (-3 (-1205 |#1|) #1="failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|))) (-15 -3895 ((-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|)))) (-607 (-607 |#1|)) (-1205 |#1|))) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-653 |#1|) (-607 (-1205 |#1|)))) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-607 (-607 |#1|)) (-607 (-1205 |#1|)))) (-15 -3659 ((-3 (-1205 |#1|) #1#) (-653 |#1|) (-1205 |#1|))) (-15 -2359 ((-111) (-653 |#1|) (-1205 |#1|))) (-15 -3406 ((-735) (-653 |#1|) (-1205 |#1|)))) (-348)) (T -633)) -((-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-5 *2 (-735)) (-5 *1 (-633 *5)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-5 *2 (-111)) (-5 *1 (-633 *5)))) (-3659 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1205 *4)) (-5 *3 (-653 *4)) (-4 *4 (-348)) (-5 *1 (-633 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 *5))) (-4 *5 (-348)) (-5 *2 (-607 (-2 (|:| |particular| (-3 (-1205 *5) #1="failed")) (|:| -2104 (-607 (-1205 *5)))))) (-5 *1 (-633 *5)) (-5 *4 (-607 (-1205 *5))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-4 *5 (-348)) (-5 *2 (-607 (-2 (|:| |particular| (-3 (-1205 *5) #1#)) (|:| -2104 (-607 (-1205 *5)))))) (-5 *1 (-633 *5)) (-5 *4 (-607 (-1205 *5))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 *5))) (-4 *5 (-348)) (-5 *2 (-2 (|:| |particular| (-3 (-1205 *5) #1#)) (|:| -2104 (-607 (-1205 *5))))) (-5 *1 (-633 *5)) (-5 *4 (-1205 *5)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |particular| (-3 (-1205 *5) #1#)) (|:| -2104 (-607 (-1205 *5))))) (-5 *1 (-633 *5)) (-5 *4 (-1205 *5))))) -(-10 -7 (-15 -3895 ((-2 (|:| |particular| (-3 (-1205 |#1|) #1="failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|))) (-15 -3895 ((-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|)))) (-607 (-607 |#1|)) (-1205 |#1|))) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-653 |#1|) (-607 (-1205 |#1|)))) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-607 (-607 |#1|)) (-607 (-1205 |#1|)))) (-15 -3659 ((-3 (-1205 |#1|) #1#) (-653 |#1|) (-1205 |#1|))) (-15 -2359 ((-111) (-653 |#1|) (-1205 |#1|))) (-15 -3406 ((-735) (-653 |#1|) (-1205 |#1|)))) -((-2360 (((-2 (|:| |particular| (-3 (-1205 (-392 |#4|)) "failed")) (|:| -2104 (-607 (-1205 (-392 |#4|))))) (-607 |#4|) (-607 |#3|)) 45))) -(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2360 ((-2 (|:| |particular| (-3 (-1205 (-392 |#4|)) "failed")) (|:| -2104 (-607 (-1205 (-392 |#4|))))) (-607 |#4|) (-607 |#3|)))) (-533) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -634)) -((-2360 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *7)) (-4 *7 (-811)) (-4 *8 (-909 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-5 *2 (-2 (|:| |particular| (-3 (-1205 (-392 *8)) "failed")) (|:| -2104 (-607 (-1205 (-392 *8)))))) (-5 *1 (-634 *5 *6 *7 *8))))) -(-10 -7 (-15 -2360 ((-2 (|:| |particular| (-3 (-1205 (-392 |#4|)) "failed")) (|:| -2104 (-607 (-1205 (-392 |#4|))))) (-607 |#4|) (-607 |#3|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (|has| |#2| (-533)))) (-3649 ((|#2| $) NIL)) (-3418 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 |#2|))) NIL) (((-1205 (-653 |#2|)) (-1205 $)) NIL)) (-3420 (((-111) $) NIL)) (-1821 (((-1205 $)) 37)) (-1244 (((-111) $ (-735)) NIL)) (-3652 (($ |#2|) NIL)) (-3855 (($) NIL T CONST)) (-3407 (($ $) NIL (|has| |#2| (-292)))) (-3409 (((-225 |#1| |#2|) $ (-526)) NIL)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (|has| |#2| (-533)))) (-1795 (((-3 $ #1#)) NIL (|has| |#2| (-533)))) (-1883 (((-653 |#2|)) NIL) (((-653 |#2|) (-1205 $)) NIL)) (-1819 ((|#2| $) NIL)) (-1881 (((-653 |#2|) $) NIL) (((-653 |#2|) $ (-1205 $)) NIL)) (-2465 (((-3 $ #1#) $) NIL (|has| |#2| (-533)))) (-1998 (((-1117 (-905 |#2|))) NIL (|has| |#2| (-348)))) (-2468 (($ $ (-878)) NIL)) (-1817 ((|#2| $) NIL)) (-1797 (((-1117 |#2|) $) NIL (|has| |#2| (-533)))) (-1885 ((|#2|) NIL) ((|#2| (-1205 $)) NIL)) (-1815 (((-1117 |#2|) $) NIL)) (-1809 (((-111)) NIL)) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 |#2| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) ((|#2| $) NIL)) (-1887 (($ (-1205 |#2|)) NIL) (($ (-1205 |#2|) (-1205 $)) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3406 (((-735) $) NIL (|has| |#2| (-533))) (((-878)) 38)) (-3410 ((|#2| $ (-526) (-526)) NIL)) (-1806 (((-111)) NIL)) (-2493 (($ $ (-878)) NIL)) (-2044 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL)) (-3405 (((-735) $) NIL (|has| |#2| (-533)))) (-3404 (((-607 (-225 |#1| |#2|)) $) NIL (|has| |#2| (-533)))) (-3412 (((-735) $) NIL)) (-1802 (((-111)) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#2| $) NIL (|has| |#2| (-6 (-4312 #3="*"))))) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#2|))) NIL)) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3915 (((-607 (-607 |#2|)) $) NIL)) (-1800 (((-111)) NIL)) (-1804 (((-111)) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (|has| |#2| (-533)))) (-1796 (((-3 $ #1#)) NIL (|has| |#2| (-533)))) (-1884 (((-653 |#2|)) NIL) (((-653 |#2|) (-1205 $)) NIL)) (-1820 ((|#2| $) NIL)) (-1882 (((-653 |#2|) $) NIL) (((-653 |#2|) $ (-1205 $)) NIL)) (-2466 (((-3 $ #1#) $) NIL (|has| |#2| (-533)))) (-2002 (((-1117 (-905 |#2|))) NIL (|has| |#2| (-348)))) (-2467 (($ $ (-878)) NIL)) (-1818 ((|#2| $) NIL)) (-1798 (((-1117 |#2|) $) NIL (|has| |#2| (-533)))) (-1886 ((|#2|) NIL) ((|#2| (-1205 $)) NIL)) (-1816 (((-1117 |#2|) $) NIL)) (-1810 (((-111)) NIL)) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) NIL)) (-1803 (((-111)) NIL)) (-1805 (((-111)) NIL)) (-3911 (((-3 $ "failed") $) NIL (|has| |#2| (-348)))) (-3555 (((-1070) $) NIL)) (-1808 (((-111)) NIL)) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533)))) (-2046 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) (-526) |#2|) NIL) ((|#2| $ (-526) (-526)) 22) ((|#2| $ (-526)) NIL)) (-4129 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3648 ((|#2| $) NIL)) (-3651 (($ (-607 |#2|)) NIL)) (-3419 (((-111) $) NIL)) (-3650 (((-225 |#1| |#2|) $) NIL)) (-3647 ((|#2| $) NIL (|has| |#2| (-6 (-4312 #3#))))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-3537 (((-653 |#2|) (-1205 $)) NIL) (((-1205 |#2|) $) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) NIL) (((-1205 |#2|) $ (-1205 $)) 25)) (-4287 (($ (-1205 |#2|)) NIL) (((-1205 |#2|) $) NIL)) (-1990 (((-607 (-905 |#2|))) NIL) (((-607 (-905 |#2|)) (-1205 $)) NIL)) (-2655 (($ $ $) NIL)) (-1814 (((-111)) NIL)) (-3408 (((-225 |#1| |#2|) $ (-526)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#2| (-995 (-392 (-526))))) (($ |#2|) NIL) (((-653 |#2|) $) NIL)) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) 36)) (-1799 (((-607 (-1205 |#2|))) NIL (|has| |#2| (-533)))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) NIL)) (-2849 (($ (-653 |#2|) $) NIL)) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-2654 (($ $ $) NIL)) (-1813 (((-111)) NIL)) (-1811 (((-111)) NIL)) (-1807 (((-111)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#2| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-225 |#1| |#2|) $ (-225 |#1| |#2|)) NIL) (((-225 |#1| |#2|) (-225 |#1| |#2|) $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-635 |#1| |#2|) (-13 (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-583 (-653 |#2|)) (-403 |#2|)) (-878) (-163)) (T -635)) -NIL -(-13 (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-583 (-653 |#2|)) (-403 |#2|)) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3560 (((-607 (-1128)) $) 10)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-636) (-13 (-1035) (-10 -8 (-15 -3560 ((-607 (-1128)) $))))) (T -636)) -((-3560 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-636))))) -(-13 (-1035) (-10 -8 (-15 -3560 ((-607 (-1128)) $)))) -((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) NIL)) (-3434 (($ $) 52)) (-2962 (((-111) $) NIL)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2363 (((-3 $ "failed") (-783 |#1|)) 23)) (-2365 (((-111) (-783 |#1|)) 15)) (-2364 (($ (-783 |#1|)) 24)) (-2742 (((-111) $ $) 30)) (-4152 (((-878) $) 37)) (-3435 (($ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4051 (((-607 $) (-783 |#1|)) 17)) (-4274 (((-823) $) 43) (($ |#1|) 34) (((-783 |#1|) $) 39) (((-641 |#1|) $) 44)) (-2362 (((-56 (-607 $)) (-607 |#1|) (-878)) 57)) (-2361 (((-607 $) (-607 |#1|) (-878)) 60)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 53)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 38))) -(((-637 |#1|) (-13 (-811) (-995 |#1|) (-10 -8 (-15 -2962 ((-111) $)) (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -4152 ((-878) $)) (-15 -2742 ((-111) $ $)) (-15 -4274 ((-783 |#1|) $)) (-15 -4274 ((-641 |#1|) $)) (-15 -4051 ((-607 $) (-783 |#1|))) (-15 -2365 ((-111) (-783 |#1|))) (-15 -2364 ($ (-783 |#1|))) (-15 -2363 ((-3 $ "failed") (-783 |#1|))) (-15 -4251 ((-607 |#1|) $)) (-15 -2362 ((-56 (-607 $)) (-607 |#1|) (-878))) (-15 -2361 ((-607 $) (-607 |#1|) (-878))))) (-811)) (T -637)) -((-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-811)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-811)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-2742 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-783 *4)) (-4 *4 (-811)) (-5 *2 (-607 (-637 *4))) (-5 *1 (-637 *4)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-783 *4)) (-4 *4 (-811)) (-5 *2 (-111)) (-5 *1 (-637 *4)))) (-2364 (*1 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *3 (-811)) (-5 *1 (-637 *3)))) (-2363 (*1 *1 *2) (|partial| -12 (-5 *2 (-783 *3)) (-4 *3 (-811)) (-5 *1 (-637 *3)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-2362 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-878)) (-4 *5 (-811)) (-5 *2 (-56 (-607 (-637 *5)))) (-5 *1 (-637 *5)))) (-2361 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-878)) (-4 *5 (-811)) (-5 *2 (-607 (-637 *5))) (-5 *1 (-637 *5))))) -(-13 (-811) (-995 |#1|) (-10 -8 (-15 -2962 ((-111) $)) (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -4152 ((-878) $)) (-15 -2742 ((-111) $ $)) (-15 -4274 ((-783 |#1|) $)) (-15 -4274 ((-641 |#1|) $)) (-15 -4051 ((-607 $) (-783 |#1|))) (-15 -2365 ((-111) (-783 |#1|))) (-15 -2364 ($ (-783 |#1|))) (-15 -2363 ((-3 $ "failed") (-783 |#1|))) (-15 -4251 ((-607 |#1|) $)) (-15 -2362 ((-56 (-607 $)) (-607 |#1|) (-878))) (-15 -2361 ((-607 $) (-607 |#1|) (-878))))) -((-3721 ((|#2| $) 76)) (-4115 (($ $) 96)) (-1244 (((-111) $ (-735)) 26)) (-4117 (($ $) 85) (($ $ (-735)) 88)) (-3761 (((-111) $) 97)) (-3331 (((-607 $) $) 72)) (-3327 (((-111) $ $) 71)) (-4041 (((-111) $ (-735)) 24)) (-2278 (((-526) $) 46)) (-2279 (((-526) $) 45)) (-4038 (((-111) $ (-735)) 22)) (-3841 (((-111) $) 74)) (-4116 ((|#2| $) 89) (($ $ (-735)) 92)) (-2351 (($ $ $ (-526)) 62) (($ |#2| $ (-526)) 61)) (-2281 (((-607 (-526)) $) 44)) (-2282 (((-111) (-526) $) 42)) (-4119 ((|#2| $) NIL) (($ $ (-735)) 84)) (-4087 (($ $ (-526)) 100)) (-3762 (((-111) $) 99)) (-2046 (((-111) (-1 (-111) |#2|) $) 32)) (-2283 (((-607 |#2|) $) 33)) (-4118 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1172 (-526))) 58) ((|#2| $ (-526)) 40) ((|#2| $ (-526) |#2|) 41)) (-3329 (((-526) $ $) 70)) (-2352 (($ $ (-1172 (-526))) 57) (($ $ (-526)) 51)) (-3955 (((-111) $) 66)) (-4110 (($ $) 81)) (-4111 (((-735) $) 80)) (-4112 (($ $) 79)) (-3844 (($ (-607 |#2|)) 37)) (-3191 (($ $) 101)) (-3836 (((-607 $) $) 69)) (-3328 (((-111) $ $) 68)) (-2047 (((-111) (-1 (-111) |#2|) $) 31)) (-3353 (((-111) $ $) 18)) (-4273 (((-735) $) 29))) -(((-638 |#1| |#2|) (-10 -8 (-15 -3191 (|#1| |#1|)) (-15 -4087 (|#1| |#1| (-526))) (-15 -3761 ((-111) |#1|)) (-15 -3762 ((-111) |#1|)) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -2283 ((-607 |#2|) |#1|)) (-15 -2282 ((-111) (-526) |#1|)) (-15 -2281 ((-607 (-526)) |#1|)) (-15 -2279 ((-526) |#1|)) (-15 -2278 ((-526) |#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -4110 (|#1| |#1|)) (-15 -4111 ((-735) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "last")) (-15 -4116 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| "rest")) (-15 -4117 (|#1| |#1|)) (-15 -4119 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "first")) (-15 -4119 (|#2| |#1|)) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3328 ((-111) |#1| |#1|)) (-15 -3329 ((-526) |#1| |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| "value")) (-15 -3721 (|#2| |#1|)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735)))) (-639 |#2|) (-1159)) (T -638)) -NIL -(-10 -8 (-15 -3191 (|#1| |#1|)) (-15 -4087 (|#1| |#1| (-526))) (-15 -3761 ((-111) |#1|)) (-15 -3762 ((-111) |#1|)) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -2283 ((-607 |#2|) |#1|)) (-15 -2282 ((-111) (-526) |#1|)) (-15 -2281 ((-607 (-526)) |#1|)) (-15 -2279 ((-526) |#1|)) (-15 -2278 ((-526) |#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -4110 (|#1| |#1|)) (-15 -4111 ((-735) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "last")) (-15 -4116 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| "rest")) (-15 -4117 (|#1| |#1|)) (-15 -4119 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "first")) (-15 -4119 (|#2| |#1|)) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3328 ((-111) |#1| |#1|)) (-15 -3329 ((-526) |#1| |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| "value")) (-15 -3721 (|#2| |#1|)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735)))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4113 ((|#1| $) 65)) (-4115 (($ $) 67)) (-2276 (((-1211) $ (-526) (-526)) 97 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 52 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 56 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) 54 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 58 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 117 (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) 86 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 102)) (-4114 ((|#1| $) 66)) (-3855 (($) 7 T CONST)) (-2367 (($ $) 124)) (-4117 (($ $) 73) (($ $ (-735)) 71)) (-1375 (($ $) 99 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 100 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 103)) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1613 ((|#1| $ (-526) |#1|) 85 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 87)) (-3761 (((-111) $) 83)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-2366 (((-735) $) 123)) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) 108)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 95 (|has| (-526) (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 94 (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-2369 (($ $) 126)) (-2370 (((-111) $) 127)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 70) (($ $ (-735)) 68)) (-2351 (($ $ $ (-526)) 116) (($ |#1| $ (-526)) 115)) (-2281 (((-607 (-526)) $) 92)) (-2282 (((-111) (-526) $) 91)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2368 ((|#1| $) 125)) (-4119 ((|#1| $) 76) (($ $ (-735)) 74)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2277 (($ $ |#1|) 96 (|has| $ (-6 -4311)))) (-4087 (($ $ (-526)) 122)) (-3762 (((-111) $) 84)) (-2371 (((-111) $) 128)) (-2372 (((-111) $) 129)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 90)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1172 (-526))) 112) ((|#1| $ (-526)) 89) ((|#1| $ (-526) |#1|) 88)) (-3329 (((-526) $ $) 44)) (-2352 (($ $ (-1172 (-526))) 114) (($ $ (-526)) 113)) (-3955 (((-111) $) 46)) (-4110 (($ $) 62)) (-4108 (($ $) 59 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 63)) (-4112 (($ $) 64)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 98 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 107)) (-4109 (($ $ $) 61 (|has| $ (-6 -4311))) (($ $ |#1|) 60 (|has| $ (-6 -4311)))) (-4120 (($ $ $) 78) (($ |#1| $) 77) (($ (-607 $)) 110) (($ $ |#1|) 109)) (-3191 (($ $) 121)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-639 |#1|) (-134) (-1159)) (T -639)) -((-3725 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-2371 (*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159))))) -(-13 (-1097 |t#1|) (-10 -8 (-15 -3725 ($ (-1 (-111) |t#1|) $)) (-15 -4032 ($ (-1 (-111) |t#1|) $)) (-15 -2372 ((-111) $)) (-15 -2371 ((-111) $)) (-15 -2370 ((-111) $)) (-15 -2369 ($ $)) (-15 -2368 (|t#1| $)) (-15 -2367 ($ $)) (-15 -2366 ((-735) $)) (-15 -4087 ($ $ (-526))) (-15 -3191 ($ $)))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1097 |#1|) . T) ((-1159) . T) ((-1194 |#1|) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2378 (($ (-735) (-735) (-735)) 33 (|has| |#1| (-1004)))) (-1244 (((-111) $ (-735)) NIL)) (-2375 ((|#1| $ (-735) (-735) (-735) |#1|) 27)) (-3855 (($) NIL T CONST)) (-2376 (($ $ $) 37 (|has| |#1| (-1004)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2373 (((-1205 (-735)) $) 9)) (-2374 (($ (-1123) $ $) 22)) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2377 (($ (-735)) 35 (|has| |#1| (-1004)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-735) (-735) (-735)) 25)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3844 (($ (-607 (-607 (-607 |#1|)))) 44)) (-4274 (($ (-917 (-917 (-917 |#1|)))) 15) (((-917 (-917 (-917 |#1|))) $) 12) (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-640 |#1|) (-13 (-472 |#1|) (-10 -8 (IF (|has| |#1| (-1004)) (PROGN (-15 -2378 ($ (-735) (-735) (-735))) (-15 -2377 ($ (-735))) (-15 -2376 ($ $ $))) |%noBranch|) (-15 -3844 ($ (-607 (-607 (-607 |#1|))))) (-15 -4118 (|#1| $ (-735) (-735) (-735))) (-15 -2375 (|#1| $ (-735) (-735) (-735) |#1|)) (-15 -4274 ($ (-917 (-917 (-917 |#1|))))) (-15 -4274 ((-917 (-917 (-917 |#1|))) $)) (-15 -2374 ($ (-1123) $ $)) (-15 -2373 ((-1205 (-735)) $)))) (-1052)) (T -640)) -((-2378 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-640 *3)) (-4 *3 (-1004)) (-4 *3 (-1052)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-640 *3)) (-4 *3 (-1004)) (-4 *3 (-1052)))) (-2376 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1004)) (-4 *2 (-1052)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-607 *3)))) (-4 *3 (-1052)) (-5 *1 (-640 *3)))) (-4118 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-735)) (-5 *1 (-640 *2)) (-4 *2 (-1052)))) (-2375 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-640 *2)) (-4 *2 (-1052)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-917 (-917 (-917 *3)))) (-4 *3 (-1052)) (-5 *1 (-640 *3)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-917 (-917 (-917 *3)))) (-5 *1 (-640 *3)) (-4 *3 (-1052)))) (-2374 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-640 *3)) (-4 *3 (-1052)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-1205 (-735))) (-5 *1 (-640 *3)) (-4 *3 (-1052))))) -(-13 (-472 |#1|) (-10 -8 (IF (|has| |#1| (-1004)) (PROGN (-15 -2378 ($ (-735) (-735) (-735))) (-15 -2377 ($ (-735))) (-15 -2376 ($ $ $))) |%noBranch|) (-15 -3844 ($ (-607 (-607 (-607 |#1|))))) (-15 -4118 (|#1| $ (-735) (-735) (-735))) (-15 -2375 (|#1| $ (-735) (-735) (-735) |#1|)) (-15 -4274 ($ (-917 (-917 (-917 |#1|))))) (-15 -4274 ((-917 (-917 (-917 |#1|))) $)) (-15 -2374 ($ (-1123) $ $)) (-15 -2373 ((-1205 (-735)) $)))) -((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) 14)) (-3434 (($ $) 18)) (-2962 (((-111) $) 19)) (-3470 (((-3 |#1| "failed") $) 22)) (-3469 ((|#1| $) 20)) (-4117 (($ $) 36)) (-4253 (($ $) 24)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2742 (((-111) $ $) 42)) (-4152 (((-878) $) 38)) (-3435 (($ $) 17)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 ((|#1| $) 35)) (-4274 (((-823) $) 31) (($ |#1|) 23) (((-783 |#1|) $) 27)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 12)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 40)) (* (($ $ $) 34))) -(((-641 |#1|) (-13 (-811) (-995 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4274 ((-783 |#1|) $)) (-15 -4119 (|#1| $)) (-15 -3435 ($ $)) (-15 -4152 ((-878) $)) (-15 -2742 ((-111) $ $)) (-15 -4253 ($ $)) (-15 -4117 ($ $)) (-15 -2962 ((-111) $)) (-15 -3434 ($ $)) (-15 -4251 ((-607 |#1|) $)))) (-811)) (T -641)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) (-4119 (*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) (-2742 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) (-4253 (*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-641 *3)) (-4 *3 (-811))))) -(-13 (-811) (-995 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4274 ((-783 |#1|) $)) (-15 -4119 (|#1| $)) (-15 -3435 ($ $)) (-15 -4152 ((-878) $)) (-15 -2742 ((-111) $ $)) (-15 -4253 ($ $)) (-15 -4117 ($ $)) (-15 -2962 ((-111) $)) (-15 -3434 ($ $)) (-15 -4251 ((-607 |#1|) $)))) -((-2387 ((|#1| (-1 |#1| (-735) |#1|) (-735) |#1|) 11)) (-2379 ((|#1| (-1 |#1| |#1|) (-735) |#1|) 9))) -(((-642 |#1|) (-10 -7 (-15 -2379 (|#1| (-1 |#1| |#1|) (-735) |#1|)) (-15 -2387 (|#1| (-1 |#1| (-735) |#1|) (-735) |#1|))) (-1052)) (T -642)) -((-2387 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-735) *2)) (-5 *4 (-735)) (-4 *2 (-1052)) (-5 *1 (-642 *2)))) (-2379 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-735)) (-4 *2 (-1052)) (-5 *1 (-642 *2))))) -(-10 -7 (-15 -2379 (|#1| (-1 |#1| |#1|) (-735) |#1|)) (-15 -2387 (|#1| (-1 |#1| (-735) |#1|) (-735) |#1|))) -((-2381 ((|#2| |#1| |#2|) 9)) (-2380 ((|#1| |#1| |#2|) 8))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2380 (|#1| |#1| |#2|)) (-15 -2381 (|#2| |#1| |#2|))) (-1052) (-1052)) (T -643)) -((-2381 (*1 *2 *3 *2) (-12 (-5 *1 (-643 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *1 (-643 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) -(-10 -7 (-15 -2380 (|#1| |#1| |#2|)) (-15 -2381 (|#2| |#1| |#2|))) -((-2382 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2382 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1052) (-1052) (-1052)) (T -644)) -((-2382 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)) (-5 *1 (-644 *5 *6 *2))))) -(-10 -7 (-15 -2382 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3630 (((-1160) $) 20)) (-3629 (((-607 (-1160)) $) 18)) (-2383 (($ (-607 (-1160)) (-1160)) 13)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL) (((-1160) $) 21) (($ (-1066)) 10)) (-3353 (((-111) $ $) NIL))) -(((-645) (-13 (-1035) (-583 (-1160)) (-10 -8 (-15 -4274 ($ (-1066))) (-15 -2383 ($ (-607 (-1160)) (-1160))) (-15 -3629 ((-607 (-1160)) $)) (-15 -3630 ((-1160) $))))) (T -645)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-645)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1160))) (-5 *3 (-1160)) (-5 *1 (-645)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-645)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-645))))) -(-13 (-1035) (-583 (-1160)) (-10 -8 (-15 -4274 ($ (-1066))) (-15 -2383 ($ (-607 (-1160)) (-1160))) (-15 -3629 ((-607 (-1160)) $)) (-15 -3630 ((-1160) $)))) -((-2387 (((-1 |#1| (-735) |#1|) (-1 |#1| (-735) |#1|)) 23)) (-2384 (((-1 |#1|) |#1|) 8)) (-2386 ((|#1| |#1|) 16)) (-2385 (((-607 |#1|) (-1 (-607 |#1|) (-607 |#1|)) (-526)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4274 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-735)) 20))) -(((-646 |#1|) (-10 -7 (-15 -2384 ((-1 |#1|) |#1|)) (-15 -4274 ((-1 |#1|) |#1|)) (-15 -2385 (|#1| (-1 |#1| |#1|))) (-15 -2385 ((-607 |#1|) (-1 (-607 |#1|) (-607 |#1|)) (-526))) (-15 -2386 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-735))) (-15 -2387 ((-1 |#1| (-735) |#1|) (-1 |#1| (-735) |#1|)))) (-1052)) (T -646)) -((-2387 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-735) *3)) (-4 *3 (-1052)) (-5 *1 (-646 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *4 (-1052)) (-5 *1 (-646 *4)))) (-2386 (*1 *2 *2) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1052)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-607 *5) (-607 *5))) (-5 *4 (-526)) (-5 *2 (-607 *5)) (-5 *1 (-646 *5)) (-4 *5 (-1052)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-646 *2)) (-4 *2 (-1052)))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1052)))) (-2384 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1052))))) -(-10 -7 (-15 -2384 ((-1 |#1|) |#1|)) (-15 -4274 ((-1 |#1|) |#1|)) (-15 -2385 (|#1| (-1 |#1| |#1|))) (-15 -2385 ((-607 |#1|) (-1 (-607 |#1|) (-607 |#1|)) (-526))) (-15 -2386 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-735))) (-15 -2387 ((-1 |#1| (-735) |#1|) (-1 |#1| (-735) |#1|)))) -((-2390 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2389 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4268 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2388 (((-1 |#2| |#1|) |#2|) 11))) -(((-647 |#1| |#2|) (-10 -7 (-15 -2388 ((-1 |#2| |#1|) |#2|)) (-15 -2389 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4268 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2390 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1052) (-1052)) (T -647)) -((-2390 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-5 *2 (-1 *5 *4)) (-5 *1 (-647 *4 *5)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1052)) (-5 *2 (-1 *5 *4)) (-5 *1 (-647 *4 *5)) (-4 *4 (-1052)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-5 *2 (-1 *5)) (-5 *1 (-647 *4 *5)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-647 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-1052))))) -(-10 -7 (-15 -2388 ((-1 |#2| |#1|) |#2|)) (-15 -2389 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4268 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2390 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2395 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2391 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2392 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2393 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2394 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -2391 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2392 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2393 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2394 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2395 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1052) (-1052) (-1052)) (T -648)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-1 *7 *5)) (-5 *1 (-648 *5 *6 *7)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-648 *4 *5 *6)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-648 *4 *5 *6)) (-4 *4 (-1052)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-648 *4 *5 *6)) (-4 *5 (-1052)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *4 *5 *6)))) (-2391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1052)) (-4 *4 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *5 *4 *6))))) -(-10 -7 (-15 -2391 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2392 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2393 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2394 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2395 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-4157 (($ (-735) (-735)) 33)) (-2400 (($ $ $) 56)) (-3733 (($ |#3|) 52) (($ $) 53)) (-3418 (((-111) $) 28)) (-2399 (($ $ (-526) (-526)) 58)) (-2398 (($ $ (-526) (-526)) 59)) (-2397 (($ $ (-526) (-526) (-526) (-526)) 63)) (-2402 (($ $) 54)) (-3420 (((-111) $) 14)) (-2396 (($ $ (-526) (-526) $) 64)) (-4106 ((|#2| $ (-526) (-526) |#2|) NIL) (($ $ (-607 (-526)) (-607 (-526)) $) 62)) (-3652 (($ (-735) |#2|) 39)) (-3421 (($ (-607 (-607 |#2|))) 37)) (-3915 (((-607 (-607 |#2|)) $) 57)) (-2401 (($ $ $) 55)) (-3780 (((-3 $ "failed") $ |#2|) 91)) (-4118 ((|#2| $ (-526) (-526)) NIL) ((|#2| $ (-526) (-526) |#2|) NIL) (($ $ (-607 (-526)) (-607 (-526))) 61)) (-3651 (($ (-607 |#2|)) 40) (($ (-607 $)) 42)) (-3419 (((-111) $) 24)) (-4274 (($ |#4|) 47) (((-823) $) NIL)) (-3417 (((-111) $) 30)) (-4265 (($ $ |#2|) 93)) (-4156 (($ $ $) 68) (($ $) 71)) (-4158 (($ $ $) 66)) (** (($ $ (-735)) 80) (($ $ (-526)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-526) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-649 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -4265 (|#1| |#1| |#2|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-735))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1| (-526) (-526) |#1|)) (-15 -2397 (|#1| |#1| (-526) (-526) (-526) (-526))) (-15 -2398 (|#1| |#1| (-526) (-526))) (-15 -2399 (|#1| |#1| (-526) (-526))) (-15 -4106 (|#1| |#1| (-607 (-526)) (-607 (-526)) |#1|)) (-15 -4118 (|#1| |#1| (-607 (-526)) (-607 (-526)))) (-15 -3915 ((-607 (-607 |#2|)) |#1|)) (-15 -2400 (|#1| |#1| |#1|)) (-15 -2401 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -3733 (|#1| |#3|)) (-15 -4274 (|#1| |#4|)) (-15 -3651 (|#1| (-607 |#1|))) (-15 -3651 (|#1| (-607 |#2|))) (-15 -3652 (|#1| (-735) |#2|)) (-15 -3421 (|#1| (-607 (-607 |#2|)))) (-15 -4157 (|#1| (-735) (-735))) (-15 -3417 ((-111) |#1|)) (-15 -3418 ((-111) |#1|)) (-15 -3419 ((-111) |#1|)) (-15 -3420 ((-111) |#1|)) (-15 -4106 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526)))) (-650 |#2| |#3| |#4|) (-1004) (-357 |#2|) (-357 |#2|)) (T -649)) -NIL -(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -4265 (|#1| |#1| |#2|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-735))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1| (-526) (-526) |#1|)) (-15 -2397 (|#1| |#1| (-526) (-526) (-526) (-526))) (-15 -2398 (|#1| |#1| (-526) (-526))) (-15 -2399 (|#1| |#1| (-526) (-526))) (-15 -4106 (|#1| |#1| (-607 (-526)) (-607 (-526)) |#1|)) (-15 -4118 (|#1| |#1| (-607 (-526)) (-607 (-526)))) (-15 -3915 ((-607 (-607 |#2|)) |#1|)) (-15 -2400 (|#1| |#1| |#1|)) (-15 -2401 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -3733 (|#1| |#3|)) (-15 -4274 (|#1| |#4|)) (-15 -3651 (|#1| (-607 |#1|))) (-15 -3651 (|#1| (-607 |#2|))) (-15 -3652 (|#1| (-735) |#2|)) (-15 -3421 (|#1| (-607 (-607 |#2|)))) (-15 -4157 (|#1| (-735) (-735))) (-15 -3417 ((-111) |#1|)) (-15 -3418 ((-111) |#1|)) (-15 -3419 ((-111) |#1|)) (-15 -3420 ((-111) |#1|)) (-15 -4106 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526)))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-4157 (($ (-735) (-735)) 97)) (-2400 (($ $ $) 87)) (-3733 (($ |#2|) 91) (($ $) 90)) (-3418 (((-111) $) 99)) (-2399 (($ $ (-526) (-526)) 83)) (-2398 (($ $ (-526) (-526)) 82)) (-2397 (($ $ (-526) (-526) (-526) (-526)) 81)) (-2402 (($ $) 89)) (-3420 (((-111) $) 101)) (-1244 (((-111) $ (-735)) 8)) (-2396 (($ $ (-526) (-526) $) 80)) (-4106 ((|#1| $ (-526) (-526) |#1|) 44) (($ $ (-607 (-526)) (-607 (-526)) $) 84)) (-1282 (($ $ (-526) |#2|) 42)) (-1281 (($ $ (-526) |#3|) 41)) (-3652 (($ (-735) |#1|) 95)) (-3855 (($) 7 T CONST)) (-3407 (($ $) 67 (|has| |#1| (-292)))) (-3409 ((|#2| $ (-526)) 46)) (-3406 (((-735) $) 66 (|has| |#1| (-533)))) (-1613 ((|#1| $ (-526) (-526) |#1|) 43)) (-3410 ((|#1| $ (-526) (-526)) 48)) (-2044 (((-607 |#1|) $) 30)) (-3405 (((-735) $) 65 (|has| |#1| (-533)))) (-3404 (((-607 |#3|) $) 64 (|has| |#1| (-533)))) (-3412 (((-735) $) 51)) (-3936 (($ (-735) (-735) |#1|) 57)) (-3411 (((-735) $) 50)) (-4041 (((-111) $ (-735)) 9)) (-3646 ((|#1| $) 62 (|has| |#1| (-6 (-4312 #1="*"))))) (-3416 (((-526) $) 55)) (-3414 (((-526) $) 53)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3415 (((-526) $) 54)) (-3413 (((-526) $) 52)) (-3421 (($ (-607 (-607 |#1|))) 96)) (-2048 (($ (-1 |#1| |#1|) $) 34)) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3915 (((-607 (-607 |#1|)) $) 86)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3911 (((-3 $ "failed") $) 61 (|has| |#1| (-348)))) (-2401 (($ $ $) 88)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) 56)) (-3780 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-533)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) (-526)) 49) ((|#1| $ (-526) (-526) |#1|) 47) (($ $ (-607 (-526)) (-607 (-526))) 85)) (-3651 (($ (-607 |#1|)) 94) (($ (-607 $)) 93)) (-3419 (((-111) $) 100)) (-3647 ((|#1| $) 63 (|has| |#1| (-6 (-4312 #1#))))) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-3408 ((|#3| $ (-526)) 45)) (-4274 (($ |#3|) 92) (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3417 (((-111) $) 98)) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) 68 (|has| |#1| (-348)))) (-4156 (($ $ $) 78) (($ $) 77)) (-4158 (($ $ $) 79)) (** (($ $ (-735)) 70) (($ $ (-526)) 60 (|has| |#1| (-348)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-526) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-650 |#1| |#2| |#3|) (-134) (-1004) (-357 |t#1|) (-357 |t#1|)) (T -650)) -((-3420 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-4157 (*1 *1 *2 *2) (-12 (-5 *2 (-735)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3652 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *2)) (-4 *4 (-357 *3)) (-4 *2 (-357 *3)))) (-3733 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-650 *3 *2 *4)) (-4 *2 (-357 *3)) (-4 *4 (-357 *3)))) (-3733 (*1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2401 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2400 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-607 (-607 *3))))) (-4118 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4106 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-607 (-526))) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2399 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2398 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2397 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2396 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4158 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-650 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *2 (-357 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-650 *3 *2 *4)) (-4 *3 (-1004)) (-4 *2 (-357 *3)) (-4 *4 (-357 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-533)))) (-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-348)))) (-3407 (*1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-292)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-735)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-735)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-607 *5)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (|has| *2 (-6 (-4312 #1="*"))) (-4 *2 (-1004)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (|has| *2 (-6 (-4312 #1#))) (-4 *2 (-1004)))) (-3911 (*1 *1 *1) (|partial| -12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-348)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-348))))) -(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -3420 ((-111) $)) (-15 -3419 ((-111) $)) (-15 -3418 ((-111) $)) (-15 -3417 ((-111) $)) (-15 -4157 ($ (-735) (-735))) (-15 -3421 ($ (-607 (-607 |t#1|)))) (-15 -3652 ($ (-735) |t#1|)) (-15 -3651 ($ (-607 |t#1|))) (-15 -3651 ($ (-607 $))) (-15 -4274 ($ |t#3|)) (-15 -3733 ($ |t#2|)) (-15 -3733 ($ $)) (-15 -2402 ($ $)) (-15 -2401 ($ $ $)) (-15 -2400 ($ $ $)) (-15 -3915 ((-607 (-607 |t#1|)) $)) (-15 -4118 ($ $ (-607 (-526)) (-607 (-526)))) (-15 -4106 ($ $ (-607 (-526)) (-607 (-526)) $)) (-15 -2399 ($ $ (-526) (-526))) (-15 -2398 ($ $ (-526) (-526))) (-15 -2397 ($ $ (-526) (-526) (-526) (-526))) (-15 -2396 ($ $ (-526) (-526) $)) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-526) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-735))) (IF (|has| |t#1| (-533)) (-15 -3780 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-348)) (-15 -4265 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-292)) (-15 -3407 ($ $)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -3406 ((-735) $)) (-15 -3405 ((-735) $)) (-15 -3404 ((-607 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4312 "*"))) (PROGN (-15 -3647 (|t#1| $)) (-15 -3646 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-348)) (PROGN (-15 -3911 ((-3 $ "failed") $)) (-15 ** ($ $ (-526)))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-55 |#1| |#2| |#3|) . T) ((-1159) . T)) -((-4161 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4275 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-651 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4275 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4275 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4161 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1004) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|) (-1004) (-357 |#5|) (-357 |#5|) (-650 |#5| |#6| |#7|)) (T -651)) -((-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1004)) (-4 *2 (-1004)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *8 (-357 *2)) (-4 *9 (-357 *2)) (-5 *1 (-651 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-650 *5 *6 *7)) (-4 *10 (-650 *2 *8 *9)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-650 *8 *9 *10)) (-5 *1 (-651 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-650 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-650 *8 *9 *10)) (-5 *1 (-651 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-650 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8))))) -(-10 -7 (-15 -4275 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4275 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4161 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3407 ((|#4| |#4|) 72 (|has| |#1| (-292)))) (-3406 (((-735) |#4|) 99 (|has| |#1| (-533)))) (-3405 (((-735) |#4|) 76 (|has| |#1| (-533)))) (-3404 (((-607 |#3|) |#4|) 83 (|has| |#1| (-533)))) (-2440 (((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|) 111 (|has| |#1| (-292)))) (-3646 ((|#1| |#4|) 35)) (-2407 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-533)))) (-3911 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-348)))) (-2406 ((|#4| |#4|) 68 (|has| |#1| (-533)))) (-2404 ((|#4| |#4| |#1| (-526) (-526)) 43)) (-2403 ((|#4| |#4| (-526) (-526)) 38)) (-2405 ((|#4| |#4| |#1| (-526) (-526)) 48)) (-3647 ((|#1| |#4|) 78)) (-2823 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-533))))) -(((-652 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3647 (|#1| |#4|)) (-15 -3646 (|#1| |#4|)) (-15 -2403 (|#4| |#4| (-526) (-526))) (-15 -2404 (|#4| |#4| |#1| (-526) (-526))) (-15 -2405 (|#4| |#4| |#1| (-526) (-526))) (IF (|has| |#1| (-533)) (PROGN (-15 -3406 ((-735) |#4|)) (-15 -3405 ((-735) |#4|)) (-15 -3404 ((-607 |#3|) |#4|)) (-15 -2406 (|#4| |#4|)) (-15 -2407 ((-3 |#4| "failed") |#4|)) (-15 -2823 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-292)) (PROGN (-15 -3407 (|#4| |#4|)) (-15 -2440 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-348)) (-15 -3911 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-163) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|)) (T -652)) -((-3911 (*1 *2 *2) (|partial| -12 (-4 *3 (-348)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-2440 (*1 *2 *3 *3) (-12 (-4 *3 (-292)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-652 *3 *4 *5 *6)) (-4 *6 (-650 *3 *4 *5)))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-292)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-2407 (*1 *2 *2) (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-2406 (*1 *2 *2) (-12 (-4 *3 (-533)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-3404 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-607 *6)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3405 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-2405 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-526)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) (-5 *1 (-652 *3 *5 *6 *2)) (-4 *2 (-650 *3 *5 *6)))) (-2404 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-526)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) (-5 *1 (-652 *3 *5 *6 *2)) (-4 *2 (-650 *3 *5 *6)))) (-2403 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-526)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *1 (-652 *4 *5 *6 *2)) (-4 *2 (-650 *4 *5 *6)))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) (-5 *1 (-652 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) (-5 *1 (-652 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5))))) -(-10 -7 (-15 -3647 (|#1| |#4|)) (-15 -3646 (|#1| |#4|)) (-15 -2403 (|#4| |#4| (-526) (-526))) (-15 -2404 (|#4| |#4| |#1| (-526) (-526))) (-15 -2405 (|#4| |#4| |#1| (-526) (-526))) (IF (|has| |#1| (-533)) (PROGN (-15 -3406 ((-735) |#4|)) (-15 -3405 ((-735) |#4|)) (-15 -3404 ((-607 |#3|) |#4|)) (-15 -2406 (|#4| |#4|)) (-15 -2407 ((-3 |#4| "failed") |#4|)) (-15 -2823 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-292)) (PROGN (-15 -3407 (|#4| |#4|)) (-15 -2440 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-348)) (-15 -3911 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735) (-735)) 47)) (-2400 (($ $ $) NIL)) (-3733 (($ (-1205 |#1|)) NIL) (($ $) NIL)) (-3418 (((-111) $) NIL)) (-2399 (($ $ (-526) (-526)) 12)) (-2398 (($ $ (-526) (-526)) NIL)) (-2397 (($ $ (-526) (-526) (-526) (-526)) NIL)) (-2402 (($ $) NIL)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-2396 (($ $ (-526) (-526) $) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526)) $) NIL)) (-1282 (($ $ (-526) (-1205 |#1|)) NIL)) (-1281 (($ $ (-526) (-1205 |#1|)) NIL)) (-3652 (($ (-735) |#1|) 22)) (-3855 (($) NIL T CONST)) (-3407 (($ $) 31 (|has| |#1| (-292)))) (-3409 (((-1205 |#1|) $ (-526)) NIL)) (-3406 (((-735) $) 33 (|has| |#1| (-533)))) (-1613 ((|#1| $ (-526) (-526) |#1|) 51)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3405 (((-735) $) 35 (|has| |#1| (-533)))) (-3404 (((-607 (-1205 |#1|)) $) 38 (|has| |#1| (-533)))) (-3412 (((-735) $) 20)) (-3936 (($ (-735) (-735) |#1|) 16)) (-3411 (((-735) $) 21)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#1| $) 29 (|has| |#1| (-6 (-4312 #1="*"))))) (-3416 (((-526) $) 9)) (-3414 (((-526) $) 10)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) 11)) (-3413 (((-526) $) 48)) (-3421 (($ (-607 (-607 |#1|))) NIL)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3915 (((-607 (-607 |#1|)) $) 60)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3911 (((-3 $ #2="failed") $) 45 (|has| |#1| (-348)))) (-2401 (($ $ $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-3780 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-533)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526))) NIL)) (-3651 (($ (-607 |#1|)) NIL) (($ (-607 $)) NIL) (($ (-1205 |#1|)) 52)) (-3419 (((-111) $) NIL)) (-3647 ((|#1| $) 27 (|has| |#1| (-6 (-4312 #1#))))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 64 (|has| |#1| (-584 (-515))))) (-3408 (((-1205 |#1|) $ (-526)) NIL)) (-4274 (($ (-1205 |#1|)) NIL) (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) 23) (($ $ (-526)) 46 (|has| |#1| (-348)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-526) $) NIL) (((-1205 |#1|) $ (-1205 |#1|)) NIL) (((-1205 |#1|) (-1205 |#1|) $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-653 |#1|) (-13 (-650 |#1| (-1205 |#1|) (-1205 |#1|)) (-10 -8 (-15 -3651 ($ (-1205 |#1|))) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |#1| (-348)) (-15 -3911 ((-3 $ "failed") $)) |%noBranch|))) (-1004)) (T -653)) -((-3911 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2)) (-4 *2 (-348)) (-4 *2 (-1004)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1004)) (-5 *1 (-653 *3))))) -(-13 (-650 |#1| (-1205 |#1|) (-1205 |#1|)) (-10 -8 (-15 -3651 ($ (-1205 |#1|))) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |#1| (-348)) (-15 -3911 ((-3 $ "failed") $)) |%noBranch|))) -((-2413 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|)) 25)) (-2412 (((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|) 21)) (-2414 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-735)) 26)) (-2409 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|)) 14)) (-2410 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|)) 18) (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 16)) (-2411 (((-653 |#1|) (-653 |#1|) |#1| (-653 |#1|)) 20)) (-2408 (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 12)) (** (((-653 |#1|) (-653 |#1|) (-735)) 30))) -(((-654 |#1|) (-10 -7 (-15 -2408 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2409 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2410 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2410 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2411 ((-653 |#1|) (-653 |#1|) |#1| (-653 |#1|))) (-15 -2412 ((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|)) (-15 -2413 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2414 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-735))) (-15 ** ((-653 |#1|) (-653 |#1|) (-735)))) (-1004)) (T -654)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-654 *4)))) (-2414 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-654 *4)))) (-2413 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2412 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2411 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2410 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2410 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2409 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2408 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) -(-10 -7 (-15 -2408 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2409 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2410 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2410 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2411 ((-653 |#1|) (-653 |#1|) |#1| (-653 |#1|))) (-15 -2412 ((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|)) (-15 -2413 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2414 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-735))) (-15 ** ((-653 |#1|) (-653 |#1|) (-735)))) -((-2415 (($) 8 T CONST)) (-4274 (((-823) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3888 (((-111) $ (|[\|\|]| |#1|)) 14) (((-111) $ (|[\|\|]| -2415)) 16)) (-3894 ((|#1| $) 11))) -(((-655 |#1|) (-13 (-1201) (-583 (-823)) (-10 -8 (-15 -3888 ((-111) $ (|[\|\|]| |#1|))) (-15 -3888 ((-111) $ (|[\|\|]| -2415))) (-15 -4274 ($ |#1|)) (-15 -4274 (|#1| $)) (-15 -3894 (|#1| $)) (-15 -2415 ($) -4268))) (-583 (-823))) (T -655)) -((-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-583 (-823))) (-5 *2 (-111)) (-5 *1 (-655 *4)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2415)) (-5 *2 (-111)) (-5 *1 (-655 *4)) (-4 *4 (-583 (-823))))) (-4274 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) (-4274 (*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) (-3894 (*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) (-2415 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823)))))) -(-13 (-1201) (-583 (-823)) (-10 -8 (-15 -3888 ((-111) $ (|[\|\|]| |#1|))) (-15 -3888 ((-111) $ (|[\|\|]| -2415))) (-15 -4274 ($ |#1|)) (-15 -4274 (|#1| $)) (-15 -3894 (|#1| $)) (-15 -2415 ($) -4268))) -((-2418 ((|#2| |#2| |#4|) 25)) (-2421 (((-653 |#2|) |#3| |#4|) 31)) (-2419 (((-653 |#2|) |#2| |#4|) 30)) (-2416 (((-1205 |#2|) |#2| |#4|) 16)) (-2417 ((|#2| |#3| |#4|) 24)) (-2422 (((-653 |#2|) |#3| |#4| (-735) (-735)) 38)) (-2420 (((-653 |#2|) |#2| |#4| (-735)) 37))) -(((-656 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-1205 |#2|) |#2| |#4|)) (-15 -2417 (|#2| |#3| |#4|)) (-15 -2418 (|#2| |#2| |#4|)) (-15 -2419 ((-653 |#2|) |#2| |#4|)) (-15 -2420 ((-653 |#2|) |#2| |#4| (-735))) (-15 -2421 ((-653 |#2|) |#3| |#4|)) (-15 -2422 ((-653 |#2|) |#3| |#4| (-735) (-735)))) (-1052) (-859 |#1|) (-357 |#2|) (-13 (-357 |#1|) (-10 -7 (-6 -4310)))) (T -656)) -((-2422 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-735)) (-4 *6 (-1052)) (-4 *7 (-859 *6)) (-5 *2 (-653 *7)) (-5 *1 (-656 *6 *7 *3 *4)) (-4 *3 (-357 *7)) (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4310)))))) (-2421 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *6 (-859 *5)) (-5 *2 (-653 *6)) (-5 *1 (-656 *5 *6 *3 *4)) (-4 *3 (-357 *6)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310)))))) (-2420 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-1052)) (-4 *3 (-859 *6)) (-5 *2 (-653 *3)) (-5 *1 (-656 *6 *3 *7 *4)) (-4 *7 (-357 *3)) (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4310)))))) (-2419 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *3 (-859 *5)) (-5 *2 (-653 *3)) (-5 *1 (-656 *5 *3 *6 *4)) (-4 *6 (-357 *3)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310)))))) (-2418 (*1 *2 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-859 *4)) (-5 *1 (-656 *4 *2 *5 *3)) (-4 *5 (-357 *2)) (-4 *3 (-13 (-357 *4) (-10 -7 (-6 -4310)))))) (-2417 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *2 (-859 *5)) (-5 *1 (-656 *5 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310)))))) (-2416 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *3 (-859 *5)) (-5 *2 (-1205 *3)) (-5 *1 (-656 *5 *3 *6 *4)) (-4 *6 (-357 *3)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) -(-10 -7 (-15 -2416 ((-1205 |#2|) |#2| |#4|)) (-15 -2417 (|#2| |#3| |#4|)) (-15 -2418 (|#2| |#2| |#4|)) (-15 -2419 ((-653 |#2|) |#2| |#4|)) (-15 -2420 ((-653 |#2|) |#2| |#4| (-735))) (-15 -2421 ((-653 |#2|) |#3| |#4|)) (-15 -2422 ((-653 |#2|) |#3| |#4| (-735) (-735)))) -((-4060 (((-2 (|:| |num| (-653 |#1|)) (|:| |den| |#1|)) (-653 |#2|)) 20)) (-4058 ((|#1| (-653 |#2|)) 9)) (-4059 (((-653 |#1|) (-653 |#2|)) 18))) -(((-657 |#1| |#2|) (-10 -7 (-15 -4058 (|#1| (-653 |#2|))) (-15 -4059 ((-653 |#1|) (-653 |#2|))) (-15 -4060 ((-2 (|:| |num| (-653 |#1|)) (|:| |den| |#1|)) (-653 |#2|)))) (-533) (-950 |#1|)) (T -657)) -((-4060 (*1 *2 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-950 *4)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |num| (-653 *4)) (|:| |den| *4))) (-5 *1 (-657 *4 *5)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-950 *4)) (-4 *4 (-533)) (-5 *2 (-653 *4)) (-5 *1 (-657 *4 *5)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-657 *2 *4))))) -(-10 -7 (-15 -4058 (|#1| (-653 |#2|))) (-15 -4059 ((-653 |#1|) (-653 |#2|))) (-15 -4060 ((-2 (|:| |num| (-653 |#1|)) (|:| |den| |#1|)) (-653 |#2|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1877 (((-653 (-663))) NIL) (((-653 (-663)) (-1205 $)) NIL)) (-3649 (((-663) $) NIL)) (-3806 (($ $) NIL (|has| (-663) (-1145)))) (-3961 (($ $) NIL (|has| (-663) (-1145)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-663) (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-663) (-292)) (|has| (-663) (-869))))) (-4093 (($ $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| (-663) (-869))) (|has| (-663) (-348))))) (-4286 (((-390 $) $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| (-663) (-869))) (|has| (-663) (-348))))) (-3337 (($ $) NIL (-12 (|has| (-663) (-960)) (|has| (-663) (-1145))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-663) (-292)) (|has| (-663) (-869))))) (-1681 (((-111) $ $) NIL (|has| (-663) (-292)))) (-3433 (((-735)) NIL (|has| (-663) (-353)))) (-3804 (($ $) NIL (|has| (-663) (-1145)))) (-3960 (($ $) NIL (|has| (-663) (-1145)))) (-3808 (($ $) NIL (|has| (-663) (-1145)))) (-3959 (($ $) NIL (|has| (-663) (-1145)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL) (((-3 (-663) #2#) $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-663) (-995 (-392 (-526)))))) (-3469 (((-526) $) NIL) (((-663) $) NIL) (((-392 (-526)) $) NIL (|has| (-663) (-995 (-392 (-526)))))) (-1887 (($ (-1205 (-663))) NIL) (($ (-1205 (-663)) (-1205 $)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-663) (-335)))) (-2861 (($ $ $) NIL (|has| (-663) (-292)))) (-1876 (((-653 (-663)) $) NIL) (((-653 (-663)) $ (-1205 $)) NIL)) (-2331 (((-653 (-663)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-663))) (|:| |vec| (-1205 (-663)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-663) (-606 (-526)))) (((-653 (-526)) (-653 $)) NIL (|has| (-663) (-606 (-526))))) (-4161 (((-3 $ "failed") (-392 (-1117 (-663)))) NIL (|has| (-663) (-348))) (($ (-1117 (-663))) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3965 (((-663) $) 29)) (-3324 (((-3 (-392 (-526)) #3="failed") $) NIL (|has| (-663) (-525)))) (-3323 (((-111) $) NIL (|has| (-663) (-525)))) (-3322 (((-392 (-526)) $) NIL (|has| (-663) (-525)))) (-3406 (((-878)) NIL)) (-3294 (($) NIL (|has| (-663) (-353)))) (-2860 (($ $ $) NIL (|has| (-663) (-292)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| (-663) (-292)))) (-3133 (($) NIL (|has| (-663) (-335)))) (-1772 (((-111) $) NIL (|has| (-663) (-335)))) (-1862 (($ $) NIL (|has| (-663) (-335))) (($ $ (-735)) NIL (|has| (-663) (-335)))) (-4045 (((-111) $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| (-663) (-869))) (|has| (-663) (-348))))) (-1400 (((-2 (|:| |r| (-663)) (|:| |phi| (-663))) $) NIL (-12 (|has| (-663) (-1013)) (|has| (-663) (-1145))))) (-3949 (($) NIL (|has| (-663) (-1145)))) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-663) (-845 (-363)))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-663) (-845 (-526))))) (-4090 (((-796 (-878)) $) NIL (|has| (-663) (-335))) (((-878) $) NIL (|has| (-663) (-335)))) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (-12 (|has| (-663) (-960)) (|has| (-663) (-1145))))) (-3429 (((-663) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-663) (-335)))) (-1678 (((-3 (-607 $) #4="failed") (-607 $) $) NIL (|has| (-663) (-292)))) (-2106 (((-1117 (-663)) $) NIL (|has| (-663) (-348)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 (-663) (-663)) $) NIL)) (-2102 (((-878) $) NIL (|has| (-663) (-353)))) (-4259 (($ $) NIL (|has| (-663) (-1145)))) (-3379 (((-1117 (-663)) $) NIL)) (-1989 (($ (-607 $)) NIL (|has| (-663) (-292))) (($ $ $) NIL (|has| (-663) (-292)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| (-663) (-348)))) (-3764 (($) NIL (|has| (-663) (-335)) CONST)) (-2461 (($ (-878)) NIL (|has| (-663) (-353)))) (-1402 (($) NIL)) (-3966 (((-663) $) 31)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| (-663) (-292)))) (-3457 (($ (-607 $)) NIL (|has| (-663) (-292))) (($ $ $) NIL (|has| (-663) (-292)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-663) (-335)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-663) (-292)) (|has| (-663) (-869))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-663) (-292)) (|has| (-663) (-869))))) (-4051 (((-390 $) $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| (-663) (-869))) (|has| (-663) (-348))))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-663) (-292))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| (-663) (-292)))) (-3780 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-663)) NIL (|has| (-663) (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| (-663) (-292)))) (-4260 (($ $) NIL (|has| (-663) (-1145)))) (-4086 (($ $ (-1123) (-663)) NIL (|has| (-663) (-496 (-1123) (-663)))) (($ $ (-607 (-1123)) (-607 (-663))) NIL (|has| (-663) (-496 (-1123) (-663)))) (($ $ (-607 (-278 (-663)))) NIL (|has| (-663) (-294 (-663)))) (($ $ (-278 (-663))) NIL (|has| (-663) (-294 (-663)))) (($ $ (-663) (-663)) NIL (|has| (-663) (-294 (-663)))) (($ $ (-607 (-663)) (-607 (-663))) NIL (|has| (-663) (-294 (-663))))) (-1680 (((-735) $) NIL (|has| (-663) (-292)))) (-4118 (($ $ (-663)) NIL (|has| (-663) (-271 (-663) (-663))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| (-663) (-292)))) (-4076 (((-663)) NIL) (((-663) (-1205 $)) NIL)) (-1863 (((-3 (-735) "failed") $ $) NIL (|has| (-663) (-335))) (((-735) $) NIL (|has| (-663) (-335)))) (-4129 (($ $ (-1 (-663) (-663))) NIL) (($ $ (-1 (-663) (-663)) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-1123)) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-735)) NIL (|has| (-663) (-219))) (($ $) NIL (|has| (-663) (-219)))) (-2469 (((-653 (-663)) (-1205 $) (-1 (-663) (-663))) NIL (|has| (-663) (-348)))) (-3499 (((-1117 (-663))) NIL)) (-3809 (($ $) NIL (|has| (-663) (-1145)))) (-3958 (($ $) NIL (|has| (-663) (-1145)))) (-1766 (($) NIL (|has| (-663) (-335)))) (-3807 (($ $) NIL (|has| (-663) (-1145)))) (-3957 (($ $) NIL (|has| (-663) (-1145)))) (-3805 (($ $) NIL (|has| (-663) (-1145)))) (-3956 (($ $) NIL (|has| (-663) (-1145)))) (-3537 (((-653 (-663)) (-1205 $)) NIL) (((-1205 (-663)) $) NIL) (((-653 (-663)) (-1205 $) (-1205 $)) NIL) (((-1205 (-663)) $ (-1205 $)) NIL)) (-4287 (((-515) $) NIL (|has| (-663) (-584 (-515)))) (((-159 (-211)) $) NIL (|has| (-663) (-977))) (((-159 (-363)) $) NIL (|has| (-663) (-977))) (((-849 (-363)) $) NIL (|has| (-663) (-584 (-849 (-363))))) (((-849 (-526)) $) NIL (|has| (-663) (-584 (-849 (-526))))) (($ (-1117 (-663))) NIL) (((-1117 (-663)) $) NIL) (($ (-1205 (-663))) NIL) (((-1205 (-663)) $) NIL)) (-3309 (($ $) NIL)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| $ (-139)) (|has| (-663) (-869))) (|has| (-663) (-335))))) (-1401 (($ (-663) (-663)) 12)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-526)) NIL) (($ (-663)) NIL) (($ (-159 (-363))) 13) (($ (-159 (-526))) 19) (($ (-159 (-663))) 28) (($ (-159 (-665))) 25) (((-159 (-363)) $) 33) (($ (-392 (-526))) NIL (-3850 (|has| (-663) (-348)) (|has| (-663) (-995 (-392 (-526))))))) (-3002 (($ $) NIL (|has| (-663) (-335))) (((-3 $ #1#) $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| $ (-139)) (|has| (-663) (-869))) (|has| (-663) (-139))))) (-2667 (((-1117 (-663)) $) NIL)) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL)) (-3812 (($ $) NIL (|has| (-663) (-1145)))) (-3800 (($ $) NIL (|has| (-663) (-1145)))) (-2150 (((-111) $ $) NIL)) (-3810 (($ $) NIL (|has| (-663) (-1145)))) (-3798 (($ $) NIL (|has| (-663) (-1145)))) (-3814 (($ $) NIL (|has| (-663) (-1145)))) (-3802 (($ $) NIL (|has| (-663) (-1145)))) (-2289 (((-663) $) NIL (|has| (-663) (-1145)))) (-3815 (($ $) NIL (|has| (-663) (-1145)))) (-3803 (($ $) NIL (|has| (-663) (-1145)))) (-3813 (($ $) NIL (|has| (-663) (-1145)))) (-3801 (($ $) NIL (|has| (-663) (-1145)))) (-3811 (($ $) NIL (|has| (-663) (-1145)))) (-3799 (($ $) NIL (|has| (-663) (-1145)))) (-3702 (($ $) NIL (|has| (-663) (-1013)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1 (-663) (-663))) NIL) (($ $ (-1 (-663) (-663)) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-1123)) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-735)) NIL (|has| (-663) (-219))) (($ $) NIL (|has| (-663) (-219)))) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL (|has| (-663) (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ $) NIL (|has| (-663) (-1145))) (($ $ (-392 (-526))) NIL (-12 (|has| (-663) (-960)) (|has| (-663) (-1145)))) (($ $ (-526)) NIL (|has| (-663) (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ (-663) $) NIL) (($ $ (-663)) NIL) (($ (-392 (-526)) $) NIL (|has| (-663) (-348))) (($ $ (-392 (-526))) NIL (|has| (-663) (-348))))) -(((-658) (-13 (-372) (-157 (-663)) (-10 -8 (-15 -4274 ($ (-159 (-363)))) (-15 -4274 ($ (-159 (-526)))) (-15 -4274 ($ (-159 (-663)))) (-15 -4274 ($ (-159 (-665)))) (-15 -4274 ((-159 (-363)) $))))) (T -658)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-658)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-159 (-526))) (-5 *1 (-658)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-159 (-663))) (-5 *1 (-658)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-159 (-665))) (-5 *1 (-658)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-658))))) -(-13 (-372) (-157 (-663)) (-10 -8 (-15 -4274 ($ (-159 (-363)))) (-15 -4274 ($ (-159 (-526)))) (-15 -4274 ($ (-159 (-663)))) (-15 -4274 ($ (-159 (-665)))) (-15 -4274 ((-159 (-363)) $)))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2424 (($ $) 62)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40) (($ |#1| $ (-735)) 63)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 61)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-659 |#1|) (-134) (-1052)) (T -659)) -((-3929 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-659 *2)) (-4 *2 (-1052)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1052)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1052)) (-5 *2 (-607 (-2 (|:| -2164 *3) (|:| -2045 (-735)))))))) -(-13 (-221 |t#1|) (-10 -8 (-15 -3929 ($ |t#1| $ (-735))) (-15 -2424 ($ $)) (-15 -2423 ((-607 (-2 (|:| -2164 |t#1|) (|:| -2045 (-735)))) $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2427 (((-607 |#1|) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) (-526)) 47)) (-2425 ((|#1| |#1| (-526)) 46)) (-3457 ((|#1| |#1| |#1| (-526)) 36)) (-4051 (((-607 |#1|) |#1| (-526)) 39)) (-2428 ((|#1| |#1| (-526) |#1| (-526)) 32)) (-2426 (((-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) |#1| (-526)) 45))) -(((-660 |#1|) (-10 -7 (-15 -3457 (|#1| |#1| |#1| (-526))) (-15 -2425 (|#1| |#1| (-526))) (-15 -4051 ((-607 |#1|) |#1| (-526))) (-15 -2426 ((-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) |#1| (-526))) (-15 -2427 ((-607 |#1|) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) (-526))) (-15 -2428 (|#1| |#1| (-526) |#1| (-526)))) (-1181 (-526))) (T -660)) -((-2428 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3)))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| -4051 *5) (|:| -4264 (-526))))) (-5 *4 (-526)) (-4 *5 (-1181 *4)) (-5 *2 (-607 *5)) (-5 *1 (-660 *5)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-5 *2 (-607 (-2 (|:| -4051 *3) (|:| -4264 *4)))) (-5 *1 (-660 *3)) (-4 *3 (-1181 *4)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-5 *2 (-607 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1181 *4)))) (-2425 (*1 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3)))) (-3457 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3))))) -(-10 -7 (-15 -3457 (|#1| |#1| |#1| (-526))) (-15 -2425 (|#1| |#1| (-526))) (-15 -4051 ((-607 |#1|) |#1| (-526))) (-15 -2426 ((-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) |#1| (-526))) (-15 -2427 ((-607 |#1|) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) (-526))) (-15 -2428 (|#1| |#1| (-526) |#1| (-526)))) -((-2432 (((-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211) (-211))) 17)) (-2429 (((-1083 (-211)) (-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246))) 40) (((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246))) 42) (((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1="undefined") (-1041 (-211)) (-1041 (-211)) (-607 (-246))) 44)) (-2431 (((-1083 (-211)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-607 (-246))) NIL)) (-2430 (((-1083 (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1#) (-1041 (-211)) (-1041 (-211)) (-607 (-246))) 45))) -(((-661) (-10 -7 (-15 -2429 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1="undefined") (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2429 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2429 ((-1083 (-211)) (-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2430 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1#) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2431 ((-1083 (-211)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2432 ((-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211) (-211)))))) (T -661)) -((-2432 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1 (-211) (-211) (-211) (-211))) (-5 *2 (-1 (-902 (-211)) (-211) (-211))) (-5 *1 (-661)))) (-2431 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661)))) (-2430 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-3 (-1 (-211) (-211) (-211) (-211)) #1="undefined")) (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661)))) (-2429 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-211))) (-5 *5 (-607 (-246))) (-5 *1 (-661)))) (-2429 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-211))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661)))) (-2429 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-3 (-1 (-211) (-211) (-211) (-211)) #1#)) (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661))))) -(-10 -7 (-15 -2429 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1="undefined") (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2429 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2429 ((-1083 (-211)) (-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2430 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1#) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2431 ((-1083 (-211)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2432 ((-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211) (-211))))) -((-4051 (((-390 (-1117 |#4|)) (-1117 |#4|)) 73) (((-390 |#4|) |#4|) 221))) -(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4|)) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|)))) (-811) (-757) (-335) (-909 |#3| |#2| |#1|)) (T -662)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-335)) (-4 *7 (-909 *6 *5 *4)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-662 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4))))) -(-10 -7 (-15 -4051 ((-390 |#4|) |#4|)) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 84)) (-3426 (((-526) $) 30)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4089 (($ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-3855 (($) NIL T CONST)) (-3424 (($ $) NIL)) (-3470 (((-3 (-526) #1="failed") $) 73) (((-3 (-392 (-526)) #1#) $) 26) (((-3 (-363) #1#) $) 70)) (-3469 (((-526) $) 75) (((-392 (-526)) $) 67) (((-363) $) 68)) (-2861 (($ $ $) 96)) (-3781 (((-3 $ "failed") $) 87)) (-2860 (($ $ $) 95)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2435 (((-878)) 77) (((-878) (-878)) 76)) (-3500 (((-111) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL)) (-4090 (((-526) $) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL)) (-3429 (($ $) NIL)) (-3501 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-2433 (((-526) (-526)) 81) (((-526)) 82)) (-3637 (($ $ $) NIL) (($) NIL (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-2434 (((-526) (-526)) 79) (((-526)) 80)) (-3638 (($ $ $) NIL) (($) NIL (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-2436 (((-526) $) 16)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 91)) (-1865 (((-878) (-526)) NIL (|has| $ (-6 -4301)))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL)) (-3427 (($ $) NIL)) (-3566 (($ (-526) (-526)) NIL) (($ (-526) (-526) (-878)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) 92)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2462 (((-526) $) 22)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 94)) (-2910 (((-878)) NIL) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-1864 (((-878) (-526)) NIL (|has| $ (-6 -4301)))) (-4287 (((-363) $) NIL) (((-211) $) NIL) (((-849 (-363)) $) NIL)) (-4274 (((-823) $) 52) (($ (-526)) 63) (($ $) NIL) (($ (-392 (-526))) 66) (($ (-526)) 63) (($ (-392 (-526))) 66) (($ (-363)) 60) (((-363) $) 50) (($ (-665)) 55)) (-3423 (((-735)) 103)) (-3247 (($ (-526) (-526) (-878)) 44)) (-3428 (($ $) NIL)) (-1866 (((-878)) NIL) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-2994 (((-878)) 35) (((-878) (-878)) 78)) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL)) (-2957 (($) 32 T CONST)) (-2964 (($) 17 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 83)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 101)) (-4265 (($ $ $) 65)) (-4156 (($ $) 99) (($ $ $) 100)) (-4158 (($ $ $) 98)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL) (($ $ (-392 (-526))) 90)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 97) (($ $ $) 88) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) -(((-663) (-13 (-389) (-372) (-348) (-995 (-363)) (-995 (-392 (-526))) (-141) (-10 -8 (-15 -2435 ((-878) (-878))) (-15 -2435 ((-878))) (-15 -2994 ((-878) (-878))) (-15 -2994 ((-878))) (-15 -2434 ((-526) (-526))) (-15 -2434 ((-526))) (-15 -2433 ((-526) (-526))) (-15 -2433 ((-526))) (-15 -4274 ((-363) $)) (-15 -4274 ($ (-665))) (-15 -2436 ((-526) $)) (-15 -2462 ((-526) $)) (-15 -3247 ($ (-526) (-526) (-878)))))) (T -663)) -((-2994 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2435 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) (-2435 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2434 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2433 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-363)) (-5 *1 (-663)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-665)) (-5 *1 (-663)))) (-3247 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-878)) (-5 *1 (-663))))) -(-13 (-389) (-372) (-348) (-995 (-363)) (-995 (-392 (-526))) (-141) (-10 -8 (-15 -2435 ((-878) (-878))) (-15 -2435 ((-878))) (-15 -2994 ((-878) (-878))) (-15 -2994 ((-878))) (-15 -2434 ((-526) (-526))) (-15 -2434 ((-526))) (-15 -2433 ((-526) (-526))) (-15 -2433 ((-526))) (-15 -4274 ((-363) $)) (-15 -4274 ($ (-665))) (-15 -2436 ((-526) $)) (-15 -2462 ((-526) $)) (-15 -3247 ($ (-526) (-526) (-878))))) -((-2439 (((-653 |#1|) (-653 |#1|) |#1| |#1|) 65)) (-3407 (((-653 |#1|) (-653 |#1|) |#1|) 48)) (-2438 (((-653 |#1|) (-653 |#1|) |#1|) 66)) (-2437 (((-653 |#1|) (-653 |#1|)) 49)) (-2440 (((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|) 64))) -(((-664 |#1|) (-10 -7 (-15 -2437 ((-653 |#1|) (-653 |#1|))) (-15 -3407 ((-653 |#1|) (-653 |#1|) |#1|)) (-15 -2438 ((-653 |#1|) (-653 |#1|) |#1|)) (-15 -2439 ((-653 |#1|) (-653 |#1|) |#1| |#1|)) (-15 -2440 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|))) (-292)) (T -664)) -((-2440 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-664 *3)) (-4 *3 (-292)))) (-2439 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3)))) (-2438 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3)))) (-3407 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3)))) (-2437 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3))))) -(-10 -7 (-15 -2437 ((-653 |#1|) (-653 |#1|))) (-15 -3407 ((-653 |#1|) (-653 |#1|) |#1|)) (-15 -2438 ((-653 |#1|) (-653 |#1|) |#1|)) (-15 -2439 ((-653 |#1|) (-653 |#1|) |#1| |#1|)) (-15 -2440 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2135 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2130 (($ $ $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-2659 (($ $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) "failed") $) 27)) (-3469 (((-526) $) 25)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL)) (-3323 (((-111) $) NIL)) (-3322 (((-392 (-526)) $) NIL)) (-3294 (($ $) NIL) (($) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2128 (($ $ $ $) NIL)) (-2136 (($ $ $) NIL)) (-3500 (((-111) $) NIL)) (-1394 (($ $ $) NIL)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL)) (-2471 (((-111) $) NIL)) (-2973 (((-111) $) NIL)) (-3763 (((-3 $ "failed") $) NIL)) (-3501 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2129 (($ $ $ $) NIL)) (-3637 (($ $ $) NIL)) (-2441 (((-878) (-878)) 10) (((-878)) 9)) (-3638 (($ $ $) NIL)) (-2132 (($ $) NIL)) (-4152 (($ $) NIL)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2127 (($ $ $) NIL)) (-3764 (($) NIL T CONST)) (-2134 (($ $) NIL)) (-3555 (((-1070) $) NIL) (($ $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-1392 (($ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL) (($ $ (-735)) NIL)) (-2133 (($ $) NIL)) (-3719 (($ $) NIL)) (-4287 (((-211) $) NIL) (((-363) $) NIL) (((-849 (-526)) $) NIL) (((-515) $) NIL) (((-526) $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) 24) (($ $) NIL) (($ (-526)) 24) (((-299 $) (-299 (-526))) 18)) (-3423 (((-735)) NIL)) (-2137 (((-111) $ $) NIL)) (-3399 (($ $ $) NIL)) (-2994 (($) NIL)) (-2150 (((-111) $ $) NIL)) (-2131 (($ $ $ $) NIL)) (-3702 (($ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL) (($ $ (-735)) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL))) -(((-665) (-13 (-372) (-525) (-10 -8 (-15 -2441 ((-878) (-878))) (-15 -2441 ((-878))) (-15 -4274 ((-299 $) (-299 (-526))))))) (T -665)) -((-2441 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-665)))) (-2441 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-665)))) (-4274 (*1 *2 *3) (-12 (-5 *3 (-299 (-526))) (-5 *2 (-299 (-665))) (-5 *1 (-665))))) -(-13 (-372) (-525) (-10 -8 (-15 -2441 ((-878) (-878))) (-15 -2441 ((-878))) (-15 -4274 ((-299 $) (-299 (-526)))))) -((-2447 (((-1 |#4| |#2| |#3|) |#1| (-1123) (-1123)) 19)) (-2442 (((-1 |#4| |#2| |#3|) (-1123)) 12))) -(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2442 ((-1 |#4| |#2| |#3|) (-1123))) (-15 -2447 ((-1 |#4| |#2| |#3|) |#1| (-1123) (-1123)))) (-584 (-515)) (-1159) (-1159) (-1159)) (T -666)) -((-2447 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-666 *3 *5 *6 *7)) (-4 *3 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *7 (-1159)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-666 *4 *5 *6 *7)) (-4 *4 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *7 (-1159))))) -(-10 -7 (-15 -2442 ((-1 |#4| |#2| |#3|) (-1123))) (-15 -2447 ((-1 |#4| |#2| |#3|) |#1| (-1123) (-1123)))) -((-2865 (((-111) $ $) NIL)) (-1346 (((-1211) $ (-735)) 14)) (-3738 (((-735) $) 12)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 25)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 24))) -(((-667 |#1|) (-13 (-130) (-583 |#1|) (-10 -8 (-15 -4274 ($ |#1|)))) (-1052)) (T -667)) -((-4274 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1052))))) -(-13 (-130) (-583 |#1|) (-10 -8 (-15 -4274 ($ |#1|)))) -((-2443 (((-1 (-211) (-211) (-211)) |#1| (-1123) (-1123)) 34) (((-1 (-211) (-211)) |#1| (-1123)) 39))) -(((-668 |#1|) (-10 -7 (-15 -2443 ((-1 (-211) (-211)) |#1| (-1123))) (-15 -2443 ((-1 (-211) (-211) (-211)) |#1| (-1123) (-1123)))) (-584 (-515))) (T -668)) -((-2443 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-1 (-211) (-211) (-211))) (-5 *1 (-668 *3)) (-4 *3 (-584 (-515))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-1 (-211) (-211))) (-5 *1 (-668 *3)) (-4 *3 (-584 (-515)))))) -(-10 -7 (-15 -2443 ((-1 (-211) (-211)) |#1| (-1123))) (-15 -2443 ((-1 (-211) (-211) (-211)) |#1| (-1123) (-1123)))) -((-2444 (((-1123) |#1| (-1123) (-607 (-1123))) 9) (((-1123) |#1| (-1123) (-1123) (-1123)) 12) (((-1123) |#1| (-1123) (-1123)) 11) (((-1123) |#1| (-1123)) 10))) -(((-669 |#1|) (-10 -7 (-15 -2444 ((-1123) |#1| (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-1123) (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-607 (-1123))))) (-584 (-515))) (T -669)) -((-2444 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-607 (-1123))) (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) (-2444 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) (-2444 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) (-2444 (*1 *2 *3 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515)))))) -(-10 -7 (-15 -2444 ((-1123) |#1| (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-1123) (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-607 (-1123))))) -((-2445 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-670 |#1| |#2|) (-10 -7 (-15 -2445 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1159) (-1159)) (T -670)) -((-2445 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-670 *3 *4)) (-4 *3 (-1159)) (-4 *4 (-1159))))) -(-10 -7 (-15 -2445 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2446 (((-1 |#3| |#2|) (-1123)) 11)) (-2447 (((-1 |#3| |#2|) |#1| (-1123)) 21))) -(((-671 |#1| |#2| |#3|) (-10 -7 (-15 -2446 ((-1 |#3| |#2|) (-1123))) (-15 -2447 ((-1 |#3| |#2|) |#1| (-1123)))) (-584 (-515)) (-1159) (-1159)) (T -671)) -((-2447 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-671 *3 *5 *6)) (-4 *3 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-671 *4 *5 *6)) (-4 *4 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159))))) -(-10 -7 (-15 -2446 ((-1 |#3| |#2|) (-1123))) (-15 -2447 ((-1 |#3| |#2|) |#1| (-1123)))) -((-2450 (((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#4|)) (-607 |#3|) (-607 |#4|) (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#4|)))) (-607 (-735)) (-1205 (-607 (-1117 |#3|))) |#3|) 62)) (-2449 (((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#3|)) (-607 |#3|) (-607 |#4|) (-607 (-735)) |#3|) 75)) (-2448 (((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 |#3|) (-607 (-735)) (-607 (-1117 |#4|)) (-1205 (-607 (-1117 |#3|))) |#3|) 34))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2448 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 |#3|) (-607 (-735)) (-607 (-1117 |#4|)) (-1205 (-607 (-1117 |#3|))) |#3|)) (-15 -2449 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#3|)) (-607 |#3|) (-607 |#4|) (-607 (-735)) |#3|)) (-15 -2450 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#4|)) (-607 |#3|) (-607 |#4|) (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#4|)))) (-607 (-735)) (-1205 (-607 (-1117 |#3|))) |#3|))) (-757) (-811) (-292) (-909 |#3| |#1| |#2|)) (T -672)) -((-2450 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-607 (-1117 *13))) (-5 *3 (-1117 *13)) (-5 *4 (-607 *12)) (-5 *5 (-607 *10)) (-5 *6 (-607 *13)) (-5 *7 (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| *13))))) (-5 *8 (-607 (-735))) (-5 *9 (-1205 (-607 (-1117 *10)))) (-4 *12 (-811)) (-4 *10 (-292)) (-4 *13 (-909 *10 *11 *12)) (-4 *11 (-757)) (-5 *1 (-672 *11 *12 *10 *13)))) (-2449 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-607 *11)) (-5 *5 (-607 (-1117 *9))) (-5 *6 (-607 *9)) (-5 *7 (-607 *12)) (-5 *8 (-607 (-735))) (-4 *11 (-811)) (-4 *9 (-292)) (-4 *12 (-909 *9 *10 *11)) (-4 *10 (-757)) (-5 *2 (-607 (-1117 *12))) (-5 *1 (-672 *10 *11 *9 *12)) (-5 *3 (-1117 *12)))) (-2448 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-607 (-1117 *11))) (-5 *3 (-1117 *11)) (-5 *4 (-607 *10)) (-5 *5 (-607 *8)) (-5 *6 (-607 (-735))) (-5 *7 (-1205 (-607 (-1117 *8)))) (-4 *10 (-811)) (-4 *8 (-292)) (-4 *11 (-909 *8 *9 *10)) (-4 *9 (-757)) (-5 *1 (-672 *9 *10 *8 *11))))) -(-10 -7 (-15 -2448 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 |#3|) (-607 (-735)) (-607 (-1117 |#4|)) (-1205 (-607 (-1117 |#3|))) |#3|)) (-15 -2449 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#3|)) (-607 |#3|) (-607 |#4|) (-607 (-735)) |#3|)) (-15 -2450 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#4|)) (-607 |#3|) (-607 |#4|) (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#4|)))) (-607 (-735)) (-1205 (-607 (-1117 |#3|))) |#3|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4276 (($ $) 39)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3193 (($ |#1| (-735)) 37)) (-3120 (((-735) $) 41)) (-3487 ((|#1| $) 40)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4264 (((-735) $) 42)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 36 (|has| |#1| (-163)))) (-3999 ((|#1| $ (-735)) 38)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) -(((-673 |#1|) (-134) (-1004)) (T -673)) -((-4264 (*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1004)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1004)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-673 *2)) (-4 *2 (-1004)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-673 *2)) (-4 *2 (-1004))))) -(-13 (-1004) (-110 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -4264 ((-735) $)) (-15 -3120 ((-735) $)) (-15 -3487 (|t#1| $)) (-15 -4276 ($ $)) (-15 -3999 (|t#1| $ (-735))) (-15 -3193 ($ |t#1| (-735))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) |has| |#1| (-163)) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-4275 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-674 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4275 (|#6| (-1 |#4| |#1|) |#3|))) (-533) (-1181 |#1|) (-1181 (-392 |#2|)) (-533) (-1181 |#4|) (-1181 (-392 |#5|))) (T -674)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-533)) (-4 *7 (-533)) (-4 *6 (-1181 *5)) (-4 *2 (-1181 (-392 *8))) (-5 *1 (-674 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1181 (-392 *6))) (-4 *8 (-1181 *7))))) -(-10 -7 (-15 -4275 (|#6| (-1 |#4| |#1|) |#3|))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2451 (((-1106) (-823)) 31)) (-3939 (((-1211) (-1106)) 28)) (-2453 (((-1106) (-823)) 24)) (-2452 (((-1106) (-823)) 25)) (-4274 (((-823) $) NIL) (((-1106) (-823)) 23)) (-3353 (((-111) $ $) NIL))) -(((-675) (-13 (-1052) (-10 -7 (-15 -4274 ((-1106) (-823))) (-15 -2453 ((-1106) (-823))) (-15 -2452 ((-1106) (-823))) (-15 -2451 ((-1106) (-823))) (-15 -3939 ((-1211) (-1106)))))) (T -675)) -((-4274 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-675))))) -(-13 (-1052) (-10 -7 (-15 -4274 ((-1106) (-823))) (-15 -2453 ((-1106) (-823))) (-15 -2452 ((-1106) (-823))) (-15 -2451 ((-1106) (-823))) (-15 -3939 ((-1211) (-1106))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL)) (-4161 (($ |#1| |#2|) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 ((|#2| $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2463 (((-3 $ "failed") $ $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) ((|#1| $) NIL)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) -(((-676 |#1| |#2| |#3| |#4| |#5|) (-13 (-348) (-10 -8 (-15 -2909 (|#2| $)) (-15 -4274 (|#1| $)) (-15 -4161 ($ |#1| |#2|)) (-15 -2463 ((-3 $ "failed") $ $)))) (-163) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -676)) -((-2909 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-676 *3 *2 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4274 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4161 (*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2463 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-348) (-10 -8 (-15 -2909 (|#2| $)) (-15 -4274 (|#1| $)) (-15 -4161 ($ |#1| |#2|)) (-15 -2463 ((-3 $ "failed") $ $)))) -((-2865 (((-111) $ $) 78)) (-3502 (((-111) $) 30)) (-4085 (((-1205 |#1|) $ (-735)) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4083 (($ (-1117 |#1|)) NIL)) (-3386 (((-1117 $) $ (-1033)) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4074 (($ $ $) NIL (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3433 (((-735)) 47 (|has| |#1| (-353)))) (-4079 (($ $ (-735)) NIL)) (-4078 (($ $ (-735)) NIL)) (-2460 ((|#2| |#2|) 44)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-436)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1033) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1033) $) NIL)) (-4075 (($ $ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $ $) NIL (|has| |#1| (-163)))) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) 34)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-4161 (($ |#2|) 42)) (-3781 (((-3 $ "failed") $) 86)) (-3294 (($) 51 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4077 (($ $ $) NIL)) (-4072 (($ $ $) NIL (|has| |#1| (-533)))) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-2456 (((-917 $)) 80)) (-1697 (($ $ |#1| (-735) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1033) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1033) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ $) NIL (|has| |#1| (-533)))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-1099)))) (-3387 (($ (-1117 |#1|) (-1033)) NIL) (($ (-1117 $) (-1033)) NIL)) (-4095 (($ $ (-735)) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) 77) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) NIL) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2909 ((|#2|) 45)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4084 (((-1117 |#1|) $) NIL)) (-3385 (((-3 (-1033) #4="failed") $) NIL)) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-3379 ((|#2| $) 41)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) 28)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) NIL)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) NIL)) (-4131 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (|has| |#1| (-1099)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-2454 (($ $) 79 (|has| |#1| (-335)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#1|) NIL) (($ $ (-607 (-1033)) (-607 |#1|)) NIL) (($ $ (-1033) $) NIL) (($ $ (-607 (-1033)) (-607 $)) NIL)) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-392 $) (-392 $) (-392 $)) NIL (|has| |#1| (-533))) ((|#1| (-392 $) |#1|) NIL (|has| |#1| (-348))) (((-392 $) $ (-392 $)) NIL (|has| |#1| (-533)))) (-4082 (((-3 $ #5="failed") $ (-735)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 87 (|has| |#1| (-348)))) (-4076 (($ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4264 (((-735) $) 32) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1033) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-2455 (((-917 $)) 36)) (-4073 (((-3 $ #5#) $ $) NIL (|has| |#1| (-533))) (((-3 (-392 $) #5#) (-392 $) $) NIL (|has| |#1| (-533)))) (-4274 (((-823) $) 61) (($ (-526)) NIL) (($ |#1|) 58) (($ (-1033)) NIL) (($ |#2|) 68) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) 63) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 20 T CONST)) (-2459 (((-1205 |#1|) $) 75)) (-2458 (($ (-1205 |#1|)) 50)) (-2964 (($) 8 T CONST)) (-2969 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2457 (((-1205 |#1|) $) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 69)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) 72) (($ $ $) NIL)) (-4158 (($ $ $) 33)) (** (($ $ (-878)) NIL) (($ $ (-735)) 81)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 57) (($ $ $) 74) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-677 |#1| |#2|) (-13 (-1181 |#1|) (-10 -8 (-15 -2460 (|#2| |#2|)) (-15 -2909 (|#2|)) (-15 -4161 ($ |#2|)) (-15 -3379 (|#2| $)) (-15 -4274 ($ |#2|)) (-15 -2459 ((-1205 |#1|) $)) (-15 -2458 ($ (-1205 |#1|))) (-15 -2457 ((-1205 |#1|) $)) (-15 -2456 ((-917 $))) (-15 -2455 ((-917 $))) (IF (|has| |#1| (-335)) (-15 -2454 ($ $)) |%noBranch|) (IF (|has| |#1| (-353)) (-6 (-353)) |%noBranch|))) (-1004) (-1181 |#1|)) (T -677)) -((-2460 (*1 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) (-2909 (*1 *2) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-677 *3 *2)) (-4 *3 (-1004)))) (-4161 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) (-3379 (*1 *2 *1) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-677 *3 *2)) (-4 *3 (-1004)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) (-2459 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-1205 *3)) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1004)) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2457 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-1205 *3)) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2456 (*1 *2) (-12 (-4 *3 (-1004)) (-5 *2 (-917 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2455 (*1 *2) (-12 (-4 *3 (-1004)) (-5 *2 (-917 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2454 (*1 *1 *1) (-12 (-4 *2 (-335)) (-4 *2 (-1004)) (-5 *1 (-677 *2 *3)) (-4 *3 (-1181 *2))))) -(-13 (-1181 |#1|) (-10 -8 (-15 -2460 (|#2| |#2|)) (-15 -2909 (|#2|)) (-15 -4161 ($ |#2|)) (-15 -3379 (|#2| $)) (-15 -4274 ($ |#2|)) (-15 -2459 ((-1205 |#1|) $)) (-15 -2458 ($ (-1205 |#1|))) (-15 -2457 ((-1205 |#1|) $)) (-15 -2456 ((-917 $))) (-15 -2455 ((-917 $))) (IF (|has| |#1| (-335)) (-15 -2454 ($ $)) |%noBranch|) (IF (|has| |#1| (-353)) (-6 (-353)) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2461 ((|#1| $) 13)) (-3555 (((-1070) $) NIL)) (-2462 ((|#2| $) 12)) (-3844 (($ |#1| |#2|) 16)) (-4274 (((-823) $) NIL) (($ (-2 (|:| -2461 |#1|) (|:| -2462 |#2|))) 15) (((-2 (|:| -2461 |#1|) (|:| -2462 |#2|)) $) 14)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 11))) -(((-678 |#1| |#2| |#3|) (-13 (-811) (-10 -8 (-15 -2462 (|#2| $)) (-15 -2461 (|#1| $)) (-15 -4274 ($ (-2 (|:| -2461 |#1|) (|:| -2462 |#2|)))) (-15 -4274 ((-2 (|:| -2461 |#1|) (|:| -2462 |#2|)) $)) (-15 -3844 ($ |#1| |#2|)))) (-811) (-1052) (-1 (-111) (-2 (|:| -2461 |#1|) (|:| -2462 |#2|)) (-2 (|:| -2461 |#1|) (|:| -2462 |#2|)))) (T -678)) -((-2462 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-678 *3 *2 *4)) (-4 *3 (-811)) (-14 *4 (-1 (-111) (-2 (|:| -2461 *3) (|:| -2462 *2)) (-2 (|:| -2461 *3) (|:| -2462 *2)))))) (-2461 (*1 *2 *1) (-12 (-4 *2 (-811)) (-5 *1 (-678 *2 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *3)) (-2 (|:| -2461 *2) (|:| -2462 *3)))))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2461 *3) (|:| -2462 *4))) (-4 *3 (-811)) (-4 *4 (-1052)) (-5 *1 (-678 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2461 *3) (|:| -2462 *4))) (-5 *1 (-678 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-1052)) (-14 *5 (-1 (-111) *2 *2)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3 *4)) (-4 *2 (-811)) (-4 *3 (-1052)) (-14 *4 (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *3)) (-2 (|:| -2461 *2) (|:| -2462 *3))))))) -(-13 (-811) (-10 -8 (-15 -2462 (|#2| $)) (-15 -2461 (|#1| $)) (-15 -4274 ($ (-2 (|:| -2461 |#1|) (|:| -2462 |#2|)))) (-15 -4274 ((-2 (|:| -2461 |#1|) (|:| -2462 |#2|)) $)) (-15 -3844 ($ |#1| |#2|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 59)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #1="failed") $) 89) (((-3 (-112) #1#) $) 95)) (-3469 ((|#1| $) NIL) (((-112) $) 39)) (-3781 (((-3 $ "failed") $) 90)) (-2819 ((|#2| (-112) |#2|) 82)) (-2471 (((-111) $) NIL)) (-2818 (($ |#1| (-346 (-112))) 14)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2820 (($ $ (-1 |#2| |#2|)) 58)) (-2821 (($ $ (-1 |#2| |#2|)) 44)) (-4118 ((|#2| $ |#2|) 33)) (-2822 ((|#1| |#1|) 105 (|has| |#1| (-163)))) (-4274 (((-823) $) 66) (($ (-526)) 18) (($ |#1|) 17) (($ (-112)) 23)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 37)) (-2823 (($ $) 99 (|has| |#1| (-163))) (($ $ $) 103 (|has| |#1| (-163)))) (-2957 (($) 21 T CONST)) (-2964 (($) 9 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) 48) (($ $ $) NIL)) (-4158 (($ $ $) 73)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ (-112) (-526)) NIL) (($ $ (-526)) 57)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-163))) (($ $ |#1|) 97 (|has| |#1| (-163))))) -(((-679 |#1| |#2|) (-13 (-1004) (-995 |#1|) (-995 (-112)) (-271 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2822 (|#1| |#1|))) |%noBranch|) (-15 -2821 ($ $ (-1 |#2| |#2|))) (-15 -2820 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-526))) (-15 ** ($ $ (-526))) (-15 -2819 (|#2| (-112) |#2|)) (-15 -2818 ($ |#1| (-346 (-112)))))) (-1004) (-613 |#1|)) (T -679)) -((-2823 (*1 *1 *1) (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) (-2823 (*1 *1 *1 *1) (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) (-2822 (*1 *2 *2) (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-613 *3)) (-4 *3 (-1004)) (-5 *1 (-679 *3 *4)))) (-2820 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-613 *3)) (-4 *3 (-1004)) (-5 *1 (-679 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-679 *4 *5)) (-4 *5 (-613 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *3 (-1004)) (-5 *1 (-679 *3 *4)) (-4 *4 (-613 *3)))) (-2819 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-4 *4 (-1004)) (-5 *1 (-679 *4 *2)) (-4 *2 (-613 *4)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *3 (-346 (-112))) (-4 *2 (-1004)) (-5 *1 (-679 *2 *4)) (-4 *4 (-613 *2))))) -(-13 (-1004) (-995 |#1|) (-995 (-112)) (-271 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2822 (|#1| |#1|))) |%noBranch|) (-15 -2821 ($ $ (-1 |#2| |#2|))) (-15 -2820 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-526))) (-15 ** ($ $ (-526))) (-15 -2819 (|#2| (-112) |#2|)) (-15 -2818 ($ |#1| (-346 (-112)))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 33)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4161 (($ |#1| |#2|) 25)) (-3781 (((-3 $ "failed") $) 48)) (-2471 (((-111) $) 35)) (-2909 ((|#2| $) 12)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 49)) (-3555 (((-1070) $) NIL)) (-2463 (((-3 $ "failed") $ $) 47)) (-4274 (((-823) $) 24) (($ (-526)) 19) ((|#1| $) 13)) (-3423 (((-735)) 28)) (-2957 (($) 16 T CONST)) (-2964 (($) 30 T CONST)) (-3353 (((-111) $ $) 38)) (-4156 (($ $) 43) (($ $ $) 37)) (-4158 (($ $ $) 40)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 21) (($ $ $) 20))) -(((-680 |#1| |#2| |#3| |#4| |#5|) (-13 (-1004) (-10 -8 (-15 -2909 (|#2| $)) (-15 -4274 (|#1| $)) (-15 -4161 ($ |#1| |#2|)) (-15 -2463 ((-3 $ "failed") $ $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -2703 ($ $)))) (-163) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -680)) -((-3781 (*1 *1 *1) (|partial| -12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2909 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-680 *3 *2 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4274 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4161 (*1 *1 *2 *3) (-12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2463 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2703 (*1 *1 *1) (-12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-1004) (-10 -8 (-15 -2909 (|#2| $)) (-15 -4274 (|#1| $)) (-15 -4161 ($ |#1| |#2|)) (-15 -2463 ((-3 $ "failed") $ $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -2703 ($ $)))) -((* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-681 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-682 |#2|) (-163)) (T -681)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-682 |#1|) (-134) (-163)) (T -682)) -NIL -(-13 (-110 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-1010 |#1|) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-2659 (($ |#1|) 17) (($ $ |#1|) 20)) (-4166 (($ |#1|) 18) (($ $ |#1|) 21)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2471 (((-111) $) NIL)) (-2464 (($ |#1| |#1| |#1| |#1|) 8)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 16)) (-3555 (((-1070) $) NIL)) (-4086 ((|#1| $ |#1|) 24) (((-796 |#1|) $ (-796 |#1|)) 32)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 39)) (-2964 (($) 9 T CONST)) (-3353 (((-111) $ $) 44)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ $ $) 14))) -(((-683 |#1|) (-13 (-457) (-10 -8 (-15 -2464 ($ |#1| |#1| |#1| |#1|)) (-15 -2659 ($ |#1|)) (-15 -4166 ($ |#1|)) (-15 -3781 ($)) (-15 -2659 ($ $ |#1|)) (-15 -4166 ($ $ |#1|)) (-15 -3781 ($ $)) (-15 -4086 (|#1| $ |#1|)) (-15 -4086 ((-796 |#1|) $ (-796 |#1|))))) (-348)) (T -683)) -((-2464 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-2659 (*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-4166 (*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-3781 (*1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-2659 (*1 *1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-4086 (*1 *2 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-4086 (*1 *2 *1 *2) (-12 (-5 *2 (-796 *3)) (-4 *3 (-348)) (-5 *1 (-683 *3))))) -(-13 (-457) (-10 -8 (-15 -2464 ($ |#1| |#1| |#1| |#1|)) (-15 -2659 ($ |#1|)) (-15 -4166 ($ |#1|)) (-15 -3781 ($)) (-15 -2659 ($ $ |#1|)) (-15 -4166 ($ $ |#1|)) (-15 -3781 ($ $)) (-15 -4086 (|#1| $ |#1|)) (-15 -4086 ((-796 |#1|) $ (-796 |#1|))))) -((-2468 (($ $ (-878)) 12)) (-2467 (($ $ (-878)) 13)) (** (($ $ (-878)) 10))) -(((-684 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-878))) (-15 -2467 (|#1| |#1| (-878))) (-15 -2468 (|#1| |#1| (-878)))) (-685)) (T -684)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-878))) (-15 -2467 (|#1| |#1| (-878))) (-15 -2468 (|#1| |#1| (-878)))) -((-2865 (((-111) $ $) 7)) (-2468 (($ $ (-878)) 15)) (-2467 (($ $ (-878)) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6)) (** (($ $ (-878)) 13)) (* (($ $ $) 16))) -(((-685) (-134)) (T -685)) -((* (*1 *1 *1 *1) (-4 *1 (-685))) (-2468 (*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) (-2467 (*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878))))) -(-13 (-1052) (-10 -8 (-15 * ($ $ $)) (-15 -2468 ($ $ (-878))) (-15 -2467 ($ $ (-878))) (-15 ** ($ $ (-878))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2468 (($ $ (-878)) NIL) (($ $ (-735)) 17)) (-2471 (((-111) $) 10)) (-2467 (($ $ (-878)) NIL) (($ $ (-735)) 18)) (** (($ $ (-878)) NIL) (($ $ (-735)) 15))) -(((-686 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-735))) (-15 -2467 (|#1| |#1| (-735))) (-15 -2468 (|#1| |#1| (-735))) (-15 -2471 ((-111) |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 -2467 (|#1| |#1| (-878))) (-15 -2468 (|#1| |#1| (-878)))) (-687)) (T -686)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-735))) (-15 -2467 (|#1| |#1| (-735))) (-15 -2468 (|#1| |#1| (-735))) (-15 -2471 ((-111) |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 -2467 (|#1| |#1| (-878))) (-15 -2468 (|#1| |#1| (-878)))) -((-2865 (((-111) $ $) 7)) (-2465 (((-3 $ "failed") $) 17)) (-2468 (($ $ (-878)) 15) (($ $ (-735)) 22)) (-3781 (((-3 $ "failed") $) 19)) (-2471 (((-111) $) 23)) (-2466 (((-3 $ "failed") $) 18)) (-2467 (($ $ (-878)) 14) (($ $ (-735)) 21)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2964 (($) 24 T CONST)) (-3353 (((-111) $ $) 6)) (** (($ $ (-878)) 13) (($ $ (-735)) 20)) (* (($ $ $) 16))) -(((-687) (-134)) (T -687)) -((-2964 (*1 *1) (-4 *1 (-687))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-687)) (-5 *2 (-111)))) (-2468 (*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735)))) (-2467 (*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735)))) (-3781 (*1 *1 *1) (|partial| -4 *1 (-687))) (-2466 (*1 *1 *1) (|partial| -4 *1 (-687))) (-2465 (*1 *1 *1) (|partial| -4 *1 (-687)))) -(-13 (-685) (-10 -8 (-15 (-2964) ($) -4268) (-15 -2471 ((-111) $)) (-15 -2468 ($ $ (-735))) (-15 -2467 ($ $ (-735))) (-15 ** ($ $ (-735))) (-15 -3781 ((-3 $ "failed") $)) (-15 -2466 ((-3 $ "failed") $)) (-15 -2465 ((-3 $ "failed") $)))) -(((-100) . T) ((-583 (-823)) . T) ((-685) . T) ((-1052) . T)) -((-3433 (((-735)) 34)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#2| $) 22)) (-4161 (($ |#3|) NIL) (((-3 $ "failed") (-392 |#3|)) 44)) (-3781 (((-3 $ "failed") $) 64)) (-3294 (($) 38)) (-3429 ((|#2| $) 20)) (-2470 (($) 17)) (-4129 (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-2469 (((-653 |#2|) (-1205 $) (-1 |#2| |#2|)) 59)) (-4287 (((-1205 |#2|) $) NIL) (($ (-1205 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2667 ((|#3| $) 32)) (-2104 (((-1205 $)) 29))) -(((-688 |#1| |#2| |#3|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -3294 (|#1|)) (-15 -3433 ((-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -2469 ((-653 |#2|) (-1205 |#1|) (-1 |#2| |#2|))) (-15 -4161 ((-3 |#1| "failed") (-392 |#3|))) (-15 -4287 (|#1| |#3|)) (-15 -4161 (|#1| |#3|)) (-15 -2470 (|#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 (|#3| |#1|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -2104 ((-1205 |#1|))) (-15 -2667 (|#3| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|))) (-689 |#2| |#3|) (-163) (-1181 |#2|)) (T -688)) -((-3433 (*1 *2) (-12 (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-735)) (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-689 *4 *5))))) -(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -3294 (|#1|)) (-15 -3433 ((-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -2469 ((-653 |#2|) (-1205 |#1|) (-1 |#2| |#2|))) (-15 -4161 ((-3 |#1| "failed") (-392 |#3|))) (-15 -4287 (|#1| |#3|)) (-15 -4161 (|#1| |#3|)) (-15 -2470 (|#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 (|#3| |#1|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -2104 ((-1205 |#1|))) (-15 -2667 (|#3| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 91 (|has| |#1| (-348)))) (-2151 (($ $) 92 (|has| |#1| (-348)))) (-2149 (((-111) $) 94 (|has| |#1| (-348)))) (-1877 (((-653 |#1|) (-1205 $)) 44) (((-653 |#1|)) 59)) (-3649 ((|#1| $) 50)) (-1767 (((-1132 (-878) (-735)) (-526)) 144 (|has| |#1| (-335)))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 111 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 112 (|has| |#1| (-348)))) (-1681 (((-111) $ $) 102 (|has| |#1| (-348)))) (-3433 (((-735)) 85 (|has| |#1| (-353)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 166 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 164 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 163)) (-3469 (((-526) $) 167 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 165 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 162)) (-1887 (($ (-1205 |#1|) (-1205 $)) 46) (($ (-1205 |#1|)) 62)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-335)))) (-2861 (($ $ $) 106 (|has| |#1| (-348)))) (-1876 (((-653 |#1|) $ (-1205 $)) 51) (((-653 |#1|) $) 57)) (-2331 (((-653 (-526)) (-653 $)) 161 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 160 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 159) (((-653 |#1|) (-653 $)) 158)) (-4161 (($ |#2|) 155) (((-3 $ "failed") (-392 |#2|)) 152 (|has| |#1| (-348)))) (-3781 (((-3 $ "failed") $) 32)) (-3406 (((-878)) 52)) (-3294 (($) 88 (|has| |#1| (-353)))) (-2860 (($ $ $) 105 (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 100 (|has| |#1| (-348)))) (-3133 (($) 146 (|has| |#1| (-335)))) (-1772 (((-111) $) 147 (|has| |#1| (-335)))) (-1862 (($ $ (-735)) 138 (|has| |#1| (-335))) (($ $) 137 (|has| |#1| (-335)))) (-4045 (((-111) $) 113 (|has| |#1| (-348)))) (-4090 (((-878) $) 149 (|has| |#1| (-335))) (((-796 (-878)) $) 135 (|has| |#1| (-335)))) (-2471 (((-111) $) 30)) (-3429 ((|#1| $) 49)) (-3763 (((-3 $ "failed") $) 139 (|has| |#1| (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 109 (|has| |#1| (-348)))) (-2106 ((|#2| $) 42 (|has| |#1| (-348)))) (-2102 (((-878) $) 87 (|has| |#1| (-353)))) (-3379 ((|#2| $) 153)) (-1989 (($ (-607 $)) 98 (|has| |#1| (-348))) (($ $ $) 97 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 114 (|has| |#1| (-348)))) (-3764 (($) 140 (|has| |#1| (-335)) CONST)) (-2461 (($ (-878)) 86 (|has| |#1| (-353)))) (-3555 (((-1070) $) 10)) (-2470 (($) 157)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 99 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 96 (|has| |#1| (-348))) (($ $ $) 95 (|has| |#1| (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 143 (|has| |#1| (-335)))) (-4051 (((-390 $) $) 110 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 107 (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ $) 90 (|has| |#1| (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 101 (|has| |#1| (-348)))) (-1680 (((-735) $) 103 (|has| |#1| (-348)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 104 (|has| |#1| (-348)))) (-4076 ((|#1| (-1205 $)) 45) ((|#1|) 58)) (-1863 (((-735) $) 148 (|has| |#1| (-335))) (((-3 (-735) "failed") $ $) 136 (|has| |#1| (-335)))) (-4129 (($ $) 134 (-3850 (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-735)) 132 (-3850 (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-1123)) 130 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-607 (-1123))) 129 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-1123) (-735)) 128 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 (-735))) 127 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-1 |#1| |#1|) (-735)) 120 (|has| |#1| (-348))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-348)))) (-2469 (((-653 |#1|) (-1205 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-348)))) (-3499 ((|#2|) 156)) (-1766 (($) 145 (|has| |#1| (-335)))) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) 47) (((-1205 |#1|) $) 64) (((-653 |#1|) (-1205 $)) 63)) (-4287 (((-1205 |#1|) $) 61) (($ (-1205 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 142 (|has| |#1| (-335)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-348))) (($ (-392 (-526))) 84 (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (($ $) 141 (|has| |#1| (-335))) (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2667 ((|#2| $) 43)) (-3423 (((-735)) 28)) (-2104 (((-1205 $)) 65)) (-2150 (((-111) $ $) 93 (|has| |#1| (-348)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $) 133 (-3850 (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-735)) 131 (-3850 (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-1123)) 126 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-607 (-1123))) 125 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-1123) (-735)) 124 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 (-735))) 123 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-1 |#1| |#1|) (-735)) 122 (|has| |#1| (-348))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-348)))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 118 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 115 (|has| |#1| (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-392 (-526)) $) 117 (|has| |#1| (-348))) (($ $ (-392 (-526))) 116 (|has| |#1| (-348))))) -(((-689 |#1| |#2|) (-134) (-163) (-1181 |t#1|)) (T -689)) -((-2470 (*1 *1) (-12 (-4 *2 (-163)) (-4 *1 (-689 *2 *3)) (-4 *3 (-1181 *2)))) (-3499 (*1 *2) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) (-4161 (*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-689 *3 *2)) (-4 *2 (-1181 *3)))) (-4287 (*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-689 *3 *2)) (-4 *2 (-1181 *3)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) (-4161 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-348)) (-4 *3 (-163)) (-4 *1 (-689 *3 *4)))) (-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-1205 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) (-4 *1 (-689 *5 *6)) (-4 *5 (-163)) (-4 *6 (-1181 *5)) (-5 *2 (-653 *5))))) -(-13 (-395 |t#1| |t#2|) (-163) (-584 |t#2|) (-397 |t#1|) (-362 |t#1|) (-10 -8 (-15 -2470 ($)) (-15 -3499 (|t#2|)) (-15 -4161 ($ |t#2|)) (-15 -4287 ($ |t#2|)) (-15 -3379 (|t#2| $)) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|) (IF (|has| |t#1| (-348)) (PROGN (-6 (-348)) (-6 (-217 |t#1|)) (-15 -4161 ((-3 $ "failed") (-392 |t#2|))) (-15 -2469 ((-653 |t#1|) (-1205 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-335)) (-6 (-335)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-37 |#1|) . T) ((-37 $) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-100) . T) ((-110 #1# #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| |#1| (-335)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 |#2|) . T) ((-217 |#1|) |has| |#1| (-348)) ((-219) -3850 (|has| |#1| (-335)) (-12 (|has| |#1| (-219)) (|has| |#1| (-348)))) ((-229) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-275) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-292) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-348) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-387) |has| |#1| (-335)) ((-353) -3850 (|has| |#1| (-335)) (|has| |#1| (-353))) ((-335) |has| |#1| (-335)) ((-355 |#1| |#2|) . T) ((-395 |#1| |#2|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-533) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-613 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-682 |#1|) . T) ((-682 $) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123)))) ((-880) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-335)) ((-1164) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)))) -((-3855 (($) 11)) (-3781 (((-3 $ "failed") $) 13)) (-2471 (((-111) $) 10)) (** (($ $ (-878)) NIL) (($ $ (-735)) 18))) -(((-690 |#1|) (-10 -8 (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 -2471 ((-111) |#1|)) (-15 -3855 (|#1|)) (-15 ** (|#1| |#1| (-878)))) (-691)) (T -690)) -NIL -(-10 -8 (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 -2471 ((-111) |#1|)) (-15 -3855 (|#1|)) (-15 ** (|#1| |#1| (-878)))) -((-2865 (((-111) $ $) 7)) (-3855 (($) 18 T CONST)) (-3781 (((-3 $ "failed") $) 15)) (-2471 (((-111) $) 17)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2964 (($) 19 T CONST)) (-3353 (((-111) $ $) 6)) (** (($ $ (-878)) 13) (($ $ (-735)) 16)) (* (($ $ $) 14))) -(((-691) (-134)) (T -691)) -((-2964 (*1 *1) (-4 *1 (-691))) (-3855 (*1 *1) (-4 *1 (-691))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-691)) (-5 *2 (-111)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-691)) (-5 *2 (-735)))) (-3781 (*1 *1 *1) (|partial| -4 *1 (-691)))) -(-13 (-1063) (-10 -8 (-15 (-2964) ($) -4268) (-15 -3855 ($) -4268) (-15 -2471 ((-111) $)) (-15 ** ($ $ (-735))) (-15 -3781 ((-3 $ "failed") $)))) -(((-100) . T) ((-583 (-823)) . T) ((-1063) . T) ((-1052) . T)) -((-2472 (((-2 (|:| -3392 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3737 (((-2 (|:| -3392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2473 ((|#2| (-392 |#2|) (-1 |#2| |#2|)) 13)) (-3754 (((-2 (|:| |poly| |#2|) (|:| -3392 (-392 |#2|)) (|:| |special| (-392 |#2|))) (-392 |#2|) (-1 |#2| |#2|)) 47))) -(((-692 |#1| |#2|) (-10 -7 (-15 -3737 ((-2 (|:| -3392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2472 ((-2 (|:| -3392 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2473 (|#2| (-392 |#2|) (-1 |#2| |#2|))) (-15 -3754 ((-2 (|:| |poly| |#2|) (|:| -3392 (-392 |#2|)) (|:| |special| (-392 |#2|))) (-392 |#2|) (-1 |#2| |#2|)))) (-348) (-1181 |#1|)) (T -692)) -((-3754 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3392 (-392 *6)) (|:| |special| (-392 *6)))) (-5 *1 (-692 *5 *6)) (-5 *3 (-392 *6)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-392 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1181 *5)) (-5 *1 (-692 *5 *2)) (-4 *5 (-348)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| -3392 (-390 *3)) (|:| |special| (-390 *3)))) (-5 *1 (-692 *5 *3)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| -3392 *3) (|:| |special| *3))) (-5 *1 (-692 *5 *3))))) -(-10 -7 (-15 -3737 ((-2 (|:| -3392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2472 ((-2 (|:| -3392 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2473 (|#2| (-392 |#2|) (-1 |#2| |#2|))) (-15 -3754 ((-2 (|:| |poly| |#2|) (|:| -3392 (-392 |#2|)) (|:| |special| (-392 |#2|))) (-392 |#2|) (-1 |#2| |#2|)))) -((-2474 ((|#7| (-607 |#5|) |#6|) NIL)) (-4275 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-693 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4275 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2474 (|#7| (-607 |#5|) |#6|))) (-811) (-757) (-757) (-1004) (-1004) (-909 |#4| |#2| |#1|) (-909 |#5| |#3| |#1|)) (T -693)) -((-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *9)) (-4 *9 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) (-4 *8 (-1004)) (-4 *2 (-909 *9 *7 *5)) (-5 *1 (-693 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-757)) (-4 *4 (-909 *8 *6 *5)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1004)) (-4 *9 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) (-4 *2 (-909 *9 *7 *5)) (-5 *1 (-693 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-757)) (-4 *4 (-909 *8 *6 *5))))) -(-10 -7 (-15 -4275 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2474 (|#7| (-607 |#5|) |#6|))) -((-4275 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-694 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4275 (|#7| (-1 |#2| |#1|) |#6|))) (-811) (-811) (-757) (-757) (-1004) (-909 |#5| |#3| |#1|) (-909 |#5| |#4| |#2|)) (T -694)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-811)) (-4 *6 (-811)) (-4 *7 (-757)) (-4 *9 (-1004)) (-4 *2 (-909 *9 *8 *6)) (-5 *1 (-694 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-757)) (-4 *4 (-909 *9 *7 *5))))) -(-10 -7 (-15 -4275 (|#7| (-1 |#2| |#1|) |#6|))) -((-4051 (((-390 |#4|) |#4|) 41))) -(((-695 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4|))) (-757) (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123))))) (-292) (-909 (-905 |#3|) |#1| |#2|)) (T -695)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-695 *4 *5 *6 *3)) (-4 *3 (-909 (-905 *6) *4 *5))))) -(-10 -7 (-15 -4051 ((-390 |#4|) |#4|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-824 |#1|)) $) NIL)) (-3386 (((-1117 $) $ (-824 |#1|)) NIL) (((-1117 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-824 |#1|))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-824 |#1|) #2#) $) NIL)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-824 |#1|) $) NIL)) (-4075 (($ $ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| (-512 (-824 |#1|)) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#2|) (-824 |#1|)) NIL) (($ (-1117 $) (-824 |#1|)) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#2| (-512 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-824 |#1|)) NIL)) (-3120 (((-512 (-824 |#1|)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 (-512 (-824 |#1|)) (-512 (-824 |#1|))) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-3385 (((-3 (-824 |#1|) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-824 |#1|)) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#2| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-824 |#1|) |#2|) NIL) (($ $ (-607 (-824 |#1|)) (-607 |#2|)) NIL) (($ $ (-824 |#1|) $) NIL) (($ $ (-607 (-824 |#1|)) (-607 $)) NIL)) (-4076 (($ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4264 (((-512 (-824 |#1|)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-824 |#1|) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-824 |#1|)) NIL) (($ $) NIL (|has| |#2| (-533))) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526))))))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-512 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-696 |#1| |#2|) (-909 |#2| (-512 (-824 |#1|)) (-824 |#1|)) (-607 (-1123)) (-1004)) (T -696)) -NIL -(-909 |#2| (-512 (-824 |#1|)) (-824 |#1|)) -((-2475 (((-2 (|:| -2702 (-905 |#3|)) (|:| -2146 (-905 |#3|))) |#4|) 14)) (-3286 ((|#4| |#4| |#2|) 33)) (-2478 ((|#4| (-392 (-905 |#3|)) |#2|) 64)) (-2477 ((|#4| (-1117 (-905 |#3|)) |#2|) 77)) (-2476 ((|#4| (-1117 |#4|) |#2|) 51)) (-3285 ((|#4| |#4| |#2|) 54)) (-4051 (((-390 |#4|) |#4|) 40))) -(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 ((-2 (|:| -2702 (-905 |#3|)) (|:| -2146 (-905 |#3|))) |#4|)) (-15 -3285 (|#4| |#4| |#2|)) (-15 -2476 (|#4| (-1117 |#4|) |#2|)) (-15 -3286 (|#4| |#4| |#2|)) (-15 -2477 (|#4| (-1117 (-905 |#3|)) |#2|)) (-15 -2478 (|#4| (-392 (-905 |#3|)) |#2|)) (-15 -4051 ((-390 |#4|) |#4|))) (-757) (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)))) (-533) (-909 (-392 (-905 |#3|)) |#1| |#2|)) (T -697)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *6 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-909 (-392 (-905 *6)) *4 *5)))) (-2478 (*1 *2 *3 *4) (-12 (-4 *6 (-533)) (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) (-5 *3 (-392 (-905 *6))) (-4 *5 (-757)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 (-905 *6))) (-4 *6 (-533)) (-4 *2 (-909 (-392 (-905 *6)) *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) (-4 *5 (-757)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))))) (-3286 (*1 *2 *2 *3) (-12 (-4 *4 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *5 (-533)) (-5 *1 (-697 *4 *3 *5 *2)) (-4 *2 (-909 (-392 (-905 *5)) *4 *3)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-909 (-392 (-905 *6)) *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) (-4 *5 (-757)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *6 (-533)))) (-3285 (*1 *2 *2 *3) (-12 (-4 *4 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *5 (-533)) (-5 *1 (-697 *4 *3 *5 *2)) (-4 *2 (-909 (-392 (-905 *5)) *4 *3)))) (-2475 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *6 (-533)) (-5 *2 (-2 (|:| -2702 (-905 *6)) (|:| -2146 (-905 *6)))) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-909 (-392 (-905 *6)) *4 *5))))) -(-10 -7 (-15 -2475 ((-2 (|:| -2702 (-905 |#3|)) (|:| -2146 (-905 |#3|))) |#4|)) (-15 -3285 (|#4| |#4| |#2|)) (-15 -2476 (|#4| (-1117 |#4|) |#2|)) (-15 -3286 (|#4| |#4| |#2|)) (-15 -2477 (|#4| (-1117 (-905 |#3|)) |#2|)) (-15 -2478 (|#4| (-392 (-905 |#3|)) |#2|)) (-15 -4051 ((-390 |#4|) |#4|))) -((-4051 (((-390 |#4|) |#4|) 52))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4|))) (-757) (-811) (-13 (-292) (-141)) (-909 (-392 |#3|) |#1| |#2|)) (T -698)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-13 (-292) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-909 (-392 *6) *4 *5))))) -(-10 -7 (-15 -4051 ((-390 |#4|) |#4|))) -((-4275 (((-700 |#2| |#3|) (-1 |#2| |#1|) (-700 |#1| |#3|)) 18))) -(((-699 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-700 |#2| |#3|) (-1 |#2| |#1|) (-700 |#1| |#3|)))) (-1004) (-1004) (-691)) (T -699)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-700 *5 *7)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-691)) (-5 *2 (-700 *6 *7)) (-5 *1 (-699 *5 *6 *7))))) -(-10 -7 (-15 -4275 ((-700 |#2| |#3|) (-1 |#2| |#1|) (-700 |#1| |#3|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 28)) (-4092 (((-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))) $) 29)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735)) 20 (-12 (|has| |#2| (-353)) (|has| |#1| (-353))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3469 ((|#2| $) NIL) ((|#1| $) NIL)) (-4276 (($ $) 79 (|has| |#2| (-811)))) (-3781 (((-3 $ "failed") $) 65)) (-3294 (($) 35 (-12 (|has| |#2| (-353)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) 55)) (-3121 (((-607 $) $) 39)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| |#2|) 16)) (-4275 (($ (-1 |#1| |#1|) $) 54)) (-2102 (((-878) $) 32 (-12 (|has| |#2| (-353)) (|has| |#1| (-353))))) (-3194 ((|#2| $) 78 (|has| |#2| (-811)))) (-3487 ((|#1| $) 77 (|has| |#2| (-811)))) (-3554 (((-1106) $) NIL)) (-2461 (($ (-878)) 27 (-12 (|has| |#2| (-353)) (|has| |#1| (-353))))) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 76) (($ (-526)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|)))) 11)) (-4136 (((-607 |#1|) $) 41)) (-3999 ((|#1| $ |#2|) 88)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-2957 (($) 12 T CONST)) (-2964 (($) 33 T CONST)) (-3353 (((-111) $ $) 80)) (-4156 (($ $) 47) (($ $ $) NIL)) (-4158 (($ $ $) 26)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) -(((-700 |#1| |#2|) (-13 (-1004) (-995 |#2|) (-995 |#1|) (-10 -8 (-15 -3193 ($ |#1| |#2|)) (-15 -3999 (|#1| $ |#2|)) (-15 -4274 ($ (-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))))) (-15 -4092 ((-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))) $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (-15 -4254 ((-111) $)) (-15 -4136 ((-607 |#1|) $)) (-15 -3121 ((-607 $) $)) (-15 -2479 ((-735) $)) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-353)) (IF (|has| |#2| (-353)) (-6 (-353)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-811)) (PROGN (-15 -3194 (|#2| $)) (-15 -3487 (|#1| $)) (-15 -4276 ($ $))) |%noBranch|))) (-1004) (-691)) (T -700)) -((-3193 (*1 *1 *2 *3) (-12 (-5 *1 (-700 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-691)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *2 (-1004)) (-5 *1 (-700 *2 *3)) (-4 *3 (-691)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4270 *3) (|:| -4255 *4)))) (-4 *3 (-1004)) (-4 *4 (-691)) (-5 *1 (-700 *3 *4)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| -4270 *3) (|:| -4255 *4)))) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-700 *3 *4)) (-4 *4 (-691)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-607 (-700 *3 *4))) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-3194 (*1 *2 *1) (-12 (-4 *2 (-691)) (-4 *2 (-811)) (-5 *1 (-700 *3 *2)) (-4 *3 (-1004)))) (-3487 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-700 *2 *3)) (-4 *3 (-811)) (-4 *3 (-691)))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-700 *2 *3)) (-4 *3 (-811)) (-4 *2 (-1004)) (-4 *3 (-691))))) -(-13 (-1004) (-995 |#2|) (-995 |#1|) (-10 -8 (-15 -3193 ($ |#1| |#2|)) (-15 -3999 (|#1| $ |#2|)) (-15 -4274 ($ (-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))))) (-15 -4092 ((-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))) $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (-15 -4254 ((-111) $)) (-15 -4136 ((-607 |#1|) $)) (-15 -3121 ((-607 $) $)) (-15 -2479 ((-735) $)) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-353)) (IF (|has| |#2| (-353)) (-6 (-353)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-811)) (PROGN (-15 -3194 (|#2| $)) (-15 -3487 (|#1| $)) (-15 -4276 ($ $))) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-3546 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3548 (($ $ $) 79)) (-3547 (((-111) $ $) 83)) (-1244 (((-111) $ (-735)) NIL)) (-3551 (($ (-607 |#1|)) 24) (($) 16)) (-1607 (($ (-1 (-111) |#1|) $) 70 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2424 (($ $) 71)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) 61 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 64 (|has| $ (-6 -4310))) (($ |#1| $ (-526)) 62) (($ (-1 (-111) |#1|) $ (-526)) 65)) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (($ |#1| $ (-526)) 67) (($ (-1 (-111) |#1|) $ (-526)) 68)) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 32 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 82)) (-2481 (($) 14) (($ |#1|) 26) (($ (-607 |#1|)) 21)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) 38)) (-3557 (((-111) |#1| $) 58 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 75)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3550 (($ $ $) 77)) (-1306 ((|#1| $) 55)) (-3929 (($ |#1| $) 56) (($ |#1| $ (-735)) 72)) (-3555 (((-1070) $) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1307 ((|#1| $) 54)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 50)) (-3887 (($) 13)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 48)) (-3549 (($ $ |#1|) NIL) (($ $ $) 78)) (-1499 (($) 15) (($ (-607 |#1|)) 23)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) 60 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 66)) (-4287 (((-515) $) 36 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 20)) (-4274 (((-823) $) 44)) (-3552 (($ (-607 |#1|)) 25) (($) 17)) (-1308 (($ (-607 |#1|)) 22)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 81)) (-4273 (((-735) $) 59 (|has| $ (-6 -4310))))) -(((-701 |#1|) (-13 (-702 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -2481 ($)) (-15 -2481 ($ |#1|)) (-15 -2481 ($ (-607 |#1|))) (-15 -2480 ((-607 |#1|) $)) (-15 -3725 ($ |#1| $ (-526))) (-15 -3725 ($ (-1 (-111) |#1|) $ (-526))) (-15 -3724 ($ |#1| $ (-526))) (-15 -3724 ($ (-1 (-111) |#1|) $ (-526))))) (-1052)) (T -701)) -((-2481 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1052)))) (-2481 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1052)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-701 *3)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1052)))) (-3725 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-701 *2)) (-4 *2 (-1052)))) (-3725 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-526)) (-4 *4 (-1052)) (-5 *1 (-701 *4)))) (-3724 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-701 *2)) (-4 *2 (-1052)))) (-3724 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-526)) (-4 *4 (-1052)) (-5 *1 (-701 *4))))) -(-13 (-702 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -2481 ($)) (-15 -2481 ($ |#1|)) (-15 -2481 ($ (-607 |#1|))) (-15 -2480 ((-607 |#1|) $)) (-15 -3725 ($ |#1| $ (-526))) (-15 -3725 ($ (-1 (-111) |#1|) $ (-526))) (-15 -3724 ($ |#1| $ (-526))) (-15 -3724 ($ (-1 (-111) |#1|) $ (-526))))) -((-2865 (((-111) $ $) 19)) (-3546 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3548 (($ $ $) 72)) (-3547 (((-111) $ $) 73)) (-1244 (((-111) $ (-735)) 8)) (-3551 (($ (-607 |#1|)) 68) (($) 67)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2424 (($ $) 62)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 64)) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22)) (-3550 (($ $ $) 69)) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40) (($ |#1| $ (-735)) 63)) (-3555 (((-1070) $) 21)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 61)) (-3549 (($ $ |#1|) 71) (($ $ $) 70)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18)) (-3552 (($ (-607 |#1|)) 66) (($) 65)) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-702 |#1|) (-134) (-1052)) (T -702)) -NIL -(-13 (-659 |t#1|) (-1050 |t#1|)) -(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-659 |#1|) . T) ((-1050 |#1|) . T) ((-1052) . T) ((-1159) . T)) -((-2482 (((-1211) (-1106)) 8))) -(((-703) (-10 -7 (-15 -2482 ((-1211) (-1106))))) (T -703)) -((-2482 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-703))))) -(-10 -7 (-15 -2482 ((-1211) (-1106)))) -((-2483 (((-607 |#1|) (-607 |#1|) (-607 |#1|)) 10))) -(((-704 |#1|) (-10 -7 (-15 -2483 ((-607 |#1|) (-607 |#1|) (-607 |#1|)))) (-811)) (T -704)) -((-2483 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-704 *3))))) -(-10 -7 (-15 -2483 ((-607 |#1|) (-607 |#1|) (-607 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 |#2|) $) 134)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 127 (|has| |#1| (-533)))) (-2151 (($ $) 126 (|has| |#1| (-533)))) (-2149 (((-111) $) 124 (|has| |#1| (-533)))) (-3806 (($ $) 83 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 66 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-3337 (($ $) 65 (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) 82 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 67 (|has| |#1| (-37 (-392 (-526)))))) (-3808 (($ $) 81 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 68 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-4276 (($ $) 118)) (-3781 (((-3 $ "failed") $) 32)) (-4133 (((-905 |#1|) $ (-735)) 96) (((-905 |#1|) $ (-735) (-735)) 95)) (-3192 (((-111) $) 135)) (-3949 (($) 93 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $ |#2|) 98) (((-735) $ |#2| (-735)) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 64 (|has| |#1| (-37 (-392 (-526)))))) (-4254 (((-111) $) 116)) (-3193 (($ $ (-607 |#2|) (-607 (-512 |#2|))) 133) (($ $ |#2| (-512 |#2|)) 132) (($ |#1| (-512 |#2|)) 117) (($ $ |#2| (-735)) 100) (($ $ (-607 |#2|) (-607 (-735))) 99)) (-4275 (($ (-1 |#1| |#1|) $) 115)) (-4259 (($ $) 90 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 113)) (-3487 ((|#1| $) 112)) (-3554 (((-1106) $) 9)) (-4131 (($ $ |#2|) 94 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) 10)) (-4087 (($ $ (-735)) 101)) (-3780 (((-3 $ "failed") $ $) 128 (|has| |#1| (-533)))) (-4260 (($ $) 91 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (($ $ |#2| $) 109) (($ $ (-607 |#2|) (-607 $)) 108) (($ $ (-607 (-278 $))) 107) (($ $ (-278 $)) 106) (($ $ $ $) 105) (($ $ (-607 $) (-607 $)) 104)) (-4129 (($ $ |#2|) 40) (($ $ (-607 |#2|)) 39) (($ $ |#2| (-735)) 38) (($ $ (-607 |#2|) (-607 (-735))) 37)) (-4264 (((-512 |#2|) $) 114)) (-3809 (($ $) 80 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 69 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 79 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 70 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 78 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 71 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 136)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 131 (|has| |#1| (-163))) (($ $) 129 (|has| |#1| (-533))) (($ (-392 (-526))) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3999 ((|#1| $ (-512 |#2|)) 119) (($ $ |#2| (-735)) 103) (($ $ (-607 |#2|) (-607 (-735))) 102)) (-3002 (((-3 $ "failed") $) 130 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-3812 (($ $) 89 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 77 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 125 (|has| |#1| (-533)))) (-3810 (($ $) 88 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 76 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 87 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 75 (|has| |#1| (-37 (-392 (-526)))))) (-3815 (($ $) 86 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 74 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 85 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 73 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 84 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 72 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ |#2|) 36) (($ $ (-607 |#2|)) 35) (($ $ |#2| (-735)) 34) (($ $ (-607 |#2|) (-607 (-735))) 33)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 120 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ $) 92 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 63 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 123 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 122 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-705 |#1| |#2|) (-134) (-1004) (-811)) (T -705)) -((-3999 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-811)))) (-3999 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *5)) (-5 *3 (-607 (-735))) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-705 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-811)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-811)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *5)) (-5 *3 (-607 (-735))) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)))) (-4090 (*1 *2 *1 *3) (-12 (-4 *1 (-705 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-811)) (-5 *2 (-735)))) (-4090 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-735)) (-4 *1 (-705 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-811)))) (-4133 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)) (-5 *2 (-905 *4)))) (-4133 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)) (-5 *2 (-905 *4)))) (-4131 (*1 *1 *1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-811)) (-4 *3 (-37 (-392 (-526))))))) -(-13 (-859 |t#2|) (-932 |t#1| (-512 |t#2|) |t#2|) (-496 |t#2| $) (-294 $) (-10 -8 (-15 -3999 ($ $ |t#2| (-735))) (-15 -3999 ($ $ (-607 |t#2|) (-607 (-735)))) (-15 -4087 ($ $ (-735))) (-15 -3193 ($ $ |t#2| (-735))) (-15 -3193 ($ $ (-607 |t#2|) (-607 (-735)))) (-15 -4090 ((-735) $ |t#2|)) (-15 -4090 ((-735) $ |t#2| (-735))) (-15 -4133 ((-905 |t#1|) $ (-735))) (-15 -4133 ((-905 |t#1|) $ (-735) (-735))) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ |t#2|)) (-6 (-960)) (-6 (-1145))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-512 |#2|)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-275) |has| |#1| (-533)) ((-294 $) . T) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-496 |#2| $) . T) ((-496 $ $) . T) ((-533) |has| |#1| (-533)) ((-613 #2#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-859 |#2|) . T) ((-932 |#1| #1# |#2|) . T) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-1010 #2#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526))))) -((-4051 (((-390 (-1117 |#4|)) (-1117 |#4|)) 30) (((-390 |#4|) |#4|) 26))) -(((-706 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4|)) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|)))) (-811) (-757) (-13 (-292) (-141)) (-909 |#3| |#2| |#1|)) (T -706)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-909 *6 *5 *4)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-706 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-13 (-292) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4))))) -(-10 -7 (-15 -4051 ((-390 |#4|) |#4|)) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|)))) -((-2486 (((-390 |#4|) |#4| |#2|) 120)) (-2484 (((-390 |#4|) |#4|) NIL)) (-4286 (((-390 (-1117 |#4|)) (-1117 |#4|)) 111) (((-390 |#4|) |#4|) 41)) (-2488 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 |#4|)) (|:| -2462 (-526)))))) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|))) 69)) (-2492 (((-1117 |#3|) (-1117 |#3|) (-526)) 139)) (-2491 (((-607 (-735)) (-1117 |#4|) (-607 |#2|) (-735)) 61)) (-3379 (((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-1117 |#3|) (-1117 |#3|) |#4| (-607 |#2|) (-607 (-735)) (-607 |#3|)) 65)) (-2489 (((-2 (|:| |upol| (-1117 |#3|)) (|:| |Lval| (-607 |#3|)) (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) (|:| |ctpol| |#3|)) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|))) 26)) (-2487 (((-2 (|:| -2096 (-1117 |#4|)) (|:| |polval| (-1117 |#3|))) (-1117 |#4|) (-1117 |#3|) (-526)) 57)) (-2485 (((-526) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) 136)) (-2490 ((|#4| (-526) (-390 |#4|)) 58)) (-3676 (((-111) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) NIL))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4286 ((-390 |#4|) |#4|)) (-15 -4286 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -2484 ((-390 |#4|) |#4|)) (-15 -2485 ((-526) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))))) (-15 -2486 ((-390 |#4|) |#4| |#2|)) (-15 -2487 ((-2 (|:| -2096 (-1117 |#4|)) (|:| |polval| (-1117 |#3|))) (-1117 |#4|) (-1117 |#3|) (-526))) (-15 -2488 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 |#4|)) (|:| -2462 (-526)))))) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|)))) (-15 -2489 ((-2 (|:| |upol| (-1117 |#3|)) (|:| |Lval| (-607 |#3|)) (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) (|:| |ctpol| |#3|)) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|)))) (-15 -2490 (|#4| (-526) (-390 |#4|))) (-15 -3676 ((-111) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))))) (-15 -3379 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-1117 |#3|) (-1117 |#3|) |#4| (-607 |#2|) (-607 (-735)) (-607 |#3|))) (-15 -2491 ((-607 (-735)) (-1117 |#4|) (-607 |#2|) (-735))) (-15 -2492 ((-1117 |#3|) (-1117 |#3|) (-526)))) (-757) (-811) (-292) (-909 |#3| |#1| |#2|)) (T -707)) -((-2492 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 *6)) (-5 *3 (-526)) (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-2491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-4 *7 (-811)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-4 *8 (-292)) (-5 *2 (-607 (-735))) (-5 *1 (-707 *6 *7 *8 *9)) (-5 *5 (-735)))) (-3379 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1117 *11)) (-5 *6 (-607 *10)) (-5 *7 (-607 (-735))) (-5 *8 (-607 *11)) (-4 *10 (-811)) (-4 *11 (-292)) (-4 *9 (-757)) (-4 *5 (-909 *11 *9 *10)) (-5 *2 (-607 (-1117 *5))) (-5 *1 (-707 *9 *10 *11 *5)) (-5 *3 (-1117 *5)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-2 (|:| -4051 (-1117 *6)) (|:| -2462 (-526))))) (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-526)) (-5 *4 (-390 *2)) (-4 *2 (-909 *7 *5 *6)) (-5 *1 (-707 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-292)))) (-2489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-5 *5 (-607 (-607 *8))) (-4 *7 (-811)) (-4 *8 (-292)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-5 *2 (-2 (|:| |upol| (-1117 *8)) (|:| |Lval| (-607 *8)) (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 *8)) (|:| -2462 (-526))))) (|:| |ctpol| *8))) (-5 *1 (-707 *6 *7 *8 *9)))) (-2488 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-607 *7)) (-5 *5 (-607 (-607 *8))) (-4 *7 (-811)) (-4 *8 (-292)) (-4 *6 (-757)) (-4 *9 (-909 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 *9)) (|:| -2462 (-526))))))) (-5 *1 (-707 *6 *7 *8 *9)) (-5 *3 (-1117 *9)))) (-2487 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-526)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-292)) (-4 *9 (-909 *8 *6 *7)) (-5 *2 (-2 (|:| -2096 (-1117 *9)) (|:| |polval| (-1117 *8)))) (-5 *1 (-707 *6 *7 *8 *9)) (-5 *3 (-1117 *9)) (-5 *4 (-1117 *8)))) (-2486 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-707 *5 *4 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -4051 (-1117 *6)) (|:| -2462 (-526))))) (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-526)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-2484 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-909 *6 *4 *5)))) (-4286 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-707 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-4286 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-909 *6 *4 *5))))) -(-10 -7 (-15 -4286 ((-390 |#4|) |#4|)) (-15 -4286 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -2484 ((-390 |#4|) |#4|)) (-15 -2485 ((-526) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))))) (-15 -2486 ((-390 |#4|) |#4| |#2|)) (-15 -2487 ((-2 (|:| -2096 (-1117 |#4|)) (|:| |polval| (-1117 |#3|))) (-1117 |#4|) (-1117 |#3|) (-526))) (-15 -2488 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 |#4|)) (|:| -2462 (-526)))))) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|)))) (-15 -2489 ((-2 (|:| |upol| (-1117 |#3|)) (|:| |Lval| (-607 |#3|)) (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) (|:| |ctpol| |#3|)) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|)))) (-15 -2490 (|#4| (-526) (-390 |#4|))) (-15 -3676 ((-111) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))))) (-15 -3379 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-1117 |#3|) (-1117 |#3|) |#4| (-607 |#2|) (-607 (-735)) (-607 |#3|))) (-15 -2491 ((-607 (-735)) (-1117 |#4|) (-607 |#2|) (-735))) (-15 -2492 ((-1117 |#3|) (-1117 |#3|) (-526)))) -((-2493 (($ $ (-878)) 12))) -(((-708 |#1| |#2|) (-10 -8 (-15 -2493 (|#1| |#1| (-878)))) (-709 |#2|) (-163)) (T -708)) -NIL -(-10 -8 (-15 -2493 (|#1| |#1| (-878)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2468 (($ $ (-878)) 28)) (-2493 (($ $ (-878)) 33)) (-2467 (($ $ (-878)) 29)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-2655 (($ $ $) 25)) (-4274 (((-823) $) 11)) (-2656 (($ $ $ $) 26)) (-2654 (($ $ $) 24)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-709 |#1|) (-134) (-163)) (T -709)) -((-2493 (*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-709 *3)) (-4 *3 (-163))))) -(-13 (-726) (-682 |t#1|) (-10 -8 (-15 -2493 ($ $ (-878))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-685) . T) ((-726) . T) ((-1010 |#1|) . T) ((-1052) . T)) -((-2495 (((-992) (-653 (-211)) (-526) (-111) (-526)) 25)) (-2494 (((-992) (-653 (-211)) (-526) (-111) (-526)) 24))) -(((-710) (-10 -7 (-15 -2494 ((-992) (-653 (-211)) (-526) (-111) (-526))) (-15 -2495 ((-992) (-653 (-211)) (-526) (-111) (-526))))) (T -710)) -((-2495 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-710)))) (-2494 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-710))))) -(-10 -7 (-15 -2494 ((-992) (-653 (-211)) (-526) (-111) (-526))) (-15 -2495 ((-992) (-653 (-211)) (-526) (-111) (-526)))) -((-2498 (((-992) (-526) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN)))) 43)) (-2497 (((-992) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN)))) 39)) (-2496 (((-992) (-211) (-211) (-211) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 32))) -(((-711) (-10 -7 (-15 -2496 ((-992) (-211) (-211) (-211) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2497 ((-992) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN))))) (-15 -2498 ((-992) (-526) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN))))))) (T -711)) -((-2498 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN)))) (-5 *2 (-992)) (-5 *1 (-711)))) (-2497 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN)))) (-5 *2 (-992)) (-5 *1 (-711)))) (-2496 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) (-5 *1 (-711))))) -(-10 -7 (-15 -2496 ((-992) (-211) (-211) (-211) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2497 ((-992) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN))))) (-15 -2498 ((-992) (-526) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN)))))) -((-2510 (((-992) (-526) (-526) (-653 (-211)) (-526)) 34)) (-2509 (((-992) (-526) (-526) (-653 (-211)) (-526)) 33)) (-2508 (((-992) (-526) (-653 (-211)) (-526)) 32)) (-2507 (((-992) (-526) (-653 (-211)) (-526)) 31)) (-2506 (((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 30)) (-2505 (((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 29)) (-2504 (((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526)) 28)) (-2503 (((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526)) 27)) (-2502 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 24)) (-2501 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526)) 23)) (-2500 (((-992) (-526) (-653 (-211)) (-526)) 22)) (-2499 (((-992) (-526) (-653 (-211)) (-526)) 21))) -(((-712) (-10 -7 (-15 -2499 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2500 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2501 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2502 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2503 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2504 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2505 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2506 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2507 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2508 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2509 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2510 ((-992) (-526) (-526) (-653 (-211)) (-526))))) (T -712)) -((-2510 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2509 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2508 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2507 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2506 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2505 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2504 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2503 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2502 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2501 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2500 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2499 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(-10 -7 (-15 -2499 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2500 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2501 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2502 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2503 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2504 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2505 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2506 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2507 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2508 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2509 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2510 ((-992) (-526) (-526) (-653 (-211)) (-526)))) -((-2522 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) 52)) (-2521 (((-992) (-653 (-211)) (-653 (-211)) (-526) (-526)) 51)) (-2520 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) 50)) (-2519 (((-992) (-211) (-211) (-526) (-526) (-526) (-526)) 46)) (-2518 (((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) 45)) (-2517 (((-992) (-211) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) 44)) (-2516 (((-992) (-211) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) 43)) (-2515 (((-992) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) 42)) (-2514 (((-992) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 38)) (-2513 (((-992) (-211) (-211) (-526) (-653 (-211)) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 37)) (-2512 (((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 33)) (-2511 (((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 32))) -(((-713) (-10 -7 (-15 -2511 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2512 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2513 ((-992) (-211) (-211) (-526) (-653 (-211)) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2514 ((-992) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2515 ((-992) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2516 ((-992) (-211) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2517 ((-992) (-211) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2518 ((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2519 ((-992) (-211) (-211) (-526) (-526) (-526) (-526))) (-15 -2520 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN))))) (-15 -2521 ((-992) (-653 (-211)) (-653 (-211)) (-526) (-526))) (-15 -2522 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN))))))) (T -713)) -((-2522 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2521 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-713)))) (-2520 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2519 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-713)))) (-2518 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2517 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2516 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2515 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2514 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2513 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-713)))) (-2512 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2511 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) (-5 *1 (-713))))) -(-10 -7 (-15 -2511 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2512 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2513 ((-992) (-211) (-211) (-526) (-653 (-211)) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2514 ((-992) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2515 ((-992) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2516 ((-992) (-211) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2517 ((-992) (-211) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2518 ((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2519 ((-992) (-211) (-211) (-526) (-526) (-526) (-526))) (-15 -2520 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN))))) (-15 -2521 ((-992) (-653 (-211)) (-653 (-211)) (-526) (-526))) (-15 -2522 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))))) -((-2530 (((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-2529 (((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))) (-373) (-373)) 69) (((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) 68)) (-2528 (((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG)))) 57)) (-2527 (((-992) (-653 (-211)) (-653 (-211)) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) 50)) (-2526 (((-992) (-211) (-526) (-526) (-1106) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) 49)) (-2525 (((-992) (-211) (-526) (-526) (-211) (-1106) (-211) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) 45)) (-2524 (((-992) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) 42)) (-2523 (((-992) (-211) (-526) (-526) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) 38))) -(((-714) (-10 -7 (-15 -2523 ((-992) (-211) (-526) (-526) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2524 ((-992) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))))) (-15 -2525 ((-992) (-211) (-526) (-526) (-211) (-1106) (-211) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2526 ((-992) (-211) (-526) (-526) (-1106) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2527 ((-992) (-653 (-211)) (-653 (-211)) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))))) (-15 -2528 ((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG))))) (-15 -2529 ((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))))) (-15 -2529 ((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))) (-373) (-373))) (-15 -2530 ((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -714)) -((-2530 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2529 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-373)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2529 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-992)) (-5 *1 (-714)))) (-2528 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2527 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *2 (-992)) (-5 *1 (-714)))) (-2526 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-653 (-211))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2525 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-653 (-211))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2524 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2523 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714))))) -(-10 -7 (-15 -2523 ((-992) (-211) (-526) (-526) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2524 ((-992) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))))) (-15 -2525 ((-992) (-211) (-526) (-526) (-211) (-1106) (-211) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2526 ((-992) (-211) (-526) (-526) (-1106) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2527 ((-992) (-653 (-211)) (-653 (-211)) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))))) (-15 -2528 ((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG))))) (-15 -2529 ((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))))) (-15 -2529 ((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))) (-373) (-373))) (-15 -2530 ((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP)))))) -((-2533 (((-992) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-640 (-211)) (-526)) 45)) (-2532 (((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-1106) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY)))) 41)) (-2531 (((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 23))) -(((-715) (-10 -7 (-15 -2531 ((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2532 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-1106) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY))))) (-15 -2533 ((-992) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-640 (-211)) (-526))))) (T -715)) -((-2533 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-640 (-211))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-715)))) (-2532 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-992)) (-5 *1 (-715)))) (-2531 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-715))))) -(-10 -7 (-15 -2531 ((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2532 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-1106) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY))))) (-15 -2533 ((-992) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-640 (-211)) (-526)))) -((-2543 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-653 (-211)) (-211) (-211) (-526)) 35)) (-2542 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-211) (-211) (-526)) 34)) (-2541 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-653 (-211)) (-211) (-211) (-526)) 33)) (-2540 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 29)) (-2539 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 28)) (-2538 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526)) 27)) (-2537 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526)) 24)) (-2536 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526)) 23)) (-2535 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526)) 22)) (-2534 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526)) 21))) -(((-716) (-10 -7 (-15 -2534 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))) (-15 -2535 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2536 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2537 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2538 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526))) (-15 -2539 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2540 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2541 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-653 (-211)) (-211) (-211) (-526))) (-15 -2542 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-211) (-211) (-526))) (-15 -2543 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-653 (-211)) (-211) (-211) (-526))))) (T -716)) -((-2543 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-716)))) (-2542 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-716)))) (-2541 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *6 (-211)) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-716)))) (-2540 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2539 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2538 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-716)))) (-2537 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2536 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2535 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2534 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) -(-10 -7 (-15 -2534 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))) (-15 -2535 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2536 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2537 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2538 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526))) (-15 -2539 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2540 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2541 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-653 (-211)) (-211) (-211) (-526))) (-15 -2542 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-211) (-211) (-526))) (-15 -2543 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-653 (-211)) (-211) (-211) (-526)))) -((-2561 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526)) 45)) (-2560 (((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-526)) 44)) (-2559 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526)) 43)) (-2558 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 42)) (-2557 (((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526)) 41)) (-2556 (((-992) (-1106) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526)) 40)) (-2555 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526) (-526) (-526) (-211) (-653 (-211)) (-526)) 39)) (-2554 (((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526))) 38)) (-2553 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526)) 35)) (-2552 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526)) 34)) (-2551 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526)) 33)) (-2550 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 32)) (-2549 (((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526)) 31)) (-2548 (((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-526)) 30)) (-2547 (((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-526) (-526) (-526)) 29)) (-2546 (((-992) (-526) (-526) (-526) (-211) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-526)) (-526) (-526) (-526)) 28)) (-2545 (((-992) (-526) (-653 (-211)) (-211) (-526)) 24)) (-2544 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 21))) -(((-717) (-10 -7 (-15 -2544 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2545 ((-992) (-526) (-653 (-211)) (-211) (-526))) (-15 -2546 ((-992) (-526) (-526) (-526) (-211) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-526)) (-526) (-526) (-526))) (-15 -2547 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-526) (-526) (-526))) (-15 -2548 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-526))) (-15 -2549 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526))) (-15 -2550 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2551 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526))) (-15 -2552 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526))) (-15 -2553 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2554 ((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)))) (-15 -2555 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526) (-526) (-526) (-211) (-653 (-211)) (-526))) (-15 -2556 ((-992) (-1106) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526))) (-15 -2557 ((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2558 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2559 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))) (-15 -2560 ((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2561 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))))) (T -717)) -((-2561 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2560 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2559 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2558 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2557 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2556 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) (-5 *7 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2555 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *6 (-211)) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2554 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) (-5 *7 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2553 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2552 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2551 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2550 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2549 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2548 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2547 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2546 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) (-5 *3 (-526)) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2545 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2544 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) -(-10 -7 (-15 -2544 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2545 ((-992) (-526) (-653 (-211)) (-211) (-526))) (-15 -2546 ((-992) (-526) (-526) (-526) (-211) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-526)) (-526) (-526) (-526))) (-15 -2547 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-526) (-526) (-526))) (-15 -2548 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-526))) (-15 -2549 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526))) (-15 -2550 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2551 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526))) (-15 -2552 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526))) (-15 -2553 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2554 ((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)))) (-15 -2555 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526) (-526) (-526) (-211) (-653 (-211)) (-526))) (-15 -2556 ((-992) (-1106) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526))) (-15 -2557 ((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2558 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2559 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))) (-15 -2560 ((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2561 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526)))) -((-2569 (((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-526) (-653 (-211)) (-526)) 63)) (-2568 (((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-111) (-211) (-526) (-211) (-211) (-111) (-211) (-211) (-211) (-211) (-111) (-526) (-526) (-526) (-526) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2567 (((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-111) (-111) (-526) (-526) (-653 (-211)) (-653 (-526)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS)))) 58)) (-2566 (((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-526) (-526) (-653 (-211)) (-526)) 51)) (-2565 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2564 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2563 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2562 (((-992) (-526) (-211) (-211) (-526) (-211) (-111) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) 38))) -(((-718) (-10 -7 (-15 -2562 ((-992) (-526) (-211) (-211) (-526) (-211) (-111) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN))))) (-15 -2563 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1))))) (-15 -2564 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2))))) (-15 -2565 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1))))) (-15 -2566 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-526) (-526) (-653 (-211)) (-526))) (-15 -2567 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-111) (-111) (-526) (-526) (-653 (-211)) (-653 (-526)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS))))) (-15 -2568 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-111) (-211) (-526) (-211) (-211) (-111) (-211) (-211) (-211) (-211) (-111) (-526) (-526) (-526) (-526) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN))))) (-15 -2569 ((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-526) (-653 (-211)) (-526))))) (T -718)) -((-2569 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-718)))) (-2568 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *6 (-211)) (-5 *7 (-653 (-526))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-718)))) (-2567 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-653 (-211))) (-5 *6 (-111)) (-5 *7 (-653 (-526))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-526)) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-718)))) (-2566 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-718)))) (-2565 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-992)) (-5 *1 (-718)))) (-2564 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-992)) (-5 *1 (-718)))) (-2563 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-992)) (-5 *1 (-718)))) (-2562 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-526)) (-5 *5 (-111)) (-5 *6 (-653 (-211))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-718))))) -(-10 -7 (-15 -2562 ((-992) (-526) (-211) (-211) (-526) (-211) (-111) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN))))) (-15 -2563 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1))))) (-15 -2564 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2))))) (-15 -2565 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1))))) (-15 -2566 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-526) (-526) (-653 (-211)) (-526))) (-15 -2567 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-111) (-111) (-526) (-526) (-653 (-211)) (-653 (-526)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS))))) (-15 -2568 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-111) (-211) (-526) (-211) (-211) (-111) (-211) (-211) (-211) (-211) (-111) (-526) (-526) (-526) (-526) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN))))) (-15 -2569 ((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-526) (-653 (-211)) (-526)))) -((-2579 (((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526)) 47)) (-2578 (((-992) (-1106) (-1106) (-526) (-526) (-653 (-159 (-211))) (-526) (-653 (-159 (-211))) (-526) (-526) (-653 (-159 (-211))) (-526)) 46)) (-2577 (((-992) (-526) (-526) (-526) (-653 (-159 (-211))) (-526)) 45)) (-2576 (((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 40)) (-2575 (((-992) (-1106) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-653 (-211)) (-526)) 39)) (-2574 (((-992) (-526) (-526) (-526) (-653 (-211)) (-526)) 36)) (-2573 (((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526)) 35)) (-2572 (((-992) (-526) (-526) (-526) (-526) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-211) (-211) (-526)) 34)) (-2571 (((-992) (-526) (-526) (-526) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-111) (-211) (-111) (-653 (-526)) (-653 (-211)) (-526)) 33)) (-2570 (((-992) (-526) (-526) (-526) (-526) (-211) (-111) (-111) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-526)) 32))) -(((-719) (-10 -7 (-15 -2570 ((-992) (-526) (-526) (-526) (-526) (-211) (-111) (-111) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-526))) (-15 -2571 ((-992) (-526) (-526) (-526) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-111) (-211) (-111) (-653 (-526)) (-653 (-211)) (-526))) (-15 -2572 ((-992) (-526) (-526) (-526) (-526) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-211) (-211) (-526))) (-15 -2573 ((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526))) (-15 -2574 ((-992) (-526) (-526) (-526) (-653 (-211)) (-526))) (-15 -2575 ((-992) (-1106) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-653 (-211)) (-526))) (-15 -2576 ((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2577 ((-992) (-526) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2578 ((-992) (-1106) (-1106) (-526) (-526) (-653 (-159 (-211))) (-526) (-653 (-159 (-211))) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2579 ((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526))))) (T -719)) -((-2579 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2578 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2577 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2576 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2575 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2574 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2573 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-719)))) (-2572 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-607 (-111))) (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) (-5 *7 (-211)) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-719)))) (-2571 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-653 (-526))) (-5 *5 (-111)) (-5 *7 (-653 (-211))) (-5 *3 (-526)) (-5 *6 (-211)) (-5 *2 (-992)) (-5 *1 (-719)))) (-2570 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-607 (-111))) (-5 *7 (-653 (-211))) (-5 *8 (-653 (-526))) (-5 *3 (-526)) (-5 *4 (-211)) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-719))))) -(-10 -7 (-15 -2570 ((-992) (-526) (-526) (-526) (-526) (-211) (-111) (-111) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-526))) (-15 -2571 ((-992) (-526) (-526) (-526) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-111) (-211) (-111) (-653 (-526)) (-653 (-211)) (-526))) (-15 -2572 ((-992) (-526) (-526) (-526) (-526) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-211) (-211) (-526))) (-15 -2573 ((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526))) (-15 -2574 ((-992) (-526) (-526) (-526) (-653 (-211)) (-526))) (-15 -2575 ((-992) (-1106) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-653 (-211)) (-526))) (-15 -2576 ((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2577 ((-992) (-526) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2578 ((-992) (-1106) (-1106) (-526) (-526) (-653 (-159 (-211))) (-526) (-653 (-159 (-211))) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2579 ((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526)))) -((-2594 (((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526)) 65)) (-2593 (((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526)) 60)) (-2592 (((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))) (-373)) 56) (((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) 55)) (-2591 (((-992) (-526) (-526) (-526) (-211) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526)) 37)) (-2590 (((-992) (-526) (-526) (-211) (-211) (-526) (-526) (-653 (-211)) (-526)) 33)) (-2589 (((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526) (-526)) 30)) (-2588 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 29)) (-2587 (((-992) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 28)) (-2586 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 27)) (-2585 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526)) 26)) (-2584 (((-992) (-526) (-526) (-653 (-211)) (-526)) 25)) (-2583 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 24)) (-2582 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 23)) (-2581 (((-992) (-653 (-211)) (-526) (-526) (-526) (-526)) 22)) (-2580 (((-992) (-526) (-526) (-653 (-211)) (-526)) 21))) -(((-720) (-10 -7 (-15 -2580 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2581 ((-992) (-653 (-211)) (-526) (-526) (-526) (-526))) (-15 -2582 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2583 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2584 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2585 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526))) (-15 -2586 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2587 ((-992) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2588 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2589 ((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526) (-526))) (-15 -2590 ((-992) (-526) (-526) (-211) (-211) (-526) (-526) (-653 (-211)) (-526))) (-15 -2591 ((-992) (-526) (-526) (-526) (-211) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2592 ((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))))) (-15 -2592 ((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))) (-373))) (-15 -2593 ((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2594 ((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526))))) (T -720)) -((-2594 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-111)) (-5 *5 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2593 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-111)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2592 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-373)) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2592 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2591 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-526)) (-5 *5 (-111)) (-5 *6 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2590 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2589 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2588 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2587 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2586 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2585 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2584 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2583 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2582 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2581 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2580 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(-10 -7 (-15 -2580 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2581 ((-992) (-653 (-211)) (-526) (-526) (-526) (-526))) (-15 -2582 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2583 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2584 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2585 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526))) (-15 -2586 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2587 ((-992) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2588 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2589 ((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526) (-526))) (-15 -2590 ((-992) (-526) (-526) (-211) (-211) (-526) (-526) (-653 (-211)) (-526))) (-15 -2591 ((-992) (-526) (-526) (-526) (-211) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2592 ((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))))) (-15 -2592 ((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))) (-373))) (-15 -2593 ((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2594 ((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526)))) -((-2605 (((-992) (-526) (-526) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD)))) 61)) (-2604 (((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526)) 57)) (-2603 (((-992) (-526) (-653 (-211)) (-111) (-211) (-526) (-526) (-526) (-526) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE)))) 56)) (-2602 (((-992) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526)) 37)) (-2601 (((-992) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-526)) 36)) (-2600 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 33)) (-2599 (((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211))) 32)) (-2598 (((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526)) 28)) (-2597 (((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526)) 27)) (-2596 (((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526)) 26)) (-2595 (((-992) (-526) (-653 (-159 (-211))) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-526)) 22))) -(((-721) (-10 -7 (-15 -2595 ((-992) (-526) (-653 (-159 (-211))) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2596 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2597 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2598 ((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526))) (-15 -2599 ((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)))) (-15 -2600 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2601 ((-992) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2602 ((-992) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526))) (-15 -2603 ((-992) (-526) (-653 (-211)) (-111) (-211) (-526) (-526) (-526) (-526) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE))))) (-15 -2604 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526))) (-15 -2605 ((-992) (-526) (-526) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD))))))) (T -721)) -((-2605 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD)))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2604 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2603 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *6 (-211)) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-992)) (-5 *1 (-721)))) (-2602 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2601 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2600 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721)))) (-2599 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2598 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2597 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721)))) (-2596 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721)))) (-2595 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-721))))) -(-10 -7 (-15 -2595 ((-992) (-526) (-653 (-159 (-211))) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2596 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2597 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2598 ((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526))) (-15 -2599 ((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)))) (-15 -2600 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2601 ((-992) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2602 ((-992) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526))) (-15 -2603 ((-992) (-526) (-653 (-211)) (-111) (-211) (-526) (-526) (-526) (-526) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE))))) (-15 -2604 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526))) (-15 -2605 ((-992) (-526) (-526) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD)))))) -((-2609 (((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-526) (-653 (-211))) 29)) (-2608 (((-992) (-1106) (-526) (-526) (-653 (-211))) 28)) (-2607 (((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-211))) 27)) (-2606 (((-992) (-526) (-526) (-526) (-653 (-211))) 21))) -(((-722) (-10 -7 (-15 -2606 ((-992) (-526) (-526) (-526) (-653 (-211)))) (-15 -2607 ((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-211)))) (-15 -2608 ((-992) (-1106) (-526) (-526) (-653 (-211)))) (-15 -2609 ((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-526) (-653 (-211)))))) (T -722)) -((-2609 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-722)))) (-2608 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-722)))) (-2607 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-722)))) (-2606 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-722))))) -(-10 -7 (-15 -2606 ((-992) (-526) (-526) (-526) (-653 (-211)))) (-15 -2607 ((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-211)))) (-15 -2608 ((-992) (-1106) (-526) (-526) (-653 (-211)))) (-15 -2609 ((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-526) (-653 (-211))))) -((-2647 (((-992) (-211) (-211) (-211) (-211) (-526)) 62)) (-2646 (((-992) (-211) (-211) (-211) (-526)) 61)) (-2645 (((-992) (-211) (-211) (-211) (-526)) 60)) (-2644 (((-992) (-211) (-211) (-526)) 59)) (-2643 (((-992) (-211) (-526)) 58)) (-2642 (((-992) (-211) (-526)) 57)) (-2641 (((-992) (-211) (-526)) 56)) (-2640 (((-992) (-211) (-526)) 55)) (-2639 (((-992) (-211) (-526)) 54)) (-2638 (((-992) (-211) (-526)) 53)) (-2637 (((-992) (-211) (-159 (-211)) (-526) (-1106) (-526)) 52)) (-2636 (((-992) (-211) (-159 (-211)) (-526) (-1106) (-526)) 51)) (-2635 (((-992) (-211) (-526)) 50)) (-2634 (((-992) (-211) (-526)) 49)) (-2633 (((-992) (-211) (-526)) 48)) (-2632 (((-992) (-211) (-526)) 47)) (-2631 (((-992) (-526) (-211) (-159 (-211)) (-526) (-1106) (-526)) 46)) (-2630 (((-992) (-1106) (-159 (-211)) (-1106) (-526)) 45)) (-2629 (((-992) (-1106) (-159 (-211)) (-1106) (-526)) 44)) (-2628 (((-992) (-211) (-159 (-211)) (-526) (-1106) (-526)) 43)) (-2627 (((-992) (-211) (-159 (-211)) (-526) (-1106) (-526)) 42)) (-2626 (((-992) (-211) (-526)) 39)) (-2625 (((-992) (-211) (-526)) 38)) (-2624 (((-992) (-211) (-526)) 37)) (-2623 (((-992) (-211) (-526)) 36)) (-2622 (((-992) (-211) (-526)) 35)) (-2621 (((-992) (-211) (-526)) 34)) (-2620 (((-992) (-211) (-526)) 33)) (-2619 (((-992) (-211) (-526)) 32)) (-2618 (((-992) (-211) (-526)) 31)) (-2617 (((-992) (-211) (-526)) 30)) (-2616 (((-992) (-211) (-211) (-211) (-526)) 29)) (-2615 (((-992) (-211) (-526)) 28)) (-2614 (((-992) (-211) (-526)) 27)) (-2613 (((-992) (-211) (-526)) 26)) (-2612 (((-992) (-211) (-526)) 25)) (-2611 (((-992) (-211) (-526)) 24)) (-2610 (((-992) (-159 (-211)) (-526)) 21))) -(((-723) (-10 -7 (-15 -2610 ((-992) (-159 (-211)) (-526))) (-15 -2611 ((-992) (-211) (-526))) (-15 -2612 ((-992) (-211) (-526))) (-15 -2613 ((-992) (-211) (-526))) (-15 -2614 ((-992) (-211) (-526))) (-15 -2615 ((-992) (-211) (-526))) (-15 -2616 ((-992) (-211) (-211) (-211) (-526))) (-15 -2617 ((-992) (-211) (-526))) (-15 -2618 ((-992) (-211) (-526))) (-15 -2619 ((-992) (-211) (-526))) (-15 -2620 ((-992) (-211) (-526))) (-15 -2621 ((-992) (-211) (-526))) (-15 -2622 ((-992) (-211) (-526))) (-15 -2623 ((-992) (-211) (-526))) (-15 -2624 ((-992) (-211) (-526))) (-15 -2625 ((-992) (-211) (-526))) (-15 -2626 ((-992) (-211) (-526))) (-15 -2627 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2628 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2629 ((-992) (-1106) (-159 (-211)) (-1106) (-526))) (-15 -2630 ((-992) (-1106) (-159 (-211)) (-1106) (-526))) (-15 -2631 ((-992) (-526) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2632 ((-992) (-211) (-526))) (-15 -2633 ((-992) (-211) (-526))) (-15 -2634 ((-992) (-211) (-526))) (-15 -2635 ((-992) (-211) (-526))) (-15 -2636 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2637 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2638 ((-992) (-211) (-526))) (-15 -2639 ((-992) (-211) (-526))) (-15 -2640 ((-992) (-211) (-526))) (-15 -2641 ((-992) (-211) (-526))) (-15 -2642 ((-992) (-211) (-526))) (-15 -2643 ((-992) (-211) (-526))) (-15 -2644 ((-992) (-211) (-211) (-526))) (-15 -2645 ((-992) (-211) (-211) (-211) (-526))) (-15 -2646 ((-992) (-211) (-211) (-211) (-526))) (-15 -2647 ((-992) (-211) (-211) (-211) (-211) (-526))))) (T -723)) -((-2647 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2646 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2645 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2644 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2637 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2636 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2631 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-526)) (-5 *5 (-159 (-211))) (-5 *6 (-1106)) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2630 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1106)) (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2629 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1106)) (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2628 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2627 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2621 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2616 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *3 (-159 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(-10 -7 (-15 -2610 ((-992) (-159 (-211)) (-526))) (-15 -2611 ((-992) (-211) (-526))) (-15 -2612 ((-992) (-211) (-526))) (-15 -2613 ((-992) (-211) (-526))) (-15 -2614 ((-992) (-211) (-526))) (-15 -2615 ((-992) (-211) (-526))) (-15 -2616 ((-992) (-211) (-211) (-211) (-526))) (-15 -2617 ((-992) (-211) (-526))) (-15 -2618 ((-992) (-211) (-526))) (-15 -2619 ((-992) (-211) (-526))) (-15 -2620 ((-992) (-211) (-526))) (-15 -2621 ((-992) (-211) (-526))) (-15 -2622 ((-992) (-211) (-526))) (-15 -2623 ((-992) (-211) (-526))) (-15 -2624 ((-992) (-211) (-526))) (-15 -2625 ((-992) (-211) (-526))) (-15 -2626 ((-992) (-211) (-526))) (-15 -2627 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2628 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2629 ((-992) (-1106) (-159 (-211)) (-1106) (-526))) (-15 -2630 ((-992) (-1106) (-159 (-211)) (-1106) (-526))) (-15 -2631 ((-992) (-526) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2632 ((-992) (-211) (-526))) (-15 -2633 ((-992) (-211) (-526))) (-15 -2634 ((-992) (-211) (-526))) (-15 -2635 ((-992) (-211) (-526))) (-15 -2636 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2637 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2638 ((-992) (-211) (-526))) (-15 -2639 ((-992) (-211) (-526))) (-15 -2640 ((-992) (-211) (-526))) (-15 -2641 ((-992) (-211) (-526))) (-15 -2642 ((-992) (-211) (-526))) (-15 -2643 ((-992) (-211) (-526))) (-15 -2644 ((-992) (-211) (-211) (-526))) (-15 -2645 ((-992) (-211) (-211) (-211) (-526))) (-15 -2646 ((-992) (-211) (-211) (-211) (-526))) (-15 -2647 ((-992) (-211) (-211) (-211) (-211) (-526)))) -((-2653 (((-1211)) 18)) (-2649 (((-1106)) 22)) (-2648 (((-1106)) 21)) (-2651 (((-1054) (-1123) (-653 (-526))) 37) (((-1054) (-1123) (-653 (-211))) 32)) (-2652 (((-111)) 16)) (-2650 (((-1106) (-1106)) 25))) -(((-724) (-10 -7 (-15 -2648 ((-1106))) (-15 -2649 ((-1106))) (-15 -2650 ((-1106) (-1106))) (-15 -2651 ((-1054) (-1123) (-653 (-211)))) (-15 -2651 ((-1054) (-1123) (-653 (-526)))) (-15 -2652 ((-111))) (-15 -2653 ((-1211))))) (T -724)) -((-2653 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-724)))) (-2652 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-724)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-653 (-526))) (-5 *2 (-1054)) (-5 *1 (-724)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-653 (-211))) (-5 *2 (-1054)) (-5 *1 (-724)))) (-2650 (*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724)))) (-2649 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724)))) (-2648 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724))))) -(-10 -7 (-15 -2648 ((-1106))) (-15 -2649 ((-1106))) (-15 -2650 ((-1106) (-1106))) (-15 -2651 ((-1054) (-1123) (-653 (-211)))) (-15 -2651 ((-1054) (-1123) (-653 (-526)))) (-15 -2652 ((-111))) (-15 -2653 ((-1211)))) -((-2655 (($ $ $) 10)) (-2656 (($ $ $ $) 9)) (-2654 (($ $ $) 12))) -(((-725 |#1|) (-10 -8 (-15 -2654 (|#1| |#1| |#1|)) (-15 -2655 (|#1| |#1| |#1|)) (-15 -2656 (|#1| |#1| |#1| |#1|))) (-726)) (T -725)) -NIL -(-10 -8 (-15 -2654 (|#1| |#1| |#1|)) (-15 -2655 (|#1| |#1| |#1|)) (-15 -2656 (|#1| |#1| |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2468 (($ $ (-878)) 28)) (-2467 (($ $ (-878)) 29)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-2655 (($ $ $) 25)) (-4274 (((-823) $) 11)) (-2656 (($ $ $ $) 26)) (-2654 (($ $ $) 24)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27))) -(((-726) (-134)) (T -726)) -((-2656 (*1 *1 *1 *1 *1) (-4 *1 (-726))) (-2655 (*1 *1 *1 *1) (-4 *1 (-726))) (-2654 (*1 *1 *1 *1) (-4 *1 (-726)))) -(-13 (-21) (-685) (-10 -8 (-15 -2656 ($ $ $ $)) (-15 -2655 ($ $ $)) (-15 -2654 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-685) . T) ((-1052) . T)) -((-4274 (((-823) $) NIL) (($ (-526)) 10))) -(((-727 |#1|) (-10 -8 (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-728)) (T -727)) -NIL -(-10 -8 (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2465 (((-3 $ #1="failed") $) 40)) (-2468 (($ $ (-878)) 28) (($ $ (-735)) 35)) (-3781 (((-3 $ #1#) $) 38)) (-2471 (((-111) $) 34)) (-2466 (((-3 $ #1#) $) 39)) (-2467 (($ $ (-878)) 29) (($ $ (-735)) 36)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-2655 (($ $ $) 25)) (-4274 (((-823) $) 11) (($ (-526)) 31)) (-3423 (((-735)) 32)) (-2656 (($ $ $ $) 26)) (-2654 (($ $ $) 24)) (-2957 (($) 18 T CONST)) (-2964 (($) 33 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30) (($ $ (-735)) 37)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27))) -(((-728) (-134)) (T -728)) -((-3423 (*1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-735)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-728))))) -(-13 (-726) (-687) (-10 -8 (-15 -3423 ((-735))) (-15 -4274 ($ (-526))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-685) . T) ((-687) . T) ((-726) . T) ((-1052) . T)) -((-2658 (((-607 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 (-159 |#1|)))))) (-653 (-159 (-392 (-526)))) |#1|) 33)) (-2657 (((-607 (-159 |#1|)) (-653 (-159 (-392 (-526)))) |#1|) 23)) (-2667 (((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))) (-1123)) 20) (((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526))))) 19))) -(((-729 |#1|) (-10 -7 (-15 -2667 ((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))))) (-15 -2667 ((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))) (-1123))) (-15 -2657 ((-607 (-159 |#1|)) (-653 (-159 (-392 (-526)))) |#1|)) (-15 -2658 ((-607 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 (-159 |#1|)))))) (-653 (-159 (-392 (-526)))) |#1|))) (-13 (-348) (-809))) (T -729)) -((-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-607 (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 (-159 *4))))))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809))))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-607 (-159 *4))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809))))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *4 (-1123)) (-5 *2 (-905 (-159 (-392 (-526))))) (-5 *1 (-729 *5)) (-4 *5 (-13 (-348) (-809))))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-905 (-159 (-392 (-526))))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809)))))) -(-10 -7 (-15 -2667 ((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))))) (-15 -2667 ((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))) (-1123))) (-15 -2657 ((-607 (-159 |#1|)) (-653 (-159 (-392 (-526)))) |#1|)) (-15 -2658 ((-607 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 (-159 |#1|)))))) (-653 (-159 (-392 (-526)))) |#1|))) -((-2911 (((-165 (-526)) |#1|) 25))) -(((-730 |#1|) (-10 -7 (-15 -2911 ((-165 (-526)) |#1|))) (-389)) (T -730)) -((-2911 (*1 *2 *3) (-12 (-5 *2 (-165 (-526))) (-5 *1 (-730 *3)) (-4 *3 (-389))))) -(-10 -7 (-15 -2911 ((-165 (-526)) |#1|))) -((-2846 ((|#1| |#1| |#1|) 24)) (-2847 ((|#1| |#1| |#1|) 23)) (-2836 ((|#1| |#1| |#1|) 32)) (-2844 ((|#1| |#1| |#1|) 28)) (-2845 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2852 (((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|) 22))) -(((-731 |#1| |#2|) (-10 -7 (-15 -2852 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -2846 (|#1| |#1| |#1|)) (-15 -2845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2836 (|#1| |#1| |#1|))) (-673 |#2|) (-348)) (T -731)) -((-2836 (*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2844 (*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2845 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2846 (*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2847 (*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2852 (*1 *2 *3 *3) (-12 (-4 *4 (-348)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-731 *3 *4)) (-4 *3 (-673 *4))))) -(-10 -7 (-15 -2852 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -2846 (|#1| |#1| |#1|)) (-15 -2845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2836 (|#1| |#1| |#1|))) -((-4238 (((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))) (-526)) 59)) (-4237 (((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526))))) 57)) (-4076 (((-526)) 71))) -(((-732 |#1| |#2|) (-10 -7 (-15 -4076 ((-526))) (-15 -4237 ((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))))) (-15 -4238 ((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))) (-526)))) (-1181 (-526)) (-395 (-526) |#1|)) (T -732)) -((-4238 (*1 *2 *3) (-12 (-5 *3 (-526)) (-4 *4 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-732 *4 *5)) (-4 *5 (-395 *3 *4)))) (-4237 (*1 *2) (-12 (-4 *3 (-1181 (-526))) (-5 *2 (-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526))))) (-5 *1 (-732 *3 *4)) (-4 *4 (-395 (-526) *3)))) (-4076 (*1 *2) (-12 (-4 *3 (-1181 *2)) (-5 *2 (-526)) (-5 *1 (-732 *3 *4)) (-4 *4 (-395 *2 *3))))) -(-10 -7 (-15 -4076 ((-526))) (-15 -4237 ((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))))) (-15 -4238 ((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))) (-526)))) -((-2865 (((-111) $ $) NIL)) (-3469 (((-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) $) 21)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 20) (($ (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 13) (($ (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) 18)) (-3353 (((-111) $ $) NIL))) -(((-733) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ($ (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) $))))) (T -733)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-733)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *1 (-733)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *1 (-733)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) (-5 *1 (-733)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) (-5 *1 (-733))))) -(-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ($ (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) $)))) -((-2733 (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|))) 18) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123))) 17)) (-3895 (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|))) 20) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123))) 19))) -(((-734 |#1|) (-10 -7 (-15 -2733 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -2733 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|))))) (-533)) (T -734)) -((-3895 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-734 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-734 *5)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-734 *4)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-734 *5))))) -(-10 -7 (-15 -2733 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -2733 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2702 (($ $ $) 6)) (-1345 (((-3 $ "failed") $ $) 9)) (-2659 (($ $ (-526)) 7)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($ $) NIL)) (-2860 (($ $ $) NIL)) (-2471 (((-111) $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3457 (($ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ $ $) NIL))) -(((-735) (-13 (-757) (-691) (-10 -8 (-15 -2860 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -3457 ($ $ $)) (-15 -3181 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -3780 ((-3 $ "failed") $ $)) (-15 -2659 ($ $ (-526))) (-15 -3294 ($ $)) (-6 (-4312 "*"))))) (T -735)) -((-2860 (*1 *1 *1 *1) (-5 *1 (-735))) (-2861 (*1 *1 *1 *1) (-5 *1 (-735))) (-3457 (*1 *1 *1 *1) (-5 *1 (-735))) (-3181 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2072 (-735)) (|:| -3202 (-735)))) (-5 *1 (-735)))) (-3780 (*1 *1 *1 *1) (|partial| -5 *1 (-735))) (-2659 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-735)))) (-3294 (*1 *1 *1) (-5 *1 (-735)))) -(-13 (-757) (-691) (-10 -8 (-15 -2860 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -3457 ($ $ $)) (-15 -3181 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -3780 ((-3 $ "failed") $ $)) (-15 -2659 ($ $ (-526))) (-15 -3294 ($ $)) (-6 (-4312 "*")))) -((-3895 (((-3 |#2| "failed") |#2| |#2| (-112) (-1123)) 35))) -(((-736 |#1| |#2|) (-10 -7 (-15 -3895 ((-3 |#2| "failed") |#2| |#2| (-112) (-1123)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919))) (T -736)) -((-3895 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-736 *5 *2)) (-4 *2 (-13 (-29 *5) (-1145) (-919)))))) -(-10 -7 (-15 -3895 ((-3 |#2| "failed") |#2| |#2| (-112) (-1123)))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 7)) (-3353 (((-111) $ $) 9))) -(((-737) (-1052)) (T -737)) -NIL -(-1052) -((-4274 (((-737) |#1|) 8))) -(((-738 |#1|) (-10 -7 (-15 -4274 ((-737) |#1|))) (-1159)) (T -738)) -((-4274 (*1 *2 *3) (-12 (-5 *2 (-737)) (-5 *1 (-738 *3)) (-4 *3 (-1159))))) -(-10 -7 (-15 -4274 ((-737) |#1|))) -((-3429 ((|#2| |#4|) 35))) -(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3429 (|#2| |#4|))) (-436) (-1181 |#1|) (-689 |#1| |#2|) (-1181 |#3|)) (T -739)) -((-3429 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-689 *4 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *3 (-1181 *5))))) -(-10 -7 (-15 -3429 (|#2| |#4|))) -((-3781 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2662 (((-1211) (-1106) (-1106) |#4| |#5|) 33)) (-2660 ((|#4| |#4| |#5|) 73)) (-2661 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|) 77)) (-2663 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 16))) -(((-740 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3781 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2660 (|#4| |#4| |#5|)) (-15 -2661 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -2662 ((-1211) (-1106) (-1106) |#4| |#5|)) (-15 -2663 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -740)) -((-2663 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-2662 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1106)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *4 (-1018 *6 *7 *8)) (-5 *2 (-1211)) (-5 *1 (-740 *6 *7 *8 *4 *5)) (-4 *5 (-1024 *6 *7 *8 *4)))) (-2661 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-2660 (*1 *2 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *2 (-1018 *4 *5 *6)) (-5 *1 (-740 *4 *5 *6 *2 *3)) (-4 *3 (-1024 *4 *5 *6 *2)))) (-3781 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(-10 -7 (-15 -3781 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2660 (|#4| |#4| |#5|)) (-15 -2661 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -2662 ((-1211) (-1106) (-1106) |#4| |#5|)) (-15 -2663 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|))) -((-3470 (((-3 (-1117 (-1117 |#1|)) "failed") |#4|) 43)) (-2664 (((-607 |#4|) |#4|) 15)) (-4245 ((|#4| |#4|) 11))) -(((-741 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2664 ((-607 |#4|) |#4|)) (-15 -3470 ((-3 (-1117 (-1117 |#1|)) "failed") |#4|)) (-15 -4245 (|#4| |#4|))) (-335) (-314 |#1|) (-1181 |#2|) (-1181 |#3|) (-878)) (T -741)) -((-4245 (*1 *2 *2) (-12 (-4 *3 (-335)) (-4 *4 (-314 *3)) (-4 *5 (-1181 *4)) (-5 *1 (-741 *3 *4 *5 *2 *6)) (-4 *2 (-1181 *5)) (-14 *6 (-878)))) (-3470 (*1 *2 *3) (|partial| -12 (-4 *4 (-335)) (-4 *5 (-314 *4)) (-4 *6 (-1181 *5)) (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-741 *4 *5 *6 *3 *7)) (-4 *3 (-1181 *6)) (-14 *7 (-878)))) (-2664 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *5 (-314 *4)) (-4 *6 (-1181 *5)) (-5 *2 (-607 *3)) (-5 *1 (-741 *4 *5 *6 *3 *7)) (-4 *3 (-1181 *6)) (-14 *7 (-878))))) -(-10 -7 (-15 -2664 ((-607 |#4|) |#4|)) (-15 -3470 ((-3 (-1117 (-1117 |#1|)) "failed") |#4|)) (-15 -4245 (|#4| |#4|))) -((-2665 (((-2 (|:| |deter| (-607 (-1117 |#5|))) (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-607 |#1|)) (|:| |nlead| (-607 |#5|))) (-1117 |#5|) (-607 |#1|) (-607 |#5|)) 54)) (-2666 (((-607 (-735)) |#1|) 13))) -(((-742 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2665 ((-2 (|:| |deter| (-607 (-1117 |#5|))) (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-607 |#1|)) (|:| |nlead| (-607 |#5|))) (-1117 |#5|) (-607 |#1|) (-607 |#5|))) (-15 -2666 ((-607 (-735)) |#1|))) (-1181 |#4|) (-757) (-811) (-292) (-909 |#4| |#2| |#3|)) (T -742)) -((-2666 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-607 (-735))) (-5 *1 (-742 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *6)) (-4 *7 (-909 *6 *4 *5)))) (-2665 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1181 *9)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-292)) (-4 *10 (-909 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-607 (-1117 *10))) (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| *10))))) (|:| |nfacts| (-607 *6)) (|:| |nlead| (-607 *10)))) (-5 *1 (-742 *6 *7 *8 *9 *10)) (-5 *3 (-1117 *10)) (-5 *4 (-607 *6)) (-5 *5 (-607 *10))))) -(-10 -7 (-15 -2665 ((-2 (|:| |deter| (-607 (-1117 |#5|))) (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-607 |#1|)) (|:| |nlead| (-607 |#5|))) (-1117 |#5|) (-607 |#1|) (-607 |#5|))) (-15 -2666 ((-607 (-735)) |#1|))) -((-2669 (((-607 (-2 (|:| |outval| |#1|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#1|))))) (-653 (-392 (-526))) |#1|) 31)) (-2668 (((-607 |#1|) (-653 (-392 (-526))) |#1|) 21)) (-2667 (((-905 (-392 (-526))) (-653 (-392 (-526))) (-1123)) 18) (((-905 (-392 (-526))) (-653 (-392 (-526)))) 17))) -(((-743 |#1|) (-10 -7 (-15 -2667 ((-905 (-392 (-526))) (-653 (-392 (-526))))) (-15 -2667 ((-905 (-392 (-526))) (-653 (-392 (-526))) (-1123))) (-15 -2668 ((-607 |#1|) (-653 (-392 (-526))) |#1|)) (-15 -2669 ((-607 (-2 (|:| |outval| |#1|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#1|))))) (-653 (-392 (-526))) |#1|))) (-13 (-348) (-809))) (T -743)) -((-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-607 (-2 (|:| |outval| *4) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 *4)))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809))))) (-2668 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-607 *4)) (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809))))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *4 (-1123)) (-5 *2 (-905 (-392 (-526)))) (-5 *1 (-743 *5)) (-4 *5 (-13 (-348) (-809))))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-905 (-392 (-526)))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809)))))) -(-10 -7 (-15 -2667 ((-905 (-392 (-526))) (-653 (-392 (-526))))) (-15 -2667 ((-905 (-392 (-526))) (-653 (-392 (-526))) (-1123))) (-15 -2668 ((-607 |#1|) (-653 (-392 (-526))) |#1|)) (-15 -2669 ((-607 (-2 (|:| |outval| |#1|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#1|))))) (-653 (-392 (-526))) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 34)) (-3384 (((-607 |#2|) $) NIL)) (-3386 (((-1117 $) $ |#2|) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 |#2|)) NIL)) (-4115 (($ $) 28)) (-3479 (((-111) $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4074 (($ $ $) 93 (|has| |#1| (-533)))) (-3461 (((-607 $) $ $) 106 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-905 (-392 (-526)))) NIL (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))))) (((-3 $ #3#) (-905 (-526))) NIL (-3850 (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526)))))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123)))))) (((-3 $ #3#) (-905 |#1|)) NIL (-3850 (-12 (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-37 (-526))))) (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-525)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-950 (-526))))))) (((-3 (-1075 |#1| |#2|) #2#) $) 18)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) ((|#2| $) NIL) (($ (-905 (-392 (-526)))) NIL (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))))) (($ (-905 (-526))) NIL (-3850 (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526)))))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123)))))) (($ (-905 |#1|)) NIL (-3850 (-12 (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-37 (-526))))) (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-525)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-950 (-526))))))) (((-1075 |#1| |#2|) $) NIL)) (-4075 (($ $ $ |#2|) NIL (|has| |#1| (-163))) (($ $ $) 104 (|has| |#1| (-533)))) (-4276 (($ $) NIL) (($ $ |#2|) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-4016 (((-111) $ $) NIL) (((-111) $ (-607 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3485 (((-111) $) NIL)) (-4071 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 70)) (-3456 (($ $) 119 (|has| |#1| (-436)))) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ |#2|) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-3467 (($ $) NIL (|has| |#1| (-533)))) (-3468 (($ $) NIL (|has| |#1| (-533)))) (-3478 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3477 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1697 (($ $ |#1| (-512 |#2|) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| |#1| (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| |#1| (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-4017 (((-111) $ $) NIL) (((-111) $ (-607 $)) NIL)) (-3458 (($ $ $ $ $) 90 (|has| |#1| (-533)))) (-3493 ((|#2| $) 19)) (-3387 (($ (-1117 |#1|) |#2|) NIL) (($ (-1117 $) |#2|) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 |#2|)) NIL) (($ $ |#2| (-735)) 36) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-3472 (($ $ $) 60)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#2|) NIL)) (-3486 (((-111) $) NIL)) (-3120 (((-512 |#2|) $) NIL) (((-735) $ |#2|) NIL) (((-607 (-735)) $ (-607 |#2|)) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3492 (((-735) $) 20)) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 |#2|) (-512 |#2|)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3385 (((-3 |#2| #4="failed") $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-436)))) (-3454 (($ $) NIL (|has| |#1| (-436)))) (-3481 (((-607 $) $) NIL)) (-3484 (($ $) 37)) (-3455 (($ $) NIL (|has| |#1| (-436)))) (-3482 (((-607 $) $) 41)) (-3483 (($ $) 39)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3471 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3795 (-735))) $ $) 82)) (-3473 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $) 67) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $ |#2|) NIL)) (-3474 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $) NIL) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $ |#2|) NIL)) (-3476 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3475 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3554 (((-1106) $) NIL)) (-3504 (($ $ $) 108 (|has| |#1| (-533)))) (-3489 (((-607 $) $) 30)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-735))) #4#) $) NIL)) (-4013 (((-111) $ $) NIL) (((-111) $ (-607 $)) NIL)) (-4008 (($ $ $) NIL)) (-3764 (($ $) 21)) (-4021 (((-111) $ $) NIL)) (-4014 (((-111) $ $) NIL) (((-111) $ (-607 $)) NIL)) (-4009 (($ $ $) NIL)) (-3491 (($ $) 23)) (-3555 (((-1070) $) NIL)) (-3462 (((-2 (|:| -3457 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-533)))) (-3463 (((-2 (|:| -3457 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-533)))) (-1892 (((-111) $) 52)) (-1891 ((|#1| $) 55)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 ((|#1| |#1| $) 116 (|has| |#1| (-436))) (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3464 (((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-533)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-3465 (($ $ |#1|) 112 (|has| |#1| (-533))) (($ $ $) NIL (|has| |#1| (-533)))) (-3466 (($ $ |#1|) 111 (|has| |#1| (-533))) (($ $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-607 |#2|) (-607 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-607 |#2|) (-607 $)) NIL)) (-4076 (($ $ |#2|) NIL (|has| |#1| (-163)))) (-4129 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4264 (((-512 |#2|) $) NIL) (((-735) $ |#2|) 43) (((-607 (-735)) $ (-607 |#2|)) NIL)) (-3490 (($ $) NIL)) (-3488 (($ $) 33)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| |#1| (-584 (-515))) (|has| |#2| (-584 (-515))))) (($ (-905 (-392 (-526)))) NIL (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))))) (($ (-905 (-526))) NIL (-3850 (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526)))))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123)))))) (($ (-905 |#1|)) NIL (|has| |#2| (-584 (-1123)))) (((-1106) $) NIL (-12 (|has| |#1| (-995 (-526))) (|has| |#2| (-584 (-1123))))) (((-905 |#1|) $) NIL (|has| |#2| (-584 (-1123))))) (-3117 ((|#1| $) 115 (|has| |#1| (-436))) (($ $ |#2|) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-905 |#1|) $) NIL (|has| |#2| (-584 (-1123)))) (((-1075 |#1| |#2|) $) 15) (($ (-1075 |#1| |#2|)) 16) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 |#2|)) NIL) (($ $ |#2| (-735)) 44) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 13 T CONST)) (-3480 (((-3 (-111) #3#) $ $) NIL)) (-2964 (($) 35 T CONST)) (-3459 (($ $ $ $ (-735)) 88 (|has| |#1| (-533)))) (-3460 (($ $ $ (-735)) 87 (|has| |#1| (-533)))) (-2969 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 54)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) 64)) (-4158 (($ $ $) 74)) (** (($ $ (-878)) NIL) (($ $ (-735)) 61)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 59) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-744 |#1| |#2|) (-13 (-1018 |#1| (-512 |#2|) |#2|) (-583 (-1075 |#1| |#2|)) (-995 (-1075 |#1| |#2|))) (-1004) (-811)) (T -744)) -NIL -(-13 (-1018 |#1| (-512 |#2|) |#2|) (-583 (-1075 |#1| |#2|)) (-995 (-1075 |#1| |#2|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 12)) (-4085 (((-1205 |#1|) $ (-735)) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4083 (($ (-1117 |#1|)) NIL)) (-3386 (((-1117 $) $ (-1033)) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2673 (((-607 $) $ $) 39 (|has| |#1| (-533)))) (-4074 (($ $ $) 35 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-4079 (($ $ (-735)) NIL)) (-4078 (($ $ (-735)) NIL)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-436)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1033) #2#) $) NIL) (((-3 (-1117 |#1|) #2#) $) 10)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1033) $) NIL) (((-1117 |#1|) $) NIL)) (-4075 (($ $ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $ $) 43 (|has| |#1| (-163)))) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4077 (($ $ $) NIL)) (-4072 (($ $ $) 71 (|has| |#1| (-533)))) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 $) (|:| -3202 $)) $ $) 70 (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-735) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1033) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1033) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ $) NIL (|has| |#1| (-533)))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-1099)))) (-3387 (($ (-1117 |#1|) (-1033)) NIL) (($ (-1117 $) (-1033)) NIL)) (-4095 (($ $ (-735)) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3472 (($ $ $) 20)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) NIL) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4084 (((-1117 |#1|) $) NIL)) (-3385 (((-3 (-1033) #4="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3471 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3795 (-735))) $ $) 26)) (-2675 (($ $ $) 29)) (-2674 (($ $ $) 32)) (-3473 (((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $) 31)) (-3554 (((-1106) $) NIL)) (-3504 (($ $ $) 41 (|has| |#1| (-533)))) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) NIL)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) NIL)) (-4131 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3462 (((-2 (|:| -3457 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-533)))) (-3463 (((-2 (|:| -3457 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-533)))) (-2670 (((-2 (|:| -4075 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-533)))) (-2671 (((-2 (|:| -4075 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-533)))) (-1892 (((-111) $) 13)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-4057 (($ $ (-735) |#1| $) 19)) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3464 (((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-533)))) (-2672 (((-2 (|:| -4075 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-533)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#1|) NIL) (($ $ (-607 (-1033)) (-607 |#1|)) NIL) (($ $ (-1033) $) NIL) (($ $ (-607 (-1033)) (-607 $)) NIL)) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-392 $) (-392 $) (-392 $)) NIL (|has| |#1| (-533))) ((|#1| (-392 $) |#1|) NIL (|has| |#1| (-348))) (((-392 $) $ (-392 $)) NIL (|has| |#1| (-533)))) (-4082 (((-3 $ #5="failed") $ (-735)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4076 (($ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4264 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1033) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4073 (((-3 $ #5#) $ $) NIL (|has| |#1| (-533))) (((-3 (-392 $) #5#) (-392 $) $) NIL (|has| |#1| (-533)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-1033)) NIL) (((-1117 |#1|) $) 7) (($ (-1117 |#1|)) 8) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 21 T CONST)) (-2964 (($) 24 T CONST)) (-2969 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) 28) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-745 |#1|) (-13 (-1181 |#1|) (-583 (-1117 |#1|)) (-995 (-1117 |#1|)) (-10 -8 (-15 -4057 ($ $ (-735) |#1| $)) (-15 -3472 ($ $ $)) (-15 -3471 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3795 (-735))) $ $)) (-15 -2675 ($ $ $)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2674 ($ $ $)) (IF (|has| |#1| (-533)) (PROGN (-15 -2673 ((-607 $) $ $)) (-15 -3504 ($ $ $)) (-15 -3464 ((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3463 ((-2 (|:| -3457 $) (|:| |coef1| $)) $ $)) (-15 -3462 ((-2 (|:| -3457 $) (|:| |coef2| $)) $ $)) (-15 -2672 ((-2 (|:| -4075 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2671 ((-2 (|:| -4075 |#1|) (|:| |coef1| $)) $ $)) (-15 -2670 ((-2 (|:| -4075 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1004)) (T -745)) -((-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-745 *3)) (-4 *3 (-1004)))) (-3472 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004)))) (-3471 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-745 *3)) (|:| |polden| *3) (|:| -3795 (-735)))) (-5 *1 (-745 *3)) (-4 *3 (-1004)))) (-2675 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004)))) (-3473 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4270 *3) (|:| |gap| (-735)) (|:| -2072 (-745 *3)) (|:| -3202 (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-1004)))) (-2674 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004)))) (-2673 (*1 *2 *1 *1) (-12 (-5 *2 (-607 (-745 *3))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-3504 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-533)) (-4 *2 (-1004)))) (-3464 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef1| (-745 *3)) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-3463 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef1| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-3462 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-2672 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef1| (-745 *3)) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-2671 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef1| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-2670 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004))))) -(-13 (-1181 |#1|) (-583 (-1117 |#1|)) (-995 (-1117 |#1|)) (-10 -8 (-15 -4057 ($ $ (-735) |#1| $)) (-15 -3472 ($ $ $)) (-15 -3471 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3795 (-735))) $ $)) (-15 -2675 ($ $ $)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2674 ($ $ $)) (IF (|has| |#1| (-533)) (PROGN (-15 -2673 ((-607 $) $ $)) (-15 -3504 ($ $ $)) (-15 -3464 ((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3463 ((-2 (|:| -3457 $) (|:| |coef1| $)) $ $)) (-15 -3462 ((-2 (|:| -3457 $) (|:| |coef2| $)) $ $)) (-15 -2672 ((-2 (|:| -4075 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2671 ((-2 (|:| -4075 |#1|) (|:| |coef1| $)) $ $)) (-15 -2670 ((-2 (|:| -4075 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4275 (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)) 13))) -(((-746 |#1| |#2|) (-10 -7 (-15 -4275 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)))) (-1004) (-1004)) (T -746)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6))))) -(-10 -7 (-15 -4275 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)))) -((-2677 ((|#1| (-735) |#1|) 32 (|has| |#1| (-37 (-392 (-526)))))) (-3101 ((|#1| (-735) |#1|) 22)) (-2676 ((|#1| (-735) |#1|) 34 (|has| |#1| (-37 (-392 (-526))))))) -(((-747 |#1|) (-10 -7 (-15 -3101 (|#1| (-735) |#1|)) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -2676 (|#1| (-735) |#1|)) (-15 -2677 (|#1| (-735) |#1|))) |%noBranch|)) (-163)) (T -747)) -((-2677 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-163)))) (-2676 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-163)))) (-3101 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-163))))) -(-10 -7 (-15 -3101 (|#1| (-735) |#1|)) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -2676 (|#1| (-735) |#1|)) (-15 -2677 (|#1| (-735) |#1|))) |%noBranch|)) -((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86) (((-607 $) (-607 |#4|) (-111)) 111)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 126)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ #1#) $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-3511 (((-111) |#4| $) 136)) (-3509 (((-111) |#4| $) 133)) (-3512 (((-111) |#4| $) 137) (((-111) $) 134)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) 128)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 127)) (-4116 (((-3 |#4| #1#) $) 83)) (-3506 (((-607 $) |#4| $) 129)) (-3508 (((-3 (-111) (-607 $)) |#4| $) 132)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3550 (((-607 $) |#4| $) 125) (((-607 $) (-607 |#4|) $) 124) (((-607 $) (-607 |#4|) (-607 $)) 123) (((-607 $) |#4| (-607 $)) 122)) (-3759 (($ |#4| $) 117) (($ (-607 |#4|) $) 116)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| #1#) $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ #1#) $ |#4|) 78)) (-4087 (($ $ |#4|) 77) (((-607 $) |#4| $) 115) (((-607 $) |#4| (-607 $)) 114) (((-607 $) (-607 |#4|) $) 113) (((-607 $) (-607 |#4|) (-607 $)) 112)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-3503 (((-607 $) |#4| $) 121) (((-607 $) |#4| (-607 $)) 120) (((-607 $) (-607 |#4|) $) 119) (((-607 $) (-607 |#4|) (-607 $)) 118)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-3510 (((-111) |#4| $) 135)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) -(((-748 |#1| |#2| |#3| |#4|) (-134) (-436) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -748)) -NIL -(-13 (-1024 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1024 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1154 |#1| |#2| |#3| |#4|) . T) ((-1159) . T)) -((-2680 (((-3 (-363) "failed") (-299 |#1|) (-878)) 62 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-363) "failed") (-299 |#1|)) 54 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-363) "failed") (-392 (-905 |#1|)) (-878)) 41 (|has| |#1| (-533))) (((-3 (-363) "failed") (-392 (-905 |#1|))) 40 (|has| |#1| (-533))) (((-3 (-363) "failed") (-905 |#1|) (-878)) 31 (|has| |#1| (-1004))) (((-3 (-363) "failed") (-905 |#1|)) 30 (|has| |#1| (-1004)))) (-2678 (((-363) (-299 |#1|) (-878)) 99 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-363) (-299 |#1|)) 94 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-363) (-392 (-905 |#1|)) (-878)) 91 (|has| |#1| (-533))) (((-363) (-392 (-905 |#1|))) 90 (|has| |#1| (-533))) (((-363) (-905 |#1|) (-878)) 86 (|has| |#1| (-1004))) (((-363) (-905 |#1|)) 85 (|has| |#1| (-1004))) (((-363) |#1| (-878)) 76) (((-363) |#1|) 22)) (-2681 (((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)) (-878)) 71 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-159 (-363)) "failed") (-299 (-159 |#1|))) 70 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-159 (-363)) "failed") (-299 |#1|) (-878)) 63 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-159 (-363)) "failed") (-299 |#1|)) 61 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))) (-878)) 46 (|has| |#1| (-533))) (((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|)))) 45 (|has| |#1| (-533))) (((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)) (-878)) 39 (|has| |#1| (-533))) (((-3 (-159 (-363)) "failed") (-392 (-905 |#1|))) 38 (|has| |#1| (-533))) (((-3 (-159 (-363)) "failed") (-905 |#1|) (-878)) 28 (|has| |#1| (-1004))) (((-3 (-159 (-363)) "failed") (-905 |#1|)) 26 (|has| |#1| (-1004))) (((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)) (-878)) 18 (|has| |#1| (-163))) (((-3 (-159 (-363)) "failed") (-905 (-159 |#1|))) 15 (|has| |#1| (-163)))) (-2679 (((-159 (-363)) (-299 (-159 |#1|)) (-878)) 102 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-159 (-363)) (-299 (-159 |#1|))) 101 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-159 (-363)) (-299 |#1|) (-878)) 100 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-159 (-363)) (-299 |#1|)) 98 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-159 (-363)) (-392 (-905 (-159 |#1|))) (-878)) 93 (|has| |#1| (-533))) (((-159 (-363)) (-392 (-905 (-159 |#1|)))) 92 (|has| |#1| (-533))) (((-159 (-363)) (-392 (-905 |#1|)) (-878)) 89 (|has| |#1| (-533))) (((-159 (-363)) (-392 (-905 |#1|))) 88 (|has| |#1| (-533))) (((-159 (-363)) (-905 |#1|) (-878)) 84 (|has| |#1| (-1004))) (((-159 (-363)) (-905 |#1|)) 83 (|has| |#1| (-1004))) (((-159 (-363)) (-905 (-159 |#1|)) (-878)) 78 (|has| |#1| (-163))) (((-159 (-363)) (-905 (-159 |#1|))) 77 (|has| |#1| (-163))) (((-159 (-363)) (-159 |#1|) (-878)) 80 (|has| |#1| (-163))) (((-159 (-363)) (-159 |#1|)) 79 (|has| |#1| (-163))) (((-159 (-363)) |#1| (-878)) 27) (((-159 (-363)) |#1|) 25))) -(((-749 |#1|) (-10 -7 (-15 -2678 ((-363) |#1|)) (-15 -2678 ((-363) |#1| (-878))) (-15 -2679 ((-159 (-363)) |#1|)) (-15 -2679 ((-159 (-363)) |#1| (-878))) (IF (|has| |#1| (-163)) (PROGN (-15 -2679 ((-159 (-363)) (-159 |#1|))) (-15 -2679 ((-159 (-363)) (-159 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-905 (-159 |#1|)))) (-15 -2679 ((-159 (-363)) (-905 (-159 |#1|)) (-878)))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-15 -2678 ((-363) (-905 |#1|))) (-15 -2678 ((-363) (-905 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-905 |#1|))) (-15 -2679 ((-159 (-363)) (-905 |#1|) (-878)))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -2678 ((-363) (-392 (-905 |#1|)))) (-15 -2678 ((-363) (-392 (-905 |#1|)) (-878))) (-15 -2679 ((-159 (-363)) (-392 (-905 |#1|)))) (-15 -2679 ((-159 (-363)) (-392 (-905 |#1|)) (-878))) (-15 -2679 ((-159 (-363)) (-392 (-905 (-159 |#1|))))) (-15 -2679 ((-159 (-363)) (-392 (-905 (-159 |#1|))) (-878))) (IF (|has| |#1| (-811)) (PROGN (-15 -2678 ((-363) (-299 |#1|))) (-15 -2678 ((-363) (-299 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-299 |#1|))) (-15 -2679 ((-159 (-363)) (-299 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-299 (-159 |#1|)))) (-15 -2679 ((-159 (-363)) (-299 (-159 |#1|)) (-878)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)) (-878)))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-905 |#1|))) (-15 -2680 ((-3 (-363) "failed") (-905 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 |#1|))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 |#1|) (-878)))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-392 (-905 |#1|)))) (-15 -2680 ((-3 (-363) "failed") (-392 (-905 |#1|)) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))) (-878))) (IF (|has| |#1| (-811)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-299 |#1|))) (-15 -2680 ((-3 (-363) "failed") (-299 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 |#1|))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)) (-878)))) |%noBranch|)) |%noBranch|)) (-584 (-363))) (T -749)) -((-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-299 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-299 (-159 *4))) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2680 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-392 (-905 (-159 *5)))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 (-159 *4)))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2680 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2680 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-163)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 (-159 *4))) (-4 *4 (-163)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-299 (-159 *4))) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-159 *5)))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 (-159 *4)))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-163)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-905 (-159 *4))) (-4 *4 (-163)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-159 *5)) (-5 *4 (-878)) (-4 *5 (-163)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-159 *4)) (-4 *4 (-163)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-5 *2 (-159 (-363))) (-5 *1 (-749 *3)) (-4 *3 (-584 (-363))))) (-2679 (*1 *2 *3) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-749 *3)) (-4 *3 (-584 (-363))))) (-2678 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-5 *2 (-363)) (-5 *1 (-749 *3)) (-4 *3 (-584 *2)))) (-2678 (*1 *2 *3) (-12 (-5 *2 (-363)) (-5 *1 (-749 *3)) (-4 *3 (-584 *2))))) -(-10 -7 (-15 -2678 ((-363) |#1|)) (-15 -2678 ((-363) |#1| (-878))) (-15 -2679 ((-159 (-363)) |#1|)) (-15 -2679 ((-159 (-363)) |#1| (-878))) (IF (|has| |#1| (-163)) (PROGN (-15 -2679 ((-159 (-363)) (-159 |#1|))) (-15 -2679 ((-159 (-363)) (-159 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-905 (-159 |#1|)))) (-15 -2679 ((-159 (-363)) (-905 (-159 |#1|)) (-878)))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-15 -2678 ((-363) (-905 |#1|))) (-15 -2678 ((-363) (-905 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-905 |#1|))) (-15 -2679 ((-159 (-363)) (-905 |#1|) (-878)))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -2678 ((-363) (-392 (-905 |#1|)))) (-15 -2678 ((-363) (-392 (-905 |#1|)) (-878))) (-15 -2679 ((-159 (-363)) (-392 (-905 |#1|)))) (-15 -2679 ((-159 (-363)) (-392 (-905 |#1|)) (-878))) (-15 -2679 ((-159 (-363)) (-392 (-905 (-159 |#1|))))) (-15 -2679 ((-159 (-363)) (-392 (-905 (-159 |#1|))) (-878))) (IF (|has| |#1| (-811)) (PROGN (-15 -2678 ((-363) (-299 |#1|))) (-15 -2678 ((-363) (-299 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-299 |#1|))) (-15 -2679 ((-159 (-363)) (-299 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-299 (-159 |#1|)))) (-15 -2679 ((-159 (-363)) (-299 (-159 |#1|)) (-878)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)) (-878)))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-905 |#1|))) (-15 -2680 ((-3 (-363) "failed") (-905 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 |#1|))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 |#1|) (-878)))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-392 (-905 |#1|)))) (-15 -2680 ((-3 (-363) "failed") (-392 (-905 |#1|)) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))) (-878))) (IF (|has| |#1| (-811)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-299 |#1|))) (-15 -2680 ((-3 (-363) "failed") (-299 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 |#1|))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)) (-878)))) |%noBranch|)) |%noBranch|)) -((-2685 (((-878) (-1106)) 66)) (-2687 (((-3 (-363) "failed") (-1106)) 33)) (-2686 (((-363) (-1106)) 31)) (-2683 (((-878) (-1106)) 54)) (-2684 (((-1106) (-878)) 56)) (-2682 (((-1106) (-878)) 53))) -(((-750) (-10 -7 (-15 -2682 ((-1106) (-878))) (-15 -2683 ((-878) (-1106))) (-15 -2684 ((-1106) (-878))) (-15 -2685 ((-878) (-1106))) (-15 -2686 ((-363) (-1106))) (-15 -2687 ((-3 (-363) "failed") (-1106))))) (T -750)) -((-2687 (*1 *2 *3) (|partial| -12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-750)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-750)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-878)) (-5 *1 (-750)))) (-2684 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1106)) (-5 *1 (-750)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-878)) (-5 *1 (-750)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1106)) (-5 *1 (-750))))) -(-10 -7 (-15 -2682 ((-1106) (-878))) (-15 -2683 ((-878) (-1106))) (-15 -2684 ((-1106) (-878))) (-15 -2685 ((-878) (-1106))) (-15 -2686 ((-363) (-1106))) (-15 -2687 ((-3 (-363) "failed") (-1106)))) -((-2865 (((-111) $ $) 7)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 15) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 13)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 16) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) -(((-751) (-134)) (T -751)) -((-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-751)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992)))))) (-2688 (*1 *2 *3 *2) (-12 (-4 *1 (-751)) (-5 *2 (-992)) (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) (-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-751)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992)))))) (-2688 (*1 *2 *3 *2) (-12 (-4 *1 (-751)) (-5 *2 (-992)) (-5 *3 (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) -(-13 (-1052) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2688 ((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2688 ((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2691 (((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363))) 44) (((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))) 43)) (-2692 (((-1211) (-1205 (-363)) (-526) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))) 50)) (-2690 (((-1211) (-1205 (-363)) (-526) (-363) (-363) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))) 41)) (-2689 (((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363))) 52) (((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))) 51))) -(((-752) (-10 -7 (-15 -2689 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2689 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)))) (-15 -2690 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2691 ((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2691 ((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)))) (-15 -2692 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))))) (T -752)) -((-2692 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2691 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-526)) (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363)))) (-5 *7 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2691 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-526)) (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363)))) (-5 *7 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2690 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2689 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2689 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) -(-10 -7 (-15 -2689 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2689 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)))) (-15 -2690 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2691 ((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2691 ((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)))) (-15 -2692 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))))) -((-2701 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 53)) (-2698 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 31)) (-2700 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 52)) (-2697 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 29)) (-2699 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 51)) (-2696 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 19)) (-2695 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526)) 32)) (-2694 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526)) 30)) (-2693 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526)) 28))) -(((-753) (-10 -7 (-15 -2693 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2694 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2695 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2696 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2697 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2698 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2699 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2700 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2701 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))))) (T -753)) -((-2701 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2700 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2699 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2698 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2697 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2696 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2695 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2694 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2693 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526))))) -(-10 -7 (-15 -2693 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2694 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2695 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2696 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2697 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2698 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2699 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2700 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2701 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)))) -((-4027 (((-1155 |#1|) |#1| (-211) (-526)) 46))) -(((-754 |#1|) (-10 -7 (-15 -4027 ((-1155 |#1|) |#1| (-211) (-526)))) (-933)) (T -754)) -((-4027 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-211)) (-5 *5 (-526)) (-5 *2 (-1155 *3)) (-5 *1 (-754 *3)) (-4 *3 (-933))))) -(-10 -7 (-15 -4027 ((-1155 |#1|) |#1| (-211) (-526)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-1345 (((-3 $ "failed") $ $) 26)) (-3855 (($) 23 T CONST)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4156 (($ $ $) 28) (($ $) 27)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21) (($ (-735) $) 25) (($ (-526) $) 29))) -(((-755) (-134)) (T -755)) -NIL -(-13 (-761) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-811) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-3855 (($) 23 T CONST)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21) (($ (-735) $) 25))) -(((-756) (-134)) (T -756)) -NIL -(-13 (-758) (-23)) -(((-23) . T) ((-25) . T) ((-100) . T) ((-583 (-823)) . T) ((-758) . T) ((-811) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-2702 (($ $ $) 27)) (-1345 (((-3 $ "failed") $ $) 26)) (-3855 (($) 23 T CONST)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21) (($ (-735) $) 25))) -(((-757) (-134)) (T -757)) -((-2702 (*1 *1 *1 *1) (-4 *1 (-757)))) -(-13 (-761) (-10 -8 (-15 -2702 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-811) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 7)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21))) -(((-758) (-134)) (T -758)) -NIL -(-13 (-811) (-25)) -(((-25) . T) ((-100) . T) ((-583 (-823)) . T) ((-811) . T) ((-1052) . T)) -((-3502 (((-111) $) 41)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#2| $) 42)) (-3324 (((-3 (-392 (-526)) "failed") $) 78)) (-3323 (((-111) $) 72)) (-3322 (((-392 (-526)) $) 76)) (-3429 ((|#2| $) 26)) (-4275 (($ (-1 |#2| |#2|) $) 23)) (-2703 (($ $) 61)) (-4287 (((-515) $) 67)) (-3309 (($ $) 21)) (-4274 (((-823) $) 56) (($ (-526)) 39) (($ |#2|) 37) (($ (-392 (-526))) NIL)) (-3423 (((-735)) 10)) (-3702 ((|#2| $) 71)) (-3353 (((-111) $ $) 29)) (-2985 (((-111) $ $) 69)) (-4156 (($ $) 31) (($ $ $) NIL)) (-4158 (($ $ $) 30)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-759 |#1| |#2|) (-10 -8 (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3702 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-760 |#2|) (-163)) (T -759)) -((-3423 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-759 *3 *4)) (-4 *3 (-760 *4))))) -(-10 -8 (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3702 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3433 (((-735)) 51 (|has| |#1| (-353)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 92 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 90 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 88)) (-3469 (((-526) $) 93 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 91 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 87)) (-3781 (((-3 $ "failed") $) 32)) (-3965 ((|#1| $) 77)) (-3324 (((-3 (-392 (-526)) "failed") $) 64 (|has| |#1| (-525)))) (-3323 (((-111) $) 66 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 65 (|has| |#1| (-525)))) (-3294 (($) 54 (|has| |#1| (-353)))) (-2471 (((-111) $) 30)) (-2708 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3429 ((|#1| $) 69)) (-3637 (($ $ $) 60 (|has| |#1| (-811)))) (-3638 (($ $ $) 59 (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) 79)) (-2102 (((-878) $) 53 (|has| |#1| (-353)))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 63 (|has| |#1| (-348)))) (-2461 (($ (-878)) 52 (|has| |#1| (-353)))) (-2705 ((|#1| $) 74)) (-2706 ((|#1| $) 75)) (-2707 ((|#1| $) 76)) (-3306 ((|#1| $) 70)) (-3307 ((|#1| $) 71)) (-3308 ((|#1| $) 72)) (-2704 ((|#1| $) 73)) (-3555 (((-1070) $) 10)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 85 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 83 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 82 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 81 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) 80 (|has| |#1| (-496 (-1123) |#1|)))) (-4118 (($ $ |#1|) 86 (|has| |#1| (-271 |#1| |#1|)))) (-4287 (((-515) $) 61 (|has| |#1| (-584 (-515))))) (-3309 (($ $) 78)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35) (($ (-392 (-526))) 89 (|has| |#1| (-995 (-392 (-526)))))) (-3002 (((-3 $ "failed") $) 62 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-3702 ((|#1| $) 67 (|has| |#1| (-1013)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 57 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 56 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 58 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 55 (|has| |#1| (-811)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-760 |#1|) (-134) (-163)) (T -760)) -((-3309 (*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2708 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) (-2703 (*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)) (-4 *2 (-348))))) -(-13 (-37 |t#1|) (-397 |t#1|) (-323 |t#1|) (-10 -8 (-15 -3309 ($ $)) (-15 -3965 (|t#1| $)) (-15 -2707 (|t#1| $)) (-15 -2706 (|t#1| $)) (-15 -2705 (|t#1| $)) (-15 -2704 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -3306 (|t#1| $)) (-15 -3429 (|t#1| $)) (-15 -2708 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-15 -3702 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-348)) (-15 -2703 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-353) |has| |#1| (-353)) ((-323 |#1|) . T) ((-397 |#1|) . T) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|)) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) . T) ((-691) . T) ((-811) |has| |#1| (-811)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-1345 (((-3 $ "failed") $ $) 26)) (-3855 (($) 23 T CONST)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21) (($ (-735) $) 25))) -(((-761) (-134)) (T -761)) -NIL -(-13 (-756) (-129)) -(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-756) . T) ((-758) . T) ((-811) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #1="failed") $) NIL) (((-3 (-954 |#1|) #1#) $) 35) (((-3 (-526) #1#) $) NIL (-3850 (|has| (-954 |#1|) (-995 (-526))) (|has| |#1| (-995 (-526))))) (((-3 (-392 (-526)) #1#) $) NIL (-3850 (|has| (-954 |#1|) (-995 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-3469 ((|#1| $) NIL) (((-954 |#1|) $) 33) (((-526) $) NIL (-3850 (|has| (-954 |#1|) (-995 (-526))) (|has| |#1| (-995 (-526))))) (((-392 (-526)) $) NIL (-3850 (|has| (-954 |#1|) (-995 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-3781 (((-3 $ "failed") $) NIL)) (-3965 ((|#1| $) 16)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL (|has| |#1| (-525)))) (-3323 (((-111) $) NIL (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) NIL (|has| |#1| (-525)))) (-3294 (($) NIL (|has| |#1| (-353)))) (-2471 (((-111) $) NIL)) (-2708 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-954 |#1|) (-954 |#1|)) 29)) (-3429 ((|#1| $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-2705 ((|#1| $) 22)) (-2706 ((|#1| $) 20)) (-2707 ((|#1| $) 18)) (-3306 ((|#1| $) 26)) (-3307 ((|#1| $) 25)) (-3308 ((|#1| $) 24)) (-2704 ((|#1| $) 23)) (-3555 (((-1070) $) NIL)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|)))) (-4118 (($ $ |#1|) NIL (|has| |#1| (-271 |#1| |#1|)))) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3309 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-954 |#1|)) 30) (($ (-392 (-526))) NIL (-3850 (|has| (-954 |#1|) (-995 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-3702 ((|#1| $) NIL (|has| |#1| (-1013)))) (-2957 (($) 8 T CONST)) (-2964 (($) 12 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-762 |#1|) (-13 (-760 |#1|) (-397 (-954 |#1|)) (-10 -8 (-15 -2708 ($ (-954 |#1|) (-954 |#1|))))) (-163)) (T -762)) -((-2708 (*1 *1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-163)) (-5 *1 (-762 *3))))) -(-13 (-760 |#1|) (-397 (-954 |#1|)) (-10 -8 (-15 -2708 ($ (-954 |#1|) (-954 |#1|))))) -((-4275 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-763 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) (-760 |#2|) (-163) (-760 |#4|) (-163)) (T -763)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-760 *6)) (-5 *1 (-763 *4 *5 *2 *6)) (-4 *4 (-760 *5))))) -(-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) -((-2865 (((-111) $ $) 7)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 13)) (-3353 (((-111) $ $) 6))) -(((-764) (-134)) (T -764)) -((-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-764)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-764)) (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-992))))) -(-13 (-1052) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2709 ((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2710 (((-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#3| |#2| (-1123)) 19))) -(((-765 |#1| |#2| |#3|) (-10 -7 (-15 -2710 ((-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#3| |#2| (-1123)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919)) (-623 |#2|)) (T -765)) -((-2710 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1123)) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-4 *4 (-13 (-29 *6) (-1145) (-919))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-607 *4)))) (-5 *1 (-765 *6 *4 *3)) (-4 *3 (-623 *4))))) -(-10 -7 (-15 -2710 ((-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#3| |#2| (-1123)))) -((-3895 (((-3 |#2| #1="failed") |#2| (-112) (-278 |#2|) (-607 |#2|)) 28) (((-3 |#2| #1#) (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #2="failed") |#2| (-112) (-1123)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #2#) (-278 |#2|) (-112) (-1123)) 18) (((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 |#2|) (-607 (-112)) (-1123)) 24) (((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 (-278 |#2|)) (-607 (-112)) (-1123)) 26) (((-3 (-607 (-1205 |#2|)) "failed") (-653 |#2|) (-1123)) 37) (((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-653 |#2|) (-1205 |#2|) (-1123)) 35))) -(((-766 |#1| |#2|) (-10 -7 (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-653 |#2|) (-1205 |#2|) (-1123))) (-15 -3895 ((-3 (-607 (-1205 |#2|)) "failed") (-653 |#2|) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 (-278 |#2|)) (-607 (-112)) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 |#2|) (-607 (-112)) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #1="failed") (-278 |#2|) (-112) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #1#) |#2| (-112) (-1123))) (-15 -3895 ((-3 |#2| #2="failed") (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|))) (-15 -3895 ((-3 |#2| #2#) |#2| (-112) (-278 |#2|) (-607 |#2|)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919))) (T -766)) -((-3895 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-278 *2)) (-5 *5 (-607 *2)) (-4 *2 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-766 *6 *2)))) (-3895 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-278 *2)) (-5 *4 (-112)) (-5 *5 (-607 *2)) (-4 *2 (-13 (-29 *6) (-1145) (-919))) (-5 *1 (-766 *6 *2)) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))))) (-3895 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-5 *5 (-1123)) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2104 (-607 *3))) *3 #1="failed")) (-5 *1 (-766 *6 *3)) (-4 *3 (-13 (-29 *6) (-1145) (-919))))) (-3895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-112)) (-5 *5 (-1123)) (-4 *7 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2104 (-607 *7))) *7 #1#)) (-5 *1 (-766 *6 *7)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-607 *7)) (-5 *4 (-607 (-112))) (-5 *5 (-1123)) (-4 *7 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) (-5 *1 (-766 *6 *7)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-607 (-278 *7))) (-5 *4 (-607 (-112))) (-5 *5 (-1123)) (-4 *7 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) (-5 *1 (-766 *6 *7)))) (-3895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-653 *6)) (-5 *4 (-1123)) (-4 *6 (-13 (-29 *5) (-1145) (-919))) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-1205 *6))) (-5 *1 (-766 *5 *6)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-653 *7)) (-5 *5 (-1123)) (-4 *7 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) (-5 *1 (-766 *6 *7)) (-5 *4 (-1205 *7))))) -(-10 -7 (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-653 |#2|) (-1205 |#2|) (-1123))) (-15 -3895 ((-3 (-607 (-1205 |#2|)) "failed") (-653 |#2|) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 (-278 |#2|)) (-607 (-112)) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 |#2|) (-607 (-112)) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #1="failed") (-278 |#2|) (-112) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #1#) |#2| (-112) (-1123))) (-15 -3895 ((-3 |#2| #2="failed") (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|))) (-15 -3895 ((-3 |#2| #2#) |#2| (-112) (-278 |#2|) (-607 |#2|)))) -((-2711 (($) 9)) (-2715 (((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 31)) (-2713 (((-607 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $) 28)) (-3929 (($ (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) 25)) (-2714 (($ (-607 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) 23)) (-2712 (((-1211)) 12))) -(((-767) (-10 -8 (-15 -2711 ($)) (-15 -2712 ((-1211))) (-15 -2713 ((-607 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $)) (-15 -2714 ($ (-607 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))))) (-15 -3929 ($ (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-15 -2715 ((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (T -767)) -((-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) (-5 *1 (-767)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) (-5 *1 (-767)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-5 *1 (-767)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-5 *1 (-767)))) (-2712 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-767)))) (-2711 (*1 *1) (-5 *1 (-767)))) -(-10 -8 (-15 -2711 ($)) (-15 -2712 ((-1211))) (-15 -2713 ((-607 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $)) (-15 -2714 ($ (-607 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))))) (-15 -3929 ($ (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-15 -2715 ((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) -((-3784 ((|#2| |#2| (-1123)) 16)) (-2716 ((|#2| |#2| (-1123)) 51)) (-2717 (((-1 |#2| |#2|) (-1123)) 11))) -(((-768 |#1| |#2|) (-10 -7 (-15 -3784 (|#2| |#2| (-1123))) (-15 -2716 (|#2| |#2| (-1123))) (-15 -2717 ((-1 |#2| |#2|) (-1123)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919))) (T -768)) -((-2717 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-1 *5 *5)) (-5 *1 (-768 *4 *5)) (-4 *5 (-13 (-29 *4) (-1145) (-919))))) (-2716 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-768 *4 *2)) (-4 *2 (-13 (-29 *4) (-1145) (-919))))) (-3784 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-768 *4 *2)) (-4 *2 (-13 (-29 *4) (-1145) (-919)))))) -(-10 -7 (-15 -3784 (|#2| |#2| (-1123))) (-15 -2716 (|#2| |#2| (-1123))) (-15 -2717 ((-1 |#2| |#2|) (-1123)))) -((-3895 (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363) (-363)) 116) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363)) 117) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-607 (-363)) (-363)) 119) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-363)) 120) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-363)) 121) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363))) 122) (((-992) (-772) (-1016)) 108) (((-992) (-772)) 109)) (-2968 (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772) (-1016)) 75) (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772)) 77))) -(((-769) (-10 -7 (-15 -3895 ((-992) (-772))) (-15 -3895 ((-992) (-772) (-1016))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363) (-363))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772) (-1016))))) (T -769)) -((-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1016)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-769)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-992)) (-5 *1 (-769))))) -(-10 -7 (-15 -3895 ((-992) (-772))) (-15 -3895 ((-992) (-772) (-1016))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363) (-363))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772) (-1016)))) -((-2718 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-607 |#4|))) (-620 |#4|) |#4|) 35))) -(((-770 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2718 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-607 |#4|))) (-620 |#4|) |#4|))) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -770)) -((-2718 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *4)) (-4 *4 (-327 *5 *6 *7)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-770 *5 *6 *7 *4))))) -(-10 -7 (-15 -2718 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-607 |#4|))) (-620 |#4|) |#4|))) -((-4060 (((-2 (|:| -3578 |#3|) (|:| |rh| (-607 (-392 |#2|)))) |#4| (-607 (-392 |#2|))) 52)) (-2720 (((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4| |#2|) 60) (((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4|) 59) (((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3| |#2|) 20) (((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3|) 21)) (-2721 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2719 ((|#2| |#3| (-607 (-392 |#2|))) 93) (((-3 |#2| "failed") |#3| (-392 |#2|)) 90))) -(((-771 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2719 ((-3 |#2| "failed") |#3| (-392 |#2|))) (-15 -2719 (|#2| |#3| (-607 (-392 |#2|)))) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3| |#2|)) (-15 -2721 (|#2| |#3| |#1|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4| |#2|)) (-15 -2721 (|#2| |#4| |#1|)) (-15 -4060 ((-2 (|:| -3578 |#3|) (|:| |rh| (-607 (-392 |#2|)))) |#4| (-607 (-392 |#2|))))) (-13 (-348) (-141) (-995 (-392 (-526)))) (-1181 |#1|) (-623 |#2|) (-623 (-392 |#2|))) (T -771)) -((-4060 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-2 (|:| -3578 *7) (|:| |rh| (-607 (-392 *6))))) (-5 *1 (-771 *5 *6 *7 *3)) (-5 *4 (-607 (-392 *6))) (-4 *7 (-623 *6)) (-4 *3 (-623 (-392 *6))))) (-2721 (*1 *2 *3 *4) (-12 (-4 *2 (-1181 *4)) (-5 *1 (-771 *4 *2 *5 *3)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-623 *2)) (-4 *3 (-623 (-392 *2))))) (-2720 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *4 (-1181 *5)) (-5 *2 (-607 (-2 (|:| -4091 *4) (|:| -3539 *4)))) (-5 *1 (-771 *5 *4 *6 *3)) (-4 *6 (-623 *4)) (-4 *3 (-623 (-392 *4))))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-2 (|:| -4091 *5) (|:| -3539 *5)))) (-5 *1 (-771 *4 *5 *6 *3)) (-4 *6 (-623 *5)) (-4 *3 (-623 (-392 *5))))) (-2721 (*1 *2 *3 *4) (-12 (-4 *2 (-1181 *4)) (-5 *1 (-771 *4 *2 *3 *5)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) (-4 *5 (-623 (-392 *2))))) (-2720 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *4 (-1181 *5)) (-5 *2 (-607 (-2 (|:| -4091 *4) (|:| -3539 *4)))) (-5 *1 (-771 *5 *4 *3 *6)) (-4 *3 (-623 *4)) (-4 *6 (-623 (-392 *4))))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-2 (|:| -4091 *5) (|:| -3539 *5)))) (-5 *1 (-771 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-623 (-392 *5))))) (-2719 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-392 *2))) (-4 *2 (-1181 *5)) (-5 *1 (-771 *5 *2 *3 *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) (-4 *6 (-623 (-392 *2))))) (-2719 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-392 *2)) (-4 *2 (-1181 *5)) (-5 *1 (-771 *5 *2 *3 *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) (-4 *6 (-623 *4))))) -(-10 -7 (-15 -2719 ((-3 |#2| "failed") |#3| (-392 |#2|))) (-15 -2719 (|#2| |#3| (-607 (-392 |#2|)))) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3| |#2|)) (-15 -2721 (|#2| |#3| |#1|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4| |#2|)) (-15 -2721 (|#2| |#4| |#1|)) (-15 -4060 ((-2 (|:| -3578 |#3|) (|:| |rh| (-607 (-392 |#2|)))) |#4| (-607 (-392 |#2|))))) -((-2865 (((-111) $ $) NIL)) (-3469 (((-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) $) 13)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 15) (($ (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 12)) (-3353 (((-111) $ $) NIL))) -(((-772) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) $))))) (T -772)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-772)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *1 (-772)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *1 (-772))))) -(-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) $)))) -((-2729 (((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 |#3|))) |#3| (-1 (-607 |#2|) |#2| (-1117 |#2|)) (-1 (-390 |#2|) |#2|)) 118)) (-2730 (((-607 (-2 (|:| |poly| |#2|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|)) 46)) (-2723 (((-607 (-2 (|:| |deg| (-735)) (|:| -3578 |#2|))) |#3|) 95)) (-2722 ((|#2| |#3|) 37)) (-2724 (((-607 (-2 (|:| -4268 |#1|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|)) 82)) (-2725 ((|#3| |#3| (-392 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-773 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2722 (|#2| |#3|)) (-15 -2723 ((-607 (-2 (|:| |deg| (-735)) (|:| -3578 |#2|))) |#3|)) (-15 -2724 ((-607 (-2 (|:| -4268 |#1|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|))) (-15 -2730 ((-607 (-2 (|:| |poly| |#2|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|))) (-15 -2729 ((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 |#3|))) |#3| (-1 (-607 |#2|) |#2| (-1117 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2725 (|#3| |#3| |#2|)) (-15 -2725 (|#3| |#3| (-392 |#2|)))) (-13 (-348) (-141) (-995 (-392 (-526)))) (-1181 |#1|) (-623 |#2|) (-623 (-392 |#2|))) (T -773)) -((-2725 (*1 *2 *2 *3) (-12 (-5 *3 (-392 *5)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *1 (-773 *4 *5 *2 *6)) (-4 *2 (-623 *5)) (-4 *6 (-623 *3)))) (-2725 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-1181 *4)) (-5 *1 (-773 *4 *3 *2 *5)) (-4 *2 (-623 *3)) (-4 *5 (-623 (-392 *3))))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-607 *7) *7 (-1117 *7))) (-5 *5 (-1 (-390 *7) *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-348) (-141) (-995 (-392 (-526))))) (-5 *2 (-607 (-2 (|:| |frac| (-392 *7)) (|:| -3578 *3)))) (-5 *1 (-773 *6 *7 *3 *8)) (-4 *3 (-623 *7)) (-4 *8 (-623 (-392 *7))))) (-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-2 (|:| |poly| *6) (|:| -3578 *3)))) (-5 *1 (-773 *5 *6 *3 *7)) (-4 *3 (-623 *6)) (-4 *7 (-623 (-392 *6))))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-2 (|:| -4268 *5) (|:| -3578 *3)))) (-5 *1 (-773 *5 *6 *3 *7)) (-4 *3 (-623 *6)) (-4 *7 (-623 (-392 *6))))) (-2723 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-2 (|:| |deg| (-735)) (|:| -3578 *5)))) (-5 *1 (-773 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-623 (-392 *5))))) (-2722 (*1 *2 *3) (-12 (-4 *2 (-1181 *4)) (-5 *1 (-773 *4 *2 *3 *5)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) (-4 *5 (-623 (-392 *2)))))) -(-10 -7 (-15 -2722 (|#2| |#3|)) (-15 -2723 ((-607 (-2 (|:| |deg| (-735)) (|:| -3578 |#2|))) |#3|)) (-15 -2724 ((-607 (-2 (|:| -4268 |#1|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|))) (-15 -2730 ((-607 (-2 (|:| |poly| |#2|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|))) (-15 -2729 ((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 |#3|))) |#3| (-1 (-607 |#2|) |#2| (-1117 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2725 (|#3| |#3| |#2|)) (-15 -2725 (|#3| |#3| (-392 |#2|)))) -((-2726 (((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-621 |#2| (-392 |#2|)) (-607 (-392 |#2|))) 121) (((-2 (|:| |particular| (-3 (-392 |#2|) #1="failed")) (|:| -2104 (-607 (-392 |#2|)))) (-621 |#2| (-392 |#2|)) (-392 |#2|)) 120) (((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-620 (-392 |#2|)) (-607 (-392 |#2|))) 115) (((-2 (|:| |particular| (-3 (-392 |#2|) #1#)) (|:| -2104 (-607 (-392 |#2|)))) (-620 (-392 |#2|)) (-392 |#2|)) 113)) (-2727 ((|#2| (-621 |#2| (-392 |#2|))) 80) ((|#2| (-620 (-392 |#2|))) 83))) -(((-774 |#1| |#2|) (-10 -7 (-15 -2726 ((-2 (|:| |particular| (-3 (-392 |#2|) #1="failed")) (|:| -2104 (-607 (-392 |#2|)))) (-620 (-392 |#2|)) (-392 |#2|))) (-15 -2726 ((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-620 (-392 |#2|)) (-607 (-392 |#2|)))) (-15 -2726 ((-2 (|:| |particular| (-3 (-392 |#2|) #1#)) (|:| -2104 (-607 (-392 |#2|)))) (-621 |#2| (-392 |#2|)) (-392 |#2|))) (-15 -2726 ((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-621 |#2| (-392 |#2|)) (-607 (-392 |#2|)))) (-15 -2727 (|#2| (-620 (-392 |#2|)))) (-15 -2727 (|#2| (-621 |#2| (-392 |#2|))))) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|)) (T -774)) -((-2727 (*1 *2 *3) (-12 (-5 *3 (-621 *2 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-774 *4 *2)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-620 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-774 *4 *2)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6 (-392 *6))) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-2 (|:| -2104 (-607 (-392 *6))) (|:| -1676 (-653 *5)))) (-5 *1 (-774 *5 *6)) (-5 *4 (-607 (-392 *6))))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-392 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-774 *5 *6)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-392 *6))) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-2 (|:| -2104 (-607 (-392 *6))) (|:| -1676 (-653 *5)))) (-5 *1 (-774 *5 *6)) (-5 *4 (-607 (-392 *6))))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-392 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) (-5 *1 (-774 *5 *6))))) -(-10 -7 (-15 -2726 ((-2 (|:| |particular| (-3 (-392 |#2|) #1="failed")) (|:| -2104 (-607 (-392 |#2|)))) (-620 (-392 |#2|)) (-392 |#2|))) (-15 -2726 ((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-620 (-392 |#2|)) (-607 (-392 |#2|)))) (-15 -2726 ((-2 (|:| |particular| (-3 (-392 |#2|) #1#)) (|:| -2104 (-607 (-392 |#2|)))) (-621 |#2| (-392 |#2|)) (-392 |#2|))) (-15 -2726 ((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-621 |#2| (-392 |#2|)) (-607 (-392 |#2|)))) (-15 -2727 (|#2| (-620 (-392 |#2|)))) (-15 -2727 (|#2| (-621 |#2| (-392 |#2|))))) -((-2728 (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) |#5| |#4|) 48))) -(((-775 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2728 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) |#5| |#4|))) (-348) (-623 |#1|) (-1181 |#1|) (-689 |#1| |#3|) (-623 |#4|)) (T -775)) -((-2728 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *7 (-1181 *5)) (-4 *4 (-689 *5 *7)) (-5 *2 (-2 (|:| -1676 (-653 *6)) (|:| |vec| (-1205 *5)))) (-5 *1 (-775 *5 *6 *7 *4 *3)) (-4 *6 (-623 *5)) (-4 *3 (-623 *4))))) -(-10 -7 (-15 -2728 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) |#5| |#4|))) -((-2729 (((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|)) 47)) (-2731 (((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|))) 138 (|has| |#1| (-27))) (((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-390 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-607 (-392 |#2|)) (-620 (-392 |#2|))) 140 (|has| |#1| (-27))) (((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|)) 38) (((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|)) 39) (((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|)) 36) (((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|)) 37)) (-2730 (((-607 (-2 (|:| |poly| |#2|) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|)) 83))) -(((-776 |#1| |#2|) (-10 -7 (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -2729 ((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2730 ((-607 (-2 (|:| |poly| |#2|) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)))) (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|)))) |%noBranch|)) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|)) (T -776)) -((-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-621 *5 (-392 *5))) (-4 *5 (-1181 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-392 *5))) (-5 *1 (-776 *4 *5)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-620 (-392 *5))) (-4 *5 (-1181 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-392 *5))) (-5 *1 (-776 *4 *5)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-2 (|:| |poly| *6) (|:| -3578 (-621 *6 (-392 *6)))))) (-5 *1 (-776 *5 *6)) (-5 *3 (-621 *6 (-392 *6))))) (-2729 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-2 (|:| |frac| (-392 *6)) (|:| -3578 (-621 *6 (-392 *6)))))) (-5 *1 (-776 *5 *6)) (-5 *3 (-621 *6 (-392 *6))))) (-2731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *7 (-392 *7))) (-5 *4 (-1 (-607 *6) *7)) (-5 *5 (-1 (-390 *7) *7)) (-4 *6 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *7 (-1181 *6)) (-5 *2 (-607 (-392 *7))) (-5 *1 (-776 *6 *7)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) (-2731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-392 *7))) (-5 *4 (-1 (-607 *6) *7)) (-5 *5 (-1 (-390 *7) *7)) (-4 *6 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *7 (-1181 *6)) (-5 *2 (-607 (-392 *7))) (-5 *1 (-776 *6 *7)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6))))) -(-10 -7 (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -2729 ((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2730 ((-607 (-2 (|:| |poly| |#2|) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)))) (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|)))) |%noBranch|)) -((-2732 (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) (-653 |#2|) (-1205 |#1|)) 85) (((-2 (|:| A (-653 |#1|)) (|:| |eqs| (-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)) (|:| -3578 |#2|) (|:| |rh| |#1|))))) (-653 |#1|) (-1205 |#1|)) 15)) (-2733 (((-2 (|:| |particular| (-3 (-1205 |#1|) "failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#2|) (-1205 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-607 |#1|))) |#2| |#1|)) 92)) (-3895 (((-3 (-2 (|:| |particular| (-1205 |#1|)) (|:| -2104 (-653 |#1|))) "failed") (-653 |#1|) (-1205 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) "failed") |#2| |#1|)) 43))) -(((-777 |#1| |#2|) (-10 -7 (-15 -2732 ((-2 (|:| A (-653 |#1|)) (|:| |eqs| (-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)) (|:| -3578 |#2|) (|:| |rh| |#1|))))) (-653 |#1|) (-1205 |#1|))) (-15 -2732 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) (-653 |#2|) (-1205 |#1|))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#1|)) (|:| -2104 (-653 |#1|))) "failed") (-653 |#1|) (-1205 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) "failed") |#2| |#1|))) (-15 -2733 ((-2 (|:| |particular| (-3 (-1205 |#1|) "failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#2|) (-1205 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-607 |#1|))) |#2| |#1|)))) (-348) (-623 |#1|)) (T -777)) -((-2733 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2104 (-607 *6))) *7 *6)) (-4 *6 (-348)) (-4 *7 (-623 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1205 *6) "failed")) (|:| -2104 (-607 (-1205 *6))))) (-5 *1 (-777 *6 *7)) (-5 *4 (-1205 *6)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2104 (-607 *6))) "failed") *7 *6)) (-4 *6 (-348)) (-4 *7 (-623 *6)) (-5 *2 (-2 (|:| |particular| (-1205 *6)) (|:| -2104 (-653 *6)))) (-5 *1 (-777 *6 *7)) (-5 *3 (-653 *6)) (-5 *4 (-1205 *6)))) (-2732 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-623 *5)) (-5 *2 (-2 (|:| -1676 (-653 *6)) (|:| |vec| (-1205 *5)))) (-5 *1 (-777 *5 *6)) (-5 *3 (-653 *6)) (-5 *4 (-1205 *5)))) (-2732 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-5 *2 (-2 (|:| A (-653 *5)) (|:| |eqs| (-607 (-2 (|:| C (-653 *5)) (|:| |g| (-1205 *5)) (|:| -3578 *6) (|:| |rh| *5)))))) (-5 *1 (-777 *5 *6)) (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *6 (-623 *5))))) -(-10 -7 (-15 -2732 ((-2 (|:| A (-653 |#1|)) (|:| |eqs| (-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)) (|:| -3578 |#2|) (|:| |rh| |#1|))))) (-653 |#1|) (-1205 |#1|))) (-15 -2732 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) (-653 |#2|) (-1205 |#1|))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#1|)) (|:| -2104 (-653 |#1|))) "failed") (-653 |#1|) (-1205 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) "failed") |#2| |#1|))) (-15 -2733 ((-2 (|:| |particular| (-3 (-1205 |#1|) "failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#2|) (-1205 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-607 |#1|))) |#2| |#1|)))) -((-2734 (((-653 |#1|) (-607 |#1|) (-735)) 13) (((-653 |#1|) (-607 |#1|)) 14)) (-2735 (((-3 (-1205 |#1|) "failed") |#2| |#1| (-607 |#1|)) 34)) (-3659 (((-3 |#1| "failed") |#2| |#1| (-607 |#1|) (-1 |#1| |#1|)) 42))) -(((-778 |#1| |#2|) (-10 -7 (-15 -2734 ((-653 |#1|) (-607 |#1|))) (-15 -2734 ((-653 |#1|) (-607 |#1|) (-735))) (-15 -2735 ((-3 (-1205 |#1|) "failed") |#2| |#1| (-607 |#1|))) (-15 -3659 ((-3 |#1| "failed") |#2| |#1| (-607 |#1|) (-1 |#1| |#1|)))) (-348) (-623 |#1|)) (T -778)) -((-3659 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-607 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-348)) (-5 *1 (-778 *2 *3)) (-4 *3 (-623 *2)))) (-2735 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-607 *4)) (-4 *4 (-348)) (-5 *2 (-1205 *4)) (-5 *1 (-778 *4 *3)) (-4 *3 (-623 *4)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-735)) (-4 *5 (-348)) (-5 *2 (-653 *5)) (-5 *1 (-778 *5 *6)) (-4 *6 (-623 *5)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-348)) (-5 *2 (-653 *4)) (-5 *1 (-778 *4 *5)) (-4 *5 (-623 *4))))) -(-10 -7 (-15 -2734 ((-653 |#1|) (-607 |#1|))) (-15 -2734 ((-653 |#1|) (-607 |#1|) (-735))) (-15 -2735 ((-3 (-1205 |#1|) "failed") |#2| |#1| (-607 |#1|))) (-15 -3659 ((-3 |#1| "failed") |#2| |#1| (-607 |#1|) (-1 |#1| |#1|)))) -((-2865 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-3502 (((-111) $) NIL (|has| |#2| (-129)))) (-4029 (($ (-878)) NIL (|has| |#2| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#2| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#2| (-353)))) (-3945 (((-526) $) NIL (|has| |#2| (-809)))) (-4106 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1052)))) (-3469 (((-526) $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) ((|#2| $) NIL (|has| |#2| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL (|has| |#2| (-1004))) (((-653 |#2|) (-653 $)) NIL (|has| |#2| (-1004)))) (-3781 (((-3 $ "failed") $) NIL (|has| |#2| (-691)))) (-3294 (($) NIL (|has| |#2| (-353)))) (-1613 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ (-526)) NIL)) (-3500 (((-111) $) NIL (|has| |#2| (-809)))) (-2044 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (|has| |#2| (-691)))) (-3501 (((-111) $) NIL (|has| |#2| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#2| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#2| (-1052)))) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#2| (-353)))) (-3555 (((-1070) $) NIL (|has| |#2| (-1052)))) (-4119 ((|#2| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-526)) NIL)) (-4155 ((|#2| $ $) NIL (|has| |#2| (-1004)))) (-1501 (($ (-1205 |#2|)) NIL)) (-4230 (((-131)) NIL (|has| |#2| (-348)))) (-4129 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#2|) $) NIL) (($ (-526)) NIL (-3850 (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (|has| |#2| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (($ |#2|) NIL (|has| |#2| (-1052))) (((-823) $) NIL (|has| |#2| (-583 (-823))))) (-3423 (((-735)) NIL (|has| |#2| (-1004)))) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#2| (-809)))) (-2957 (($) NIL (|has| |#2| (-129)) CONST)) (-2964 (($) NIL (|has| |#2| (-691)) CONST)) (-2969 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-3353 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-2984 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2985 (((-111) $ $) 11 (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $ $) NIL (|has| |#2| (-1004))) (($ $) NIL (|has| |#2| (-1004)))) (-4158 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-735)) NIL (|has| |#2| (-691))) (($ $ (-878)) NIL (|has| |#2| (-691)))) (* (($ (-526) $) NIL (|has| |#2| (-1004))) (($ $ $) NIL (|has| |#2| (-691))) (($ $ |#2|) NIL (|has| |#2| (-691))) (($ |#2| $) NIL (|has| |#2| (-691))) (($ (-735) $) NIL (|has| |#2| (-129))) (($ (-878) $) NIL (|has| |#2| (-25)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-779 |#1| |#2| |#3|) (-224 |#1| |#2|) (-735) (-757) (-1 (-111) (-1205 |#2|) (-1205 |#2|))) (T -779)) -NIL -(-224 |#1| |#2|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1519 (((-607 (-735)) $) NIL) (((-607 (-735)) $ (-1123)) NIL)) (-1553 (((-735) $) NIL) (((-735) $ (-1123)) NIL)) (-3384 (((-607 (-782 (-1123))) $) NIL)) (-3386 (((-1117 $) $ (-782 (-1123))) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-782 (-1123)))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1515 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-782 (-1123)) #2#) $) NIL) (((-3 (-1123) #2#) $) NIL) (((-3 (-1075 |#1| (-1123)) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-782 (-1123)) $) NIL) (((-1123) $) NIL) (((-1075 |#1| (-1123)) $) NIL)) (-4075 (($ $ $ (-782 (-1123))) NIL (|has| |#1| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-782 (-1123))) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 (-782 (-1123))) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-782 (-1123)) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-782 (-1123)) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ (-1123)) NIL) (((-735) $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#1|) (-782 (-1123))) NIL) (($ (-1117 $) (-782 (-1123))) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 (-782 (-1123)))) NIL) (($ $ (-782 (-1123)) (-735)) NIL) (($ $ (-607 (-782 (-1123))) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-782 (-1123))) NIL)) (-3120 (((-512 (-782 (-1123))) $) NIL) (((-735) $ (-782 (-1123))) NIL) (((-607 (-735)) $ (-607 (-782 (-1123)))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 (-782 (-1123))) (-512 (-782 (-1123)))) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1554 (((-1 $ (-735)) (-1123)) NIL) (((-1 $ (-735)) $) NIL (|has| |#1| (-219)))) (-3385 (((-3 (-782 (-1123)) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1517 (((-782 (-1123)) $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-1518 (((-111) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-782 (-1123))) (|:| -2462 (-735))) #3#) $) NIL)) (-1516 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-782 (-1123)) |#1|) NIL) (($ $ (-607 (-782 (-1123))) (-607 |#1|)) NIL) (($ $ (-782 (-1123)) $) NIL) (($ $ (-607 (-782 (-1123))) (-607 $)) NIL) (($ $ (-1123) $) NIL (|has| |#1| (-219))) (($ $ (-607 (-1123)) (-607 $)) NIL (|has| |#1| (-219))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-219))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-219)))) (-4076 (($ $ (-782 (-1123))) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-782 (-1123))) NIL) (($ $ (-607 (-782 (-1123)))) NIL) (($ $ (-782 (-1123)) (-735)) NIL) (($ $ (-607 (-782 (-1123))) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1520 (((-607 (-1123)) $) NIL)) (-4264 (((-512 (-782 (-1123))) $) NIL) (((-735) $ (-782 (-1123))) NIL) (((-607 (-735)) $ (-607 (-782 (-1123)))) NIL) (((-735) $ (-1123)) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-782 (-1123)) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-782 (-1123)) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-782 (-1123)) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-782 (-1123))) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-782 (-1123))) NIL) (($ (-1123)) NIL) (($ (-1075 |#1| (-1123))) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 (-782 (-1123)))) NIL) (($ $ (-782 (-1123)) (-735)) NIL) (($ $ (-607 (-782 (-1123))) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-782 (-1123))) NIL) (($ $ (-607 (-782 (-1123)))) NIL) (($ $ (-782 (-1123)) (-735)) NIL) (($ $ (-607 (-782 (-1123))) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-780 |#1|) (-13 (-238 |#1| (-1123) (-782 (-1123)) (-512 (-782 (-1123)))) (-995 (-1075 |#1| (-1123)))) (-1004)) (T -780)) -NIL -(-13 (-238 |#1| (-1123) (-782 (-1123)) (-512 (-782 (-1123)))) (-995 (-1075 |#1| (-1123)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-348)))) (-2151 (($ $) NIL (|has| |#2| (-348)))) (-2149 (((-111) $) NIL (|has| |#2| (-348)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#2| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-348)))) (-1681 (((-111) $ $) NIL (|has| |#2| (-348)))) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL (|has| |#2| (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#2| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#2| (-348)))) (-4045 (((-111) $) NIL (|has| |#2| (-348)))) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL (|has| |#2| (-348)))) (-1989 (($ (-607 $)) NIL (|has| |#2| (-348))) (($ $ $) NIL (|has| |#2| (-348)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 20 (|has| |#2| (-348)))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-348))) (($ $ $) NIL (|has| |#2| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#2| (-348)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#2| (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#2| (-348)))) (-1680 (((-735) $) NIL (|has| |#2| (-348)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-348)))) (-4129 (($ $ (-735)) NIL) (($ $) 13)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-392 (-526))) NIL (|has| |#2| (-348))) (($ $) NIL (|has| |#2| (-348)))) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL (|has| |#2| (-348)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) 15 (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL) (($ $ (-526)) 18 (|has| |#2| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-392 (-526)) $) NIL (|has| |#2| (-348))) (($ $ (-392 (-526))) NIL (|has| |#2| (-348))))) -(((-781 |#1| |#2| |#3|) (-13 (-110 $ $) (-219) (-10 -8 (IF (|has| |#2| (-348)) (-6 (-348)) |%noBranch|) (-15 -4274 ($ |#2|)) (-15 -4274 (|#2| $)))) (-1052) (-859 |#1|) |#1|) (T -781)) -((-4274 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-14 *4 *3) (-5 *1 (-781 *3 *2 *4)) (-4 *2 (-859 *3)))) (-4274 (*1 *2 *1) (-12 (-4 *2 (-859 *3)) (-5 *1 (-781 *3 *2 *4)) (-4 *3 (-1052)) (-14 *4 *3)))) -(-13 (-110 $ $) (-219) (-10 -8 (IF (|has| |#2| (-348)) (-6 (-348)) |%noBranch|) (-15 -4274 ($ |#2|)) (-15 -4274 (|#2| $)))) -((-2865 (((-111) $ $) NIL)) (-1553 (((-735) $) NIL)) (-4150 ((|#1| $) 10)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-4090 (((-735) $) 11)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-1554 (($ |#1| (-735)) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4129 (($ $) NIL) (($ $ (-735)) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL))) -(((-782 |#1|) (-251 |#1|) (-811)) (T -782)) -NIL -(-251 |#1|) -((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) 29)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-4256 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-4117 (($ $) 31)) (-3781 (((-3 $ "failed") $) NIL)) (-2739 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2471 (((-111) $) NIL)) (-2737 ((|#1| $ (-526)) NIL)) (-2738 (((-735) $ (-526)) NIL)) (-4253 (($ $) 36)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4257 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2742 (((-111) $ $) 34)) (-4152 (((-735) $) 25)) (-3554 (((-1106) $) NIL)) (-2740 (($ $ $) NIL)) (-2741 (($ $ $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 ((|#1| $) 30)) (-2736 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $) NIL)) (-2862 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-2964 (($) 15 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 35)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ |#1| (-735)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-783 |#1|) (-13 (-807) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-735))) (-15 -4119 (|#1| $)) (-15 -4117 ($ $)) (-15 -4253 ($ $)) (-15 -2742 ((-111) $ $)) (-15 -2741 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -4257 ((-3 $ "failed") $ $)) (-15 -4256 ((-3 $ "failed") $ $)) (-15 -4257 ((-3 $ "failed") $ |#1|)) (-15 -4256 ((-3 $ "failed") $ |#1|)) (-15 -2862 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3433 ((-735) $)) (-15 -2738 ((-735) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $)) (-15 -4152 ((-735) $)) (-15 -4251 ((-607 |#1|) $)))) (-811)) (T -783)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4119 (*1 *2 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4253 (*1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-2742 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-2741 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-2740 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4257 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4256 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4257 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4256 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-2862 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-783 *3)) (|:| |rm| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-2739 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-783 *3)) (|:| |mm| (-783 *3)) (|:| |rm| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-2738 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-735)) (-5 *1 (-783 *4)) (-4 *4 (-811)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-735))))) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-783 *3)) (-4 *3 (-811))))) -(-13 (-807) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-735))) (-15 -4119 (|#1| $)) (-15 -4117 ($ $)) (-15 -4253 ($ $)) (-15 -2742 ((-111) $ $)) (-15 -2741 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -4257 ((-3 $ "failed") $ $)) (-15 -4256 ((-3 $ "failed") $ $)) (-15 -4257 ((-3 $ "failed") $ |#1|)) (-15 -4256 ((-3 $ "failed") $ |#1|)) (-15 -2862 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3433 ((-735) $)) (-15 -2738 ((-735) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $)) (-15 -4152 ((-735) $)) (-15 -4251 ((-607 |#1|) $)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3945 (((-526) $) 51)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-3500 (((-111) $) 49)) (-2471 (((-111) $) 30)) (-3501 (((-111) $) 50)) (-3637 (($ $ $) 48)) (-3638 (($ $ $) 47)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-3702 (($ $) 52)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 45)) (-2864 (((-111) $ $) 44)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 46)) (-2985 (((-111) $ $) 43)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-784) (-134)) (T -784)) -NIL -(-13 (-533) (-809)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-809) . T) ((-811) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2803 (((-1211) (-787) $ (-111)) 9) (((-1211) (-787) $) 8) (((-1106) $ (-111)) 7) (((-1106) $) 6))) -(((-785) (-134)) (T -785)) -((-2803 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-785)) (-5 *3 (-787)) (-5 *4 (-111)) (-5 *2 (-1211)))) (-2803 (*1 *2 *3 *1) (-12 (-4 *1 (-785)) (-5 *3 (-787)) (-5 *2 (-1211)))) (-2803 (*1 *2 *1 *3) (-12 (-4 *1 (-785)) (-5 *3 (-111)) (-5 *2 (-1106)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-785)) (-5 *2 (-1106))))) -(-13 (-10 -8 (-15 -2803 ((-1106) $)) (-15 -2803 ((-1106) $ (-111))) (-15 -2803 ((-1211) (-787) $)) (-15 -2803 ((-1211) (-787) $ (-111))))) -((-2743 (($ (-1070)) 7)) (-2747 (((-111) $ (-1106) (-1070)) 15)) (-2746 (((-787) $) 12)) (-2745 (((-787) $) 11)) (-2744 (((-1211) $) 9)) (-2748 (((-111) $ (-1070)) 16))) -(((-786) (-10 -8 (-15 -2743 ($ (-1070))) (-15 -2744 ((-1211) $)) (-15 -2745 ((-787) $)) (-15 -2746 ((-787) $)) (-15 -2747 ((-111) $ (-1106) (-1070))) (-15 -2748 ((-111) $ (-1070))))) (T -786)) -((-2748 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-111)) (-5 *1 (-786)))) (-2747 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-1070)) (-5 *2 (-111)) (-5 *1 (-786)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-786)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-786)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-786)))) (-2743 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-786))))) -(-10 -8 (-15 -2743 ($ (-1070))) (-15 -2744 ((-1211) $)) (-15 -2745 ((-787) $)) (-15 -2746 ((-787) $)) (-15 -2747 ((-111) $ (-1106) (-1070))) (-15 -2748 ((-111) $ (-1070)))) -((-2752 (((-1211) $ (-788)) 12)) (-2769 (((-1211) $ (-1123)) 32)) (-2771 (((-1211) $ (-1106) (-1106)) 34)) (-2770 (((-1211) $ (-1106)) 33)) (-2759 (((-1211) $) 19)) (-2767 (((-1211) $ (-526)) 28)) (-2768 (((-1211) $ (-211)) 30)) (-2758 (((-1211) $) 18)) (-2766 (((-1211) $) 26)) (-2765 (((-1211) $) 25)) (-2763 (((-1211) $) 23)) (-2764 (((-1211) $) 24)) (-2762 (((-1211) $) 22)) (-2761 (((-1211) $) 21)) (-2760 (((-1211) $) 20)) (-2756 (((-1211) $) 16)) (-2757 (((-1211) $) 17)) (-2755 (((-1211) $) 15)) (-2754 (((-1211) $) 14)) (-2753 (((-1211) $) 13)) (-2750 (($ (-1106) (-788)) 9)) (-2749 (($ (-1106) (-1106) (-788)) 8)) (-2788 (((-1123) $) 51)) (-2791 (((-1123) $) 55)) (-2790 (((-2 (|:| |cd| (-1106)) (|:| -3864 (-1106))) $) 54)) (-2789 (((-1106) $) 52)) (-2778 (((-1211) $) 41)) (-2786 (((-526) $) 49)) (-2787 (((-211) $) 50)) (-2777 (((-1211) $) 40)) (-2785 (((-1211) $) 48)) (-2784 (((-1211) $) 47)) (-2782 (((-1211) $) 45)) (-2783 (((-1211) $) 46)) (-2781 (((-1211) $) 44)) (-2780 (((-1211) $) 43)) (-2779 (((-1211) $) 42)) (-2775 (((-1211) $) 38)) (-2776 (((-1211) $) 39)) (-2774 (((-1211) $) 37)) (-2773 (((-1211) $) 36)) (-2772 (((-1211) $) 35)) (-2751 (((-1211) $) 11))) -(((-787) (-10 -8 (-15 -2749 ($ (-1106) (-1106) (-788))) (-15 -2750 ($ (-1106) (-788))) (-15 -2751 ((-1211) $)) (-15 -2752 ((-1211) $ (-788))) (-15 -2753 ((-1211) $)) (-15 -2754 ((-1211) $)) (-15 -2755 ((-1211) $)) (-15 -2756 ((-1211) $)) (-15 -2757 ((-1211) $)) (-15 -2758 ((-1211) $)) (-15 -2759 ((-1211) $)) (-15 -2760 ((-1211) $)) (-15 -2761 ((-1211) $)) (-15 -2762 ((-1211) $)) (-15 -2763 ((-1211) $)) (-15 -2764 ((-1211) $)) (-15 -2765 ((-1211) $)) (-15 -2766 ((-1211) $)) (-15 -2767 ((-1211) $ (-526))) (-15 -2768 ((-1211) $ (-211))) (-15 -2769 ((-1211) $ (-1123))) (-15 -2770 ((-1211) $ (-1106))) (-15 -2771 ((-1211) $ (-1106) (-1106))) (-15 -2772 ((-1211) $)) (-15 -2773 ((-1211) $)) (-15 -2774 ((-1211) $)) (-15 -2775 ((-1211) $)) (-15 -2776 ((-1211) $)) (-15 -2777 ((-1211) $)) (-15 -2778 ((-1211) $)) (-15 -2779 ((-1211) $)) (-15 -2780 ((-1211) $)) (-15 -2781 ((-1211) $)) (-15 -2782 ((-1211) $)) (-15 -2783 ((-1211) $)) (-15 -2784 ((-1211) $)) (-15 -2785 ((-1211) $)) (-15 -2786 ((-526) $)) (-15 -2787 ((-211) $)) (-15 -2788 ((-1123) $)) (-15 -2789 ((-1106) $)) (-15 -2790 ((-2 (|:| |cd| (-1106)) (|:| -3864 (-1106))) $)) (-15 -2791 ((-1123) $)))) (T -787)) -((-2791 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-787)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1106)) (|:| -3864 (-1106)))) (-5 *1 (-787)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-787)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-787)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-787)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-787)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2771 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2770 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2767 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2751 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2750 (*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-788)) (-5 *1 (-787)))) (-2749 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-788)) (-5 *1 (-787))))) -(-10 -8 (-15 -2749 ($ (-1106) (-1106) (-788))) (-15 -2750 ($ (-1106) (-788))) (-15 -2751 ((-1211) $)) (-15 -2752 ((-1211) $ (-788))) (-15 -2753 ((-1211) $)) (-15 -2754 ((-1211) $)) (-15 -2755 ((-1211) $)) (-15 -2756 ((-1211) $)) (-15 -2757 ((-1211) $)) (-15 -2758 ((-1211) $)) (-15 -2759 ((-1211) $)) (-15 -2760 ((-1211) $)) (-15 -2761 ((-1211) $)) (-15 -2762 ((-1211) $)) (-15 -2763 ((-1211) $)) (-15 -2764 ((-1211) $)) (-15 -2765 ((-1211) $)) (-15 -2766 ((-1211) $)) (-15 -2767 ((-1211) $ (-526))) (-15 -2768 ((-1211) $ (-211))) (-15 -2769 ((-1211) $ (-1123))) (-15 -2770 ((-1211) $ (-1106))) (-15 -2771 ((-1211) $ (-1106) (-1106))) (-15 -2772 ((-1211) $)) (-15 -2773 ((-1211) $)) (-15 -2774 ((-1211) $)) (-15 -2775 ((-1211) $)) (-15 -2776 ((-1211) $)) (-15 -2777 ((-1211) $)) (-15 -2778 ((-1211) $)) (-15 -2779 ((-1211) $)) (-15 -2780 ((-1211) $)) (-15 -2781 ((-1211) $)) (-15 -2782 ((-1211) $)) (-15 -2783 ((-1211) $)) (-15 -2784 ((-1211) $)) (-15 -2785 ((-1211) $)) (-15 -2786 ((-526) $)) (-15 -2787 ((-211) $)) (-15 -2788 ((-1123) $)) (-15 -2789 ((-1106) $)) (-15 -2790 ((-2 (|:| |cd| (-1106)) (|:| -3864 (-1106))) $)) (-15 -2791 ((-1123) $))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 12)) (-2794 (($) 15)) (-2795 (($) 13)) (-2793 (($) 16)) (-2792 (($) 14)) (-3353 (((-111) $ $) 8))) -(((-788) (-13 (-1052) (-10 -8 (-15 -2795 ($)) (-15 -2794 ($)) (-15 -2793 ($)) (-15 -2792 ($))))) (T -788)) -((-2795 (*1 *1) (-5 *1 (-788))) (-2794 (*1 *1) (-5 *1 (-788))) (-2793 (*1 *1) (-5 *1 (-788))) (-2792 (*1 *1) (-5 *1 (-788)))) -(-13 (-1052) (-10 -8 (-15 -2795 ($)) (-15 -2794 ($)) (-15 -2793 ($)) (-15 -2792 ($)))) -((-2865 (((-111) $ $) NIL)) (-2796 (($ (-790) (-607 (-1123))) 24)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2798 (((-790) $) 25)) (-2797 (((-607 (-1123)) $) 26)) (-4274 (((-823) $) 23)) (-3353 (((-111) $ $) NIL))) -(((-789) (-13 (-1052) (-10 -8 (-15 -2798 ((-790) $)) (-15 -2797 ((-607 (-1123)) $)) (-15 -2796 ($ (-790) (-607 (-1123))))))) (T -789)) -((-2798 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-789)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-789)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-607 (-1123))) (-5 *1 (-789))))) -(-13 (-1052) (-10 -8 (-15 -2798 ((-790) $)) (-15 -2797 ((-607 (-1123)) $)) (-15 -2796 ($ (-790) (-607 (-1123)))))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 21) (($ (-1123)) 17)) (-2800 (((-111) $) 10)) (-2801 (((-111) $) 9)) (-2799 (((-111) $) 11)) (-2802 (((-111) $) 8)) (-3353 (((-111) $ $) 19))) -(((-790) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-1123))) (-15 -2802 ((-111) $)) (-15 -2801 ((-111) $)) (-15 -2800 ((-111) $)) (-15 -2799 ((-111) $))))) (T -790)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-790)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) -(-13 (-1052) (-10 -8 (-15 -4274 ($ (-1123))) (-15 -2802 ((-111) $)) (-15 -2801 ((-111) $)) (-15 -2800 ((-111) $)) (-15 -2799 ((-111) $)))) -((-2803 (((-1211) (-787) (-299 |#1|) (-111)) 23) (((-1211) (-787) (-299 |#1|)) 79) (((-1106) (-299 |#1|) (-111)) 78) (((-1106) (-299 |#1|)) 77))) -(((-791 |#1|) (-10 -7 (-15 -2803 ((-1106) (-299 |#1|))) (-15 -2803 ((-1106) (-299 |#1|) (-111))) (-15 -2803 ((-1211) (-787) (-299 |#1|))) (-15 -2803 ((-1211) (-787) (-299 |#1|) (-111)))) (-13 (-785) (-811) (-1004))) (T -791)) -((-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787)) (-5 *4 (-299 *6)) (-5 *5 (-111)) (-4 *6 (-13 (-785) (-811) (-1004))) (-5 *2 (-1211)) (-5 *1 (-791 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-299 *5)) (-4 *5 (-13 (-785) (-811) (-1004))) (-5 *2 (-1211)) (-5 *1 (-791 *5)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-299 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-785) (-811) (-1004))) (-5 *2 (-1106)) (-5 *1 (-791 *5)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-299 *4)) (-4 *4 (-13 (-785) (-811) (-1004))) (-5 *2 (-1106)) (-5 *1 (-791 *4))))) -(-10 -7 (-15 -2803 ((-1106) (-299 |#1|))) (-15 -2803 ((-1106) (-299 |#1|) (-111))) (-15 -2803 ((-1211) (-787) (-299 |#1|))) (-15 -2803 ((-1211) (-787) (-299 |#1|) (-111)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2804 ((|#1| $) 10)) (-2805 (($ |#1|) 9)) (-2471 (((-111) $) NIL)) (-3193 (($ |#2| (-735)) NIL)) (-3120 (((-735) $) NIL)) (-3487 ((|#2| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4129 (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $) NIL (|has| |#1| (-219)))) (-4264 (((-735) $) NIL)) (-4274 (((-823) $) 17) (($ (-526)) NIL) (($ |#2|) NIL (|has| |#2| (-163)))) (-3999 ((|#2| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $) NIL (|has| |#1| (-219)))) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-792 |#1| |#2|) (-13 (-673 |#2|) (-10 -8 (IF (|has| |#1| (-219)) (-6 (-219)) |%noBranch|) (-15 -2805 ($ |#1|)) (-15 -2804 (|#1| $)))) (-673 |#2|) (-1004)) (T -792)) -((-2805 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-792 *2 *3)) (-4 *2 (-673 *3)))) (-2804 (*1 *2 *1) (-12 (-4 *2 (-673 *3)) (-5 *1 (-792 *2 *3)) (-4 *3 (-1004))))) -(-13 (-673 |#2|) (-10 -8 (IF (|has| |#1| (-219)) (-6 (-219)) |%noBranch|) (-15 -2805 ($ |#1|)) (-15 -2804 (|#1| $)))) -((-2813 (((-296) (-1106) (-1106)) 12)) (-2812 (((-111) (-1106) (-1106)) 34)) (-2811 (((-111) (-1106)) 33)) (-2808 (((-50) (-1106)) 25)) (-2807 (((-50) (-1106)) 23)) (-2806 (((-50) (-787)) 17)) (-2810 (((-607 (-1106)) (-1106)) 28)) (-2809 (((-607 (-1106))) 27))) -(((-793) (-10 -7 (-15 -2806 ((-50) (-787))) (-15 -2807 ((-50) (-1106))) (-15 -2808 ((-50) (-1106))) (-15 -2809 ((-607 (-1106)))) (-15 -2810 ((-607 (-1106)) (-1106))) (-15 -2811 ((-111) (-1106))) (-15 -2812 ((-111) (-1106) (-1106))) (-15 -2813 ((-296) (-1106) (-1106))))) (T -793)) -((-2813 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-793)))) (-2812 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-793)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-793)))) (-2810 (*1 *2 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-793)) (-5 *3 (-1106)))) (-2809 (*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-793)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-793)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-793)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-50)) (-5 *1 (-793))))) -(-10 -7 (-15 -2806 ((-50) (-787))) (-15 -2807 ((-50) (-1106))) (-15 -2808 ((-50) (-1106))) (-15 -2809 ((-607 (-1106)))) (-15 -2810 ((-607 (-1106)) (-1106))) (-15 -2811 ((-111) (-1106))) (-15 -2812 ((-111) (-1106) (-1106))) (-15 -2813 ((-296) (-1106) (-1106)))) -((-2865 (((-111) $ $) 19)) (-3546 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3548 (($ $ $) 72)) (-3547 (((-111) $ $) 73)) (-1244 (((-111) $ (-735)) 8)) (-3551 (($ (-607 |#1|)) 68) (($) 67)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2424 (($ $) 62)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 64)) (-4041 (((-111) $ (-735)) 9)) (-3637 ((|#1| $) 78)) (-3159 (($ $ $) 81)) (-3832 (($ $ $) 80)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3638 ((|#1| $) 79)) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22)) (-3550 (($ $ $) 69)) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40) (($ |#1| $ (-735)) 63)) (-3555 (((-1070) $) 21)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 61)) (-3549 (($ $ |#1|) 71) (($ $ $) 70)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18)) (-3552 (($ (-607 |#1|)) 66) (($) 65)) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-794 |#1|) (-134) (-811)) (T -794)) -((-3637 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-811))))) -(-13 (-702 |t#1|) (-927 |t#1|) (-10 -8 (-15 -3637 (|t#1| $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-659 |#1|) . T) ((-702 |#1|) . T) ((-927 |#1|) . T) ((-1050 |#1|) . T) ((-1052) . T) ((-1159) . T)) -((-2816 (((-1211) (-1070) (-1070)) 47)) (-2815 (((-1211) (-786) (-50)) 44)) (-2814 (((-50) (-786)) 16))) -(((-795) (-10 -7 (-15 -2814 ((-50) (-786))) (-15 -2815 ((-1211) (-786) (-50))) (-15 -2816 ((-1211) (-1070) (-1070))))) (T -795)) -((-2816 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1211)) (-5 *1 (-795)))) (-2815 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-50)) (-5 *2 (-1211)) (-5 *1 (-795)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-50)) (-5 *1 (-795))))) -(-10 -7 (-15 -2814 ((-50) (-786))) (-15 -2815 ((-1211) (-786) (-50))) (-15 -2816 ((-1211) (-1070) (-1070)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL (|has| |#1| (-21)))) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3945 (((-526) $) NIL (|has| |#1| (-809)))) (-3855 (($) NIL (|has| |#1| (-21)) CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 15)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 9)) (-3781 (((-3 $ "failed") $) 40 (|has| |#1| (-809)))) (-3324 (((-3 (-392 (-526)) "failed") $) 49 (|has| |#1| (-525)))) (-3323 (((-111) $) 43 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 46 (|has| |#1| (-525)))) (-3500 (((-111) $) NIL (|has| |#1| (-809)))) (-2471 (((-111) $) NIL (|has| |#1| (-809)))) (-3501 (((-111) $) NIL (|has| |#1| (-809)))) (-3637 (($ $ $) NIL (|has| |#1| (-809)))) (-3638 (($ $ $) NIL (|has| |#1| (-809)))) (-3554 (((-1106) $) NIL)) (-2817 (($) 13)) (-2829 (((-111) $) 12)) (-3555 (((-1070) $) NIL)) (-2830 (((-111) $) 11)) (-4274 (((-823) $) 18) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 8) (($ (-526)) NIL (-3850 (|has| |#1| (-809)) (|has| |#1| (-995 (-526)))))) (-3423 (((-735)) 34 (|has| |#1| (-809)))) (-3702 (($ $) NIL (|has| |#1| (-809)))) (-2957 (($) 22 (|has| |#1| (-21)) CONST)) (-2964 (($) 31 (|has| |#1| (-809)) CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-809)))) (-3353 (((-111) $ $) 20)) (-2984 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2985 (((-111) $ $) 42 (|has| |#1| (-809)))) (-4156 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4158 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-878)) NIL (|has| |#1| (-809))) (($ $ (-735)) NIL (|has| |#1| (-809)))) (* (($ $ $) 37 (|has| |#1| (-809))) (($ (-526) $) 25 (|has| |#1| (-21))) (($ (-735) $) NIL (|has| |#1| (-21))) (($ (-878) $) NIL (|has| |#1| (-21))))) -(((-796 |#1|) (-13 (-1052) (-397 |#1|) (-10 -8 (-15 -2817 ($)) (-15 -2830 ((-111) $)) (-15 -2829 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) (-1052)) (T -796)) -((-2817 (*1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-1052)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-1052)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-1052)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) (-3324 (*1 *2 *1) (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052))))) -(-13 (-1052) (-397 |#1|) (-10 -8 (-15 -2817 ($)) (-15 -2830 ((-111) $)) (-15 -2829 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) -((-4275 (((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|) (-796 |#2|)) 12) (((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|)) 13))) -(((-797 |#1| |#2|) (-10 -7 (-15 -4275 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|))) (-15 -4275 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|) (-796 |#2|)))) (-1052) (-1052)) (T -797)) -((-4275 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-796 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *1 (-797 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-796 *6)) (-5 *1 (-797 *5 *6))))) -(-10 -7 (-15 -4275 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|))) (-15 -4275 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|) (-796 |#2|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #1="failed") $) NIL) (((-3 (-112) #1#) $) NIL)) (-3469 ((|#1| $) NIL) (((-112) $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2819 ((|#1| (-112) |#1|) NIL)) (-2471 (((-111) $) NIL)) (-2818 (($ |#1| (-346 (-112))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2820 (($ $ (-1 |#1| |#1|)) NIL)) (-2821 (($ $ (-1 |#1| |#1|)) NIL)) (-4118 ((|#1| $ |#1|) NIL)) (-2822 ((|#1| |#1|) NIL (|has| |#1| (-163)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-112)) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-2823 (($ $) NIL (|has| |#1| (-163))) (($ $ $) NIL (|has| |#1| (-163)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ (-112) (-526)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) -(((-798 |#1|) (-13 (-1004) (-995 |#1|) (-995 (-112)) (-271 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2822 (|#1| |#1|))) |%noBranch|) (-15 -2821 ($ $ (-1 |#1| |#1|))) (-15 -2820 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-526))) (-15 ** ($ $ (-526))) (-15 -2819 (|#1| (-112) |#1|)) (-15 -2818 ($ |#1| (-346 (-112)))))) (-1004)) (T -798)) -((-2823 (*1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004)))) (-2823 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004)))) (-2822 (*1 *2 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-798 *3)))) (-2820 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-798 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-526)) (-5 *1 (-798 *4)) (-4 *4 (-1004)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-798 *3)) (-4 *3 (-1004)))) (-2819 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-798 *2)) (-4 *2 (-1004)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *3 (-346 (-112))) (-5 *1 (-798 *2)) (-4 *2 (-1004))))) -(-13 (-1004) (-995 |#1|) (-995 (-112)) (-271 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2822 (|#1| |#1|))) |%noBranch|) (-15 -2821 ($ $ (-1 |#1| |#1|))) (-15 -2820 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-526))) (-15 ** ($ $ (-526))) (-15 -2819 (|#1| (-112) |#1|)) (-15 -2818 ($ |#1| (-346 (-112)))))) -((-2824 (((-201 (-484)) (-1106)) 9))) -(((-799) (-10 -7 (-15 -2824 ((-201 (-484)) (-1106))))) (T -799)) -((-2824 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-201 (-484))) (-5 *1 (-799))))) -(-10 -7 (-15 -2824 ((-201 (-484)) (-1106)))) -((-2865 (((-111) $ $) 7)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 14) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 13)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 16) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 15)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) -(((-800) (-134)) (T -800)) -((-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) (-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) (-2825 (*1 *2 *3) (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *2 (-992)))) (-2825 (*1 *2 *3) (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (-5 *2 (-992))))) -(-13 (-1052) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -2825 ((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -2825 ((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2826 (((-992) (-607 (-299 (-363))) (-607 (-363))) 147) (((-992) (-299 (-363)) (-607 (-363))) 145) (((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-803 (-363)))) 144) (((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-299 (-363))) (-607 (-803 (-363)))) 143) (((-992) (-802)) 117) (((-992) (-802) (-1016)) 116)) (-2968 (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802) (-1016)) 82) (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802)) 84)) (-2827 (((-992) (-607 (-299 (-363))) (-607 (-363))) 148) (((-992) (-802)) 133))) -(((-801) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802) (-1016))) (-15 -2826 ((-992) (-802) (-1016))) (-15 -2826 ((-992) (-802))) (-15 -2827 ((-992) (-802))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-299 (-363))) (-607 (-803 (-363))))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-803 (-363))))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)))) (-15 -2826 ((-992) (-607 (-299 (-363))) (-607 (-363)))) (-15 -2827 ((-992) (-607 (-299 (-363))) (-607 (-363)))))) (T -801)) -((-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-299 (-363)))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-299 (-363)))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-363))) (-5 *5 (-607 (-803 (-363)))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-607 (-363))) (-5 *5 (-607 (-803 (-363)))) (-5 *6 (-607 (-299 (-363)))) (-5 *3 (-299 (-363))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-801)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1016)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-801)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-801))))) -(-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802) (-1016))) (-15 -2826 ((-992) (-802) (-1016))) (-15 -2826 ((-992) (-802))) (-15 -2827 ((-992) (-802))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-299 (-363))) (-607 (-803 (-363))))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-803 (-363))))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)))) (-15 -2826 ((-992) (-607 (-299 (-363))) (-607 (-363)))) (-15 -2827 ((-992) (-607 (-299 (-363))) (-607 (-363))))) -((-2865 (((-111) $ $) NIL)) (-3469 (((-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) $) 21)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 20) (($ (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 14) (($ (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) 18)) (-3353 (((-111) $ $) NIL))) -(((-802) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -4274 ($ (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -4274 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) $))))) (T -802)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-802)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (-5 *1 (-802)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *1 (-802)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) (-5 *1 (-802)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) (-5 *1 (-802))))) -(-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -4274 ($ (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -4274 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL (|has| |#1| (-21)))) (-2828 (((-1070) $) 24)) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3945 (((-526) $) NIL (|has| |#1| (-809)))) (-3855 (($) NIL (|has| |#1| (-21)) CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 16)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 9)) (-3781 (((-3 $ "failed") $) 47 (|has| |#1| (-809)))) (-3324 (((-3 (-392 (-526)) "failed") $) 54 (|has| |#1| (-525)))) (-3323 (((-111) $) 49 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 52 (|has| |#1| (-525)))) (-3500 (((-111) $) NIL (|has| |#1| (-809)))) (-2832 (($) 13)) (-2471 (((-111) $) NIL (|has| |#1| (-809)))) (-3501 (((-111) $) NIL (|has| |#1| (-809)))) (-2831 (($) 14)) (-3637 (($ $ $) NIL (|has| |#1| (-809)))) (-3638 (($ $ $) NIL (|has| |#1| (-809)))) (-3554 (((-1106) $) NIL)) (-2829 (((-111) $) 12)) (-3555 (((-1070) $) NIL)) (-2830 (((-111) $) 11)) (-4274 (((-823) $) 22) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 8) (($ (-526)) NIL (-3850 (|has| |#1| (-809)) (|has| |#1| (-995 (-526)))))) (-3423 (((-735)) 41 (|has| |#1| (-809)))) (-3702 (($ $) NIL (|has| |#1| (-809)))) (-2957 (($) 29 (|has| |#1| (-21)) CONST)) (-2964 (($) 38 (|has| |#1| (-809)) CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-809)))) (-3353 (((-111) $ $) 27)) (-2984 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2985 (((-111) $ $) 48 (|has| |#1| (-809)))) (-4156 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4158 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-878)) NIL (|has| |#1| (-809))) (($ $ (-735)) NIL (|has| |#1| (-809)))) (* (($ $ $) 44 (|has| |#1| (-809))) (($ (-526) $) 32 (|has| |#1| (-21))) (($ (-735) $) NIL (|has| |#1| (-21))) (($ (-878) $) NIL (|has| |#1| (-21))))) -(((-803 |#1|) (-13 (-1052) (-397 |#1|) (-10 -8 (-15 -2832 ($)) (-15 -2831 ($)) (-15 -2830 ((-111) $)) (-15 -2829 ((-111) $)) (-15 -2828 ((-1070) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) (-1052)) (T -803)) -((-2832 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1052)))) (-2831 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1052)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-1052)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-1052)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-803 *3)) (-4 *3 (-1052)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) (-3324 (*1 *2 *1) (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052))))) -(-13 (-1052) (-397 |#1|) (-10 -8 (-15 -2832 ($)) (-15 -2831 ($)) (-15 -2830 ((-111) $)) (-15 -2829 ((-111) $)) (-15 -2828 ((-1070) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) -((-4275 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|) (-803 |#2|) (-803 |#2|)) 13) (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 14))) -(((-804 |#1| |#2|) (-10 -7 (-15 -4275 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|))) (-15 -4275 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|) (-803 |#2|) (-803 |#2|)))) (-1052) (-1052)) (T -804)) -((-4275 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-803 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *1 (-804 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6))))) -(-10 -7 (-15 -4275 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|))) (-15 -4275 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|) (-803 |#2|) (-803 |#2|)))) -((-2865 (((-111) $ $) 7)) (-3433 (((-735)) 20)) (-3294 (($) 23)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-2102 (((-878) $) 22)) (-3554 (((-1106) $) 9)) (-2461 (($ (-878)) 21)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) -(((-805) (-134)) (T -805)) -NIL -(-13 (-811) (-353)) -(((-100) . T) ((-583 (-823)) . T) ((-353) . T) ((-811) . T) ((-1052) . T)) -((-2834 (((-111) (-1205 |#2|) (-1205 |#2|)) 17)) (-2835 (((-111) (-1205 |#2|) (-1205 |#2|)) 18)) (-2833 (((-111) (-1205 |#2|) (-1205 |#2|)) 14))) -(((-806 |#1| |#2|) (-10 -7 (-15 -2833 ((-111) (-1205 |#2|) (-1205 |#2|))) (-15 -2834 ((-111) (-1205 |#2|) (-1205 |#2|))) (-15 -2835 ((-111) (-1205 |#2|) (-1205 |#2|)))) (-735) (-756)) (T -806)) -((-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) (-14 *4 (-735)))) (-2834 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) (-14 *4 (-735)))) (-2833 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) (-14 *4 (-735))))) -(-10 -7 (-15 -2833 ((-111) (-1205 |#2|) (-1205 |#2|))) (-15 -2834 ((-111) (-1205 |#2|) (-1205 |#2|))) (-15 -2835 ((-111) (-1205 |#2|) (-1205 |#2|)))) -((-2865 (((-111) $ $) 7)) (-3855 (($) 23 T CONST)) (-3781 (((-3 $ "failed") $) 26)) (-2471 (((-111) $) 24)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2964 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (** (($ $ (-878)) 21) (($ $ (-735)) 25)) (* (($ $ $) 20))) -(((-807) (-134)) (T -807)) -NIL -(-13 (-818) (-691)) -(((-100) . T) ((-583 (-823)) . T) ((-691) . T) ((-818) . T) ((-811) . T) ((-1063) . T) ((-1052) . T)) -((-3945 (((-526) $) 17)) (-3500 (((-111) $) 10)) (-3501 (((-111) $) 11)) (-3702 (($ $) 19))) -(((-808 |#1|) (-10 -8 (-15 -3702 (|#1| |#1|)) (-15 -3945 ((-526) |#1|)) (-15 -3501 ((-111) |#1|)) (-15 -3500 ((-111) |#1|))) (-809)) (T -808)) -NIL -(-10 -8 (-15 -3702 (|#1| |#1|)) (-15 -3945 ((-526) |#1|)) (-15 -3501 ((-111) |#1|)) (-15 -3500 ((-111) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-1345 (((-3 $ "failed") $ $) 26)) (-3945 (((-526) $) 33)) (-3855 (($) 23 T CONST)) (-3781 (((-3 $ "failed") $) 38)) (-3500 (((-111) $) 35)) (-2471 (((-111) $) 40)) (-3501 (((-111) $) 34)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 43)) (-3423 (((-735)) 42)) (-3702 (($ $) 32)) (-2957 (($) 22 T CONST)) (-2964 (($) 41 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4156 (($ $ $) 28) (($ $) 27)) (-4158 (($ $ $) 20)) (** (($ $ (-735)) 39) (($ $ (-878)) 36)) (* (($ (-878) $) 21) (($ (-735) $) 25) (($ (-526) $) 29) (($ $ $) 37))) -(((-809) (-134)) (T -809)) -((-3500 (*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-111)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-111)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-526)))) (-3702 (*1 *1 *1) (-4 *1 (-809)))) -(-13 (-755) (-1004) (-691) (-10 -8 (-15 -3500 ((-111) $)) (-15 -3501 ((-111) $)) (-15 -3945 ((-526) $)) (-15 -3702 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-811) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-3637 (($ $ $) 10)) (-3638 (($ $ $) 9)) (-2863 (((-111) $ $) 13)) (-2864 (((-111) $ $) 11)) (-2984 (((-111) $ $) 14))) -(((-810 |#1|) (-10 -8 (-15 -3637 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#1|)) (-15 -2984 ((-111) |#1| |#1|)) (-15 -2863 ((-111) |#1| |#1|)) (-15 -2864 ((-111) |#1| |#1|))) (-811)) (T -810)) -NIL -(-10 -8 (-15 -3637 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#1|)) (-15 -2984 ((-111) |#1| |#1|)) (-15 -2863 ((-111) |#1| |#1|)) (-15 -2864 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) -(((-811) (-134)) (T -811)) -((-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) (-2864 (*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) (-2863 (*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) (-2984 (*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) (-3638 (*1 *1 *1 *1) (-4 *1 (-811))) (-3637 (*1 *1 *1 *1) (-4 *1 (-811)))) -(-13 (-1052) (-10 -8 (-15 -2985 ((-111) $ $)) (-15 -2864 ((-111) $ $)) (-15 -2863 ((-111) $ $)) (-15 -2984 ((-111) $ $)) (-15 -3638 ($ $ $)) (-15 -3637 ($ $ $)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2840 (($ $ $) 45)) (-2841 (($ $ $) 44)) (-2842 (($ $ $) 42)) (-2838 (($ $ $) 51)) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 46)) (-2839 (((-3 $ "failed") $ $) 49)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3817 (($ $) 35)) (-2846 (($ $ $) 39)) (-2847 (($ $ $) 38)) (-2836 (($ $ $) 47)) (-2844 (($ $ $) 53)) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 41)) (-2845 (((-3 $ "failed") $ $) 48)) (-3780 (((-3 $ "failed") $ |#2|) 28)) (-3117 ((|#2| $) 32)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ |#2|) 12)) (-4136 (((-607 |#2|) $) 18)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-812 |#1| |#2|) (-10 -8 (-15 -2836 (|#1| |#1| |#1|)) (-15 -2837 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -2839 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2840 (|#1| |#1| |#1|)) (-15 -2841 (|#1| |#1| |#1|)) (-15 -2842 (|#1| |#1| |#1|)) (-15 -2843 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2846 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4136 ((-607 |#2|) |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4274 ((-823) |#1|))) (-813 |#2|) (-1004)) (T -812)) -NIL -(-10 -8 (-15 -2836 (|#1| |#1| |#1|)) (-15 -2837 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -2839 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2840 (|#1| |#1| |#1|)) (-15 -2841 (|#1| |#1| |#1|)) (-15 -2842 (|#1| |#1| |#1|)) (-15 -2843 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2846 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4136 ((-607 |#2|) |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2840 (($ $ $) 43 (|has| |#1| (-348)))) (-2841 (($ $ $) 44 (|has| |#1| (-348)))) (-2842 (($ $ $) 46 (|has| |#1| (-348)))) (-2838 (($ $ $) 41 (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 40 (|has| |#1| (-348)))) (-2839 (((-3 $ "failed") $ $) 42 (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 45 (|has| |#1| (-348)))) (-3470 (((-3 (-526) #1="failed") $) 72 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 70 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 67)) (-3469 (((-526) $) 73 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 71 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 66)) (-4276 (($ $) 62)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 53 (|has| |#1| (-436)))) (-2471 (((-111) $) 30)) (-3193 (($ |#1| (-735)) 60)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55 (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 56 (|has| |#1| (-533)))) (-3120 (((-735) $) 64)) (-2846 (($ $ $) 50 (|has| |#1| (-348)))) (-2847 (($ $ $) 51 (|has| |#1| (-348)))) (-2836 (($ $ $) 39 (|has| |#1| (-348)))) (-2844 (($ $ $) 48 (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 47 (|has| |#1| (-348)))) (-2845 (((-3 $ "failed") $ $) 49 (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 52 (|has| |#1| (-348)))) (-3487 ((|#1| $) 63)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-533)))) (-4264 (((-735) $) 65)) (-3117 ((|#1| $) 54 (|has| |#1| (-436)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 69 (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 68)) (-4136 (((-607 |#1|) $) 59)) (-3999 ((|#1| $ (-735)) 61)) (-3423 (((-735)) 28)) (-2849 ((|#1| $ |#1| |#1|) 58)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-813 |#1|) (-134) (-1004)) (T -813)) -((-4264 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-607 *3)))) (-2849 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) (-2850 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) (-2851 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-436)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-436)))) (-2852 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) (-2847 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2846 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2845 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2844 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2843 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) (-4 *1 (-813 *3)))) (-2842 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2853 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) (-2841 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2840 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2839 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2838 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2837 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) (-4 *1 (-813 *3)))) (-2836 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(-13 (-1004) (-110 |t#1| |t#1|) (-397 |t#1|) (-10 -8 (-15 -4264 ((-735) $)) (-15 -3120 ((-735) $)) (-15 -3487 (|t#1| $)) (-15 -4276 ($ $)) (-15 -3999 (|t#1| $ (-735))) (-15 -3193 ($ |t#1| (-735))) (-15 -4136 ((-607 |t#1|) $)) (-15 -2849 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -3780 ((-3 $ "failed") $ |t#1|)) (-15 -2850 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2851 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-436)) (PROGN (-15 -3117 (|t#1| $)) (-15 -3817 ($ $))) |%noBranch|) (IF (|has| |t#1| (-348)) (PROGN (-15 -2852 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2847 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -2845 ((-3 $ "failed") $ $)) (-15 -2844 ($ $ $)) (-15 -2843 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $)) (-15 -2842 ($ $ $)) (-15 -2853 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2841 ($ $ $)) (-15 -2840 ($ $ $)) (-15 -2839 ((-3 $ "failed") $ $)) (-15 -2838 ($ $ $)) (-15 -2837 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $)) (-15 -2836 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-397 |#1|) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) |has| |#1| (-163)) ((-691) . T) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2848 ((|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|)) 20)) (-2853 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)) 43 (|has| |#1| (-348)))) (-2851 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)) 40 (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)) 39 (|has| |#1| (-533)))) (-2852 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)) 42 (|has| |#1| (-348)))) (-2849 ((|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|)) 31))) -(((-814 |#1| |#2|) (-10 -7 (-15 -2848 (|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|))) (-15 -2849 (|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-533)) (PROGN (-15 -2850 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2851 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -2852 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2853 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|)) (-1004) (-813 |#1|)) (T -814)) -((-2853 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) (-4 *3 (-813 *5)))) (-2852 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) (-4 *3 (-813 *5)))) (-2851 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-533)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) (-4 *3 (-813 *5)))) (-2850 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-533)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) (-4 *3 (-813 *5)))) (-2849 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-97 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1004)) (-5 *1 (-814 *2 *3)) (-4 *3 (-813 *2)))) (-2848 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1004)) (-5 *1 (-814 *5 *2)) (-4 *2 (-813 *5))))) -(-10 -7 (-15 -2848 (|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|))) (-15 -2849 (|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-533)) (PROGN (-15 -2850 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2851 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -2852 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2853 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#1| (-348)))) (-2841 (($ $ $) NIL (|has| |#1| (-348)))) (-2842 (($ $ $) NIL (|has| |#1| (-348)))) (-2838 (($ $ $) NIL (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 32 (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-3846 (((-823) $ (-823)) NIL)) (-2471 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 28 (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 26 (|has| |#1| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#1| (-348)))) (-2847 (($ $ $) NIL (|has| |#1| (-348)))) (-2836 (($ $ $) NIL (|has| |#1| (-348)))) (-2844 (($ $ $) NIL (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 30 (|has| |#1| (-348)))) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-533)))) (-4264 (((-735) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#1| $ |#1| |#1|) 15)) (-2957 (($) NIL T CONST)) (-2964 (($) 20 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) 19) (($ $ (-735)) 22)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-815 |#1| |#2| |#3|) (-13 (-813 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-823))))) (-1004) (-97 |#1|) (-1 |#1| |#1|)) (T -815)) -((-3846 (*1 *2 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-815 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-97 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-813 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-823))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#2| (-348)))) (-2841 (($ $ $) NIL (|has| |#2| (-348)))) (-2842 (($ $ $) NIL (|has| |#2| (-348)))) (-2838 (($ $ $) NIL (|has| |#2| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#2| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 |#2| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) ((|#2| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436)))) (-2471 (((-111) $) NIL)) (-3193 (($ |#2| (-735)) 16)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#2| (-348)))) (-2847 (($ $ $) NIL (|has| |#2| (-348)))) (-2836 (($ $ $) NIL (|has| |#2| (-348)))) (-2844 (($ $ $) NIL (|has| |#2| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#2| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#2| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-348)))) (-3487 ((|#2| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-533)))) (-4264 (((-735) $) NIL)) (-3117 ((|#2| $) NIL (|has| |#2| (-436)))) (-4274 (((-823) $) 23) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#2| (-995 (-392 (-526))))) (($ |#2|) NIL) (($ (-1202 |#1|)) 18)) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#2| $ |#2| |#2|) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) 13 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-816 |#1| |#2| |#3| |#4|) (-13 (-813 |#2|) (-10 -8 (-15 -4274 ($ (-1202 |#1|))))) (-1123) (-1004) (-97 |#2|) (-1 |#2| |#2|)) (T -816)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *3)) (-14 *3 (-1123)) (-5 *1 (-816 *3 *4 *5 *6)) (-4 *4 (-1004)) (-14 *5 (-97 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-813 |#2|) (-10 -8 (-15 -4274 ($ (-1202 |#1|))))) -((-2856 ((|#1| (-735) |#1|) 35 (|has| |#1| (-37 (-392 (-526)))))) (-2855 ((|#1| (-735) (-735) |#1|) 27) ((|#1| (-735) |#1|) 20)) (-2854 ((|#1| (-735) |#1|) 31)) (-3100 ((|#1| (-735) |#1|) 29)) (-3099 ((|#1| (-735) |#1|) 28))) -(((-817 |#1|) (-10 -7 (-15 -3099 (|#1| (-735) |#1|)) (-15 -3100 (|#1| (-735) |#1|)) (-15 -2854 (|#1| (-735) |#1|)) (-15 -2855 (|#1| (-735) |#1|)) (-15 -2855 (|#1| (-735) (-735) |#1|)) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -2856 (|#1| (-735) |#1|)) |%noBranch|)) (-163)) (T -817)) -((-2856 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-163)))) (-2855 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) (-2855 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) (-2854 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) (-3100 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) (-3099 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163))))) -(-10 -7 (-15 -3099 (|#1| (-735) |#1|)) (-15 -3100 (|#1| (-735) |#1|)) (-15 -2854 (|#1| (-735) |#1|)) (-15 -2855 (|#1| (-735) |#1|)) (-15 -2855 (|#1| (-735) (-735) |#1|)) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -2856 (|#1| (-735) |#1|)) |%noBranch|)) -((-2865 (((-111) $ $) 7)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (** (($ $ (-878)) 21)) (* (($ $ $) 20))) -(((-818) (-134)) (T -818)) -NIL -(-13 (-811) (-1063)) -(((-100) . T) ((-583 (-823)) . T) ((-811) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3721 (((-526) $) 12)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 18) (($ (-526)) 11)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 8)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 9))) -(((-819) (-13 (-811) (-10 -8 (-15 -4274 ($ (-526))) (-15 -3721 ((-526) $))))) (T -819)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-819)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-819))))) -(-13 (-811) (-10 -8 (-15 -4274 ($ (-526))) (-15 -3721 ((-526) $)))) -((-2857 (((-1211) (-607 (-50))) 24)) (-3774 (((-1211) (-1106) (-823)) 14) (((-1211) (-823)) 9) (((-1211) (-1106)) 11))) -(((-820) (-10 -7 (-15 -3774 ((-1211) (-1106))) (-15 -3774 ((-1211) (-823))) (-15 -3774 ((-1211) (-1106) (-823))) (-15 -2857 ((-1211) (-607 (-50)))))) (T -820)) -((-2857 (*1 *2 *3) (-12 (-5 *3 (-607 (-50))) (-5 *2 (-1211)) (-5 *1 (-820)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-823)) (-5 *2 (-1211)) (-5 *1 (-820)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-820)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-820))))) -(-10 -7 (-15 -3774 ((-1211) (-1106))) (-15 -3774 ((-1211) (-823))) (-15 -3774 ((-1211) (-1106) (-823))) (-15 -2857 ((-1211) (-607 (-50))))) -((-2858 (((-1070) $ (-128)) 17))) -(((-821 |#1|) (-10 -8 (-15 -2858 ((-1070) |#1| (-128)))) (-822)) (T -821)) -NIL -(-10 -8 (-15 -2858 ((-1070) |#1| (-128)))) -((-2858 (((-1070) $ (-128)) 7)) (-2859 (((-1070) $ (-127)) 8)) (-1792 (($ $) 6))) -(((-822) (-134)) (T -822)) -((-2859 (*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-127)) (-5 *2 (-1070)))) (-2858 (*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-128)) (-5 *2 (-1070))))) -(-13 (-164) (-10 -8 (-15 -2859 ((-1070) $ (-127))) (-15 -2858 ((-1070) $ (-128))))) -(((-164) . T)) -((-2865 (((-111) $ $) NIL) (($ $ $) 77)) (-2886 (($ $ $) 115)) (-2901 (((-526) $) 30) (((-526)) 35)) (-2896 (($ (-526)) 44)) (-2893 (($ $ $) 45) (($ (-607 $)) 76)) (-2877 (($ $ (-607 $)) 74)) (-2898 (((-526) $) 33)) (-2880 (($ $ $) 63)) (-3845 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2899 (((-526) $) 32)) (-2881 (($ $ $) 62)) (-3857 (($ $) 105)) (-2884 (($ $ $) 119)) (-2867 (($ (-607 $)) 52)) (-3862 (($ $ (-607 $)) 69)) (-2895 (($ (-526) (-526)) 46)) (-2906 (($ $) 116) (($ $ $) 117)) (-3434 (($ $ (-526)) 40) (($ $) 43)) (-2861 (($ $ $) 89)) (-2882 (($ $ $) 122)) (-2876 (($ $) 106)) (-2860 (($ $ $) 90)) (-2872 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3137 (((-1211) $) 8)) (-2875 (($ $) 109) (($ $ (-735)) 112)) (-2878 (($ $ $) 65)) (-2879 (($ $ $) 64)) (-2892 (($ $ (-607 $)) 100)) (-2890 (($ $ $) 104)) (-2869 (($ (-607 $)) 50)) (-2870 (($ $) 60) (($ (-607 $)) 61)) (-2873 (($ $ $) 113)) (-2874 (($ $) 107)) (-2885 (($ $ $) 118)) (-3846 (($ (-526)) 20) (($ (-1123)) 22) (($ (-1106)) 29) (($ (-211)) 24)) (-3156 (($ $ $) 93)) (-3636 (($ $) 94)) (-2902 (((-1211) (-1106)) 14)) (-2903 (($ (-1106)) 13)) (-3421 (($ (-607 (-607 $))) 49)) (-3435 (($ $ (-526)) 39) (($ $) 42)) (-3554 (((-1106) $) NIL)) (-2888 (($ $ $) 121)) (-3784 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2889 (((-111) $) 98)) (-2891 (($ $ (-607 $)) 102) (($ $ $ $) 103)) (-2897 (($ (-526)) 36)) (-2900 (((-526) $) 31) (((-526)) 34)) (-2894 (($ $ $) 37) (($ (-607 $)) 75)) (-3555 (((-1070) $) NIL)) (-3780 (($ $ $) 91)) (-3887 (($) 12)) (-4118 (($ $ (-607 $)) 99)) (-4155 (($ $) 108) (($ $ (-735)) 111)) (-2862 (($ $ $) 88)) (-4129 (($ $ (-735)) 127)) (-2868 (($ (-607 $)) 51)) (-4274 (((-823) $) 18)) (-4091 (($ $ (-526)) 38) (($ $) 41)) (-2871 (($ $) 58) (($ (-607 $)) 59)) (-3552 (($ $) 56) (($ (-607 $)) 57)) (-2887 (($ $) 114)) (-2866 (($ (-607 $)) 55)) (-3399 (($ $ $) 97)) (-2883 (($ $ $) 120)) (-3155 (($ $ $) 92)) (-4056 (($ $ $) 95) (($ $) 96)) (-2863 (($ $ $) 81)) (-2864 (($ $ $) 79)) (-3353 (((-111) $ $) 15) (($ $ $) 16)) (-2984 (($ $ $) 80)) (-2985 (($ $ $) 78)) (-4265 (($ $ $) 86)) (-4156 (($ $ $) 83) (($ $) 84)) (-4158 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-823) (-13 (-1052) (-10 -8 (-15 -3137 ((-1211) $)) (-15 -2903 ($ (-1106))) (-15 -2902 ((-1211) (-1106))) (-15 -3846 ($ (-526))) (-15 -3846 ($ (-1123))) (-15 -3846 ($ (-1106))) (-15 -3846 ($ (-211))) (-15 -3887 ($)) (-15 -2901 ((-526) $)) (-15 -2900 ((-526) $)) (-15 -2901 ((-526))) (-15 -2900 ((-526))) (-15 -2899 ((-526) $)) (-15 -2898 ((-526) $)) (-15 -2897 ($ (-526))) (-15 -2896 ($ (-526))) (-15 -2895 ($ (-526) (-526))) (-15 -3435 ($ $ (-526))) (-15 -3434 ($ $ (-526))) (-15 -4091 ($ $ (-526))) (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -4091 ($ $)) (-15 -2894 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -2894 ($ (-607 $))) (-15 -2893 ($ (-607 $))) (-15 -2892 ($ $ (-607 $))) (-15 -2891 ($ $ (-607 $))) (-15 -2891 ($ $ $ $)) (-15 -2890 ($ $ $)) (-15 -2889 ((-111) $)) (-15 -4118 ($ $ (-607 $))) (-15 -3857 ($ $)) (-15 -2888 ($ $ $)) (-15 -2887 ($ $)) (-15 -3421 ($ (-607 (-607 $)))) (-15 -2886 ($ $ $)) (-15 -2906 ($ $)) (-15 -2906 ($ $ $)) (-15 -2885 ($ $ $)) (-15 -2884 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -4129 ($ $ (-735))) (-15 -3399 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -2880 ($ $ $)) (-15 -2879 ($ $ $)) (-15 -2878 ($ $ $)) (-15 -3862 ($ $ (-607 $))) (-15 -2877 ($ $ (-607 $))) (-15 -2876 ($ $)) (-15 -4155 ($ $)) (-15 -4155 ($ $ (-735))) (-15 -2875 ($ $)) (-15 -2875 ($ $ (-735))) (-15 -2874 ($ $)) (-15 -2873 ($ $ $)) (-15 -3845 ($ $)) (-15 -3845 ($ $ $)) (-15 -3845 ($ $ $ $)) (-15 -2872 ($ $)) (-15 -2872 ($ $ $)) (-15 -2872 ($ $ $ $)) (-15 -3784 ($ $)) (-15 -3784 ($ $ $)) (-15 -3784 ($ $ $ $)) (-15 -3552 ($ $)) (-15 -3552 ($ (-607 $))) (-15 -2871 ($ $)) (-15 -2871 ($ (-607 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-607 $))) (-15 -2869 ($ (-607 $))) (-15 -2868 ($ (-607 $))) (-15 -2867 ($ (-607 $))) (-15 -2866 ($ (-607 $))) (-15 -3353 ($ $ $)) (-15 -2865 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2864 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ $)) (-15 * ($ $ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ $)) (-15 -2862 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -3780 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3636 ($ $)) (-15 -4056 ($ $ $)) (-15 -4056 ($ $))))) (T -823)) -((-3137 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-823)))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-823)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-823)))) (-3887 (*1 *1) (-5 *1 (-823))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2901 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2900 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2896 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2895 (*1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-3435 (*1 *1 *1) (-5 *1 (-823))) (-3434 (*1 *1 *1) (-5 *1 (-823))) (-4091 (*1 *1 *1) (-5 *1 (-823))) (-2894 (*1 *1 *1 *1) (-5 *1 (-823))) (-2893 (*1 *1 *1 *1) (-5 *1 (-823))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2892 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2891 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2891 (*1 *1 *1 *1 *1) (-5 *1 (-823))) (-2890 (*1 *1 *1 *1) (-5 *1 (-823))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-3857 (*1 *1 *1) (-5 *1 (-823))) (-2888 (*1 *1 *1 *1) (-5 *1 (-823))) (-2887 (*1 *1 *1) (-5 *1 (-823))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-823)))) (-5 *1 (-823)))) (-2886 (*1 *1 *1 *1) (-5 *1 (-823))) (-2906 (*1 *1 *1) (-5 *1 (-823))) (-2906 (*1 *1 *1 *1) (-5 *1 (-823))) (-2885 (*1 *1 *1 *1) (-5 *1 (-823))) (-2884 (*1 *1 *1 *1) (-5 *1 (-823))) (-2883 (*1 *1 *1 *1) (-5 *1 (-823))) (-2882 (*1 *1 *1 *1) (-5 *1 (-823))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) (-3399 (*1 *1 *1 *1) (-5 *1 (-823))) (-2881 (*1 *1 *1 *1) (-5 *1 (-823))) (-2880 (*1 *1 *1 *1) (-5 *1 (-823))) (-2879 (*1 *1 *1 *1) (-5 *1 (-823))) (-2878 (*1 *1 *1 *1) (-5 *1 (-823))) (-3862 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2877 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2876 (*1 *1 *1) (-5 *1 (-823))) (-4155 (*1 *1 *1) (-5 *1 (-823))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) (-2875 (*1 *1 *1) (-5 *1 (-823))) (-2875 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) (-2874 (*1 *1 *1) (-5 *1 (-823))) (-2873 (*1 *1 *1 *1) (-5 *1 (-823))) (-3845 (*1 *1 *1) (-5 *1 (-823))) (-3845 (*1 *1 *1 *1) (-5 *1 (-823))) (-3845 (*1 *1 *1 *1 *1) (-5 *1 (-823))) (-2872 (*1 *1 *1) (-5 *1 (-823))) (-2872 (*1 *1 *1 *1) (-5 *1 (-823))) (-2872 (*1 *1 *1 *1 *1) (-5 *1 (-823))) (-3784 (*1 *1 *1) (-5 *1 (-823))) (-3784 (*1 *1 *1 *1) (-5 *1 (-823))) (-3784 (*1 *1 *1 *1 *1) (-5 *1 (-823))) (-3552 (*1 *1 *1) (-5 *1 (-823))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2871 (*1 *1 *1) (-5 *1 (-823))) (-2871 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2870 (*1 *1 *1) (-5 *1 (-823))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2867 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2866 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-3353 (*1 *1 *1 *1) (-5 *1 (-823))) (-2865 (*1 *1 *1 *1) (-5 *1 (-823))) (-2985 (*1 *1 *1 *1) (-5 *1 (-823))) (-2864 (*1 *1 *1 *1) (-5 *1 (-823))) (-2984 (*1 *1 *1 *1) (-5 *1 (-823))) (-2863 (*1 *1 *1 *1) (-5 *1 (-823))) (-4158 (*1 *1 *1 *1) (-5 *1 (-823))) (-4156 (*1 *1 *1 *1) (-5 *1 (-823))) (-4156 (*1 *1 *1) (-5 *1 (-823))) (* (*1 *1 *1 *1) (-5 *1 (-823))) (-4265 (*1 *1 *1 *1) (-5 *1 (-823))) (** (*1 *1 *1 *1) (-5 *1 (-823))) (-2862 (*1 *1 *1 *1) (-5 *1 (-823))) (-2861 (*1 *1 *1 *1) (-5 *1 (-823))) (-2860 (*1 *1 *1 *1) (-5 *1 (-823))) (-3780 (*1 *1 *1 *1) (-5 *1 (-823))) (-3155 (*1 *1 *1 *1) (-5 *1 (-823))) (-3156 (*1 *1 *1 *1) (-5 *1 (-823))) (-3636 (*1 *1 *1) (-5 *1 (-823))) (-4056 (*1 *1 *1 *1) (-5 *1 (-823))) (-4056 (*1 *1 *1) (-5 *1 (-823)))) -(-13 (-1052) (-10 -8 (-15 -3137 ((-1211) $)) (-15 -2903 ($ (-1106))) (-15 -2902 ((-1211) (-1106))) (-15 -3846 ($ (-526))) (-15 -3846 ($ (-1123))) (-15 -3846 ($ (-1106))) (-15 -3846 ($ (-211))) (-15 -3887 ($)) (-15 -2901 ((-526) $)) (-15 -2900 ((-526) $)) (-15 -2901 ((-526))) (-15 -2900 ((-526))) (-15 -2899 ((-526) $)) (-15 -2898 ((-526) $)) (-15 -2897 ($ (-526))) (-15 -2896 ($ (-526))) (-15 -2895 ($ (-526) (-526))) (-15 -3435 ($ $ (-526))) (-15 -3434 ($ $ (-526))) (-15 -4091 ($ $ (-526))) (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -4091 ($ $)) (-15 -2894 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -2894 ($ (-607 $))) (-15 -2893 ($ (-607 $))) (-15 -2892 ($ $ (-607 $))) (-15 -2891 ($ $ (-607 $))) (-15 -2891 ($ $ $ $)) (-15 -2890 ($ $ $)) (-15 -2889 ((-111) $)) (-15 -4118 ($ $ (-607 $))) (-15 -3857 ($ $)) (-15 -2888 ($ $ $)) (-15 -2887 ($ $)) (-15 -3421 ($ (-607 (-607 $)))) (-15 -2886 ($ $ $)) (-15 -2906 ($ $)) (-15 -2906 ($ $ $)) (-15 -2885 ($ $ $)) (-15 -2884 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -4129 ($ $ (-735))) (-15 -3399 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -2880 ($ $ $)) (-15 -2879 ($ $ $)) (-15 -2878 ($ $ $)) (-15 -3862 ($ $ (-607 $))) (-15 -2877 ($ $ (-607 $))) (-15 -2876 ($ $)) (-15 -4155 ($ $)) (-15 -4155 ($ $ (-735))) (-15 -2875 ($ $)) (-15 -2875 ($ $ (-735))) (-15 -2874 ($ $)) (-15 -2873 ($ $ $)) (-15 -3845 ($ $)) (-15 -3845 ($ $ $)) (-15 -3845 ($ $ $ $)) (-15 -2872 ($ $)) (-15 -2872 ($ $ $)) (-15 -2872 ($ $ $ $)) (-15 -3784 ($ $)) (-15 -3784 ($ $ $)) (-15 -3784 ($ $ $ $)) (-15 -3552 ($ $)) (-15 -3552 ($ (-607 $))) (-15 -2871 ($ $)) (-15 -2871 ($ (-607 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-607 $))) (-15 -2869 ($ (-607 $))) (-15 -2868 ($ (-607 $))) (-15 -2867 ($ (-607 $))) (-15 -2866 ($ (-607 $))) (-15 -3353 ($ $ $)) (-15 -2865 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2864 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ $)) (-15 * ($ $ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ $)) (-15 -2862 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -3780 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3636 ($ $)) (-15 -4056 ($ $ $)) (-15 -4056 ($ $)))) -((-2865 (((-111) $ $) NIL)) (-4150 (((-3 $ "failed") (-1123)) 33)) (-3433 (((-735)) 31)) (-3294 (($) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2102 (((-878) $) 29)) (-3554 (((-1106) $) 39)) (-2461 (($ (-878)) 28)) (-3555 (((-1070) $) NIL)) (-4287 (((-1123) $) 13) (((-515) $) 19) (((-849 (-363)) $) 26) (((-849 (-526)) $) 22)) (-4274 (((-823) $) 16)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 36)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 35))) -(((-824 |#1|) (-13 (-805) (-584 (-1123)) (-584 (-515)) (-584 (-849 (-363))) (-584 (-849 (-526))) (-10 -8 (-15 -4150 ((-3 $ "failed") (-1123))))) (-607 (-1123))) (T -824)) -((-4150 (*1 *1 *2) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-824 *3)) (-14 *3 (-607 *2))))) -(-13 (-805) (-584 (-1123)) (-584 (-515)) (-584 (-849 (-363))) (-584 (-849 (-526))) (-10 -8 (-15 -4150 ((-3 $ "failed") (-1123))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (((-905 |#1|) $) NIL) (($ (-905 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-163)))) (-3423 (((-735)) NIL)) (-4240 (((-1211) (-735)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (((-3 $ "failed") $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) -(((-825 |#1| |#2| |#3| |#4|) (-13 (-1004) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4274 ((-905 |#1|) $)) (-15 -4274 ($ (-905 |#1|))) (IF (|has| |#1| (-348)) (-15 -4265 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4240 ((-1211) (-735))))) (-1004) (-607 (-1123)) (-607 (-735)) (-735)) (T -825)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-825 *3 *4 *5 *6)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))) (-14 *5 (-607 (-735))) (-14 *6 (-735)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-5 *1 (-825 *3 *4 *5 *6)) (-14 *4 (-607 (-1123))) (-14 *5 (-607 (-735))) (-14 *6 (-735)))) (-4265 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-825 *2 *3 *4 *5)) (-4 *2 (-348)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-735))) (-14 *5 (-735)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-825 *4 *5 *6 *7)) (-4 *4 (-1004)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 *3)) (-14 *7 *3)))) -(-13 (-1004) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4274 ((-905 |#1|) $)) (-15 -4274 ($ (-905 |#1|))) (IF (|has| |#1| (-348)) (-15 -4265 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4240 ((-1211) (-735))))) -((-2904 (((-3 (-165 |#3|) "failed") (-735) (-735) |#2| |#2|) 31)) (-2905 (((-3 (-392 |#3|) "failed") (-735) (-735) |#2| |#2|) 24))) -(((-826 |#1| |#2| |#3|) (-10 -7 (-15 -2905 ((-3 (-392 |#3|) "failed") (-735) (-735) |#2| |#2|)) (-15 -2904 ((-3 (-165 |#3|) "failed") (-735) (-735) |#2| |#2|))) (-348) (-1198 |#1|) (-1181 |#1|)) (T -826)) -((-2904 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-735)) (-4 *5 (-348)) (-5 *2 (-165 *6)) (-5 *1 (-826 *5 *4 *6)) (-4 *4 (-1198 *5)) (-4 *6 (-1181 *5)))) (-2905 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-735)) (-4 *5 (-348)) (-5 *2 (-392 *6)) (-5 *1 (-826 *5 *4 *6)) (-4 *4 (-1198 *5)) (-4 *6 (-1181 *5))))) -(-10 -7 (-15 -2905 ((-3 (-392 |#3|) "failed") (-735) (-735) |#2| |#2|)) (-15 -2904 ((-3 (-165 |#3|) "failed") (-735) (-735) |#2| |#2|))) -((-2905 (((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|)) 28) (((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) 26))) -(((-827 |#1| |#2| |#3|) (-10 -7 (-15 -2905 ((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (-15 -2905 ((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|)))) (-348) (-1123) |#1|) (T -827)) -((-2905 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-735)) (-5 *4 (-1195 *5 *6 *7)) (-4 *5 (-348)) (-14 *6 (-1123)) (-14 *7 *5) (-5 *2 (-392 (-1174 *6 *5))) (-5 *1 (-827 *5 *6 *7)))) (-2905 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-735)) (-5 *4 (-1195 *5 *6 *7)) (-4 *5 (-348)) (-14 *6 (-1123)) (-14 *7 *5) (-5 *2 (-392 (-1174 *6 *5))) (-5 *1 (-827 *5 *6 *7))))) -(-10 -7 (-15 -2905 ((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (-15 -2905 ((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $ (-526)) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2906 (($ (-1117 (-526)) (-526)) NIL)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2907 (($ $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4090 (((-735) $) NIL)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 (((-526)) NIL)) (-2908 (((-526) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4087 (($ $ (-526)) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2910 (((-1101 (-526)) $) NIL)) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-4088 (((-526) $ (-526)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL))) -(((-828 |#1|) (-829 |#1|) (-526)) (T -828)) -NIL -(-829 |#1|) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3337 (($ $ (-526)) 60)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-2906 (($ (-1117 (-526)) (-526)) 59)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2907 (($ $) 62)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4090 (((-735) $) 67)) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-2909 (((-526)) 64)) (-2908 (((-526) $) 63)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-4087 (($ $ (-526)) 66)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-2910 (((-1101 (-526)) $) 68)) (-3191 (($ $) 65)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-4088 (((-526) $ (-526)) 61)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-829 |#1|) (-134) (-526)) (T -829)) -((-2910 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-1101 (-526))))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-735)))) (-4087 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-3191 (*1 *1 *1) (-4 *1 (-829 *2))) (-2909 (*1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-2907 (*1 *1 *1) (-4 *1 (-829 *2))) (-4088 (*1 *2 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-3337 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-2906 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *3 (-526)) (-4 *1 (-829 *4))))) -(-13 (-292) (-141) (-10 -8 (-15 -2910 ((-1101 (-526)) $)) (-15 -4090 ((-735) $)) (-15 -4087 ($ $ (-526))) (-15 -3191 ($ $)) (-15 -2909 ((-526))) (-15 -2908 ((-526) $)) (-15 -2907 ($ $)) (-15 -4088 ((-526) $ (-526))) (-15 -3337 ($ $ (-526))) (-15 -2906 ($ (-1117 (-526)) (-526))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-292) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-828 |#1|) $) NIL (|has| (-828 |#1|) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-828 |#1|) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-828 |#1|) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-828 |#1|) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-828 |#1|) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-828 |#1|) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-828 |#1|) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-828 |#1|) (-995 (-526))))) (-3469 (((-828 |#1|) $) NIL) (((-1123) $) NIL (|has| (-828 |#1|) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-828 |#1|) (-995 (-526)))) (((-526) $) NIL (|has| (-828 |#1|) (-995 (-526))))) (-4049 (($ $) NIL) (($ (-526) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-828 |#1|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-828 |#1|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-828 |#1|))) (|:| |vec| (-1205 (-828 |#1|)))) (-653 $) (-1205 $)) NIL) (((-653 (-828 |#1|)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-828 |#1|) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-828 |#1|) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-828 |#1|) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-828 |#1|) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-828 |#1|) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-828 |#1|) (-1099)))) (-3501 (((-111) $) NIL (|has| (-828 |#1|) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-828 |#1|) (-811)))) (-3638 (($ $ $) NIL (|has| (-828 |#1|) (-811)))) (-4275 (($ (-1 (-828 |#1|) (-828 |#1|)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-828 |#1|) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-828 |#1|) (-292)))) (-3427 (((-828 |#1|) $) NIL (|has| (-828 |#1|) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-828 |#1|) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-828 |#1|) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-828 |#1|)) (-607 (-828 |#1|))) NIL (|has| (-828 |#1|) (-294 (-828 |#1|)))) (($ $ (-828 |#1|) (-828 |#1|)) NIL (|has| (-828 |#1|) (-294 (-828 |#1|)))) (($ $ (-278 (-828 |#1|))) NIL (|has| (-828 |#1|) (-294 (-828 |#1|)))) (($ $ (-607 (-278 (-828 |#1|)))) NIL (|has| (-828 |#1|) (-294 (-828 |#1|)))) (($ $ (-607 (-1123)) (-607 (-828 |#1|))) NIL (|has| (-828 |#1|) (-496 (-1123) (-828 |#1|)))) (($ $ (-1123) (-828 |#1|)) NIL (|has| (-828 |#1|) (-496 (-1123) (-828 |#1|))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-828 |#1|)) NIL (|has| (-828 |#1|) (-271 (-828 |#1|) (-828 |#1|))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-828 |#1|) (-219))) (($ $ (-735)) NIL (|has| (-828 |#1|) (-219))) (($ $ (-1123)) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-1 (-828 |#1|) (-828 |#1|)) (-735)) NIL) (($ $ (-1 (-828 |#1|) (-828 |#1|))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-828 |#1|) $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| (-828 |#1|) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-828 |#1|) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-828 |#1|) (-584 (-515)))) (((-363) $) NIL (|has| (-828 |#1|) (-977))) (((-211) $) NIL (|has| (-828 |#1|) (-977)))) (-2911 (((-165 (-392 (-526))) $) NIL)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-828 |#1|) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-828 |#1|)) NIL) (($ (-1123)) NIL (|has| (-828 |#1|) (-995 (-1123))))) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-828 |#1|) (-869))) (|has| (-828 |#1|) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-828 |#1|) $) NIL (|has| (-828 |#1|) (-525)))) (-2150 (((-111) $ $) NIL)) (-4088 (((-392 (-526)) $ (-526)) NIL)) (-3702 (($ $) NIL (|has| (-828 |#1|) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-828 |#1|) (-219))) (($ $ (-735)) NIL (|has| (-828 |#1|) (-219))) (($ $ (-1123)) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-1 (-828 |#1|) (-828 |#1|)) (-735)) NIL) (($ $ (-1 (-828 |#1|) (-828 |#1|))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-828 |#1|) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-828 |#1|) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-828 |#1|) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-828 |#1|) (-811)))) (-4265 (($ $ $) NIL) (($ (-828 |#1|) (-828 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-828 |#1|) $) NIL) (($ $ (-828 |#1|)) NIL))) -(((-830 |#1|) (-13 (-950 (-828 |#1|)) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) (-526)) (T -830)) -((-4088 (*1 *2 *1 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-830 *4)) (-14 *4 *3) (-5 *3 (-526)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-830 *3)) (-14 *3 (-526)))) (-4049 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-14 *2 (-526)))) (-4049 (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-830 *3)) (-14 *3 *2)))) -(-13 (-950 (-828 |#1|)) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 ((|#2| $) NIL (|has| |#2| (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| |#2| (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| |#2| (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526))))) (-3469 ((|#2| $) NIL) (((-1123) $) NIL (|has| |#2| (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-526)))) (((-526) $) NIL (|has| |#2| (-995 (-526))))) (-4049 (($ $) 31) (($ (-526) $) 32)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) 53)) (-3294 (($) NIL (|has| |#2| (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| |#2| (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| |#2| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| |#2| (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 ((|#2| $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#2| (-1099)))) (-3501 (((-111) $) NIL (|has| |#2| (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 49)) (-3764 (($) NIL (|has| |#2| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| |#2| (-292)))) (-3427 ((|#2| $) NIL (|has| |#2| (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 |#2|) (-607 |#2|)) NIL (|has| |#2| (-294 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-294 |#2|))) (($ $ (-278 |#2|)) NIL (|has| |#2| (-294 |#2|))) (($ $ (-607 (-278 |#2|))) NIL (|has| |#2| (-294 |#2|))) (($ $ (-607 (-1123)) (-607 |#2|)) NIL (|has| |#2| (-496 (-1123) |#2|))) (($ $ (-1123) |#2|) NIL (|has| |#2| (-496 (-1123) |#2|)))) (-1680 (((-735) $) NIL)) (-4118 (($ $ |#2|) NIL (|has| |#2| (-271 |#2| |#2|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| |#2| (-219))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3295 (($ $) NIL)) (-3297 ((|#2| $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| |#2| (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| |#2| (-584 (-849 (-363))))) (((-515) $) NIL (|has| |#2| (-584 (-515)))) (((-363) $) NIL (|has| |#2| (-977))) (((-211) $) NIL (|has| |#2| (-977)))) (-2911 (((-165 (-392 (-526))) $) 68)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) 87) (($ (-526)) 19) (($ $) NIL) (($ (-392 (-526))) 24) (($ |#2|) 18) (($ (-1123)) NIL (|has| |#2| (-995 (-1123))))) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-3428 ((|#2| $) NIL (|has| |#2| (-525)))) (-2150 (((-111) $ $) NIL)) (-4088 (((-392 (-526)) $ (-526)) 60)) (-3702 (($ $) NIL (|has| |#2| (-784)))) (-2957 (($) 14 T CONST)) (-2964 (($) 16 T CONST)) (-2969 (($ $) NIL (|has| |#2| (-219))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) 35)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4156 (($ $) 39) (($ $ $) 41)) (-4158 (($ $ $) 37)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 50)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 42) (($ $ $) 44) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-831 |#1| |#2|) (-13 (-950 |#2|) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) (-526) (-829 |#1|)) (T -831)) -((-4088 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-392 (-526))) (-5 *1 (-831 *4 *5)) (-5 *3 (-526)) (-4 *5 (-829 *4)))) (-2911 (*1 *2 *1) (-12 (-14 *3 (-526)) (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-831 *3 *4)) (-4 *4 (-829 *3)))) (-4049 (*1 *1 *1) (-12 (-14 *2 (-526)) (-5 *1 (-831 *2 *3)) (-4 *3 (-829 *2)))) (-4049 (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-14 *3 *2) (-5 *1 (-831 *3 *4)) (-4 *4 (-829 *3))))) -(-13 (-950 |#2|) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) -((-2865 (((-111) $ $) NIL (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))))) (-4114 ((|#2| $) 12)) (-2912 (($ |#1| |#2|) 9)) (-3554 (((-1106) $) NIL (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))))) (-3555 (((-1070) $) NIL (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#1| $) 11)) (-3844 (($ |#1| |#2|) 10)) (-4274 (((-823) $) 18 (-3850 (-12 (|has| |#1| (-583 (-823))) (|has| |#2| (-583 (-823)))) (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052)))))) (-3353 (((-111) $ $) 22 (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052)))))) -(((-832 |#1| |#2|) (-13 (-1159) (-10 -8 (IF (|has| |#1| (-583 (-823))) (IF (|has| |#2| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1052)) (IF (|has| |#2| (-1052)) (-6 (-1052)) |%noBranch|) |%noBranch|) (-15 -2912 ($ |#1| |#2|)) (-15 -3844 ($ |#1| |#2|)) (-15 -4119 (|#1| $)) (-15 -4114 (|#2| $)))) (-1159) (-1159)) (T -832)) -((-2912 (*1 *1 *2 *3) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1159)) (-4 *3 (-1159)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1159)) (-4 *3 (-1159)))) (-4119 (*1 *2 *1) (-12 (-4 *2 (-1159)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1159)))) (-4114 (*1 *2 *1) (-12 (-4 *2 (-1159)) (-5 *1 (-832 *3 *2)) (-4 *3 (-1159))))) -(-13 (-1159) (-10 -8 (IF (|has| |#1| (-583 (-823))) (IF (|has| |#2| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1052)) (IF (|has| |#2| (-1052)) (-6 (-1052)) |%noBranch|) |%noBranch|) (-15 -2912 ($ |#1| |#2|)) (-15 -3844 ($ |#1| |#2|)) (-15 -4119 (|#1| $)) (-15 -4114 (|#2| $)))) -((-2865 (((-111) $ $) NIL)) (-3257 (((-526) $) 15)) (-2914 (($ (-149)) 11)) (-2913 (($ (-149)) 12)) (-3554 (((-1106) $) NIL)) (-3256 (((-149) $) 13)) (-3555 (((-1070) $) NIL)) (-2916 (($ (-149)) 9)) (-2917 (($ (-149)) 8)) (-4274 (((-823) $) 23) (($ (-149)) 16)) (-2915 (($ (-149)) 10)) (-3353 (((-111) $ $) NIL))) -(((-833) (-13 (-1052) (-10 -8 (-15 -2917 ($ (-149))) (-15 -2916 ($ (-149))) (-15 -2915 ($ (-149))) (-15 -2914 ($ (-149))) (-15 -2913 ($ (-149))) (-15 -3256 ((-149) $)) (-15 -3257 ((-526) $)) (-15 -4274 ($ (-149)))))) (T -833)) -((-2917 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-2915 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-833)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) -(-13 (-1052) (-10 -8 (-15 -2917 ($ (-149))) (-15 -2916 ($ (-149))) (-15 -2915 ($ (-149))) (-15 -2914 ($ (-149))) (-15 -2913 ($ (-149))) (-15 -3256 ((-149) $)) (-15 -3257 ((-526) $)) (-15 -4274 ($ (-149))))) -((-4274 (((-299 (-526)) (-392 (-905 (-47)))) 23) (((-299 (-526)) (-905 (-47))) 18))) -(((-834) (-10 -7 (-15 -4274 ((-299 (-526)) (-905 (-47)))) (-15 -4274 ((-299 (-526)) (-392 (-905 (-47))))))) (T -834)) -((-4274 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 (-47)))) (-5 *2 (-299 (-526))) (-5 *1 (-834)))) (-4274 (*1 *2 *3) (-12 (-5 *3 (-905 (-47))) (-5 *2 (-299 (-526))) (-5 *1 (-834))))) -(-10 -7 (-15 -4274 ((-299 (-526)) (-905 (-47)))) (-15 -4274 ((-299 (-526)) (-392 (-905 (-47)))))) -((-4275 (((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|)) 14))) -(((-835 |#1| |#2|) (-10 -7 (-15 -4275 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|)))) (-1159) (-1159)) (T -835)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-836 *6)) (-5 *1 (-835 *5 *6))))) -(-10 -7 (-15 -4275 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|)))) -((-3690 (($ |#1| |#1|) 8)) (-2920 ((|#1| $ (-735)) 10))) -(((-836 |#1|) (-10 -8 (-15 -3690 ($ |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) (-1159)) (T -836)) -((-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-836 *2)) (-4 *2 (-1159)))) (-3690 (*1 *1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1159))))) -(-10 -8 (-15 -3690 ($ |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) -((-4275 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 14))) -(((-837 |#1| |#2|) (-10 -7 (-15 -4275 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)))) (-1159) (-1159)) (T -837)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6))))) -(-10 -7 (-15 -4275 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)))) -((-3690 (($ |#1| |#1| |#1|) 8)) (-2920 ((|#1| $ (-735)) 10))) -(((-838 |#1|) (-10 -8 (-15 -3690 ($ |#1| |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) (-1159)) (T -838)) -((-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-838 *2)) (-4 *2 (-1159)))) (-3690 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1159))))) -(-10 -8 (-15 -3690 ($ |#1| |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) -((-2918 (((-607 (-1128)) (-1106)) 9))) -(((-839) (-10 -7 (-15 -2918 ((-607 (-1128)) (-1106))))) (T -839)) -((-2918 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-607 (-1128))) (-5 *1 (-839))))) -(-10 -7 (-15 -2918 ((-607 (-1128)) (-1106)))) -((-4275 (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)) 14))) -(((-840 |#1| |#2|) (-10 -7 (-15 -4275 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)))) (-1159) (-1159)) (T -840)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6))))) -(-10 -7 (-15 -4275 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)))) -((-2919 (($ |#1| |#1| |#1|) 8)) (-2920 ((|#1| $ (-735)) 10))) -(((-841 |#1|) (-10 -8 (-15 -2919 ($ |#1| |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) (-1159)) (T -841)) -((-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-841 *2)) (-4 *2 (-1159)))) (-2919 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1159))))) -(-10 -8 (-15 -2919 ($ |#1| |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) -((-2924 (((-1101 (-607 (-526))) (-607 (-526)) (-1101 (-607 (-526)))) 32)) (-2923 (((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526))) 28)) (-2925 (((-1101 (-607 (-526))) (-607 (-526))) 41) (((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526))) 40)) (-2926 (((-1101 (-607 (-526))) (-526)) 42)) (-2921 (((-1101 (-607 (-526))) (-526) (-526)) 22) (((-1101 (-607 (-526))) (-526)) 16) (((-1101 (-607 (-526))) (-526) (-526) (-526)) 12)) (-2922 (((-1101 (-607 (-526))) (-1101 (-607 (-526)))) 26)) (-3309 (((-607 (-526)) (-607 (-526))) 25))) -(((-842) (-10 -7 (-15 -2921 ((-1101 (-607 (-526))) (-526) (-526) (-526))) (-15 -2921 ((-1101 (-607 (-526))) (-526))) (-15 -2921 ((-1101 (-607 (-526))) (-526) (-526))) (-15 -3309 ((-607 (-526)) (-607 (-526)))) (-15 -2922 ((-1101 (-607 (-526))) (-1101 (-607 (-526))))) (-15 -2923 ((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526)))) (-15 -2924 ((-1101 (-607 (-526))) (-607 (-526)) (-1101 (-607 (-526))))) (-15 -2925 ((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526)))) (-15 -2925 ((-1101 (-607 (-526))) (-607 (-526)))) (-15 -2926 ((-1101 (-607 (-526))) (-526))))) (T -842)) -((-2926 (*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) (-2925 (*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526))))) (-2925 (*1 *2 *3 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526))))) (-2924 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *3 (-607 (-526))) (-5 *1 (-842)))) (-2923 (*1 *2 *3 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526))))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)))) (-3309 (*1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-842)))) (-2921 (*1 *2 *3 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) (-2921 (*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) (-2921 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526))))) -(-10 -7 (-15 -2921 ((-1101 (-607 (-526))) (-526) (-526) (-526))) (-15 -2921 ((-1101 (-607 (-526))) (-526))) (-15 -2921 ((-1101 (-607 (-526))) (-526) (-526))) (-15 -3309 ((-607 (-526)) (-607 (-526)))) (-15 -2922 ((-1101 (-607 (-526))) (-1101 (-607 (-526))))) (-15 -2923 ((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526)))) (-15 -2924 ((-1101 (-607 (-526))) (-607 (-526)) (-1101 (-607 (-526))))) (-15 -2925 ((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526)))) (-15 -2925 ((-1101 (-607 (-526))) (-607 (-526)))) (-15 -2926 ((-1101 (-607 (-526))) (-526)))) -((-4287 (((-849 (-363)) $) 9 (|has| |#1| (-584 (-849 (-363))))) (((-849 (-526)) $) 8 (|has| |#1| (-584 (-849 (-526))))))) -(((-843 |#1|) (-134) (-1159)) (T -843)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-584 (-849 (-526)))) (-6 (-584 (-849 (-526)))) |%noBranch|) (IF (|has| |t#1| (-584 (-849 (-363)))) (-6 (-584 (-849 (-363)))) |%noBranch|))) -(((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526))))) -((-2865 (((-111) $ $) NIL)) (-3936 (($) 14)) (-2929 (($ (-847 |#1| |#2|) (-847 |#1| |#3|)) 27)) (-2927 (((-847 |#1| |#3|) $) 16)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2937 (((-111) $) 22)) (-2936 (($) 19)) (-4274 (((-823) $) 30)) (-2928 (((-847 |#1| |#2|) $) 15)) (-3353 (((-111) $ $) 25))) -(((-844 |#1| |#2| |#3|) (-13 (-1052) (-10 -8 (-15 -2937 ((-111) $)) (-15 -2936 ($)) (-15 -3936 ($)) (-15 -2929 ($ (-847 |#1| |#2|) (-847 |#1| |#3|))) (-15 -2928 ((-847 |#1| |#2|) $)) (-15 -2927 ((-847 |#1| |#3|) $)))) (-1052) (-1052) (-631 |#2|)) (T -844)) -((-2937 (*1 *2 *1) (-12 (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-844 *3 *4 *5)) (-4 *3 (-1052)) (-4 *5 (-631 *4)))) (-2936 (*1 *1) (-12 (-4 *3 (-1052)) (-5 *1 (-844 *2 *3 *4)) (-4 *2 (-1052)) (-4 *4 (-631 *3)))) (-3936 (*1 *1) (-12 (-4 *3 (-1052)) (-5 *1 (-844 *2 *3 *4)) (-4 *2 (-1052)) (-4 *4 (-631 *3)))) (-2929 (*1 *1 *2 *3) (-12 (-5 *2 (-847 *4 *5)) (-5 *3 (-847 *4 *6)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-631 *5)) (-5 *1 (-844 *4 *5 *6)))) (-2928 (*1 *2 *1) (-12 (-4 *4 (-1052)) (-5 *2 (-847 *3 *4)) (-5 *1 (-844 *3 *4 *5)) (-4 *3 (-1052)) (-4 *5 (-631 *4)))) (-2927 (*1 *2 *1) (-12 (-4 *4 (-1052)) (-5 *2 (-847 *3 *5)) (-5 *1 (-844 *3 *4 *5)) (-4 *3 (-1052)) (-4 *5 (-631 *4))))) -(-13 (-1052) (-10 -8 (-15 -2937 ((-111) $)) (-15 -2936 ($)) (-15 -3936 ($)) (-15 -2929 ($ (-847 |#1| |#2|) (-847 |#1| |#3|))) (-15 -2928 ((-847 |#1| |#2|) $)) (-15 -2927 ((-847 |#1| |#3|) $)))) -((-2865 (((-111) $ $) 7)) (-3096 (((-847 |#1| $) $ (-849 |#1|) (-847 |#1| $)) 13)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) -(((-845 |#1|) (-134) (-1052)) (T -845)) -((-3096 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-847 *4 *1)) (-5 *3 (-849 *4)) (-4 *1 (-845 *4)) (-4 *4 (-1052))))) -(-13 (-1052) (-10 -8 (-15 -3096 ((-847 |t#1| $) $ (-849 |t#1|) (-847 |t#1| $))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2930 (((-111) (-607 |#2|) |#3|) 23) (((-111) |#2| |#3|) 18)) (-2931 (((-847 |#1| |#2|) |#2| |#3|) 43 (-12 (-3636 (|has| |#2| (-995 (-1123)))) (-3636 (|has| |#2| (-1004))))) (((-607 (-278 (-905 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1004)) (-3636 (|has| |#2| (-995 (-1123)))))) (((-607 (-278 |#2|)) |#2| |#3|) 35 (|has| |#2| (-995 (-1123)))) (((-844 |#1| |#2| (-607 |#2|)) (-607 |#2|) |#3|) 21))) -(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2930 ((-111) |#2| |#3|)) (-15 -2930 ((-111) (-607 |#2|) |#3|)) (-15 -2931 ((-844 |#1| |#2| (-607 |#2|)) (-607 |#2|) |#3|)) (IF (|has| |#2| (-995 (-1123))) (-15 -2931 ((-607 (-278 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1004)) (-15 -2931 ((-607 (-278 (-905 |#2|))) |#2| |#3|)) (-15 -2931 ((-847 |#1| |#2|) |#2| |#3|))))) (-1052) (-845 |#1|) (-584 (-849 |#1|))) (T -846)) -((-2931 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-5 *2 (-847 *5 *3)) (-5 *1 (-846 *5 *3 *4)) (-3636 (-4 *3 (-995 (-1123)))) (-3636 (-4 *3 (-1004))) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5))))) (-2931 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-5 *2 (-607 (-278 (-905 *3)))) (-5 *1 (-846 *5 *3 *4)) (-4 *3 (-1004)) (-3636 (-4 *3 (-995 (-1123)))) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5))))) (-2931 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-5 *2 (-607 (-278 *3))) (-5 *1 (-846 *5 *3 *4)) (-4 *3 (-995 (-1123))) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5))))) (-2931 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *6 (-845 *5)) (-5 *2 (-844 *5 *6 (-607 *6))) (-5 *1 (-846 *5 *6 *4)) (-5 *3 (-607 *6)) (-4 *4 (-584 (-849 *5))))) (-2930 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-4 *6 (-845 *5)) (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-846 *5 *6 *4)) (-4 *4 (-584 (-849 *5))))) (-2930 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-846 *5 *3 *4)) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5)))))) -(-10 -7 (-15 -2930 ((-111) |#2| |#3|)) (-15 -2930 ((-111) (-607 |#2|) |#3|)) (-15 -2931 ((-844 |#1| |#2| (-607 |#2|)) (-607 |#2|) |#3|)) (IF (|has| |#2| (-995 (-1123))) (-15 -2931 ((-607 (-278 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1004)) (-15 -2931 ((-607 (-278 (-905 |#2|))) |#2| |#3|)) (-15 -2931 ((-847 |#1| |#2|) |#2| |#3|))))) -((-2865 (((-111) $ $) NIL)) (-3546 (($ $ $) 39)) (-2959 (((-3 (-111) "failed") $ (-849 |#1|)) 36)) (-3936 (($) 12)) (-3554 (((-1106) $) NIL)) (-2933 (($ (-849 |#1|) |#2| $) 20)) (-3555 (((-1070) $) NIL)) (-2935 (((-3 |#2| "failed") (-849 |#1|) $) 50)) (-2937 (((-111) $) 15)) (-2936 (($) 13)) (-3569 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))) $) 25)) (-3844 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|)))) 23)) (-4274 (((-823) $) 44)) (-2932 (($ (-849 |#1|) |#2| $ |#2|) 48)) (-2934 (($ (-849 |#1|) |#2| $) 47)) (-3353 (((-111) $ $) 41))) -(((-847 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -2937 ((-111) $)) (-15 -2936 ($)) (-15 -3936 ($)) (-15 -3546 ($ $ $)) (-15 -2935 ((-3 |#2| "failed") (-849 |#1|) $)) (-15 -2934 ($ (-849 |#1|) |#2| $)) (-15 -2933 ($ (-849 |#1|) |#2| $)) (-15 -2932 ($ (-849 |#1|) |#2| $ |#2|)) (-15 -3569 ((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))) $)) (-15 -3844 ($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))))) (-15 -2959 ((-3 (-111) "failed") $ (-849 |#1|))))) (-1052) (-1052)) (T -847)) -((-2937 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-2936 (*1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3936 (*1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3546 (*1 *1 *1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-2935 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-4 *2 (-1052)) (-5 *1 (-847 *4 *2)))) (-2934 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052)))) (-2933 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052)))) (-2932 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 *4)))) (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 *4)))) (-4 *4 (-1052)) (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)))) (-2959 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-847 *4 *5)) (-4 *5 (-1052))))) -(-13 (-1052) (-10 -8 (-15 -2937 ((-111) $)) (-15 -2936 ($)) (-15 -3936 ($)) (-15 -3546 ($ $ $)) (-15 -2935 ((-3 |#2| "failed") (-849 |#1|) $)) (-15 -2934 ($ (-849 |#1|) |#2| $)) (-15 -2933 ($ (-849 |#1|) |#2| $)) (-15 -2932 ($ (-849 |#1|) |#2| $ |#2|)) (-15 -3569 ((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))) $)) (-15 -3844 ($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))))) (-15 -2959 ((-3 (-111) "failed") $ (-849 |#1|))))) -((-4275 (((-847 |#1| |#3|) (-1 |#3| |#2|) (-847 |#1| |#2|)) 22))) -(((-848 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-847 |#1| |#3|) (-1 |#3| |#2|) (-847 |#1| |#2|)))) (-1052) (-1052) (-1052)) (T -848)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-847 *5 *6)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-847 *5 *7)) (-5 *1 (-848 *5 *6 *7))))) -(-10 -7 (-15 -4275 ((-847 |#1| |#3|) (-1 |#3| |#2|) (-847 |#1| |#2|)))) -((-2865 (((-111) $ $) NIL)) (-2945 (($ $ (-607 (-50))) 64)) (-3384 (((-607 $) $) 118)) (-2942 (((-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50))) $) 24)) (-3572 (((-111) $) 30)) (-2943 (($ $ (-607 (-1123)) (-50)) 25)) (-2946 (($ $ (-607 (-50))) 63)) (-3470 (((-3 |#1| #1="failed") $) 61) (((-3 (-1123) #1#) $) 140)) (-3469 ((|#1| $) 58) (((-1123) $) NIL)) (-2940 (($ $) 108)) (-2952 (((-111) $) 47)) (-2947 (((-607 (-50)) $) 45)) (-2944 (($ (-1123) (-111) (-111) (-111)) 65)) (-2938 (((-3 (-607 $) "failed") (-607 $)) 72)) (-2949 (((-111) $) 50)) (-2950 (((-111) $) 49)) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) "failed") $) 36)) (-2955 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 $)) "failed") $) 83)) (-3122 (((-3 (-607 $) "failed") $) 33)) (-2956 (((-3 (-607 $) "failed") $ (-112)) 107) (((-3 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 $))) "failed") $) 95)) (-2954 (((-3 (-607 $) "failed") $) 37)) (-3124 (((-3 (-2 (|:| |val| $) (|:| -2462 (-735))) "failed") $) 40)) (-2953 (((-111) $) 29)) (-3555 (((-1070) $) NIL)) (-2941 (((-111) $) 21)) (-2948 (((-111) $) 46)) (-2939 (((-607 (-50)) $) 111)) (-2951 (((-111) $) 48)) (-4118 (($ (-112) (-607 $)) 92)) (-3642 (((-735) $) 28)) (-3719 (($ $) 62)) (-4287 (($ (-607 $)) 59)) (-4269 (((-111) $) 26)) (-4274 (((-823) $) 53) (($ |#1|) 18) (($ (-1123)) 66)) (-2960 (($ $ (-50)) 110)) (-2957 (($) 91 T CONST)) (-2964 (($) 73 T CONST)) (-3353 (((-111) $ $) 79)) (-4265 (($ $ $) 100)) (-4158 (($ $ $) 104)) (** (($ $ (-735)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-849 |#1|) (-13 (-1052) (-995 |#1|) (-995 (-1123)) (-10 -8 (-15 0 ($) -4268) (-15 1 ($) -4268) (-15 -3122 ((-3 (-607 $) "failed") $)) (-15 -3123 ((-3 (-607 $) "failed") $)) (-15 -2956 ((-3 (-607 $) "failed") $ (-112))) (-15 -2956 ((-3 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 $))) "failed") $)) (-15 -3124 ((-3 (-2 (|:| |val| $) (|:| -2462 (-735))) "failed") $)) (-15 -2955 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2954 ((-3 (-607 $) "failed") $)) (-15 -3125 ((-3 (-2 (|:| |val| $) (|:| -2462 $)) "failed") $)) (-15 -4118 ($ (-112) (-607 $))) (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735))) (-15 ** ($ $ $)) (-15 -4265 ($ $ $)) (-15 -3642 ((-735) $)) (-15 -4287 ($ (-607 $))) (-15 -3719 ($ $)) (-15 -2953 ((-111) $)) (-15 -2952 ((-111) $)) (-15 -3572 ((-111) $)) (-15 -4269 ((-111) $)) (-15 -2951 ((-111) $)) (-15 -2950 ((-111) $)) (-15 -2949 ((-111) $)) (-15 -2948 ((-111) $)) (-15 -2947 ((-607 (-50)) $)) (-15 -2946 ($ $ (-607 (-50)))) (-15 -2945 ($ $ (-607 (-50)))) (-15 -2944 ($ (-1123) (-111) (-111) (-111))) (-15 -2943 ($ $ (-607 (-1123)) (-50))) (-15 -2942 ((-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50))) $)) (-15 -2941 ((-111) $)) (-15 -2940 ($ $)) (-15 -2960 ($ $ (-50))) (-15 -2939 ((-607 (-50)) $)) (-15 -3384 ((-607 $) $)) (-15 -2938 ((-3 (-607 $) "failed") (-607 $))))) (-1052)) (T -849)) -((-2957 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-2964 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-3122 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3123 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2956 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-607 (-849 *4))) (-5 *1 (-849 *4)) (-4 *4 (-1052)))) (-2956 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 (-849 *3))))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3124 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-849 *3)) (|:| -2462 (-735)))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2955 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-849 *3)) (|:| |den| (-849 *3)))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2954 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3125 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-849 *3)) (|:| -2462 (-849 *3)))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-4118 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 (-849 *4))) (-5 *1 (-849 *4)) (-4 *4 (-1052)))) (-4158 (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-4265 (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3719 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2945 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2944 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-111)) (-5 *1 (-849 *4)) (-4 *4 (-1052)))) (-2943 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-50)) (-5 *1 (-849 *4)) (-4 *4 (-1052)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50)))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2940 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-2960 (*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2938 (*1 *2 *2) (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(-13 (-1052) (-995 |#1|) (-995 (-1123)) (-10 -8 (-15 (-2957) ($) -4268) (-15 (-2964) ($) -4268) (-15 -3122 ((-3 (-607 $) "failed") $)) (-15 -3123 ((-3 (-607 $) "failed") $)) (-15 -2956 ((-3 (-607 $) "failed") $ (-112))) (-15 -2956 ((-3 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 $))) "failed") $)) (-15 -3124 ((-3 (-2 (|:| |val| $) (|:| -2462 (-735))) "failed") $)) (-15 -2955 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2954 ((-3 (-607 $) "failed") $)) (-15 -3125 ((-3 (-2 (|:| |val| $) (|:| -2462 $)) "failed") $)) (-15 -4118 ($ (-112) (-607 $))) (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735))) (-15 ** ($ $ $)) (-15 -4265 ($ $ $)) (-15 -3642 ((-735) $)) (-15 -4287 ($ (-607 $))) (-15 -3719 ($ $)) (-15 -2953 ((-111) $)) (-15 -2952 ((-111) $)) (-15 -3572 ((-111) $)) (-15 -4269 ((-111) $)) (-15 -2951 ((-111) $)) (-15 -2950 ((-111) $)) (-15 -2949 ((-111) $)) (-15 -2948 ((-111) $)) (-15 -2947 ((-607 (-50)) $)) (-15 -2946 ($ $ (-607 (-50)))) (-15 -2945 ($ $ (-607 (-50)))) (-15 -2944 ($ (-1123) (-111) (-111) (-111))) (-15 -2943 ($ $ (-607 (-1123)) (-50))) (-15 -2942 ((-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50))) $)) (-15 -2941 ((-111) $)) (-15 -2940 ($ $)) (-15 -2960 ($ $ (-50))) (-15 -2939 ((-607 (-50)) $)) (-15 -3384 ((-607 $) $)) (-15 -2938 ((-3 (-607 $) "failed") (-607 $))))) -((-3522 (((-849 |#1|) (-849 |#1|) (-607 (-1123)) (-1 (-111) (-607 |#2|))) 32) (((-849 |#1|) (-849 |#1|) (-607 (-1 (-111) |#2|))) 43) (((-849 |#1|) (-849 |#1|) (-1 (-111) |#2|)) 35)) (-2959 (((-111) (-607 |#2|) (-849 |#1|)) 40) (((-111) |#2| (-849 |#1|)) 36)) (-2958 (((-1 (-111) |#2|) (-849 |#1|)) 16)) (-2961 (((-607 |#2|) (-849 |#1|)) 24)) (-2960 (((-849 |#1|) (-849 |#1|) |#2|) 20))) -(((-850 |#1| |#2|) (-10 -7 (-15 -3522 ((-849 |#1|) (-849 |#1|) (-1 (-111) |#2|))) (-15 -3522 ((-849 |#1|) (-849 |#1|) (-607 (-1 (-111) |#2|)))) (-15 -3522 ((-849 |#1|) (-849 |#1|) (-607 (-1123)) (-1 (-111) (-607 |#2|)))) (-15 -2958 ((-1 (-111) |#2|) (-849 |#1|))) (-15 -2959 ((-111) |#2| (-849 |#1|))) (-15 -2959 ((-111) (-607 |#2|) (-849 |#1|))) (-15 -2960 ((-849 |#1|) (-849 |#1|) |#2|)) (-15 -2961 ((-607 |#2|) (-849 |#1|)))) (-1052) (-1159)) (T -850)) -((-2961 (*1 *2 *3) (-12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-607 *5)) (-5 *1 (-850 *4 *5)) (-4 *5 (-1159)))) (-2960 (*1 *2 *2 *3) (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-850 *4 *3)) (-4 *3 (-1159)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *2 (-111)) (-5 *1 (-850 *5 *6)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-850 *5 *3)) (-4 *3 (-1159)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-850 *4 *5)) (-4 *5 (-1159)))) (-3522 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-849 *5)) (-5 *3 (-607 (-1123))) (-5 *4 (-1 (-111) (-607 *6))) (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *1 (-850 *5 *6)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-849 *4)) (-5 *3 (-607 (-1 (-111) *5))) (-4 *4 (-1052)) (-4 *5 (-1159)) (-5 *1 (-850 *4 *5)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-849 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1052)) (-4 *5 (-1159)) (-5 *1 (-850 *4 *5))))) -(-10 -7 (-15 -3522 ((-849 |#1|) (-849 |#1|) (-1 (-111) |#2|))) (-15 -3522 ((-849 |#1|) (-849 |#1|) (-607 (-1 (-111) |#2|)))) (-15 -3522 ((-849 |#1|) (-849 |#1|) (-607 (-1123)) (-1 (-111) (-607 |#2|)))) (-15 -2958 ((-1 (-111) |#2|) (-849 |#1|))) (-15 -2959 ((-111) |#2| (-849 |#1|))) (-15 -2959 ((-111) (-607 |#2|) (-849 |#1|))) (-15 -2960 ((-849 |#1|) (-849 |#1|) |#2|)) (-15 -2961 ((-607 |#2|) (-849 |#1|)))) -((-4275 (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)) 19))) -(((-851 |#1| |#2|) (-10 -7 (-15 -4275 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)))) (-1052) (-1052)) (T -851)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-849 *6)) (-5 *1 (-851 *5 *6))))) -(-10 -7 (-15 -4275 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)))) -((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) 16)) (-2962 (((-111) $) 38)) (-3470 (((-3 (-637 |#1|) "failed") $) 43)) (-3469 (((-637 |#1|) $) 41)) (-4117 (($ $) 18)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4152 (((-735) $) 46)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-637 |#1|) $) 17)) (-4274 (((-823) $) 37) (($ (-637 |#1|)) 21) (((-783 |#1|) $) 27) (($ |#1|) 20)) (-2964 (($) 8 T CONST)) (-2963 (((-607 (-637 |#1|)) $) 23)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 11)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 49))) -(((-852 |#1|) (-13 (-811) (-995 (-637 |#1|)) (-10 -8 (-15 1 ($) -4268) (-15 -4274 ((-783 |#1|) $)) (-15 -4274 ($ |#1|)) (-15 -4119 ((-637 |#1|) $)) (-15 -4152 ((-735) $)) (-15 -2963 ((-607 (-637 |#1|)) $)) (-15 -4117 ($ $)) (-15 -2962 ((-111) $)) (-15 -4251 ((-607 |#1|) $)))) (-811)) (T -852)) -((-2964 (*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-4274 (*1 *1 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-607 (-637 *3))) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811))))) -(-13 (-811) (-995 (-637 |#1|)) (-10 -8 (-15 (-2964) ($) -4268) (-15 -4274 ((-783 |#1|) $)) (-15 -4274 ($ |#1|)) (-15 -4119 ((-637 |#1|) $)) (-15 -4152 ((-735) $)) (-15 -2963 ((-607 (-637 |#1|)) $)) (-15 -4117 ($ $)) (-15 -2962 ((-111) $)) (-15 -4251 ((-607 |#1|) $)))) -((-3788 ((|#1| |#1| |#1|) 19))) -(((-853 |#1| |#2|) (-10 -7 (-15 -3788 (|#1| |#1| |#1|))) (-1181 |#2|) (-1004)) (T -853)) -((-3788 (*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-853 *2 *3)) (-4 *2 (-1181 *3))))) -(-10 -7 (-15 -3788 (|#1| |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2965 (((-992) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 13)) (-3353 (((-111) $ $) 6))) -(((-854) (-134)) (T -854)) -((-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-854)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) (-2965 (*1 *2 *3) (-12 (-4 *1 (-854)) (-5 *3 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *2 (-992))))) -(-13 (-1052) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))) (-15 -2965 ((-992) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2967 ((|#1| |#1| (-735)) 24)) (-2966 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3754 (((-3 (-2 (|:| -3435 |#1|) (|:| -3434 |#1|)) "failed") |#1| (-735) (-735)) 27) (((-607 |#1|) |#1|) 29))) -(((-855 |#1| |#2|) (-10 -7 (-15 -3754 ((-607 |#1|) |#1|)) (-15 -3754 ((-3 (-2 (|:| -3435 |#1|) (|:| -3434 |#1|)) "failed") |#1| (-735) (-735))) (-15 -2966 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2967 (|#1| |#1| (-735)))) (-1181 |#2|) (-348)) (T -855)) -((-2967 (*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-348)) (-5 *1 (-855 *2 *4)) (-4 *2 (-1181 *4)))) (-2966 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-348)) (-5 *1 (-855 *2 *3)) (-4 *2 (-1181 *3)))) (-3754 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-735)) (-4 *5 (-348)) (-5 *2 (-2 (|:| -3435 *3) (|:| -3434 *3))) (-5 *1 (-855 *3 *5)) (-4 *3 (-1181 *5)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-855 *3 *4)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -3754 ((-607 |#1|) |#1|)) (-15 -3754 ((-3 (-2 (|:| -3435 |#1|) (|:| -3434 |#1|)) "failed") |#1| (-735) (-735))) (-15 -2966 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2967 (|#1| |#1| (-735)))) -((-3895 (((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106)) 96) (((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106) (-211)) 91) (((-992) (-857) (-1016)) 83) (((-992) (-857)) 84)) (-2968 (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857) (-1016)) 59) (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857)) 61))) -(((-856) (-10 -7 (-15 -3895 ((-992) (-857))) (-15 -3895 ((-992) (-857) (-1016))) (-15 -3895 ((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106) (-211))) (-15 -3895 ((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857) (-1016))))) (T -856)) -((-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1016)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-856)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-856)))) (-3895 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-735)) (-5 *6 (-607 (-607 (-299 *3)))) (-5 *7 (-1106)) (-5 *5 (-607 (-299 (-363)))) (-5 *3 (-363)) (-5 *2 (-992)) (-5 *1 (-856)))) (-3895 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-735)) (-5 *6 (-607 (-607 (-299 *3)))) (-5 *7 (-1106)) (-5 *8 (-211)) (-5 *5 (-607 (-299 (-363)))) (-5 *3 (-363)) (-5 *2 (-992)) (-5 *1 (-856)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-856)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-992)) (-5 *1 (-856))))) -(-10 -7 (-15 -3895 ((-992) (-857))) (-15 -3895 ((-992) (-857) (-1016))) (-15 -3895 ((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106) (-211))) (-15 -3895 ((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857) (-1016)))) -((-2865 (((-111) $ $) NIL)) (-3469 (((-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))) $) 19)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 21) (($ (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 18)) (-3353 (((-111) $ $) NIL))) -(((-857) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))) $))))) (T -857)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-857)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *1 (-857)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *1 (-857))))) -(-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))) $)))) -((-4129 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) 10) (($ $ |#2| (-735)) 12) (($ $ (-607 |#2|) (-607 (-735))) 15)) (-2969 (($ $ |#2|) 16) (($ $ (-607 |#2|)) 18) (($ $ |#2| (-735)) 19) (($ $ (-607 |#2|) (-607 (-735))) 21))) -(((-858 |#1| |#2|) (-10 -8 (-15 -2969 (|#1| |#1| (-607 |#2|) (-607 (-735)))) (-15 -2969 (|#1| |#1| |#2| (-735))) (-15 -2969 (|#1| |#1| (-607 |#2|))) (-15 -2969 (|#1| |#1| |#2|)) (-15 -4129 (|#1| |#1| (-607 |#2|) (-607 (-735)))) (-15 -4129 (|#1| |#1| |#2| (-735))) (-15 -4129 (|#1| |#1| (-607 |#2|))) (-15 -4129 (|#1| |#1| |#2|))) (-859 |#2|) (-1052)) (T -858)) -NIL -(-10 -8 (-15 -2969 (|#1| |#1| (-607 |#2|) (-607 (-735)))) (-15 -2969 (|#1| |#1| |#2| (-735))) (-15 -2969 (|#1| |#1| (-607 |#2|))) (-15 -2969 (|#1| |#1| |#2|)) (-15 -4129 (|#1| |#1| (-607 |#2|) (-607 (-735)))) (-15 -4129 (|#1| |#1| |#2| (-735))) (-15 -4129 (|#1| |#1| (-607 |#2|))) (-15 -4129 (|#1| |#1| |#2|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4129 (($ $ |#1|) 40) (($ $ (-607 |#1|)) 39) (($ $ |#1| (-735)) 38) (($ $ (-607 |#1|) (-607 (-735))) 37)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ |#1|) 36) (($ $ (-607 |#1|)) 35) (($ $ |#1| (-735)) 34) (($ $ (-607 |#1|) (-607 (-735))) 33)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-859 |#1|) (-134) (-1052)) (T -859)) -((-4129 (*1 *1 *1 *2) (-12 (-4 *1 (-859 *2)) (-4 *2 (-1052)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-859 *3)) (-4 *3 (-1052)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-859 *2)) (-4 *2 (-1052)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 (-735))) (-4 *1 (-859 *4)) (-4 *4 (-1052)))) (-2969 (*1 *1 *1 *2) (-12 (-4 *1 (-859 *2)) (-4 *2 (-1052)))) (-2969 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-859 *3)) (-4 *3 (-1052)))) (-2969 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-859 *2)) (-4 *2 (-1052)))) (-2969 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 (-735))) (-4 *1 (-859 *4)) (-4 *4 (-1052))))) -(-13 (-1004) (-10 -8 (-15 -4129 ($ $ |t#1|)) (-15 -4129 ($ $ (-607 |t#1|))) (-15 -4129 ($ $ |t#1| (-735))) (-15 -4129 ($ $ (-607 |t#1|) (-607 (-735)))) (-15 -2969 ($ $ |t#1|)) (-15 -2969 ($ $ (-607 |t#1|))) (-15 -2969 ($ $ |t#1| (-735))) (-15 -2969 ($ $ (-607 |t#1|) (-607 (-735)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 26)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-1330 (($ $ $) NIL (|has| $ (-6 -4311)))) (-1331 (($ $ $) NIL (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 25)) (-2970 (($ |#1|) 12) (($ $ $) 17)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) 23)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) 20)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1146 |#1|) $) 9) (((-823) $) 29 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 21 (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-860 |#1|) (-13 (-118 |#1|) (-10 -8 (-15 -2970 ($ |#1|)) (-15 -2970 ($ $ $)) (-15 -4274 ((-1146 |#1|) $)))) (-1052)) (T -860)) -((-2970 (*1 *1 *2) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1052)))) (-2970 (*1 *1 *1 *1) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1052)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-860 *3)) (-4 *3 (-1052))))) -(-13 (-118 |#1|) (-10 -8 (-15 -2970 ($ |#1|)) (-15 -2970 ($ $ $)) (-15 -4274 ((-1146 |#1|) $)))) -((-2865 (((-111) $ $) NIL)) (-3209 (((-607 $) (-607 $)) 77)) (-3945 (((-526) $) 60)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-4090 (((-735) $) 58)) (-2990 (((-1048 |#1|) $ |#1|) 49)) (-2471 (((-111) $) NIL)) (-2973 (((-111) $) 63)) (-2975 (((-735) $) 61)) (-2986 (((-1048 |#1|) $) 42)) (-3637 (($ $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-3638 (($ $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-2979 (((-2 (|:| |preimage| (-607 |#1|)) (|:| |image| (-607 |#1|))) $) 37)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 93)) (-3555 (((-1070) $) NIL)) (-2972 (((-1048 |#1|) $) 100 (|has| |#1| (-353)))) (-2974 (((-111) $) 59)) (-4086 ((|#1| $ |#1|) 47)) (-4118 ((|#1| $ |#1|) 94)) (-4264 (((-735) $) 44)) (-2981 (($ (-607 (-607 |#1|))) 85)) (-2976 (((-930) $) 53)) (-2982 (($ (-607 |#1|)) 21)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-2978 (($ (-607 (-607 |#1|))) 39)) (-2977 (($ (-607 (-607 |#1|))) 88)) (-2971 (($ (-607 |#1|)) 96)) (-4274 (((-823) $) 84) (($ (-607 (-607 |#1|))) 66) (($ (-607 |#1|)) 67)) (-2964 (($) 16 T CONST)) (-2863 (((-111) $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-3353 (((-111) $ $) 45)) (-2984 (((-111) $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-2985 (((-111) $ $) 65)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ $ $) 22))) -(((-861 |#1|) (-13 (-863 |#1|) (-10 -8 (-15 -2979 ((-2 (|:| |preimage| (-607 |#1|)) (|:| |image| (-607 |#1|))) $)) (-15 -2978 ($ (-607 (-607 |#1|)))) (-15 -4274 ($ (-607 (-607 |#1|)))) (-15 -4274 ($ (-607 |#1|))) (-15 -2977 ($ (-607 (-607 |#1|)))) (-15 -4264 ((-735) $)) (-15 -2986 ((-1048 |#1|) $)) (-15 -2976 ((-930) $)) (-15 -4090 ((-735) $)) (-15 -2975 ((-735) $)) (-15 -3945 ((-526) $)) (-15 -2974 ((-111) $)) (-15 -2973 ((-111) $)) (-15 -3209 ((-607 $) (-607 $))) (IF (|has| |#1| (-353)) (-15 -2972 ((-1048 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-525)) (-15 -2971 ($ (-607 |#1|))) (IF (|has| |#1| (-353)) (-15 -2971 ($ (-607 |#1|))) |%noBranch|)))) (-1052)) (T -861)) -((-2979 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-607 *3)) (|:| |image| (-607 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2978 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-3209 (*1 *2 *2) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-861 *3)) (-4 *3 (-353)) (-4 *3 (-1052)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-861 *3))))) -(-13 (-863 |#1|) (-10 -8 (-15 -2979 ((-2 (|:| |preimage| (-607 |#1|)) (|:| |image| (-607 |#1|))) $)) (-15 -2978 ($ (-607 (-607 |#1|)))) (-15 -4274 ($ (-607 (-607 |#1|)))) (-15 -4274 ($ (-607 |#1|))) (-15 -2977 ($ (-607 (-607 |#1|)))) (-15 -4264 ((-735) $)) (-15 -2986 ((-1048 |#1|) $)) (-15 -2976 ((-930) $)) (-15 -4090 ((-735) $)) (-15 -2975 ((-735) $)) (-15 -3945 ((-526) $)) (-15 -2974 ((-111) $)) (-15 -2973 ((-111) $)) (-15 -3209 ((-607 $) (-607 $))) (IF (|has| |#1| (-353)) (-15 -2972 ((-1048 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-525)) (-15 -2971 ($ (-607 |#1|))) (IF (|has| |#1| (-353)) (-15 -2971 ($ (-607 |#1|))) |%noBranch|)))) -((-2980 ((|#2| (-1090 |#1| |#2|)) 40))) -(((-862 |#1| |#2|) (-10 -7 (-15 -2980 (|#2| (-1090 |#1| |#2|)))) (-878) (-13 (-1004) (-10 -7 (-6 (-4312 "*"))))) (T -862)) -((-2980 (*1 *2 *3) (-12 (-5 *3 (-1090 *4 *2)) (-14 *4 (-878)) (-4 *2 (-13 (-1004) (-10 -7 (-6 (-4312 "*"))))) (-5 *1 (-862 *4 *2))))) -(-10 -7 (-15 -2980 (|#2| (-1090 |#1| |#2|)))) -((-2865 (((-111) $ $) 7)) (-3855 (($) 18 T CONST)) (-3781 (((-3 $ "failed") $) 15)) (-2990 (((-1048 |#1|) $ |#1|) 32)) (-2471 (((-111) $) 17)) (-3637 (($ $ $) 30 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-3638 (($ $ $) 29 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 24)) (-3555 (((-1070) $) 10)) (-4086 ((|#1| $ |#1|) 34)) (-4118 ((|#1| $ |#1|) 33)) (-2981 (($ (-607 (-607 |#1|))) 35)) (-2982 (($ (-607 |#1|)) 36)) (-3309 (($ $ $) 21)) (-2655 (($ $ $) 20)) (-4274 (((-823) $) 11)) (-2964 (($) 19 T CONST)) (-2863 (((-111) $ $) 27 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-2864 (((-111) $ $) 26 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 28 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-2985 (((-111) $ $) 31)) (-4265 (($ $ $) 23)) (** (($ $ (-878)) 13) (($ $ (-735)) 16) (($ $ (-526)) 22)) (* (($ $ $) 14))) -(((-863 |#1|) (-134) (-1052)) (T -863)) -((-2982 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-863 *3)))) (-2981 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-4 *1 (-863 *3)))) (-4086 (*1 *2 *1 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1052)))) (-4118 (*1 *2 *1 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1052)))) (-2990 (*1 *2 *1 *3) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1052)) (-5 *2 (-1048 *3)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1052)) (-5 *2 (-111))))) -(-13 (-457) (-10 -8 (-15 -2982 ($ (-607 |t#1|))) (-15 -2981 ($ (-607 (-607 |t#1|)))) (-15 -4086 (|t#1| $ |t#1|)) (-15 -4118 (|t#1| $ |t#1|)) (-15 -2990 ((-1048 |t#1|) $ |t#1|)) (-15 -2985 ((-111) $ $)) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-353)) (-6 (-811)) |%noBranch|))) -(((-100) . T) ((-583 (-823)) . T) ((-457) . T) ((-691) . T) ((-811) -3850 (|has| |#1| (-811)) (|has| |#1| (-353))) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-2992 (((-607 (-607 (-735))) $) 108)) (-2988 (((-607 (-735)) (-861 |#1|) $) 130)) (-2987 (((-607 (-735)) (-861 |#1|) $) 131)) (-2993 (((-607 (-861 |#1|)) $) 98)) (-3294 (((-861 |#1|) $ (-526)) 103) (((-861 |#1|) $) 104)) (-2991 (($ (-607 (-861 |#1|))) 110)) (-4090 (((-735) $) 105)) (-2989 (((-1048 (-1048 |#1|)) $) 128)) (-2990 (((-1048 |#1|) $ |#1|) 121) (((-1048 (-1048 |#1|)) $ (-1048 |#1|)) 139) (((-1048 (-607 |#1|)) $ (-607 |#1|)) 142)) (-2986 (((-1048 |#1|) $) 101)) (-3557 (((-111) (-861 |#1|) $) 92)) (-3554 (((-1106) $) NIL)) (-2983 (((-1211) $) 95) (((-1211) $ (-526) (-526)) 143)) (-3555 (((-1070) $) NIL)) (-2995 (((-607 (-861 |#1|)) $) 96)) (-4118 (((-861 |#1|) $ (-735)) 99)) (-4264 (((-735) $) 106)) (-4274 (((-823) $) 119) (((-607 (-861 |#1|)) $) 23) (($ (-607 (-861 |#1|))) 109)) (-2994 (((-607 |#1|) $) 107)) (-3353 (((-111) $ $) 136)) (-2984 (((-111) $ $) 134)) (-2985 (((-111) $ $) 133))) -(((-864 |#1|) (-13 (-1052) (-10 -8 (-15 -4274 ((-607 (-861 |#1|)) $)) (-15 -2995 ((-607 (-861 |#1|)) $)) (-15 -4118 ((-861 |#1|) $ (-735))) (-15 -3294 ((-861 |#1|) $ (-526))) (-15 -3294 ((-861 |#1|) $)) (-15 -4090 ((-735) $)) (-15 -4264 ((-735) $)) (-15 -2994 ((-607 |#1|) $)) (-15 -2993 ((-607 (-861 |#1|)) $)) (-15 -2992 ((-607 (-607 (-735))) $)) (-15 -4274 ($ (-607 (-861 |#1|)))) (-15 -2991 ($ (-607 (-861 |#1|)))) (-15 -2990 ((-1048 |#1|) $ |#1|)) (-15 -2989 ((-1048 (-1048 |#1|)) $)) (-15 -2990 ((-1048 (-1048 |#1|)) $ (-1048 |#1|))) (-15 -2990 ((-1048 (-607 |#1|)) $ (-607 |#1|))) (-15 -3557 ((-111) (-861 |#1|) $)) (-15 -2988 ((-607 (-735)) (-861 |#1|) $)) (-15 -2987 ((-607 (-735)) (-861 |#1|) $)) (-15 -2986 ((-1048 |#1|) $)) (-15 -2985 ((-111) $ $)) (-15 -2984 ((-111) $ $)) (-15 -2983 ((-1211) $)) (-15 -2983 ((-1211) $ (-526) (-526))))) (-1052)) (T -864)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-861 *4)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) (-3294 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-861 *4)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-861 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-735)))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-861 *3))) (-4 *3 (-1052)) (-5 *1 (-864 *3)))) (-2991 (*1 *1 *2) (-12 (-5 *2 (-607 (-861 *3))) (-4 *3 (-1052)) (-5 *1 (-864 *3)))) (-2990 (*1 *2 *1 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-1048 (-1048 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2990 (*1 *2 *1 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-1048 (-1048 *4))) (-5 *1 (-864 *4)) (-5 *3 (-1048 *4)))) (-2990 (*1 *2 *1 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-1048 (-607 *4))) (-5 *1 (-864 *4)) (-5 *3 (-607 *4)))) (-3557 (*1 *2 *3 *1) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-864 *4)))) (-2988 (*1 *2 *3 *1) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-607 (-735))) (-5 *1 (-864 *4)))) (-2987 (*1 *2 *3 *1) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-607 (-735))) (-5 *1 (-864 *4)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2985 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2984 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2983 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-864 *4)) (-4 *4 (-1052))))) -(-13 (-1052) (-10 -8 (-15 -4274 ((-607 (-861 |#1|)) $)) (-15 -2995 ((-607 (-861 |#1|)) $)) (-15 -4118 ((-861 |#1|) $ (-735))) (-15 -3294 ((-861 |#1|) $ (-526))) (-15 -3294 ((-861 |#1|) $)) (-15 -4090 ((-735) $)) (-15 -4264 ((-735) $)) (-15 -2994 ((-607 |#1|) $)) (-15 -2993 ((-607 (-861 |#1|)) $)) (-15 -2992 ((-607 (-607 (-735))) $)) (-15 -4274 ($ (-607 (-861 |#1|)))) (-15 -2991 ($ (-607 (-861 |#1|)))) (-15 -2990 ((-1048 |#1|) $ |#1|)) (-15 -2989 ((-1048 (-1048 |#1|)) $)) (-15 -2990 ((-1048 (-1048 |#1|)) $ (-1048 |#1|))) (-15 -2990 ((-1048 (-607 |#1|)) $ (-607 |#1|))) (-15 -3557 ((-111) (-861 |#1|) $)) (-15 -2988 ((-607 (-735)) (-861 |#1|) $)) (-15 -2987 ((-607 (-735)) (-861 |#1|) $)) (-15 -2986 ((-1048 |#1|) $)) (-15 -2985 ((-111) $ $)) (-15 -2984 ((-111) $ $)) (-15 -2983 ((-1211) $)) (-15 -2983 ((-1211) $ (-526) (-526))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (($ $ (-878)) NIL (|has| $ (-353))) (($ $) NIL)) (-1767 (((-1132 (-878) (-735)) (-526)) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL)) (-3469 (($ $) NIL)) (-1887 (($ (-1205 $)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL)) (-1772 (((-111) $) NIL)) (-1862 (($ $) NIL) (($ $ (-735)) NIL)) (-4045 (((-111) $) NIL)) (-4090 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| $ (-353)))) (-2103 (((-111) $) NIL (|has| $ (-353)))) (-3429 (($ $ (-878)) NIL (|has| $ (-353))) (($ $) NIL)) (-3763 (((-3 $ "failed") $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 $) $ (-878)) NIL (|has| $ (-353))) (((-1117 $) $) NIL)) (-2102 (((-878) $) NIL)) (-1700 (((-1117 $) $) NIL (|has| $ (-353)))) (-1699 (((-3 (-1117 $) "failed") $ $) NIL (|has| $ (-353))) (((-1117 $) $) NIL (|has| $ (-353)))) (-1701 (($ $ (-1117 $)) NIL (|has| $ (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL T CONST)) (-2461 (($ (-878)) NIL)) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL (|has| $ (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL)) (-4051 (((-390 $) $) NIL)) (-4247 (((-878)) NIL) (((-796 (-878))) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-3 (-735) "failed") $ $) NIL) (((-735) $) NIL)) (-4230 (((-131)) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-4264 (((-878) $) NIL) (((-796 (-878)) $) NIL)) (-3499 (((-1117 $)) NIL)) (-1766 (($) NIL)) (-1702 (($) NIL (|has| $ (-353)))) (-3537 (((-653 $) (-1205 $)) NIL) (((-1205 $) $) NIL)) (-4287 (((-526) $) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3423 (((-735)) NIL)) (-2104 (((-1205 $) (-878)) NIL) (((-1205 $)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $ (-735)) NIL (|has| $ (-353))) (($ $) NIL (|has| $ (-353)))) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) -(((-865 |#1|) (-13 (-335) (-314 $) (-584 (-526))) (-878)) (T -865)) -NIL -(-13 (-335) (-314 $) (-584 (-526))) -((-2997 (((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|)) 128)) (-3000 ((|#1|) 77)) (-2999 (((-390 (-1117 |#4|)) (-1117 |#4|)) 137)) (-3001 (((-390 (-1117 |#4|)) (-607 |#3|) (-1117 |#4|)) 69)) (-2998 (((-390 (-1117 |#4|)) (-1117 |#4|)) 147)) (-2996 (((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|) |#3|) 92))) -(((-866 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2997 ((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|))) (-15 -2998 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -2999 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -3000 (|#1|)) (-15 -2996 ((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|) |#3|)) (-15 -3001 ((-390 (-1117 |#4|)) (-607 |#3|) (-1117 |#4|)))) (-869) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -866)) -((-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *7)) (-4 *7 (-811)) (-4 *5 (-869)) (-4 *6 (-757)) (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-390 (-1117 *8))) (-5 *1 (-866 *5 *6 *7 *8)) (-5 *4 (-1117 *8)))) (-2996 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-607 (-1117 *7))) (-5 *3 (-1117 *7)) (-4 *7 (-909 *5 *6 *4)) (-4 *5 (-869)) (-4 *6 (-757)) (-4 *4 (-811)) (-5 *1 (-866 *5 *6 *4 *7)))) (-3000 (*1 *2) (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-869)) (-5 *1 (-866 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2999 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-866 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-2998 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-866 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-2997 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *7))) (-5 *3 (-1117 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-866 *4 *5 *6 *7))))) -(-10 -7 (-15 -2997 ((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|))) (-15 -2998 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -2999 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -3000 (|#1|)) (-15 -2996 ((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|) |#3|)) (-15 -3001 ((-390 (-1117 |#4|)) (-607 |#3|) (-1117 |#4|)))) -((-2997 (((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|)) 36)) (-3000 ((|#1|) 54)) (-2999 (((-390 (-1117 |#2|)) (-1117 |#2|)) 102)) (-3001 (((-390 (-1117 |#2|)) (-1117 |#2|)) 90)) (-2998 (((-390 (-1117 |#2|)) (-1117 |#2|)) 113))) -(((-867 |#1| |#2|) (-10 -7 (-15 -2997 ((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|))) (-15 -2998 ((-390 (-1117 |#2|)) (-1117 |#2|))) (-15 -2999 ((-390 (-1117 |#2|)) (-1117 |#2|))) (-15 -3000 (|#1|)) (-15 -3001 ((-390 (-1117 |#2|)) (-1117 |#2|)))) (-869) (-1181 |#1|)) (T -867)) -((-3001 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5)))) (-3000 (*1 *2) (-12 (-4 *2 (-869)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1181 *2)))) (-2999 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5)))) (-2998 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5)))) (-2997 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *5))) (-5 *3 (-1117 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-869)) (-5 *1 (-867 *4 *5))))) -(-10 -7 (-15 -2997 ((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|))) (-15 -2998 ((-390 (-1117 |#2|)) (-1117 |#2|))) (-15 -2999 ((-390 (-1117 |#2|)) (-1117 |#2|))) (-15 -3000 (|#1|)) (-15 -3001 ((-390 (-1117 |#2|)) (-1117 |#2|)))) -((-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 41)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 18)) (-3002 (((-3 $ "failed") $) 35))) -(((-868 |#1|) (-10 -8 (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)))) (-869)) (T -868)) -NIL -(-10 -8 (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 58)) (-4093 (($ $) 49)) (-4286 (((-390 $) $) 50)) (-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 55)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-4045 (((-111) $) 51)) (-2471 (((-111) $) 30)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3005 (((-390 (-1117 $)) (-1117 $)) 56)) (-3006 (((-390 (-1117 $)) (-1117 $)) 57)) (-4051 (((-390 $) $) 48)) (-3780 (((-3 $ "failed") $ $) 40)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 54 (|has| $ (-139)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3002 (((-3 $ "failed") $) 53 (|has| $ (-139)))) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-869) (-134)) (T -869)) -((-3008 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-869)))) (-3007 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1)))) (-3006 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1)))) (-3005 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1)))) (-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *1))) (-5 *3 (-1117 *1)) (-4 *1 (-869)))) (-3003 (*1 *2 *3) (|partial| -12 (-5 *3 (-653 *1)) (-4 *1 (-139)) (-4 *1 (-869)) (-5 *2 (-1205 *1)))) (-3002 (*1 *1 *1) (|partial| -12 (-4 *1 (-139)) (-4 *1 (-869))))) -(-13 (-1164) (-10 -8 (-15 -3007 ((-390 (-1117 $)) (-1117 $))) (-15 -3006 ((-390 (-1117 $)) (-1117 $))) (-15 -3005 ((-390 (-1117 $)) (-1117 $))) (-15 -3008 ((-1117 $) (-1117 $) (-1117 $))) (-15 -3004 ((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $))) (IF (|has| $ (-139)) (PROGN (-15 -3003 ((-3 (-1205 $) "failed") (-653 $))) (-15 -3002 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) -((-3010 (((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#5|)) "failed") (-318 |#2| |#3| |#4| |#5|)) 79)) (-3009 (((-111) (-318 |#2| |#3| |#4| |#5|)) 17)) (-4090 (((-3 (-735) "failed") (-318 |#2| |#3| |#4| |#5|)) 15))) -(((-870 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4090 ((-3 (-735) "failed") (-318 |#2| |#3| |#4| |#5|))) (-15 -3009 ((-111) (-318 |#2| |#3| |#4| |#5|))) (-15 -3010 ((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#5|)) "failed") (-318 |#2| |#3| |#4| |#5|)))) (-13 (-811) (-533) (-995 (-526))) (-406 |#1|) (-1181 |#2|) (-1181 (-392 |#3|)) (-327 |#2| |#3| |#4|)) (T -870)) -((-3010 (*1 *2 *3) (|partial| -12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-2 (|:| -4090 (-735)) (|:| -2444 *8))) (-5 *1 (-870 *4 *5 *6 *7 *8)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-111)) (-5 *1 (-870 *4 *5 *6 *7 *8)))) (-4090 (*1 *2 *3) (|partial| -12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-735)) (-5 *1 (-870 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -4090 ((-3 (-735) "failed") (-318 |#2| |#3| |#4| |#5|))) (-15 -3009 ((-111) (-318 |#2| |#3| |#4| |#5|))) (-15 -3010 ((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#5|)) "failed") (-318 |#2| |#3| |#4| |#5|)))) -((-3010 (((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#3|)) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|)) 56)) (-3009 (((-111) (-318 (-392 (-526)) |#1| |#2| |#3|)) 16)) (-4090 (((-3 (-735) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|)) 14))) -(((-871 |#1| |#2| |#3|) (-10 -7 (-15 -4090 ((-3 (-735) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|))) (-15 -3009 ((-111) (-318 (-392 (-526)) |#1| |#2| |#3|))) (-15 -3010 ((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#3|)) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|)))) (-1181 (-392 (-526))) (-1181 (-392 |#1|)) (-327 (-392 (-526)) |#1| |#2|)) (T -871)) -((-3010 (*1 *2 *3) (|partial| -12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-2 (|:| -4090 (-735)) (|:| -2444 *6))) (-5 *1 (-871 *4 *5 *6)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-111)) (-5 *1 (-871 *4 *5 *6)))) (-4090 (*1 *2 *3) (|partial| -12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-735)) (-5 *1 (-871 *4 *5 *6))))) -(-10 -7 (-15 -4090 ((-3 (-735) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|))) (-15 -3009 ((-111) (-318 (-392 (-526)) |#1| |#2| |#3|))) (-15 -3010 ((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#3|)) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|)))) -((-3015 ((|#2| |#2|) 26)) (-3013 (((-526) (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))))) 15)) (-3011 (((-878) (-526)) 35)) (-3014 (((-526) |#2|) 42)) (-3012 (((-526) |#2|) 21) (((-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))) |#1|) 20))) -(((-872 |#1| |#2|) (-10 -7 (-15 -3011 ((-878) (-526))) (-15 -3012 ((-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))) |#1|)) (-15 -3012 ((-526) |#2|)) (-15 -3013 ((-526) (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526)))))) (-15 -3014 ((-526) |#2|)) (-15 -3015 (|#2| |#2|))) (-1181 (-392 (-526))) (-1181 (-392 |#1|))) (T -872)) -((-3015 (*1 *2 *2) (-12 (-4 *3 (-1181 (-392 (-526)))) (-5 *1 (-872 *3 *2)) (-4 *2 (-1181 (-392 *3))))) (-3014 (*1 *2 *3) (-12 (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *3)) (-4 *3 (-1181 (-392 *4))))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))))) (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *5)) (-4 *5 (-1181 (-392 *4))))) (-3012 (*1 *2 *3) (-12 (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *3)) (-4 *3 (-1181 (-392 *4))))) (-3012 (*1 *2 *3) (-12 (-4 *3 (-1181 (-392 (-526)))) (-5 *2 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526)))) (-5 *1 (-872 *3 *4)) (-4 *4 (-1181 (-392 *3))))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-526)) (-4 *4 (-1181 (-392 *3))) (-5 *2 (-878)) (-5 *1 (-872 *4 *5)) (-4 *5 (-1181 (-392 *4)))))) -(-10 -7 (-15 -3011 ((-878) (-526))) (-15 -3012 ((-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))) |#1|)) (-15 -3012 ((-526) |#2|)) (-15 -3013 ((-526) (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526)))))) (-15 -3014 ((-526) |#2|)) (-15 -3015 (|#2| |#2|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 ((|#1| $) 81)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) 75)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3023 (($ |#1| (-390 |#1|)) 73)) (-3017 (((-1117 |#1|) |#1| |#1|) 41)) (-3016 (($ $) 49)) (-2471 (((-111) $) NIL)) (-3018 (((-526) $) 78)) (-3019 (($ $ (-526)) 80)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3020 ((|#1| $) 77)) (-3021 (((-390 |#1|) $) 76)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) 74)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-3022 (($ $) 39)) (-4274 (((-823) $) 99) (($ (-526)) 54) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 31) (((-392 |#1|) $) 59) (($ (-392 (-390 |#1|))) 67)) (-3423 (((-735)) 52)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 23 T CONST)) (-2964 (($) 12 T CONST)) (-3353 (((-111) $ $) 68)) (-4265 (($ $ $) NIL)) (-4156 (($ $) 88) (($ $ $) NIL)) (-4158 (($ $ $) 38)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 90) (($ $ $) 37) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-873 |#1|) (-13 (-348) (-37 |#1|) (-10 -8 (-15 -4274 ((-392 |#1|) $)) (-15 -4274 ($ (-392 (-390 |#1|)))) (-15 -3022 ($ $)) (-15 -3021 ((-390 |#1|) $)) (-15 -3020 (|#1| $)) (-15 -3019 ($ $ (-526))) (-15 -3018 ((-526) $)) (-15 -3017 ((-1117 |#1|) |#1| |#1|)) (-15 -3016 ($ $)) (-15 -3023 ($ |#1| (-390 |#1|))) (-15 -3426 (|#1| $)))) (-292)) (T -873)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-392 (-390 *3))) (-4 *3 (-292)) (-5 *1 (-873 *3)))) (-3022 (*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-390 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-3020 (*1 *2 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292)))) (-3019 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-3017 (*1 *2 *3 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292)))) (-3023 (*1 *1 *2 *3) (-12 (-5 *3 (-390 *2)) (-4 *2 (-292)) (-5 *1 (-873 *2)))) (-3426 (*1 *2 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292))))) -(-13 (-348) (-37 |#1|) (-10 -8 (-15 -4274 ((-392 |#1|) $)) (-15 -4274 ($ (-392 (-390 |#1|)))) (-15 -3022 ($ $)) (-15 -3021 ((-390 |#1|) $)) (-15 -3020 (|#1| $)) (-15 -3019 ($ $ (-526))) (-15 -3018 ((-526) $)) (-15 -3017 ((-1117 |#1|) |#1| |#1|)) (-15 -3016 ($ $)) (-15 -3023 ($ |#1| (-390 |#1|))) (-15 -3426 (|#1| $)))) -((-3023 (((-50) (-905 |#1|) (-390 (-905 |#1|)) (-1123)) 17) (((-50) (-392 (-905 |#1|)) (-1123)) 18))) -(((-874 |#1|) (-10 -7 (-15 -3023 ((-50) (-392 (-905 |#1|)) (-1123))) (-15 -3023 ((-50) (-905 |#1|) (-390 (-905 |#1|)) (-1123)))) (-13 (-292) (-141))) (T -874)) -((-3023 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-390 (-905 *6))) (-5 *5 (-1123)) (-5 *3 (-905 *6)) (-4 *6 (-13 (-292) (-141))) (-5 *2 (-50)) (-5 *1 (-874 *6)))) (-3023 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-141))) (-5 *2 (-50)) (-5 *1 (-874 *5))))) -(-10 -7 (-15 -3023 ((-50) (-392 (-905 |#1|)) (-1123))) (-15 -3023 ((-50) (-905 |#1|) (-390 (-905 |#1|)) (-1123)))) -((-3024 ((|#4| (-607 |#4|)) 121) (((-1117 |#4|) (-1117 |#4|) (-1117 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3457 (((-1117 |#4|) (-607 (-1117 |#4|))) 114) (((-1117 |#4|) (-1117 |#4|) (-1117 |#4|)) 50) ((|#4| (-607 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-875 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3457 (|#4| |#4| |#4|)) (-15 -3457 (|#4| (-607 |#4|))) (-15 -3457 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3457 ((-1117 |#4|) (-607 (-1117 |#4|)))) (-15 -3024 (|#4| |#4| |#4|)) (-15 -3024 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3024 (|#4| (-607 |#4|)))) (-757) (-811) (-292) (-909 |#3| |#1| |#2|)) (T -875)) -((-3024 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *6 *4 *5)) (-5 *1 (-875 *4 *5 *6 *2)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)))) (-3024 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *6)))) (-3024 (*1 *2 *2 *2) (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *2)) (-4 *2 (-909 *5 *3 *4)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-607 (-1117 *7))) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-1117 *7)) (-5 *1 (-875 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-3457 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *6)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *6 *4 *5)) (-5 *1 (-875 *4 *5 *6 *2)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)))) (-3457 (*1 *2 *2 *2) (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *2)) (-4 *2 (-909 *5 *3 *4))))) -(-10 -7 (-15 -3457 (|#4| |#4| |#4|)) (-15 -3457 (|#4| (-607 |#4|))) (-15 -3457 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3457 ((-1117 |#4|) (-607 (-1117 |#4|)))) (-15 -3024 (|#4| |#4| |#4|)) (-15 -3024 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3024 (|#4| (-607 |#4|)))) -((-3037 (((-864 (-526)) (-930)) 23) (((-864 (-526)) (-607 (-526))) 20)) (-3025 (((-864 (-526)) (-607 (-526))) 48) (((-864 (-526)) (-878)) 49)) (-3036 (((-864 (-526))) 24)) (-3034 (((-864 (-526))) 38) (((-864 (-526)) (-607 (-526))) 37)) (-3033 (((-864 (-526))) 36) (((-864 (-526)) (-607 (-526))) 35)) (-3032 (((-864 (-526))) 34) (((-864 (-526)) (-607 (-526))) 33)) (-3031 (((-864 (-526))) 32) (((-864 (-526)) (-607 (-526))) 31)) (-3030 (((-864 (-526))) 30) (((-864 (-526)) (-607 (-526))) 29)) (-3035 (((-864 (-526))) 40) (((-864 (-526)) (-607 (-526))) 39)) (-3029 (((-864 (-526)) (-607 (-526))) 52) (((-864 (-526)) (-878)) 53)) (-3028 (((-864 (-526)) (-607 (-526))) 50) (((-864 (-526)) (-878)) 51)) (-3026 (((-864 (-526)) (-607 (-526))) 46) (((-864 (-526)) (-878)) 47)) (-3027 (((-864 (-526)) (-607 (-878))) 43))) -(((-876) (-10 -7 (-15 -3025 ((-864 (-526)) (-878))) (-15 -3025 ((-864 (-526)) (-607 (-526)))) (-15 -3026 ((-864 (-526)) (-878))) (-15 -3026 ((-864 (-526)) (-607 (-526)))) (-15 -3027 ((-864 (-526)) (-607 (-878)))) (-15 -3028 ((-864 (-526)) (-878))) (-15 -3028 ((-864 (-526)) (-607 (-526)))) (-15 -3029 ((-864 (-526)) (-878))) (-15 -3029 ((-864 (-526)) (-607 (-526)))) (-15 -3030 ((-864 (-526)) (-607 (-526)))) (-15 -3030 ((-864 (-526)))) (-15 -3031 ((-864 (-526)) (-607 (-526)))) (-15 -3031 ((-864 (-526)))) (-15 -3032 ((-864 (-526)) (-607 (-526)))) (-15 -3032 ((-864 (-526)))) (-15 -3033 ((-864 (-526)) (-607 (-526)))) (-15 -3033 ((-864 (-526)))) (-15 -3034 ((-864 (-526)) (-607 (-526)))) (-15 -3034 ((-864 (-526)))) (-15 -3035 ((-864 (-526)) (-607 (-526)))) (-15 -3035 ((-864 (-526)))) (-15 -3036 ((-864 (-526)))) (-15 -3037 ((-864 (-526)) (-607 (-526)))) (-15 -3037 ((-864 (-526)) (-930))))) (T -876)) -((-3037 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3036 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3035 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3034 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3033 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3032 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3031 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3030 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-607 (-878))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(-10 -7 (-15 -3025 ((-864 (-526)) (-878))) (-15 -3025 ((-864 (-526)) (-607 (-526)))) (-15 -3026 ((-864 (-526)) (-878))) (-15 -3026 ((-864 (-526)) (-607 (-526)))) (-15 -3027 ((-864 (-526)) (-607 (-878)))) (-15 -3028 ((-864 (-526)) (-878))) (-15 -3028 ((-864 (-526)) (-607 (-526)))) (-15 -3029 ((-864 (-526)) (-878))) (-15 -3029 ((-864 (-526)) (-607 (-526)))) (-15 -3030 ((-864 (-526)) (-607 (-526)))) (-15 -3030 ((-864 (-526)))) (-15 -3031 ((-864 (-526)) (-607 (-526)))) (-15 -3031 ((-864 (-526)))) (-15 -3032 ((-864 (-526)) (-607 (-526)))) (-15 -3032 ((-864 (-526)))) (-15 -3033 ((-864 (-526)) (-607 (-526)))) (-15 -3033 ((-864 (-526)))) (-15 -3034 ((-864 (-526)) (-607 (-526)))) (-15 -3034 ((-864 (-526)))) (-15 -3035 ((-864 (-526)) (-607 (-526)))) (-15 -3035 ((-864 (-526)))) (-15 -3036 ((-864 (-526)))) (-15 -3037 ((-864 (-526)) (-607 (-526)))) (-15 -3037 ((-864 (-526)) (-930)))) -((-3039 (((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123))) 12)) (-3038 (((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123))) 11))) -(((-877 |#1|) (-10 -7 (-15 -3038 ((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3039 ((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123))))) (-436)) (T -877)) -((-3039 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-905 *4))) (-5 *3 (-607 (-1123))) (-4 *4 (-436)) (-5 *1 (-877 *4)))) (-3038 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-905 *4))) (-5 *3 (-607 (-1123))) (-4 *4 (-436)) (-5 *1 (-877 *4))))) -(-10 -7 (-15 -3038 ((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3039 ((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123))))) -((-2865 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3457 (($ $ $) NIL)) (-4274 (((-823) $) NIL)) (-2964 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ $ $) NIL))) -(((-878) (-13 (-758) (-691) (-10 -8 (-15 -3457 ($ $ $)) (-6 (-4312 "*"))))) (T -878)) -((-3457 (*1 *1 *1 *1) (-5 *1 (-878)))) -(-13 (-758) (-691) (-10 -8 (-15 -3457 ($ $ $)) (-6 (-4312 "*")))) -((-4274 (((-299 |#1|) (-461)) 16))) -(((-879 |#1|) (-10 -7 (-15 -4274 ((-299 |#1|) (-461)))) (-13 (-811) (-533))) (T -879)) -((-4274 (*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-299 *4)) (-5 *1 (-879 *4)) (-4 *4 (-13 (-811) (-533)))))) -(-10 -7 (-15 -4274 ((-299 |#1|) (-461)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-2471 (((-111) $) 30)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-880) (-134)) (T -880)) -((-3041 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *2 (-2 (|:| -4270 (-607 *1)) (|:| -2470 *1))) (-5 *3 (-607 *1)))) (-3040 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-880))))) -(-13 (-436) (-10 -8 (-15 -3041 ((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $))) (-15 -3040 ((-3 (-607 $) "failed") (-607 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-3403 (((-1117 |#2|) (-607 |#2|) (-607 |#2|)) 17) (((-1174 |#1| |#2|) (-1174 |#1| |#2|) (-607 |#2|) (-607 |#2|)) 13))) -(((-881 |#1| |#2|) (-10 -7 (-15 -3403 ((-1174 |#1| |#2|) (-1174 |#1| |#2|) (-607 |#2|) (-607 |#2|))) (-15 -3403 ((-1117 |#2|) (-607 |#2|) (-607 |#2|)))) (-1123) (-348)) (T -881)) -((-3403 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-348)) (-5 *2 (-1117 *5)) (-5 *1 (-881 *4 *5)) (-14 *4 (-1123)))) (-3403 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4 *5)) (-5 *3 (-607 *5)) (-14 *4 (-1123)) (-4 *5 (-348)) (-5 *1 (-881 *4 *5))))) -(-10 -7 (-15 -3403 ((-1174 |#1| |#2|) (-1174 |#1| |#2|) (-607 |#2|) (-607 |#2|))) (-15 -3403 ((-1117 |#2|) (-607 |#2|) (-607 |#2|)))) -((-3042 ((|#2| (-607 |#1|) (-607 |#1|)) 24))) -(((-882 |#1| |#2|) (-10 -7 (-15 -3042 (|#2| (-607 |#1|) (-607 |#1|)))) (-348) (-1181 |#1|)) (T -882)) -((-3042 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-348)) (-4 *2 (-1181 *4)) (-5 *1 (-882 *4 *2))))) -(-10 -7 (-15 -3042 (|#2| (-607 |#1|) (-607 |#1|)))) -((-3044 (((-526) (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106)) 139)) (-3063 ((|#4| |#4|) 155)) (-3048 (((-607 (-392 (-905 |#1|))) (-607 (-1123))) 118)) (-3062 (((-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-607 (-607 |#4|)) (-735) (-735) (-526)) 75)) (-3052 (((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-607 |#4|)) 59)) (-3061 (((-653 |#4|) (-653 |#4|) (-607 |#4|)) 55)) (-3045 (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106)) 151)) (-3043 (((-526) (-653 |#4|) (-878) (-1106)) 132) (((-526) (-653 |#4|) (-607 (-1123)) (-878) (-1106)) 131) (((-526) (-653 |#4|) (-607 |#4|) (-878) (-1106)) 130) (((-526) (-653 |#4|) (-1106)) 127) (((-526) (-653 |#4|) (-607 (-1123)) (-1106)) 126) (((-526) (-653 |#4|) (-607 |#4|) (-1106)) 125) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-878)) 124) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)) (-878)) 123) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|) (-878)) 122) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|)) 120) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123))) 119) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|)) 115)) (-3049 ((|#4| (-905 |#1|)) 68)) (-3059 (((-111) (-607 |#4|) (-607 (-607 |#4|))) 152)) (-3058 (((-607 (-607 (-526))) (-526) (-526)) 129)) (-3057 (((-607 (-607 |#4|)) (-607 (-607 |#4|))) 88)) (-3056 (((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|))))) 86)) (-3055 (((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|))))) 85)) (-3064 (((-111) (-607 (-905 |#1|))) 17) (((-111) (-607 |#4|)) 13)) (-3050 (((-2 (|:| |sysok| (-111)) (|:| |z0| (-607 |#4|)) (|:| |n0| (-607 |#4|))) (-607 |#4|) (-607 |#4|)) 71)) (-3054 (((-607 |#4|) |#4|) 49)) (-3047 (((-607 (-392 (-905 |#1|))) (-607 |#4|)) 114) (((-653 (-392 (-905 |#1|))) (-653 |#4|)) 56) (((-392 (-905 |#1|)) |#4|) 111)) (-3046 (((-2 (|:| |rgl| (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))))) (|:| |rgsz| (-526))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-735) (-1106) (-526)) 93)) (-3051 (((-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))) (-653 |#4|) (-735)) 84)) (-3060 (((-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-653 |#4|) (-735)) 101)) (-3053 (((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| -1676 (-653 (-392 (-905 |#1|)))) (|:| |vec| (-607 (-392 (-905 |#1|)))) (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) 48))) -(((-883 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|) (-878))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)) (-878))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-878))) (-15 -3043 ((-526) (-653 |#4|) (-607 |#4|) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 (-1123)) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 |#4|) (-878) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 (-1123)) (-878) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-878) (-1106))) (-15 -3044 ((-526) (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106))) (-15 -3045 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106))) (-15 -3046 ((-2 (|:| |rgl| (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))))) (|:| |rgsz| (-526))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-735) (-1106) (-526))) (-15 -3047 ((-392 (-905 |#1|)) |#4|)) (-15 -3047 ((-653 (-392 (-905 |#1|))) (-653 |#4|))) (-15 -3047 ((-607 (-392 (-905 |#1|))) (-607 |#4|))) (-15 -3048 ((-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3049 (|#4| (-905 |#1|))) (-15 -3050 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-607 |#4|)) (|:| |n0| (-607 |#4|))) (-607 |#4|) (-607 |#4|))) (-15 -3051 ((-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))) (-653 |#4|) (-735))) (-15 -3052 ((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-607 |#4|))) (-15 -3053 ((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| -1676 (-653 (-392 (-905 |#1|)))) (|:| |vec| (-607 (-392 (-905 |#1|)))) (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (-15 -3054 ((-607 |#4|) |#4|)) (-15 -3055 ((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))))) (-15 -3056 ((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))))) (-15 -3057 ((-607 (-607 |#4|)) (-607 (-607 |#4|)))) (-15 -3058 ((-607 (-607 (-526))) (-526) (-526))) (-15 -3059 ((-111) (-607 |#4|) (-607 (-607 |#4|)))) (-15 -3060 ((-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-653 |#4|) (-735))) (-15 -3061 ((-653 |#4|) (-653 |#4|) (-607 |#4|))) (-15 -3062 ((-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-607 (-607 |#4|)) (-735) (-735) (-526))) (-15 -3063 (|#4| |#4|)) (-15 -3064 ((-111) (-607 |#4|))) (-15 -3064 ((-111) (-607 (-905 |#1|))))) (-13 (-292) (-141)) (-13 (-811) (-584 (-1123))) (-757) (-909 |#1| |#3| |#2|)) (T -883)) -((-3064 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-111)) (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-111)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-13 (-292) (-141))) (-4 *4 (-13 (-811) (-584 (-1123)))) (-4 *5 (-757)) (-5 *1 (-883 *3 *4 *5 *2)) (-4 *2 (-909 *3 *5 *4)))) (-3062 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-5 *4 (-653 *12)) (-5 *5 (-607 (-392 (-905 *9)))) (-5 *6 (-607 (-607 *12))) (-5 *7 (-735)) (-5 *8 (-526)) (-4 *9 (-13 (-292) (-141))) (-4 *12 (-909 *9 *11 *10)) (-4 *10 (-13 (-811) (-584 (-1123)))) (-4 *11 (-757)) (-5 *2 (-2 (|:| |eqzro| (-607 *12)) (|:| |neqzro| (-607 *12)) (|:| |wcond| (-607 (-905 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *9)))) (|:| -2104 (-607 (-1205 (-392 (-905 *9))))))))) (-5 *1 (-883 *9 *10 *11 *12)))) (-3061 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-735)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| |det| *8) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (-5 *1 (-883 *5 *6 *7 *8)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-607 *8))) (-5 *3 (-607 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-111)) (-5 *1 (-883 *5 *6 *7 *8)))) (-3058 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-607 (-526)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-526)) (-4 *7 (-909 *4 *6 *5)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-607 (-607 *6))) (-4 *6 (-909 *3 *5 *4)) (-4 *3 (-13 (-292) (-141))) (-4 *4 (-13 (-811) (-584 (-1123)))) (-4 *5 (-757)) (-5 *1 (-883 *3 *4 *5 *6)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| *7) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 *7))))) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-735)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| *7) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 *7))))) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-735)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3054 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-909 *4 *6 *5)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1676 (-653 (-392 (-905 *4)))) (|:| |vec| (-607 (-392 (-905 *4)))) (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) (|:| -2104 (-607 (-1205 (-392 (-905 *4))))))) (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) (|:| -2104 (-607 (-1205 (-392 (-905 *4))))))) (-5 *3 (-607 *7)) (-4 *4 (-13 (-292) (-141))) (-4 *7 (-909 *4 *6 *5)) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| *8) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 *8))))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-735)))) (-3050 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-4 *7 (-909 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-607 *7)) (|:| |n0| (-607 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-292) (-141))) (-4 *2 (-909 *4 *6 *5)) (-5 *1 (-883 *4 *5 *6 *2)) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-653 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-392 (-905 *4))) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-909 *4 *6 *5)))) (-3046 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-653 *11)) (-5 *4 (-607 (-392 (-905 *8)))) (-5 *5 (-735)) (-5 *6 (-1106)) (-4 *8 (-13 (-292) (-141))) (-4 *11 (-909 *8 *10 *9)) (-4 *9 (-13 (-811) (-584 (-1123)))) (-4 *10 (-757)) (-5 *2 (-2 (|:| |rgl| (-607 (-2 (|:| |eqzro| (-607 *11)) (|:| |neqzro| (-607 *11)) (|:| |wcond| (-607 (-905 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *8)))) (|:| -2104 (-607 (-1205 (-392 (-905 *8)))))))))) (|:| |rgsz| (-526)))) (-5 *1 (-883 *8 *9 *10 *11)) (-5 *7 (-526)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *7)) (|:| |neqzro| (-607 *7)) (|:| |wcond| (-607 (-905 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) (|:| -2104 (-607 (-1205 (-392 (-905 *4)))))))))) (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) (-5 *4 (-1106)) (-4 *5 (-13 (-292) (-141))) (-4 *8 (-909 *5 *7 *6)) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-878)) (-5 *5 (-1106)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 *10)) (-5 *4 (-607 (-1123))) (-5 *5 (-878)) (-5 *6 (-1106)) (-4 *10 (-909 *7 *9 *8)) (-4 *7 (-13 (-292) (-141))) (-4 *8 (-13 (-811) (-584 (-1123)))) (-4 *9 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *7 *8 *9 *10)))) (-3043 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 *10)) (-5 *4 (-607 *10)) (-5 *5 (-878)) (-5 *6 (-1106)) (-4 *10 (-909 *7 *9 *8)) (-4 *7 (-13 (-292) (-141))) (-4 *8 (-13 (-811) (-584 (-1123)))) (-4 *9 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *7 *8 *9 *10)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-1106)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 (-1123))) (-5 *5 (-1106)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 *9)) (-5 *5 (-1106)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-878)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) (-5 *1 (-883 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 (-1123))) (-5 *5 (-878)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *9)) (|:| |neqzro| (-607 *9)) (|:| |wcond| (-607 (-905 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *6)))) (|:| -2104 (-607 (-1205 (-392 (-905 *6)))))))))) (-5 *1 (-883 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *5 (-878)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *9)) (|:| |neqzro| (-607 *9)) (|:| |wcond| (-607 (-905 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *6)))) (|:| -2104 (-607 (-1205 (-392 (-905 *6)))))))))) (-5 *1 (-883 *6 *7 *8 *9)) (-5 *4 (-607 *9)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *7)) (|:| |neqzro| (-607 *7)) (|:| |wcond| (-607 (-905 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) (|:| -2104 (-607 (-1205 (-392 (-905 *4)))))))))) (-5 *1 (-883 *4 *5 *6 *7)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-607 (-1123))) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) (-5 *1 (-883 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-607 *8))))) -(-10 -7 (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|) (-878))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)) (-878))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-878))) (-15 -3043 ((-526) (-653 |#4|) (-607 |#4|) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 (-1123)) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 |#4|) (-878) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 (-1123)) (-878) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-878) (-1106))) (-15 -3044 ((-526) (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106))) (-15 -3045 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106))) (-15 -3046 ((-2 (|:| |rgl| (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))))) (|:| |rgsz| (-526))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-735) (-1106) (-526))) (-15 -3047 ((-392 (-905 |#1|)) |#4|)) (-15 -3047 ((-653 (-392 (-905 |#1|))) (-653 |#4|))) (-15 -3047 ((-607 (-392 (-905 |#1|))) (-607 |#4|))) (-15 -3048 ((-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3049 (|#4| (-905 |#1|))) (-15 -3050 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-607 |#4|)) (|:| |n0| (-607 |#4|))) (-607 |#4|) (-607 |#4|))) (-15 -3051 ((-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))) (-653 |#4|) (-735))) (-15 -3052 ((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-607 |#4|))) (-15 -3053 ((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| -1676 (-653 (-392 (-905 |#1|)))) (|:| |vec| (-607 (-392 (-905 |#1|)))) (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (-15 -3054 ((-607 |#4|) |#4|)) (-15 -3055 ((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))))) (-15 -3056 ((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))))) (-15 -3057 ((-607 (-607 |#4|)) (-607 (-607 |#4|)))) (-15 -3058 ((-607 (-607 (-526))) (-526) (-526))) (-15 -3059 ((-111) (-607 |#4|) (-607 (-607 |#4|)))) (-15 -3060 ((-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-653 |#4|) (-735))) (-15 -3061 ((-653 |#4|) (-653 |#4|) (-607 |#4|))) (-15 -3062 ((-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-607 (-607 |#4|)) (-735) (-735) (-526))) (-15 -3063 (|#4| |#4|)) (-15 -3064 ((-111) (-607 |#4|))) (-15 -3064 ((-111) (-607 (-905 |#1|))))) -((-4193 (($ $ (-1041 (-211))) 70) (($ $ (-1041 (-211)) (-1041 (-211))) 71)) (-3196 (((-1041 (-211)) $) 44)) (-3197 (((-1041 (-211)) $) 43)) (-3088 (((-1041 (-211)) $) 45)) (-3069 (((-526) (-526)) 37)) (-3073 (((-526) (-526)) 33)) (-3071 (((-526) (-526)) 35)) (-3067 (((-111) (-111)) 39)) (-3070 (((-526)) 36)) (-3431 (($ $ (-1041 (-211))) 74) (($ $) 75)) (-3090 (($ (-1 (-902 (-211)) (-211)) (-1041 (-211))) 84) (($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 85)) (-3076 (($ (-1 (-211) (-211)) (-1041 (-211))) 92) (($ (-1 (-211) (-211))) 95)) (-3089 (($ (-1 (-211) (-211)) (-1041 (-211))) 79) (($ (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211))) 80) (($ (-607 (-1 (-211) (-211))) (-1041 (-211))) 87) (($ (-607 (-1 (-211) (-211))) (-1041 (-211)) (-1041 (-211))) 88) (($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211))) 81) (($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 82) (($ $ (-1041 (-211))) 76)) (-3075 (((-111) $) 40)) (-3066 (((-526)) 41)) (-3074 (((-526)) 32)) (-3072 (((-526)) 34)) (-3198 (((-607 (-607 (-902 (-211)))) $) 23)) (-3065 (((-111) (-111)) 42)) (-4274 (((-823) $) 106)) (-3068 (((-111)) 38))) -(((-884) (-13 (-914) (-10 -8 (-15 -3089 ($ (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-607 (-1 (-211) (-211))) (-1041 (-211)))) (-15 -3089 ($ (-607 (-1 (-211) (-211))) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3076 ($ (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3076 ($ (-1 (-211) (-211)))) (-15 -3089 ($ $ (-1041 (-211)))) (-15 -3075 ((-111) $)) (-15 -4193 ($ $ (-1041 (-211)))) (-15 -4193 ($ $ (-1041 (-211)) (-1041 (-211)))) (-15 -3431 ($ $ (-1041 (-211)))) (-15 -3431 ($ $)) (-15 -3088 ((-1041 (-211)) $)) (-15 -3074 ((-526))) (-15 -3073 ((-526) (-526))) (-15 -3072 ((-526))) (-15 -3071 ((-526) (-526))) (-15 -3070 ((-526))) (-15 -3069 ((-526) (-526))) (-15 -3068 ((-111))) (-15 -3067 ((-111) (-111))) (-15 -3066 ((-526))) (-15 -3065 ((-111) (-111)))))) (T -884)) -((-3089 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1 (-211) (-211)))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-607 (-1 (-211) (-211)))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3090 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3090 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3076 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884)))) (-4193 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-4193 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-3431 (*1 *1 *1) (-5 *1 (-884))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-3074 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3072 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3070 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3068 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884)))) (-3066 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) -(-13 (-914) (-10 -8 (-15 -3089 ($ (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-607 (-1 (-211) (-211))) (-1041 (-211)))) (-15 -3089 ($ (-607 (-1 (-211) (-211))) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3076 ($ (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3076 ($ (-1 (-211) (-211)))) (-15 -3089 ($ $ (-1041 (-211)))) (-15 -3075 ((-111) $)) (-15 -4193 ($ $ (-1041 (-211)))) (-15 -4193 ($ $ (-1041 (-211)) (-1041 (-211)))) (-15 -3431 ($ $ (-1041 (-211)))) (-15 -3431 ($ $)) (-15 -3088 ((-1041 (-211)) $)) (-15 -3074 ((-526))) (-15 -3073 ((-526) (-526))) (-15 -3072 ((-526))) (-15 -3071 ((-526) (-526))) (-15 -3070 ((-526))) (-15 -3069 ((-526) (-526))) (-15 -3068 ((-111))) (-15 -3067 ((-111) (-111))) (-15 -3066 ((-526))) (-15 -3065 ((-111) (-111))))) -((-3076 (((-884) |#1| (-1123)) 17) (((-884) |#1| (-1123) (-1041 (-211))) 21)) (-3089 (((-884) |#1| |#1| (-1123) (-1041 (-211))) 19) (((-884) |#1| (-1123) (-1041 (-211))) 15))) -(((-885 |#1|) (-10 -7 (-15 -3089 ((-884) |#1| (-1123) (-1041 (-211)))) (-15 -3089 ((-884) |#1| |#1| (-1123) (-1041 (-211)))) (-15 -3076 ((-884) |#1| (-1123) (-1041 (-211)))) (-15 -3076 ((-884) |#1| (-1123)))) (-584 (-515))) (T -885)) -((-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515))))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515))))) (-3089 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515))))) (-3089 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515)))))) -(-10 -7 (-15 -3089 ((-884) |#1| (-1123) (-1041 (-211)))) (-15 -3089 ((-884) |#1| |#1| (-1123) (-1041 (-211)))) (-15 -3076 ((-884) |#1| (-1123) (-1041 (-211)))) (-15 -3076 ((-884) |#1| (-1123)))) -((-4193 (($ $ (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 70)) (-3195 (((-1041 (-211)) $) 40)) (-3196 (((-1041 (-211)) $) 39)) (-3197 (((-1041 (-211)) $) 38)) (-3087 (((-607 (-607 (-211))) $) 43)) (-3088 (((-1041 (-211)) $) 41)) (-3081 (((-526) (-526)) 32)) (-3085 (((-526) (-526)) 28)) (-3083 (((-526) (-526)) 30)) (-3079 (((-111) (-111)) 35)) (-3082 (((-526)) 31)) (-3431 (($ $ (-1041 (-211))) 73) (($ $) 74)) (-3090 (($ (-1 (-902 (-211)) (-211)) (-1041 (-211))) 78) (($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 79)) (-3089 (($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211))) 81) (($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 82) (($ $ (-1041 (-211))) 76)) (-3078 (((-526)) 36)) (-3086 (((-526)) 27)) (-3084 (((-526)) 29)) (-3198 (((-607 (-607 (-902 (-211)))) $) 95)) (-3077 (((-111) (-111)) 37)) (-4274 (((-823) $) 94)) (-3080 (((-111)) 34))) -(((-886) (-13 (-933) (-10 -8 (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ $ (-1041 (-211)))) (-15 -4193 ($ $ (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3431 ($ $ (-1041 (-211)))) (-15 -3431 ($ $)) (-15 -3088 ((-1041 (-211)) $)) (-15 -3087 ((-607 (-607 (-211))) $)) (-15 -3086 ((-526))) (-15 -3085 ((-526) (-526))) (-15 -3084 ((-526))) (-15 -3083 ((-526) (-526))) (-15 -3082 ((-526))) (-15 -3081 ((-526) (-526))) (-15 -3080 ((-111))) (-15 -3079 ((-111) (-111))) (-15 -3078 ((-526))) (-15 -3077 ((-111) (-111)))))) (T -886)) -((-3090 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) (-3090 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) (-3089 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) (-3089 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) (-4193 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) (-3431 (*1 *1 *1) (-5 *1 (-886))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-211)))) (-5 *1 (-886)))) (-3086 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3085 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3084 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3082 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3080 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886)))) (-3078 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886))))) -(-13 (-933) (-10 -8 (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ $ (-1041 (-211)))) (-15 -4193 ($ $ (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3431 ($ $ (-1041 (-211)))) (-15 -3431 ($ $)) (-15 -3088 ((-1041 (-211)) $)) (-15 -3087 ((-607 (-607 (-211))) $)) (-15 -3086 ((-526))) (-15 -3085 ((-526) (-526))) (-15 -3084 ((-526))) (-15 -3083 ((-526) (-526))) (-15 -3082 ((-526))) (-15 -3081 ((-526) (-526))) (-15 -3080 ((-111))) (-15 -3079 ((-111) (-111))) (-15 -3078 ((-526))) (-15 -3077 ((-111) (-111))))) -((-3091 (((-607 (-1041 (-211))) (-607 (-607 (-902 (-211))))) 24))) -(((-887) (-10 -7 (-15 -3091 ((-607 (-1041 (-211))) (-607 (-607 (-902 (-211)))))))) (T -887)) -((-3091 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-607 (-1041 (-211)))) (-5 *1 (-887))))) -(-10 -7 (-15 -3091 ((-607 (-1041 (-211))) (-607 (-607 (-902 (-211))))))) -((-3093 (((-299 (-526)) (-1123)) 16)) (-3094 (((-299 (-526)) (-1123)) 14)) (-4268 (((-299 (-526)) (-1123)) 12)) (-3092 (((-299 (-526)) (-1123) (-1106)) 19))) -(((-888) (-10 -7 (-15 -3092 ((-299 (-526)) (-1123) (-1106))) (-15 -4268 ((-299 (-526)) (-1123))) (-15 -3093 ((-299 (-526)) (-1123))) (-15 -3094 ((-299 (-526)) (-1123))))) (T -888)) -((-3094 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-1106)) (-5 *2 (-299 (-526))) (-5 *1 (-888))))) -(-10 -7 (-15 -3092 ((-299 (-526)) (-1123) (-1106))) (-15 -4268 ((-299 (-526)) (-1123))) (-15 -3093 ((-299 (-526)) (-1123))) (-15 -3094 ((-299 (-526)) (-1123)))) -((-3093 ((|#2| |#2|) 26)) (-3094 ((|#2| |#2|) 27)) (-4268 ((|#2| |#2|) 25)) (-3092 ((|#2| |#2| (-1106)) 24))) -(((-889 |#1| |#2|) (-10 -7 (-15 -3092 (|#2| |#2| (-1106))) (-15 -4268 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3094 (|#2| |#2|))) (-811) (-406 |#1|)) (T -889)) -((-3094 (*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3)))) (-4268 (*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3)))) (-3092 (*1 *2 *2 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-811)) (-5 *1 (-889 *4 *2)) (-4 *2 (-406 *4))))) -(-10 -7 (-15 -3092 (|#2| |#2| (-1106))) (-15 -4268 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3094 (|#2| |#2|))) -((-3096 (((-847 |#1| |#3|) |#2| (-849 |#1|) (-847 |#1| |#3|)) 25)) (-3095 (((-1 (-111) |#2|) (-1 (-111) |#3|)) 13))) -(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -3095 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -3096 ((-847 |#1| |#3|) |#2| (-849 |#1|) (-847 |#1| |#3|)))) (-1052) (-845 |#1|) (-13 (-1052) (-995 |#2|))) (T -890)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *6)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-13 (-1052) (-995 *3))) (-4 *3 (-845 *5)) (-5 *1 (-890 *5 *3 *6)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1052) (-995 *5))) (-4 *5 (-845 *4)) (-4 *4 (-1052)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-890 *4 *5 *6))))) -(-10 -7 (-15 -3095 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -3096 ((-847 |#1| |#3|) |#2| (-849 |#1|) (-847 |#1| |#3|)))) -((-3096 (((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)) 30))) -(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) (-1052) (-13 (-533) (-811) (-845 |#1|)) (-13 (-406 |#2|) (-584 (-849 |#1|)) (-845 |#1|) (-995 (-581 $)))) (T -891)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) (-4 *3 (-13 (-406 *6) (-584 *4) (-845 *5) (-995 (-581 $)))) (-5 *4 (-849 *5)) (-4 *6 (-13 (-533) (-811) (-845 *5))) (-5 *1 (-891 *5 *6 *3))))) -(-10 -7 (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) -((-3096 (((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|)) 13))) -(((-892 |#1|) (-10 -7 (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|)))) (-525)) (T -892)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 (-526) *3)) (-5 *4 (-849 (-526))) (-4 *3 (-525)) (-5 *1 (-892 *3))))) -(-10 -7 (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|)))) -((-3096 (((-847 |#1| |#2|) (-581 |#2|) (-849 |#1|) (-847 |#1| |#2|)) 54))) -(((-893 |#1| |#2|) (-10 -7 (-15 -3096 ((-847 |#1| |#2|) (-581 |#2|) (-849 |#1|) (-847 |#1| |#2|)))) (-1052) (-13 (-811) (-995 (-581 $)) (-584 (-849 |#1|)) (-845 |#1|))) (T -893)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *6)) (-5 *3 (-581 *6)) (-4 *5 (-1052)) (-4 *6 (-13 (-811) (-995 (-581 $)) (-584 *4) (-845 *5))) (-5 *4 (-849 *5)) (-5 *1 (-893 *5 *6))))) -(-10 -7 (-15 -3096 ((-847 |#1| |#2|) (-581 |#2|) (-849 |#1|) (-847 |#1| |#2|)))) -((-3096 (((-844 |#1| |#2| |#3|) |#3| (-849 |#1|) (-844 |#1| |#2| |#3|)) 15))) -(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -3096 ((-844 |#1| |#2| |#3|) |#3| (-849 |#1|) (-844 |#1| |#2| |#3|)))) (-1052) (-845 |#1|) (-631 |#2|)) (T -894)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-844 *5 *6 *3)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-845 *5)) (-4 *3 (-631 *6)) (-5 *1 (-894 *5 *6 *3))))) -(-10 -7 (-15 -3096 ((-844 |#1| |#2| |#3|) |#3| (-849 |#1|) (-844 |#1| |#2| |#3|)))) -((-3096 (((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|)) 17 (|has| |#3| (-845 |#1|))) (((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|) (-1 (-847 |#1| |#5|) |#3| (-849 |#1|) (-847 |#1| |#5|))) 16))) -(((-895 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3096 ((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|) (-1 (-847 |#1| |#5|) |#3| (-849 |#1|) (-847 |#1| |#5|)))) (IF (|has| |#3| (-845 |#1|)) (-15 -3096 ((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|))) |%noBranch|)) (-1052) (-757) (-811) (-13 (-1004) (-811) (-845 |#1|)) (-13 (-909 |#4| |#2| |#3|) (-584 (-849 |#1|)))) (T -895)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) (-4 *3 (-13 (-909 *8 *6 *7) (-584 *4))) (-5 *4 (-849 *5)) (-4 *7 (-845 *5)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-13 (-1004) (-811) (-845 *5))) (-5 *1 (-895 *5 *6 *7 *8 *3)))) (-3096 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-847 *6 *3) *8 (-849 *6) (-847 *6 *3))) (-4 *8 (-811)) (-5 *2 (-847 *6 *3)) (-5 *4 (-849 *6)) (-4 *6 (-1052)) (-4 *3 (-13 (-909 *9 *7 *8) (-584 *4))) (-4 *7 (-757)) (-4 *9 (-13 (-1004) (-811) (-845 *6))) (-5 *1 (-895 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3096 ((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|) (-1 (-847 |#1| |#5|) |#3| (-849 |#1|) (-847 |#1| |#5|)))) (IF (|has| |#3| (-845 |#1|)) (-15 -3096 ((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|))) |%noBranch|)) -((-3522 (((-299 (-526)) (-1123) (-607 (-1 (-111) |#1|))) 18) (((-299 (-526)) (-1123) (-1 (-111) |#1|)) 15))) -(((-896 |#1|) (-10 -7 (-15 -3522 ((-299 (-526)) (-1123) (-1 (-111) |#1|))) (-15 -3522 ((-299 (-526)) (-1123) (-607 (-1 (-111) |#1|))))) (-1159)) (T -896)) -((-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-607 (-1 (-111) *5))) (-4 *5 (-1159)) (-5 *2 (-299 (-526))) (-5 *1 (-896 *5)))) (-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1159)) (-5 *2 (-299 (-526))) (-5 *1 (-896 *5))))) -(-10 -7 (-15 -3522 ((-299 (-526)) (-1123) (-1 (-111) |#1|))) (-15 -3522 ((-299 (-526)) (-1123) (-607 (-1 (-111) |#1|))))) -((-3522 ((|#2| |#2| (-607 (-1 (-111) |#3|))) 12) ((|#2| |#2| (-1 (-111) |#3|)) 13))) -(((-897 |#1| |#2| |#3|) (-10 -7 (-15 -3522 (|#2| |#2| (-1 (-111) |#3|))) (-15 -3522 (|#2| |#2| (-607 (-1 (-111) |#3|))))) (-811) (-406 |#1|) (-1159)) (T -897)) -((-3522 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-1 (-111) *5))) (-4 *5 (-1159)) (-4 *4 (-811)) (-5 *1 (-897 *4 *2 *5)) (-4 *2 (-406 *4)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1159)) (-4 *4 (-811)) (-5 *1 (-897 *4 *2 *5)) (-4 *2 (-406 *4))))) -(-10 -7 (-15 -3522 (|#2| |#2| (-1 (-111) |#3|))) (-15 -3522 (|#2| |#2| (-607 (-1 (-111) |#3|))))) -((-3096 (((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)) 25))) -(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) (-1052) (-13 (-533) (-845 |#1|) (-584 (-849 |#1|))) (-950 |#2|)) (T -898)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) (-4 *3 (-950 *6)) (-4 *6 (-13 (-533) (-845 *5) (-584 *4))) (-5 *4 (-849 *5)) (-5 *1 (-898 *5 *6 *3))))) -(-10 -7 (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) -((-3096 (((-847 |#1| (-1123)) (-1123) (-849 |#1|) (-847 |#1| (-1123))) 17))) -(((-899 |#1|) (-10 -7 (-15 -3096 ((-847 |#1| (-1123)) (-1123) (-849 |#1|) (-847 |#1| (-1123))))) (-1052)) (T -899)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 (-1123))) (-5 *3 (-1123)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-5 *1 (-899 *5))))) -(-10 -7 (-15 -3096 ((-847 |#1| (-1123)) (-1123) (-849 |#1|) (-847 |#1| (-1123))))) -((-3097 (((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))) 33)) (-3096 (((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-1 |#3| (-607 |#3|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))) 32))) -(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -3096 ((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-1 |#3| (-607 |#3|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) (-15 -3097 ((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))))) (-1052) (-13 (-1004) (-811)) (-13 (-1004) (-584 (-849 |#1|)) (-995 |#2|))) (T -900)) -((-3097 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-849 *6))) (-5 *5 (-1 (-847 *6 *8) *8 (-849 *6) (-847 *6 *8))) (-4 *6 (-1052)) (-4 *8 (-13 (-1004) (-584 (-849 *6)) (-995 *7))) (-5 *2 (-847 *6 *8)) (-4 *7 (-13 (-1004) (-811))) (-5 *1 (-900 *6 *7 *8)))) (-3096 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-607 (-849 *7))) (-5 *5 (-1 *9 (-607 *9))) (-5 *6 (-1 (-847 *7 *9) *9 (-849 *7) (-847 *7 *9))) (-4 *7 (-1052)) (-4 *9 (-13 (-1004) (-584 (-849 *7)) (-995 *8))) (-5 *2 (-847 *7 *9)) (-5 *3 (-607 *9)) (-4 *8 (-13 (-1004) (-811))) (-5 *1 (-900 *7 *8 *9))))) -(-10 -7 (-15 -3096 ((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-1 |#3| (-607 |#3|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) (-15 -3097 ((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))))) -((-3105 (((-1117 (-392 (-526))) (-526)) 63)) (-3104 (((-1117 (-526)) (-526)) 66)) (-3653 (((-1117 (-526)) (-526)) 60)) (-3103 (((-526) (-1117 (-526))) 55)) (-3102 (((-1117 (-392 (-526))) (-526)) 49)) (-3101 (((-1117 (-526)) (-526)) 38)) (-3100 (((-1117 (-526)) (-526)) 68)) (-3099 (((-1117 (-526)) (-526)) 67)) (-3098 (((-1117 (-392 (-526))) (-526)) 51))) -(((-901) (-10 -7 (-15 -3098 ((-1117 (-392 (-526))) (-526))) (-15 -3099 ((-1117 (-526)) (-526))) (-15 -3100 ((-1117 (-526)) (-526))) (-15 -3101 ((-1117 (-526)) (-526))) (-15 -3102 ((-1117 (-392 (-526))) (-526))) (-15 -3103 ((-526) (-1117 (-526)))) (-15 -3653 ((-1117 (-526)) (-526))) (-15 -3104 ((-1117 (-526)) (-526))) (-15 -3105 ((-1117 (-392 (-526))) (-526))))) (T -901)) -((-3105 (*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3104 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3653 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1117 (-526))) (-5 *2 (-526)) (-5 *1 (-901)))) (-3102 (*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3101 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3100 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526))))) -(-10 -7 (-15 -3098 ((-1117 (-392 (-526))) (-526))) (-15 -3099 ((-1117 (-526)) (-526))) (-15 -3100 ((-1117 (-526)) (-526))) (-15 -3101 ((-1117 (-526)) (-526))) (-15 -3102 ((-1117 (-392 (-526))) (-526))) (-15 -3103 ((-526) (-1117 (-526)))) (-15 -3653 ((-1117 (-526)) (-526))) (-15 -3104 ((-1117 (-526)) (-526))) (-15 -3105 ((-1117 (-392 (-526))) (-526)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735)) NIL (|has| |#1| (-23)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) 11 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-4028 (($ (-607 |#1|)) 13)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) NIL (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) 8)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 10 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4151 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-4038 (((-111) $ (-735)) NIL)) (-4152 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-4087 (($ $ (-607 |#1|)) 26)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) 20) (($ $ (-1172 (-526))) NIL)) (-4155 ((|#1| $ $) NIL (|has| |#1| (-1004)))) (-4230 (((-878) $) 16)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4153 (($ $ $) 24)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515)))) (($ (-607 |#1|)) 17)) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4158 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-526) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-691))) (($ $ |#1|) NIL (|has| |#1| (-691)))) (-4273 (((-735) $) 14 (|has| $ (-6 -4310))))) -(((-902 |#1|) (-939 |#1|) (-1004)) (T -902)) -NIL -(-939 |#1|) -((-3108 (((-464 |#1| |#2|) (-905 |#2|)) 20)) (-3111 (((-233 |#1| |#2|) (-905 |#2|)) 33)) (-3109 (((-905 |#2|) (-464 |#1| |#2|)) 25)) (-3107 (((-233 |#1| |#2|) (-464 |#1| |#2|)) 55)) (-3110 (((-905 |#2|) (-233 |#1| |#2|)) 30)) (-3106 (((-464 |#1| |#2|) (-233 |#1| |#2|)) 46))) -(((-903 |#1| |#2|) (-10 -7 (-15 -3106 ((-464 |#1| |#2|) (-233 |#1| |#2|))) (-15 -3107 ((-233 |#1| |#2|) (-464 |#1| |#2|))) (-15 -3108 ((-464 |#1| |#2|) (-905 |#2|))) (-15 -3109 ((-905 |#2|) (-464 |#1| |#2|))) (-15 -3110 ((-905 |#2|) (-233 |#1| |#2|))) (-15 -3111 ((-233 |#1| |#2|) (-905 |#2|)))) (-607 (-1123)) (-1004)) (T -903)) -((-3111 (*1 *2 *3) (-12 (-5 *3 (-905 *5)) (-4 *5 (-1004)) (-5 *2 (-233 *4 *5)) (-5 *1 (-903 *4 *5)) (-14 *4 (-607 (-1123))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) (-5 *2 (-905 *5)) (-5 *1 (-903 *4 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-464 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) (-5 *2 (-905 *5)) (-5 *1 (-903 *4 *5)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-905 *5)) (-4 *5 (-1004)) (-5 *2 (-464 *4 *5)) (-5 *1 (-903 *4 *5)) (-14 *4 (-607 (-1123))))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-464 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) (-5 *2 (-233 *4 *5)) (-5 *1 (-903 *4 *5)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) (-5 *2 (-464 *4 *5)) (-5 *1 (-903 *4 *5))))) -(-10 -7 (-15 -3106 ((-464 |#1| |#2|) (-233 |#1| |#2|))) (-15 -3107 ((-233 |#1| |#2|) (-464 |#1| |#2|))) (-15 -3108 ((-464 |#1| |#2|) (-905 |#2|))) (-15 -3109 ((-905 |#2|) (-464 |#1| |#2|))) (-15 -3110 ((-905 |#2|) (-233 |#1| |#2|))) (-15 -3111 ((-233 |#1| |#2|) (-905 |#2|)))) -((-3112 (((-607 |#2|) |#2| |#2|) 10)) (-3115 (((-735) (-607 |#1|)) 37 (|has| |#1| (-809)))) (-3113 (((-607 |#2|) |#2|) 11)) (-3116 (((-735) (-607 |#1|) (-526) (-526)) 39 (|has| |#1| (-809)))) (-3114 ((|#1| |#2|) 32 (|has| |#1| (-809))))) -(((-904 |#1| |#2|) (-10 -7 (-15 -3112 ((-607 |#2|) |#2| |#2|)) (-15 -3113 ((-607 |#2|) |#2|)) (IF (|has| |#1| (-809)) (PROGN (-15 -3114 (|#1| |#2|)) (-15 -3115 ((-735) (-607 |#1|))) (-15 -3116 ((-735) (-607 |#1|) (-526) (-526)))) |%noBranch|)) (-348) (-1181 |#1|)) (T -904)) -((-3116 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-526)) (-4 *5 (-809)) (-4 *5 (-348)) (-5 *2 (-735)) (-5 *1 (-904 *5 *6)) (-4 *6 (-1181 *5)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-809)) (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1181 *4)))) (-3114 (*1 *2 *3) (-12 (-4 *2 (-348)) (-4 *2 (-809)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1181 *2)))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1181 *4)))) (-3112 (*1 *2 *3 *3) (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -3112 ((-607 |#2|) |#2| |#2|)) (-15 -3113 ((-607 |#2|) |#2|)) (IF (|has| |#1| (-809)) (PROGN (-15 -3114 (|#1| |#2|)) (-15 -3115 ((-735) (-607 |#1|))) (-15 -3116 ((-735) (-607 |#1|) (-526) (-526)))) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1123)) $) 16)) (-3386 (((-1117 $) $ (-1123)) 21) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1123))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) 8) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1123) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1123) $) NIL)) (-4075 (($ $ $ (-1123)) NIL (|has| |#1| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-1123)) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 (-1123)) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1123) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1123) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#1|) (-1123)) NIL) (($ (-1117 $) (-1123)) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1123)) NIL)) (-3120 (((-512 (-1123)) $) NIL) (((-735) $ (-1123)) NIL) (((-607 (-735)) $ (-607 (-1123))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 (-1123)) (-512 (-1123))) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3385 (((-3 (-1123) #3="failed") $) 19)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1123)) (|:| -2462 (-735))) #3#) $) NIL)) (-4131 (($ $ (-1123)) 29 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1123) |#1|) NIL) (($ $ (-607 (-1123)) (-607 |#1|)) NIL) (($ $ (-1123) $) NIL) (($ $ (-607 (-1123)) (-607 $)) NIL)) (-4076 (($ $ (-1123)) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-4264 (((-512 (-1123)) $) NIL) (((-735) $ (-1123)) NIL) (((-607 (-735)) $ (-607 (-1123))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1123) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1123) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1123) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-1123)) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 25) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-1123)) 27) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-905 |#1|) (-13 (-909 |#1| (-512 (-1123)) (-1123)) (-10 -8 (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1123))) |%noBranch|))) (-1004)) (T -905)) -((-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-905 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004))))) -(-13 (-909 |#1| (-512 (-1123)) (-1123)) (-10 -8 (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1123))) |%noBranch|))) -((-4275 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19))) -(((-906 |#1| |#2|) (-10 -7 (-15 -4275 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1004) (-1004)) (T -906)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-905 *6)) (-5 *1 (-906 *5 *6))))) -(-10 -7 (-15 -4275 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) -((-3386 (((-1174 |#1| (-905 |#2|)) (-905 |#2|) (-1202 |#1|)) 18))) -(((-907 |#1| |#2|) (-10 -7 (-15 -3386 ((-1174 |#1| (-905 |#2|)) (-905 |#2|) (-1202 |#1|)))) (-1123) (-1004)) (T -907)) -((-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-1202 *5)) (-14 *5 (-1123)) (-4 *6 (-1004)) (-5 *2 (-1174 *5 (-905 *6))) (-5 *1 (-907 *5 *6)) (-5 *3 (-905 *6))))) -(-10 -7 (-15 -3386 ((-1174 |#1| (-905 |#2|)) (-905 |#2|) (-1202 |#1|)))) -((-3119 (((-735) $) 71) (((-735) $ (-607 |#4|)) 74)) (-4093 (($ $) 173)) (-4286 (((-390 $) $) 165)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 116)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL) (((-3 (-526) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL) (((-526) $) NIL) ((|#4| $) 59)) (-4075 (($ $ $ |#4|) 76)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 106) (((-653 |#2|) (-653 $)) 99)) (-3817 (($ $) 180) (($ $ |#4|) 183)) (-3118 (((-607 $) $) 63)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 199) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 192)) (-3121 (((-607 $) $) 28)) (-3193 (($ |#2| |#3|) NIL) (($ $ |#4| (-735)) NIL) (($ $ (-607 |#4|) (-607 (-735))) 57)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#4|) 162)) (-3123 (((-3 (-607 $) "failed") $) 42)) (-3122 (((-3 (-607 $) "failed") $) 31)) (-3124 (((-3 (-2 (|:| |var| |#4|) (|:| -2462 (-735))) "failed") $) 47)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 109)) (-3005 (((-390 (-1117 $)) (-1117 $)) 122)) (-3006 (((-390 (-1117 $)) (-1117 $)) 120)) (-4051 (((-390 $) $) 140)) (-4086 (($ $ (-607 (-278 $))) 21) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-607 |#4|) (-607 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-607 |#4|) (-607 $)) NIL)) (-4076 (($ $ |#4|) 78)) (-4287 (((-849 (-363)) $) 213) (((-849 (-526)) $) 206) (((-515) $) 221)) (-3117 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 154)) (-3999 ((|#2| $ |#3|) NIL) (($ $ |#4| (-735)) 52) (($ $ (-607 |#4|) (-607 (-735))) 55)) (-3002 (((-3 $ #1#) $) 156)) (-2985 (((-111) $ $) 186))) -(((-908 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -3002 ((-3 |#1| #1="failed") |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) #1#) (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3003 ((-3 (-1205 |#1|) #1#) (-653 |#1|))) (-15 -3817 (|#1| |#1| |#4|)) (-15 -3117 (|#1| |#1| |#4|)) (-15 -4076 (|#1| |#1| |#4|)) (-15 -4075 (|#1| |#1| |#1| |#4|)) (-15 -3118 ((-607 |#1|) |#1|)) (-15 -3119 ((-735) |#1| (-607 |#4|))) (-15 -3119 ((-735) |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| |#4|) (|:| -2462 (-735))) "failed") |#1|)) (-15 -3123 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3122 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3193 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -3193 (|#1| |#1| |#4| (-735))) (-15 -4081 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3121 ((-607 |#1|) |#1|)) (-15 -3999 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -3999 (|#1| |#1| |#4| (-735))) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#4| |#1|)) (-15 -3470 ((-3 |#4| #2="failed") |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#4| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#4| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -3193 (|#1| |#2| |#3|)) (-15 -3999 (|#2| |#1| |#3|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #2#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #2#) |#1|)) (-15 -3470 ((-3 |#2| #2#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3817 (|#1| |#1|))) (-909 |#2| |#3| |#4|) (-1004) (-757) (-811)) (T -908)) -NIL -(-10 -8 (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -3002 ((-3 |#1| #1="failed") |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) #1#) (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3003 ((-3 (-1205 |#1|) #1#) (-653 |#1|))) (-15 -3817 (|#1| |#1| |#4|)) (-15 -3117 (|#1| |#1| |#4|)) (-15 -4076 (|#1| |#1| |#4|)) (-15 -4075 (|#1| |#1| |#1| |#4|)) (-15 -3118 ((-607 |#1|) |#1|)) (-15 -3119 ((-735) |#1| (-607 |#4|))) (-15 -3119 ((-735) |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| |#4|) (|:| -2462 (-735))) "failed") |#1|)) (-15 -3123 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3122 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3193 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -3193 (|#1| |#1| |#4| (-735))) (-15 -4081 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3121 ((-607 |#1|) |#1|)) (-15 -3999 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -3999 (|#1| |#1| |#4| (-735))) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#4| |#1|)) (-15 -3470 ((-3 |#4| #2="failed") |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#4| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#4| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -3193 (|#1| |#2| |#3|)) (-15 -3999 (|#2| |#1| |#3|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #2#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #2#) |#1|)) (-15 -3470 ((-3 |#2| #2#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3817 (|#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 |#3|) $) 108)) (-3386 (((-1117 $) $ |#3|) 123) (((-1117 |#1|) $) 122)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85 (|has| |#1| (-533)))) (-2151 (($ $) 86 (|has| |#1| (-533)))) (-2149 (((-111) $) 88 (|has| |#1| (-533)))) (-3119 (((-735) $) 110) (((-735) $ (-607 |#3|)) 109)) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 98 (|has| |#1| (-869)))) (-4093 (($ $) 96 (|has| |#1| (-436)))) (-4286 (((-390 $) $) 95 (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 101 (|has| |#1| (-869)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 162) (((-3 (-392 (-526)) #2#) $) 160 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) 158 (|has| |#1| (-995 (-526)))) (((-3 |#3| #2#) $) 134)) (-3469 ((|#1| $) 163) (((-392 (-526)) $) 159 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 157 (|has| |#1| (-995 (-526)))) ((|#3| $) 133)) (-4075 (($ $ $ |#3|) 106 (|has| |#1| (-163)))) (-4276 (($ $) 152)) (-2331 (((-653 (-526)) (-653 $)) 132 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 131 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 130) (((-653 |#1|) (-653 $)) 129)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 174 (|has| |#1| (-436))) (($ $ |#3|) 103 (|has| |#1| (-436)))) (-3118 (((-607 $) $) 107)) (-4045 (((-111) $) 94 (|has| |#1| (-869)))) (-1697 (($ $ |#1| |#2| $) 170)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 82 (-12 (|has| |#3| (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 81 (-12 (|has| |#3| (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 167)) (-3387 (($ (-1117 |#1|) |#3|) 115) (($ (-1117 $) |#3|) 114)) (-3121 (((-607 $) $) 124)) (-4254 (((-111) $) 150)) (-3193 (($ |#1| |#2|) 151) (($ $ |#3| (-735)) 117) (($ $ (-607 |#3|) (-607 (-735))) 116)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) 118)) (-3120 ((|#2| $) 168) (((-735) $ |#3|) 120) (((-607 (-735)) $ (-607 |#3|)) 119)) (-3637 (($ $ $) 77 (|has| |#1| (-811)))) (-3638 (($ $ $) 76 (|has| |#1| (-811)))) (-1698 (($ (-1 |#2| |#2|) $) 169)) (-4275 (($ (-1 |#1| |#1|) $) 149)) (-3385 (((-3 |#3| "failed") $) 121)) (-3194 (($ $) 147)) (-3487 ((|#1| $) 146)) (-1989 (($ (-607 $)) 92 (|has| |#1| (-436))) (($ $ $) 91 (|has| |#1| (-436)))) (-3554 (((-1106) $) 9)) (-3123 (((-3 (-607 $) "failed") $) 112)) (-3122 (((-3 (-607 $) "failed") $) 113)) (-3124 (((-3 (-2 (|:| |var| |#3|) (|:| -2462 (-735))) "failed") $) 111)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 164)) (-1891 ((|#1| $) 165)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 93 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) 90 (|has| |#1| (-436))) (($ $ $) 89 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 100 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 99 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 97 (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-607 $) (-607 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-607 |#3|) (-607 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-607 |#3|) (-607 $)) 136)) (-4076 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-4129 (($ $ |#3|) 40) (($ $ (-607 |#3|)) 39) (($ $ |#3| (-735)) 38) (($ $ (-607 |#3|) (-607 (-735))) 37)) (-4264 ((|#2| $) 148) (((-735) $ |#3|) 128) (((-607 (-735)) $ (-607 |#3|)) 127)) (-4287 (((-849 (-363)) $) 80 (-12 (|has| |#3| (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) 79 (-12 (|has| |#3| (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) 78 (-12 (|has| |#3| (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) 173 (|has| |#1| (-436))) (($ $ |#3|) 104 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 102 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-533))) (($ (-392 (-526))) 70 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526))))))) (-4136 (((-607 |#1|) $) 166)) (-3999 ((|#1| $ |#2|) 153) (($ $ |#3| (-735)) 126) (($ $ (-607 |#3|) (-607 (-735))) 125)) (-3002 (((-3 $ "failed") $) 71 (-3850 (-3155 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 171 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 87 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ |#3|) 36) (($ $ (-607 |#3|)) 35) (($ $ |#3| (-735)) 34) (($ $ (-607 |#3|) (-607 (-735))) 33)) (-2863 (((-111) $ $) 74 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 73 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 75 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 72 (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 154 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 156 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 155 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-909 |#1| |#2| |#3|) (-134) (-1004) (-757) (-811)) (T -909)) -((-3817 (*1 *1 *1) (-12 (-4 *1 (-909 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-4264 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-735)))) (-4264 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 (-735))))) (-3999 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-909 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *2 (-811)))) (-3999 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 (-735))) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)))) (-3121 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) (-3386 (*1 *2 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-1117 *1)) (-4 *1 (-909 *4 *5 *3)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-1117 *3)))) (-3385 (*1 *2 *1) (|partial| -12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3120 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-735)))) (-3120 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 (-735))))) (-4081 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-909 *4 *5 *3)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-909 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *2 (-811)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 (-735))) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)))) (-3387 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 *4)) (-4 *4 (-1004)) (-4 *1 (-909 *4 *5 *3)) (-4 *5 (-757)) (-4 *3 (-811)))) (-3387 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)))) (-3122 (*1 *2 *1) (|partial| -12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) (-3123 (*1 *2 *1) (|partial| -12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) (-3124 (*1 *2 *1) (|partial| -12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| |var| *5) (|:| -2462 (-735)))))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-735)))) (-3119 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-735)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *5)))) (-3118 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) (-4075 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *3 (-163)))) (-4076 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *3 (-163)))) (-3117 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *3 (-436)))) (-3817 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *3 (-436)))) (-4093 (*1 *1 *1) (-12 (-4 *1 (-909 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-4286 (*1 *2 *1) (-12 (-4 *3 (-436)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-390 *1)) (-4 *1 (-909 *3 *4 *5))))) -(-13 (-859 |t#3|) (-311 |t#1| |t#2|) (-294 $) (-496 |t#3| |t#1|) (-496 |t#3| $) (-995 |t#3|) (-362 |t#1|) (-10 -8 (-15 -4264 ((-735) $ |t#3|)) (-15 -4264 ((-607 (-735)) $ (-607 |t#3|))) (-15 -3999 ($ $ |t#3| (-735))) (-15 -3999 ($ $ (-607 |t#3|) (-607 (-735)))) (-15 -3121 ((-607 $) $)) (-15 -3386 ((-1117 $) $ |t#3|)) (-15 -3386 ((-1117 |t#1|) $)) (-15 -3385 ((-3 |t#3| "failed") $)) (-15 -3120 ((-735) $ |t#3|)) (-15 -3120 ((-607 (-735)) $ (-607 |t#3|))) (-15 -4081 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |t#3|)) (-15 -3193 ($ $ |t#3| (-735))) (-15 -3193 ($ $ (-607 |t#3|) (-607 (-735)))) (-15 -3387 ($ (-1117 |t#1|) |t#3|)) (-15 -3387 ($ (-1117 $) |t#3|)) (-15 -3122 ((-3 (-607 $) "failed") $)) (-15 -3123 ((-3 (-607 $) "failed") $)) (-15 -3124 ((-3 (-2 (|:| |var| |t#3|) (|:| -2462 (-735))) "failed") $)) (-15 -3119 ((-735) $)) (-15 -3119 ((-735) $ (-607 |t#3|))) (-15 -3384 ((-607 |t#3|) $)) (-15 -3118 ((-607 $) $)) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (IF (|has| |t#3| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-584 (-849 (-526)))) (IF (|has| |t#3| (-584 (-849 (-526)))) (-6 (-584 (-849 (-526)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-584 (-849 (-363)))) (IF (|has| |t#3| (-584 (-849 (-363)))) (-6 (-584 (-849 (-363)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-845 (-526))) (IF (|has| |t#3| (-845 (-526))) (-6 (-845 (-526))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-845 (-363))) (IF (|has| |t#3| (-845 (-363))) (-6 (-845 (-363))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-15 -4075 ($ $ $ |t#3|)) (-15 -4076 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-436)) (PROGN (-6 (-436)) (-15 -3117 ($ $ |t#3|)) (-15 -3817 ($ $)) (-15 -3817 ($ $ |t#3|)) (-15 -4286 ((-390 $) $)) (-15 -4093 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4308)) (-6 -4308) |%noBranch|) (IF (|has| |t#1| (-869)) (-6 (-869)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-584 (-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526))))) ((-275) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-294 $) . T) ((-311 |#1| |#2|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-869)) (|has| |#1| (-436))) ((-496 |#3| |#1|) . T) ((-496 |#3| $) . T) ((-496 $ $) . T) ((-533) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 |#3|) . T) ((-845 (-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))) ((-869) |has| |#1| (-869)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-995 |#3|) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) |has| |#1| (-869))) -((-3384 (((-607 |#2|) |#5|) 36)) (-3386 (((-1117 |#5|) |#5| |#2| (-1117 |#5|)) 23) (((-392 (-1117 |#5|)) |#5| |#2|) 16)) (-3387 ((|#5| (-392 (-1117 |#5|)) |#2|) 30)) (-3385 (((-3 |#2| "failed") |#5|) 65)) (-3123 (((-3 (-607 |#5|) "failed") |#5|) 59)) (-3125 (((-3 (-2 (|:| |val| |#5|) (|:| -2462 (-526))) "failed") |#5|) 47)) (-3122 (((-3 (-607 |#5|) "failed") |#5|) 61)) (-3124 (((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-526))) "failed") |#5|) 51))) -(((-910 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3384 ((-607 |#2|) |#5|)) (-15 -3385 ((-3 |#2| "failed") |#5|)) (-15 -3386 ((-392 (-1117 |#5|)) |#5| |#2|)) (-15 -3387 (|#5| (-392 (-1117 |#5|)) |#2|)) (-15 -3386 ((-1117 |#5|) |#5| |#2| (-1117 |#5|))) (-15 -3122 ((-3 (-607 |#5|) "failed") |#5|)) (-15 -3123 ((-3 (-607 |#5|) "failed") |#5|)) (-15 -3124 ((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-526))) "failed") |#5|)) (-15 -3125 ((-3 (-2 (|:| |val| |#5|) (|:| -2462 (-526))) "failed") |#5|))) (-757) (-811) (-1004) (-909 |#3| |#1| |#2|) (-13 (-348) (-10 -8 (-15 -4274 ($ |#4|)) (-15 -3298 (|#4| $)) (-15 -3297 (|#4| $))))) (T -910)) -((-3125 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2462 (-526)))) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3124 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2462 (-526)))) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3123 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *3)) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3122 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *3)) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))) (-4 *7 (-909 *6 *5 *4)) (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) (-5 *1 (-910 *5 *4 *6 *7 *3)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-1117 *2))) (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) (-4 *2 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))) (-5 *1 (-910 *5 *4 *6 *7 *2)) (-4 *7 (-909 *6 *5 *4)))) (-3386 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *5 *4)) (-5 *2 (-392 (-1117 *3))) (-5 *1 (-910 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3385 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-1004)) (-4 *6 (-909 *5 *4 *2)) (-4 *2 (-811)) (-5 *1 (-910 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *6)) (-15 -3298 (*6 $)) (-15 -3297 (*6 $))))))) (-3384 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *5)) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) -(-10 -7 (-15 -3384 ((-607 |#2|) |#5|)) (-15 -3385 ((-3 |#2| "failed") |#5|)) (-15 -3386 ((-392 (-1117 |#5|)) |#5| |#2|)) (-15 -3387 (|#5| (-392 (-1117 |#5|)) |#2|)) (-15 -3386 ((-1117 |#5|) |#5| |#2| (-1117 |#5|))) (-15 -3122 ((-3 (-607 |#5|) "failed") |#5|)) (-15 -3123 ((-3 (-607 |#5|) "failed") |#5|)) (-15 -3124 ((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-526))) "failed") |#5|)) (-15 -3125 ((-3 (-2 (|:| |val| |#5|) (|:| -2462 (-526))) "failed") |#5|))) -((-4275 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-911 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4275 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-757) (-811) (-1004) (-909 |#3| |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735)))))) (T -911)) -((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-811)) (-4 *8 (-1004)) (-4 *6 (-757)) (-4 *2 (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735)))))) (-5 *1 (-911 *6 *7 *8 *5 *2)) (-4 *5 (-909 *8 *6 *7))))) -(-10 -7 (-15 -4275 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3126 (((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#3| (-735)) 38)) (-3127 (((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) (-392 (-526)) (-735)) 34)) (-3129 (((-2 (|:| -2462 (-735)) (|:| -4270 |#4|) (|:| |radicand| (-607 |#4|))) |#4| (-735)) 54)) (-3128 (((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#5| (-735)) 64 (|has| |#3| (-436))))) -(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3126 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#3| (-735))) (-15 -3127 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) (-392 (-526)) (-735))) (IF (|has| |#3| (-436)) (-15 -3128 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#5| (-735))) |%noBranch|) (-15 -3129 ((-2 (|:| -2462 (-735)) (|:| -4270 |#4|) (|:| |radicand| (-607 |#4|))) |#4| (-735)))) (-757) (-811) (-533) (-909 |#3| |#1| |#2|) (-13 (-348) (-10 -8 (-15 -3298 (|#4| $)) (-15 -3297 (|#4| $)) (-15 -4274 ($ |#4|))))) (T -912)) -((-3129 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) (-4 *3 (-909 *7 *5 *6)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| (-607 *3)))) (-5 *1 (-912 *5 *6 *7 *3 *8)) (-5 *4 (-735)) (-4 *8 (-13 (-348) (-10 -8 (-15 -3298 (*3 $)) (-15 -3297 (*3 $)) (-15 -4274 ($ *3))))))) (-3128 (*1 *2 *3 *4) (-12 (-4 *7 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) (-4 *8 (-909 *7 *5 *6)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| *3))) (-5 *1 (-912 *5 *6 *7 *8 *3)) (-5 *4 (-735)) (-4 *3 (-13 (-348) (-10 -8 (-15 -3298 (*8 $)) (-15 -3297 (*8 $)) (-15 -4274 ($ *8))))))) (-3127 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-526))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) (-4 *8 (-909 *7 *5 *6)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *9) (|:| |radicand| *9))) (-5 *1 (-912 *5 *6 *7 *8 *9)) (-5 *4 (-735)) (-4 *9 (-13 (-348) (-10 -8 (-15 -3298 (*8 $)) (-15 -3297 (*8 $)) (-15 -4274 ($ *8))))))) (-3126 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-533)) (-4 *7 (-909 *3 *5 *6)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *8) (|:| |radicand| *8))) (-5 *1 (-912 *5 *6 *3 *7 *8)) (-5 *4 (-735)) (-4 *8 (-13 (-348) (-10 -8 (-15 -3298 (*7 $)) (-15 -3297 (*7 $)) (-15 -4274 ($ *7)))))))) -(-10 -7 (-15 -3126 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#3| (-735))) (-15 -3127 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) (-392 (-526)) (-735))) (IF (|has| |#3| (-436)) (-15 -3128 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#5| (-735))) |%noBranch|) (-15 -3129 ((-2 (|:| -2462 (-735)) (|:| -4270 |#4|) (|:| |radicand| (-607 |#4|))) |#4| (-735)))) -((-2865 (((-111) $ $) NIL)) (-3130 (($ (-1070)) 8)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 14) (((-1070) $) 11)) (-3353 (((-111) $ $) 10))) -(((-913) (-13 (-1052) (-583 (-1070)) (-10 -8 (-15 -3130 ($ (-1070)))))) (T -913)) -((-3130 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-913))))) -(-13 (-1052) (-583 (-1070)) (-10 -8 (-15 -3130 ($ (-1070))))) -((-3196 (((-1041 (-211)) $) 8)) (-3197 (((-1041 (-211)) $) 9)) (-3198 (((-607 (-607 (-902 (-211)))) $) 10)) (-4274 (((-823) $) 6))) -(((-914) (-134)) (T -914)) -((-3198 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-607 (-607 (-902 (-211))))))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1041 (-211))))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1041 (-211)))))) -(-13 (-583 (-823)) (-10 -8 (-15 -3198 ((-607 (-607 (-902 (-211)))) $)) (-15 -3197 ((-1041 (-211)) $)) (-15 -3196 ((-1041 (-211)) $)))) -(((-583 (-823)) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 61 (|has| |#1| (-533)))) (-2151 (($ $) 62 (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 28)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) 24)) (-3781 (((-3 $ "failed") $) 35)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-1697 (($ $ |#1| |#2| $) 48)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) 16)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-3120 ((|#2| $) 19)) (-1698 (($ (-1 |#2| |#2|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3194 (($ $) 23)) (-3487 ((|#1| $) 21)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 40)) (-1891 ((|#1| $) NIL)) (-4057 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-129)) (|has| |#1| (-533))))) (-3780 (((-3 $ "failed") $ $) 74 (|has| |#1| (-533))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-533)))) (-4264 ((|#2| $) 17)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) 39) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) 34) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ |#2|) 31)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 15)) (-1696 (($ $ $ (-735)) 57 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 67 (|has| |#1| (-533)))) (-2957 (($) 22 T CONST)) (-2964 (($) 12 T CONST)) (-3353 (((-111) $ $) 66)) (-4265 (($ $ |#1|) 75 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) 54) (($ $ (-735)) 52)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-915 |#1| |#2|) (-13 (-311 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-533)) (IF (|has| |#2| (-129)) (-15 -4057 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) (-1004) (-756)) (T -915)) -((-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-915 *3 *2)) (-4 *2 (-129)) (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *2 (-756))))) -(-13 (-311 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-533)) (IF (|has| |#2| (-129)) (-15 -4057 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) -((-3131 (((-3 (-653 |#1|) "failed") |#2| (-878)) 15))) -(((-916 |#1| |#2|) (-10 -7 (-15 -3131 ((-3 (-653 |#1|) "failed") |#2| (-878)))) (-533) (-623 |#1|)) (T -916)) -((-3131 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-878)) (-4 *5 (-533)) (-5 *2 (-653 *5)) (-5 *1 (-916 *5 *3)) (-4 *3 (-623 *5))))) -(-10 -7 (-15 -3131 ((-3 (-653 |#1|) "failed") |#2| (-878)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) 16 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 15 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 13)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 12)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 10 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) 17 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 11)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) 14) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 8 (|has| $ (-6 -4310))))) -(((-917 |#1|) (-19 |#1|) (-1159)) (T -917)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3423 (((-745) $) 15)) (-3475 (($ $ |#1|) 56)) (-3499 (($ $) 32)) (-2796 (($ $) 31)) (-2441 (((-3 |#1| "failed") $) 48)) (-2375 ((|#1| $) NIL)) (-3216 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3020 (((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-548)) 46)) (-3224 ((|#1| $ (-548)) 30)) (-3235 ((|#2| $ (-548)) 29)) (-1628 (($ (-1 |#1| |#1|) $) 34)) (-3442 (($ (-1 |#2| |#2|) $) 38)) (-3486 (($) 10)) (-3519 (($ |#1| |#2|) 22)) (-3510 (($ (-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|)))) 23)) (-3532 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $) 13)) (-3464 (($ |#1| $) 57)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3452 (((-112) $ $) 60)) (-3743 (((-832) $) 19) (($ |#1|) 16)) (-2214 (((-112) $ $) 25))) +(((-623 |#1| |#2| |#3|) (-13 (-1063) (-1007 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-548))) (-15 -3532 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $)) (-15 -3519 ($ |#1| |#2|)) (-15 -3510 ($ (-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))))) (-15 -3235 (|#2| $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -2796 ($ $)) (-15 -3499 ($ $)) (-15 -3423 ((-745) $)) (-15 -3486 ($)) (-15 -3475 ($ $ |#1|)) (-15 -3464 ($ |#1| $)) (-15 -3216 ($ |#1| |#2| $)) (-15 -3216 ($ $ $)) (-15 -3452 ((-112) $ $)) (-15 -3442 ($ (-1 |#2| |#2|) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)))) (-1063) (-23) |#2|) (T -623)) +((-3020 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-832) (-832) (-832))) (-5 *4 (-548)) (-5 *2 (-832)) (-5 *1 (-623 *5 *6 *7)) (-4 *5 (-1063)) (-4 *6 (-23)) (-14 *7 *6))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-3519 (*1 *1 *2 *3) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3510 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *2 (-23)) (-5 *1 (-623 *4 *2 *5)) (-4 *4 (-1063)) (-14 *5 *2))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *2 (-1063)) (-5 *1 (-623 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2796 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3499 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-3486 (*1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3475 (*1 *1 *1 *2) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3464 (*1 *1 *2 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3216 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3216 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3452 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-3442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-623 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1063) (-1007 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-548))) (-15 -3532 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $)) (-15 -3519 ($ |#1| |#2|)) (-15 -3510 ($ (-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))))) (-15 -3235 (|#2| $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -2796 ($ $)) (-15 -3499 ($ $)) (-15 -3423 ((-745) $)) (-15 -3486 ($)) (-15 -3475 ($ $ |#1|)) (-15 -3464 ($ |#1| $)) (-15 -3216 ($ |#1| |#2| $)) (-15 -3216 ($ $ $)) (-15 -3452 ((-112) $ $)) (-15 -3442 ($ (-1 |#2| |#2|) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)))) +((-4181 (((-548) $) 24)) (-2387 (($ |#2| $ (-548)) 22) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) 12)) (-4212 (((-112) (-548) $) 15)) (-1831 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-619 $)) NIL))) +(((-624 |#1| |#2|) (-10 -8 (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -4181 ((-548) |#1|)) (-15 -4201 ((-619 (-548)) |#1|)) (-15 -4212 ((-112) (-548) |#1|))) (-625 |#2|) (-1172)) (T -624)) +NIL +(-10 -8 (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -4181 ((-548) |#1|)) (-15 -4201 ((-619 (-548)) |#1|)) (-15 -4212 ((-112) (-548) |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-625 |#1|) (-138) (-1172)) (T -625)) +((-3550 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-1831 (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1831 (*1 *1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1831 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2387 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-2387 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1185 (-548))) (|has| *1 (-6 -4328)) (-4 *1 (-625 *2)) (-4 *2 (-1172))))) +(-13 (-583 (-548) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3550 ($ (-745) |t#1|)) (-15 -1831 ($ $ |t#1|)) (-15 -1831 ($ |t#1| $)) (-15 -1831 ($ $ $)) (-15 -1831 ($ (-619 $))) (-15 -2540 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3171 ($ $ (-1185 (-548)))) (-15 -2008 ($ $ (-548))) (-15 -2008 ($ $ (-1185 (-548)))) (-15 -2387 ($ |t#1| $ (-548))) (-15 -2387 ($ $ $ (-548))) (IF (|has| $ (-6 -4328)) (-15 -2089 (|t#1| $ (-1185 (-548)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3408 (((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) "failed") |#3| |#2| (-1135)) 44))) +(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) "failed") |#3| |#2| (-1135))) (-15 -3408 ((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928)) (-630 |#2|)) (T -626)) +((-3408 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-626 *6 *2 *3)) (-4 *3 (-630 *2)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-4 *4 (-13 (-29 *6) (-1157) (-928))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2877 (-619 *4)))) (-5 *1 (-626 *6 *4 *3)) (-4 *3 (-630 *4))))) +(-10 -7 (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) "failed") |#3| |#2| (-1135))) (-15 -3408 ((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3543 (($ $) NIL (|has| |#1| (-355)))) (-3565 (($ $ $) NIL (|has| |#1| (-355)))) (-3577 (($ $ (-745)) NIL (|has| |#1| (-355)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#1| (-355)))) (-1916 (($ $ $) NIL (|has| |#1| (-355)))) (-1927 (($ $ $) NIL (|has| |#1| (-355)))) (-1885 (($ $ $) NIL (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-2266 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#1| (-355)))) (-1982 (($ $ $) NIL (|has| |#1| (-355)))) (-1865 (($ $ $) NIL (|has| |#1| (-355)))) (-1950 (($ $ $) NIL (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3171 ((|#1| $ |#1|) NIL)) (-3589 (($ $ $) NIL (|has| |#1| (-355)))) (-2512 (((-745) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#1| $ |#1| |#1|) NIL)) (-1773 (($ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($) NIL)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-627 |#1|) (-630 |#1|) (-226)) (T -627)) +NIL +(-630 |#1|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3543 (($ $) NIL (|has| |#1| (-355)))) (-3565 (($ $ $) NIL (|has| |#1| (-355)))) (-3577 (($ $ (-745)) NIL (|has| |#1| (-355)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#1| (-355)))) (-1916 (($ $ $) NIL (|has| |#1| (-355)))) (-1927 (($ $ $) NIL (|has| |#1| (-355)))) (-1885 (($ $ $) NIL (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-2266 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#1| (-355)))) (-1982 (($ $ $) NIL (|has| |#1| (-355)))) (-1865 (($ $ $) NIL (|has| |#1| (-355)))) (-1950 (($ $ $) NIL (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3171 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3589 (($ $ $) NIL (|has| |#1| (-355)))) (-2512 (((-745) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#1| $ |#1| |#1|) NIL)) (-1773 (($ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($) NIL)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-628 |#1| |#2|) (-13 (-630 |#1|) (-278 |#2| |#2|)) (-226) (-13 (-622 |#1|) (-10 -8 (-15 -4050 ($ $))))) (T -628)) +NIL +(-13 (-630 |#1|) (-278 |#2| |#2|)) +((-3543 (($ $) 26)) (-1773 (($ $) 24)) (-3296 (($) 12))) +(((-629 |#1| |#2|) (-10 -8 (-15 -3543 (|#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -3296 (|#1|))) (-630 |#2|) (-1016)) (T -629)) +NIL +(-10 -8 (-15 -3543 (|#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -3296 (|#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3543 (($ $) 80 (|has| |#1| (-355)))) (-3565 (($ $ $) 82 (|has| |#1| (-355)))) (-3577 (($ $ (-745)) 81 (|has| |#1| (-355)))) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1905 (($ $ $) 43 (|has| |#1| (-355)))) (-1916 (($ $ $) 44 (|has| |#1| (-355)))) (-1927 (($ $ $) 46 (|has| |#1| (-355)))) (-1885 (($ $ $) 41 (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 40 (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) 42 (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 45 (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) 72 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 70 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 67)) (-2375 (((-548) $) 73 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 71 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 66)) (-1872 (($ $) 62)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 53 (|has| |#1| (-443)))) (-2266 (((-112) $) 30)) (-2024 (($ |#1| (-745)) 60)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55 (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 56 (|has| |#1| (-540)))) (-3904 (((-745) $) 64)) (-1970 (($ $ $) 50 (|has| |#1| (-355)))) (-1982 (($ $ $) 51 (|has| |#1| (-355)))) (-1865 (($ $ $) 39 (|has| |#1| (-355)))) (-1950 (($ $ $) 48 (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 47 (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) 49 (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 52 (|has| |#1| (-355)))) (-2197 ((|#1| $) 63)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-540)))) (-3171 ((|#1| $ |#1|) 85)) (-3589 (($ $ $) 79 (|has| |#1| (-355)))) (-2512 (((-745) $) 65)) (-3881 ((|#1| $) 54 (|has| |#1| (-443)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 69 (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 68)) (-3852 (((-619 |#1|) $) 59)) (-1951 ((|#1| $ (-745)) 61)) (-3835 (((-745)) 28)) (-3398 ((|#1| $ |#1| |#1|) 58)) (-1773 (($ $) 83)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($) 84)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-630 |#1|) (-138) (-1016)) (T -630)) +((-3296 (*1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) (-1773 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) (-3565 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-3577 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-630 *3)) (-4 *3 (-1016)) (-4 *3 (-355)))) (-3543 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-3589 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(-13 (-823 |t#1|) (-278 |t#1| |t#1|) (-10 -8 (-15 -3296 ($)) (-15 -1773 ($ $)) (IF (|has| |t#1| (-355)) (PROGN (-15 -3565 ($ $ $)) (-15 -3577 ($ $ (-745))) (-15 -3543 ($ $)) (-15 -3589 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-278 |#1| |#1|) . T) ((-403 |#1|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-823 |#1|) . T)) +((-3555 (((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|))) 74 (|has| |#1| (-27)))) (-1915 (((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|))) 73 (|has| |#1| (-27))) (((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|)) 17))) +(((-631 |#1| |#2|) (-10 -7 (-15 -1915 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1915 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)))) (-15 -3555 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|))))) |%noBranch|)) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -631)) +((-3555 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-399 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-399 *5))))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-399 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-399 *5))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-627 (-399 *6)))) (-5 *1 (-631 *5 *6)) (-5 *3 (-627 (-399 *6)))))) +(-10 -7 (-15 -1915 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1915 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)))) (-15 -3555 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|))))) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3543 (($ $) NIL (|has| |#1| (-355)))) (-3565 (($ $ $) 28 (|has| |#1| (-355)))) (-3577 (($ $ (-745)) 31 (|has| |#1| (-355)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#1| (-355)))) (-1916 (($ $ $) NIL (|has| |#1| (-355)))) (-1927 (($ $ $) NIL (|has| |#1| (-355)))) (-1885 (($ $ $) NIL (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-2266 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#1| (-355)))) (-1982 (($ $ $) NIL (|has| |#1| (-355)))) (-1865 (($ $ $) NIL (|has| |#1| (-355)))) (-1950 (($ $ $) NIL (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3171 ((|#1| $ |#1|) 24)) (-3589 (($ $ $) 33 (|has| |#1| (-355)))) (-2512 (((-745) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) 20) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#1| $ |#1| |#1|) 23)) (-1773 (($ $) NIL)) (-3107 (($) 21 T CONST)) (-3118 (($) 8 T CONST)) (-3296 (($) NIL)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-632 |#1| |#2|) (-630 |#1|) (-1016) (-1 |#1| |#1|)) (T -632)) +NIL +(-630 |#1|) +((-3565 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3577 ((|#2| |#2| (-745) (-1 |#1| |#1|)) 40)) (-3589 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-633 |#1| |#2|) (-10 -7 (-15 -3565 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3577 (|#2| |#2| (-745) (-1 |#1| |#1|))) (-15 -3589 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-355) (-630 |#1|)) (T -633)) +((-3589 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-355)) (-5 *1 (-633 *4 *2)) (-4 *2 (-630 *4)))) (-3577 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) (-5 *1 (-633 *5 *2)) (-4 *2 (-630 *5)))) (-3565 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-355)) (-5 *1 (-633 *4 *2)) (-4 *2 (-630 *4))))) +(-10 -7 (-15 -3565 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3577 (|#2| |#2| (-745) (-1 |#1| |#1|))) (-15 -3589 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2818 (($ $ $) 9))) +(((-634 |#1|) (-10 -8 (-15 -2818 (|#1| |#1| |#1|))) (-635)) (T -634)) +NIL +(-10 -8 (-15 -2818 (|#1| |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-1258 (($ $) 10)) (-2818 (($ $ $) 8)) (-2214 (((-112) $ $) 6)) (-2809 (($ $ $) 9))) +(((-635) (-138)) (T -635)) +((-1258 (*1 *1 *1) (-4 *1 (-635))) (-2809 (*1 *1 *1 *1) (-4 *1 (-635))) (-2818 (*1 *1 *1 *1) (-4 *1 (-635)))) +(-13 (-101) (-10 -8 (-15 -1258 ($ $)) (-15 -2809 ($ $ $)) (-15 -2818 ($ $ $)))) +(((-101) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 15)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2470 ((|#1| $) 21)) (-1795 (($ $ $) NIL (|has| |#1| (-765)))) (-3091 (($ $ $) NIL (|has| |#1| (-765)))) (-2546 (((-1118) $) 46)) (-3932 (((-1082) $) NIL)) (-2480 ((|#3| $) 22)) (-3743 (((-832) $) 42)) (-3107 (($) 10 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2214 (((-112) $ $) 20)) (-2252 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2234 (((-112) $ $) 24 (|has| |#1| (-765)))) (-2309 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2299 (($ $) 17) (($ $ $) NIL)) (-2290 (($ $ $) 27)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-636 |#1| |#2| |#3|) (-13 (-692 |#2|) (-10 -8 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) (-15 -2309 ($ $ |#3|)) (-15 -2309 ($ |#1| |#3|)) (-15 -2470 (|#1| $)) (-15 -2480 (|#3| $)))) (-692 |#2|) (-169) (|SubsetCategory| (-701) |#2|)) (T -636)) +((-2309 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) (-2309 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-692 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-692 *3)) (-5 *1 (-636 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-701) *3)))) (-2480 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4))))) +(-13 (-692 |#2|) (-10 -8 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) (-15 -2309 ($ $ |#3|)) (-15 -2309 ($ |#1| |#3|)) (-15 -2470 (|#1| $)) (-15 -2480 (|#3| $)))) +((-3601 (((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)) 33))) +(((-637 |#1|) (-10 -7 (-15 -3601 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)))) (-878)) (T -637)) +((-3601 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *4))) (-5 *3 (-1131 *4)) (-4 *4 (-878)) (-5 *1 (-637 *4))))) +(-10 -7 (-15 -3601 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3065 (((-619 |#1|) $) 82)) (-2502 (($ $ (-745)) 90)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2448 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 48)) (-2441 (((-3 (-646 |#1|) "failed") $) NIL)) (-2375 (((-646 |#1|) $) NIL)) (-1872 (($ $) 89)) (-2333 (((-745) $) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-646 |#1|) |#2|) 68)) (-2425 (($ $) 86)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2459 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 47)) (-3176 (((-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2185 (((-646 |#1|) $) NIL)) (-2197 ((|#2| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2460 (($ $ |#1| $) 30) (($ $ (-619 |#1|) (-619 $)) 32)) (-2512 (((-745) $) 88)) (-3754 (($ $ $) 20) (($ (-646 |#1|) (-646 |#1|)) 77) (($ (-646 |#1|) $) 75) (($ $ (-646 |#1|)) 76)) (-3743 (((-832) $) NIL) (($ |#1|) 74) (((-1233 |#1| |#2|) $) 58) (((-1242 |#1| |#2|) $) 41) (($ (-646 |#1|)) 25)) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-646 |#1|)) NIL)) (-1489 ((|#2| (-1242 |#1| |#2|) $) 43)) (-3107 (($) 23 T CONST)) (-3623 (((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2493 (((-3 $ "failed") (-1233 |#1| |#2|)) 60)) (-3011 (($ (-646 |#1|)) 14)) (-2214 (((-112) $ $) 44)) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) 66) (($ $ $) NIL)) (-2290 (($ $ $) 29)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-646 |#1|)) NIL))) +(((-638 |#1| |#2|) (-13 (-366 |#1| |#2|) (-374 |#2| (-646 |#1|)) (-10 -8 (-15 -2493 ((-3 $ "failed") (-1233 |#1| |#2|))) (-15 -3754 ($ (-646 |#1|) (-646 |#1|))) (-15 -3754 ($ (-646 |#1|) $)) (-15 -3754 ($ $ (-646 |#1|))))) (-821) (-169)) (T -638)) +((-2493 (*1 *1 *2) (|partial| -12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *1 (-638 *3 *4)))) (-3754 (*1 *1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))) (-3754 (*1 *1 *2 *1) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))) (-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169))))) +(-13 (-366 |#1| |#2|) (-374 |#2| (-646 |#1|)) (-10 -8 (-15 -2493 ((-3 $ "failed") (-1233 |#1| |#2|))) (-15 -3754 ($ (-646 |#1|) (-646 |#1|))) (-15 -3754 ($ (-646 |#1|) $)) (-15 -3754 ($ $ (-646 |#1|))))) +((-3001 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-2980 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2657 (($ (-1 (-112) |#2|) $) 28)) (-3499 (($ $) 56)) (-2969 (($ $) 64)) (-1636 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2061 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2621 (((-548) |#2| $ (-548)) 61) (((-548) |#2| $) NIL) (((-548) (-1 (-112) |#2|) $) 47)) (-3550 (($ (-745) |#2|) 54)) (-2965 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-2913 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2540 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3309 (($ |#2|) 15)) (-2539 (($ $ $ (-548)) 36) (($ |#2| $ (-548)) 34)) (-4030 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-2668 (($ $ (-1185 (-548))) 44) (($ $ (-548)) 38)) (-2990 (($ $ $ (-548)) 60)) (-2113 (($ $) 58)) (-2234 (((-112) $ $) 66))) +(((-639 |#1| |#2|) (-10 -8 (-15 -3309 (|#1| |#2|)) (-15 -2668 (|#1| |#1| (-548))) (-15 -2668 (|#1| |#1| (-1185 (-548)))) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1| (-548))) (-15 -2539 (|#1| |#1| |#1| (-548))) (-15 -2965 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2965 (|#1| |#1| |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2913 (|#1| |#1| |#1|)) (-15 -3001 ((-112) |#1|)) (-15 -2990 (|#1| |#1| |#1| (-548))) (-15 -3499 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3550 (|#1| (-745) |#2|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2113 (|#1| |#1|))) (-640 |#2|) (-1172)) (T -639)) +NIL +(-10 -8 (-15 -3309 (|#1| |#2|)) (-15 -2668 (|#1| |#1| (-548))) (-15 -2668 (|#1| |#1| (-1185 (-548)))) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1| (-548))) (-15 -2539 (|#1| |#1| |#1| (-548))) (-15 -2965 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2965 (|#1| |#1| |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2913 (|#1| |#1| |#1|)) (-15 -3001 ((-112) |#1|)) (-15 -2990 (|#1| |#1| |#1| (-548))) (-15 -3499 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3550 (|#1| (-745) |#2|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2113 (|#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1988 ((|#1| $) 65)) (-1272 (($ $) 67)) (-4149 (((-1223) $ (-548) (-548)) 97 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 52 (|has| $ (-6 -4328)))) (-3001 (((-112) $) 142 (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2980 (($ $) 146 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4328)))) (-2490 (($ $) 141 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 56 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) 54 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 58 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4328))) (($ $ "rest" $) 55 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 117 (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) 86 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) 129)) (-1415 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4327)))) (-1975 ((|#1| $) 66)) (-3030 (($) 7 T CONST)) (-3499 (($ $) 144 (|has| $ (-6 -4328)))) (-2796 (($ $) 134)) (-3465 (($ $) 73) (($ $ (-745)) 71)) (-2969 (($ $) 131 (|has| |#1| (-1063)))) (-3484 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 130 (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) 125)) (-3699 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4327))) (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3971 ((|#1| $ (-548) |#1|) 85 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 87)) (-3700 (((-112) $) 83)) (-2621 (((-548) |#1| $ (-548)) 139 (|has| |#1| (-1063))) (((-548) |#1| $) 138 (|has| |#1| (-1063))) (((-548) (-1 (-112) |#1|) $) 137)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) 108)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 95 (|has| (-548) (-821)))) (-1795 (($ $ $) 147 (|has| |#1| (-821)))) (-2965 (($ $ $) 132 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-2913 (($ $ $) 140 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 94 (|has| (-548) (-821)))) (-3091 (($ $ $) 148 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3309 (($ |#1|) 122)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 70) (($ $ (-745)) 68)) (-2539 (($ $ $ (-548)) 127) (($ |#1| $ (-548)) 126)) (-2387 (($ $ $ (-548)) 116) (($ |#1| $ (-548)) 115)) (-4201 (((-619 (-548)) $) 92)) (-4212 (((-112) (-548) $) 91)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 76) (($ $ (-745)) 74)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4159 (($ $ |#1|) 96 (|has| $ (-6 -4328)))) (-3712 (((-112) $) 84)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 90)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-548))) 112) ((|#1| $ (-548)) 89) ((|#1| $ (-548) |#1|) 88)) (-4234 (((-548) $ $) 44)) (-2668 (($ $ (-1185 (-548))) 124) (($ $ (-548)) 123)) (-2008 (($ $ (-1185 (-548))) 114) (($ $ (-548)) 113)) (-2740 (((-112) $) 46)) (-3672 (($ $) 62)) (-3648 (($ $) 59 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 63)) (-3693 (($ $) 64)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 143 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 98 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 107)) (-3659 (($ $ $) 61) (($ $ |#1|) 60)) (-1831 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 150 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 151 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 149 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 152 (|has| |#1| (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-640 |#1|) (-138) (-1172)) (T -640)) +((-3309 (*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1172))))) +(-13 (-1109 |t#1|) (-365 |t#1|) (-274 |t#1|) (-10 -8 (-15 -3309 ($ |t#1|)))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-274 |#1|) . T) ((-365 |#1|) . T) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-979 |#1|) . T) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1109 |#1|) . T) ((-1172) . T) ((-1206 |#1|) . T)) +((-3408 (((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|))) 22) (((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)) 14)) (-2103 (((-745) (-663 |#1|) (-1218 |#1|)) 30)) (-2192 (((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|)) 24)) (-3611 (((-112) (-663 |#1|) (-1218 |#1|)) 27))) +(((-641 |#1|) (-10 -7 (-15 -3408 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|))) (-15 -3408 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|))) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|)))) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|)))) (-15 -2192 ((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|))) (-15 -3611 ((-112) (-663 |#1|) (-1218 |#1|))) (-15 -2103 ((-745) (-663 |#1|) (-1218 |#1|)))) (-355)) (T -641)) +((-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-355)) (-5 *2 (-745)) (-5 *1 (-641 *5)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-355)) (-5 *2 (-112)) (-5 *1 (-641 *5)))) (-2192 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1218 *4)) (-5 *3 (-663 *4)) (-4 *4 (-355)) (-5 *1 (-641 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-355)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -2877 (-619 (-1218 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-4 *5 (-355)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -2877 (-619 (-1218 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-355)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -2877 (-619 (-1218 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1218 *5)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -2877 (-619 (-1218 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1218 *5))))) +(-10 -7 (-15 -3408 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|))) (-15 -3408 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|))) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|)))) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|)))) (-15 -2192 ((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|))) (-15 -3611 ((-112) (-663 |#1|) (-1218 |#1|))) (-15 -2103 ((-745) (-663 |#1|) (-1218 |#1|)))) +((-3408 (((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|)))) |#4| (-619 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|) 45)) (-2103 (((-745) |#4| |#3|) 17)) (-2192 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3611 (((-112) |#4| |#3|) 13))) +(((-642 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3408 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|)) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|)))) |#4| (-619 |#3|))) (-15 -2192 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3611 ((-112) |#4| |#3|)) (-15 -2103 ((-745) |#4| |#3|))) (-355) (-13 (-365 |#1|) (-10 -7 (-6 -4328))) (-13 (-365 |#1|) (-10 -7 (-6 -4328))) (-661 |#1| |#2| |#3|)) (T -642)) +((-2103 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-745)) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-3611 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-112)) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-2192 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-355)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4328)))) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328)))) (-5 *1 (-642 *4 *5 *2 *3)) (-4 *3 (-661 *4 *5 *2)))) (-3408 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-619 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2877 (-619 *7))))) (-5 *1 (-642 *5 *6 *7 *3)) (-5 *4 (-619 *7)) (-4 *3 (-661 *5 *6 *7)))) (-3408 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) +(-10 -7 (-15 -3408 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|)) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|)))) |#4| (-619 |#3|))) (-15 -2192 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3611 ((-112) |#4| |#3|)) (-15 -2103 ((-745) |#4| |#3|))) +((-3621 (((-2 (|:| |particular| (-3 (-1218 (-399 |#4|)) "failed")) (|:| -2877 (-619 (-1218 (-399 |#4|))))) (-619 |#4|) (-619 |#3|)) 45))) +(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3621 ((-2 (|:| |particular| (-3 (-1218 (-399 |#4|)) "failed")) (|:| -2877 (-619 (-1218 (-399 |#4|))))) (-619 |#4|) (-619 |#3|)))) (-540) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -643)) +((-3621 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *7)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 (-399 *8)) "failed")) (|:| -2877 (-619 (-1218 (-399 *8)))))) (-5 *1 (-643 *5 *6 *7 *8))))) +(-10 -7 (-15 -3621 ((-2 (|:| |particular| (-3 (-1218 (-399 |#4|)) "failed")) (|:| -2877 (-619 (-1218 (-399 |#4|))))) (-619 |#4|) (-619 |#3|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (|has| |#2| (-540)))) (-2707 ((|#2| $) NIL)) (-3785 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 |#2|))) NIL) (((-1218 (-663 |#2|)) (-1218 $)) NIL)) (-3808 (((-112) $) NIL)) (-2968 (((-1218 $)) 37)) (-2028 (((-112) $ (-745)) NIL)) (-2114 (($ |#2|) NIL)) (-3030 (($) NIL T CONST)) (-3691 (($ $) NIL (|has| |#2| (-299)))) (-3717 (((-233 |#1| |#2|) $ (-548)) NIL)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (|has| |#2| (-540)))) (-3991 (((-3 $ "failed")) NIL (|has| |#2| (-540)))) (-2413 (((-663 |#2|)) NIL) (((-663 |#2|) (-1218 $)) NIL)) (-2947 ((|#2| $) NIL)) (-2391 (((-663 |#2|) $) NIL) (((-663 |#2|) $ (-1218 $)) NIL)) (-3399 (((-3 $ "failed") $) NIL (|has| |#2| (-540)))) (-4307 (((-1131 (-921 |#2|))) NIL (|has| |#2| (-355)))) (-2246 (($ $ (-890)) NIL)) (-2925 ((|#2| $) NIL)) (-2741 (((-1131 |#2|) $) NIL (|has| |#2| (-540)))) (-2432 ((|#2|) NIL) ((|#2| (-1218 $)) NIL)) (-2903 (((-1131 |#2|) $) NIL)) (-2842 (((-112)) NIL)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 |#2| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) ((|#2| $) NIL)) (-2455 (($ (-1218 |#2|)) NIL) (($ (-1218 |#2|) (-1218 $)) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2103 (((-745) $) NIL (|has| |#2| (-540))) (((-890)) 38)) (-3899 ((|#2| $ (-548) (-548)) NIL)) (-2815 (((-112)) NIL)) (-2468 (($ $ (-890)) NIL)) (-1934 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL)) (-3681 (((-745) $) NIL (|has| |#2| (-540)))) (-3669 (((-619 (-233 |#1| |#2|)) $) NIL (|has| |#2| (-540)))) (-4205 (((-745) $) NIL)) (-2782 (((-112)) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#2| $) NIL (|has| |#2| (-6 (-4329 "*"))))) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#2|))) NIL)) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2401 (((-619 (-619 |#2|)) $) NIL)) (-2766 (((-112)) NIL)) (-2797 (((-112)) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (|has| |#2| (-540)))) (-4003 (((-3 $ "failed")) NIL (|has| |#2| (-540)))) (-2422 (((-663 |#2|)) NIL) (((-663 |#2|) (-1218 $)) NIL)) (-2958 ((|#2| $) NIL)) (-2402 (((-663 |#2|) $) NIL) (((-663 |#2|) $ (-1218 $)) NIL)) (-3411 (((-3 $ "failed") $) NIL (|has| |#2| (-540)))) (-1298 (((-1131 (-921 |#2|))) NIL (|has| |#2| (-355)))) (-3424 (($ $ (-890)) NIL)) (-2936 ((|#2| $) NIL)) (-2750 (((-1131 |#2|) $) NIL (|has| |#2| (-540)))) (-2444 ((|#2|) NIL) ((|#2| (-1218 $)) NIL)) (-2914 (((-1131 |#2|) $) NIL)) (-2851 (((-112)) NIL)) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) NIL)) (-2790 (((-112)) NIL)) (-2806 (((-112)) NIL)) (-2369 (((-3 $ "failed") $) NIL (|has| |#2| (-355)))) (-3932 (((-1082) $) NIL)) (-2832 (((-112)) NIL)) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540)))) (-3537 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) (-548) |#2|) NIL) ((|#2| $ (-548) (-548)) 22) ((|#2| $ (-548)) NIL)) (-4050 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2077 ((|#2| $) NIL)) (-2102 (($ (-619 |#2|)) NIL)) (-3797 (((-112) $) NIL)) (-2090 (((-233 |#1| |#2|) $) NIL)) (-2068 ((|#2| $) NIL (|has| |#2| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-2447 (((-663 |#2|) (-1218 $)) NIL) (((-1218 |#2|) $) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $ (-1218 $)) 25)) (-2591 (($ (-1218 |#2|)) NIL) (((-1218 |#2|) $) NIL)) (-4218 (((-619 (-921 |#2|))) NIL) (((-619 (-921 |#2|)) (-1218 $)) NIL)) (-3652 (($ $ $) NIL)) (-2891 (((-112)) NIL)) (-3704 (((-233 |#1| |#2|) $ (-548)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#2| (-1007 (-399 (-548))))) (($ |#2|) NIL) (((-663 |#2|) $) NIL)) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) 36)) (-2759 (((-619 (-1218 |#2|))) NIL (|has| |#2| (-540)))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) NIL)) (-3398 (($ (-663 |#2|) $) NIL)) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-3639 (($ $ $) NIL)) (-2881 (((-112)) NIL)) (-2859 (((-112)) NIL)) (-2823 (((-112)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#2| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) NIL) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-644 |#1| |#2|) (-13 (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-592 (-663 |#2|)) (-409 |#2|)) (-890) (-169)) (T -644)) +NIL +(-13 (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-592 (-663 |#2|)) (-409 |#2|)) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2584 (((-619 (-1140)) $) 10)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-645) (-13 (-1047) (-10 -8 (-15 -2584 ((-619 (-1140)) $))))) (T -645)) +((-2584 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-645))))) +(-13 (-1047) (-10 -8 (-15 -2584 ((-619 (-1140)) $)))) +((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) NIL)) (-3676 (($ $) 52)) (-3613 (((-112) $) NIL)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3656 (((-3 $ "failed") (-793 |#1|)) 23)) (-3680 (((-112) (-793 |#1|)) 15)) (-3668 (($ (-793 |#1|)) 24)) (-3281 (((-112) $ $) 30)) (-3198 (((-890) $) 37)) (-3663 (($ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1915 (((-619 $) (-793 |#1|)) 17)) (-3743 (((-832) $) 43) (($ |#1|) 34) (((-793 |#1|) $) 39) (((-651 |#1|) $) 44)) (-3645 (((-58 (-619 $)) (-619 |#1|) (-890)) 57)) (-3632 (((-619 $) (-619 |#1|) (-890)) 60)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 53)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 38))) +(((-646 |#1|) (-13 (-821) (-1007 |#1|) (-10 -8 (-15 -3613 ((-112) $)) (-15 -3663 ($ $)) (-15 -3676 ($ $)) (-15 -3198 ((-890) $)) (-15 -3281 ((-112) $ $)) (-15 -3743 ((-793 |#1|) $)) (-15 -3743 ((-651 |#1|) $)) (-15 -1915 ((-619 $) (-793 |#1|))) (-15 -3680 ((-112) (-793 |#1|))) (-15 -3668 ($ (-793 |#1|))) (-15 -3656 ((-3 $ "failed") (-793 |#1|))) (-15 -3065 ((-619 |#1|) $)) (-15 -3645 ((-58 (-619 $)) (-619 |#1|) (-890))) (-15 -3632 ((-619 $) (-619 |#1|) (-890))))) (-821)) (T -646)) +((-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) (-3676 (*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-651 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-646 *4))) (-5 *1 (-646 *4)))) (-3680 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-112)) (-5 *1 (-646 *4)))) (-3668 (*1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))) (-3656 (*1 *1 *2) (|partial| -12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) (-5 *2 (-58 (-619 (-646 *5)))) (-5 *1 (-646 *5)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) (-5 *2 (-619 (-646 *5))) (-5 *1 (-646 *5))))) +(-13 (-821) (-1007 |#1|) (-10 -8 (-15 -3613 ((-112) $)) (-15 -3663 ($ $)) (-15 -3676 ($ $)) (-15 -3198 ((-890) $)) (-15 -3281 ((-112) $ $)) (-15 -3743 ((-793 |#1|) $)) (-15 -3743 ((-651 |#1|) $)) (-15 -1915 ((-619 $) (-793 |#1|))) (-15 -3680 ((-112) (-793 |#1|))) (-15 -3668 ($ (-793 |#1|))) (-15 -3656 ((-3 $ "failed") (-793 |#1|))) (-15 -3065 ((-619 |#1|) $)) (-15 -3645 ((-58 (-619 $)) (-619 |#1|) (-890))) (-15 -3632 ((-619 $) (-619 |#1|) (-890))))) +((-4056 ((|#2| $) 76)) (-1272 (($ $) 96)) (-2028 (((-112) $ (-745)) 26)) (-3465 (($ $) 85) (($ $ (-745)) 88)) (-3700 (((-112) $) 97)) (-4245 (((-619 $) $) 72)) (-4213 (((-112) $ $) 71)) (-4282 (((-112) $ (-745)) 24)) (-4171 (((-548) $) 46)) (-4181 (((-548) $) 45)) (-4248 (((-112) $ (-745)) 22)) (-3010 (((-112) $) 74)) (-3724 ((|#2| $) 89) (($ $ (-745)) 92)) (-2387 (($ $ $ (-548)) 62) (($ |#2| $ (-548)) 61)) (-4201 (((-619 (-548)) $) 44)) (-4212 (((-112) (-548) $) 42)) (-3453 ((|#2| $) NIL) (($ $ (-745)) 84)) (-1656 (($ $ (-548)) 100)) (-3712 (((-112) $) 99)) (-3537 (((-112) (-1 (-112) |#2|) $) 32)) (-4223 (((-619 |#2|) $) 33)) (-3171 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1185 (-548))) 58) ((|#2| $ (-548)) 40) ((|#2| $ (-548) |#2|) 41)) (-4234 (((-548) $ $) 70)) (-2008 (($ $ (-1185 (-548))) 57) (($ $ (-548)) 51)) (-2740 (((-112) $) 66)) (-3672 (($ $) 81)) (-3683 (((-745) $) 80)) (-3693 (($ $) 79)) (-3754 (($ (-619 |#2|)) 37)) (-3330 (($ $) 101)) (-2956 (((-619 $) $) 69)) (-4224 (((-112) $ $) 68)) (-3548 (((-112) (-1 (-112) |#2|) $) 31)) (-2214 (((-112) $ $) 18)) (-3643 (((-745) $) 29))) +(((-647 |#1| |#2|) (-10 -8 (-15 -3330 (|#1| |#1|)) (-15 -1656 (|#1| |#1| (-548))) (-15 -3700 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -4223 ((-619 |#2|) |#1|)) (-15 -4212 ((-112) (-548) |#1|)) (-15 -4201 ((-619 (-548)) |#1|)) (-15 -4181 ((-548) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -3672 (|#1| |#1|)) (-15 -3683 ((-745) |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3724 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "last")) (-15 -3724 (|#2| |#1|)) (-15 -3465 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| "rest")) (-15 -3465 (|#1| |#1|)) (-15 -3453 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "first")) (-15 -3453 (|#2| |#1|)) (-15 -4213 ((-112) |#1| |#1|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -4234 ((-548) |#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -4056 (|#2| |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745)))) (-648 |#2|) (-1172)) (T -647)) +NIL +(-10 -8 (-15 -3330 (|#1| |#1|)) (-15 -1656 (|#1| |#1| (-548))) (-15 -3700 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -4223 ((-619 |#2|) |#1|)) (-15 -4212 ((-112) (-548) |#1|)) (-15 -4201 ((-619 (-548)) |#1|)) (-15 -4181 ((-548) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -3672 (|#1| |#1|)) (-15 -3683 ((-745) |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3724 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "last")) (-15 -3724 (|#2| |#1|)) (-15 -3465 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| "rest")) (-15 -3465 (|#1| |#1|)) (-15 -3453 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "first")) (-15 -3453 (|#2| |#1|)) (-15 -4213 ((-112) |#1| |#1|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -4234 ((-548) |#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -4056 (|#2| |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745)))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1988 ((|#1| $) 65)) (-1272 (($ $) 67)) (-4149 (((-1223) $ (-548) (-548)) 97 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 52 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 56 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) 54 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 58 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4328))) (($ $ "rest" $) 55 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 117 (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) 86 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 102)) (-1975 ((|#1| $) 66)) (-3030 (($) 7 T CONST)) (-3703 (($ $) 124)) (-3465 (($ $) 73) (($ $ (-745)) 71)) (-3484 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 103)) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3971 ((|#1| $ (-548) |#1|) 85 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 87)) (-3700 (((-112) $) 83)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3690 (((-745) $) 123)) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) 108)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 95 (|has| (-548) (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 94 (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-3728 (($ $) 126)) (-3741 (((-112) $) 127)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 70) (($ $ (-745)) 68)) (-2387 (($ $ $ (-548)) 116) (($ |#1| $ (-548)) 115)) (-4201 (((-619 (-548)) $) 92)) (-4212 (((-112) (-548) $) 91)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3716 ((|#1| $) 125)) (-3453 ((|#1| $) 76) (($ $ (-745)) 74)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4159 (($ $ |#1|) 96 (|has| $ (-6 -4328)))) (-1656 (($ $ (-548)) 122)) (-3712 (((-112) $) 84)) (-3752 (((-112) $) 128)) (-3763 (((-112) $) 129)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 90)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-548))) 112) ((|#1| $ (-548)) 89) ((|#1| $ (-548) |#1|) 88)) (-4234 (((-548) $ $) 44)) (-2008 (($ $ (-1185 (-548))) 114) (($ $ (-548)) 113)) (-2740 (((-112) $) 46)) (-3672 (($ $) 62)) (-3648 (($ $) 59 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 63)) (-3693 (($ $) 64)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 98 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 107)) (-3659 (($ $ $) 61 (|has| $ (-6 -4328))) (($ $ |#1|) 60 (|has| $ (-6 -4328)))) (-1831 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3330 (($ $) 121)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-648 |#1|) (-138) (-1172)) (T -648)) +((-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3728 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-3330 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) +(-13 (-1109 |t#1|) (-10 -8 (-15 -3699 ($ (-1 (-112) |t#1|) $)) (-15 -1415 ($ (-1 (-112) |t#1|) $)) (-15 -3763 ((-112) $)) (-15 -3752 ((-112) $)) (-15 -3741 ((-112) $)) (-15 -3728 ($ $)) (-15 -3716 (|t#1| $)) (-15 -3703 ($ $)) (-15 -3690 ((-745) $)) (-15 -1656 ($ $ (-548))) (-15 -3330 ($ $)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1109 |#1|) . T) ((-1172) . T) ((-1206 |#1|) . T)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3820 (($ (-745) (-745) (-745)) 33 (|has| |#1| (-1016)))) (-2028 (((-112) $ (-745)) NIL)) (-3796 ((|#1| $ (-745) (-745) (-745) |#1|) 27)) (-3030 (($) NIL T CONST)) (-3216 (($ $ $) 37 (|has| |#1| (-1016)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3773 (((-1218 (-745)) $) 9)) (-3784 (($ (-1135) $ $) 22)) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3807 (($ (-745)) 35 (|has| |#1| (-1016)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-745) (-745) (-745)) 25)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3754 (($ (-619 (-619 (-619 |#1|)))) 44)) (-3743 (($ (-927 (-927 (-927 |#1|)))) 15) (((-927 (-927 (-927 |#1|))) $) 12) (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-649 |#1|) (-13 (-480 |#1|) (-10 -8 (IF (|has| |#1| (-1016)) (PROGN (-15 -3820 ($ (-745) (-745) (-745))) (-15 -3807 ($ (-745))) (-15 -3216 ($ $ $))) |%noBranch|) (-15 -3754 ($ (-619 (-619 (-619 |#1|))))) (-15 -3171 (|#1| $ (-745) (-745) (-745))) (-15 -3796 (|#1| $ (-745) (-745) (-745) |#1|)) (-15 -3743 ($ (-927 (-927 (-927 |#1|))))) (-15 -3743 ((-927 (-927 (-927 |#1|))) $)) (-15 -3784 ($ (-1135) $ $)) (-15 -3773 ((-1218 (-745)) $)))) (-1063)) (T -649)) +((-3820 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) (-4 *3 (-1063)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) (-4 *3 (-1063)))) (-3216 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1016)) (-4 *2 (-1063)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-619 *3)))) (-4 *3 (-1063)) (-5 *1 (-649 *3)))) (-3171 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) (-3796 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-4 *3 (-1063)) (-5 *1 (-649 *3)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-5 *1 (-649 *3)) (-4 *3 (-1063)))) (-3784 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-649 *3)) (-4 *3 (-1063)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-1218 (-745))) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) +(-13 (-480 |#1|) (-10 -8 (IF (|has| |#1| (-1016)) (PROGN (-15 -3820 ($ (-745) (-745) (-745))) (-15 -3807 ($ (-745))) (-15 -3216 ($ $ $))) |%noBranch|) (-15 -3754 ($ (-619 (-619 (-619 |#1|))))) (-15 -3171 (|#1| $ (-745) (-745) (-745))) (-15 -3796 (|#1| $ (-745) (-745) (-745) |#1|)) (-15 -3743 ($ (-927 (-927 (-927 |#1|))))) (-15 -3743 ((-927 (-927 (-927 |#1|))) $)) (-15 -3784 ($ (-1135) $ $)) (-15 -3773 ((-1218 (-745)) $)))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3218 (((-619 (-496)) $) 11)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 13)) (-2214 (((-112) $ $) NIL))) +(((-650) (-13 (-1047) (-10 -8 (-15 -3218 ((-619 (-496)) $)) (-15 -2286 ((-1140) $))))) (T -650)) +((-3218 (*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-650)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-650))))) +(-13 (-1047) (-10 -8 (-15 -3218 ((-619 (-496)) $)) (-15 -2286 ((-1140) $)))) +((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) 14)) (-3676 (($ $) 18)) (-3613 (((-112) $) 19)) (-2441 (((-3 |#1| "failed") $) 22)) (-2375 ((|#1| $) 20)) (-3465 (($ $) 36)) (-2425 (($ $) 24)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3281 (((-112) $ $) 42)) (-3198 (((-890) $) 38)) (-3663 (($ $) 17)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 ((|#1| $) 35)) (-3743 (((-832) $) 31) (($ |#1|) 23) (((-793 |#1|) $) 27)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 12)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 40)) (* (($ $ $) 34))) +(((-651 |#1|) (-13 (-821) (-1007 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3743 ((-793 |#1|) $)) (-15 -3453 (|#1| $)) (-15 -3663 ($ $)) (-15 -3198 ((-890) $)) (-15 -3281 ((-112) $ $)) (-15 -2425 ($ $)) (-15 -3465 ($ $)) (-15 -3613 ((-112) $)) (-15 -3676 ($ $)) (-15 -3065 ((-619 |#1|) $)))) (-821)) (T -651)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3453 (*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3465 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3676 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821))))) +(-13 (-821) (-1007 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3743 ((-793 |#1|) $)) (-15 -3453 (|#1| $)) (-15 -3663 ($ $)) (-15 -3198 ((-890) $)) (-15 -3281 ((-112) $ $)) (-15 -2425 ($ $)) (-15 -3465 ($ $)) (-15 -3613 ((-112) $)) (-15 -3676 ($ $)) (-15 -3065 ((-619 |#1|) $)))) +((-3874 ((|#1| (-1 |#1| (-745) |#1|) (-745) |#1|) 11)) (-2392 ((|#1| (-1 |#1| |#1|) (-745) |#1|) 9))) +(((-652 |#1|) (-10 -7 (-15 -2392 (|#1| (-1 |#1| |#1|) (-745) |#1|)) (-15 -3874 (|#1| (-1 |#1| (-745) |#1|) (-745) |#1|))) (-1063)) (T -652)) +((-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-745) *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2)))) (-2392 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2))))) +(-10 -7 (-15 -2392 (|#1| (-1 |#1| |#1|) (-745) |#1|)) (-15 -3874 (|#1| (-1 |#1| (-745) |#1|) (-745) |#1|))) +((-3359 ((|#2| |#1| |#2|) 9)) (-3344 ((|#1| |#1| |#2|) 8))) +(((-653 |#1| |#2|) (-10 -7 (-15 -3344 (|#1| |#1| |#2|)) (-15 -3359 (|#2| |#1| |#2|))) (-1063) (-1063)) (T -653)) +((-3359 (*1 *2 *3 *2) (-12 (-5 *1 (-653 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3344 (*1 *2 *2 *3) (-12 (-5 *1 (-653 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(-10 -7 (-15 -3344 (|#1| |#1| |#2|)) (-15 -3359 (|#2| |#1| |#2|))) +((-3586 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-654 |#1| |#2| |#3|) (-10 -7 (-15 -3586 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1063) (-1063) (-1063)) (T -654)) +((-3586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)) (-5 *1 (-654 *5 *6 *2))))) +(-10 -7 (-15 -3586 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3730 (((-112) $ $) NIL)) (-1949 (((-1171) $) 20)) (-3041 (((-619 (-1171)) $) 18)) (-3834 (($ (-619 (-1171)) (-1171)) 13)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL) (((-1171) $) 21) (($ (-1080)) 10)) (-2214 (((-112) $ $) NIL))) +(((-655) (-13 (-1047) (-592 (-1171)) (-10 -8 (-15 -3743 ($ (-1080))) (-15 -3834 ($ (-619 (-1171)) (-1171))) (-15 -3041 ((-619 (-1171)) $)) (-15 -1949 ((-1171) $))))) (T -655)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-655)))) (-3834 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1171))) (-5 *3 (-1171)) (-5 *1 (-655)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-655)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-655))))) +(-13 (-1047) (-592 (-1171)) (-10 -8 (-15 -3743 ($ (-1080))) (-15 -3834 ($ (-619 (-1171)) (-1171))) (-15 -3041 ((-619 (-1171)) $)) (-15 -1949 ((-1171) $)))) +((-3874 (((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)) 23)) (-3848 (((-1 |#1|) |#1|) 8)) (-3514 ((|#1| |#1|) 16)) (-3861 (((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-548)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3743 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-745)) 20))) +(((-656 |#1|) (-10 -7 (-15 -3848 ((-1 |#1|) |#1|)) (-15 -3743 ((-1 |#1|) |#1|)) (-15 -3861 (|#1| (-1 |#1| |#1|))) (-15 -3861 ((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-548))) (-15 -3514 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-745))) (-15 -3874 ((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)))) (-1063)) (T -656)) +((-3874 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-745) *3)) (-4 *3 (-1063)) (-5 *1 (-656 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *4 (-1063)) (-5 *1 (-656 *4)))) (-3514 (*1 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1063)))) (-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-619 *5) (-619 *5))) (-5 *4 (-548)) (-5 *2 (-619 *5)) (-5 *1 (-656 *5)) (-4 *5 (-1063)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-656 *2)) (-4 *2 (-1063)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063)))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063))))) +(-10 -7 (-15 -3848 ((-1 |#1|) |#1|)) (-15 -3743 ((-1 |#1|) |#1|)) (-15 -3861 (|#1| (-1 |#1| |#1|))) (-15 -3861 ((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-548))) (-15 -3514 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-745))) (-15 -3874 ((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)))) +((-3909 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3896 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2325 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3886 (((-1 |#2| |#1|) |#2|) 11))) +(((-657 |#1| |#2|) (-10 -7 (-15 -3886 ((-1 |#2| |#1|) |#2|)) (-15 -3896 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2325 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3909 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1063) (-1063)) (T -657)) +((-3909 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)) (-4 *4 (-1063)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-5 *2 (-1 *5)) (-5 *1 (-657 *4 *5)))) (-3886 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-657 *4 *3)) (-4 *4 (-1063)) (-4 *3 (-1063))))) +(-10 -7 (-15 -3886 ((-1 |#2| |#1|) |#2|)) (-15 -3896 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2325 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3909 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3973 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3919 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3931 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3946 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3961 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -3919 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3931 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3946 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3961 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3973 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1063) (-1063) (-1063)) (T -658)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-1 *7 *5)) (-5 *1 (-658 *5 *6 *7)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-658 *4 *5 *6)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *4 (-1063)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *5 (-1063)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *4 *5 *6)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1063)) (-4 *4 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *5 *4 *6))))) +(-10 -7 (-15 -3919 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3931 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3946 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3961 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3973 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2061 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2540 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-659 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2540 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2540 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2061 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1016) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|) (-1016) (-365 |#5|) (-365 |#5|) (-661 |#5| |#6| |#7|)) (T -659)) +((-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) (-5 *1 (-659 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-661 *5 *6 *7)) (-4 *10 (-661 *2 *8 *9)))) (-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8))))) +(-10 -7 (-15 -2540 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2540 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2061 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3320 (($ (-745) (-745)) 33)) (-4025 (($ $ $) 56)) (-3508 (($ |#3|) 52) (($ $) 53)) (-3785 (((-112) $) 28)) (-4015 (($ $ (-548) (-548)) 58)) (-4004 (($ $ (-548) (-548)) 59)) (-3992 (($ $ (-548) (-548) (-548) (-548)) 63)) (-4048 (($ $) 54)) (-3808 (((-112) $) 14)) (-3982 (($ $ (-548) (-548) $) 64)) (-2089 ((|#2| $ (-548) (-548) |#2|) NIL) (($ $ (-619 (-548)) (-619 (-548)) $) 62)) (-2114 (($ (-745) |#2|) 39)) (-3817 (($ (-619 (-619 |#2|))) 37)) (-2401 (((-619 (-619 |#2|)) $) 57)) (-4036 (($ $ $) 55)) (-1900 (((-3 $ "failed") $ |#2|) 91)) (-3171 ((|#2| $ (-548) (-548)) NIL) ((|#2| $ (-548) (-548) |#2|) NIL) (($ $ (-619 (-548)) (-619 (-548))) 61)) (-2102 (($ (-619 |#2|)) 40) (($ (-619 $)) 42)) (-3797 (((-112) $) 24)) (-3743 (($ |#4|) 47) (((-832) $) NIL)) (-3774 (((-112) $) 30)) (-2309 (($ $ |#2|) 93)) (-2299 (($ $ $) 68) (($ $) 71)) (-2290 (($ $ $) 66)) (** (($ $ (-745)) 80) (($ $ (-548)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-548) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-660 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -2309 (|#1| |#1| |#2|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3982 (|#1| |#1| (-548) (-548) |#1|)) (-15 -3992 (|#1| |#1| (-548) (-548) (-548) (-548))) (-15 -4004 (|#1| |#1| (-548) (-548))) (-15 -4015 (|#1| |#1| (-548) (-548))) (-15 -2089 (|#1| |#1| (-619 (-548)) (-619 (-548)) |#1|)) (-15 -3171 (|#1| |#1| (-619 (-548)) (-619 (-548)))) (-15 -2401 ((-619 (-619 |#2|)) |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -3508 (|#1| |#1|)) (-15 -3508 (|#1| |#3|)) (-15 -3743 (|#1| |#4|)) (-15 -2102 (|#1| (-619 |#1|))) (-15 -2102 (|#1| (-619 |#2|))) (-15 -2114 (|#1| (-745) |#2|)) (-15 -3817 (|#1| (-619 (-619 |#2|)))) (-15 -3320 (|#1| (-745) (-745))) (-15 -3774 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -3808 ((-112) |#1|)) (-15 -2089 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548)))) (-661 |#2| |#3| |#4|) (-1016) (-365 |#2|) (-365 |#2|)) (T -660)) +NIL +(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -2309 (|#1| |#1| |#2|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3982 (|#1| |#1| (-548) (-548) |#1|)) (-15 -3992 (|#1| |#1| (-548) (-548) (-548) (-548))) (-15 -4004 (|#1| |#1| (-548) (-548))) (-15 -4015 (|#1| |#1| (-548) (-548))) (-15 -2089 (|#1| |#1| (-619 (-548)) (-619 (-548)) |#1|)) (-15 -3171 (|#1| |#1| (-619 (-548)) (-619 (-548)))) (-15 -2401 ((-619 (-619 |#2|)) |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -3508 (|#1| |#1|)) (-15 -3508 (|#1| |#3|)) (-15 -3743 (|#1| |#4|)) (-15 -2102 (|#1| (-619 |#1|))) (-15 -2102 (|#1| (-619 |#2|))) (-15 -2114 (|#1| (-745) |#2|)) (-15 -3817 (|#1| (-619 (-619 |#2|)))) (-15 -3320 (|#1| (-745) (-745))) (-15 -3774 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -3808 ((-112) |#1|)) (-15 -2089 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548)))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3320 (($ (-745) (-745)) 97)) (-4025 (($ $ $) 87)) (-3508 (($ |#2|) 91) (($ $) 90)) (-3785 (((-112) $) 99)) (-4015 (($ $ (-548) (-548)) 83)) (-4004 (($ $ (-548) (-548)) 82)) (-3992 (($ $ (-548) (-548) (-548) (-548)) 81)) (-4048 (($ $) 89)) (-3808 (((-112) $) 101)) (-2028 (((-112) $ (-745)) 8)) (-3982 (($ $ (-548) (-548) $) 80)) (-2089 ((|#1| $ (-548) (-548) |#1|) 44) (($ $ (-619 (-548)) (-619 (-548)) $) 84)) (-4141 (($ $ (-548) |#2|) 42)) (-4131 (($ $ (-548) |#3|) 41)) (-2114 (($ (-745) |#1|) 95)) (-3030 (($) 7 T CONST)) (-3691 (($ $) 67 (|has| |#1| (-299)))) (-3717 ((|#2| $ (-548)) 46)) (-2103 (((-745) $) 66 (|has| |#1| (-540)))) (-3971 ((|#1| $ (-548) (-548) |#1|) 43)) (-3899 ((|#1| $ (-548) (-548)) 48)) (-1934 (((-619 |#1|) $) 30)) (-3681 (((-745) $) 65 (|has| |#1| (-540)))) (-3669 (((-619 |#3|) $) 64 (|has| |#1| (-540)))) (-4205 (((-745) $) 51)) (-3550 (($ (-745) (-745) |#1|) 57)) (-4216 (((-745) $) 50)) (-4282 (((-112) $ (-745)) 9)) (-2057 ((|#1| $) 62 (|has| |#1| (-6 (-4329 "*"))))) (-3764 (((-548) $) 55)) (-3742 (((-548) $) 53)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3753 (((-548) $) 54)) (-3729 (((-548) $) 52)) (-3817 (($ (-619 (-619 |#1|))) 96)) (-3960 (($ (-1 |#1| |#1|) $) 34)) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2401 (((-619 (-619 |#1|)) $) 86)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2369 (((-3 $ "failed") $) 61 (|has| |#1| (-355)))) (-4036 (($ $ $) 88)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) 56)) (-1900 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-540)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) (-548)) 49) ((|#1| $ (-548) (-548) |#1|) 47) (($ $ (-619 (-548)) (-619 (-548))) 85)) (-2102 (($ (-619 |#1|)) 94) (($ (-619 $)) 93)) (-3797 (((-112) $) 100)) (-2068 ((|#1| $) 63 (|has| |#1| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3704 ((|#3| $ (-548)) 45)) (-3743 (($ |#3|) 92) (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-3774 (((-112) $) 98)) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) 68 (|has| |#1| (-355)))) (-2299 (($ $ $) 78) (($ $) 77)) (-2290 (($ $ $) 79)) (** (($ $ (-745)) 70) (($ $ (-548)) 60 (|has| |#1| (-355)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-548) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-661 |#1| |#2| |#3|) (-138) (-1016) (-365 |t#1|) (-365 |t#1|)) (T -661)) +((-3808 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3320 (*1 *1 *2 *2) (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2114 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *2)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (-3508 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *2 *4)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (-3508 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4048 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4025 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-619 (-619 *3))))) (-3171 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-619 (-548))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2089 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-619 (-548))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4015 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4004 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3992 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3982 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2290 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-661 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-661 *3 *2 *4)) (-4 *3 (-1016)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-540)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-355)))) (-3691 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-299)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-745)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-745)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-619 *5)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) (-2369 (*1 *1 *1) (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-355)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-355))))) +(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -3808 ((-112) $)) (-15 -3797 ((-112) $)) (-15 -3785 ((-112) $)) (-15 -3774 ((-112) $)) (-15 -3320 ($ (-745) (-745))) (-15 -3817 ($ (-619 (-619 |t#1|)))) (-15 -2114 ($ (-745) |t#1|)) (-15 -2102 ($ (-619 |t#1|))) (-15 -2102 ($ (-619 $))) (-15 -3743 ($ |t#3|)) (-15 -3508 ($ |t#2|)) (-15 -3508 ($ $)) (-15 -4048 ($ $)) (-15 -4036 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2401 ((-619 (-619 |t#1|)) $)) (-15 -3171 ($ $ (-619 (-548)) (-619 (-548)))) (-15 -2089 ($ $ (-619 (-548)) (-619 (-548)) $)) (-15 -4015 ($ $ (-548) (-548))) (-15 -4004 ($ $ (-548) (-548))) (-15 -3992 ($ $ (-548) (-548) (-548) (-548))) (-15 -3982 ($ $ (-548) (-548) $)) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -2299 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-548) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-745))) (IF (|has| |t#1| (-540)) (-15 -1900 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-355)) (-15 -2309 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-299)) (-15 -3691 ($ $)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-15 -2103 ((-745) $)) (-15 -3681 ((-745) $)) (-15 -3669 ((-619 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4329 "*"))) (PROGN (-15 -2068 (|t#1| $)) (-15 -2057 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-355)) (PROGN (-15 -2369 ((-3 $ "failed") $)) (-15 ** ($ $ (-548)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-56 |#1| |#2| |#3|) . T) ((-1172) . T)) +((-3691 ((|#4| |#4|) 72 (|has| |#1| (-299)))) (-2103 (((-745) |#4|) 99 (|has| |#1| (-540)))) (-3681 (((-745) |#4|) 76 (|has| |#1| (-540)))) (-3669 (((-619 |#3|) |#4|) 83 (|has| |#1| (-540)))) (-3124 (((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|) 111 (|has| |#1| (-299)))) (-2057 ((|#1| |#4|) 35)) (-2807 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-540)))) (-2369 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-355)))) (-2798 ((|#4| |#4|) 68 (|has| |#1| (-540)))) (-4068 ((|#4| |#4| |#1| (-548) (-548)) 43)) (-4058 ((|#4| |#4| (-548) (-548)) 38)) (-4079 ((|#4| |#4| |#1| (-548) (-548)) 48)) (-2068 ((|#1| |#4|) 78)) (-1773 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-540))))) +(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2068 (|#1| |#4|)) (-15 -2057 (|#1| |#4|)) (-15 -4058 (|#4| |#4| (-548) (-548))) (-15 -4068 (|#4| |#4| |#1| (-548) (-548))) (-15 -4079 (|#4| |#4| |#1| (-548) (-548))) (IF (|has| |#1| (-540)) (PROGN (-15 -2103 ((-745) |#4|)) (-15 -3681 ((-745) |#4|)) (-15 -3669 ((-619 |#3|) |#4|)) (-15 -2798 (|#4| |#4|)) (-15 -2807 ((-3 |#4| "failed") |#4|)) (-15 -1773 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-299)) (PROGN (-15 -3691 (|#4| |#4|)) (-15 -3124 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-355)) (-15 -2369 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-169) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|)) (T -662)) +((-2369 (*1 *2 *2) (|partial| -12 (-4 *3 (-355)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3124 (*1 *2 *3 *3) (-12 (-4 *3 (-299)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-662 *3 *4 *5 *6)) (-4 *6 (-661 *3 *4 *5)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-1773 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2807 (*1 *2 *2) (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-540)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3669 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-619 *6)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2103 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-4079 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-548)) (-4 *3 (-169)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-662 *3 *5 *6 *2)) (-4 *2 (-661 *3 *5 *6)))) (-4068 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-548)) (-4 *3 (-169)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-662 *3 *5 *6 *2)) (-4 *2 (-661 *3 *5 *6)))) (-4058 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-548)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *1 (-662 *4 *5 *6 *2)) (-4 *2 (-661 *4 *5 *6)))) (-2057 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-169)) (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-169)) (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5))))) +(-10 -7 (-15 -2068 (|#1| |#4|)) (-15 -2057 (|#1| |#4|)) (-15 -4058 (|#4| |#4| (-548) (-548))) (-15 -4068 (|#4| |#4| |#1| (-548) (-548))) (-15 -4079 (|#4| |#4| |#1| (-548) (-548))) (IF (|has| |#1| (-540)) (PROGN (-15 -2103 ((-745) |#4|)) (-15 -3681 ((-745) |#4|)) (-15 -3669 ((-619 |#3|) |#4|)) (-15 -2798 (|#4| |#4|)) (-15 -2807 ((-3 |#4| "failed") |#4|)) (-15 -1773 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-299)) (PROGN (-15 -3691 (|#4| |#4|)) (-15 -3124 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-355)) (-15 -2369 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745) (-745)) 47)) (-4025 (($ $ $) NIL)) (-3508 (($ (-1218 |#1|)) NIL) (($ $) NIL)) (-3785 (((-112) $) NIL)) (-4015 (($ $ (-548) (-548)) 12)) (-4004 (($ $ (-548) (-548)) NIL)) (-3992 (($ $ (-548) (-548) (-548) (-548)) NIL)) (-4048 (($ $) NIL)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3982 (($ $ (-548) (-548) $) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548)) $) NIL)) (-4141 (($ $ (-548) (-1218 |#1|)) NIL)) (-4131 (($ $ (-548) (-1218 |#1|)) NIL)) (-2114 (($ (-745) |#1|) 22)) (-3030 (($) NIL T CONST)) (-3691 (($ $) 31 (|has| |#1| (-299)))) (-3717 (((-1218 |#1|) $ (-548)) NIL)) (-2103 (((-745) $) 33 (|has| |#1| (-540)))) (-3971 ((|#1| $ (-548) (-548) |#1|) 51)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-3681 (((-745) $) 35 (|has| |#1| (-540)))) (-3669 (((-619 (-1218 |#1|)) $) 38 (|has| |#1| (-540)))) (-4205 (((-745) $) 20)) (-3550 (($ (-745) (-745) |#1|) 16)) (-4216 (((-745) $) 21)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#1| $) 29 (|has| |#1| (-6 (-4329 "*"))))) (-3764 (((-548) $) 9)) (-3742 (((-548) $) 10)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) 11)) (-3729 (((-548) $) 48)) (-3817 (($ (-619 (-619 |#1|))) NIL)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2401 (((-619 (-619 |#1|)) $) 60)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2369 (((-3 $ "failed") $) 45 (|has| |#1| (-355)))) (-4036 (($ $ $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548))) NIL)) (-2102 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL) (($ (-1218 |#1|)) 52)) (-3797 (((-112) $) NIL)) (-2068 ((|#1| $) 27 (|has| |#1| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 64 (|has| |#1| (-593 (-524))))) (-3704 (((-1218 |#1|) $ (-548)) NIL)) (-3743 (($ (-1218 |#1|)) NIL) (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) 23) (($ $ (-548)) 46 (|has| |#1| (-355)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-548) $) NIL) (((-1218 |#1|) $ (-1218 |#1|)) NIL) (((-1218 |#1|) (-1218 |#1|) $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-663 |#1|) (-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 -2102 ($ (-1218 |#1|))) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |#1| (-355)) (-15 -2369 ((-3 $ "failed") $)) |%noBranch|))) (-1016)) (T -663)) +((-2369 (*1 *1 *1) (|partial| -12 (-5 *1 (-663 *2)) (-4 *2 (-355)) (-4 *2 (-1016)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-663 *3))))) +(-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 -2102 ($ (-1218 |#1|))) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |#1| (-355)) (-15 -2369 ((-3 $ "failed") $)) |%noBranch|))) +((-2861 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 25)) (-2852 (((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|) 21)) (-2872 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745)) 26)) (-2824 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 14)) (-2833 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 18) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 16)) (-2843 (((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|)) 20)) (-2816 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 12)) (** (((-663 |#1|) (-663 |#1|) (-745)) 30))) +(((-664 |#1|) (-10 -7 (-15 -2816 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2824 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2833 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2833 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2843 ((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|))) (-15 -2852 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -2861 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2872 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745))) (-15 ** ((-663 |#1|) (-663 |#1|) (-745)))) (-1016)) (T -664)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) (-2872 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) (-2861 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2852 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2843 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2833 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2833 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2824 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2816 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(-10 -7 (-15 -2816 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2824 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2833 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2833 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2843 ((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|))) (-15 -2852 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -2861 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2872 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745))) (-15 ** ((-663 |#1|) (-663 |#1|) (-745)))) +((-2085 (($) 8 T CONST)) (-3743 (((-832) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3095 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2085)) 16)) (-2148 ((|#1| $) 11))) +(((-665 |#1|) (-13 (-1213) (-592 (-832)) (-10 -8 (-15 -3095 ((-112) $ (|[\|\|]| |#1|))) (-15 -3095 ((-112) $ (|[\|\|]| -2085))) (-15 -3743 ($ |#1|)) (-15 -3743 (|#1| $)) (-15 -2148 (|#1| $)) (-15 -2085 ($) -2325))) (-592 (-832))) (T -665)) +((-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-592 (-832))) (-5 *2 (-112)) (-5 *1 (-665 *4)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2085)) (-5 *2 (-112)) (-5 *1 (-665 *4)) (-4 *4 (-592 (-832))))) (-3743 (*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) (-3743 (*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) (-2148 (*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) (-2085 (*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832)))))) +(-13 (-1213) (-592 (-832)) (-10 -8 (-15 -3095 ((-112) $ (|[\|\|]| |#1|))) (-15 -3095 ((-112) $ (|[\|\|]| -2085))) (-15 -3743 ($ |#1|)) (-15 -3743 (|#1| $)) (-15 -2148 (|#1| $)) (-15 -2085 ($) -2325))) +((-2904 ((|#2| |#2| |#4|) 25)) (-2937 (((-663 |#2|) |#3| |#4|) 31)) (-2915 (((-663 |#2|) |#2| |#4|) 30)) (-2882 (((-1218 |#2|) |#2| |#4|) 16)) (-2892 ((|#2| |#3| |#4|) 24)) (-2948 (((-663 |#2|) |#3| |#4| (-745) (-745)) 38)) (-2926 (((-663 |#2|) |#2| |#4| (-745)) 37))) +(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2882 ((-1218 |#2|) |#2| |#4|)) (-15 -2892 (|#2| |#3| |#4|)) (-15 -2904 (|#2| |#2| |#4|)) (-15 -2915 ((-663 |#2|) |#2| |#4|)) (-15 -2926 ((-663 |#2|) |#2| |#4| (-745))) (-15 -2937 ((-663 |#2|) |#3| |#4|)) (-15 -2948 ((-663 |#2|) |#3| |#4| (-745) (-745)))) (-1063) (-869 |#1|) (-365 |#2|) (-13 (-365 |#1|) (-10 -7 (-6 -4327)))) (T -666)) +((-2948 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *7 (-869 *6)) (-5 *2 (-663 *7)) (-5 *1 (-666 *6 *7 *3 *4)) (-4 *3 (-365 *7)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4327)))))) (-2937 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-869 *5)) (-5 *2 (-663 *6)) (-5 *1 (-666 *5 *6 *3 *4)) (-4 *3 (-365 *6)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327)))))) (-2926 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *3 (-869 *6)) (-5 *2 (-663 *3)) (-5 *1 (-666 *6 *3 *7 *4)) (-4 *7 (-365 *3)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4327)))))) (-2915 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-663 *3)) (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327)))))) (-2904 (*1 *2 *2 *3) (-12 (-4 *4 (-1063)) (-4 *2 (-869 *4)) (-5 *1 (-666 *4 *2 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4327)))))) (-2892 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *2 (-869 *5)) (-5 *1 (-666 *5 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327)))))) (-2882 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-1218 *3)) (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) +(-10 -7 (-15 -2882 ((-1218 |#2|) |#2| |#4|)) (-15 -2892 (|#2| |#3| |#4|)) (-15 -2904 (|#2| |#2| |#4|)) (-15 -2915 ((-663 |#2|) |#2| |#4|)) (-15 -2926 ((-663 |#2|) |#2| |#4| (-745))) (-15 -2937 ((-663 |#2|) |#3| |#4|)) (-15 -2948 ((-663 |#2|) |#3| |#4| (-745) (-745)))) +((-1396 (((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)) 20)) (-1374 ((|#1| (-663 |#2|)) 9)) (-1386 (((-663 |#1|) (-663 |#2|)) 18))) +(((-667 |#1| |#2|) (-10 -7 (-15 -1374 (|#1| (-663 |#2|))) (-15 -1386 ((-663 |#1|) (-663 |#2|))) (-15 -1396 ((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)))) (-540) (-961 |#1|)) (T -667)) +((-1396 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |num| (-663 *4)) (|:| |den| *4))) (-5 *1 (-667 *4 *5)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-540)) (-5 *2 (-663 *4)) (-5 *1 (-667 *4 *5)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-667 *2 *4))))) +(-10 -7 (-15 -1374 (|#1| (-663 |#2|))) (-15 -1386 ((-663 |#1|) (-663 |#2|))) (-15 -1396 ((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2350 (((-663 (-673))) NIL) (((-663 (-673)) (-1218 $)) NIL)) (-2707 (((-673) $) NIL)) (-2074 (($ $) NIL (|has| (-673) (-1157)))) (-1940 (($ $) NIL (|has| (-673) (-1157)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-673) (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-299)) (|has| (-673) (-878))))) (-1688 (($ $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| (-673) (-878))) (|has| (-673) (-355))))) (-2634 (((-410 $) $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| (-673) (-878))) (|has| (-673) (-355))))) (-1926 (($ $) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-299)) (|has| (-673) (-878))))) (-4087 (((-112) $ $) NIL (|has| (-673) (-299)))) (-3423 (((-745)) NIL (|has| (-673) (-360)))) (-2054 (($ $) NIL (|has| (-673) (-1157)))) (-1918 (($ $) NIL (|has| (-673) (-1157)))) (-2098 (($ $) NIL (|has| (-673) (-1157)))) (-1963 (($ $) NIL (|has| (-673) (-1157)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-673) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-673) (-1007 (-399 (-548)))))) (-2375 (((-548) $) NIL) (((-673) $) NIL) (((-399 (-548)) $) NIL (|has| (-673) (-1007 (-399 (-548)))))) (-2455 (($ (-1218 (-673))) NIL) (($ (-1218 (-673)) (-1218 $)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-673) (-341)))) (-1945 (($ $ $) NIL (|has| (-673) (-299)))) (-2341 (((-663 (-673)) $) NIL) (((-663 (-673)) $ (-1218 $)) NIL)) (-1608 (((-663 (-673)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-673))) (|:| |vec| (-1218 (-673)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-673) (-615 (-548)))) (((-663 (-548)) (-663 $)) NIL (|has| (-673) (-615 (-548))))) (-2061 (((-3 $ "failed") (-399 (-1131 (-673)))) NIL (|has| (-673) (-355))) (($ (-1131 (-673))) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1937 (((-673) $) 29)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL (|has| (-673) (-533)))) (-4172 (((-112) $) NIL (|has| (-673) (-533)))) (-4161 (((-399 (-548)) $) NIL (|has| (-673) (-533)))) (-2103 (((-890)) NIL)) (-2545 (($) NIL (|has| (-673) (-360)))) (-1922 (($ $ $) NIL (|has| (-673) (-299)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| (-673) (-299)))) (-2771 (($) NIL (|has| (-673) (-341)))) (-3727 (((-112) $) NIL (|has| (-673) (-341)))) (-2208 (($ $) NIL (|has| (-673) (-341))) (($ $ (-745)) NIL (|has| (-673) (-341)))) (-1271 (((-112) $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| (-673) (-878))) (|has| (-673) (-355))))) (-4273 (((-2 (|:| |r| (-673)) (|:| |phi| (-673))) $) NIL (-12 (|has| (-673) (-1025)) (|has| (-673) (-1157))))) (-1365 (($) NIL (|has| (-673) (-1157)))) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-673) (-855 (-371)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-673) (-855 (-548))))) (-1672 (((-807 (-890)) $) NIL (|has| (-673) (-341))) (((-890) $) NIL (|has| (-673) (-341)))) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157))))) (-3910 (((-673) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-673) (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-673) (-299)))) (-2898 (((-1131 (-673)) $) NIL (|has| (-673) (-355)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 (-673) (-673)) $) NIL)) (-2855 (((-890) $) NIL (|has| (-673) (-360)))) (-3496 (($ $) NIL (|has| (-673) (-1157)))) (-2050 (((-1131 (-673)) $) NIL)) (-3553 (($ (-619 $)) NIL (|has| (-673) (-299))) (($ $ $) NIL (|has| (-673) (-299)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| (-673) (-355)))) (-3410 (($) NIL (|has| (-673) (-341)) CONST)) (-3337 (($ (-890)) NIL (|has| (-673) (-360)))) (-4283 (($) NIL)) (-1948 (((-673) $) 31)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-673) (-299)))) (-3587 (($ (-619 $)) NIL (|has| (-673) (-299))) (($ $ $) NIL (|has| (-673) (-299)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-673) (-341)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-299)) (|has| (-673) (-878))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-299)) (|has| (-673) (-878))))) (-1915 (((-410 $) $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| (-673) (-878))) (|has| (-673) (-355))))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-673) (-299))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| (-673) (-299)))) (-1900 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-673)) NIL (|has| (-673) (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-673) (-299)))) (-2458 (($ $) NIL (|has| (-673) (-1157)))) (-2460 (($ $ (-1135) (-673)) NIL (|has| (-673) (-504 (-1135) (-673)))) (($ $ (-619 (-1135)) (-619 (-673))) NIL (|has| (-673) (-504 (-1135) (-673)))) (($ $ (-619 (-286 (-673)))) NIL (|has| (-673) (-301 (-673)))) (($ $ (-286 (-673))) NIL (|has| (-673) (-301 (-673)))) (($ $ (-673) (-673)) NIL (|has| (-673) (-301 (-673)))) (($ $ (-619 (-673)) (-619 (-673))) NIL (|has| (-673) (-301 (-673))))) (-4077 (((-745) $) NIL (|has| (-673) (-299)))) (-3171 (($ $ (-673)) NIL (|has| (-673) (-278 (-673) (-673))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| (-673) (-299)))) (-1566 (((-673)) NIL) (((-673) (-1218 $)) NIL)) (-2217 (((-3 (-745) "failed") $ $) NIL (|has| (-673) (-341))) (((-745) $) NIL (|has| (-673) (-341)))) (-4050 (($ $ (-1 (-673) (-673))) NIL) (($ $ (-1 (-673) (-673)) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-745)) NIL (|has| (-673) (-226))) (($ $) NIL (|has| (-673) (-226)))) (-2257 (((-663 (-673)) (-1218 $) (-1 (-673) (-673))) NIL (|has| (-673) (-355)))) (-3287 (((-1131 (-673))) NIL)) (-2110 (($ $) NIL (|has| (-673) (-1157)))) (-1973 (($ $) NIL (|has| (-673) (-1157)))) (-3655 (($) NIL (|has| (-673) (-341)))) (-2086 (($ $) NIL (|has| (-673) (-1157)))) (-1952 (($ $) NIL (|has| (-673) (-1157)))) (-2065 (($ $) NIL (|has| (-673) (-1157)))) (-1929 (($ $) NIL (|has| (-673) (-1157)))) (-2447 (((-663 (-673)) (-1218 $)) NIL) (((-1218 (-673)) $) NIL) (((-663 (-673)) (-1218 $) (-1218 $)) NIL) (((-1218 (-673)) $ (-1218 $)) NIL)) (-2591 (((-524) $) NIL (|has| (-673) (-593 (-524)))) (((-166 (-218)) $) NIL (|has| (-673) (-991))) (((-166 (-371)) $) NIL (|has| (-673) (-991))) (((-861 (-371)) $) NIL (|has| (-673) (-593 (-861 (-371))))) (((-861 (-548)) $) NIL (|has| (-673) (-593 (-861 (-548))))) (($ (-1131 (-673))) NIL) (((-1131 (-673)) $) NIL) (($ (-1218 (-673))) NIL) (((-1218 (-673)) $) NIL)) (-2128 (($ $) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| $ (-143)) (|has| (-673) (-878))) (|has| (-673) (-341))))) (-3247 (($ (-673) (-673)) 12)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-548)) NIL) (($ (-673)) NIL) (($ (-166 (-371))) 13) (($ (-166 (-548))) 19) (($ (-166 (-673))) 28) (($ (-166 (-675))) 25) (((-166 (-371)) $) 33) (($ (-399 (-548))) NIL (-1524 (|has| (-673) (-1007 (-399 (-548)))) (|has| (-673) (-355))))) (-4017 (($ $) NIL (|has| (-673) (-341))) (((-3 $ "failed") $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| $ (-143)) (|has| (-673) (-878))) (|has| (-673) (-143))))) (-3780 (((-1131 (-673)) $) NIL)) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL)) (-2145 (($ $) NIL (|has| (-673) (-1157)))) (-2006 (($ $) NIL (|has| (-673) (-1157)))) (-3290 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| (-673) (-1157)))) (-1986 (($ $) NIL (|has| (-673) (-1157)))) (-2170 (($ $) NIL (|has| (-673) (-1157)))) (-2029 (($ $) NIL (|has| (-673) (-1157)))) (-4257 (((-673) $) NIL (|has| (-673) (-1157)))) (-4026 (($ $) NIL (|has| (-673) (-1157)))) (-2040 (($ $) NIL (|has| (-673) (-1157)))) (-2158 (($ $) NIL (|has| (-673) (-1157)))) (-2017 (($ $) NIL (|has| (-673) (-1157)))) (-2132 (($ $) NIL (|has| (-673) (-1157)))) (-1996 (($ $) NIL (|has| (-673) (-1157)))) (-1446 (($ $) NIL (|has| (-673) (-1025)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1 (-673) (-673))) NIL) (($ $ (-1 (-673) (-673)) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-745)) NIL (|has| (-673) (-226))) (($ $) NIL (|has| (-673) (-226)))) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL (|has| (-673) (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ $) NIL (|has| (-673) (-1157))) (($ $ (-399 (-548))) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157)))) (($ $ (-548)) NIL (|has| (-673) (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ (-673) $) NIL) (($ $ (-673)) NIL) (($ (-399 (-548)) $) NIL (|has| (-673) (-355))) (($ $ (-399 (-548))) NIL (|has| (-673) (-355))))) +(((-668) (-13 (-379) (-163 (-673)) (-10 -8 (-15 -3743 ($ (-166 (-371)))) (-15 -3743 ($ (-166 (-548)))) (-15 -3743 ($ (-166 (-673)))) (-15 -3743 ($ (-166 (-675)))) (-15 -3743 ((-166 (-371)) $))))) (T -668)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-668)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-166 (-548))) (-5 *1 (-668)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-166 (-673))) (-5 *1 (-668)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-668)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-668))))) +(-13 (-379) (-163 (-673)) (-10 -8 (-15 -3743 ($ (-166 (-371)))) (-15 -3743 ($ (-166 (-548)))) (-15 -3743 ($ (-166 (-673)))) (-15 -3743 ($ (-166 (-675)))) (-15 -3743 ((-166 (-371)) $)))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-2969 (($ $) 62)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 61)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-669 |#1|) (-138) (-1063)) (T -669)) +((-2539 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-669 *2)) (-4 *2 (-1063)))) (-2969 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1063)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1063)) (-5 *2 (-619 (-2 (|:| -1657 *3) (|:| -3945 (-745)))))))) +(-13 (-228 |t#1|) (-10 -8 (-15 -2539 ($ |t#1| $ (-745))) (-15 -2969 ($ $)) (-15 -2959 ((-619 (-2 (|:| -1657 |t#1|) (|:| -3945 (-745)))) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3002 (((-619 |#1|) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) (-548)) 47)) (-2981 ((|#1| |#1| (-548)) 46)) (-3587 ((|#1| |#1| |#1| (-548)) 36)) (-1915 (((-619 |#1|) |#1| (-548)) 39)) (-3012 ((|#1| |#1| (-548) |#1| (-548)) 32)) (-2991 (((-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) |#1| (-548)) 45))) +(((-670 |#1|) (-10 -7 (-15 -3587 (|#1| |#1| |#1| (-548))) (-15 -2981 (|#1| |#1| (-548))) (-15 -1915 ((-619 |#1|) |#1| (-548))) (-15 -2991 ((-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) |#1| (-548))) (-15 -3002 ((-619 |#1|) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) (-548))) (-15 -3012 (|#1| |#1| (-548) |#1| (-548)))) (-1194 (-548))) (T -670)) +((-3012 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| -1915 *5) (|:| -2512 (-548))))) (-5 *4 (-548)) (-4 *5 (-1194 *4)) (-5 *2 (-619 *5)) (-5 *1 (-670 *5)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-5 *2 (-619 (-2 (|:| -1915 *3) (|:| -2512 *4)))) (-5 *1 (-670 *3)) (-4 *3 (-1194 *4)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-5 *2 (-619 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1194 *4)))) (-2981 (*1 *2 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) (-3587 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) +(-10 -7 (-15 -3587 (|#1| |#1| |#1| (-548))) (-15 -2981 (|#1| |#1| (-548))) (-15 -1915 ((-619 |#1|) |#1| (-548))) (-15 -2991 ((-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) |#1| (-548))) (-15 -3002 ((-619 |#1|) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) (-548))) (-15 -3012 (|#1| |#1| (-548) |#1| (-548)))) +((-3055 (((-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218) (-218))) 17)) (-3022 (((-1095 (-218)) (-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255))) 40) (((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255))) 42) (((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255))) 44)) (-3043 (((-1095 (-218)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-619 (-255))) NIL)) (-3032 (((-1095 (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255))) 45))) +(((-671) (-10 -7 (-15 -3022 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3022 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3022 ((-1095 (-218)) (-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3032 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3043 ((-1095 (-218)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3055 ((-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218) (-218)))))) (T -671)) +((-3055 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1 (-218) (-218) (-218) (-218))) (-5 *2 (-1 (-912 (-218)) (-218) (-218))) (-5 *1 (-671)))) (-3043 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671)))) (-3032 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-3 (-1 (-218) (-218) (-218) (-218)) "undefined")) (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671)))) (-3022 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-218))) (-5 *5 (-619 (-255))) (-5 *1 (-671)))) (-3022 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-218))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671)))) (-3022 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-3 (-1 (-218) (-218) (-218) (-218)) "undefined")) (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671))))) +(-10 -7 (-15 -3022 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3022 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3022 ((-1095 (-218)) (-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3032 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3043 ((-1095 (-218)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3055 ((-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218) (-218))))) +((-1915 (((-410 (-1131 |#4|)) (-1131 |#4|)) 73) (((-410 |#4|) |#4|) 221))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4|)) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|)))) (-821) (-767) (-341) (-918 |#3| |#2| |#1|)) (T -672)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-341)) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) +(-10 -7 (-15 -1915 ((-410 |#4|) |#4|)) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 84)) (-3875 (((-548) $) 30)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1665 (($ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-3030 (($) NIL T CONST)) (-3849 (($ $) NIL)) (-2441 (((-3 (-548) "failed") $) 73) (((-3 (-399 (-548)) "failed") $) 26) (((-3 (-371) "failed") $) 70)) (-2375 (((-548) $) 75) (((-399 (-548)) $) 67) (((-371) $) 68)) (-1945 (($ $ $) 96)) (-3859 (((-3 $ "failed") $) 87)) (-1922 (($ $ $) 95)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2232 (((-890)) 77) (((-890) (-890)) 76)) (-3298 (((-112) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL)) (-1672 (((-548) $) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL)) (-3910 (($ $) NIL)) (-3312 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3066 (((-548) (-548)) 81) (((-548)) 82)) (-1795 (($ $ $) NIL) (($) NIL (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-3076 (((-548) (-548)) 79) (((-548)) 80)) (-3091 (($ $ $) NIL) (($) NIL (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-1382 (((-548) $) 16)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 91)) (-2237 (((-890) (-548)) NIL (|has| $ (-6 -4318)))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL)) (-3887 (($ $) NIL)) (-1335 (($ (-548) (-548)) NIL) (($ (-548) (-548) (-890)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) 92)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3352 (((-548) $) 22)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 94)) (-1340 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-2226 (((-890) (-548)) NIL (|has| $ (-6 -4318)))) (-2591 (((-371) $) NIL) (((-218) $) NIL) (((-861 (-371)) $) NIL)) (-3743 (((-832) $) 52) (($ (-548)) 63) (($ $) NIL) (($ (-399 (-548))) 66) (($ (-548)) 63) (($ (-399 (-548))) 66) (($ (-371)) 60) (((-371) $) 50) (($ (-675)) 55)) (-3835 (((-745)) 103)) (-2678 (($ (-548) (-548) (-890)) 44)) (-3897 (($ $) NIL)) (-2245 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-3957 (((-890)) 35) (((-890) (-890)) 78)) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL)) (-3107 (($) 32 T CONST)) (-3118 (($) 17 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 83)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 101)) (-2309 (($ $ $) 65)) (-2299 (($ $) 99) (($ $ $) 100)) (-2290 (($ $ $) 98)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL) (($ $ (-399 (-548))) 90)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 97) (($ $ $) 88) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) +(((-673) (-13 (-396) (-379) (-355) (-1007 (-371)) (-1007 (-399 (-548))) (-145) (-10 -8 (-15 -2232 ((-890) (-890))) (-15 -2232 ((-890))) (-15 -3957 ((-890) (-890))) (-15 -3957 ((-890))) (-15 -3076 ((-548) (-548))) (-15 -3076 ((-548))) (-15 -3066 ((-548) (-548))) (-15 -3066 ((-548))) (-15 -3743 ((-371) $)) (-15 -3743 ($ (-675))) (-15 -1382 ((-548) $)) (-15 -3352 ((-548) $)) (-15 -2678 ($ (-548) (-548) (-890)))))) (T -673)) +((-3957 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-2232 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3076 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-3076 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-3066 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-673)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-675)) (-5 *1 (-673)))) (-2678 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-890)) (-5 *1 (-673))))) +(-13 (-396) (-379) (-355) (-1007 (-371)) (-1007 (-399 (-548))) (-145) (-10 -8 (-15 -2232 ((-890) (-890))) (-15 -2232 ((-890))) (-15 -3957 ((-890) (-890))) (-15 -3957 ((-890))) (-15 -3076 ((-548) (-548))) (-15 -3076 ((-548))) (-15 -3066 ((-548) (-548))) (-15 -3066 ((-548))) (-15 -3743 ((-371) $)) (-15 -3743 ($ (-675))) (-15 -1382 ((-548) $)) (-15 -3352 ((-548) $)) (-15 -2678 ($ (-548) (-548) (-890))))) +((-3113 (((-663 |#1|) (-663 |#1|) |#1| |#1|) 65)) (-3691 (((-663 |#1|) (-663 |#1|) |#1|) 48)) (-3101 (((-663 |#1|) (-663 |#1|) |#1|) 66)) (-3088 (((-663 |#1|) (-663 |#1|)) 49)) (-3124 (((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|) 64))) +(((-674 |#1|) (-10 -7 (-15 -3088 ((-663 |#1|) (-663 |#1|))) (-15 -3691 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -3101 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -3113 ((-663 |#1|) (-663 |#1|) |#1| |#1|)) (-15 -3124 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|))) (-299)) (T -674)) +((-3124 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-674 *3)) (-4 *3 (-299)))) (-3113 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3)))) (-3101 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3)))) (-3691 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3))))) +(-10 -7 (-15 -3088 ((-663 |#1|) (-663 |#1|))) (-15 -3691 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -3101 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -3113 ((-663 |#1|) (-663 |#1|) |#1| |#1|)) (-15 -3124 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-3119 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3096 (($ $ $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-2970 (($ $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) 27)) (-2375 (((-548) $) 25)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL)) (-4172 (((-112) $) NIL)) (-4161 (((-399 (-548)) $) NIL)) (-2545 (($ $) NIL) (($) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3071 (($ $ $ $) NIL)) (-3129 (($ $ $) NIL)) (-3298 (((-112) $) NIL)) (-4206 (($ $ $) NIL)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL)) (-2266 (((-112) $) NIL)) (-3705 (((-112) $) NIL)) (-3725 (((-3 $ "failed") $) NIL)) (-3312 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3082 (($ $ $ $) NIL)) (-1795 (($ $ $) NIL)) (-3134 (((-890) (-890)) 10) (((-890)) 9)) (-3091 (($ $ $) NIL)) (-2742 (($ $) NIL)) (-3198 (($ $) NIL)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3060 (($ $ $) NIL)) (-3410 (($) NIL T CONST)) (-3595 (($ $) NIL)) (-3932 (((-1082) $) NIL) (($ $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-4185 (($ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL) (($ $ (-745)) NIL)) (-2445 (($ $) NIL)) (-2113 (($ $) NIL)) (-2591 (((-218) $) NIL) (((-371) $) NIL) (((-861 (-548)) $) NIL) (((-524) $) NIL) (((-548) $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) 24) (($ $) NIL) (($ (-548)) 24) (((-308 $) (-308 (-548))) 18)) (-3835 (((-745)) NIL)) (-3139 (((-112) $ $) NIL)) (-3612 (($ $ $) NIL)) (-3957 (($) NIL)) (-3290 (((-112) $ $) NIL)) (-3106 (($ $ $ $) NIL)) (-1446 (($ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL) (($ $ (-745)) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL))) +(((-675) (-13 (-379) (-533) (-10 -8 (-15 -3134 ((-890) (-890))) (-15 -3134 ((-890))) (-15 -3743 ((-308 $) (-308 (-548))))))) (T -675)) +((-3134 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3134 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-308 (-548))) (-5 *2 (-308 (-675))) (-5 *1 (-675))))) +(-13 (-379) (-533) (-10 -8 (-15 -3134 ((-890) (-890))) (-15 -3134 ((-890))) (-15 -3743 ((-308 $) (-308 (-548)))))) +((-3178 (((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)) 19)) (-3144 (((-1 |#4| |#2| |#3|) (-1135)) 12))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3144 ((-1 |#4| |#2| |#3|) (-1135))) (-15 -3178 ((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)))) (-593 (-524)) (-1172) (-1172) (-1172)) (T -676)) +((-3178 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *3 *5 *6 *7)) (-4 *3 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *7 (-1172)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *4 *5 *6 *7)) (-4 *4 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *7 (-1172))))) +(-10 -7 (-15 -3144 ((-1 |#4| |#2| |#3|) (-1135))) (-15 -3178 ((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)))) +((-3730 (((-112) $ $) NIL)) (-4116 (((-1223) $ (-745)) 14)) (-2621 (((-745) $) 12)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 25)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 24))) +(((-677 |#1|) (-13 (-131) (-592 |#1|) (-10 -8 (-15 -3743 ($ |#1|)))) (-1063)) (T -677)) +((-3743 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1063))))) +(-13 (-131) (-592 |#1|) (-10 -8 (-15 -3743 ($ |#1|)))) +((-3154 (((-1 (-218) (-218) (-218)) |#1| (-1135) (-1135)) 34) (((-1 (-218) (-218)) |#1| (-1135)) 39))) +(((-678 |#1|) (-10 -7 (-15 -3154 ((-1 (-218) (-218)) |#1| (-1135))) (-15 -3154 ((-1 (-218) (-218) (-218)) |#1| (-1135) (-1135)))) (-593 (-524))) (T -678)) +((-3154 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-218) (-218) (-218))) (-5 *1 (-678 *3)) (-4 *3 (-593 (-524))))) (-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-218) (-218))) (-5 *1 (-678 *3)) (-4 *3 (-593 (-524)))))) +(-10 -7 (-15 -3154 ((-1 (-218) (-218)) |#1| (-1135))) (-15 -3154 ((-1 (-218) (-218) (-218)) |#1| (-1135) (-1135)))) +((-3418 (((-1135) |#1| (-1135) (-619 (-1135))) 9) (((-1135) |#1| (-1135) (-1135) (-1135)) 12) (((-1135) |#1| (-1135) (-1135)) 11) (((-1135) |#1| (-1135)) 10))) +(((-679 |#1|) (-10 -7 (-15 -3418 ((-1135) |#1| (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-1135) (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-619 (-1135))))) (-593 (-524))) (T -679)) +((-3418 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) (-3418 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) (-3418 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524)))))) +(-10 -7 (-15 -3418 ((-1135) |#1| (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-1135) (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-619 (-1135))))) +((-1481 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-680 |#1| |#2|) (-10 -7 (-15 -1481 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1172) (-1172)) (T -680)) +((-1481 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-680 *3 *4)) (-4 *3 (-1172)) (-4 *4 (-1172))))) +(-10 -7 (-15 -1481 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3165 (((-1 |#3| |#2|) (-1135)) 11)) (-3178 (((-1 |#3| |#2|) |#1| (-1135)) 21))) +(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-1 |#3| |#2|) (-1135))) (-15 -3178 ((-1 |#3| |#2|) |#1| (-1135)))) (-593 (-524)) (-1172) (-1172)) (T -681)) +((-3178 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *3 *5 *6)) (-4 *3 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *4 *5 *6)) (-4 *4 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172))))) +(-10 -7 (-15 -3165 ((-1 |#3| |#2|) (-1135))) (-15 -3178 ((-1 |#3| |#2|) |#1| (-1135)))) +((-3217 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|) 62)) (-3202 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|) 75)) (-3189 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|) 34))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3189 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|)) (-15 -3202 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|)) (-15 -3217 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|))) (-767) (-821) (-299) (-918 |#3| |#1| |#2|)) (T -682)) +((-3217 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-619 (-1131 *13))) (-5 *3 (-1131 *13)) (-5 *4 (-619 *12)) (-5 *5 (-619 *10)) (-5 *6 (-619 *13)) (-5 *7 (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| *13))))) (-5 *8 (-619 (-745))) (-5 *9 (-1218 (-619 (-1131 *10)))) (-4 *12 (-821)) (-4 *10 (-299)) (-4 *13 (-918 *10 *11 *12)) (-4 *11 (-767)) (-5 *1 (-682 *11 *12 *10 *13)))) (-3202 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-619 *11)) (-5 *5 (-619 (-1131 *9))) (-5 *6 (-619 *9)) (-5 *7 (-619 *12)) (-5 *8 (-619 (-745))) (-4 *11 (-821)) (-4 *9 (-299)) (-4 *12 (-918 *9 *10 *11)) (-4 *10 (-767)) (-5 *2 (-619 (-1131 *12))) (-5 *1 (-682 *10 *11 *9 *12)) (-5 *3 (-1131 *12)))) (-3189 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-619 (-1131 *11))) (-5 *3 (-1131 *11)) (-5 *4 (-619 *10)) (-5 *5 (-619 *8)) (-5 *6 (-619 (-745))) (-5 *7 (-1218 (-619 (-1131 *8)))) (-4 *10 (-821)) (-4 *8 (-299)) (-4 *11 (-918 *8 *9 *10)) (-4 *9 (-767)) (-5 *1 (-682 *9 *10 *8 *11))))) +(-10 -7 (-15 -3189 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|)) (-15 -3202 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|)) (-15 -3217 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1872 (($ $) 39)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2024 (($ |#1| (-745)) 37)) (-3904 (((-745) $) 41)) (-2197 ((|#1| $) 40)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2512 (((-745) $) 42)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 36 (|has| |#1| (-169)))) (-1951 ((|#1| $ (-745)) 38)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +(((-683 |#1|) (-138) (-1016)) (T -683)) +((-2512 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2512 ((-745) $)) (-15 -3904 ((-745) $)) (-15 -2197 (|t#1| $)) (-15 -1872 ($ $)) (-15 -1951 (|t#1| $ (-745))) (-15 -2024 ($ |t#1| (-745))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2540 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-684 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2540 (|#6| (-1 |#4| |#1|) |#3|))) (-540) (-1194 |#1|) (-1194 (-399 |#2|)) (-540) (-1194 |#4|) (-1194 (-399 |#5|))) (T -684)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-540)) (-4 *7 (-540)) (-4 *6 (-1194 *5)) (-4 *2 (-1194 (-399 *8))) (-5 *1 (-684 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1194 (-399 *6))) (-4 *8 (-1194 *7))))) +(-10 -7 (-15 -2540 (|#6| (-1 |#4| |#1|) |#3|))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3228 (((-1118) (-832)) 31)) (-2487 (((-1223) (-1118)) 28)) (-3249 (((-1118) (-832)) 24)) (-3238 (((-1118) (-832)) 25)) (-3743 (((-832) $) NIL) (((-1118) (-832)) 23)) (-2214 (((-112) $ $) NIL))) +(((-685) (-13 (-1063) (-10 -7 (-15 -3743 ((-1118) (-832))) (-15 -3249 ((-1118) (-832))) (-15 -3238 ((-1118) (-832))) (-15 -3228 ((-1118) (-832))) (-15 -2487 ((-1223) (-1118)))))) (T -685)) +((-3743 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-685))))) +(-13 (-1063) (-10 -7 (-15 -3743 ((-1118) (-832))) (-15 -3249 ((-1118) (-832))) (-15 -3238 ((-1118) (-832))) (-15 -3228 ((-1118) (-832))) (-15 -2487 ((-1223) (-1118))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL)) (-2061 (($ |#1| |#2|) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 ((|#2| $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3368 (((-3 $ "failed") $ $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) ((|#1| $) NIL)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) +(((-686 |#1| |#2| |#3| |#4| |#5|) (-13 (-355) (-10 -8 (-15 -1328 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -2061 ($ |#1| |#2|)) (-15 -3368 ((-3 $ "failed") $ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -686)) +((-1328 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-686 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2061 (*1 *1 *2 *3) (-12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3368 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-355) (-10 -8 (-15 -1328 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -2061 ($ |#1| |#2|)) (-15 -3368 ((-3 $ "failed") $ $)))) +((-3730 (((-112) $ $) 78)) (-3324 (((-112) $) 30)) (-1648 (((-1218 |#1|) $ (-745)) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-1632 (($ (-1131 |#1|)) NIL)) (-1884 (((-1131 $) $ (-1045)) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1548 (($ $ $) NIL (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-3423 (((-745)) 47 (|has| |#1| (-360)))) (-1594 (($ $ (-745)) NIL)) (-1584 (($ $ (-745)) NIL)) (-3335 ((|#2| |#2|) 44)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-443)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1045) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1045) $) NIL)) (-1557 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) NIL (|has| |#1| (-169)))) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) 34)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2061 (($ |#2|) 42)) (-3859 (((-3 $ "failed") $) 86)) (-2545 (($) 51 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-1574 (($ $ $) NIL)) (-1529 (($ $ $) NIL (|has| |#1| (-540)))) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-3286 (((-927 $)) 80)) (-4256 (($ $ |#1| (-745) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ $) NIL (|has| |#1| (-540)))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2036 (($ (-1131 |#1|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-3535 (($ $ (-745)) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) 77) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) NIL) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1328 ((|#2|) 45)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-1639 (((-1131 |#1|) $) NIL)) (-3511 (((-3 (-1045) "failed") $) NIL)) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-2050 ((|#2| $) 41)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) 28)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (|has| |#1| (-1111)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-3262 (($ $) 79 (|has| |#1| (-341)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-399 $) (-399 $) (-399 $)) NIL (|has| |#1| (-540))) ((|#1| (-399 $) |#1|) NIL (|has| |#1| (-355))) (((-399 $) $ (-399 $)) NIL (|has| |#1| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 87 (|has| |#1| (-355)))) (-1566 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2512 (((-745) $) 32) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3273 (((-927 $)) 36)) (-1539 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540))) (((-3 (-399 $) "failed") (-399 $) $) NIL (|has| |#1| (-540)))) (-3743 (((-832) $) 61) (($ (-548)) NIL) (($ |#1|) 58) (($ (-1045)) NIL) (($ |#2|) 68) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) 63) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 20 T CONST)) (-3323 (((-1218 |#1|) $) 75)) (-3311 (($ (-1218 |#1|)) 50)) (-3118 (($) 8 T CONST)) (-3296 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3297 (((-1218 |#1|) $) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 69)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) 72) (($ $ $) NIL)) (-2290 (($ $ $) 33)) (** (($ $ (-890)) NIL) (($ $ (-745)) 81)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 57) (($ $ $) 74) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-687 |#1| |#2|) (-13 (-1194 |#1|) (-10 -8 (-15 -3335 (|#2| |#2|)) (-15 -1328 (|#2|)) (-15 -2061 ($ |#2|)) (-15 -2050 (|#2| $)) (-15 -3743 ($ |#2|)) (-15 -3323 ((-1218 |#1|) $)) (-15 -3311 ($ (-1218 |#1|))) (-15 -3297 ((-1218 |#1|) $)) (-15 -3286 ((-927 $))) (-15 -3273 ((-927 $))) (IF (|has| |#1| (-341)) (-15 -3262 ($ $)) |%noBranch|) (IF (|has| |#1| (-360)) (-6 (-360)) |%noBranch|))) (-1016) (-1194 |#1|)) (T -687)) +((-3335 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-1328 (*1 *2) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) (-2061 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-2050 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-3323 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3311 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3297 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3286 (*1 *2) (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3273 (*1 *2) (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3262 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *2 (-1016)) (-5 *1 (-687 *2 *3)) (-4 *3 (-1194 *2))))) +(-13 (-1194 |#1|) (-10 -8 (-15 -3335 (|#2| |#2|)) (-15 -1328 (|#2|)) (-15 -2061 ($ |#2|)) (-15 -2050 (|#2| $)) (-15 -3743 ($ |#2|)) (-15 -3323 ((-1218 |#1|) $)) (-15 -3311 ($ (-1218 |#1|))) (-15 -3297 ((-1218 |#1|) $)) (-15 -3286 ((-927 $))) (-15 -3273 ((-927 $))) (IF (|has| |#1| (-341)) (-15 -3262 ($ $)) |%noBranch|) (IF (|has| |#1| (-360)) (-6 (-360)) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3337 ((|#1| $) 13)) (-3932 (((-1082) $) NIL)) (-3352 ((|#2| $) 12)) (-3754 (($ |#1| |#2|) 16)) (-3743 (((-832) $) NIL) (($ (-2 (|:| -3337 |#1|) (|:| -3352 |#2|))) 15) (((-2 (|:| -3337 |#1|) (|:| -3352 |#2|)) $) 14)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 11))) +(((-688 |#1| |#2| |#3|) (-13 (-821) (-10 -8 (-15 -3352 (|#2| $)) (-15 -3337 (|#1| $)) (-15 -3743 ($ (-2 (|:| -3337 |#1|) (|:| -3352 |#2|)))) (-15 -3743 ((-2 (|:| -3337 |#1|) (|:| -3352 |#2|)) $)) (-15 -3754 ($ |#1| |#2|)))) (-821) (-1063) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -3352 |#2|)) (-2 (|:| -3337 |#1|) (|:| -3352 |#2|)))) (T -688)) +((-3352 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-688 *3 *2 *4)) (-4 *3 (-821)) (-14 *4 (-1 (-112) (-2 (|:| -3337 *3) (|:| -3352 *2)) (-2 (|:| -3337 *3) (|:| -3352 *2)))))) (-3337 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-688 *2 *3 *4)) (-4 *3 (-1063)) (-14 *4 (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *3)) (-2 (|:| -3337 *2) (|:| -3352 *3)))))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *4))) (-4 *3 (-821)) (-4 *4 (-1063)) (-5 *1 (-688 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *4))) (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-1063)) (-14 *5 (-1 (-112) *2 *2)))) (-3754 (*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-1063)) (-14 *4 (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *3)) (-2 (|:| -3337 *2) (|:| -3352 *3))))))) +(-13 (-821) (-10 -8 (-15 -3352 (|#2| $)) (-15 -3337 (|#1| $)) (-15 -3743 ($ (-2 (|:| -3337 |#1|) (|:| -3352 |#2|)))) (-15 -3743 ((-2 (|:| -3337 |#1|) (|:| -3352 |#2|)) $)) (-15 -3754 ($ |#1| |#2|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 59)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2375 ((|#1| $) NIL) (((-114) $) 39)) (-3859 (((-3 $ "failed") $) 90)) (-1737 ((|#2| (-114) |#2|) 82)) (-2266 (((-112) $) NIL)) (-1727 (($ |#1| (-353 (-114))) 14)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1747 (($ $ (-1 |#2| |#2|)) 58)) (-1756 (($ $ (-1 |#2| |#2|)) 44)) (-3171 ((|#2| $ |#2|) 33)) (-1765 ((|#1| |#1|) 105 (|has| |#1| (-169)))) (-3743 (((-832) $) 66) (($ (-548)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 37)) (-1773 (($ $) 99 (|has| |#1| (-169))) (($ $ $) 103 (|has| |#1| (-169)))) (-3107 (($) 21 T CONST)) (-3118 (($) 9 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) 48) (($ $ $) NIL)) (-2290 (($ $ $) 73)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ (-114) (-548)) NIL) (($ $ (-548)) 57)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-169))) (($ $ |#1|) 97 (|has| |#1| (-169))))) +(((-689 |#1| |#2|) (-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-278 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 -1765 (|#1| |#1|))) |%noBranch|) (-15 -1756 ($ $ (-1 |#2| |#2|))) (-15 -1747 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-548))) (-15 ** ($ $ (-548))) (-15 -1737 (|#2| (-114) |#2|)) (-15 -1727 ($ |#1| (-353 (-114)))))) (-1016) (-622 |#1|)) (T -689)) +((-1773 (*1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-1773 (*1 *1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-1765 (*1 *2 *2) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-548)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *5)) (-4 *5 (-622 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)) (-4 *4 (-622 *3)))) (-1737 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *2)) (-4 *2 (-622 *4)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *3 (-353 (-114))) (-4 *2 (-1016)) (-5 *1 (-689 *2 *4)) (-4 *4 (-622 *2))))) +(-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-278 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 -1765 (|#1| |#1|))) |%noBranch|) (-15 -1756 ($ $ (-1 |#2| |#2|))) (-15 -1747 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-548))) (-15 ** ($ $ (-548))) (-15 -1737 (|#2| (-114) |#2|)) (-15 -1727 ($ |#1| (-353 (-114)))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 33)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2061 (($ |#1| |#2|) 25)) (-3859 (((-3 $ "failed") $) 48)) (-2266 (((-112) $) 35)) (-1328 ((|#2| $) 12)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 49)) (-3932 (((-1082) $) NIL)) (-3368 (((-3 $ "failed") $ $) 47)) (-3743 (((-832) $) 24) (($ (-548)) 19) ((|#1| $) 13)) (-3835 (((-745)) 28)) (-3107 (($) 16 T CONST)) (-3118 (($) 30 T CONST)) (-2214 (((-112) $ $) 38)) (-2299 (($ $) 43) (($ $ $) 37)) (-2290 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 21) (($ $ $) 20))) +(((-690 |#1| |#2| |#3| |#4| |#5|) (-13 (-1016) (-10 -8 (-15 -1328 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -2061 ($ |#1| |#2|)) (-15 -3368 ((-3 $ "failed") $ $)) (-15 -3859 ((-3 $ "failed") $)) (-15 -2153 ($ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -690)) +((-3859 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1328 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2061 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3368 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1016) (-10 -8 (-15 -1328 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -2061 ($ |#1| |#2|)) (-15 -3368 ((-3 $ "failed") $ $)) (-15 -3859 ((-3 $ "failed") $)) (-15 -2153 ($ $)))) +((* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-691 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-692 |#2|) (-169)) (T -691)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-692 |#1|) (-138) (-169)) (T -692)) +NIL +(-13 (-111 |t#1| |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-2970 (($ |#1|) 17) (($ $ |#1|) 20)) (-4071 (($ |#1|) 18) (($ $ |#1|) 21)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2266 (((-112) $) NIL)) (-3385 (($ |#1| |#1| |#1| |#1|) 8)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 16)) (-3932 (((-1082) $) NIL)) (-2460 ((|#1| $ |#1|) 24) (((-807 |#1|) $ (-807 |#1|)) 32)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 39)) (-3118 (($) 9 T CONST)) (-2214 (((-112) $ $) 44)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ $ $) 14))) +(((-693 |#1|) (-13 (-464) (-10 -8 (-15 -3385 ($ |#1| |#1| |#1| |#1|)) (-15 -2970 ($ |#1|)) (-15 -4071 ($ |#1|)) (-15 -3859 ($)) (-15 -2970 ($ $ |#1|)) (-15 -4071 ($ $ |#1|)) (-15 -3859 ($ $)) (-15 -2460 (|#1| $ |#1|)) (-15 -2460 ((-807 |#1|) $ (-807 |#1|))))) (-355)) (T -693)) +((-3385 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-2970 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-4071 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-3859 (*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-2970 (*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-4071 (*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-3859 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-2460 (*1 *2 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-2460 (*1 *2 *1 *2) (-12 (-5 *2 (-807 *3)) (-4 *3 (-355)) (-5 *1 (-693 *3))))) +(-13 (-464) (-10 -8 (-15 -3385 ($ |#1| |#1| |#1| |#1|)) (-15 -2970 ($ |#1|)) (-15 -4071 ($ |#1|)) (-15 -3859 ($)) (-15 -2970 ($ $ |#1|)) (-15 -4071 ($ $ |#1|)) (-15 -3859 ($ $)) (-15 -2460 (|#1| $ |#1|)) (-15 -2460 ((-807 |#1|) $ (-807 |#1|))))) +((-2246 (($ $ (-890)) 12)) (-3424 (($ $ (-890)) 13)) (** (($ $ (-890)) 10))) +(((-694 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -3424 (|#1| |#1| (-890))) (-15 -2246 (|#1| |#1| (-890)))) (-695)) (T -694)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -3424 (|#1| |#1| (-890))) (-15 -2246 (|#1| |#1| (-890)))) +((-3730 (((-112) $ $) 7)) (-2246 (($ $ (-890)) 15)) (-3424 (($ $ (-890)) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 16))) +(((-695) (-138)) (T -695)) +((* (*1 *1 *1 *1) (-4 *1 (-695))) (-2246 (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) (-3424 (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890))))) +(-13 (-1063) (-10 -8 (-15 * ($ $ $)) (-15 -2246 ($ $ (-890))) (-15 -3424 ($ $ (-890))) (-15 ** ($ $ (-890))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-2246 (($ $ (-890)) NIL) (($ $ (-745)) 17)) (-2266 (((-112) $) 10)) (-3424 (($ $ (-890)) NIL) (($ $ (-745)) 18)) (** (($ $ (-890)) NIL) (($ $ (-745)) 15))) +(((-696 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-745))) (-15 -3424 (|#1| |#1| (-745))) (-15 -2246 (|#1| |#1| (-745))) (-15 -2266 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -3424 (|#1| |#1| (-890))) (-15 -2246 (|#1| |#1| (-890)))) (-697)) (T -696)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-745))) (-15 -3424 (|#1| |#1| (-745))) (-15 -2246 (|#1| |#1| (-745))) (-15 -2266 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -3424 (|#1| |#1| (-890))) (-15 -2246 (|#1| |#1| (-890)))) +((-3730 (((-112) $ $) 7)) (-3399 (((-3 $ "failed") $) 17)) (-2246 (($ $ (-890)) 15) (($ $ (-745)) 22)) (-3859 (((-3 $ "failed") $) 19)) (-2266 (((-112) $) 23)) (-3411 (((-3 $ "failed") $) 18)) (-3424 (($ $ (-890)) 14) (($ $ (-745)) 21)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3118 (($) 24 T CONST)) (-2214 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-745)) 20)) (* (($ $ $) 16))) +(((-697) (-138)) (T -697)) +((-3118 (*1 *1) (-4 *1 (-697))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-697)) (-5 *2 (-112)))) (-2246 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (-3424 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (-3859 (*1 *1 *1) (|partial| -4 *1 (-697))) (-3411 (*1 *1 *1) (|partial| -4 *1 (-697))) (-3399 (*1 *1 *1) (|partial| -4 *1 (-697)))) +(-13 (-695) (-10 -8 (-15 (-3118) ($) -2325) (-15 -2266 ((-112) $)) (-15 -2246 ($ $ (-745))) (-15 -3424 ($ $ (-745))) (-15 ** ($ $ (-745))) (-15 -3859 ((-3 $ "failed") $)) (-15 -3411 ((-3 $ "failed") $)) (-15 -3399 ((-3 $ "failed") $)))) +(((-101) . T) ((-592 (-832)) . T) ((-695) . T) ((-1063) . T)) +((-3423 (((-745)) 34)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#2| $) 22)) (-2061 (($ |#3|) NIL) (((-3 $ "failed") (-399 |#3|)) 44)) (-3859 (((-3 $ "failed") $) 64)) (-2545 (($) 38)) (-3910 ((|#2| $) 20)) (-4160 (($) 17)) (-4050 (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-2257 (((-663 |#2|) (-1218 $) (-1 |#2| |#2|)) 59)) (-2591 (((-1218 |#2|) $) NIL) (($ (-1218 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3780 ((|#3| $) 32)) (-2877 (((-1218 $)) 29))) +(((-698 |#1| |#2| |#3|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -2545 (|#1|)) (-15 -3423 ((-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2257 ((-663 |#2|) (-1218 |#1|) (-1 |#2| |#2|))) (-15 -2061 ((-3 |#1| "failed") (-399 |#3|))) (-15 -2591 (|#1| |#3|)) (-15 -2061 (|#1| |#3|)) (-15 -4160 (|#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 (|#3| |#1|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2877 ((-1218 |#1|))) (-15 -3780 (|#3| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|))) (-699 |#2| |#3|) (-169) (-1194 |#2|)) (T -698)) +((-3423 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-745)) (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-699 *4 *5))))) +(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -2545 (|#1|)) (-15 -3423 ((-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2257 ((-663 |#2|) (-1218 |#1|) (-1 |#2| |#2|))) (-15 -2061 ((-3 |#1| "failed") (-399 |#3|))) (-15 -2591 (|#1| |#3|)) (-15 -2061 (|#1| |#3|)) (-15 -4160 (|#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 (|#3| |#1|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2877 ((-1218 |#1|))) (-15 -3780 (|#3| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 91 (|has| |#1| (-355)))) (-3303 (($ $) 92 (|has| |#1| (-355)))) (-3279 (((-112) $) 94 (|has| |#1| (-355)))) (-2350 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2707 ((|#1| $) 50)) (-3667 (((-1145 (-890) (-745)) (-548)) 144 (|has| |#1| (-341)))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 111 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 112 (|has| |#1| (-355)))) (-4087 (((-112) $ $) 102 (|has| |#1| (-355)))) (-3423 (((-745)) 85 (|has| |#1| (-360)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 166 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 164 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 163)) (-2375 (((-548) $) 167 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 165 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 162)) (-2455 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-341)))) (-1945 (($ $ $) 106 (|has| |#1| (-355)))) (-2341 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-1608 (((-663 (-548)) (-663 $)) 161 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 160 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 159) (((-663 |#1|) (-663 $)) 158)) (-2061 (($ |#2|) 155) (((-3 $ "failed") (-399 |#2|)) 152 (|has| |#1| (-355)))) (-3859 (((-3 $ "failed") $) 32)) (-2103 (((-890)) 52)) (-2545 (($) 88 (|has| |#1| (-360)))) (-1922 (($ $ $) 105 (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 100 (|has| |#1| (-355)))) (-2771 (($) 146 (|has| |#1| (-341)))) (-3727 (((-112) $) 147 (|has| |#1| (-341)))) (-2208 (($ $ (-745)) 138 (|has| |#1| (-341))) (($ $) 137 (|has| |#1| (-341)))) (-1271 (((-112) $) 113 (|has| |#1| (-355)))) (-1672 (((-890) $) 149 (|has| |#1| (-341))) (((-807 (-890)) $) 135 (|has| |#1| (-341)))) (-2266 (((-112) $) 30)) (-3910 ((|#1| $) 49)) (-3725 (((-3 $ "failed") $) 139 (|has| |#1| (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| |#1| (-355)))) (-2898 ((|#2| $) 42 (|has| |#1| (-355)))) (-2855 (((-890) $) 87 (|has| |#1| (-360)))) (-2050 ((|#2| $) 153)) (-3553 (($ (-619 $)) 98 (|has| |#1| (-355))) (($ $ $) 97 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 114 (|has| |#1| (-355)))) (-3410 (($) 140 (|has| |#1| (-341)) CONST)) (-3337 (($ (-890)) 86 (|has| |#1| (-360)))) (-3932 (((-1082) $) 10)) (-4160 (($) 157)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 99 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 96 (|has| |#1| (-355))) (($ $ $) 95 (|has| |#1| (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 143 (|has| |#1| (-341)))) (-1915 (((-410 $) $) 110 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 107 (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ $) 90 (|has| |#1| (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| |#1| (-355)))) (-4077 (((-745) $) 103 (|has| |#1| (-355)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 104 (|has| |#1| (-355)))) (-1566 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-2217 (((-745) $) 148 (|has| |#1| (-341))) (((-3 (-745) "failed") $ $) 136 (|has| |#1| (-341)))) (-4050 (($ $) 134 (-1524 (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-745)) 132 (-1524 (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-1135)) 130 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-619 (-1135))) 129 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-1135) (-745)) 128 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 (-745))) 127 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-1 |#1| |#1|) (-745)) 120 (|has| |#1| (-355))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-355)))) (-2257 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-355)))) (-3287 ((|#2|) 156)) (-3655 (($) 145 (|has| |#1| (-341)))) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2591 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 142 (|has| |#1| (-341)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-355))) (($ (-399 (-548))) 84 (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (($ $) 141 (|has| |#1| (-341))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3780 ((|#2| $) 43)) (-3835 (((-745)) 28)) (-2877 (((-1218 $)) 65)) (-3290 (((-112) $ $) 93 (|has| |#1| (-355)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $) 133 (-1524 (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-745)) 131 (-1524 (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-1135)) 126 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-619 (-1135))) 125 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-1135) (-745)) 124 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 (-745))) 123 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-1 |#1| |#1|) (-745)) 122 (|has| |#1| (-355))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-355)))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 118 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 115 (|has| |#1| (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-399 (-548)) $) 117 (|has| |#1| (-355))) (($ $ (-399 (-548))) 116 (|has| |#1| (-355))))) +(((-699 |#1| |#2|) (-138) (-169) (-1194 |t#1|)) (T -699)) +((-4160 (*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-699 *2 *3)) (-4 *3 (-1194 *2)))) (-3287 (*1 *2) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-2061 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) (-2591 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-2061 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-355)) (-4 *3 (-169)) (-4 *1 (-699 *3 *4)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) (-4 *1 (-699 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1194 *5)) (-5 *2 (-663 *5))))) +(-13 (-401 |t#1| |t#2|) (-169) (-593 |t#2|) (-403 |t#1|) (-369 |t#1|) (-10 -8 (-15 -4160 ($)) (-15 -3287 (|t#2|)) (-15 -2061 ($ |t#2|)) (-15 -2591 ($ |t#2|)) (-15 -2050 (|t#2| $)) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|) (IF (|has| |t#1| (-355)) (PROGN (-6 (-355)) (-6 (-224 |t#1|)) (-15 -2061 ((-3 $ "failed") (-399 |t#2|))) (-15 -2257 ((-663 |t#1|) (-1218 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-38 |#1|) . T) ((-38 $) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-101) . T) ((-111 #0# #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-341)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 |#2|) . T) ((-224 |#1|) |has| |#1| (-355)) ((-226) -1524 (|has| |#1| (-341)) (-12 (|has| |#1| (-226)) (|has| |#1| (-355)))) ((-236) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-282) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-299) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-355) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-394) |has| |#1| (-341)) ((-360) -1524 (|has| |#1| (-360)) (|has| |#1| (-341))) ((-341) |has| |#1| (-341)) ((-362 |#1| |#2|) . T) ((-401 |#1| |#2|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-540) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-622 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-692 |#1|) . T) ((-692 $) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135)))) ((-889) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-341)) ((-1176) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)))) +((-3030 (($) 11)) (-3859 (((-3 $ "failed") $) 13)) (-2266 (((-112) $) 10)) (** (($ $ (-890)) NIL) (($ $ (-745)) 18))) +(((-700 |#1|) (-10 -8 (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 -2266 ((-112) |#1|)) (-15 -3030 (|#1|)) (-15 ** (|#1| |#1| (-890)))) (-701)) (T -700)) +NIL +(-10 -8 (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 -2266 ((-112) |#1|)) (-15 -3030 (|#1|)) (-15 ** (|#1| |#1| (-890)))) +((-3730 (((-112) $ $) 7)) (-3030 (($) 18 T CONST)) (-3859 (((-3 $ "failed") $) 15)) (-2266 (((-112) $) 17)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3118 (($) 19 T CONST)) (-2214 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-745)) 16)) (* (($ $ $) 14))) +(((-701) (-138)) (T -701)) +((-3118 (*1 *1) (-4 *1 (-701))) (-3030 (*1 *1) (-4 *1 (-701))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-745)))) (-3859 (*1 *1 *1) (|partial| -4 *1 (-701)))) +(-13 (-1075) (-10 -8 (-15 (-3118) ($) -2325) (-15 -3030 ($) -2325) (-15 -2266 ((-112) $)) (-15 ** ($ $ (-745))) (-15 -3859 ((-3 $ "failed") $)))) +(((-101) . T) ((-592 (-832)) . T) ((-1075) . T) ((-1063) . T)) +((-2273 (((-2 (|:| -3944 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3530 (((-2 (|:| -3944 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2284 ((|#2| (-399 |#2|) (-1 |#2| |#2|)) 13)) (-3642 (((-2 (|:| |poly| |#2|) (|:| -3944 (-399 |#2|)) (|:| |special| (-399 |#2|))) (-399 |#2|) (-1 |#2| |#2|)) 47))) +(((-702 |#1| |#2|) (-10 -7 (-15 -3530 ((-2 (|:| -3944 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2273 ((-2 (|:| -3944 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2284 (|#2| (-399 |#2|) (-1 |#2| |#2|))) (-15 -3642 ((-2 (|:| |poly| |#2|) (|:| -3944 (-399 |#2|)) (|:| |special| (-399 |#2|))) (-399 |#2|) (-1 |#2| |#2|)))) (-355) (-1194 |#1|)) (T -702)) +((-3642 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3944 (-399 *6)) (|:| |special| (-399 *6)))) (-5 *1 (-702 *5 *6)) (-5 *3 (-399 *6)))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-702 *5 *2)) (-4 *5 (-355)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| -3944 (-410 *3)) (|:| |special| (-410 *3)))) (-5 *1 (-702 *5 *3)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| -3944 *3) (|:| |special| *3))) (-5 *1 (-702 *5 *3))))) +(-10 -7 (-15 -3530 ((-2 (|:| -3944 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2273 ((-2 (|:| -3944 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2284 (|#2| (-399 |#2|) (-1 |#2| |#2|))) (-15 -3642 ((-2 (|:| |poly| |#2|) (|:| -3944 (-399 |#2|)) (|:| |special| (-399 |#2|))) (-399 |#2|) (-1 |#2| |#2|)))) +((-3726 ((|#7| (-619 |#5|) |#6|) NIL)) (-2540 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-703 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2540 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3726 (|#7| (-619 |#5|) |#6|))) (-821) (-767) (-767) (-1016) (-1016) (-918 |#4| |#2| |#1|) (-918 |#5| |#3| |#1|)) (T -703)) +((-3726 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *9)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *8 (-1016)) (-4 *2 (-918 *9 *7 *5)) (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) (-4 *4 (-918 *8 *6 *5)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1016)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *2 (-918 *9 *7 *5)) (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) (-4 *4 (-918 *8 *6 *5))))) +(-10 -7 (-15 -2540 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3726 (|#7| (-619 |#5|) |#6|))) +((-2540 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-704 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2540 (|#7| (-1 |#2| |#1|) |#6|))) (-821) (-821) (-767) (-767) (-1016) (-918 |#5| |#3| |#1|) (-918 |#5| |#4| |#2|)) (T -704)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-4 *7 (-767)) (-4 *9 (-1016)) (-4 *2 (-918 *9 *8 *6)) (-5 *1 (-704 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-767)) (-4 *4 (-918 *9 *7 *5))))) +(-10 -7 (-15 -2540 (|#7| (-1 |#2| |#1|) |#6|))) +((-1915 (((-410 |#4|) |#4|) 41))) +(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4|))) (-767) (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135))))) (-299) (-918 (-921 |#3|) |#1| |#2|)) (T -705)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-705 *4 *5 *6 *3)) (-4 *3 (-918 (-921 *6) *4 *5))))) +(-10 -7 (-15 -1915 ((-410 |#4|) |#4|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-834 |#1|)) $) NIL)) (-1884 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-834 |#1|) $) NIL)) (-1557 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| (-520 (-834 |#1|)) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#2| (-520 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-834 |#1|)) NIL)) (-3904 (((-520 (-834 |#1|)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 (-520 (-834 |#1|)) (-520 (-834 |#1|))) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3511 (((-3 (-834 |#1|) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#2| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-1566 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2512 (((-520 (-834 |#1|)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-834 |#1|) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ $) NIL (|has| |#2| (-540))) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548))))))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-520 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-706 |#1| |#2|) (-918 |#2| (-520 (-834 |#1|)) (-834 |#1|)) (-619 (-1135)) (-1016)) (T -706)) +NIL +(-918 |#2| (-520 (-834 |#1|)) (-834 |#1|)) +((-2294 (((-2 (|:| -2857 (-921 |#3|)) (|:| -3243 (-921 |#3|))) |#4|) 14)) (-1904 ((|#4| |#4| |#2|) 33)) (-2323 ((|#4| (-399 (-921 |#3|)) |#2|) 64)) (-2313 ((|#4| (-1131 (-921 |#3|)) |#2|) 77)) (-2303 ((|#4| (-1131 |#4|) |#2|) 51)) (-1893 ((|#4| |#4| |#2|) 54)) (-1915 (((-410 |#4|) |#4|) 40))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2294 ((-2 (|:| -2857 (-921 |#3|)) (|:| -3243 (-921 |#3|))) |#4|)) (-15 -1893 (|#4| |#4| |#2|)) (-15 -2303 (|#4| (-1131 |#4|) |#2|)) (-15 -1904 (|#4| |#4| |#2|)) (-15 -2313 (|#4| (-1131 (-921 |#3|)) |#2|)) (-15 -2323 (|#4| (-399 (-921 |#3|)) |#2|)) (-15 -1915 ((-410 |#4|) |#4|))) (-767) (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)))) (-540) (-918 (-399 (-921 |#3|)) |#1| |#2|)) (T -707)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)) (-5 *2 (-410 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-399 (-921 *6)) *4 *5)))) (-2323 (*1 *2 *3 *4) (-12 (-4 *6 (-540)) (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-5 *3 (-399 (-921 *6))) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 (-921 *6))) (-4 *6 (-540)) (-4 *2 (-918 (-399 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))))) (-1904 (*1 *2 *2 *3) (-12 (-4 *4 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *5 (-540)) (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-399 (-921 *5)) *4 *3)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *2)) (-4 *2 (-918 (-399 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)))) (-1893 (*1 *2 *2 *3) (-12 (-4 *4 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *5 (-540)) (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-399 (-921 *5)) *4 *3)))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)) (-5 *2 (-2 (|:| -2857 (-921 *6)) (|:| -3243 (-921 *6)))) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-399 (-921 *6)) *4 *5))))) +(-10 -7 (-15 -2294 ((-2 (|:| -2857 (-921 |#3|)) (|:| -3243 (-921 |#3|))) |#4|)) (-15 -1893 (|#4| |#4| |#2|)) (-15 -2303 (|#4| (-1131 |#4|) |#2|)) (-15 -1904 (|#4| |#4| |#2|)) (-15 -2313 (|#4| (-1131 (-921 |#3|)) |#2|)) (-15 -2323 (|#4| (-399 (-921 |#3|)) |#2|)) (-15 -1915 ((-410 |#4|) |#4|))) +((-1915 (((-410 |#4|) |#4|) 52))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4|))) (-767) (-821) (-13 (-299) (-145)) (-918 (-399 |#3|) |#1| |#2|)) (T -708)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-13 (-299) (-145))) (-5 *2 (-410 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-918 (-399 *6) *4 *5))))) +(-10 -7 (-15 -1915 ((-410 |#4|) |#4|))) +((-2540 (((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)) 18))) +(((-709 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)))) (-1016) (-1016) (-701)) (T -709)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5 *7)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-701)) (-5 *2 (-710 *6 *7)) (-5 *1 (-709 *5 *6 *7))))) +(-10 -7 (-15 -2540 ((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 28)) (-1680 (((-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))) $) 29)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745)) 20 (-12 (|has| |#2| (-360)) (|has| |#1| (-360))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2375 ((|#2| $) NIL) ((|#1| $) NIL)) (-1872 (($ $) 79 (|has| |#2| (-821)))) (-3859 (((-3 $ "failed") $) 65)) (-2545 (($) 35 (-12 (|has| |#2| (-360)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) 55)) (-3915 (((-619 $) $) 39)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| |#2|) 16)) (-2540 (($ (-1 |#1| |#1|) $) 54)) (-2855 (((-890) $) 32 (-12 (|has| |#2| (-360)) (|has| |#1| (-360))))) (-2185 ((|#2| $) 78 (|has| |#2| (-821)))) (-2197 ((|#1| $) 77 (|has| |#2| (-821)))) (-2546 (((-1118) $) NIL)) (-3337 (($ (-890)) 27 (-12 (|has| |#2| (-360)) (|has| |#1| (-360))))) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 76) (($ (-548)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|)))) 11)) (-3852 (((-619 |#1|) $) 41)) (-1951 ((|#1| $ |#2|) 88)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-3107 (($) 12 T CONST)) (-3118 (($) 33 T CONST)) (-2214 (((-112) $ $) 80)) (-2299 (($ $) 47) (($ $ $) NIL)) (-2290 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-710 |#1| |#2|) (-13 (-1016) (-1007 |#2|) (-1007 |#1|) (-10 -8 (-15 -2024 ($ |#1| |#2|)) (-15 -1951 (|#1| $ |#2|)) (-15 -3743 ($ (-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))))) (-15 -1680 ((-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))) $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (-15 -2435 ((-112) $)) (-15 -3852 ((-619 |#1|) $)) (-15 -3915 ((-619 $) $)) (-15 -2333 ((-745) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-360)) (IF (|has| |#2| (-360)) (-6 (-360)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-821)) (PROGN (-15 -2185 (|#2| $)) (-15 -2197 (|#1| $)) (-15 -1872 ($ $))) |%noBranch|))) (-1016) (-701)) (T -710)) +((-2024 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-701)))) (-1951 (*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-701)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -1489 *3) (|:| -3310 *4)))) (-4 *3 (-1016)) (-4 *4 (-701)) (-5 *1 (-710 *3 *4)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -1489 *3) (|:| -3310 *4)))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-710 *3 *4)) (-4 *4 (-701)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-619 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2185 (*1 *2 *1) (-12 (-4 *2 (-701)) (-4 *2 (-821)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1016)))) (-2197 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *3 (-701)))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1016)) (-4 *3 (-701))))) +(-13 (-1016) (-1007 |#2|) (-1007 |#1|) (-10 -8 (-15 -2024 ($ |#1| |#2|)) (-15 -1951 (|#1| $ |#2|)) (-15 -3743 ($ (-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))))) (-15 -1680 ((-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))) $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (-15 -2435 ((-112) $)) (-15 -3852 ((-619 |#1|) $)) (-15 -3915 ((-619 $) $)) (-15 -2333 ((-745) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-360)) (IF (|has| |#2| (-360)) (-6 (-360)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-821)) (PROGN (-15 -2185 (|#2| $)) (-15 -2197 (|#1| $)) (-15 -1872 ($ $))) |%noBranch|))) +((-3730 (((-112) $ $) 19)) (-1434 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2501 (($ $ $) 72)) (-2491 (((-112) $ $) 73)) (-2028 (((-112) $ (-745)) 8)) (-2592 (($ (-619 |#1|)) 68) (($) 67)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-2969 (($ $) 62)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 64)) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22)) (-2520 (($ $ $) 69)) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3932 (((-1082) $) 21)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 61)) (-2511 (($ $ |#1|) 71) (($ $ $) 70)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18)) (-4013 (($ (-619 |#1|)) 66) (($) 65)) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-711 |#1|) (-138) (-1063)) (T -711)) +NIL +(-13 (-669 |t#1|) (-1061 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-669 |#1|) . T) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) +((-3730 (((-112) $ $) NIL)) (-1434 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2501 (($ $ $) 79)) (-2491 (((-112) $ $) 83)) (-2028 (((-112) $ (-745)) NIL)) (-2592 (($ (-619 |#1|)) 24) (($) 16)) (-2657 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-2969 (($ $) 71)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) 61 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4327))) (($ |#1| $ (-548)) 62) (($ (-1 (-112) |#1|) $ (-548)) 65)) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (($ |#1| $ (-548)) 67) (($ (-1 (-112) |#1|) $ (-548)) 68)) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 32 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 82)) (-2351 (($) 14) (($ |#1|) 26) (($ (-619 |#1|)) 21)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) 38)) (-2556 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 75)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2520 (($ $ $) 77)) (-1346 ((|#1| $) 55)) (-2539 (($ |#1| $) 56) (($ |#1| $ (-745)) 72)) (-3932 (((-1082) $) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1357 ((|#1| $) 54)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 50)) (-3319 (($) 13)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 48)) (-2511 (($ $ |#1|) NIL) (($ $ $) 78)) (-2801 (($) 15) (($ (-619 |#1|)) 23)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) 60 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 66)) (-2591 (((-524) $) 36 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 20)) (-3743 (((-832) $) 44)) (-4013 (($ (-619 |#1|)) 25) (($) 17)) (-1368 (($ (-619 |#1|)) 22)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 81)) (-3643 (((-745) $) 59 (|has| $ (-6 -4327))))) +(((-712 |#1|) (-13 (-711 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2351 ($)) (-15 -2351 ($ |#1|)) (-15 -2351 ($ (-619 |#1|))) (-15 -2342 ((-619 |#1|) $)) (-15 -3699 ($ |#1| $ (-548))) (-15 -3699 ($ (-1 (-112) |#1|) $ (-548))) (-15 -1636 ($ |#1| $ (-548))) (-15 -1636 ($ (-1 (-112) |#1|) $ (-548))))) (-1063)) (T -712)) +((-2351 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-2351 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-2351 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-712 *3)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1063)))) (-3699 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3699 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-548)) (-4 *4 (-1063)) (-5 *1 (-712 *4)))) (-1636 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-1636 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-548)) (-4 *4 (-1063)) (-5 *1 (-712 *4))))) +(-13 (-711 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2351 ($)) (-15 -2351 ($ |#1|)) (-15 -2351 ($ (-619 |#1|))) (-15 -2342 ((-619 |#1|) $)) (-15 -3699 ($ |#1| $ (-548))) (-15 -3699 ($ (-1 (-112) |#1|) $ (-548))) (-15 -1636 ($ |#1| $ (-548))) (-15 -1636 ($ (-1 (-112) |#1|) $ (-548))))) +((-3907 (((-1223) (-1118)) 8))) +(((-713) (-10 -7 (-15 -3907 ((-1223) (-1118))))) (T -713)) +((-3907 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-713))))) +(-10 -7 (-15 -3907 ((-1223) (-1118)))) +((-2362 (((-619 |#1|) (-619 |#1|) (-619 |#1|)) 10))) +(((-714 |#1|) (-10 -7 (-15 -2362 ((-619 |#1|) (-619 |#1|) (-619 |#1|)))) (-821)) (T -714)) +((-2362 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-714 *3))))) +(-10 -7 (-15 -2362 ((-619 |#1|) (-619 |#1|) (-619 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 |#2|) $) 134)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 127 (|has| |#1| (-540)))) (-3303 (($ $) 126 (|has| |#1| (-540)))) (-3279 (((-112) $) 124 (|has| |#1| (-540)))) (-2074 (($ $) 83 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 66 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1926 (($ $) 65 (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) 82 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 67 (|has| |#1| (-38 (-399 (-548)))))) (-2098 (($ $) 81 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 68 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-1872 (($ $) 118)) (-3859 (((-3 $ "failed") $) 32)) (-3520 (((-921 |#1|) $ (-745)) 96) (((-921 |#1|) $ (-745) (-745)) 95)) (-3345 (((-112) $) 135)) (-1365 (($) 93 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $ |#2|) 98) (((-745) $ |#2| (-745)) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 64 (|has| |#1| (-38 (-399 (-548)))))) (-2435 (((-112) $) 116)) (-2024 (($ $ (-619 |#2|) (-619 (-520 |#2|))) 133) (($ $ |#2| (-520 |#2|)) 132) (($ |#1| (-520 |#2|)) 117) (($ $ |#2| (-745)) 100) (($ $ (-619 |#2|) (-619 (-745))) 99)) (-2540 (($ (-1 |#1| |#1|) $) 115)) (-3496 (($ $) 90 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 113)) (-2197 ((|#1| $) 112)) (-2546 (((-1118) $) 9)) (-3810 (($ $ |#2|) 94 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) 10)) (-1656 (($ $ (-745)) 101)) (-1900 (((-3 $ "failed") $ $) 128 (|has| |#1| (-540)))) (-2458 (($ $) 91 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (($ $ |#2| $) 109) (($ $ (-619 |#2|) (-619 $)) 108) (($ $ (-619 (-286 $))) 107) (($ $ (-286 $)) 106) (($ $ $ $) 105) (($ $ (-619 $) (-619 $)) 104)) (-4050 (($ $ |#2|) 40) (($ $ (-619 |#2|)) 39) (($ $ |#2| (-745)) 38) (($ $ (-619 |#2|) (-619 (-745))) 37)) (-2512 (((-520 |#2|) $) 114)) (-2110 (($ $) 80 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 69 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 79 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 70 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 78 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 71 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 136)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 131 (|has| |#1| (-169))) (($ $) 129 (|has| |#1| (-540))) (($ (-399 (-548))) 121 (|has| |#1| (-38 (-399 (-548)))))) (-1951 ((|#1| $ (-520 |#2|)) 119) (($ $ |#2| (-745)) 103) (($ $ (-619 |#2|) (-619 (-745))) 102)) (-4017 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2145 (($ $) 89 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 77 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 125 (|has| |#1| (-540)))) (-2122 (($ $) 88 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 76 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 87 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 75 (|has| |#1| (-38 (-399 (-548)))))) (-4026 (($ $) 86 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 74 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 85 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 73 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 84 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 72 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ |#2|) 36) (($ $ (-619 |#2|)) 35) (($ $ |#2| (-745)) 34) (($ $ (-619 |#2|) (-619 (-745))) 33)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 120 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ $) 92 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 63 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 123 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 122 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-715 |#1| |#2|) (-138) (-1016) (-821)) (T -715)) +((-1951 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-821)))) (-1951 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-715 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-821)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-821)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-1672 (*1 *2 *1 *3) (-12 (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *2 (-745)))) (-1672 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-745)) (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)) (-5 *2 (-921 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)) (-5 *2 (-921 *4)))) (-3810 (*1 *1 *1 *2) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)) (-4 *3 (-38 (-399 (-548))))))) +(-13 (-869 |t#2|) (-942 |t#1| (-520 |t#2|) |t#2|) (-504 |t#2| $) (-301 $) (-10 -8 (-15 -1951 ($ $ |t#2| (-745))) (-15 -1951 ($ $ (-619 |t#2|) (-619 (-745)))) (-15 -1656 ($ $ (-745))) (-15 -2024 ($ $ |t#2| (-745))) (-15 -2024 ($ $ (-619 |t#2|) (-619 (-745)))) (-15 -1672 ((-745) $ |t#2|)) (-15 -1672 ((-745) $ |t#2| (-745))) (-15 -3520 ((-921 |t#1|) $ (-745))) (-15 -3520 ((-921 |t#1|) $ (-745) (-745))) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ |t#2|)) (-6 (-971)) (-6 (-1157))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-520 |#2|)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-282) |has| |#1| (-540)) ((-301 $) . T) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-504 |#2| $) . T) ((-504 $ $) . T) ((-540) |has| |#1| (-540)) ((-622 #1#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-869 |#2|) . T) ((-942 |#1| #0# |#2|) . T) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1022 #1#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548))))) +((-1915 (((-410 (-1131 |#4|)) (-1131 |#4|)) 30) (((-410 |#4|) |#4|) 26))) +(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4|)) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|)))) (-821) (-767) (-13 (-299) (-145)) (-918 |#3| |#2| |#1|)) (T -716)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-299) (-145))) (-5 *2 (-410 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) +(-10 -7 (-15 -1915 ((-410 |#4|) |#4|)) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|)))) +((-2393 (((-410 |#4|) |#4| |#2|) 120)) (-2371 (((-410 |#4|) |#4|) NIL)) (-2634 (((-410 (-1131 |#4|)) (-1131 |#4|)) 111) (((-410 |#4|) |#4|) 41)) (-2414 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -1915 (-1131 |#4|)) (|:| -3352 (-548)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|))) 69)) (-2456 (((-1131 |#3|) (-1131 |#3|) (-548)) 139)) (-2446 (((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745)) 61)) (-2050 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|)) 65)) (-2423 (((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|))) 26)) (-2403 (((-2 (|:| -2802 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-548)) 57)) (-2381 (((-548) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) 136)) (-2433 ((|#4| (-548) (-410 |#4|)) 58)) (-4254 (((-112) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) NIL))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2634 ((-410 |#4|) |#4|)) (-15 -2634 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -2371 ((-410 |#4|) |#4|)) (-15 -2381 ((-548) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))))) (-15 -2393 ((-410 |#4|) |#4| |#2|)) (-15 -2403 ((-2 (|:| -2802 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-548))) (-15 -2414 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -1915 (-1131 |#4|)) (|:| -3352 (-548)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2423 ((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2433 (|#4| (-548) (-410 |#4|))) (-15 -4254 ((-112) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))))) (-15 -2050 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|))) (-15 -2446 ((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745))) (-15 -2456 ((-1131 |#3|) (-1131 |#3|) (-548)))) (-767) (-821) (-299) (-918 |#3| |#1| |#2|)) (T -717)) +((-2456 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 *6)) (-5 *3 (-548)) (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-4 *7 (-821)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-4 *8 (-299)) (-5 *2 (-619 (-745))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *5 (-745)))) (-2050 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1131 *11)) (-5 *6 (-619 *10)) (-5 *7 (-619 (-745))) (-5 *8 (-619 *11)) (-4 *10 (-821)) (-4 *11 (-299)) (-4 *9 (-767)) (-4 *5 (-918 *11 *9 *10)) (-5 *2 (-619 (-1131 *5))) (-5 *1 (-717 *9 *10 *11 *5)) (-5 *3 (-1131 *5)))) (-4254 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-2 (|:| -1915 (-1131 *6)) (|:| -3352 (-548))))) (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-548)) (-5 *4 (-410 *2)) (-4 *2 (-918 *7 *5 *6)) (-5 *1 (-717 *5 *6 *7 *2)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-299)))) (-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) (-4 *8 (-299)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-5 *2 (-2 (|:| |upol| (-1131 *8)) (|:| |Lval| (-619 *8)) (|:| |Lfact| (-619 (-2 (|:| -1915 (-1131 *8)) (|:| -3352 (-548))))) (|:| |ctpol| *8))) (-5 *1 (-717 *6 *7 *8 *9)))) (-2414 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) (-4 *8 (-299)) (-4 *6 (-767)) (-4 *9 (-918 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-619 (-2 (|:| -1915 (-1131 *9)) (|:| -3352 (-548))))))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)))) (-2403 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-548)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-299)) (-4 *9 (-918 *8 *6 *7)) (-5 *2 (-2 (|:| -2802 (-1131 *9)) (|:| |polval| (-1131 *8)))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)) (-5 *4 (-1131 *8)))) (-2393 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-717 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -1915 (-1131 *6)) (|:| -3352 (-548))))) (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-548)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2371 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5))))) +(-10 -7 (-15 -2634 ((-410 |#4|) |#4|)) (-15 -2634 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -2371 ((-410 |#4|) |#4|)) (-15 -2381 ((-548) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))))) (-15 -2393 ((-410 |#4|) |#4| |#2|)) (-15 -2403 ((-2 (|:| -2802 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-548))) (-15 -2414 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -1915 (-1131 |#4|)) (|:| -3352 (-548)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2423 ((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2433 (|#4| (-548) (-410 |#4|))) (-15 -4254 ((-112) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))))) (-15 -2050 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|))) (-15 -2446 ((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745))) (-15 -2456 ((-1131 |#3|) (-1131 |#3|) (-548)))) +((-2468 (($ $ (-890)) 12))) +(((-718 |#1| |#2|) (-10 -8 (-15 -2468 (|#1| |#1| (-890)))) (-719 |#2|) (-169)) (T -718)) +NIL +(-10 -8 (-15 -2468 (|#1| |#1| (-890)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2246 (($ $ (-890)) 28)) (-2468 (($ $ (-890)) 33)) (-3424 (($ $ (-890)) 29)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3652 (($ $ $) 25)) (-3743 (((-832) $) 11)) (-3664 (($ $ $ $) 26)) (-3639 (($ $ $) 24)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-719 |#1|) (-138) (-169)) (T -719)) +((-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-719 *3)) (-4 *3 (-169))))) +(-13 (-736) (-692 |t#1|) (-10 -8 (-15 -2468 ($ $ (-890))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-2489 (((-1004) (-663 (-218)) (-548) (-112) (-548)) 25)) (-2478 (((-1004) (-663 (-218)) (-548) (-112) (-548)) 24))) +(((-720) (-10 -7 (-15 -2478 ((-1004) (-663 (-218)) (-548) (-112) (-548))) (-15 -2489 ((-1004) (-663 (-218)) (-548) (-112) (-548))))) (T -720)) +((-2489 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-720)))) (-2478 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-720))))) +(-10 -7 (-15 -2478 ((-1004) (-663 (-218)) (-548) (-112) (-548))) (-15 -2489 ((-1004) (-663 (-218)) (-548) (-112) (-548)))) +((-2519 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN)))) 43)) (-2510 (((-1004) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN)))) 39)) (-2500 (((-1004) (-218) (-218) (-218) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 32))) +(((-721) (-10 -7 (-15 -2500 ((-1004) (-218) (-218) (-218) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2510 ((-1004) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN))))) (-15 -2519 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN))))))) (T -721)) +((-2519 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1004)) (-5 *1 (-721)))) (-2510 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1004)) (-5 *1 (-721)))) (-2500 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *2 (-1004)) (-5 *1 (-721))))) +(-10 -7 (-15 -2500 ((-1004) (-218) (-218) (-218) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2510 ((-1004) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN))))) (-15 -2519 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN)))))) +((-2641 (((-1004) (-548) (-548) (-663 (-218)) (-548)) 34)) (-2632 (((-1004) (-548) (-548) (-663 (-218)) (-548)) 33)) (-2623 (((-1004) (-548) (-663 (-218)) (-548)) 32)) (-2613 (((-1004) (-548) (-663 (-218)) (-548)) 31)) (-2603 (((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 30)) (-2594 (((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 29)) (-2583 (((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548)) 28)) (-2574 (((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548)) 27)) (-2565 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 24)) (-2555 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548)) 23)) (-2544 (((-1004) (-548) (-663 (-218)) (-548)) 22)) (-2530 (((-1004) (-548) (-663 (-218)) (-548)) 21))) +(((-722) (-10 -7 (-15 -2530 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2544 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2555 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2565 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2574 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2583 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2594 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2603 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2613 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2623 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2632 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -2641 ((-1004) (-548) (-548) (-663 (-218)) (-548))))) (T -722)) +((-2641 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2632 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2623 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2613 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2603 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2594 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2583 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2574 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2565 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2555 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2544 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2530 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722))))) +(-10 -7 (-15 -2530 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2544 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2555 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2565 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2574 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2583 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2594 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2603 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2613 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2623 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2632 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -2641 ((-1004) (-548) (-548) (-663 (-218)) (-548)))) +((-2751 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) 52)) (-2743 (((-1004) (-663 (-218)) (-663 (-218)) (-548) (-548)) 51)) (-2733 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2726 (((-1004) (-218) (-218) (-548) (-548) (-548) (-548)) 46)) (-2717 (((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) 45)) (-2709 (((-1004) (-218) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) 44)) (-2701 (((-1004) (-218) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) 43)) (-2693 (((-1004) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) 42)) (-2682 (((-1004) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 38)) (-2674 (((-1004) (-218) (-218) (-548) (-663 (-218)) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 37)) (-2664 (((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 33)) (-2653 (((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 32))) +(((-723) (-10 -7 (-15 -2653 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2664 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2674 ((-1004) (-218) (-218) (-548) (-663 (-218)) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2682 ((-1004) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2693 ((-1004) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2701 ((-1004) (-218) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2709 ((-1004) (-218) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2717 ((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2726 ((-1004) (-218) (-218) (-548) (-548) (-548) (-548))) (-15 -2733 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN))))) (-15 -2743 ((-1004) (-663 (-218)) (-663 (-218)) (-548) (-548))) (-15 -2751 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN))))))) (T -723)) +((-2751 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2743 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2733 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2726 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2717 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2709 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2701 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2693 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2682 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2674 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2664 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2653 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *2 (-1004)) (-5 *1 (-723))))) +(-10 -7 (-15 -2653 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2664 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2674 ((-1004) (-218) (-218) (-548) (-663 (-218)) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2682 ((-1004) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2693 ((-1004) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2701 ((-1004) (-218) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2709 ((-1004) (-218) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2717 ((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2726 ((-1004) (-218) (-218) (-548) (-548) (-548) (-548))) (-15 -2733 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN))))) (-15 -2743 ((-1004) (-663 (-218)) (-663 (-218)) (-548) (-548))) (-15 -2751 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))))) +((-1696 (((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-1690 (((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))) (-380) (-380)) 69) (((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) 68)) (-1682 (((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG)))) 57)) (-1674 (((-1004) (-663 (-218)) (-663 (-218)) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) 50)) (-2783 (((-1004) (-218) (-548) (-548) (-1118) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2775 (((-1004) (-218) (-548) (-548) (-218) (-1118) (-218) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2767 (((-1004) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) 42)) (-2760 (((-1004) (-218) (-548) (-548) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) 38))) +(((-724) (-10 -7 (-15 -2760 ((-1004) (-218) (-548) (-548) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -2767 ((-1004) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))))) (-15 -2775 ((-1004) (-218) (-548) (-548) (-218) (-1118) (-218) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -2783 ((-1004) (-218) (-548) (-548) (-1118) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -1674 ((-1004) (-663 (-218)) (-663 (-218)) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))))) (-15 -1682 ((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG))))) (-15 -1690 ((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))))) (-15 -1690 ((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))) (-380) (-380))) (-15 -1696 ((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -724)) +((-1696 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1690 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-380)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1690 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1682 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1674 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2783 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-663 (-218))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2775 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-663 (-218))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2767 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2760 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(-10 -7 (-15 -2760 ((-1004) (-218) (-548) (-548) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -2767 ((-1004) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))))) (-15 -2775 ((-1004) (-218) (-548) (-548) (-218) (-1118) (-218) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -2783 ((-1004) (-218) (-548) (-548) (-1118) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -1674 ((-1004) (-663 (-218)) (-663 (-218)) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))))) (-15 -1682 ((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG))))) (-15 -1690 ((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))))) (-15 -1690 ((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))) (-380) (-380))) (-15 -1696 ((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP)))))) +((-1721 (((-1004) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-649 (-218)) (-548)) 45)) (-1712 (((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-1118) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY)))) 41)) (-1704 (((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 23))) +(((-725) (-10 -7 (-15 -1704 ((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1712 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-1118) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY))))) (-15 -1721 ((-1004) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-649 (-218)) (-548))))) (T -725)) +((-1721 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-649 (-218))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-725)))) (-1712 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1004)) (-5 *1 (-725)))) (-1704 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-725))))) +(-10 -7 (-15 -1704 ((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1712 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-1118) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY))))) (-15 -1721 ((-1004) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-649 (-218)) (-548)))) +((-1813 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-663 (-218)) (-218) (-218) (-548)) 35)) (-1802 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-218) (-218) (-548)) 34)) (-1792 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-663 (-218)) (-218) (-218) (-548)) 33)) (-1784 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 29)) (-1776 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 28)) (-1768 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548)) 27)) (-1759 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548)) 24)) (-1750 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548)) 23)) (-1742 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548)) 22)) (-1731 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548)) 21))) +(((-726) (-10 -7 (-15 -1731 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))) (-15 -1742 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1750 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -1759 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -1768 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548))) (-15 -1776 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1784 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1792 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-663 (-218)) (-218) (-218) (-548))) (-15 -1802 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-218) (-218) (-548))) (-15 -1813 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-663 (-218)) (-218) (-218) (-548))))) (T -726)) +((-1813 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1802 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1792 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *6 (-218)) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1784 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1776 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1768 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1759 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1750 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1742 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1731 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726))))) +(-10 -7 (-15 -1731 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))) (-15 -1742 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1750 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -1759 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -1768 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548))) (-15 -1776 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1784 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1792 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-663 (-218)) (-218) (-218) (-548))) (-15 -1802 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-218) (-218) (-548))) (-15 -1813 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-663 (-218)) (-218) (-218) (-548)))) +((-1998 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548)) 45)) (-1989 (((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-548)) 44)) (-1976 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548)) 43)) (-1965 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 42)) (-1954 (((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548)) 41)) (-1942 (((-1004) (-1118) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548)) 40)) (-1931 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548) (-548) (-548) (-218) (-663 (-218)) (-548)) 39)) (-1920 (((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548))) 38)) (-1909 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548)) 35)) (-1897 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548)) 34)) (-1889 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548)) 33)) (-1879 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 32)) (-1868 (((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548)) 31)) (-1859 (((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-548)) 30)) (-1850 (((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-548) (-548) (-548)) 29)) (-1842 (((-1004) (-548) (-548) (-548) (-218) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-548)) (-548) (-548) (-548)) 28)) (-1833 (((-1004) (-548) (-663 (-218)) (-218) (-548)) 24)) (-1823 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 21))) +(((-727) (-10 -7 (-15 -1823 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1833 ((-1004) (-548) (-663 (-218)) (-218) (-548))) (-15 -1842 ((-1004) (-548) (-548) (-548) (-218) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-548)) (-548) (-548) (-548))) (-15 -1850 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-548) (-548) (-548))) (-15 -1859 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-548))) (-15 -1868 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548))) (-15 -1879 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1889 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548))) (-15 -1897 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548))) (-15 -1909 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1920 ((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)))) (-15 -1931 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548) (-548) (-548) (-218) (-663 (-218)) (-548))) (-15 -1942 ((-1004) (-1118) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548))) (-15 -1954 ((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1965 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1976 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))) (-15 -1989 ((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1998 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))))) (T -727)) +((-1998 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1989 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1976 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1965 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1954 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1942 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) (-5 *7 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1931 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *6 (-218)) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1920 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) (-5 *7 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1909 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1897 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1889 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1879 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1868 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1859 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1850 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1842 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) (-5 *3 (-548)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1833 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1823 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727))))) +(-10 -7 (-15 -1823 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1833 ((-1004) (-548) (-663 (-218)) (-218) (-548))) (-15 -1842 ((-1004) (-548) (-548) (-548) (-218) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-548)) (-548) (-548) (-548))) (-15 -1850 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-548) (-548) (-548))) (-15 -1859 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-548))) (-15 -1868 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548))) (-15 -1879 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1889 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548))) (-15 -1897 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548))) (-15 -1909 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1920 ((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)))) (-15 -1931 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548) (-548) (-548) (-218) (-663 (-218)) (-548))) (-15 -1942 ((-1004) (-1118) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548))) (-15 -1954 ((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1965 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1976 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))) (-15 -1989 ((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1998 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548)))) +((-2087 (((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-548) (-663 (-218)) (-548)) 63)) (-2076 (((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-112) (-218) (-548) (-218) (-218) (-112) (-218) (-218) (-218) (-218) (-112) (-548) (-548) (-548) (-548) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2067 (((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-112) (-112) (-548) (-548) (-663 (-218)) (-663 (-548)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS)))) 58)) (-2056 (((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-548) (-548) (-663 (-218)) (-548)) 51)) (-2042 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2031 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2019 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2009 (((-1004) (-548) (-218) (-218) (-548) (-218) (-112) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) 38))) +(((-728) (-10 -7 (-15 -2009 ((-1004) (-548) (-218) (-218) (-548) (-218) (-112) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN))))) (-15 -2019 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1))))) (-15 -2031 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2))))) (-15 -2042 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1))))) (-15 -2056 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-548) (-548) (-663 (-218)) (-548))) (-15 -2067 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-112) (-112) (-548) (-548) (-663 (-218)) (-663 (-548)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS))))) (-15 -2076 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-112) (-218) (-548) (-218) (-218) (-112) (-218) (-218) (-218) (-218) (-112) (-548) (-548) (-548) (-548) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN))))) (-15 -2087 ((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-548) (-663 (-218)) (-548))))) (T -728)) +((-2087 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2076 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-112)) (-5 *6 (-218)) (-5 *7 (-663 (-548))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2067 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-663 (-218))) (-5 *6 (-112)) (-5 *7 (-663 (-548))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-548)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2056 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2042 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2031 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2019 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2009 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-548)) (-5 *5 (-112)) (-5 *6 (-663 (-218))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728))))) +(-10 -7 (-15 -2009 ((-1004) (-548) (-218) (-218) (-548) (-218) (-112) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN))))) (-15 -2019 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1))))) (-15 -2031 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2))))) (-15 -2042 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1))))) (-15 -2056 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-548) (-548) (-663 (-218)) (-548))) (-15 -2067 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-112) (-112) (-548) (-548) (-663 (-218)) (-663 (-548)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS))))) (-15 -2076 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-112) (-218) (-548) (-218) (-218) (-112) (-218) (-218) (-218) (-218) (-112) (-548) (-548) (-548) (-548) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN))))) (-15 -2087 ((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-548) (-663 (-218)) (-548)))) +((-2203 (((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548)) 47)) (-2191 (((-1004) (-1118) (-1118) (-548) (-548) (-663 (-166 (-218))) (-548) (-663 (-166 (-218))) (-548) (-548) (-663 (-166 (-218))) (-548)) 46)) (-2181 (((-1004) (-548) (-548) (-548) (-663 (-166 (-218))) (-548)) 45)) (-2171 (((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 40)) (-2161 (((-1004) (-1118) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-663 (-218)) (-548)) 39)) (-2147 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-548)) 36)) (-2135 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548)) 35)) (-2124 (((-1004) (-548) (-548) (-548) (-548) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-218) (-218) (-548)) 34)) (-2112 (((-1004) (-548) (-548) (-548) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-112) (-218) (-112) (-663 (-548)) (-663 (-218)) (-548)) 33)) (-2101 (((-1004) (-548) (-548) (-548) (-548) (-218) (-112) (-112) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-548)) 32))) +(((-729) (-10 -7 (-15 -2101 ((-1004) (-548) (-548) (-548) (-548) (-218) (-112) (-112) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-548))) (-15 -2112 ((-1004) (-548) (-548) (-548) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-112) (-218) (-112) (-663 (-548)) (-663 (-218)) (-548))) (-15 -2124 ((-1004) (-548) (-548) (-548) (-548) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-218) (-218) (-548))) (-15 -2135 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548))) (-15 -2147 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-548))) (-15 -2161 ((-1004) (-1118) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-663 (-218)) (-548))) (-15 -2171 ((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2181 ((-1004) (-548) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -2191 ((-1004) (-1118) (-1118) (-548) (-548) (-663 (-166 (-218))) (-548) (-663 (-166 (-218))) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -2203 ((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548))))) (T -729)) +((-2203 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2191 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2181 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2171 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2161 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2147 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2135 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2124 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-619 (-112))) (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) (-5 *7 (-218)) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2112 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-663 (-548))) (-5 *5 (-112)) (-5 *7 (-663 (-218))) (-5 *3 (-548)) (-5 *6 (-218)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2101 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-619 (-112))) (-5 *7 (-663 (-218))) (-5 *8 (-663 (-548))) (-5 *3 (-548)) (-5 *4 (-218)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-729))))) +(-10 -7 (-15 -2101 ((-1004) (-548) (-548) (-548) (-548) (-218) (-112) (-112) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-548))) (-15 -2112 ((-1004) (-548) (-548) (-548) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-112) (-218) (-112) (-663 (-548)) (-663 (-218)) (-548))) (-15 -2124 ((-1004) (-548) (-548) (-548) (-548) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-218) (-218) (-548))) (-15 -2135 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548))) (-15 -2147 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-548))) (-15 -2161 ((-1004) (-1118) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-663 (-218)) (-548))) (-15 -2171 ((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2181 ((-1004) (-548) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -2191 ((-1004) (-1118) (-1118) (-548) (-548) (-663 (-166 (-218))) (-548) (-663 (-166 (-218))) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -2203 ((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548)))) +((-4251 (((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548)) 65)) (-4240 (((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548)) 60)) (-4229 (((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))) (-380)) 56) (((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) 55)) (-4219 (((-1004) (-548) (-548) (-548) (-218) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548)) 37)) (-4208 (((-1004) (-548) (-548) (-218) (-218) (-548) (-548) (-663 (-218)) (-548)) 33)) (-4197 (((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548) (-548)) 30)) (-4187 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 29)) (-4177 (((-1004) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 28)) (-4166 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 27)) (-4156 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548)) 26)) (-4146 (((-1004) (-548) (-548) (-663 (-218)) (-548)) 25)) (-4136 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 24)) (-2228 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 23)) (-2219 (((-1004) (-663 (-218)) (-548) (-548) (-548) (-548)) 22)) (-2209 (((-1004) (-548) (-548) (-663 (-218)) (-548)) 21))) +(((-730) (-10 -7 (-15 -2209 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -2219 ((-1004) (-663 (-218)) (-548) (-548) (-548) (-548))) (-15 -2228 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4136 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4146 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -4156 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548))) (-15 -4166 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4177 ((-1004) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4187 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4197 ((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548) (-548))) (-15 -4208 ((-1004) (-548) (-548) (-218) (-218) (-548) (-548) (-663 (-218)) (-548))) (-15 -4219 ((-1004) (-548) (-548) (-548) (-218) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4229 ((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))))) (-15 -4229 ((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))) (-380))) (-15 -4240 ((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4251 ((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548))))) (T -730)) +((-4251 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-112)) (-5 *5 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4240 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-112)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4229 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-380)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4229 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4219 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-548)) (-5 *5 (-112)) (-5 *6 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4208 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4197 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4187 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4177 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4166 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4156 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4146 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4136 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2228 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2219 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2209 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730))))) +(-10 -7 (-15 -2209 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -2219 ((-1004) (-663 (-218)) (-548) (-548) (-548) (-548))) (-15 -2228 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4136 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4146 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -4156 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548))) (-15 -4166 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4177 ((-1004) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4187 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4197 ((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548) (-548))) (-15 -4208 ((-1004) (-548) (-548) (-218) (-218) (-548) (-548) (-663 (-218)) (-548))) (-15 -4219 ((-1004) (-548) (-548) (-548) (-218) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4229 ((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))))) (-15 -4229 ((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))) (-380))) (-15 -4240 ((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4251 ((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548)))) +((-1322 (((-1004) (-548) (-548) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD)))) 61)) (-1310 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548)) 57)) (-1299 (((-1004) (-548) (-663 (-218)) (-112) (-218) (-548) (-548) (-548) (-548) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE)))) 56)) (-1287 (((-1004) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548)) 37)) (-1276 (((-1004) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-548)) 36)) (-1264 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 33)) (-1251 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218))) 32)) (-4296 (((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548)) 28)) (-4285 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548)) 27)) (-4275 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548)) 26)) (-4264 (((-1004) (-548) (-663 (-166 (-218))) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-548)) 22))) +(((-731) (-10 -7 (-15 -4264 ((-1004) (-548) (-663 (-166 (-218))) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -4275 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -4285 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -4296 ((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548))) (-15 -1251 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)))) (-15 -1264 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1276 ((-1004) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1287 ((-1004) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548))) (-15 -1299 ((-1004) (-548) (-663 (-218)) (-112) (-218) (-548) (-548) (-548) (-548) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE))))) (-15 -1310 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548))) (-15 -1322 ((-1004) (-548) (-548) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD))))))) (T -731)) +((-1322 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD)))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1310 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1299 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-112)) (-5 *6 (-218)) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1287 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1276 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1264 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1251 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4296 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4285 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4275 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4264 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-731))))) +(-10 -7 (-15 -4264 ((-1004) (-548) (-663 (-166 (-218))) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -4275 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -4285 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -4296 ((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548))) (-15 -1251 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)))) (-15 -1264 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1276 ((-1004) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1287 ((-1004) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548))) (-15 -1299 ((-1004) (-548) (-663 (-218)) (-112) (-218) (-548) (-548) (-548) (-548) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE))))) (-15 -1310 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548))) (-15 -1322 ((-1004) (-548) (-548) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD)))))) +((-1366 (((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-548) (-663 (-218))) 29)) (-1355 (((-1004) (-1118) (-548) (-548) (-663 (-218))) 28)) (-1344 (((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-218))) 27)) (-1333 (((-1004) (-548) (-548) (-548) (-663 (-218))) 21))) +(((-732) (-10 -7 (-15 -1333 ((-1004) (-548) (-548) (-548) (-663 (-218)))) (-15 -1344 ((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-218)))) (-15 -1355 ((-1004) (-1118) (-548) (-548) (-663 (-218)))) (-15 -1366 ((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-548) (-663 (-218)))))) (T -732)) +((-1366 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1355 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1344 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1333 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-732))))) +(-10 -7 (-15 -1333 ((-1004) (-548) (-548) (-548) (-663 (-218)))) (-15 -1344 ((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-218)))) (-15 -1355 ((-1004) (-1118) (-548) (-548) (-663 (-218)))) (-15 -1366 ((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-548) (-663 (-218))))) +((-3573 (((-1004) (-218) (-218) (-218) (-218) (-548)) 62)) (-3562 (((-1004) (-218) (-218) (-218) (-548)) 61)) (-3551 (((-1004) (-218) (-218) (-218) (-548)) 60)) (-3540 (((-1004) (-218) (-218) (-548)) 59)) (-3529 (((-1004) (-218) (-548)) 58)) (-3516 (((-1004) (-218) (-548)) 57)) (-3507 (((-1004) (-218) (-548)) 56)) (-3493 (((-1004) (-218) (-548)) 55)) (-3482 (((-1004) (-218) (-548)) 54)) (-1659 (((-1004) (-218) (-548)) 53)) (-1650 (((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548)) 52)) (-1642 (((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548)) 51)) (-1635 (((-1004) (-218) (-548)) 50)) (-1625 (((-1004) (-218) (-548)) 49)) (-1614 (((-1004) (-218) (-548)) 48)) (-1603 (((-1004) (-218) (-548)) 47)) (-1596 (((-1004) (-548) (-218) (-166 (-218)) (-548) (-1118) (-548)) 46)) (-1588 (((-1004) (-1118) (-166 (-218)) (-1118) (-548)) 45)) (-1577 (((-1004) (-1118) (-166 (-218)) (-1118) (-548)) 44)) (-1568 (((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548)) 43)) (-1559 (((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548)) 42)) (-1550 (((-1004) (-218) (-548)) 39)) (-1541 (((-1004) (-218) (-548)) 38)) (-1532 (((-1004) (-218) (-548)) 37)) (-1522 (((-1004) (-218) (-548)) 36)) (-1512 (((-1004) (-218) (-548)) 35)) (-1501 (((-1004) (-218) (-548)) 34)) (-1490 (((-1004) (-218) (-548)) 33)) (-1477 (((-1004) (-218) (-548)) 32)) (-1466 (((-1004) (-218) (-548)) 31)) (-1455 (((-1004) (-218) (-548)) 30)) (-1445 (((-1004) (-218) (-218) (-218) (-548)) 29)) (-1432 (((-1004) (-218) (-548)) 28)) (-1421 (((-1004) (-218) (-548)) 27)) (-1410 (((-1004) (-218) (-548)) 26)) (-1399 (((-1004) (-218) (-548)) 25)) (-1389 (((-1004) (-218) (-548)) 24)) (-1378 (((-1004) (-166 (-218)) (-548)) 21))) +(((-733) (-10 -7 (-15 -1378 ((-1004) (-166 (-218)) (-548))) (-15 -1389 ((-1004) (-218) (-548))) (-15 -1399 ((-1004) (-218) (-548))) (-15 -1410 ((-1004) (-218) (-548))) (-15 -1421 ((-1004) (-218) (-548))) (-15 -1432 ((-1004) (-218) (-548))) (-15 -1445 ((-1004) (-218) (-218) (-218) (-548))) (-15 -1455 ((-1004) (-218) (-548))) (-15 -1466 ((-1004) (-218) (-548))) (-15 -1477 ((-1004) (-218) (-548))) (-15 -1490 ((-1004) (-218) (-548))) (-15 -1501 ((-1004) (-218) (-548))) (-15 -1512 ((-1004) (-218) (-548))) (-15 -1522 ((-1004) (-218) (-548))) (-15 -1532 ((-1004) (-218) (-548))) (-15 -1541 ((-1004) (-218) (-548))) (-15 -1550 ((-1004) (-218) (-548))) (-15 -1559 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1568 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1577 ((-1004) (-1118) (-166 (-218)) (-1118) (-548))) (-15 -1588 ((-1004) (-1118) (-166 (-218)) (-1118) (-548))) (-15 -1596 ((-1004) (-548) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1603 ((-1004) (-218) (-548))) (-15 -1614 ((-1004) (-218) (-548))) (-15 -1625 ((-1004) (-218) (-548))) (-15 -1635 ((-1004) (-218) (-548))) (-15 -1642 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1650 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1659 ((-1004) (-218) (-548))) (-15 -3482 ((-1004) (-218) (-548))) (-15 -3493 ((-1004) (-218) (-548))) (-15 -3507 ((-1004) (-218) (-548))) (-15 -3516 ((-1004) (-218) (-548))) (-15 -3529 ((-1004) (-218) (-548))) (-15 -3540 ((-1004) (-218) (-218) (-548))) (-15 -3551 ((-1004) (-218) (-218) (-218) (-548))) (-15 -3562 ((-1004) (-218) (-218) (-218) (-548))) (-15 -3573 ((-1004) (-218) (-218) (-218) (-218) (-548))))) (T -733)) +((-3573 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3562 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3551 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3540 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1650 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1642 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1614 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1596 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-548)) (-5 *5 (-166 (-218))) (-5 *6 (-1118)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1588 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1577 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1568 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1559 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1522 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1445 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1410 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1378 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(-10 -7 (-15 -1378 ((-1004) (-166 (-218)) (-548))) (-15 -1389 ((-1004) (-218) (-548))) (-15 -1399 ((-1004) (-218) (-548))) (-15 -1410 ((-1004) (-218) (-548))) (-15 -1421 ((-1004) (-218) (-548))) (-15 -1432 ((-1004) (-218) (-548))) (-15 -1445 ((-1004) (-218) (-218) (-218) (-548))) (-15 -1455 ((-1004) (-218) (-548))) (-15 -1466 ((-1004) (-218) (-548))) (-15 -1477 ((-1004) (-218) (-548))) (-15 -1490 ((-1004) (-218) (-548))) (-15 -1501 ((-1004) (-218) (-548))) (-15 -1512 ((-1004) (-218) (-548))) (-15 -1522 ((-1004) (-218) (-548))) (-15 -1532 ((-1004) (-218) (-548))) (-15 -1541 ((-1004) (-218) (-548))) (-15 -1550 ((-1004) (-218) (-548))) (-15 -1559 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1568 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1577 ((-1004) (-1118) (-166 (-218)) (-1118) (-548))) (-15 -1588 ((-1004) (-1118) (-166 (-218)) (-1118) (-548))) (-15 -1596 ((-1004) (-548) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1603 ((-1004) (-218) (-548))) (-15 -1614 ((-1004) (-218) (-548))) (-15 -1625 ((-1004) (-218) (-548))) (-15 -1635 ((-1004) (-218) (-548))) (-15 -1642 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1650 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1659 ((-1004) (-218) (-548))) (-15 -3482 ((-1004) (-218) (-548))) (-15 -3493 ((-1004) (-218) (-548))) (-15 -3507 ((-1004) (-218) (-548))) (-15 -3516 ((-1004) (-218) (-548))) (-15 -3529 ((-1004) (-218) (-548))) (-15 -3540 ((-1004) (-218) (-218) (-548))) (-15 -3551 ((-1004) (-218) (-218) (-218) (-548))) (-15 -3562 ((-1004) (-218) (-218) (-218) (-548))) (-15 -3573 ((-1004) (-218) (-218) (-218) (-218) (-548)))) +((-3629 (((-1223)) 18)) (-3597 (((-1118)) 22)) (-3584 (((-1118)) 21)) (-3618 (((-1067) (-1135) (-663 (-548))) 37) (((-1067) (-1135) (-663 (-218))) 32)) (-3307 (((-112)) 16)) (-3608 (((-1118) (-1118)) 25))) +(((-734) (-10 -7 (-15 -3584 ((-1118))) (-15 -3597 ((-1118))) (-15 -3608 ((-1118) (-1118))) (-15 -3618 ((-1067) (-1135) (-663 (-218)))) (-15 -3618 ((-1067) (-1135) (-663 (-548)))) (-15 -3307 ((-112))) (-15 -3629 ((-1223))))) (T -734)) +((-3629 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-734)))) (-3307 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-734)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-548))) (-5 *2 (-1067)) (-5 *1 (-734)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-218))) (-5 *2 (-1067)) (-5 *1 (-734)))) (-3608 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734)))) (-3597 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734)))) (-3584 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) +(-10 -7 (-15 -3584 ((-1118))) (-15 -3597 ((-1118))) (-15 -3608 ((-1118) (-1118))) (-15 -3618 ((-1067) (-1135) (-663 (-218)))) (-15 -3618 ((-1067) (-1135) (-663 (-548)))) (-15 -3307 ((-112))) (-15 -3629 ((-1223)))) +((-3652 (($ $ $) 10)) (-3664 (($ $ $ $) 9)) (-3639 (($ $ $) 12))) +(((-735 |#1|) (-10 -8 (-15 -3639 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1| |#1|))) (-736)) (T -735)) +NIL +(-10 -8 (-15 -3639 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2246 (($ $ (-890)) 28)) (-3424 (($ $ (-890)) 29)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3652 (($ $ $) 25)) (-3743 (((-832) $) 11)) (-3664 (($ $ $ $) 26)) (-3639 (($ $ $) 24)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27))) +(((-736) (-138)) (T -736)) +((-3664 (*1 *1 *1 *1 *1) (-4 *1 (-736))) (-3652 (*1 *1 *1 *1) (-4 *1 (-736))) (-3639 (*1 *1 *1 *1) (-4 *1 (-736)))) +(-13 (-21) (-695) (-10 -8 (-15 -3664 ($ $ $ $)) (-15 -3652 ($ $ $)) (-15 -3639 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-695) . T) ((-1063) . T)) +((-3743 (((-832) $) NIL) (($ (-548)) 10))) +(((-737 |#1|) (-10 -8 (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-738)) (T -737)) +NIL +(-10 -8 (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3399 (((-3 $ "failed") $) 40)) (-2246 (($ $ (-890)) 28) (($ $ (-745)) 35)) (-3859 (((-3 $ "failed") $) 38)) (-2266 (((-112) $) 34)) (-3411 (((-3 $ "failed") $) 39)) (-3424 (($ $ (-890)) 29) (($ $ (-745)) 36)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3652 (($ $ $) 25)) (-3743 (((-832) $) 11) (($ (-548)) 31)) (-3835 (((-745)) 32)) (-3664 (($ $ $ $) 26)) (-3639 (($ $ $) 24)) (-3107 (($) 18 T CONST)) (-3118 (($) 33 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30) (($ $ (-745)) 37)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27))) +(((-738) (-138)) (T -738)) +((-3835 (*1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-745)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-738))))) +(-13 (-736) (-697) (-10 -8 (-15 -3835 ((-745))) (-15 -3743 ($ (-548))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-695) . T) ((-697) . T) ((-736) . T) ((-1063) . T)) +((-3687 (((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-399 (-548)))) |#1|) 33)) (-3677 (((-619 (-166 |#1|)) (-663 (-166 (-399 (-548)))) |#1|) 23)) (-3780 (((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))) (-1135)) 20) (((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548))))) 19))) +(((-739 |#1|) (-10 -7 (-15 -3780 ((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))))) (-15 -3780 ((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))) (-1135))) (-15 -3677 ((-619 (-166 |#1|)) (-663 (-166 (-399 (-548)))) |#1|)) (-15 -3687 ((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-399 (-548)))) |#1|))) (-13 (-355) (-819))) (T -739)) +((-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *2 (-619 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 (-166 *4))))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819))))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819))))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *4 (-1135)) (-5 *2 (-921 (-166 (-399 (-548))))) (-5 *1 (-739 *5)) (-4 *5 (-13 (-355) (-819))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *2 (-921 (-166 (-399 (-548))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819)))))) +(-10 -7 (-15 -3780 ((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))))) (-15 -3780 ((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))) (-1135))) (-15 -3677 ((-619 (-166 |#1|)) (-663 (-166 (-399 (-548)))) |#1|)) (-15 -3687 ((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-399 (-548)))) |#1|))) +((-1351 (((-171 (-548)) |#1|) 25))) +(((-740 |#1|) (-10 -7 (-15 -1351 ((-171 (-548)) |#1|))) (-396)) (T -740)) +((-1351 (*1 *2 *3) (-12 (-5 *2 (-171 (-548))) (-5 *1 (-740 *3)) (-4 *3 (-396))))) +(-10 -7 (-15 -1351 ((-171 (-548)) |#1|))) +((-1970 ((|#1| |#1| |#1|) 24)) (-1982 ((|#1| |#1| |#1|) 23)) (-1865 ((|#1| |#1| |#1|) 32)) (-1950 ((|#1| |#1| |#1|) 28)) (-1961 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2014 (((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|) 22))) +(((-741 |#1| |#2|) (-10 -7 (-15 -2014 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1982 (|#1| |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#1| |#1|))) (-683 |#2|) (-355)) (T -741)) +((-1865 (*1 *2 *2 *2) (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1950 (*1 *2 *2 *2) (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1961 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1970 (*1 *2 *2 *2) (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1982 (*1 *2 *2 *2) (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-2014 (*1 *2 *3 *3) (-12 (-4 *4 (-355)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-741 *3 *4)) (-4 *3 (-683 *4))))) +(-10 -7 (-15 -2014 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1982 (|#1| |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#1| |#1|))) +((-3490 (((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))) (-548)) 59)) (-3478 (((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548))))) 57)) (-1566 (((-548)) 71))) +(((-742 |#1| |#2|) (-10 -7 (-15 -1566 ((-548))) (-15 -3478 ((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))))) (-15 -3490 ((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))) (-548)))) (-1194 (-548)) (-401 (-548) |#1|)) (T -742)) +((-3490 (*1 *2 *3) (-12 (-5 *3 (-548)) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-742 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3478 (*1 *2) (-12 (-4 *3 (-1194 (-548))) (-5 *2 (-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548))))) (-5 *1 (-742 *3 *4)) (-4 *4 (-401 (-548) *3)))) (-1566 (*1 *2) (-12 (-4 *3 (-1194 *2)) (-5 *2 (-548)) (-5 *1 (-742 *3 *4)) (-4 *4 (-401 *2 *3))))) +(-10 -7 (-15 -1566 ((-548))) (-15 -3478 ((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))))) (-15 -3490 ((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))) (-548)))) +((-3730 (((-112) $ $) NIL)) (-2375 (((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) $) 21)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 20) (($ (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 13) (($ (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) 18)) (-2214 (((-112) $ $) NIL))) +(((-743) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ($ (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) $))))) (T -743)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-743)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *1 (-743)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *1 (-743)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) (-5 *1 (-743)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) (-5 *1 (-743))))) +(-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ($ (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) $)))) +((-3174 (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|))) 18) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135))) 17)) (-3408 (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|))) 20) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135))) 19))) +(((-744 |#1|) (-10 -7 (-15 -3174 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3174 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|))))) (-540)) (T -744)) +((-3408 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-744 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-744 *5)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-744 *4)))) (-3174 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-744 *5))))) +(-10 -7 (-15 -3174 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3174 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2857 (($ $ $) 6)) (-4104 (((-3 $ "failed") $ $) 9)) (-2970 (($ $ (-548)) 7)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($ $) NIL)) (-1922 (($ $ $) NIL)) (-2266 (((-112) $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3587 (($ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ $ $) NIL))) +(((-745) (-13 (-767) (-701) (-10 -8 (-15 -1922 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -3587 ($ $ $)) (-15 -3209 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1900 ((-3 $ "failed") $ $)) (-15 -2970 ($ $ (-548))) (-15 -2545 ($ $)) (-6 (-4329 "*"))))) (T -745)) +((-1922 (*1 *1 *1 *1) (-5 *1 (-745))) (-1945 (*1 *1 *1 *1) (-5 *1 (-745))) (-3587 (*1 *1 *1 *1) (-5 *1 (-745))) (-3209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3826 (-745)) (|:| -2233 (-745)))) (-5 *1 (-745)))) (-1900 (*1 *1 *1 *1) (|partial| -5 *1 (-745))) (-2970 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-745)))) (-2545 (*1 *1 *1) (-5 *1 (-745)))) +(-13 (-767) (-701) (-10 -8 (-15 -1922 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -3587 ($ $ $)) (-15 -3209 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1900 ((-3 $ "failed") $ $)) (-15 -2970 ($ $ (-548))) (-15 -2545 ($ $)) (-6 (-4329 "*")))) +((-3408 (((-3 |#2| "failed") |#2| |#2| (-114) (-1135)) 35))) +(((-746 |#1| |#2|) (-10 -7 (-15 -3408 ((-3 |#2| "failed") |#2| |#2| (-114) (-1135)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -746)) +((-3408 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-746 *5 *2)) (-4 *2 (-13 (-29 *5) (-1157) (-928)))))) +(-10 -7 (-15 -3408 ((-3 |#2| "failed") |#2| |#2| (-114) (-1135)))) +((-3743 (((-748) |#1|) 8))) +(((-747 |#1|) (-10 -7 (-15 -3743 ((-748) |#1|))) (-1172)) (T -747)) +((-3743 (*1 *2 *3) (-12 (-5 *2 (-748)) (-5 *1 (-747 *3)) (-4 *3 (-1172))))) +(-10 -7 (-15 -3743 ((-748) |#1|))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 7)) (-2214 (((-112) $ $) 9))) +(((-748) (-1063)) (T -748)) +NIL +(-1063) +((-3910 ((|#2| |#4|) 35))) +(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3910 (|#2| |#4|))) (-443) (-1194 |#1|) (-699 |#1| |#2|) (-1194 |#3|)) (T -749)) +((-3910 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-699 *4 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -3910 (|#2| |#4|))) +((-3859 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3722 (((-1223) (-1118) (-1118) |#4| |#5|) 33)) (-3697 ((|#4| |#4| |#5|) 73)) (-3711 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|) 77)) (-3737 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 16))) +(((-750 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3859 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3697 (|#4| |#4| |#5|)) (-15 -3711 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -3722 ((-1223) (-1118) (-1118) |#4| |#5|)) (-15 -3737 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -750)) +((-3737 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3722 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1118)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *4 (-1030 *6 *7 *8)) (-5 *2 (-1223)) (-5 *1 (-750 *6 *7 *8 *4 *5)) (-4 *5 (-1036 *6 *7 *8 *4)))) (-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3697 (*1 *2 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *2 (-1030 *4 *5 *6)) (-5 *1 (-750 *4 *5 *6 *2 *3)) (-4 *3 (-1036 *4 *5 *6 *2)))) (-3859 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(-10 -7 (-15 -3859 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3697 (|#4| |#4| |#5|)) (-15 -3711 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -3722 ((-1223) (-1118) (-1118) |#4| |#5|)) (-15 -3737 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|))) +((-2441 (((-3 (-1131 (-1131 |#1|)) "failed") |#4|) 43)) (-3749 (((-619 |#4|) |#4|) 15)) (-2354 ((|#4| |#4|) 11))) +(((-751 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3749 ((-619 |#4|) |#4|)) (-15 -2441 ((-3 (-1131 (-1131 |#1|)) "failed") |#4|)) (-15 -2354 (|#4| |#4|))) (-341) (-321 |#1|) (-1194 |#2|) (-1194 |#3|) (-890)) (T -751)) +((-2354 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-321 *3)) (-4 *5 (-1194 *4)) (-5 *1 (-751 *3 *4 *5 *2 *6)) (-4 *2 (-1194 *5)) (-14 *6 (-890)))) (-2441 (*1 *2 *3) (|partial| -12 (-4 *4 (-341)) (-4 *5 (-321 *4)) (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *4))) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) (-14 *7 (-890)))) (-3749 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-321 *4)) (-4 *6 (-1194 *5)) (-5 *2 (-619 *3)) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) (-14 *7 (-890))))) +(-10 -7 (-15 -3749 ((-619 |#4|) |#4|)) (-15 -2441 ((-3 (-1131 (-1131 |#1|)) "failed") |#4|)) (-15 -2354 (|#4| |#4|))) +((-3760 (((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|)) 54)) (-3770 (((-619 (-745)) |#1|) 13))) +(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3760 ((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|))) (-15 -3770 ((-619 (-745)) |#1|))) (-1194 |#4|) (-767) (-821) (-299) (-918 |#4| |#2| |#3|)) (T -752)) +((-3770 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-619 (-745))) (-5 *1 (-752 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *6)) (-4 *7 (-918 *6 *4 *5)))) (-3760 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1194 *9)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-299)) (-4 *10 (-918 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-619 (-1131 *10))) (|:| |dterm| (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| *10))))) (|:| |nfacts| (-619 *6)) (|:| |nlead| (-619 *10)))) (-5 *1 (-752 *6 *7 *8 *9 *10)) (-5 *3 (-1131 *10)) (-5 *4 (-619 *6)) (-5 *5 (-619 *10))))) +(-10 -7 (-15 -3760 ((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|))) (-15 -3770 ((-619 (-745)) |#1|))) +((-3804 (((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-399 (-548))) |#1|) 31)) (-3792 (((-619 |#1|) (-663 (-399 (-548))) |#1|) 21)) (-3780 (((-921 (-399 (-548))) (-663 (-399 (-548))) (-1135)) 18) (((-921 (-399 (-548))) (-663 (-399 (-548)))) 17))) +(((-753 |#1|) (-10 -7 (-15 -3780 ((-921 (-399 (-548))) (-663 (-399 (-548))))) (-15 -3780 ((-921 (-399 (-548))) (-663 (-399 (-548))) (-1135))) (-15 -3792 ((-619 |#1|) (-663 (-399 (-548))) |#1|)) (-15 -3804 ((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-399 (-548))) |#1|))) (-13 (-355) (-819))) (T -753)) +((-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-619 (-2 (|:| |outval| *4) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 *4)))))) (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819))))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-619 *4)) (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819))))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *4 (-1135)) (-5 *2 (-921 (-399 (-548)))) (-5 *1 (-753 *5)) (-4 *5 (-13 (-355) (-819))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-921 (-399 (-548)))) (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819)))))) +(-10 -7 (-15 -3780 ((-921 (-399 (-548))) (-663 (-399 (-548))))) (-15 -3780 ((-921 (-399 (-548))) (-663 (-399 (-548))) (-1135))) (-15 -3792 ((-619 |#1|) (-663 (-399 (-548))) |#1|)) (-15 -3804 ((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-399 (-548))) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 34)) (-2049 (((-619 |#2|) $) NIL)) (-1884 (((-1131 $) $ |#2|) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 |#2|)) NIL)) (-1272 (($ $) 28)) (-3090 (((-112) $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1548 (($ $ $) 93 (|has| |#1| (-540)))) (-2916 (((-619 $) $ $) 106 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-921 (-399 (-548)))) NIL (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))))) (((-3 $ "failed") (-921 (-548))) NIL (-1524 (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548)))))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135)))))) (((-3 $ "failed") (-921 |#1|)) NIL (-1524 (-12 (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-38 (-548))))) (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-533)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-961 (-548))))))) (((-3 (-1087 |#1| |#2|) "failed") $) 18)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) ((|#2| $) NIL) (($ (-921 (-399 (-548)))) NIL (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))))) (($ (-921 (-548))) NIL (-1524 (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548)))))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135)))))) (($ (-921 |#1|)) NIL (-1524 (-12 (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-38 (-548))))) (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-533)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-961 (-548))))))) (((-1087 |#1| |#2|) $) NIL)) (-1557 (($ $ $ |#2|) NIL (|has| |#1| (-169))) (($ $ $) 104 (|has| |#1| (-540)))) (-1872 (($ $) NIL) (($ $ |#2|) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2143 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3155 (((-112) $) NIL)) (-1519 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 70)) (-2873 (($ $) 119 (|has| |#1| (-443)))) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ |#2|) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-2982 (($ $) NIL (|has| |#1| (-540)))) (-2992 (($ $) NIL (|has| |#1| (-540)))) (-3077 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3067 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-4256 (($ $ |#1| (-520 |#2|) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| |#1| (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| |#1| (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2157 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2883 (($ $ $ $ $) 90 (|has| |#1| (-540)))) (-3239 ((|#2| $) 19)) (-2036 (($ (-1131 |#1|) |#2|) NIL) (($ (-1131 $) |#2|) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 |#2|)) NIL) (($ $ |#2| (-745)) 36) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-3013 (($ $ $) 60)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#2|) NIL)) (-3166 (((-112) $) NIL)) (-3904 (((-520 |#2|) $) NIL) (((-745) $ |#2|) NIL) (((-619 (-745)) $ (-619 |#2|)) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3229 (((-745) $) 20)) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 |#2|) (-520 |#2|)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3511 (((-3 |#2| "failed") $) NIL)) (-2844 (($ $) NIL (|has| |#1| (-443)))) (-2853 (($ $) NIL (|has| |#1| (-443)))) (-3114 (((-619 $) $) NIL)) (-3145 (($ $) 37)) (-2862 (($ $) NIL (|has| |#1| (-443)))) (-3125 (((-619 $) $) 41)) (-3135 (($ $) 39)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-3003 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4023 (-745))) $ $) 82)) (-3023 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $) 67) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $ |#2|) NIL)) (-3033 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $) NIL) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $ |#2|) NIL)) (-3056 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3044 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2546 (((-1118) $) NIL)) (-3353 (($ $ $) 108 (|has| |#1| (-540)))) (-3190 (((-619 $) $) 30)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-745))) "failed") $) NIL)) (-2109 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2052 (($ $ $) NIL)) (-3410 (($ $) 21)) (-2199 (((-112) $ $) NIL)) (-2121 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2063 (($ $ $) NIL)) (-3218 (($ $) 23)) (-3932 (((-1082) $) NIL)) (-2927 (((-2 (|:| -3587 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-540)))) (-2938 (((-2 (|:| -3587 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-540)))) (-2164 (((-112) $) 52)) (-2175 ((|#1| $) 55)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 ((|#1| |#1| $) 116 (|has| |#1| (-443))) (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-2949 (((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-540)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-2960 (($ $ |#1|) 112 (|has| |#1| (-540))) (($ $ $) NIL (|has| |#1| (-540)))) (-2971 (($ $ |#1|) 111 (|has| |#1| (-540))) (($ $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-619 |#2|) (-619 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-619 |#2|) (-619 $)) NIL)) (-1566 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-4050 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2512 (((-520 |#2|) $) NIL) (((-745) $ |#2|) 43) (((-619 (-745)) $ (-619 |#2|)) NIL)) (-3204 (($ $) NIL)) (-3179 (($ $) 33)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| |#1| (-593 (-524))) (|has| |#2| (-593 (-524))))) (($ (-921 (-399 (-548)))) NIL (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))))) (($ (-921 (-548))) NIL (-1524 (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548)))))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135)))))) (($ (-921 |#1|)) NIL (|has| |#2| (-593 (-1135)))) (((-1118) $) NIL (-12 (|has| |#1| (-1007 (-548))) (|has| |#2| (-593 (-1135))))) (((-921 |#1|) $) NIL (|has| |#2| (-593 (-1135))))) (-3881 ((|#1| $) 115 (|has| |#1| (-443))) (($ $ |#2|) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-921 |#1|) $) NIL (|has| |#2| (-593 (-1135)))) (((-1087 |#1| |#2|) $) 15) (($ (-1087 |#1| |#2|)) 16) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 |#2|)) NIL) (($ $ |#2| (-745)) 44) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 13 T CONST)) (-3102 (((-3 (-112) "failed") $ $) NIL)) (-3118 (($) 35 T CONST)) (-2893 (($ $ $ $ (-745)) 88 (|has| |#1| (-540)))) (-2905 (($ $ $ (-745)) 87 (|has| |#1| (-540)))) (-3296 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 54)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) 64)) (-2290 (($ $ $) 74)) (** (($ $ (-890)) NIL) (($ $ (-745)) 61)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 59) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-754 |#1| |#2|) (-13 (-1030 |#1| (-520 |#2|) |#2|) (-592 (-1087 |#1| |#2|)) (-1007 (-1087 |#1| |#2|))) (-1016) (-821)) (T -754)) +NIL +(-13 (-1030 |#1| (-520 |#2|) |#2|) (-592 (-1087 |#1| |#2|)) (-1007 (-1087 |#1| |#2|))) +((-2540 (((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)) 13))) +(((-755 |#1| |#2|) (-10 -7 (-15 -2540 ((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)))) (-1016) (-1016)) (T -755)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-756 *6)) (-5 *1 (-755 *5 *6))))) +(-10 -7 (-15 -2540 ((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 12)) (-1648 (((-1218 |#1|) $ (-745)) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-1632 (($ (-1131 |#1|)) NIL)) (-1884 (((-1131 $) $ (-1045)) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3856 (((-619 $) $ $) 39 (|has| |#1| (-540)))) (-1548 (($ $ $) 35 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-1594 (($ $ (-745)) NIL)) (-1584 (($ $ (-745)) NIL)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-443)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1045) "failed") $) NIL) (((-3 (-1131 |#1|) "failed") $) 10)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1045) $) NIL) (((-1131 |#1|) $) NIL)) (-1557 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) 43 (|has| |#1| (-169)))) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-1574 (($ $ $) NIL)) (-1529 (($ $ $) 71 (|has| |#1| (-540)))) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 $) (|:| -2233 $)) $ $) 70 (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-745) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ $) NIL (|has| |#1| (-540)))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2036 (($ (-1131 |#1|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-3535 (($ $ (-745)) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3013 (($ $ $) 20)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) NIL) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-1639 (((-1131 |#1|) $) NIL)) (-3511 (((-3 (-1045) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-3003 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4023 (-745))) $ $) 26)) (-3882 (($ $ $) 29)) (-3869 (($ $ $) 32)) (-3023 (((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $) 31)) (-2546 (((-1118) $) NIL)) (-3353 (($ $ $) 41 (|has| |#1| (-540)))) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-2927 (((-2 (|:| -3587 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-540)))) (-2938 (((-2 (|:| -3587 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-540)))) (-3814 (((-2 (|:| -1557 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-540)))) (-3830 (((-2 (|:| -1557 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-540)))) (-2164 (((-112) $) 13)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-1362 (($ $ (-745) |#1| $) 19)) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-2949 (((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-540)))) (-3843 (((-2 (|:| -1557 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-540)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-399 $) (-399 $) (-399 $)) NIL (|has| |#1| (-540))) ((|#1| (-399 $) |#1|) NIL (|has| |#1| (-355))) (((-399 $) $ (-399 $)) NIL (|has| |#1| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-1566 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2512 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-1539 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540))) (((-3 (-399 $) "failed") (-399 $) $) NIL (|has| |#1| (-540)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-1045)) NIL) (((-1131 |#1|) $) 7) (($ (-1131 |#1|)) 8) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 21 T CONST)) (-3118 (($) 24 T CONST)) (-3296 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) 28) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-756 |#1|) (-13 (-1194 |#1|) (-592 (-1131 |#1|)) (-1007 (-1131 |#1|)) (-10 -8 (-15 -1362 ($ $ (-745) |#1| $)) (-15 -3013 ($ $ $)) (-15 -3003 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4023 (-745))) $ $)) (-15 -3882 ($ $ $)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -3869 ($ $ $)) (IF (|has| |#1| (-540)) (PROGN (-15 -3856 ((-619 $) $ $)) (-15 -3353 ($ $ $)) (-15 -2949 ((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2938 ((-2 (|:| -3587 $) (|:| |coef1| $)) $ $)) (-15 -2927 ((-2 (|:| -3587 $) (|:| |coef2| $)) $ $)) (-15 -3843 ((-2 (|:| -1557 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3830 ((-2 (|:| -1557 |#1|) (|:| |coef1| $)) $ $)) (-15 -3814 ((-2 (|:| -1557 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1016)) (T -756)) +((-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-3013 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-3003 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-756 *3)) (|:| |polden| *3) (|:| -4023 (-745)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-3882 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-3023 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1489 *3) (|:| |gap| (-745)) (|:| -3826 (-756 *3)) (|:| -2233 (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-3869 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-3856 (*1 *2 *1 *1) (-12 (-5 *2 (-619 (-756 *3))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-3353 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-540)) (-4 *2 (-1016)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-2938 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef1| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-2927 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-3843 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-3830 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef1| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-3814 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) +(-13 (-1194 |#1|) (-592 (-1131 |#1|)) (-1007 (-1131 |#1|)) (-10 -8 (-15 -1362 ($ $ (-745) |#1| $)) (-15 -3013 ($ $ $)) (-15 -3003 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4023 (-745))) $ $)) (-15 -3882 ($ $ $)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -3869 ($ $ $)) (IF (|has| |#1| (-540)) (PROGN (-15 -3856 ((-619 $) $ $)) (-15 -3353 ($ $ $)) (-15 -2949 ((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2938 ((-2 (|:| -3587 $) (|:| |coef1| $)) $ $)) (-15 -2927 ((-2 (|:| -3587 $) (|:| |coef2| $)) $ $)) (-15 -3843 ((-2 (|:| -1557 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3830 ((-2 (|:| -1557 |#1|) (|:| |coef1| $)) $ $)) (-15 -3814 ((-2 (|:| -1557 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-3905 ((|#1| (-745) |#1|) 32 (|has| |#1| (-38 (-399 (-548)))))) (-3686 ((|#1| (-745) |#1|) 22)) (-3893 ((|#1| (-745) |#1|) 34 (|has| |#1| (-38 (-399 (-548))))))) +(((-757 |#1|) (-10 -7 (-15 -3686 (|#1| (-745) |#1|)) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3893 (|#1| (-745) |#1|)) (-15 -3905 (|#1| (-745) |#1|))) |%noBranch|)) (-169)) (T -757)) +((-3905 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-169)))) (-3893 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-169)))) (-3686 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-169))))) +(-10 -7 (-15 -3686 (|#1| (-745) |#1|)) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3893 (|#1| (-745) |#1|)) (-15 -3905 (|#1| (-745) |#1|))) |%noBranch|)) +((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 126)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-2258 (((-112) |#4| $) 136)) (-3425 (((-112) |#4| $) 133)) (-2267 (((-112) |#4| $) 137) (((-112) $) 134)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 127)) (-3724 (((-3 |#4| "failed") $) 83)) (-3387 (((-619 $) |#4| $) 129)) (-3412 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2520 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3688 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3338 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2247 (((-112) |#4| $) 135)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) +(((-758 |#1| |#2| |#3| |#4|) (-138) (-443) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -758)) +NIL +(-13 (-1036 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) +((-3916 (((-3 (-371) "failed") (-308 |#1|) (-890)) 62 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-371) "failed") (-308 |#1|)) 54 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-371) "failed") (-399 (-921 |#1|)) (-890)) 41 (|has| |#1| (-540))) (((-3 (-371) "failed") (-399 (-921 |#1|))) 40 (|has| |#1| (-540))) (((-3 (-371) "failed") (-921 |#1|) (-890)) 31 (|has| |#1| (-1016))) (((-3 (-371) "failed") (-921 |#1|)) 30 (|has| |#1| (-1016)))) (-3702 (((-371) (-308 |#1|) (-890)) 99 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-371) (-308 |#1|)) 94 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-371) (-399 (-921 |#1|)) (-890)) 91 (|has| |#1| (-540))) (((-371) (-399 (-921 |#1|))) 90 (|has| |#1| (-540))) (((-371) (-921 |#1|) (-890)) 86 (|has| |#1| (-1016))) (((-371) (-921 |#1|)) 85 (|has| |#1| (-1016))) (((-371) |#1| (-890)) 76) (((-371) |#1|) 22)) (-3928 (((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)) (-890)) 71 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-166 (-371)) "failed") (-308 (-166 |#1|))) 70 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-166 (-371)) "failed") (-308 |#1|) (-890)) 63 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-166 (-371)) "failed") (-308 |#1|)) 61 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))) (-890)) 46 (|has| |#1| (-540))) (((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|)))) 45 (|has| |#1| (-540))) (((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)) (-890)) 39 (|has| |#1| (-540))) (((-3 (-166 (-371)) "failed") (-399 (-921 |#1|))) 38 (|has| |#1| (-540))) (((-3 (-166 (-371)) "failed") (-921 |#1|) (-890)) 28 (|has| |#1| (-1016))) (((-3 (-166 (-371)) "failed") (-921 |#1|)) 26 (|has| |#1| (-1016))) (((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)) (-890)) 18 (|has| |#1| (-169))) (((-3 (-166 (-371)) "failed") (-921 (-166 |#1|))) 15 (|has| |#1| (-169)))) (-1854 (((-166 (-371)) (-308 (-166 |#1|)) (-890)) 102 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-166 (-371)) (-308 (-166 |#1|))) 101 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-166 (-371)) (-308 |#1|) (-890)) 100 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-166 (-371)) (-308 |#1|)) 98 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-166 (-371)) (-399 (-921 (-166 |#1|))) (-890)) 93 (|has| |#1| (-540))) (((-166 (-371)) (-399 (-921 (-166 |#1|)))) 92 (|has| |#1| (-540))) (((-166 (-371)) (-399 (-921 |#1|)) (-890)) 89 (|has| |#1| (-540))) (((-166 (-371)) (-399 (-921 |#1|))) 88 (|has| |#1| (-540))) (((-166 (-371)) (-921 |#1|) (-890)) 84 (|has| |#1| (-1016))) (((-166 (-371)) (-921 |#1|)) 83 (|has| |#1| (-1016))) (((-166 (-371)) (-921 (-166 |#1|)) (-890)) 78 (|has| |#1| (-169))) (((-166 (-371)) (-921 (-166 |#1|))) 77 (|has| |#1| (-169))) (((-166 (-371)) (-166 |#1|) (-890)) 80 (|has| |#1| (-169))) (((-166 (-371)) (-166 |#1|)) 79 (|has| |#1| (-169))) (((-166 (-371)) |#1| (-890)) 27) (((-166 (-371)) |#1|) 25))) +(((-759 |#1|) (-10 -7 (-15 -3702 ((-371) |#1|)) (-15 -3702 ((-371) |#1| (-890))) (-15 -1854 ((-166 (-371)) |#1|)) (-15 -1854 ((-166 (-371)) |#1| (-890))) (IF (|has| |#1| (-169)) (PROGN (-15 -1854 ((-166 (-371)) (-166 |#1|))) (-15 -1854 ((-166 (-371)) (-166 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-921 (-166 |#1|)))) (-15 -1854 ((-166 (-371)) (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3702 ((-371) (-921 |#1|))) (-15 -3702 ((-371) (-921 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-921 |#1|))) (-15 -1854 ((-166 (-371)) (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-540)) (PROGN (-15 -3702 ((-371) (-399 (-921 |#1|)))) (-15 -3702 ((-371) (-399 (-921 |#1|)) (-890))) (-15 -1854 ((-166 (-371)) (-399 (-921 |#1|)))) (-15 -1854 ((-166 (-371)) (-399 (-921 |#1|)) (-890))) (-15 -1854 ((-166 (-371)) (-399 (-921 (-166 |#1|))))) (-15 -1854 ((-166 (-371)) (-399 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3702 ((-371) (-308 |#1|))) (-15 -3702 ((-371) (-308 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-308 |#1|))) (-15 -1854 ((-166 (-371)) (-308 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-308 (-166 |#1|)))) (-15 -1854 ((-166 (-371)) (-308 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-921 |#1|))) (-15 -3916 ((-3 (-371) "failed") (-921 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 |#1|))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-540)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-399 (-921 |#1|)))) (-15 -3916 ((-3 (-371) "failed") (-399 (-921 |#1|)) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-308 |#1|))) (-15 -3916 ((-3 (-371) "failed") (-308 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 |#1|))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) (-593 (-371))) (T -759)) +((-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-308 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 (-166 *4))) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3916 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3916 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-399 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 (-166 *4)))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3916 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3916 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3916 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3916 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-308 (-166 *4))) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 (-166 *4)))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-166 (-371))) (-5 *1 (-759 *3)) (-4 *3 (-593 (-371))))) (-1854 (*1 *2 *3) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-759 *3)) (-4 *3 (-593 (-371))))) (-3702 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-371)) (-5 *1 (-759 *3)) (-4 *3 (-593 *2)))) (-3702 (*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-759 *3)) (-4 *3 (-593 *2))))) +(-10 -7 (-15 -3702 ((-371) |#1|)) (-15 -3702 ((-371) |#1| (-890))) (-15 -1854 ((-166 (-371)) |#1|)) (-15 -1854 ((-166 (-371)) |#1| (-890))) (IF (|has| |#1| (-169)) (PROGN (-15 -1854 ((-166 (-371)) (-166 |#1|))) (-15 -1854 ((-166 (-371)) (-166 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-921 (-166 |#1|)))) (-15 -1854 ((-166 (-371)) (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3702 ((-371) (-921 |#1|))) (-15 -3702 ((-371) (-921 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-921 |#1|))) (-15 -1854 ((-166 (-371)) (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-540)) (PROGN (-15 -3702 ((-371) (-399 (-921 |#1|)))) (-15 -3702 ((-371) (-399 (-921 |#1|)) (-890))) (-15 -1854 ((-166 (-371)) (-399 (-921 |#1|)))) (-15 -1854 ((-166 (-371)) (-399 (-921 |#1|)) (-890))) (-15 -1854 ((-166 (-371)) (-399 (-921 (-166 |#1|))))) (-15 -1854 ((-166 (-371)) (-399 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3702 ((-371) (-308 |#1|))) (-15 -3702 ((-371) (-308 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-308 |#1|))) (-15 -1854 ((-166 (-371)) (-308 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-308 (-166 |#1|)))) (-15 -1854 ((-166 (-371)) (-308 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-921 |#1|))) (-15 -3916 ((-3 (-371) "failed") (-921 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 |#1|))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-540)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-399 (-921 |#1|)))) (-15 -3916 ((-3 (-371) "failed") (-399 (-921 |#1|)) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-308 |#1|))) (-15 -3916 ((-3 (-371) "failed") (-308 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 |#1|))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) +((-3979 (((-890) (-1118)) 66)) (-4000 (((-3 (-371) "failed") (-1118)) 33)) (-3989 (((-371) (-1118)) 31)) (-3955 (((-890) (-1118)) 54)) (-3969 (((-1118) (-890)) 56)) (-3940 (((-1118) (-890)) 53))) +(((-760) (-10 -7 (-15 -3940 ((-1118) (-890))) (-15 -3955 ((-890) (-1118))) (-15 -3969 ((-1118) (-890))) (-15 -3979 ((-890) (-1118))) (-15 -3989 ((-371) (-1118))) (-15 -4000 ((-3 (-371) "failed") (-1118))))) (T -760)) +((-4000 (*1 *2 *3) (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-760)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-760)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760))))) +(-10 -7 (-15 -3940 ((-1118) (-890))) (-15 -3955 ((-890) (-1118))) (-15 -3969 ((-1118) (-890))) (-15 -3979 ((-890) (-1118))) (-15 -3989 ((-371) (-1118))) (-15 -4000 ((-3 (-371) "failed") (-1118)))) +((-3730 (((-112) $ $) 7)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 15) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 13)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 16) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(((-761) (-138)) (T -761)) +((-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-761)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004)))))) (-4010 (*1 *2 *3 *2) (-12 (-4 *1 (-761)) (-5 *2 (-1004)) (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) (-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-761)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004)))))) (-4010 (*1 *2 *3 *2) (-12 (-4 *1 (-761)) (-5 *2 (-1004)) (-5 *3 (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) +(-13 (-1063) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -4010 ((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -4010 ((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-4045 (((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371))) 44) (((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))) 43)) (-4054 (((-1223) (-1218 (-371)) (-548) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))) 50)) (-4033 (((-1223) (-1218 (-371)) (-548) (-371) (-371) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))) 41)) (-4022 (((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371))) 52) (((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))) 51))) +(((-762) (-10 -7 (-15 -4022 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4022 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)))) (-15 -4033 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4045 ((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4045 ((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)))) (-15 -4054 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))))) (T -762)) +((-4054 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4045 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-548)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371)))) (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4045 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-548)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371)))) (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4033 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4022 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4022 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762))))) +(-10 -7 (-15 -4022 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4022 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)))) (-15 -4033 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4045 ((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4045 ((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)))) (-15 -4054 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))))) +((-2849 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 53)) (-4117 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 31)) (-2839 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 52)) (-4105 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 29)) (-2829 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 51)) (-4093 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 19)) (-4085 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548)) 32)) (-4075 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548)) 30)) (-4064 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548)) 28))) +(((-763) (-10 -7 (-15 -4064 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4075 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4085 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4093 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -4105 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -4117 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2829 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2839 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2849 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))))) (T -763)) +((-2849 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-2839 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-2829 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4117 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4105 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4093 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4085 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4075 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4064 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548))))) +(-10 -7 (-15 -4064 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4075 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4085 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4093 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -4105 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -4117 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2829 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2839 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2849 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)))) +((-2254 (((-1167 |#1|) |#1| (-218) (-548)) 46))) +(((-764 |#1|) (-10 -7 (-15 -2254 ((-1167 |#1|) |#1| (-218) (-548)))) (-943)) (T -764)) +((-2254 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-218)) (-5 *5 (-548)) (-5 *2 (-1167 *3)) (-5 *1 (-764 *3)) (-4 *3 (-943))))) +(-10 -7 (-15 -2254 ((-1167 |#1|) |#1| (-218) (-548)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-4104 (((-3 $ "failed") $ $) 26)) (-3030 (($) 23 T CONST)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2299 (($ $ $) 28) (($ $) 27)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25) (($ (-548) $) 29))) +(((-765) (-138)) (T -765)) +NIL +(-13 (-769) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-3030 (($) 23 T CONST)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) +(((-766) (-138)) (T -766)) +NIL +(-13 (-768) (-23)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-592 (-832)) . T) ((-768) . T) ((-821) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-2857 (($ $ $) 27)) (-4104 (((-3 $ "failed") $ $) 26)) (-3030 (($) 23 T CONST)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) +(((-767) (-138)) (T -767)) +((-2857 (*1 *1 *1 *1) (-4 *1 (-767)))) +(-13 (-769) (-10 -8 (-15 -2857 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 7)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21))) +(((-768) (-138)) (T -768)) +NIL +(-13 (-821) (-25)) +(((-25) . T) ((-101) . T) ((-592 (-832)) . T) ((-821) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-4104 (((-3 $ "failed") $ $) 26)) (-3030 (($) 23 T CONST)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) +(((-769) (-138)) (T -769)) +NIL +(-13 (-766) (-130)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-766) . T) ((-768) . T) ((-821) . T) ((-1063) . T)) +((-3324 (((-112) $) 41)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#2| $) 42)) (-4182 (((-3 (-399 (-548)) "failed") $) 78)) (-4172 (((-112) $) 72)) (-4161 (((-399 (-548)) $) 76)) (-3910 ((|#2| $) 26)) (-2540 (($ (-1 |#2| |#2|) $) 23)) (-2153 (($ $) 61)) (-2591 (((-524) $) 67)) (-2128 (($ $) 21)) (-3743 (((-832) $) 56) (($ (-548)) 39) (($ |#2|) 37) (($ (-399 (-548))) NIL)) (-3835 (((-745)) 10)) (-1446 ((|#2| $) 71)) (-2214 (((-112) $ $) 29)) (-2234 (((-112) $ $) 69)) (-2299 (($ $) 31) (($ $ $) NIL)) (-2290 (($ $ $) 30)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-770 |#1| |#2|) (-10 -8 (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-771 |#2|) (-169)) (T -770)) +((-3835 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-770 *3 *4)) (-4 *3 (-771 *4))))) +(-10 -8 (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3423 (((-745)) 51 (|has| |#1| (-360)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 92 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 90 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 88)) (-2375 (((-548) $) 93 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 91 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 87)) (-3859 (((-3 $ "failed") $) 32)) (-1937 ((|#1| $) 77)) (-4182 (((-3 (-399 (-548)) "failed") $) 64 (|has| |#1| (-533)))) (-4172 (((-112) $) 66 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 65 (|has| |#1| (-533)))) (-2545 (($) 54 (|has| |#1| (-360)))) (-2266 (((-112) $) 30)) (-2912 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3910 ((|#1| $) 69)) (-1795 (($ $ $) 60 (|has| |#1| (-821)))) (-3091 (($ $ $) 59 (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) 79)) (-2855 (((-890) $) 53 (|has| |#1| (-360)))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 63 (|has| |#1| (-355)))) (-3337 (($ (-890)) 52 (|has| |#1| (-360)))) (-2879 ((|#1| $) 74)) (-2889 ((|#1| $) 75)) (-2900 ((|#1| $) 76)) (-2093 ((|#1| $) 70)) (-2106 ((|#1| $) 71)) (-2118 ((|#1| $) 72)) (-2867 ((|#1| $) 73)) (-3932 (((-1082) $) 10)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 85 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 83 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 82 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 81 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) 80 (|has| |#1| (-504 (-1135) |#1|)))) (-3171 (($ $ |#1|) 86 (|has| |#1| (-278 |#1| |#1|)))) (-2591 (((-524) $) 61 (|has| |#1| (-593 (-524))))) (-2128 (($ $) 78)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35) (($ (-399 (-548))) 89 (|has| |#1| (-1007 (-399 (-548)))))) (-4017 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-1446 ((|#1| $) 67 (|has| |#1| (-1025)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 57 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 56 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 58 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 55 (|has| |#1| (-821)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-771 |#1|) (-138) (-169)) (T -771)) +((-2128 (*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2912 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548))))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548))))) (-2153 (*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-355))))) +(-13 (-38 |t#1|) (-403 |t#1|) (-330 |t#1|) (-10 -8 (-15 -2128 ($ $)) (-15 -1937 (|t#1| $)) (-15 -2900 (|t#1| $)) (-15 -2889 (|t#1| $)) (-15 -2879 (|t#1| $)) (-15 -2867 (|t#1| $)) (-15 -2118 (|t#1| $)) (-15 -2106 (|t#1| $)) (-15 -2093 (|t#1| $)) (-15 -3910 (|t#1| $)) (-15 -2912 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -1446 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-355)) (-15 -2153 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-360) |has| |#1| (-360)) ((-330 |#1|) . T) ((-403 |#1|) . T) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|)) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2540 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) (-771 |#2|) (-169) (-771 |#4|) (-169)) (T -772)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-771 *6)) (-5 *1 (-772 *4 *5 *2 *6)) (-4 *4 (-771 *5))))) +(-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-968 |#1|) "failed") $) 35) (((-3 (-548) "failed") $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-548))) (|has| |#1| (-1007 (-548))))) (((-3 (-399 (-548)) "failed") $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-2375 ((|#1| $) NIL) (((-968 |#1|) $) 33) (((-548) $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-548))) (|has| |#1| (-1007 (-548))))) (((-399 (-548)) $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-3859 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 16)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-533)))) (-4172 (((-112) $) NIL (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) NIL (|has| |#1| (-533)))) (-2545 (($) NIL (|has| |#1| (-360)))) (-2266 (((-112) $) NIL)) (-2912 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-968 |#1|) (-968 |#1|)) 29)) (-3910 ((|#1| $) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-2879 ((|#1| $) 22)) (-2889 ((|#1| $) 20)) (-2900 ((|#1| $) 18)) (-2093 ((|#1| $) 26)) (-2106 ((|#1| $) 25)) (-2118 ((|#1| $) 24)) (-2867 ((|#1| $) 23)) (-3932 (((-1082) $) NIL)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|)))) (-3171 (($ $ |#1|) NIL (|has| |#1| (-278 |#1| |#1|)))) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-2128 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-968 |#1|)) 30) (($ (-399 (-548))) NIL (-1524 (|has| (-968 |#1|) (-1007 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-1446 ((|#1| $) NIL (|has| |#1| (-1025)))) (-3107 (($) 8 T CONST)) (-3118 (($) 12 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-773 |#1|) (-13 (-771 |#1|) (-403 (-968 |#1|)) (-10 -8 (-15 -2912 ($ (-968 |#1|) (-968 |#1|))))) (-169)) (T -773)) +((-2912 (*1 *1 *2 *2) (-12 (-5 *2 (-968 *3)) (-4 *3 (-169)) (-5 *1 (-773 *3))))) +(-13 (-771 |#1|) (-403 (-968 |#1|)) (-10 -8 (-15 -2912 ($ (-968 |#1|) (-968 |#1|))))) +((-3730 (((-112) $ $) 7)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 13)) (-2214 (((-112) $ $) 6))) +(((-774) (-138)) (T -774)) +((-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) (-2922 (*1 *2 *3) (-12 (-4 *1 (-774)) (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-1004))))) +(-13 (-1063) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -2922 ((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-2933 (((-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#3| |#2| (-1135)) 19))) +(((-775 |#1| |#2| |#3|) (-10 -7 (-15 -2933 ((-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#3| |#2| (-1135)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928)) (-630 |#2|)) (T -775)) +((-2933 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-4 *4 (-13 (-29 *6) (-1157) (-928))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2877 (-619 *4)))) (-5 *1 (-775 *6 *4 *3)) (-4 *3 (-630 *4))))) +(-10 -7 (-15 -2933 ((-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#3| |#2| (-1135)))) +((-3408 (((-3 |#2| "failed") |#2| (-114) (-286 |#2|) (-619 |#2|)) 28) (((-3 |#2| "failed") (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") (-286 |#2|) (-114) (-1135)) 18) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135)) 24) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 (-286 |#2|)) (-619 (-114)) (-1135)) 26) (((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135)) 37) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135)) 35))) +(((-776 |#1| |#2|) (-10 -7 (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135))) (-15 -3408 ((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 (-286 |#2|)) (-619 (-114)) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") (-286 |#2|) (-114) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135))) (-15 -3408 ((-3 |#2| "failed") (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|))) (-15 -3408 ((-3 |#2| "failed") |#2| (-114) (-286 |#2|) (-619 |#2|)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -776)) +((-3408 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-286 *2)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-776 *6 *2)))) (-3408 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-114)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-5 *1 (-776 *6 *2)) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))))) (-3408 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2877 (-619 *3))) *3 "failed")) (-5 *1 (-776 *6 *3)) (-4 *3 (-13 (-29 *6) (-1157) (-928))))) (-3408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-114)) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2877 (-619 *7))) *7 "failed")) (-5 *1 (-776 *6 *7)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 (-286 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)))) (-3408 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 *6)) (-5 *4 (-1135)) (-4 *6 (-13 (-29 *5) (-1157) (-928))) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-1218 *6))) (-5 *1 (-776 *5 *6)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 *7)) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)) (-5 *4 (-1218 *7))))) +(-10 -7 (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135))) (-15 -3408 ((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 (-286 |#2|)) (-619 (-114)) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") (-286 |#2|) (-114) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135))) (-15 -3408 ((-3 |#2| "failed") (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|))) (-15 -3408 ((-3 |#2| "failed") |#2| (-114) (-286 |#2|) (-619 |#2|)))) +((-2944 (($) 9)) (-2976 (((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 31)) (-4043 (((-619 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $) 28)) (-2539 (($ (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) 25)) (-2966 (($ (-619 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) 23)) (-2955 (((-1223)) 12))) +(((-777) (-10 -8 (-15 -2944 ($)) (-15 -2955 ((-1223))) (-15 -4043 ((-619 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $)) (-15 -2966 ($ (-619 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -2539 ($ (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2976 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (T -777)) +((-2976 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *1 (-777)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) (-5 *1 (-777)))) (-2966 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-5 *1 (-777)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-5 *1 (-777)))) (-2955 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-777)))) (-2944 (*1 *1) (-5 *1 (-777)))) +(-10 -8 (-15 -2944 ($)) (-15 -2955 ((-1223))) (-15 -4043 ((-619 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $)) (-15 -2966 ($ (-619 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -2539 ($ (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2976 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) +((-3894 ((|#2| |#2| (-1135)) 16)) (-2988 ((|#2| |#2| (-1135)) 51)) (-2997 (((-1 |#2| |#2|) (-1135)) 11))) +(((-778 |#1| |#2|) (-10 -7 (-15 -3894 (|#2| |#2| (-1135))) (-15 -2988 (|#2| |#2| (-1135))) (-15 -2997 ((-1 |#2| |#2|) (-1135)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -778)) +((-2997 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-778 *4 *5)) (-4 *5 (-13 (-29 *4) (-1157) (-928))))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928))))) (-3894 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928)))))) +(-10 -7 (-15 -3894 (|#2| |#2| (-1135))) (-15 -2988 (|#2| |#2| (-1135))) (-15 -2997 ((-1 |#2| |#2|) (-1135)))) +((-3408 (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371) (-371)) 116) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371)) 117) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-619 (-371)) (-371)) 119) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-371)) 120) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-371)) 121) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371))) 122) (((-1004) (-782) (-1028)) 108) (((-1004) (-782)) 109)) (-3671 (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028)) 75) (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782)) 77))) +(((-779) (-10 -7 (-15 -3408 ((-1004) (-782))) (-15 -3408 ((-1004) (-782) (-1028))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371) (-371))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028))))) (T -779)) +((-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-779)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1004)) (-5 *1 (-779))))) +(-10 -7 (-15 -3408 ((-1004) (-782))) (-15 -3408 ((-1004) (-782) (-1028))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371) (-371))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028)))) +((-3009 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2877 (-619 |#4|))) (-627 |#4|) |#4|) 35))) +(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3009 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2877 (-619 |#4|))) (-627 |#4|) |#4|))) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -780)) +((-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *4)) (-4 *4 (-334 *5 *6 *7)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-780 *5 *6 *7 *4))))) +(-10 -7 (-15 -3009 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2877 (-619 |#4|))) (-627 |#4|) |#4|))) +((-1396 (((-2 (|:| -2383 |#3|) (|:| |rh| (-619 (-399 |#2|)))) |#4| (-619 (-399 |#2|))) 52)) (-3029 (((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4| |#2|) 60) (((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4|) 59) (((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3| |#2|) 20) (((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3|) 21)) (-3038 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3019 ((|#2| |#3| (-619 (-399 |#2|))) 93) (((-3 |#2| "failed") |#3| (-399 |#2|)) 90))) +(((-781 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3019 ((-3 |#2| "failed") |#3| (-399 |#2|))) (-15 -3019 (|#2| |#3| (-619 (-399 |#2|)))) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3| |#2|)) (-15 -3038 (|#2| |#3| |#1|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4| |#2|)) (-15 -3038 (|#2| |#4| |#1|)) (-15 -1396 ((-2 (|:| -2383 |#3|) (|:| |rh| (-619 (-399 |#2|)))) |#4| (-619 (-399 |#2|))))) (-13 (-355) (-145) (-1007 (-399 (-548)))) (-1194 |#1|) (-630 |#2|) (-630 (-399 |#2|))) (T -781)) +((-1396 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-2 (|:| -2383 *7) (|:| |rh| (-619 (-399 *6))))) (-5 *1 (-781 *5 *6 *7 *3)) (-5 *4 (-619 (-399 *6))) (-4 *7 (-630 *6)) (-4 *3 (-630 (-399 *6))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *5 *3)) (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-630 *2)) (-4 *3 (-630 (-399 *2))))) (-3029 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2278 *4) (|:| -2155 *4)))) (-5 *1 (-781 *5 *4 *6 *3)) (-4 *6 (-630 *4)) (-4 *3 (-630 (-399 *4))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2278 *5) (|:| -2155 *5)))) (-5 *1 (-781 *4 *5 *6 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 (-399 *5))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *3 *5)) (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) (-4 *5 (-630 (-399 *2))))) (-3029 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2278 *4) (|:| -2155 *4)))) (-5 *1 (-781 *5 *4 *3 *6)) (-4 *3 (-630 *4)) (-4 *6 (-630 (-399 *4))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2278 *5) (|:| -2155 *5)))) (-5 *1 (-781 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-630 (-399 *5))))) (-3019 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-399 *2))) (-4 *2 (-1194 *5)) (-5 *1 (-781 *5 *2 *3 *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) (-4 *6 (-630 (-399 *2))))) (-3019 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-399 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-781 *5 *2 *3 *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) (-4 *6 (-630 *4))))) +(-10 -7 (-15 -3019 ((-3 |#2| "failed") |#3| (-399 |#2|))) (-15 -3019 (|#2| |#3| (-619 (-399 |#2|)))) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3| |#2|)) (-15 -3038 (|#2| |#3| |#1|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4| |#2|)) (-15 -3038 (|#2| |#4| |#1|)) (-15 -1396 ((-2 (|:| -2383 |#3|) (|:| |rh| (-619 (-399 |#2|)))) |#4| (-619 (-399 |#2|))))) +((-3730 (((-112) $ $) NIL)) (-2375 (((-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) $) 13)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 15) (($ (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 12)) (-2214 (((-112) $ $) NIL))) +(((-782) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) $))))) (T -782)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-782)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *1 (-782)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *1 (-782))))) +(-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) $)))) +((-3131 (((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-410 |#2|) |#2|)) 118)) (-3141 (((-619 (-2 (|:| |poly| |#2|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|)) 46)) (-3062 (((-619 (-2 (|:| |deg| (-745)) (|:| -2383 |#2|))) |#3|) 95)) (-3052 ((|#2| |#3|) 37)) (-3073 (((-619 (-2 (|:| -2325 |#1|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|)) 82)) (-3084 ((|#3| |#3| (-399 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3052 (|#2| |#3|)) (-15 -3062 ((-619 (-2 (|:| |deg| (-745)) (|:| -2383 |#2|))) |#3|)) (-15 -3073 ((-619 (-2 (|:| -2325 |#1|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3141 ((-619 (-2 (|:| |poly| |#2|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3131 ((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3084 (|#3| |#3| |#2|)) (-15 -3084 (|#3| |#3| (-399 |#2|)))) (-13 (-355) (-145) (-1007 (-399 (-548)))) (-1194 |#1|) (-630 |#2|) (-630 (-399 |#2|))) (T -783)) +((-3084 (*1 *2 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *1 (-783 *4 *5 *2 *6)) (-4 *2 (-630 *5)) (-4 *6 (-630 *3)))) (-3084 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-1194 *4)) (-5 *1 (-783 *4 *3 *2 *5)) (-4 *2 (-630 *3)) (-4 *5 (-630 (-399 *3))))) (-3131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-619 *7) *7 (-1131 *7))) (-5 *5 (-1 (-410 *7) *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-5 *2 (-619 (-2 (|:| |frac| (-399 *7)) (|:| -2383 *3)))) (-5 *1 (-783 *6 *7 *3 *8)) (-4 *3 (-630 *7)) (-4 *8 (-630 (-399 *7))))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2383 *3)))) (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) (-4 *7 (-630 (-399 *6))))) (-3073 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2325 *5) (|:| -2383 *3)))) (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) (-4 *7 (-630 (-399 *6))))) (-3062 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2383 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-630 (-399 *5))))) (-3052 (*1 *2 *3) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-783 *4 *2 *3 *5)) (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) (-4 *5 (-630 (-399 *2)))))) +(-10 -7 (-15 -3052 (|#2| |#3|)) (-15 -3062 ((-619 (-2 (|:| |deg| (-745)) (|:| -2383 |#2|))) |#3|)) (-15 -3073 ((-619 (-2 (|:| -2325 |#1|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3141 ((-619 (-2 (|:| |poly| |#2|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3131 ((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3084 (|#3| |#3| |#2|)) (-15 -3084 (|#3| |#3| (-399 |#2|)))) +((-3098 (((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-628 |#2| (-399 |#2|)) (-619 (-399 |#2|))) 121) (((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-628 |#2| (-399 |#2|)) (-399 |#2|)) 120) (((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-627 (-399 |#2|)) (-619 (-399 |#2|))) 115) (((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-627 (-399 |#2|)) (-399 |#2|)) 113)) (-3110 ((|#2| (-628 |#2| (-399 |#2|))) 80) ((|#2| (-627 (-399 |#2|))) 83))) +(((-784 |#1| |#2|) (-10 -7 (-15 -3098 ((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-627 (-399 |#2|)) (-399 |#2|))) (-15 -3098 ((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-627 (-399 |#2|)) (-619 (-399 |#2|)))) (-15 -3098 ((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-628 |#2| (-399 |#2|)) (-399 |#2|))) (-15 -3098 ((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-628 |#2| (-399 |#2|)) (-619 (-399 |#2|)))) (-15 -3110 (|#2| (-627 (-399 |#2|)))) (-15 -3110 (|#2| (-628 |#2| (-399 |#2|))))) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -784)) +((-3110 (*1 *2 *3) (-12 (-5 *3 (-628 *2 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-627 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-399 *6))) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-2 (|:| -2877 (-619 (-399 *6))) (|:| -4035 (-663 *5)))) (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-399 *6))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-399 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-784 *5 *6)))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-399 *6))) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-2 (|:| -2877 (-619 (-399 *6))) (|:| -4035 (-663 *5)))) (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-399 *6))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-399 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-784 *5 *6))))) +(-10 -7 (-15 -3098 ((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-627 (-399 |#2|)) (-399 |#2|))) (-15 -3098 ((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-627 (-399 |#2|)) (-619 (-399 |#2|)))) (-15 -3098 ((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-628 |#2| (-399 |#2|)) (-399 |#2|))) (-15 -3098 ((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-628 |#2| (-399 |#2|)) (-619 (-399 |#2|)))) (-15 -3110 (|#2| (-627 (-399 |#2|)))) (-15 -3110 (|#2| (-628 |#2| (-399 |#2|))))) +((-3121 (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|) 48))) +(((-785 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3121 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|))) (-355) (-630 |#1|) (-1194 |#1|) (-699 |#1| |#3|) (-630 |#4|)) (T -785)) +((-3121 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *7 (-1194 *5)) (-4 *4 (-699 *5 *7)) (-5 *2 (-2 (|:| -4035 (-663 *6)) (|:| |vec| (-1218 *5)))) (-5 *1 (-785 *5 *6 *7 *4 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 *4))))) +(-10 -7 (-15 -3121 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|))) +((-3131 (((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|)) 47)) (-3151 (((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|))) 138 (|has| |#1| (-27))) (((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-410 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-619 (-399 |#2|)) (-627 (-399 |#2|))) 140 (|has| |#1| (-27))) (((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|)) 38) (((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|)) 39) (((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|)) 36) (((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|)) 37)) (-3141 (((-619 (-2 (|:| |poly| |#2|) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|)) 83))) +(((-786 |#1| |#2|) (-10 -7 (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -3131 ((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3141 ((-619 (-2 (|:| |poly| |#2|) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)))) (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|)))) |%noBranch|)) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -786)) +((-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-628 *5 (-399 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-399 *5))) (-5 *1 (-786 *4 *5)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-627 (-399 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-399 *5))) (-5 *1 (-786 *4 *5)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2383 (-628 *6 (-399 *6)))))) (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-399 *6))))) (-3131 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-2 (|:| |frac| (-399 *6)) (|:| -2383 (-628 *6 (-399 *6)))))) (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-399 *6))))) (-3151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *7 (-399 *7))) (-5 *4 (-1 (-619 *6) *7)) (-5 *5 (-1 (-410 *7) *7)) (-4 *6 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *7 (-1194 *6)) (-5 *2 (-619 (-399 *7))) (-5 *1 (-786 *6 *7)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) (-3151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-399 *7))) (-5 *4 (-1 (-619 *6) *7)) (-5 *5 (-1 (-410 *7) *7)) (-4 *6 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *7 (-1194 *6)) (-5 *2 (-619 (-399 *7))) (-5 *1 (-786 *6 *7)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6))))) +(-10 -7 (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -3131 ((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3141 ((-619 (-2 (|:| |poly| |#2|) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)))) (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|)))) |%noBranch|)) +((-3162 (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|)) 85) (((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2383 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|)) 15)) (-3174 (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2877 (-619 |#1|))) |#2| |#1|)) 92)) (-3408 (((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -2877 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed") |#2| |#1|)) 43))) +(((-787 |#1| |#2|) (-10 -7 (-15 -3162 ((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2383 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|))) (-15 -3162 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -2877 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed") |#2| |#1|))) (-15 -3174 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2877 (-619 |#1|))) |#2| |#1|)))) (-355) (-630 |#1|)) (T -787)) +((-3174 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2877 (-619 *6))) *7 *6)) (-4 *6 (-355)) (-4 *7 (-630 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *6) "failed")) (|:| -2877 (-619 (-1218 *6))))) (-5 *1 (-787 *6 *7)) (-5 *4 (-1218 *6)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2877 (-619 *6))) "failed") *7 *6)) (-4 *6 (-355)) (-4 *7 (-630 *6)) (-5 *2 (-2 (|:| |particular| (-1218 *6)) (|:| -2877 (-663 *6)))) (-5 *1 (-787 *6 *7)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *6)))) (-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-630 *5)) (-5 *2 (-2 (|:| -4035 (-663 *6)) (|:| |vec| (-1218 *5)))) (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *5)))) (-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-5 *2 (-2 (|:| A (-663 *5)) (|:| |eqs| (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5)) (|:| -2383 *6) (|:| |rh| *5)))))) (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *6 (-630 *5))))) +(-10 -7 (-15 -3162 ((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2383 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|))) (-15 -3162 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -2877 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed") |#2| |#1|))) (-15 -3174 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2877 (-619 |#1|))) |#2| |#1|)))) +((-3186 (((-663 |#1|) (-619 |#1|) (-745)) 13) (((-663 |#1|) (-619 |#1|)) 14)) (-3199 (((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|)) 34)) (-2192 (((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)) 42))) +(((-788 |#1| |#2|) (-10 -7 (-15 -3186 ((-663 |#1|) (-619 |#1|))) (-15 -3186 ((-663 |#1|) (-619 |#1|) (-745))) (-15 -3199 ((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|))) (-15 -2192 ((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)))) (-355) (-630 |#1|)) (T -788)) +((-2192 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-619 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-355)) (-5 *1 (-788 *2 *3)) (-4 *3 (-630 *2)))) (-3199 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-619 *4)) (-4 *4 (-355)) (-5 *2 (-1218 *4)) (-5 *1 (-788 *4 *3)) (-4 *3 (-630 *4)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-355)) (-5 *2 (-663 *5)) (-5 *1 (-788 *5 *6)) (-4 *6 (-630 *5)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-355)) (-5 *2 (-663 *4)) (-5 *1 (-788 *4 *5)) (-4 *5 (-630 *4))))) +(-10 -7 (-15 -3186 ((-663 |#1|) (-619 |#1|))) (-15 -3186 ((-663 |#1|) (-619 |#1|) (-745))) (-15 -3199 ((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|))) (-15 -2192 ((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)))) +((-3730 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-3324 (((-112) $) NIL (|has| |#2| (-130)))) (-2264 (($ (-890)) NIL (|has| |#2| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#2| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#2| (-360)))) (-2672 (((-548) $) NIL (|has| |#2| (-819)))) (-2089 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1063)))) (-2375 (((-548) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) ((|#2| $) NIL (|has| |#2| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3859 (((-3 $ "failed") $) NIL (|has| |#2| (-701)))) (-2545 (($) NIL (|has| |#2| (-360)))) (-3971 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ (-548)) NIL)) (-3298 (((-112) $) NIL (|has| |#2| (-819)))) (-1934 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (|has| |#2| (-701)))) (-3312 (((-112) $) NIL (|has| |#2| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#2| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#2| (-1063)))) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#2| (-360)))) (-3932 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3453 ((|#2| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-548)) NIL)) (-4029 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-1957 (($ (-1218 |#2|)) NIL)) (-3402 (((-133)) NIL (|has| |#2| (-355)))) (-4050 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#2|) $) NIL) (($ (-548)) NIL (-1524 (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (($ |#2|) NIL (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-592 (-832))))) (-3835 (((-745)) NIL (|has| |#2| (-1016)))) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#2| (-819)))) (-3107 (($) NIL (|has| |#2| (-130)) CONST)) (-3118 (($) NIL (|has| |#2| (-701)) CONST)) (-3296 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2214 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-2252 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2234 (((-112) $ $) 11 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2290 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-548) $) NIL (|has| |#2| (-1016))) (($ $ $) NIL (|has| |#2| (-701))) (($ $ |#2|) NIL (|has| |#2| (-701))) (($ |#2| $) NIL (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-789 |#1| |#2| |#3|) (-231 |#1| |#2|) (-745) (-767) (-1 (-112) (-1218 |#2|) (-1218 |#2|))) (T -789)) +NIL +(-231 |#1| |#2|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2919 (((-619 (-745)) $) NIL) (((-619 (-745)) $ (-1135)) NIL)) (-3266 (((-745) $) NIL) (((-745) $ (-1135)) NIL)) (-2049 (((-619 (-792 (-1135))) $) NIL)) (-1884 (((-1131 $) $ (-792 (-1135))) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-792 (-1135)))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2896 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-792 (-1135)) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL) (((-3 (-1087 |#1| (-1135)) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-792 (-1135)) $) NIL) (((-1135) $) NIL) (((-1087 |#1| (-1135)) $) NIL)) (-1557 (($ $ $ (-792 (-1135))) NIL (|has| |#1| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-792 (-1135))) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 (-792 (-1135))) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-792 (-1135)) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-792 (-1135)) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ (-1135)) NIL) (((-745) $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#1|) (-792 (-1135))) NIL) (($ (-1131 $) (-792 (-1135))) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-792 (-1135))) NIL)) (-3904 (((-520 (-792 (-1135))) $) NIL) (((-745) $ (-792 (-1135))) NIL) (((-619 (-745)) $ (-619 (-792 (-1135)))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 (-792 (-1135))) (-520 (-792 (-1135)))) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3278 (((-1 $ (-745)) (-1135)) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-226)))) (-3511 (((-3 (-792 (-1135)) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-1956 (((-792 (-1135)) $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-2909 (((-112) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-792 (-1135))) (|:| -3352 (-745))) "failed") $) NIL)) (-2045 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-792 (-1135)) |#1|) NIL) (($ $ (-619 (-792 (-1135))) (-619 |#1|)) NIL) (($ $ (-792 (-1135)) $) NIL) (($ $ (-619 (-792 (-1135))) (-619 $)) NIL) (($ $ (-1135) $) NIL (|has| |#1| (-226))) (($ $ (-619 (-1135)) (-619 $)) NIL (|has| |#1| (-226))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-226))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-226)))) (-1566 (($ $ (-792 (-1135))) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-792 (-1135))) NIL) (($ $ (-619 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2930 (((-619 (-1135)) $) NIL)) (-2512 (((-520 (-792 (-1135))) $) NIL) (((-745) $ (-792 (-1135))) NIL) (((-619 (-745)) $ (-619 (-792 (-1135)))) NIL) (((-745) $ (-1135)) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-792 (-1135)) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-792 (-1135)) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-792 (-1135)) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-792 (-1135))) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-792 (-1135))) NIL) (($ (-1135)) NIL) (($ (-1087 |#1| (-1135))) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-792 (-1135))) NIL) (($ $ (-619 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-790 |#1|) (-13 (-245 |#1| (-1135) (-792 (-1135)) (-520 (-792 (-1135)))) (-1007 (-1087 |#1| (-1135)))) (-1016)) (T -790)) +NIL +(-13 (-245 |#1| (-1135) (-792 (-1135)) (-520 (-792 (-1135)))) (-1007 (-1087 |#1| (-1135)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-355)))) (-3303 (($ $) NIL (|has| |#2| (-355)))) (-3279 (((-112) $) NIL (|has| |#2| (-355)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#2| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-355)))) (-4087 (((-112) $ $) NIL (|has| |#2| (-355)))) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL (|has| |#2| (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#2| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#2| (-355)))) (-1271 (((-112) $) NIL (|has| |#2| (-355)))) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-355)))) (-3553 (($ (-619 $)) NIL (|has| |#2| (-355))) (($ $ $) NIL (|has| |#2| (-355)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 20 (|has| |#2| (-355)))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-355))) (($ $ $) NIL (|has| |#2| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#2| (-355)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#2| (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-355)))) (-4077 (((-745) $) NIL (|has| |#2| (-355)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-355)))) (-4050 (($ $ (-745)) NIL) (($ $) 13)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-399 (-548))) NIL (|has| |#2| (-355))) (($ $) NIL (|has| |#2| (-355)))) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL (|has| |#2| (-355)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) 15 (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL) (($ $ (-548)) 18 (|has| |#2| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-399 (-548)) $) NIL (|has| |#2| (-355))) (($ $ (-399 (-548))) NIL (|has| |#2| (-355))))) +(((-791 |#1| |#2| |#3|) (-13 (-111 $ $) (-226) (-10 -8 (IF (|has| |#2| (-355)) (-6 (-355)) |%noBranch|) (-15 -3743 ($ |#2|)) (-15 -3743 (|#2| $)))) (-1063) (-869 |#1|) |#1|) (T -791)) +((-3743 (*1 *1 *2) (-12 (-4 *3 (-1063)) (-14 *4 *3) (-5 *1 (-791 *3 *2 *4)) (-4 *2 (-869 *3)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-869 *3)) (-5 *1 (-791 *3 *2 *4)) (-4 *3 (-1063)) (-14 *4 *3)))) +(-13 (-111 $ $) (-226) (-10 -8 (IF (|has| |#2| (-355)) (-6 (-355)) |%noBranch|) (-15 -3743 ($ |#2|)) (-15 -3743 (|#2| $)))) +((-3730 (((-112) $ $) NIL)) (-3266 (((-745) $) NIL)) (-2754 ((|#1| $) 10)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-1672 (((-745) $) 11)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3278 (($ |#1| (-745)) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4050 (($ $) NIL) (($ $ (-745)) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL))) +(((-792 |#1|) (-258 |#1|) (-821)) (T -792)) +NIL +(-258 |#1|) +((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) 29)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2448 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3465 (($ $) 31)) (-3859 (((-3 $ "failed") $) NIL)) (-3245 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2266 (((-112) $) NIL)) (-3224 ((|#1| $ (-548)) NIL)) (-3235 (((-745) $ (-548)) NIL)) (-2425 (($ $) 36)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2459 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3281 (((-112) $ $) 34)) (-3198 (((-745) $) 25)) (-2546 (((-1118) $) NIL)) (-3257 (($ $ $) NIL)) (-3269 (($ $ $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 ((|#1| $) 30)) (-3213 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $) NIL)) (-1911 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-3118 (($) 15 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 35)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ |#1| (-745)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-793 |#1|) (-13 (-817) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3453 (|#1| $)) (-15 -3465 ($ $)) (-15 -2425 ($ $)) (-15 -3281 ((-112) $ $)) (-15 -3269 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2459 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -2459 ((-3 $ "failed") $ |#1|)) (-15 -2448 ((-3 $ "failed") $ |#1|)) (-15 -1911 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3245 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3423 ((-745) $)) (-15 -3235 ((-745) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $)) (-15 -3198 ((-745) $)) (-15 -3065 ((-619 |#1|) $)))) (-821)) (T -793)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3453 (*1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3465 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3269 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3257 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2459 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2448 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2459 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2448 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-1911 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |rm| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3245 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |mm| (-793 *3)) (|:| |rm| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-745)) (-5 *1 (-793 *4)) (-4 *4 (-821)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-745))))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-793 *3)) (-4 *3 (-821))))) +(-13 (-817) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3453 (|#1| $)) (-15 -3465 ($ $)) (-15 -2425 ($ $)) (-15 -3281 ((-112) $ $)) (-15 -3269 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2459 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -2459 ((-3 $ "failed") $ |#1|)) (-15 -2448 ((-3 $ "failed") $ |#1|)) (-15 -1911 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3245 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3423 ((-745) $)) (-15 -3235 ((-745) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $)) (-15 -3198 ((-745) $)) (-15 -3065 ((-619 |#1|) $)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-2672 (((-548) $) 51)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-3298 (((-112) $) 49)) (-2266 (((-112) $) 30)) (-3312 (((-112) $) 50)) (-1795 (($ $ $) 48)) (-3091 (($ $ $) 47)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-1446 (($ $) 52)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 45)) (-2241 (((-112) $ $) 44)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 46)) (-2234 (((-112) $ $) 43)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-794) (-138)) (T -794)) +NIL +(-13 (-540) (-819)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3292 (($ (-1082)) 7)) (-3346 (((-112) $ (-1118) (-1082)) 15)) (-3331 (((-796) $) 12)) (-3318 (((-796) $) 11)) (-3305 (((-1223) $) 9)) (-3361 (((-112) $ (-1082)) 16))) +(((-795) (-10 -8 (-15 -3292 ($ (-1082))) (-15 -3305 ((-1223) $)) (-15 -3318 ((-796) $)) (-15 -3331 ((-796) $)) (-15 -3346 ((-112) $ (-1118) (-1082))) (-15 -3361 ((-112) $ (-1082))))) (T -795)) +((-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))) (-3346 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-795)))) (-3292 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-795))))) +(-10 -8 (-15 -3292 ($ (-1082))) (-15 -3305 ((-1223) $)) (-15 -3318 ((-796) $)) (-15 -3331 ((-796) $)) (-15 -3346 ((-112) $ (-1118) (-1082))) (-15 -3361 ((-112) $ (-1082)))) +((-3419 (((-1223) $ (-797)) 12)) (-2400 (((-1223) $ (-1135)) 32)) (-2420 (((-1223) $ (-1118) (-1118)) 34)) (-2411 (((-1223) $ (-1118)) 33)) (-2300 (((-1223) $) 19)) (-2378 (((-1223) $ (-548)) 28)) (-2389 (((-1223) $ (-218)) 30)) (-2291 (((-1223) $) 18)) (-2368 (((-1223) $) 26)) (-2359 (((-1223) $) 25)) (-2339 (((-1223) $) 23)) (-2348 (((-1223) $) 24)) (-2330 (((-1223) $) 22)) (-2320 (((-1223) $) 21)) (-2310 (((-1223) $) 20)) (-3460 (((-1223) $) 16)) (-2281 (((-1223) $) 17)) (-3449 (((-1223) $) 15)) (-3439 (((-1223) $) 14)) (-3431 (((-1223) $) 13)) (-3393 (($ (-1118) (-797)) 9)) (-3378 (($ (-1118) (-1118) (-797)) 8)) (-2600 (((-1135) $) 51)) (-2629 (((-1135) $) 55)) (-2618 (((-2 (|:| |cd| (-1118)) (|:| -2275 (-1118))) $) 54)) (-2610 (((-1118) $) 52)) (-2497 (((-1223) $) 41)) (-2580 (((-548) $) 49)) (-2588 (((-218) $) 50)) (-2485 (((-1223) $) 40)) (-2571 (((-1223) $) 48)) (-2562 (((-1223) $) 47)) (-2538 (((-1223) $) 45)) (-2551 (((-1223) $) 46)) (-2526 (((-1223) $) 44)) (-2516 (((-1223) $) 43)) (-2507 (((-1223) $) 42)) (-2464 (((-1223) $) 38)) (-2475 (((-1223) $) 39)) (-2452 (((-1223) $) 37)) (-2440 (((-1223) $) 36)) (-2430 (((-1223) $) 35)) (-3406 (((-1223) $) 11))) +(((-796) (-10 -8 (-15 -3378 ($ (-1118) (-1118) (-797))) (-15 -3393 ($ (-1118) (-797))) (-15 -3406 ((-1223) $)) (-15 -3419 ((-1223) $ (-797))) (-15 -3431 ((-1223) $)) (-15 -3439 ((-1223) $)) (-15 -3449 ((-1223) $)) (-15 -3460 ((-1223) $)) (-15 -2281 ((-1223) $)) (-15 -2291 ((-1223) $)) (-15 -2300 ((-1223) $)) (-15 -2310 ((-1223) $)) (-15 -2320 ((-1223) $)) (-15 -2330 ((-1223) $)) (-15 -2339 ((-1223) $)) (-15 -2348 ((-1223) $)) (-15 -2359 ((-1223) $)) (-15 -2368 ((-1223) $)) (-15 -2378 ((-1223) $ (-548))) (-15 -2389 ((-1223) $ (-218))) (-15 -2400 ((-1223) $ (-1135))) (-15 -2411 ((-1223) $ (-1118))) (-15 -2420 ((-1223) $ (-1118) (-1118))) (-15 -2430 ((-1223) $)) (-15 -2440 ((-1223) $)) (-15 -2452 ((-1223) $)) (-15 -2464 ((-1223) $)) (-15 -2475 ((-1223) $)) (-15 -2485 ((-1223) $)) (-15 -2497 ((-1223) $)) (-15 -2507 ((-1223) $)) (-15 -2516 ((-1223) $)) (-15 -2526 ((-1223) $)) (-15 -2538 ((-1223) $)) (-15 -2551 ((-1223) $)) (-15 -2562 ((-1223) $)) (-15 -2571 ((-1223) $)) (-15 -2580 ((-548) $)) (-15 -2588 ((-218) $)) (-15 -2600 ((-1135) $)) (-15 -2610 ((-1118) $)) (-15 -2618 ((-2 (|:| |cd| (-1118)) (|:| -2275 (-1118))) $)) (-15 -2629 ((-1135) $)))) (T -796)) +((-2629 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1118)) (|:| -2275 (-1118)))) (-5 *1 (-796)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-796)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-796)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-796)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2411 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3393 (*1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796)))) (-3378 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) +(-10 -8 (-15 -3378 ($ (-1118) (-1118) (-797))) (-15 -3393 ($ (-1118) (-797))) (-15 -3406 ((-1223) $)) (-15 -3419 ((-1223) $ (-797))) (-15 -3431 ((-1223) $)) (-15 -3439 ((-1223) $)) (-15 -3449 ((-1223) $)) (-15 -3460 ((-1223) $)) (-15 -2281 ((-1223) $)) (-15 -2291 ((-1223) $)) (-15 -2300 ((-1223) $)) (-15 -2310 ((-1223) $)) (-15 -2320 ((-1223) $)) (-15 -2330 ((-1223) $)) (-15 -2339 ((-1223) $)) (-15 -2348 ((-1223) $)) (-15 -2359 ((-1223) $)) (-15 -2368 ((-1223) $)) (-15 -2378 ((-1223) $ (-548))) (-15 -2389 ((-1223) $ (-218))) (-15 -2400 ((-1223) $ (-1135))) (-15 -2411 ((-1223) $ (-1118))) (-15 -2420 ((-1223) $ (-1118) (-1118))) (-15 -2430 ((-1223) $)) (-15 -2440 ((-1223) $)) (-15 -2452 ((-1223) $)) (-15 -2464 ((-1223) $)) (-15 -2475 ((-1223) $)) (-15 -2485 ((-1223) $)) (-15 -2497 ((-1223) $)) (-15 -2507 ((-1223) $)) (-15 -2516 ((-1223) $)) (-15 -2526 ((-1223) $)) (-15 -2538 ((-1223) $)) (-15 -2551 ((-1223) $)) (-15 -2562 ((-1223) $)) (-15 -2571 ((-1223) $)) (-15 -2580 ((-548) $)) (-15 -2588 ((-218) $)) (-15 -2600 ((-1135) $)) (-15 -2610 ((-1118) $)) (-15 -2618 ((-2 (|:| |cd| (-1118)) (|:| -2275 (-1118))) $)) (-15 -2629 ((-1135) $))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 12)) (-2660 (($) 15)) (-2671 (($) 13)) (-2650 (($) 16)) (-2638 (($) 14)) (-2214 (((-112) $ $) 8))) +(((-797) (-13 (-1063) (-10 -8 (-15 -2671 ($)) (-15 -2660 ($)) (-15 -2650 ($)) (-15 -2638 ($))))) (T -797)) +((-2671 (*1 *1) (-5 *1 (-797))) (-2660 (*1 *1) (-5 *1 (-797))) (-2650 (*1 *1) (-5 *1 (-797))) (-2638 (*1 *1) (-5 *1 (-797)))) +(-13 (-1063) (-10 -8 (-15 -2671 ($)) (-15 -2660 ($)) (-15 -2650 ($)) (-15 -2638 ($)))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 21) (($ (-1135)) 17)) (-2714 (((-112) $) 10)) (-2723 (((-112) $) 9)) (-2705 (((-112) $) 11)) (-2731 (((-112) $) 8)) (-2214 (((-112) $ $) 19))) +(((-798) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-1135))) (-15 -2731 ((-112) $)) (-15 -2723 ((-112) $)) (-15 -2714 ((-112) $)) (-15 -2705 ((-112) $))))) (T -798)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-798)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(-13 (-1063) (-10 -8 (-15 -3743 ($ (-1135))) (-15 -2731 ((-112) $)) (-15 -2723 ((-112) $)) (-15 -2714 ((-112) $)) (-15 -2705 ((-112) $)))) +((-3730 (((-112) $ $) NIL)) (-2679 (($ (-798) (-619 (-1135))) 24)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2698 (((-798) $) 25)) (-2689 (((-619 (-1135)) $) 26)) (-3743 (((-832) $) 23)) (-2214 (((-112) $ $) NIL))) +(((-799) (-13 (-1063) (-10 -8 (-15 -2698 ((-798) $)) (-15 -2689 ((-619 (-1135)) $)) (-15 -2679 ($ (-798) (-619 (-1135))))))) (T -799)) +((-2698 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-799)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-799)))) (-2679 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-619 (-1135))) (-5 *1 (-799))))) +(-13 (-1063) (-10 -8 (-15 -2698 ((-798) $)) (-15 -2689 ((-619 (-1135)) $)) (-15 -2679 ($ (-798) (-619 (-1135)))))) +((-2739 (((-1223) (-796) (-308 |#1|) (-112)) 23) (((-1223) (-796) (-308 |#1|)) 79) (((-1118) (-308 |#1|) (-112)) 78) (((-1118) (-308 |#1|)) 77))) +(((-800 |#1|) (-10 -7 (-15 -2739 ((-1118) (-308 |#1|))) (-15 -2739 ((-1118) (-308 |#1|) (-112))) (-15 -2739 ((-1223) (-796) (-308 |#1|))) (-15 -2739 ((-1223) (-796) (-308 |#1|) (-112)))) (-13 (-802) (-821) (-1016))) (T -800)) +((-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-796)) (-5 *4 (-308 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) (-5 *1 (-800 *6)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-796)) (-5 *4 (-308 *5)) (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) (-5 *1 (-800 *5)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-308 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) (-5 *1 (-800 *5)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-308 *4)) (-4 *4 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) (-5 *1 (-800 *4))))) +(-10 -7 (-15 -2739 ((-1118) (-308 |#1|))) (-15 -2739 ((-1118) (-308 |#1|) (-112))) (-15 -2739 ((-1223) (-796) (-308 |#1|))) (-15 -2739 ((-1223) (-796) (-308 |#1|) (-112)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2748 ((|#1| $) 10)) (-2503 (($ |#1|) 9)) (-2266 (((-112) $) NIL)) (-2024 (($ |#2| (-745)) NIL)) (-3904 (((-745) $) NIL)) (-2197 ((|#2| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4050 (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $) NIL (|has| |#1| (-226)))) (-2512 (((-745) $) NIL)) (-3743 (((-832) $) 17) (($ (-548)) NIL) (($ |#2|) NIL (|has| |#2| (-169)))) (-1951 ((|#2| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $) NIL (|has| |#1| (-226)))) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-801 |#1| |#2|) (-13 (-683 |#2|) (-10 -8 (IF (|has| |#1| (-226)) (-6 (-226)) |%noBranch|) (-15 -2503 ($ |#1|)) (-15 -2748 (|#1| $)))) (-683 |#2|) (-1016)) (T -801)) +((-2503 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-801 *2 *3)) (-4 *2 (-683 *3)))) (-2748 (*1 *2 *1) (-12 (-4 *2 (-683 *3)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1016))))) +(-13 (-683 |#2|) (-10 -8 (IF (|has| |#1| (-226)) (-6 (-226)) |%noBranch|) (-15 -2503 ($ |#1|)) (-15 -2748 (|#1| $)))) +((-2739 (((-1223) (-796) $ (-112)) 9) (((-1223) (-796) $) 8) (((-1118) $ (-112)) 7) (((-1118) $) 6))) +(((-802) (-138)) (T -802)) +((-2739 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *4 (-112)) (-5 *2 (-1223)))) (-2739 (*1 *2 *3 *1) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *2 (-1223)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-802)) (-5 *3 (-112)) (-5 *2 (-1118)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-802)) (-5 *2 (-1118))))) +(-13 (-10 -8 (-15 -2739 ((-1118) $)) (-15 -2739 ((-1118) $ (-112))) (-15 -2739 ((-1223) (-796) $)) (-15 -2739 ((-1223) (-796) $ (-112))))) +((-2813 (((-304) (-1118) (-1118)) 12)) (-2804 (((-112) (-1118) (-1118)) 34)) (-2794 (((-112) (-1118)) 33)) (-2772 (((-52) (-1118)) 25)) (-2764 (((-52) (-1118)) 23)) (-2757 (((-52) (-796)) 17)) (-2788 (((-619 (-1118)) (-1118)) 28)) (-2780 (((-619 (-1118))) 27))) +(((-803) (-10 -7 (-15 -2757 ((-52) (-796))) (-15 -2764 ((-52) (-1118))) (-15 -2772 ((-52) (-1118))) (-15 -2780 ((-619 (-1118)))) (-15 -2788 ((-619 (-1118)) (-1118))) (-15 -2794 ((-112) (-1118))) (-15 -2804 ((-112) (-1118) (-1118))) (-15 -2813 ((-304) (-1118) (-1118))))) (T -803)) +((-2813 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-803)))) (-2804 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803)))) (-2788 (*1 *2 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)) (-5 *3 (-1118)))) (-2780 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-52)) (-5 *1 (-803))))) +(-10 -7 (-15 -2757 ((-52) (-796))) (-15 -2764 ((-52) (-1118))) (-15 -2772 ((-52) (-1118))) (-15 -2780 ((-619 (-1118)))) (-15 -2788 ((-619 (-1118)) (-1118))) (-15 -2794 ((-112) (-1118))) (-15 -2804 ((-112) (-1118) (-1118))) (-15 -2813 ((-304) (-1118) (-1118)))) +((-3730 (((-112) $ $) 19)) (-1434 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2501 (($ $ $) 72)) (-2491 (((-112) $ $) 73)) (-2028 (((-112) $ (-745)) 8)) (-2592 (($ (-619 |#1|)) 68) (($) 67)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-2969 (($ $) 62)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 64)) (-4282 (((-112) $ (-745)) 9)) (-1795 ((|#1| $) 78)) (-2965 (($ $ $) 81)) (-2913 (($ $ $) 80)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3091 ((|#1| $) 79)) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22)) (-2520 (($ $ $) 69)) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3932 (((-1082) $) 21)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 61)) (-2511 (($ $ |#1|) 71) (($ $ $) 70)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18)) (-4013 (($ (-619 |#1|)) 66) (($) 65)) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-804 |#1|) (-138) (-821)) (T -804)) +((-1795 (*1 *2 *1) (-12 (-4 *1 (-804 *2)) (-4 *2 (-821))))) +(-13 (-711 |t#1|) (-937 |t#1|) (-10 -8 (-15 -1795 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-669 |#1|) . T) ((-711 |#1|) . T) ((-937 |#1|) . T) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) +((-1718 (((-1223) (-1082) (-1082)) 47)) (-1709 (((-1223) (-795) (-52)) 44)) (-1701 (((-52) (-795)) 16))) +(((-805) (-10 -7 (-15 -1701 ((-52) (-795))) (-15 -1709 ((-1223) (-795) (-52))) (-15 -1718 ((-1223) (-1082) (-1082))))) (T -805)) +((-1718 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1223)) (-5 *1 (-805)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-52)) (-5 *2 (-1223)) (-5 *1 (-805)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-52)) (-5 *1 (-805))))) +(-10 -7 (-15 -1701 ((-52) (-795))) (-15 -1709 ((-1223) (-795) (-52))) (-15 -1718 ((-1223) (-1082) (-1082)))) +((-2540 (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)) 12) (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|)) 13))) +(((-806 |#1| |#2|) (-10 -7 (-15 -2540 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))) (-15 -2540 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)))) (-1063) (-1063)) (T -806)) +((-2540 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-806 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6))))) +(-10 -7 (-15 -2540 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))) (-15 -2540 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL (|has| |#1| (-21)))) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2672 (((-548) $) NIL (|has| |#1| (-819)))) (-3030 (($) NIL (|has| |#1| (-21)) CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 15)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 9)) (-3859 (((-3 $ "failed") $) 40 (|has| |#1| (-819)))) (-4182 (((-3 (-399 (-548)) "failed") $) 49 (|has| |#1| (-533)))) (-4172 (((-112) $) 43 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 46 (|has| |#1| (-533)))) (-3298 (((-112) $) NIL (|has| |#1| (-819)))) (-2266 (((-112) $) NIL (|has| |#1| (-819)))) (-3312 (((-112) $) NIL (|has| |#1| (-819)))) (-1795 (($ $ $) NIL (|has| |#1| (-819)))) (-3091 (($ $ $) NIL (|has| |#1| (-819)))) (-2546 (((-1118) $) NIL)) (-1377 (($) 13)) (-1820 (((-112) $) 12)) (-3932 (((-1082) $) NIL)) (-1828 (((-112) $) 11)) (-3743 (((-832) $) 18) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 8) (($ (-548)) NIL (-1524 (|has| |#1| (-819)) (|has| |#1| (-1007 (-548)))))) (-3835 (((-745)) 34 (|has| |#1| (-819)))) (-1446 (($ $) NIL (|has| |#1| (-819)))) (-3107 (($) 22 (|has| |#1| (-21)) CONST)) (-3118 (($) 31 (|has| |#1| (-819)) CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2214 (((-112) $ $) 20)) (-2252 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2234 (((-112) $ $) 42 (|has| |#1| (-819)))) (-2299 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2290 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-819))) (($ $ (-745)) NIL (|has| |#1| (-819)))) (* (($ $ $) 37 (|has| |#1| (-819))) (($ (-548) $) 25 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21))))) +(((-807 |#1|) (-13 (-1063) (-403 |#1|) (-10 -8 (-15 -1377 ($)) (-15 -1828 ((-112) $)) (-15 -1820 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) (-1063)) (T -807)) +((-1377 (*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1063)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-807 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-807 *3)) (-4 *3 (-533)) (-4 *3 (-1063))))) +(-13 (-1063) (-403 |#1|) (-10 -8 (-15 -1377 ($)) (-15 -1828 ((-112) $)) (-15 -1820 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-114) $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1737 ((|#1| (-114) |#1|) NIL)) (-2266 (((-112) $) NIL)) (-1727 (($ |#1| (-353 (-114))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1747 (($ $ (-1 |#1| |#1|)) NIL)) (-1756 (($ $ (-1 |#1| |#1|)) NIL)) (-3171 ((|#1| $ |#1|) NIL)) (-1765 ((|#1| |#1|) NIL (|has| |#1| (-169)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-1773 (($ $) NIL (|has| |#1| (-169))) (($ $ $) NIL (|has| |#1| (-169)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ (-114) (-548)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-808 |#1|) (-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-278 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 -1765 (|#1| |#1|))) |%noBranch|) (-15 -1756 ($ $ (-1 |#1| |#1|))) (-15 -1747 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-548))) (-15 ** ($ $ (-548))) (-15 -1737 (|#1| (-114) |#1|)) (-15 -1727 ($ |#1| (-353 (-114)))))) (-1016)) (T -808)) +((-1773 (*1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-1773 (*1 *1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-1765 (*1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-548)) (-5 *1 (-808 *4)) (-4 *4 (-1016)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-808 *3)) (-4 *3 (-1016)))) (-1737 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-808 *2)) (-4 *2 (-1016)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *3 (-353 (-114))) (-5 *1 (-808 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-278 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 -1765 (|#1| |#1|))) |%noBranch|) (-15 -1756 ($ $ (-1 |#1| |#1|))) (-15 -1747 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-548))) (-15 ** ($ $ (-548))) (-15 -1737 (|#1| (-114) |#1|)) (-15 -1727 ($ |#1| (-353 (-114)))))) +((-1781 (((-207 (-492)) (-1118)) 9))) +(((-809) (-10 -7 (-15 -1781 ((-207 (-492)) (-1118))))) (T -809)) +((-1781 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-207 (-492))) (-5 *1 (-809))))) +(-10 -7 (-15 -1781 ((-207 (-492)) (-1118)))) +((-3730 (((-112) $ $) 7)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 14) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 13)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 16) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 15)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(((-810) (-138)) (T -810)) +((-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) (-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) (-1789 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *2 (-1004)))) (-1789 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (-5 *2 (-1004))))) +(-13 (-1063) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -1789 ((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -1789 ((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-1444 (((-1004) (-619 (-308 (-371))) (-619 (-371))) 147) (((-1004) (-308 (-371)) (-619 (-371))) 145) (((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-814 (-371)))) 144) (((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-308 (-371))) (-619 (-814 (-371)))) 143) (((-1004) (-812)) 117) (((-1004) (-812) (-1028)) 116)) (-3671 (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028)) 82) (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812)) 84)) (-1799 (((-1004) (-619 (-308 (-371))) (-619 (-371))) 148) (((-1004) (-812)) 133))) +(((-811) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028))) (-15 -1444 ((-1004) (-812) (-1028))) (-15 -1444 ((-1004) (-812))) (-15 -1799 ((-1004) (-812))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-308 (-371))) (-619 (-814 (-371))))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-814 (-371))))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)))) (-15 -1444 ((-1004) (-619 (-308 (-371))) (-619 (-371)))) (-15 -1799 ((-1004) (-619 (-308 (-371))) (-619 (-371)))))) (T -811)) +((-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-308 (-371)))) (-5 *4 (-619 (-371))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-308 (-371)))) (-5 *4 (-619 (-371))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-371))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-371))) (-5 *5 (-619 (-814 (-371)))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-619 (-371))) (-5 *5 (-619 (-814 (-371)))) (-5 *6 (-619 (-308 (-371)))) (-5 *3 (-308 (-371))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-811)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-811))))) +(-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028))) (-15 -1444 ((-1004) (-812) (-1028))) (-15 -1444 ((-1004) (-812))) (-15 -1799 ((-1004) (-812))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-308 (-371))) (-619 (-814 (-371))))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-814 (-371))))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)))) (-15 -1444 ((-1004) (-619 (-308 (-371))) (-619 (-371)))) (-15 -1799 ((-1004) (-619 (-308 (-371))) (-619 (-371))))) +((-3730 (((-112) $ $) NIL)) (-2375 (((-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) $) 21)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 20) (($ (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 14) (($ (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) 18)) (-2214 (((-112) $ $) NIL))) +(((-812) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -3743 ($ (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -3743 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) $))))) (T -812)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-812)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (-5 *1 (-812)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *1 (-812)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) (-5 *1 (-812)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) (-5 *1 (-812))))) +(-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -3743 ($ (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -3743 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) $)))) +((-2540 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)) 13) (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 14))) +(((-813 |#1| |#2|) (-10 -7 (-15 -2540 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))) (-15 -2540 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)))) (-1063) (-1063)) (T -813)) +((-2540 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-814 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-813 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6))))) +(-10 -7 (-15 -2540 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))) (-15 -2540 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL (|has| |#1| (-21)))) (-1809 (((-1082) $) 24)) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2672 (((-548) $) NIL (|has| |#1| (-819)))) (-3030 (($) NIL (|has| |#1| (-21)) CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 16)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 9)) (-3859 (((-3 $ "failed") $) 47 (|has| |#1| (-819)))) (-4182 (((-3 (-399 (-548)) "failed") $) 54 (|has| |#1| (-533)))) (-4172 (((-112) $) 49 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 52 (|has| |#1| (-533)))) (-3298 (((-112) $) NIL (|has| |#1| (-819)))) (-2835 (($) 13)) (-2266 (((-112) $) NIL (|has| |#1| (-819)))) (-3312 (((-112) $) NIL (|has| |#1| (-819)))) (-2845 (($) 14)) (-1795 (($ $ $) NIL (|has| |#1| (-819)))) (-3091 (($ $ $) NIL (|has| |#1| (-819)))) (-2546 (((-1118) $) NIL)) (-1820 (((-112) $) 12)) (-3932 (((-1082) $) NIL)) (-1828 (((-112) $) 11)) (-3743 (((-832) $) 22) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 8) (($ (-548)) NIL (-1524 (|has| |#1| (-819)) (|has| |#1| (-1007 (-548)))))) (-3835 (((-745)) 41 (|has| |#1| (-819)))) (-1446 (($ $) NIL (|has| |#1| (-819)))) (-3107 (($) 29 (|has| |#1| (-21)) CONST)) (-3118 (($) 38 (|has| |#1| (-819)) CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2214 (((-112) $ $) 27)) (-2252 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2234 (((-112) $ $) 48 (|has| |#1| (-819)))) (-2299 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2290 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-819))) (($ $ (-745)) NIL (|has| |#1| (-819)))) (* (($ $ $) 44 (|has| |#1| (-819))) (($ (-548) $) 32 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21))))) +(((-814 |#1|) (-13 (-1063) (-403 |#1|) (-10 -8 (-15 -2835 ($)) (-15 -2845 ($)) (-15 -1828 ((-112) $)) (-15 -1820 ((-112) $)) (-15 -1809 ((-1082) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) (-1063)) (T -814)) +((-2835 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))) (-2845 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-814 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-814 *3)) (-4 *3 (-533)) (-4 *3 (-1063))))) +(-13 (-1063) (-403 |#1|) (-10 -8 (-15 -2835 ($)) (-15 -2845 ($)) (-15 -1828 ((-112) $)) (-15 -1820 ((-112) $)) (-15 -1809 ((-1082) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) +((-3730 (((-112) $ $) 7)) (-3423 (((-745)) 20)) (-2545 (($) 23)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2855 (((-890) $) 22)) (-2546 (((-1118) $) 9)) (-3337 (($ (-890)) 21)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) +(((-815) (-138)) (T -815)) +NIL +(-13 (-821) (-360)) +(((-101) . T) ((-592 (-832)) . T) ((-360) . T) ((-821) . T) ((-1063) . T)) +((-1847 (((-112) (-1218 |#2|) (-1218 |#2|)) 17)) (-1856 (((-112) (-1218 |#2|) (-1218 |#2|)) 18)) (-1838 (((-112) (-1218 |#2|) (-1218 |#2|)) 14))) +(((-816 |#1| |#2|) (-10 -7 (-15 -1838 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1847 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1856 ((-112) (-1218 |#2|) (-1218 |#2|)))) (-745) (-766)) (T -816)) +((-1856 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))) (-1847 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))) (-1838 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) +(-10 -7 (-15 -1838 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1847 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1856 ((-112) (-1218 |#2|) (-1218 |#2|)))) +((-3730 (((-112) $ $) 7)) (-3030 (($) 23 T CONST)) (-3859 (((-3 $ "failed") $) 26)) (-2266 (((-112) $) 24)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3118 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (** (($ $ (-890)) 21) (($ $ (-745)) 25)) (* (($ $ $) 20))) +(((-817) (-138)) (T -817)) +NIL +(-13 (-828) (-701)) +(((-101) . T) ((-592 (-832)) . T) ((-701) . T) ((-828) . T) ((-821) . T) ((-1075) . T) ((-1063) . T)) +((-2672 (((-548) $) 17)) (-3298 (((-112) $) 10)) (-3312 (((-112) $) 11)) (-1446 (($ $) 19))) +(((-818 |#1|) (-10 -8 (-15 -1446 (|#1| |#1|)) (-15 -2672 ((-548) |#1|)) (-15 -3312 ((-112) |#1|)) (-15 -3298 ((-112) |#1|))) (-819)) (T -818)) +NIL +(-10 -8 (-15 -1446 (|#1| |#1|)) (-15 -2672 ((-548) |#1|)) (-15 -3312 ((-112) |#1|)) (-15 -3298 ((-112) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-4104 (((-3 $ "failed") $ $) 26)) (-2672 (((-548) $) 33)) (-3030 (($) 23 T CONST)) (-3859 (((-3 $ "failed") $) 38)) (-3298 (((-112) $) 35)) (-2266 (((-112) $) 40)) (-3312 (((-112) $) 34)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 43)) (-3835 (((-745)) 42)) (-1446 (($ $) 32)) (-3107 (($) 22 T CONST)) (-3118 (($) 41 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2299 (($ $ $) 28) (($ $) 27)) (-2290 (($ $ $) 20)) (** (($ $ (-745)) 39) (($ $ (-890)) 36)) (* (($ (-890) $) 21) (($ (-745) $) 25) (($ (-548) $) 29) (($ $ $) 37))) +(((-819) (-138)) (T -819)) +((-3298 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-548)))) (-1446 (*1 *1 *1) (-4 *1 (-819)))) +(-13 (-765) (-1016) (-701) (-10 -8 (-15 -3298 ((-112) $)) (-15 -3312 ((-112) $)) (-15 -2672 ((-548) $)) (-15 -1446 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-1795 (($ $ $) 10)) (-3091 (($ $ $) 9)) (-2262 (((-112) $ $) 13)) (-2241 (((-112) $ $) 11)) (-2252 (((-112) $ $) 14))) +(((-820 |#1|) (-10 -8 (-15 -1795 (|#1| |#1| |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -2252 ((-112) |#1| |#1|)) (-15 -2262 ((-112) |#1| |#1|)) (-15 -2241 ((-112) |#1| |#1|))) (-821)) (T -820)) +NIL +(-10 -8 (-15 -1795 (|#1| |#1| |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -2252 ((-112) |#1| |#1|)) (-15 -2262 ((-112) |#1| |#1|)) (-15 -2241 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) +(((-821) (-138)) (T -821)) +((-2234 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2241 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2262 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2252 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3091 (*1 *1 *1 *1) (-4 *1 (-821))) (-1795 (*1 *1 *1 *1) (-4 *1 (-821)))) +(-13 (-1063) (-10 -8 (-15 -2234 ((-112) $ $)) (-15 -2241 ((-112) $ $)) (-15 -2262 ((-112) $ $)) (-15 -2252 ((-112) $ $)) (-15 -3091 ($ $ $)) (-15 -1795 ($ $ $)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-1905 (($ $ $) 45)) (-1916 (($ $ $) 44)) (-1927 (($ $ $) 42)) (-1885 (($ $ $) 51)) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 46)) (-1894 (((-3 $ "failed") $ $) 49)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-4065 (($ $) 35)) (-1970 (($ $ $) 39)) (-1982 (($ $ $) 38)) (-1865 (($ $ $) 47)) (-1950 (($ $ $) 53)) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 41)) (-1961 (((-3 $ "failed") $ $) 48)) (-1900 (((-3 $ "failed") $ |#2|) 28)) (-3881 ((|#2| $) 32)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ |#2|) 12)) (-3852 (((-619 |#2|) $) 18)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-822 |#1| |#2|) (-10 -8 (-15 -1865 (|#1| |#1| |#1|)) (-15 -1875 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -1894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1905 (|#1| |#1| |#1|)) (-15 -1916 (|#1| |#1| |#1|)) (-15 -1927 (|#1| |#1| |#1|)) (-15 -1938 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -1982 (|#1| |#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3852 ((-619 |#2|) |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -3743 ((-832) |#1|))) (-823 |#2|) (-1016)) (T -822)) +NIL +(-10 -8 (-15 -1865 (|#1| |#1| |#1|)) (-15 -1875 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -1894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1905 (|#1| |#1| |#1|)) (-15 -1916 (|#1| |#1| |#1|)) (-15 -1927 (|#1| |#1| |#1|)) (-15 -1938 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -1982 (|#1| |#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3852 ((-619 |#2|) |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1905 (($ $ $) 43 (|has| |#1| (-355)))) (-1916 (($ $ $) 44 (|has| |#1| (-355)))) (-1927 (($ $ $) 46 (|has| |#1| (-355)))) (-1885 (($ $ $) 41 (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 40 (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) 42 (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 45 (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) 72 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 70 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 67)) (-2375 (((-548) $) 73 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 71 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 66)) (-1872 (($ $) 62)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 53 (|has| |#1| (-443)))) (-2266 (((-112) $) 30)) (-2024 (($ |#1| (-745)) 60)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55 (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 56 (|has| |#1| (-540)))) (-3904 (((-745) $) 64)) (-1970 (($ $ $) 50 (|has| |#1| (-355)))) (-1982 (($ $ $) 51 (|has| |#1| (-355)))) (-1865 (($ $ $) 39 (|has| |#1| (-355)))) (-1950 (($ $ $) 48 (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 47 (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) 49 (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 52 (|has| |#1| (-355)))) (-2197 ((|#1| $) 63)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-540)))) (-2512 (((-745) $) 65)) (-3881 ((|#1| $) 54 (|has| |#1| (-443)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 69 (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 68)) (-3852 (((-619 |#1|) $) 59)) (-1951 ((|#1| $ (-745)) 61)) (-3835 (((-745)) 28)) (-3398 ((|#1| $ |#1| |#1|) 58)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-823 |#1|) (-138) (-1016)) (T -823)) +((-2512 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-619 *3)))) (-3398 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) (-1994 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) (-2003 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-443)))) (-4065 (*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-443)))) (-2014 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) (-1982 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1970 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1961 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1950 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) (-4 *1 (-823 *3)))) (-1927 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-2026 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) (-1916 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1905 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1894 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1885 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1875 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) (-4 *1 (-823 *3)))) (-1865 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(-13 (-1016) (-111 |t#1| |t#1|) (-403 |t#1|) (-10 -8 (-15 -2512 ((-745) $)) (-15 -3904 ((-745) $)) (-15 -2197 (|t#1| $)) (-15 -1872 ($ $)) (-15 -1951 (|t#1| $ (-745))) (-15 -2024 ($ |t#1| (-745))) (-15 -3852 ((-619 |t#1|) $)) (-15 -3398 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-15 -1900 ((-3 $ "failed") $ |t#1|)) (-15 -1994 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -2003 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-443)) (PROGN (-15 -3881 (|t#1| $)) (-15 -4065 ($ $))) |%noBranch|) (IF (|has| |t#1| (-355)) (PROGN (-15 -2014 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1982 ($ $ $)) (-15 -1970 ($ $ $)) (-15 -1961 ((-3 $ "failed") $ $)) (-15 -1950 ($ $ $)) (-15 -1938 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $)) (-15 -1927 ($ $ $)) (-15 -2026 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1916 ($ $ $)) (-15 -1905 ($ $ $)) (-15 -1894 ((-3 $ "failed") $ $)) (-15 -1885 ($ $ $)) (-15 -1875 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $)) (-15 -1865 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-403 |#1|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3261 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2026 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-355)))) (-2003 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-540)))) (-2014 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-355)))) (-3398 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) +(((-824 |#1| |#2|) (-10 -7 (-15 -3261 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3398 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-540)) (PROGN (-15 -1994 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2003 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -2014 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2026 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1016) (-823 |#1|)) (T -824)) +((-2026 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-2014 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-2003 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-540)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-1994 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-540)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-3398 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-824 *2 *3)) (-4 *3 (-823 *2)))) (-3261 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1016)) (-5 *1 (-824 *5 *2)) (-4 *2 (-823 *5))))) +(-10 -7 (-15 -3261 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3398 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-540)) (PROGN (-15 -1994 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2003 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -2014 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2026 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#1| (-355)))) (-1916 (($ $ $) NIL (|has| |#1| (-355)))) (-1927 (($ $ $) NIL (|has| |#1| (-355)))) (-1885 (($ $ $) NIL (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 32 (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-3020 (((-832) $ (-832)) NIL)) (-2266 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 28 (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 26 (|has| |#1| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#1| (-355)))) (-1982 (($ $ $) NIL (|has| |#1| (-355)))) (-1865 (($ $ $) NIL (|has| |#1| (-355)))) (-1950 (($ $ $) NIL (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 30 (|has| |#1| (-355)))) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-2512 (((-745) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#1| $ |#1| |#1|) 15)) (-3107 (($) NIL T CONST)) (-3118 (($) 20 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) 19) (($ $ (-745)) 22)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-825 |#1| |#2| |#3|) (-13 (-823 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-832))))) (-1016) (-98 |#1|) (-1 |#1| |#1|)) (T -825)) +((-3020 (*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-825 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-823 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-832))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#2| (-355)))) (-1916 (($ $ $) NIL (|has| |#2| (-355)))) (-1927 (($ $ $) NIL (|has| |#2| (-355)))) (-1885 (($ $ $) NIL (|has| |#2| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#2| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#2| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 |#2| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) ((|#2| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443)))) (-2266 (((-112) $) NIL)) (-2024 (($ |#2| (-745)) 16)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#2| (-355)))) (-1982 (($ $ $) NIL (|has| |#2| (-355)))) (-1865 (($ $ $) NIL (|has| |#2| (-355)))) (-1950 (($ $ $) NIL (|has| |#2| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#2| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#2| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-355)))) (-2197 ((|#2| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540)))) (-2512 (((-745) $) NIL)) (-3881 ((|#2| $) NIL (|has| |#2| (-443)))) (-3743 (((-832) $) 23) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#2| (-1007 (-399 (-548))))) (($ |#2|) NIL) (($ (-1214 |#1|)) 18)) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#2| $ |#2| |#2|) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) 13 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-826 |#1| |#2| |#3| |#4|) (-13 (-823 |#2|) (-10 -8 (-15 -3743 ($ (-1214 |#1|))))) (-1135) (-1016) (-98 |#2|) (-1 |#2| |#2|)) (T -826)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-826 *3 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-823 |#2|) (-10 -8 (-15 -3743 ($ (-1214 |#1|))))) +((-2062 ((|#1| (-745) |#1|) 35 (|has| |#1| (-38 (-399 (-548)))))) (-2051 ((|#1| (-745) (-745) |#1|) 27) ((|#1| (-745) |#1|) 20)) (-2037 ((|#1| (-745) |#1|) 31)) (-3675 ((|#1| (-745) |#1|) 29)) (-3662 ((|#1| (-745) |#1|) 28))) +(((-827 |#1|) (-10 -7 (-15 -3662 (|#1| (-745) |#1|)) (-15 -3675 (|#1| (-745) |#1|)) (-15 -2037 (|#1| (-745) |#1|)) (-15 -2051 (|#1| (-745) |#1|)) (-15 -2051 (|#1| (-745) (-745) |#1|)) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -2062 (|#1| (-745) |#1|)) |%noBranch|)) (-169)) (T -827)) +((-2062 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-169)))) (-2051 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-2051 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-2037 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-3675 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-3662 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) +(-10 -7 (-15 -3662 (|#1| (-745) |#1|)) (-15 -3675 (|#1| (-745) |#1|)) (-15 -2037 (|#1| (-745) |#1|)) (-15 -2051 (|#1| (-745) |#1|)) (-15 -2051 (|#1| (-745) (-745) |#1|)) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -2062 (|#1| (-745) |#1|)) |%noBranch|)) +((-3730 (((-112) $ $) 7)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (** (($ $ (-890)) 21)) (* (($ $ $) 20))) +(((-828) (-138)) (T -828)) +NIL +(-13 (-821) (-1075)) +(((-101) . T) ((-592 (-832)) . T) ((-821) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-4056 (((-548) $) 12)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 18) (($ (-548)) 11)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 8)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 9))) +(((-829) (-13 (-821) (-10 -8 (-15 -3743 ($ (-548))) (-15 -4056 ((-548) $))))) (T -829)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-829)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-829))))) +(-13 (-821) (-10 -8 (-15 -3743 ($ (-548))) (-15 -4056 ((-548) $)))) +((-2072 (((-1082) $ (-128)) 17))) +(((-830 |#1|) (-10 -8 (-15 -2072 ((-1082) |#1| (-128)))) (-831)) (T -830)) +NIL +(-10 -8 (-15 -2072 ((-1082) |#1| (-128)))) +((-2072 (((-1082) $ (-128)) 7)) (-2081 (((-1082) $ (-129)) 8)) (-3972 (($ $) 6))) +(((-831) (-138)) (T -831)) +((-2081 (*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-129)) (-5 *2 (-1082)))) (-2072 (*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-128)) (-5 *2 (-1082))))) +(-13 (-170) (-10 -8 (-15 -2081 ((-1082) $ (-129))) (-15 -2072 ((-1082) $ (-128))))) +(((-170) . T)) +((-3730 (((-112) $ $) NIL) (($ $ $) 77)) (-4203 (($ $ $) 115)) (-2094 (((-548) $) 30) (((-548)) 35)) (-4271 (($ (-548)) 44)) (-4235 (($ $ $) 45) (($ (-619 $)) 76)) (-2215 (($ $ (-619 $)) 74)) (-4291 (((-548) $) 33)) (-2242 (($ $ $) 63)) (-3087 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-4303 (((-548) $) 32)) (-2253 (($ $ $) 62)) (-1504 (($ $) 105)) (-4183 (($ $ $) 119)) (-2108 (($ (-619 $)) 52)) (-3212 (($ $ (-619 $)) 69)) (-4260 (($ (-548) (-548)) 46)) (-1294 (($ $) 116) (($ $ $) 117)) (-3676 (($ $ (-548)) 40) (($ $) 43)) (-1945 (($ $ $) 89)) (-2263 (($ $ $) 122)) (-2206 (($ $) 106)) (-1922 (($ $ $) 90)) (-2168 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1667 (((-1223) $) 8)) (-2198 (($ $) 109) (($ $ (-745)) 112)) (-2224 (($ $ $) 65)) (-2235 (($ $ $) 64)) (-1741 (($ $ (-619 $)) 100)) (-4214 (($ $ $) 104)) (-2130 (($ (-619 $)) 50)) (-2142 (($ $) 60) (($ (-619 $)) 61)) (-2178 (($ $ $) 113)) (-2187 (($ $) 107)) (-4193 (($ $ $) 118)) (-3020 (($ (-548)) 20) (($ (-1135)) 22) (($ (-1118)) 29) (($ (-218)) 24)) (-4168 (($ $ $) 93)) (-3958 (($ $) 94)) (-1259 (((-1223) (-1118)) 14)) (-3566 (($ (-1118)) 13)) (-3817 (($ (-619 (-619 $))) 49)) (-3663 (($ $ (-548)) 39) (($ $) 42)) (-2546 (((-1118) $) NIL)) (-3227 (($ $ $) 121)) (-3894 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2734 (((-112) $) 98)) (-4225 (($ $ (-619 $)) 102) (($ $ $ $) 103)) (-4281 (($ (-548)) 36)) (-3926 (((-548) $) 31) (((-548)) 34)) (-4247 (($ $ $) 37) (($ (-619 $)) 75)) (-3932 (((-1082) $) NIL)) (-1900 (($ $ $) 91)) (-3319 (($) 12)) (-3171 (($ $ (-619 $)) 99)) (-4029 (($ $) 108) (($ $ (-745)) 111)) (-1911 (($ $ $) 88)) (-4050 (($ $ (-745)) 127)) (-2120 (($ (-619 $)) 51)) (-3743 (((-832) $) 18)) (-2278 (($ $ (-548)) 38) (($ $) 41)) (-2156 (($ $) 58) (($ (-619 $)) 59)) (-4013 (($ $) 56) (($ (-619 $)) 57)) (-3528 (($ $) 114)) (-2095 (($ (-619 $)) 55)) (-3612 (($ $ $) 97)) (-4173 (($ $ $) 120)) (-1723 (($ $ $) 92)) (-1794 (($ $ $) 95) (($ $) 96)) (-2262 (($ $ $) 81)) (-2241 (($ $ $) 79)) (-2214 (((-112) $ $) 15) (($ $ $) 16)) (-2252 (($ $ $) 80)) (-2234 (($ $ $) 78)) (-2309 (($ $ $) 86)) (-2299 (($ $ $) 83) (($ $) 84)) (-2290 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-832) (-13 (-1063) (-10 -8 (-15 -1667 ((-1223) $)) (-15 -3566 ($ (-1118))) (-15 -1259 ((-1223) (-1118))) (-15 -3020 ($ (-548))) (-15 -3020 ($ (-1135))) (-15 -3020 ($ (-1118))) (-15 -3020 ($ (-218))) (-15 -3319 ($)) (-15 -2094 ((-548) $)) (-15 -3926 ((-548) $)) (-15 -2094 ((-548))) (-15 -3926 ((-548))) (-15 -4303 ((-548) $)) (-15 -4291 ((-548) $)) (-15 -4281 ($ (-548))) (-15 -4271 ($ (-548))) (-15 -4260 ($ (-548) (-548))) (-15 -3663 ($ $ (-548))) (-15 -3676 ($ $ (-548))) (-15 -2278 ($ $ (-548))) (-15 -3663 ($ $)) (-15 -3676 ($ $)) (-15 -2278 ($ $)) (-15 -4247 ($ $ $)) (-15 -4235 ($ $ $)) (-15 -4247 ($ (-619 $))) (-15 -4235 ($ (-619 $))) (-15 -1741 ($ $ (-619 $))) (-15 -4225 ($ $ (-619 $))) (-15 -4225 ($ $ $ $)) (-15 -4214 ($ $ $)) (-15 -2734 ((-112) $)) (-15 -3171 ($ $ (-619 $))) (-15 -1504 ($ $)) (-15 -3227 ($ $ $)) (-15 -3528 ($ $)) (-15 -3817 ($ (-619 (-619 $)))) (-15 -4203 ($ $ $)) (-15 -1294 ($ $)) (-15 -1294 ($ $ $)) (-15 -4193 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -4173 ($ $ $)) (-15 -2263 ($ $ $)) (-15 -4050 ($ $ (-745))) (-15 -3612 ($ $ $)) (-15 -2253 ($ $ $)) (-15 -2242 ($ $ $)) (-15 -2235 ($ $ $)) (-15 -2224 ($ $ $)) (-15 -3212 ($ $ (-619 $))) (-15 -2215 ($ $ (-619 $))) (-15 -2206 ($ $)) (-15 -4029 ($ $)) (-15 -4029 ($ $ (-745))) (-15 -2198 ($ $)) (-15 -2198 ($ $ (-745))) (-15 -2187 ($ $)) (-15 -2178 ($ $ $)) (-15 -3087 ($ $)) (-15 -3087 ($ $ $)) (-15 -3087 ($ $ $ $)) (-15 -2168 ($ $)) (-15 -2168 ($ $ $)) (-15 -2168 ($ $ $ $)) (-15 -3894 ($ $)) (-15 -3894 ($ $ $)) (-15 -3894 ($ $ $ $)) (-15 -4013 ($ $)) (-15 -4013 ($ (-619 $))) (-15 -2156 ($ $)) (-15 -2156 ($ (-619 $))) (-15 -2142 ($ $)) (-15 -2142 ($ (-619 $))) (-15 -2130 ($ (-619 $))) (-15 -2120 ($ (-619 $))) (-15 -2108 ($ (-619 $))) (-15 -2095 ($ (-619 $))) (-15 -2214 ($ $ $)) (-15 -3730 ($ $ $)) (-15 -2234 ($ $ $)) (-15 -2241 ($ $ $)) (-15 -2252 ($ $ $)) (-15 -2262 ($ $ $)) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -2299 ($ $)) (-15 * ($ $ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ $)) (-15 -1911 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -1922 ($ $ $)) (-15 -1900 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -3958 ($ $)) (-15 -1794 ($ $ $)) (-15 -1794 ($ $))))) (T -832)) +((-1667 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-832)))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-832)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-832)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-832)))) (-3319 (*1 *1) (-5 *1 (-832))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-2094 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3926 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4271 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4260 (*1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3663 (*1 *1 *1) (-5 *1 (-832))) (-3676 (*1 *1 *1) (-5 *1 (-832))) (-2278 (*1 *1 *1) (-5 *1 (-832))) (-4247 (*1 *1 *1 *1) (-5 *1 (-832))) (-4235 (*1 *1 *1 *1) (-5 *1 (-832))) (-4247 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1741 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-4225 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-4214 (*1 *1 *1 *1) (-5 *1 (-832))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1504 (*1 *1 *1) (-5 *1 (-832))) (-3227 (*1 *1 *1 *1) (-5 *1 (-832))) (-3528 (*1 *1 *1) (-5 *1 (-832))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-832)))) (-4203 (*1 *1 *1 *1) (-5 *1 (-832))) (-1294 (*1 *1 *1) (-5 *1 (-832))) (-1294 (*1 *1 *1 *1) (-5 *1 (-832))) (-4193 (*1 *1 *1 *1) (-5 *1 (-832))) (-4183 (*1 *1 *1 *1) (-5 *1 (-832))) (-4173 (*1 *1 *1 *1) (-5 *1 (-832))) (-2263 (*1 *1 *1 *1) (-5 *1 (-832))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-3612 (*1 *1 *1 *1) (-5 *1 (-832))) (-2253 (*1 *1 *1 *1) (-5 *1 (-832))) (-2242 (*1 *1 *1 *1) (-5 *1 (-832))) (-2235 (*1 *1 *1 *1) (-5 *1 (-832))) (-2224 (*1 *1 *1 *1) (-5 *1 (-832))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2215 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2206 (*1 *1 *1) (-5 *1 (-832))) (-4029 (*1 *1 *1) (-5 *1 (-832))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-2198 (*1 *1 *1) (-5 *1 (-832))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-2187 (*1 *1 *1) (-5 *1 (-832))) (-2178 (*1 *1 *1 *1) (-5 *1 (-832))) (-3087 (*1 *1 *1) (-5 *1 (-832))) (-3087 (*1 *1 *1 *1) (-5 *1 (-832))) (-3087 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-2168 (*1 *1 *1) (-5 *1 (-832))) (-2168 (*1 *1 *1 *1) (-5 *1 (-832))) (-2168 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-3894 (*1 *1 *1) (-5 *1 (-832))) (-3894 (*1 *1 *1 *1) (-5 *1 (-832))) (-3894 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-4013 (*1 *1 *1) (-5 *1 (-832))) (-4013 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2156 (*1 *1 *1) (-5 *1 (-832))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2142 (*1 *1 *1) (-5 *1 (-832))) (-2142 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2214 (*1 *1 *1 *1) (-5 *1 (-832))) (-3730 (*1 *1 *1 *1) (-5 *1 (-832))) (-2234 (*1 *1 *1 *1) (-5 *1 (-832))) (-2241 (*1 *1 *1 *1) (-5 *1 (-832))) (-2252 (*1 *1 *1 *1) (-5 *1 (-832))) (-2262 (*1 *1 *1 *1) (-5 *1 (-832))) (-2290 (*1 *1 *1 *1) (-5 *1 (-832))) (-2299 (*1 *1 *1 *1) (-5 *1 (-832))) (-2299 (*1 *1 *1) (-5 *1 (-832))) (* (*1 *1 *1 *1) (-5 *1 (-832))) (-2309 (*1 *1 *1 *1) (-5 *1 (-832))) (** (*1 *1 *1 *1) (-5 *1 (-832))) (-1911 (*1 *1 *1 *1) (-5 *1 (-832))) (-1945 (*1 *1 *1 *1) (-5 *1 (-832))) (-1922 (*1 *1 *1 *1) (-5 *1 (-832))) (-1900 (*1 *1 *1 *1) (-5 *1 (-832))) (-1723 (*1 *1 *1 *1) (-5 *1 (-832))) (-4168 (*1 *1 *1 *1) (-5 *1 (-832))) (-3958 (*1 *1 *1) (-5 *1 (-832))) (-1794 (*1 *1 *1 *1) (-5 *1 (-832))) (-1794 (*1 *1 *1) (-5 *1 (-832)))) +(-13 (-1063) (-10 -8 (-15 -1667 ((-1223) $)) (-15 -3566 ($ (-1118))) (-15 -1259 ((-1223) (-1118))) (-15 -3020 ($ (-548))) (-15 -3020 ($ (-1135))) (-15 -3020 ($ (-1118))) (-15 -3020 ($ (-218))) (-15 -3319 ($)) (-15 -2094 ((-548) $)) (-15 -3926 ((-548) $)) (-15 -2094 ((-548))) (-15 -3926 ((-548))) (-15 -4303 ((-548) $)) (-15 -4291 ((-548) $)) (-15 -4281 ($ (-548))) (-15 -4271 ($ (-548))) (-15 -4260 ($ (-548) (-548))) (-15 -3663 ($ $ (-548))) (-15 -3676 ($ $ (-548))) (-15 -2278 ($ $ (-548))) (-15 -3663 ($ $)) (-15 -3676 ($ $)) (-15 -2278 ($ $)) (-15 -4247 ($ $ $)) (-15 -4235 ($ $ $)) (-15 -4247 ($ (-619 $))) (-15 -4235 ($ (-619 $))) (-15 -1741 ($ $ (-619 $))) (-15 -4225 ($ $ (-619 $))) (-15 -4225 ($ $ $ $)) (-15 -4214 ($ $ $)) (-15 -2734 ((-112) $)) (-15 -3171 ($ $ (-619 $))) (-15 -1504 ($ $)) (-15 -3227 ($ $ $)) (-15 -3528 ($ $)) (-15 -3817 ($ (-619 (-619 $)))) (-15 -4203 ($ $ $)) (-15 -1294 ($ $)) (-15 -1294 ($ $ $)) (-15 -4193 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -4173 ($ $ $)) (-15 -2263 ($ $ $)) (-15 -4050 ($ $ (-745))) (-15 -3612 ($ $ $)) (-15 -2253 ($ $ $)) (-15 -2242 ($ $ $)) (-15 -2235 ($ $ $)) (-15 -2224 ($ $ $)) (-15 -3212 ($ $ (-619 $))) (-15 -2215 ($ $ (-619 $))) (-15 -2206 ($ $)) (-15 -4029 ($ $)) (-15 -4029 ($ $ (-745))) (-15 -2198 ($ $)) (-15 -2198 ($ $ (-745))) (-15 -2187 ($ $)) (-15 -2178 ($ $ $)) (-15 -3087 ($ $)) (-15 -3087 ($ $ $)) (-15 -3087 ($ $ $ $)) (-15 -2168 ($ $)) (-15 -2168 ($ $ $)) (-15 -2168 ($ $ $ $)) (-15 -3894 ($ $)) (-15 -3894 ($ $ $)) (-15 -3894 ($ $ $ $)) (-15 -4013 ($ $)) (-15 -4013 ($ (-619 $))) (-15 -2156 ($ $)) (-15 -2156 ($ (-619 $))) (-15 -2142 ($ $)) (-15 -2142 ($ (-619 $))) (-15 -2130 ($ (-619 $))) (-15 -2120 ($ (-619 $))) (-15 -2108 ($ (-619 $))) (-15 -2095 ($ (-619 $))) (-15 -2214 ($ $ $)) (-15 -3730 ($ $ $)) (-15 -2234 ($ $ $)) (-15 -2241 ($ $ $)) (-15 -2252 ($ $ $)) (-15 -2262 ($ $ $)) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -2299 ($ $)) (-15 * ($ $ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ $)) (-15 -1911 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -1922 ($ $ $)) (-15 -1900 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -3958 ($ $)) (-15 -1794 ($ $ $)) (-15 -1794 ($ $)))) +((-3788 (((-1223) (-619 (-52))) 24)) (-4106 (((-1223) (-1118) (-832)) 14) (((-1223) (-832)) 9) (((-1223) (-1118)) 11))) +(((-833) (-10 -7 (-15 -4106 ((-1223) (-1118))) (-15 -4106 ((-1223) (-832))) (-15 -4106 ((-1223) (-1118) (-832))) (-15 -3788 ((-1223) (-619 (-52)))))) (T -833)) +((-3788 (*1 *2 *3) (-12 (-5 *3 (-619 (-52))) (-5 *2 (-1223)) (-5 *1 (-833)))) (-4106 (*1 *2 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-833))))) +(-10 -7 (-15 -4106 ((-1223) (-1118))) (-15 -4106 ((-1223) (-832))) (-15 -4106 ((-1223) (-1118) (-832))) (-15 -3788 ((-1223) (-619 (-52))))) +((-3730 (((-112) $ $) NIL)) (-2754 (((-3 $ "failed") (-1135)) 33)) (-3423 (((-745)) 31)) (-2545 (($) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2855 (((-890) $) 29)) (-2546 (((-1118) $) 39)) (-3337 (($ (-890)) 28)) (-3932 (((-1082) $) NIL)) (-2591 (((-1135) $) 13) (((-524) $) 19) (((-861 (-371)) $) 26) (((-861 (-548)) $) 22)) (-3743 (((-832) $) 16)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 36)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 35))) +(((-834 |#1|) (-13 (-815) (-593 (-1135)) (-593 (-524)) (-593 (-861 (-371))) (-593 (-861 (-548))) (-10 -8 (-15 -2754 ((-3 $ "failed") (-1135))))) (-619 (-1135))) (T -834)) +((-2754 (*1 *1 *2) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-834 *3)) (-14 *3 (-619 *2))))) +(-13 (-815) (-593 (-1135)) (-593 (-524)) (-593 (-861 (-371))) (-593 (-861 (-548))) (-10 -8 (-15 -2754 ((-3 $ "failed") (-1135))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (((-921 |#1|) $) NIL) (($ (-921 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-169)))) (-3835 (((-745)) NIL)) (-3503 (((-1223) (-745)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-835 |#1| |#2| |#3| |#4|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3743 ((-921 |#1|) $)) (-15 -3743 ($ (-921 |#1|))) (IF (|has| |#1| (-355)) (-15 -2309 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3503 ((-1223) (-745))))) (-1016) (-619 (-1135)) (-619 (-745)) (-745)) (T -835)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-835 *3 *4 *5 *6)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-835 *3 *4 *5 *6)) (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) (-2309 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-835 *2 *3 *4 *5)) (-4 *2 (-355)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-745))) (-14 *5 (-745)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *4 (-1016)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 *3)) (-14 *7 *3)))) +(-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3743 ((-921 |#1|) $)) (-15 -3743 ($ (-921 |#1|))) (IF (|has| |#1| (-355)) (-15 -2309 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3503 ((-1223) (-745))))) +((-1270 (((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|) 31)) (-1283 (((-3 (-399 |#3|) "failed") (-745) (-745) |#2| |#2|) 24))) +(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -1283 ((-3 (-399 |#3|) "failed") (-745) (-745) |#2| |#2|)) (-15 -1270 ((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|))) (-355) (-1209 |#1|) (-1194 |#1|)) (T -836)) +((-1270 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-4 *5 (-355)) (-5 *2 (-171 *6)) (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5)))) (-1283 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-4 *5 (-355)) (-5 *2 (-399 *6)) (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5))))) +(-10 -7 (-15 -1283 ((-3 (-399 |#3|) "failed") (-745) (-745) |#2| |#2|)) (-15 -1270 ((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|))) +((-1283 (((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)) 28) (((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) 26))) +(((-837 |#1| |#2| |#3|) (-10 -7 (-15 -1283 ((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (-15 -1283 ((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)))) (-355) (-1135) |#1|) (T -837)) +((-1283 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-355)) (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-399 (-1191 *6 *5))) (-5 *1 (-837 *5 *6 *7)))) (-1283 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-355)) (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-399 (-1191 *6 *5))) (-5 *1 (-837 *5 *6 *7))))) +(-10 -7 (-15 -1283 ((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (-15 -1283 ((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1926 (($ $ (-548)) 60)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1294 (($ (-1131 (-548)) (-548)) 59)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1305 (($ $) 62)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1672 (((-745) $) 67)) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1328 (((-548)) 64)) (-1317 (((-548) $) 63)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1656 (($ $ (-548)) 66)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-1340 (((-1116 (-548)) $) 68)) (-3330 (($ $) 65)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-2439 (((-548) $ (-548)) 61)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-838 |#1|) (-138) (-548)) (T -838)) +((-1340 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-1116 (-548))))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-745)))) (-1656 (*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-3330 (*1 *1 *1) (-4 *1 (-838 *2))) (-1328 (*1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-1305 (*1 *1 *1) (-4 *1 (-838 *2))) (-2439 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-1926 (*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-1294 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *3 (-548)) (-4 *1 (-838 *4))))) +(-13 (-299) (-145) (-10 -8 (-15 -1340 ((-1116 (-548)) $)) (-15 -1672 ((-745) $)) (-15 -1656 ($ $ (-548))) (-15 -3330 ($ $)) (-15 -1328 ((-548))) (-15 -1317 ((-548) $)) (-15 -1305 ($ $)) (-15 -2439 ((-548) $ (-548))) (-15 -1926 ($ $ (-548))) (-15 -1294 ($ (-1131 (-548)) (-548))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-299) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $ (-548)) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1294 (($ (-1131 (-548)) (-548)) NIL)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1305 (($ $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1672 (((-745) $) NIL)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 (((-548)) NIL)) (-1317 (((-548) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1656 (($ $ (-548)) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1340 (((-1116 (-548)) $) NIL)) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-2439 (((-548) $ (-548)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL))) +(((-839 |#1|) (-838 |#1|) (-548)) (T -839)) +NIL +(-838 |#1|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-839 |#1|) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-839 |#1|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-548))))) (-2375 (((-839 |#1|) $) NIL) (((-1135) $) NIL (|has| (-839 |#1|) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-839 |#1|) (-1007 (-548)))) (((-548) $) NIL (|has| (-839 |#1|) (-1007 (-548))))) (-1306 (($ $) NIL) (($ (-548) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-839 |#1|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-839 |#1|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-839 |#1|))) (|:| |vec| (-1218 (-839 |#1|)))) (-663 $) (-1218 $)) NIL) (((-663 (-839 |#1|)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-839 |#1|) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-839 |#1|) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-839 |#1|) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-839 |#1|) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-839 |#1|) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-1111)))) (-3312 (((-112) $) NIL (|has| (-839 |#1|) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-839 |#1|) (-821)))) (-3091 (($ $ $) NIL (|has| (-839 |#1|) (-821)))) (-2540 (($ (-1 (-839 |#1|) (-839 |#1|)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-839 |#1|) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-839 |#1|) (-299)))) (-3887 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-839 |#1|)) (-619 (-839 |#1|))) NIL (|has| (-839 |#1|) (-301 (-839 |#1|)))) (($ $ (-839 |#1|) (-839 |#1|)) NIL (|has| (-839 |#1|) (-301 (-839 |#1|)))) (($ $ (-286 (-839 |#1|))) NIL (|has| (-839 |#1|) (-301 (-839 |#1|)))) (($ $ (-619 (-286 (-839 |#1|)))) NIL (|has| (-839 |#1|) (-301 (-839 |#1|)))) (($ $ (-619 (-1135)) (-619 (-839 |#1|))) NIL (|has| (-839 |#1|) (-504 (-1135) (-839 |#1|)))) (($ $ (-1135) (-839 |#1|)) NIL (|has| (-839 |#1|) (-504 (-1135) (-839 |#1|))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-839 |#1|)) NIL (|has| (-839 |#1|) (-278 (-839 |#1|) (-839 |#1|))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-839 |#1|) (-226))) (($ $ (-745)) NIL (|has| (-839 |#1|) (-226))) (($ $ (-1135)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1 (-839 |#1|) (-839 |#1|)) (-745)) NIL) (($ $ (-1 (-839 |#1|) (-839 |#1|))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-839 |#1|) $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| (-839 |#1|) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-839 |#1|) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-839 |#1|) (-593 (-524)))) (((-371) $) NIL (|has| (-839 |#1|) (-991))) (((-218) $) NIL (|has| (-839 |#1|) (-991)))) (-1351 (((-171 (-399 (-548))) $) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-839 |#1|) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-839 |#1|)) NIL) (($ (-1135)) NIL (|has| (-839 |#1|) (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-839 |#1|) (-878))) (|has| (-839 |#1|) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-533)))) (-3290 (((-112) $ $) NIL)) (-2439 (((-399 (-548)) $ (-548)) NIL)) (-1446 (($ $) NIL (|has| (-839 |#1|) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-839 |#1|) (-226))) (($ $ (-745)) NIL (|has| (-839 |#1|) (-226))) (($ $ (-1135)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1 (-839 |#1|) (-839 |#1|)) (-745)) NIL) (($ $ (-1 (-839 |#1|) (-839 |#1|))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2309 (($ $ $) NIL) (($ (-839 |#1|) (-839 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-839 |#1|) $) NIL) (($ $ (-839 |#1|)) NIL))) +(((-840 |#1|) (-13 (-961 (-839 |#1|)) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) (-548)) (T -840)) +((-2439 (*1 *2 *1 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-840 *4)) (-14 *4 *3) (-5 *3 (-548)))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-840 *3)) (-14 *3 (-548)))) (-1306 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-14 *2 (-548)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-840 *3)) (-14 *3 *2)))) +(-13 (-961 (-839 |#1|)) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 ((|#2| $) NIL (|has| |#2| (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| |#2| (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| |#2| (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548))))) (-2375 ((|#2| $) NIL) (((-1135) $) NIL (|has| |#2| (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-548)))) (((-548) $) NIL (|has| |#2| (-1007 (-548))))) (-1306 (($ $) 31) (($ (-548) $) 32)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) 53)) (-2545 (($) NIL (|has| |#2| (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| |#2| (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| |#2| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| |#2| (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 ((|#2| $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#2| (-1111)))) (-3312 (((-112) $) NIL (|has| |#2| (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 49)) (-3410 (($) NIL (|has| |#2| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| |#2| (-299)))) (-3887 ((|#2| $) NIL (|has| |#2| (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 |#2|) (-619 |#2|)) NIL (|has| |#2| (-301 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-301 |#2|))) (($ $ (-286 |#2|)) NIL (|has| |#2| (-301 |#2|))) (($ $ (-619 (-286 |#2|))) NIL (|has| |#2| (-301 |#2|))) (($ $ (-619 (-1135)) (-619 |#2|)) NIL (|has| |#2| (-504 (-1135) |#2|))) (($ $ (-1135) |#2|) NIL (|has| |#2| (-504 (-1135) |#2|)))) (-4077 (((-745) $) NIL)) (-3171 (($ $ |#2|) NIL (|has| |#2| (-278 |#2| |#2|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| |#2| (-226))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1993 (($ $) NIL)) (-2480 ((|#2| $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| |#2| (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| |#2| (-593 (-861 (-371))))) (((-524) $) NIL (|has| |#2| (-593 (-524)))) (((-371) $) NIL (|has| |#2| (-991))) (((-218) $) NIL (|has| |#2| (-991)))) (-1351 (((-171 (-399 (-548))) $) 68)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) 87) (($ (-548)) 19) (($ $) NIL) (($ (-399 (-548))) 24) (($ |#2|) 18) (($ (-1135)) NIL (|has| |#2| (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-3897 ((|#2| $) NIL (|has| |#2| (-533)))) (-3290 (((-112) $ $) NIL)) (-2439 (((-399 (-548)) $ (-548)) 60)) (-1446 (($ $) NIL (|has| |#2| (-794)))) (-3107 (($) 14 T CONST)) (-3118 (($) 16 T CONST)) (-3296 (($ $) NIL (|has| |#2| (-226))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) 35)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2299 (($ $) 39) (($ $ $) 41)) (-2290 (($ $ $) 37)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 50)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 42) (($ $ $) 44) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-841 |#1| |#2|) (-13 (-961 |#2|) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) (-548) (-838 |#1|)) (T -841)) +((-2439 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-399 (-548))) (-5 *1 (-841 *4 *5)) (-5 *3 (-548)) (-4 *5 (-838 *4)))) (-1351 (*1 *2 *1) (-12 (-14 *3 (-548)) (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3)))) (-1306 (*1 *1 *1) (-12 (-14 *2 (-548)) (-5 *1 (-841 *2 *3)) (-4 *3 (-838 *2)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-14 *3 *2) (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3))))) +(-13 (-961 |#2|) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) +((-3730 (((-112) $ $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-1975 ((|#2| $) 12)) (-3386 (($ |#1| |#2|) 9)) (-2546 (((-1118) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-3932 (((-1082) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#1| $) 11)) (-3754 (($ |#1| |#2|) 10)) (-3743 (((-832) $) 18 (-1524 (-12 (|has| |#1| (-592 (-832))) (|has| |#2| (-592 (-832)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))))) (-2214 (((-112) $ $) 22 (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))))) +(((-842 |#1| |#2|) (-13 (-1172) (-10 -8 (IF (|has| |#1| (-592 (-832))) (IF (|has| |#2| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1063)) (IF (|has| |#2| (-1063)) (-6 (-1063)) |%noBranch|) |%noBranch|) (-15 -3386 ($ |#1| |#2|)) (-15 -3754 ($ |#1| |#2|)) (-15 -3453 (|#1| $)) (-15 -1975 (|#2| $)))) (-1172) (-1172)) (T -842)) +((-3386 (*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172)))) (-3754 (*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172)))) (-3453 (*1 *2 *1) (-12 (-4 *2 (-1172)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1172)))) (-1975 (*1 *2 *1) (-12 (-4 *2 (-1172)) (-5 *1 (-842 *3 *2)) (-4 *3 (-1172))))) +(-13 (-1172) (-10 -8 (IF (|has| |#1| (-592 (-832))) (IF (|has| |#2| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1063)) (IF (|has| |#2| (-1063)) (-6 (-1063)) |%noBranch|) |%noBranch|) (-15 -3386 ($ |#1| |#2|)) (-15 -3754 ($ |#1| |#2|)) (-15 -3453 (|#1| $)) (-15 -1975 (|#2| $)))) +((-3730 (((-112) $ $) NIL)) (-1646 (((-548) $) 15)) (-1373 (($ (-154)) 11)) (-1361 (($ (-154)) 12)) (-2546 (((-1118) $) NIL)) (-2756 (((-154) $) 13)) (-3932 (((-1082) $) NIL)) (-3670 (($ (-154)) 9)) (-1385 (($ (-154)) 8)) (-3743 (((-832) $) 23) (($ (-154)) 16)) (-3093 (($ (-154)) 10)) (-2214 (((-112) $ $) NIL))) +(((-843) (-13 (-1063) (-10 -8 (-15 -1385 ($ (-154))) (-15 -3670 ($ (-154))) (-15 -3093 ($ (-154))) (-15 -1373 ($ (-154))) (-15 -1361 ($ (-154))) (-15 -2756 ((-154) $)) (-15 -1646 ((-548) $)) (-15 -3743 ($ (-154)))))) (T -843)) +((-1385 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3093 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-1361 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-843)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(-13 (-1063) (-10 -8 (-15 -1385 ($ (-154))) (-15 -3670 ($ (-154))) (-15 -3093 ($ (-154))) (-15 -1373 ($ (-154))) (-15 -1361 ($ (-154))) (-15 -2756 ((-154) $)) (-15 -1646 ((-548) $)) (-15 -3743 ($ (-154))))) +((-3743 (((-308 (-548)) (-399 (-921 (-48)))) 23) (((-308 (-548)) (-921 (-48))) 18))) +(((-844) (-10 -7 (-15 -3743 ((-308 (-548)) (-921 (-48)))) (-15 -3743 ((-308 (-548)) (-399 (-921 (-48))))))) (T -844)) +((-3743 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 (-48)))) (-5 *2 (-308 (-548))) (-5 *1 (-844)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-921 (-48))) (-5 *2 (-308 (-548))) (-5 *1 (-844))))) +(-10 -7 (-15 -3743 ((-308 (-548)) (-921 (-48)))) (-15 -3743 ((-308 (-548)) (-399 (-921 (-48)))))) +((-2540 (((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)) 14))) +(((-845 |#1| |#2|) (-10 -7 (-15 -2540 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)))) (-1172) (-1172)) (T -845)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6))))) +(-10 -7 (-15 -2540 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)))) +((-1334 (($ |#1| |#1|) 8)) (-1416 ((|#1| $ (-745)) 10))) +(((-846 |#1|) (-10 -8 (-15 -1334 ($ |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) (-1172)) (T -846)) +((-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-846 *2)) (-4 *2 (-1172)))) (-1334 (*1 *1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1172))))) +(-10 -8 (-15 -1334 ($ |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) +((-2540 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14))) +(((-847 |#1| |#2|) (-10 -7 (-15 -2540 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-1172) (-1172)) (T -847)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))) +(-10 -7 (-15 -2540 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) +((-1334 (($ |#1| |#1| |#1|) 8)) (-1416 ((|#1| $ (-745)) 10))) +(((-848 |#1|) (-10 -8 (-15 -1334 ($ |#1| |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) (-1172)) (T -848)) +((-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-848 *2)) (-4 *2 (-1172)))) (-1334 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1172))))) +(-10 -8 (-15 -1334 ($ |#1| |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) +((-1395 (((-619 (-1140)) (-1118)) 9))) +(((-849) (-10 -7 (-15 -1395 ((-619 (-1140)) (-1118))))) (T -849)) +((-1395 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-849))))) +(-10 -7 (-15 -1395 ((-619 (-1140)) (-1118)))) +((-2540 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14))) +(((-850 |#1| |#2|) (-10 -7 (-15 -2540 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) (-1172) (-1172)) (T -850)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))) +(-10 -7 (-15 -2540 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) +((-1405 (($ |#1| |#1| |#1|) 8)) (-1416 ((|#1| $ (-745)) 10))) +(((-851 |#1|) (-10 -8 (-15 -1405 ($ |#1| |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) (-1172)) (T -851)) +((-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-851 *2)) (-4 *2 (-1172)))) (-1405 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1172))))) +(-10 -8 (-15 -1405 ($ |#1| |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) +((-1460 (((-1116 (-619 (-548))) (-619 (-548)) (-1116 (-619 (-548)))) 32)) (-1450 (((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548))) 28)) (-1472 (((-1116 (-619 (-548))) (-619 (-548))) 41) (((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548))) 40)) (-1483 (((-1116 (-619 (-548))) (-548)) 42)) (-1427 (((-1116 (-619 (-548))) (-548) (-548)) 22) (((-1116 (-619 (-548))) (-548)) 16) (((-1116 (-619 (-548))) (-548) (-548) (-548)) 12)) (-1439 (((-1116 (-619 (-548))) (-1116 (-619 (-548)))) 26)) (-2128 (((-619 (-548)) (-619 (-548))) 25))) +(((-852) (-10 -7 (-15 -1427 ((-1116 (-619 (-548))) (-548) (-548) (-548))) (-15 -1427 ((-1116 (-619 (-548))) (-548))) (-15 -1427 ((-1116 (-619 (-548))) (-548) (-548))) (-15 -2128 ((-619 (-548)) (-619 (-548)))) (-15 -1439 ((-1116 (-619 (-548))) (-1116 (-619 (-548))))) (-15 -1450 ((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548)))) (-15 -1460 ((-1116 (-619 (-548))) (-619 (-548)) (-1116 (-619 (-548))))) (-15 -1472 ((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548)))) (-15 -1472 ((-1116 (-619 (-548))) (-619 (-548)))) (-15 -1483 ((-1116 (-619 (-548))) (-548))))) (T -852)) +((-1483 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-619 (-548))))) (-1472 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-619 (-548))))) (-1460 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *3 (-619 (-548))) (-5 *1 (-852)))) (-1450 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-619 (-548))))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)))) (-2128 (*1 *2 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-852)))) (-1427 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) (-1427 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) (-1427 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548))))) +(-10 -7 (-15 -1427 ((-1116 (-619 (-548))) (-548) (-548) (-548))) (-15 -1427 ((-1116 (-619 (-548))) (-548))) (-15 -1427 ((-1116 (-619 (-548))) (-548) (-548))) (-15 -2128 ((-619 (-548)) (-619 (-548)))) (-15 -1439 ((-1116 (-619 (-548))) (-1116 (-619 (-548))))) (-15 -1450 ((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548)))) (-15 -1460 ((-1116 (-619 (-548))) (-619 (-548)) (-1116 (-619 (-548))))) (-15 -1472 ((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548)))) (-15 -1472 ((-1116 (-619 (-548))) (-619 (-548)))) (-15 -1483 ((-1116 (-619 (-548))) (-548)))) +((-2591 (((-861 (-371)) $) 9 (|has| |#1| (-593 (-861 (-371))))) (((-861 (-548)) $) 8 (|has| |#1| (-593 (-861 (-548))))))) +(((-853 |#1|) (-138) (-1172)) (T -853)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-593 (-861 (-548)))) (-6 (-593 (-861 (-548)))) |%noBranch|) (IF (|has| |t#1| (-593 (-861 (-371)))) (-6 (-593 (-861 (-371)))) |%noBranch|))) +(((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548))))) +((-3730 (((-112) $ $) NIL)) (-3550 (($) 14)) (-1507 (($ (-858 |#1| |#2|) (-858 |#1| |#3|)) 27)) (-2173 (((-858 |#1| |#3|) $) 16)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1573 (((-112) $) 22)) (-4119 (($) 19)) (-3743 (((-832) $) 30)) (-1495 (((-858 |#1| |#2|) $) 15)) (-2214 (((-112) $ $) 25))) +(((-854 |#1| |#2| |#3|) (-13 (-1063) (-10 -8 (-15 -1573 ((-112) $)) (-15 -4119 ($)) (-15 -3550 ($)) (-15 -1507 ($ (-858 |#1| |#2|) (-858 |#1| |#3|))) (-15 -1495 ((-858 |#1| |#2|) $)) (-15 -2173 ((-858 |#1| |#3|) $)))) (-1063) (-1063) (-640 |#2|)) (T -854)) +((-1573 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))) (-4119 (*1 *1) (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) (-4 *4 (-640 *3)))) (-3550 (*1 *1) (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) (-4 *4 (-640 *3)))) (-1507 (*1 *1 *2 *3) (-12 (-5 *2 (-858 *4 *5)) (-5 *3 (-858 *4 *6)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-640 *5)) (-5 *1 (-854 *4 *5 *6)))) (-1495 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *4)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))) (-2173 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *5)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4))))) +(-13 (-1063) (-10 -8 (-15 -1573 ((-112) $)) (-15 -4119 ($)) (-15 -3550 ($)) (-15 -1507 ($ (-858 |#1| |#2|) (-858 |#1| |#3|))) (-15 -1495 ((-858 |#1| |#2|) $)) (-15 -2173 ((-858 |#1| |#3|) $)))) +((-3730 (((-112) $ $) 7)) (-3628 (((-858 |#1| $) $ (-861 |#1|) (-858 |#1| $)) 13)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(((-855 |#1|) (-138) (-1063)) (T -855)) +((-3628 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-858 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-855 *4)) (-4 *4 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3628 ((-858 |t#1| $) $ (-861 |t#1|) (-858 |t#1| $))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-1518 (((-112) (-619 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1528 (((-858 |#1| |#2|) |#2| |#3|) 43 (-12 (-3958 (|has| |#2| (-1007 (-1135)))) (-3958 (|has| |#2| (-1016))))) (((-619 (-286 (-921 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1016)) (-3958 (|has| |#2| (-1007 (-1135)))))) (((-619 (-286 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1007 (-1135)))) (((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|) 21))) +(((-856 |#1| |#2| |#3|) (-10 -7 (-15 -1518 ((-112) |#2| |#3|)) (-15 -1518 ((-112) (-619 |#2|) |#3|)) (-15 -1528 ((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|)) (IF (|has| |#2| (-1007 (-1135))) (-15 -1528 ((-619 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1016)) (-15 -1528 ((-619 (-286 (-921 |#2|))) |#2| |#3|)) (-15 -1528 ((-858 |#1| |#2|) |#2| |#3|))))) (-1063) (-855 |#1|) (-593 (-861 |#1|))) (T -856)) +((-1528 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-858 *5 *3)) (-5 *1 (-856 *5 *3 *4)) (-3958 (-4 *3 (-1007 (-1135)))) (-3958 (-4 *3 (-1016))) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) (-1528 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-286 (-921 *3)))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1016)) (-3958 (-4 *3 (-1007 (-1135)))) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) (-1528 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-286 *3))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1007 (-1135))) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) (-1528 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-5 *2 (-854 *5 *6 (-619 *6))) (-5 *1 (-856 *5 *6 *4)) (-5 *3 (-619 *6)) (-4 *4 (-593 (-861 *5))))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-4 *6 (-855 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *6 *4)) (-4 *4 (-593 (-861 *5))))) (-1518 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5)))))) +(-10 -7 (-15 -1518 ((-112) |#2| |#3|)) (-15 -1518 ((-112) (-619 |#2|) |#3|)) (-15 -1528 ((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|)) (IF (|has| |#2| (-1007 (-1135))) (-15 -1528 ((-619 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1016)) (-15 -1528 ((-619 (-286 (-921 |#2|))) |#2| |#3|)) (-15 -1528 ((-858 |#1| |#2|) |#2| |#3|))))) +((-2540 (((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)) 22))) +(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)))) (-1063) (-1063) (-1063)) (T -857)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-858 *5 *6)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-858 *5 *7)) (-5 *1 (-857 *5 *6 *7))))) +(-10 -7 (-15 -2540 ((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)))) +((-3730 (((-112) $ $) NIL)) (-1434 (($ $ $) 39)) (-3579 (((-3 (-112) "failed") $ (-861 |#1|)) 36)) (-3550 (($) 12)) (-2546 (((-1118) $) NIL)) (-1547 (($ (-861 |#1|) |#2| $) 20)) (-3932 (((-1082) $) NIL)) (-1565 (((-3 |#2| "failed") (-861 |#1|) $) 50)) (-1573 (((-112) $) 15)) (-4119 (($) 13)) (-1981 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))) $) 25)) (-3754 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|)))) 23)) (-3743 (((-832) $) 44)) (-1538 (($ (-861 |#1|) |#2| $ |#2|) 48)) (-1556 (($ (-861 |#1|) |#2| $) 47)) (-2214 (((-112) $ $) 41))) +(((-858 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -1573 ((-112) $)) (-15 -4119 ($)) (-15 -3550 ($)) (-15 -1434 ($ $ $)) (-15 -1565 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -1556 ($ (-861 |#1|) |#2| $)) (-15 -1547 ($ (-861 |#1|) |#2| $)) (-15 -1538 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -1981 ((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))) $)) (-15 -3754 ($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))))) (-15 -3579 ((-3 (-112) "failed") $ (-861 |#1|))))) (-1063) (-1063)) (T -858)) +((-1573 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-4119 (*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3550 (*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1434 (*1 *1 *1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1565 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-4 *2 (-1063)) (-5 *1 (-858 *4 *2)))) (-1556 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1547 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1538 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 *4)))) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 *4)))) (-4 *4 (-1063)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)))) (-3579 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-4 *5 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -1573 ((-112) $)) (-15 -4119 ($)) (-15 -3550 ($)) (-15 -1434 ($ $ $)) (-15 -1565 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -1556 ($ (-861 |#1|) |#2| $)) (-15 -1547 ($ (-861 |#1|) |#2| $)) (-15 -1538 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -1981 ((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))) $)) (-15 -3754 ($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))))) (-15 -3579 ((-3 (-112) "failed") $ (-861 |#1|))))) +((-2256 (((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|))) 32) (((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|))) 43) (((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|)) 35)) (-3579 (((-112) (-619 |#2|) (-861 |#1|)) 40) (((-112) |#2| (-861 |#1|)) 36)) (-3210 (((-1 (-112) |#2|) (-861 |#1|)) 16)) (-3603 (((-619 |#2|) (-861 |#1|)) 24)) (-3591 (((-861 |#1|) (-861 |#1|) |#2|) 20))) +(((-859 |#1| |#2|) (-10 -7 (-15 -2256 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -2256 ((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|)))) (-15 -2256 ((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|)))) (-15 -3210 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -3579 ((-112) |#2| (-861 |#1|))) (-15 -3579 ((-112) (-619 |#2|) (-861 |#1|))) (-15 -3591 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -3603 ((-619 |#2|) (-861 |#1|)))) (-1063) (-1172)) (T -859)) +((-3603 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-619 *5)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1172)))) (-3591 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1172)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *2 (-112)) (-5 *1 (-859 *5 *6)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-859 *5 *3)) (-4 *3 (-1172)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1172)))) (-2256 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-861 *5)) (-5 *3 (-619 (-1135))) (-5 *4 (-1 (-112) (-619 *6))) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-859 *5 *6)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-619 (-1 (-112) *5))) (-4 *4 (-1063)) (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1063)) (-4 *5 (-1172)) (-5 *1 (-859 *4 *5))))) +(-10 -7 (-15 -2256 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -2256 ((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|)))) (-15 -2256 ((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|)))) (-15 -3210 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -3579 ((-112) |#2| (-861 |#1|))) (-15 -3579 ((-112) (-619 |#2|) (-861 |#1|))) (-15 -3591 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -3603 ((-619 |#2|) (-861 |#1|)))) +((-2540 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 19))) +(((-860 |#1| |#2|) (-10 -7 (-15 -2540 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1063) (-1063)) (T -860)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6))))) +(-10 -7 (-15 -2540 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) +((-3730 (((-112) $ $) NIL)) (-1647 (($ $ (-619 (-52))) 64)) (-2049 (((-619 $) $) 118)) (-1622 (((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $) 24)) (-2633 (((-112) $) 30)) (-1631 (($ $ (-619 (-1135)) (-52)) 25)) (-1655 (($ $ (-619 (-52))) 63)) (-2441 (((-3 |#1| "failed") $) 61) (((-3 (-1135) "failed") $) 140)) (-2375 ((|#1| $) 58) (((-1135) $) NIL)) (-1601 (($ $) 108)) (-3534 (((-112) $) 47)) (-1664 (((-619 (-52)) $) 45)) (-1638 (($ (-1135) (-112) (-112) (-112)) 65)) (-1583 (((-3 (-619 $) "failed") (-619 $)) 72)) (-1679 (((-112) $) 50)) (-1687 (((-112) $) 49)) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) 36)) (-3867 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 $)) "failed") $) 83)) (-3927 (((-3 (-619 $) "failed") $) 33)) (-3568 (((-3 (-619 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 $))) "failed") $) 95)) (-3557 (((-3 (-619 $) "failed") $) 37)) (-3954 (((-3 (-2 (|:| |val| $) (|:| -3352 (-745))) "failed") $) 40)) (-3545 (((-112) $) 29)) (-3932 (((-1082) $) NIL)) (-1610 (((-112) $) 21)) (-1671 (((-112) $) 46)) (-1593 (((-619 (-52)) $) 111)) (-3523 (((-112) $) 48)) (-3171 (($ (-114) (-619 $)) 92)) (-3045 (((-745) $) 28)) (-2113 (($ $) 62)) (-2591 (($ (-619 $)) 59)) (-2547 (((-112) $) 26)) (-3743 (((-832) $) 53) (($ |#1|) 18) (($ (-1135)) 66)) (-3591 (($ $ (-52)) 110)) (-3107 (($) 91 T CONST)) (-3118 (($) 73 T CONST)) (-2214 (((-112) $ $) 79)) (-2309 (($ $ $) 100)) (-2290 (($ $ $) 104)) (** (($ $ (-745)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-861 |#1|) (-13 (-1063) (-1007 |#1|) (-1007 (-1135)) (-10 -8 (-15 0 ($) -2325) (-15 1 ($) -2325) (-15 -3927 ((-3 (-619 $) "failed") $)) (-15 -3939 ((-3 (-619 $) "failed") $)) (-15 -3568 ((-3 (-619 $) "failed") $ (-114))) (-15 -3568 ((-3 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 $))) "failed") $)) (-15 -3954 ((-3 (-2 (|:| |val| $) (|:| -3352 (-745))) "failed") $)) (-15 -3867 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3557 ((-3 (-619 $) "failed") $)) (-15 -3968 ((-3 (-2 (|:| |val| $) (|:| -3352 $)) "failed") $)) (-15 -3171 ($ (-114) (-619 $))) (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ $)) (-15 -2309 ($ $ $)) (-15 -3045 ((-745) $)) (-15 -2591 ($ (-619 $))) (-15 -2113 ($ $)) (-15 -3545 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -2547 ((-112) $)) (-15 -3523 ((-112) $)) (-15 -1687 ((-112) $)) (-15 -1679 ((-112) $)) (-15 -1671 ((-112) $)) (-15 -1664 ((-619 (-52)) $)) (-15 -1655 ($ $ (-619 (-52)))) (-15 -1647 ($ $ (-619 (-52)))) (-15 -1638 ($ (-1135) (-112) (-112) (-112))) (-15 -1631 ($ $ (-619 (-1135)) (-52))) (-15 -1622 ((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $)) (-15 -1610 ((-112) $)) (-15 -1601 ($ $)) (-15 -3591 ($ $ (-52))) (-15 -1593 ((-619 (-52)) $)) (-15 -2049 ((-619 $) $)) (-15 -1583 ((-3 (-619 $) "failed") (-619 $))))) (-1063)) (T -861)) +((-3107 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3118 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3927 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3939 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3568 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-3568 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 (-861 *3))))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3954 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3352 (-745)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3867 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3557 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3968 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3352 (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3171 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-2309 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2113 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1655 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1638 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-112)) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-1631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-52)) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1601 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1583 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(-13 (-1063) (-1007 |#1|) (-1007 (-1135)) (-10 -8 (-15 (-3107) ($) -2325) (-15 (-3118) ($) -2325) (-15 -3927 ((-3 (-619 $) "failed") $)) (-15 -3939 ((-3 (-619 $) "failed") $)) (-15 -3568 ((-3 (-619 $) "failed") $ (-114))) (-15 -3568 ((-3 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 $))) "failed") $)) (-15 -3954 ((-3 (-2 (|:| |val| $) (|:| -3352 (-745))) "failed") $)) (-15 -3867 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3557 ((-3 (-619 $) "failed") $)) (-15 -3968 ((-3 (-2 (|:| |val| $) (|:| -3352 $)) "failed") $)) (-15 -3171 ($ (-114) (-619 $))) (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ $)) (-15 -2309 ($ $ $)) (-15 -3045 ((-745) $)) (-15 -2591 ($ (-619 $))) (-15 -2113 ($ $)) (-15 -3545 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -2547 ((-112) $)) (-15 -3523 ((-112) $)) (-15 -1687 ((-112) $)) (-15 -1679 ((-112) $)) (-15 -1671 ((-112) $)) (-15 -1664 ((-619 (-52)) $)) (-15 -1655 ($ $ (-619 (-52)))) (-15 -1647 ($ $ (-619 (-52)))) (-15 -1638 ($ (-1135) (-112) (-112) (-112))) (-15 -1631 ($ $ (-619 (-1135)) (-52))) (-15 -1622 ((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $)) (-15 -1610 ((-112) $)) (-15 -1601 ($ $)) (-15 -3591 ($ $ (-52))) (-15 -1593 ((-619 (-52)) $)) (-15 -2049 ((-619 $) $)) (-15 -1583 ((-3 (-619 $) "failed") (-619 $))))) +((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) 16)) (-3613 (((-112) $) 38)) (-2441 (((-3 (-646 |#1|) "failed") $) 43)) (-2375 (((-646 |#1|) $) 41)) (-3465 (($ $) 18)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3198 (((-745) $) 46)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-646 |#1|) $) 17)) (-3743 (((-832) $) 37) (($ (-646 |#1|)) 21) (((-793 |#1|) $) 27) (($ |#1|) 20)) (-3118 (($) 8 T CONST)) (-3623 (((-619 (-646 |#1|)) $) 23)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 11)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 49))) +(((-862 |#1|) (-13 (-821) (-1007 (-646 |#1|)) (-10 -8 (-15 1 ($) -2325) (-15 -3743 ((-793 |#1|) $)) (-15 -3743 ($ |#1|)) (-15 -3453 ((-646 |#1|) $)) (-15 -3198 ((-745) $)) (-15 -3623 ((-619 (-646 |#1|)) $)) (-15 -3465 ($ $)) (-15 -3613 ((-112) $)) (-15 -3065 ((-619 |#1|) $)))) (-821)) (T -862)) +((-3118 (*1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3743 (*1 *1 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-619 (-646 *3))) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3465 (*1 *1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821))))) +(-13 (-821) (-1007 (-646 |#1|)) (-10 -8 (-15 (-3118) ($) -2325) (-15 -3743 ((-793 |#1|) $)) (-15 -3743 ($ |#1|)) (-15 -3453 ((-646 |#1|) $)) (-15 -3198 ((-745) $)) (-15 -3623 ((-619 (-646 |#1|)) $)) (-15 -3465 ($ $)) (-15 -3613 ((-112) $)) (-15 -3065 ((-619 |#1|) $)))) +((-3941 ((|#1| |#1| |#1|) 19))) +(((-863 |#1| |#2|) (-10 -7 (-15 -3941 (|#1| |#1| |#1|))) (-1194 |#2|) (-1016)) (T -863)) +((-3941 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-863 *2 *3)) (-4 *2 (-1194 *3))))) +(-10 -7 (-15 -3941 (|#1| |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3634 (((-1004) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 13)) (-2214 (((-112) $ $) 6))) +(((-864) (-138)) (T -864)) +((-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-864)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) (-3634 (*1 *2 *3) (-12 (-4 *1 (-864)) (-5 *3 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *2 (-1004))))) +(-13 (-1063) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))) (-15 -3634 ((-1004) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3658 ((|#1| |#1| (-745)) 24)) (-3647 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3642 (((-3 (-2 (|:| -3663 |#1|) (|:| -3676 |#1|)) "failed") |#1| (-745) (-745)) 27) (((-619 |#1|) |#1|) 29))) +(((-865 |#1| |#2|) (-10 -7 (-15 -3642 ((-619 |#1|) |#1|)) (-15 -3642 ((-3 (-2 (|:| -3663 |#1|) (|:| -3676 |#1|)) "failed") |#1| (-745) (-745))) (-15 -3647 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3658 (|#1| |#1| (-745)))) (-1194 |#2|) (-355)) (T -865)) +((-3658 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-355)) (-5 *1 (-865 *2 *4)) (-4 *2 (-1194 *4)))) (-3647 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-355)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1194 *3)))) (-3642 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-745)) (-4 *5 (-355)) (-5 *2 (-2 (|:| -3663 *3) (|:| -3676 *3))) (-5 *1 (-865 *3 *5)) (-4 *3 (-1194 *5)))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -3642 ((-619 |#1|) |#1|)) (-15 -3642 ((-3 (-2 (|:| -3663 |#1|) (|:| -3676 |#1|)) "failed") |#1| (-745) (-745))) (-15 -3647 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3658 (|#1| |#1| (-745)))) +((-3408 (((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118)) 96) (((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118) (-218)) 91) (((-1004) (-867) (-1028)) 83) (((-1004) (-867)) 84)) (-3671 (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028)) 59) (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867)) 61))) +(((-866) (-10 -7 (-15 -3408 ((-1004) (-867))) (-15 -3408 ((-1004) (-867) (-1028))) (-15 -3408 ((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118) (-218))) (-15 -3408 ((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028))))) (T -866)) +((-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-866)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-866)))) (-3408 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-308 *3)))) (-5 *7 (-1118)) (-5 *5 (-619 (-308 (-371)))) (-5 *3 (-371)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3408 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-308 *3)))) (-5 *7 (-1118)) (-5 *8 (-218)) (-5 *5 (-619 (-308 (-371)))) (-5 *3 (-371)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1004)) (-5 *1 (-866))))) +(-10 -7 (-15 -3408 ((-1004) (-867))) (-15 -3408 ((-1004) (-867) (-1028))) (-15 -3408 ((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118) (-218))) (-15 -3408 ((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028)))) +((-3730 (((-112) $ $) NIL)) (-2375 (((-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))) $) 19)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 21) (($ (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 18)) (-2214 (((-112) $ $) NIL))) +(((-867) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))) $))))) (T -867)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-867)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *1 (-867)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *1 (-867))))) +(-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))) $)))) +((-4050 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) 10) (($ $ |#2| (-745)) 12) (($ $ (-619 |#2|) (-619 (-745))) 15)) (-3296 (($ $ |#2|) 16) (($ $ (-619 |#2|)) 18) (($ $ |#2| (-745)) 19) (($ $ (-619 |#2|) (-619 (-745))) 21))) +(((-868 |#1| |#2|) (-10 -8 (-15 -3296 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -3296 (|#1| |#1| |#2| (-745))) (-15 -3296 (|#1| |#1| (-619 |#2|))) (-15 -3296 (|#1| |#1| |#2|)) (-15 -4050 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -4050 (|#1| |#1| |#2| (-745))) (-15 -4050 (|#1| |#1| (-619 |#2|))) (-15 -4050 (|#1| |#1| |#2|))) (-869 |#2|) (-1063)) (T -868)) +NIL +(-10 -8 (-15 -3296 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -3296 (|#1| |#1| |#2| (-745))) (-15 -3296 (|#1| |#1| (-619 |#2|))) (-15 -3296 (|#1| |#1| |#2|)) (-15 -4050 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -4050 (|#1| |#1| |#2| (-745))) (-15 -4050 (|#1| |#1| (-619 |#2|))) (-15 -4050 (|#1| |#1| |#2|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4050 (($ $ |#1|) 40) (($ $ (-619 |#1|)) 39) (($ $ |#1| (-745)) 38) (($ $ (-619 |#1|) (-619 (-745))) 37)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ |#1|) 36) (($ $ (-619 |#1|)) 35) (($ $ |#1| (-745)) 34) (($ $ (-619 |#1|) (-619 (-745))) 33)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-869 |#1|) (-138) (-1063)) (T -869)) +((-4050 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) (-4050 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-4050 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063))))) +(-13 (-1016) (-10 -8 (-15 -4050 ($ $ |t#1|)) (-15 -4050 ($ $ (-619 |t#1|))) (-15 -4050 ($ $ |t#1| (-745))) (-15 -4050 ($ $ (-619 |t#1|) (-619 (-745)))) (-15 -3296 ($ $ |t#1|)) (-15 -3296 ($ $ (-619 |t#1|))) (-15 -3296 ($ $ |t#1| (-745))) (-15 -3296 ($ $ (-619 |t#1|) (-619 (-745)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 26)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-1816 (($ $ $) NIL (|has| $ (-6 -4328)))) (-1825 (($ $ $) NIL (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 25)) (-2529 (($ |#1|) 12) (($ $ $) 17)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) 23)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) 20)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1158 |#1|) $) 9) (((-832) $) 29 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 21 (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-870 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2529 ($ |#1|)) (-15 -2529 ($ $ $)) (-15 -3743 ((-1158 |#1|) $)))) (-1063)) (T -870)) +((-2529 (*1 *1 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) (-2529 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1063))))) +(-13 (-119 |#1|) (-10 -8 (-15 -2529 ($ |#1|)) (-15 -2529 ($ $ $)) (-15 -3743 ((-1158 |#1|) $)))) +((-3786 ((|#2| (-1102 |#1| |#2|)) 40))) +(((-871 |#1| |#2|) (-10 -7 (-15 -3786 (|#2| (-1102 |#1| |#2|)))) (-890) (-13 (-1016) (-10 -7 (-6 (-4329 "*"))))) (T -871)) +((-3786 (*1 *2 *3) (-12 (-5 *3 (-1102 *4 *2)) (-14 *4 (-890)) (-4 *2 (-13 (-1016) (-10 -7 (-6 (-4329 "*"))))) (-5 *1 (-871 *4 *2))))) +(-10 -7 (-15 -3786 (|#2| (-1102 |#1| |#2|)))) +((-3730 (((-112) $ $) 7)) (-3030 (($) 18 T CONST)) (-3859 (((-3 $ "failed") $) 15)) (-3888 (((-1065 |#1|) $ |#1|) 32)) (-2266 (((-112) $) 17)) (-1795 (($ $ $) 30 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-3091 (($ $ $) 29 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 24)) (-3932 (((-1082) $) 10)) (-2460 ((|#1| $ |#1|) 34)) (-3171 ((|#1| $ |#1|) 33)) (-3798 (($ (-619 (-619 |#1|))) 35)) (-3809 (($ (-619 |#1|)) 36)) (-2128 (($ $ $) 21)) (-3652 (($ $ $) 20)) (-3743 (((-832) $) 11)) (-3118 (($) 19 T CONST)) (-2262 (((-112) $ $) 27 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-2241 (((-112) $ $) 26 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 28 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-2234 (((-112) $ $) 31)) (-2309 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-745)) 16) (($ $ (-548)) 22)) (* (($ $ $) 14))) +(((-872 |#1|) (-138) (-1063)) (T -872)) +((-3809 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-872 *3)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-4 *1 (-872 *3)))) (-2460 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) (-3171 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) (-3888 (*1 *2 *1 *3) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-1065 *3)))) (-2234 (*1 *2 *1 *1) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(-13 (-464) (-10 -8 (-15 -3809 ($ (-619 |t#1|))) (-15 -3798 ($ (-619 (-619 |t#1|)))) (-15 -2460 (|t#1| $ |t#1|)) (-15 -3171 (|t#1| $ |t#1|)) (-15 -3888 ((-1065 |t#1|) $ |t#1|)) (-15 -2234 ((-112) $ $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-821)) |%noBranch|))) +(((-101) . T) ((-592 (-832)) . T) ((-464) . T) ((-701) . T) ((-821) -1524 (|has| |#1| (-821)) (|has| |#1| (-360))) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3911 (((-619 (-619 (-745))) $) 108)) (-3863 (((-619 (-745)) (-874 |#1|) $) 130)) (-3851 (((-619 (-745)) (-874 |#1|) $) 131)) (-3922 (((-619 (-874 |#1|)) $) 98)) (-2545 (((-874 |#1|) $ (-548)) 103) (((-874 |#1|) $) 104)) (-3900 (($ (-619 (-874 |#1|))) 110)) (-1672 (((-745) $) 105)) (-3876 (((-1065 (-1065 |#1|)) $) 128)) (-3888 (((-1065 |#1|) $ |#1|) 121) (((-1065 (-1065 |#1|)) $ (-1065 |#1|)) 139) (((-1065 (-619 |#1|)) $ (-619 |#1|)) 142)) (-3836 (((-1065 |#1|) $) 101)) (-2556 (((-112) (-874 |#1|) $) 92)) (-2546 (((-1118) $) NIL)) (-3822 (((-1223) $) 95) (((-1223) $ (-548) (-548)) 143)) (-3932 (((-1082) $) NIL)) (-3935 (((-619 (-874 |#1|)) $) 96)) (-3171 (((-874 |#1|) $ (-745)) 99)) (-2512 (((-745) $) 106)) (-3743 (((-832) $) 119) (((-619 (-874 |#1|)) $) 23) (($ (-619 (-874 |#1|))) 109)) (-3957 (((-619 |#1|) $) 107)) (-2214 (((-112) $ $) 136)) (-2252 (((-112) $ $) 134)) (-2234 (((-112) $ $) 133))) +(((-873 |#1|) (-13 (-1063) (-10 -8 (-15 -3743 ((-619 (-874 |#1|)) $)) (-15 -3935 ((-619 (-874 |#1|)) $)) (-15 -3171 ((-874 |#1|) $ (-745))) (-15 -2545 ((-874 |#1|) $ (-548))) (-15 -2545 ((-874 |#1|) $)) (-15 -1672 ((-745) $)) (-15 -2512 ((-745) $)) (-15 -3957 ((-619 |#1|) $)) (-15 -3922 ((-619 (-874 |#1|)) $)) (-15 -3911 ((-619 (-619 (-745))) $)) (-15 -3743 ($ (-619 (-874 |#1|)))) (-15 -3900 ($ (-619 (-874 |#1|)))) (-15 -3888 ((-1065 |#1|) $ |#1|)) (-15 -3876 ((-1065 (-1065 |#1|)) $)) (-15 -3888 ((-1065 (-1065 |#1|)) $ (-1065 |#1|))) (-15 -3888 ((-1065 (-619 |#1|)) $ (-619 |#1|))) (-15 -2556 ((-112) (-874 |#1|) $)) (-15 -3863 ((-619 (-745)) (-874 |#1|) $)) (-15 -3851 ((-619 (-745)) (-874 |#1|) $)) (-15 -3836 ((-1065 |#1|) $)) (-15 -2234 ((-112) $ $)) (-15 -2252 ((-112) $ $)) (-15 -3822 ((-1223) $)) (-15 -3822 ((-1223) $ (-548) (-548))))) (-1063)) (T -873)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-745)))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) (-3900 (*1 *1 *2) (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-1065 (-1065 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3888 (*1 *2 *1 *3) (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-1065 *4))) (-5 *1 (-873 *4)) (-5 *3 (-1065 *4)))) (-3888 (*1 *2 *1 *3) (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-619 *4))) (-5 *1 (-873 *4)) (-5 *3 (-619 *4)))) (-2556 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-873 *4)))) (-3863 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) (-5 *1 (-873 *4)))) (-3851 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) (-5 *1 (-873 *4)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2234 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2252 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3822 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-873 *4)) (-4 *4 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3743 ((-619 (-874 |#1|)) $)) (-15 -3935 ((-619 (-874 |#1|)) $)) (-15 -3171 ((-874 |#1|) $ (-745))) (-15 -2545 ((-874 |#1|) $ (-548))) (-15 -2545 ((-874 |#1|) $)) (-15 -1672 ((-745) $)) (-15 -2512 ((-745) $)) (-15 -3957 ((-619 |#1|) $)) (-15 -3922 ((-619 (-874 |#1|)) $)) (-15 -3911 ((-619 (-619 (-745))) $)) (-15 -3743 ($ (-619 (-874 |#1|)))) (-15 -3900 ($ (-619 (-874 |#1|)))) (-15 -3888 ((-1065 |#1|) $ |#1|)) (-15 -3876 ((-1065 (-1065 |#1|)) $)) (-15 -3888 ((-1065 (-1065 |#1|)) $ (-1065 |#1|))) (-15 -3888 ((-1065 (-619 |#1|)) $ (-619 |#1|))) (-15 -2556 ((-112) (-874 |#1|) $)) (-15 -3863 ((-619 (-745)) (-874 |#1|) $)) (-15 -3851 ((-619 (-745)) (-874 |#1|) $)) (-15 -3836 ((-1065 |#1|) $)) (-15 -2234 ((-112) $ $)) (-15 -2252 ((-112) $ $)) (-15 -3822 ((-1223) $)) (-15 -3822 ((-1223) $ (-548) (-548))))) +((-3730 (((-112) $ $) NIL)) (-2490 (((-619 $) (-619 $)) 77)) (-2672 (((-548) $) 60)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-1672 (((-745) $) 58)) (-3888 (((-1065 |#1|) $ |#1|) 49)) (-2266 (((-112) $) NIL)) (-3705 (((-112) $) 63)) (-3731 (((-745) $) 61)) (-3836 (((-1065 |#1|) $) 42)) (-1795 (($ $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-3091 (($ $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-3775 (((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $) 37)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 93)) (-3932 (((-1082) $) NIL)) (-3692 (((-1065 |#1|) $) 100 (|has| |#1| (-360)))) (-3718 (((-112) $) 59)) (-2460 ((|#1| $ |#1|) 47)) (-3171 ((|#1| $ |#1|) 94)) (-2512 (((-745) $) 44)) (-3798 (($ (-619 (-619 |#1|))) 85)) (-3744 (((-940) $) 53)) (-3809 (($ (-619 |#1|)) 21)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3765 (($ (-619 (-619 |#1|))) 39)) (-3755 (($ (-619 (-619 |#1|))) 88)) (-3682 (($ (-619 |#1|)) 96)) (-3743 (((-832) $) 84) (($ (-619 (-619 |#1|))) 66) (($ (-619 |#1|)) 67)) (-3118 (($) 16 T CONST)) (-2262 (((-112) $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-2214 (((-112) $ $) 45)) (-2252 (((-112) $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-2234 (((-112) $ $) 65)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ $ $) 22))) +(((-874 |#1|) (-13 (-872 |#1|) (-10 -8 (-15 -3775 ((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $)) (-15 -3765 ($ (-619 (-619 |#1|)))) (-15 -3743 ($ (-619 (-619 |#1|)))) (-15 -3743 ($ (-619 |#1|))) (-15 -3755 ($ (-619 (-619 |#1|)))) (-15 -2512 ((-745) $)) (-15 -3836 ((-1065 |#1|) $)) (-15 -3744 ((-940) $)) (-15 -1672 ((-745) $)) (-15 -3731 ((-745) $)) (-15 -2672 ((-548) $)) (-15 -3718 ((-112) $)) (-15 -3705 ((-112) $)) (-15 -2490 ((-619 $) (-619 $))) (IF (|has| |#1| (-360)) (-15 -3692 ((-1065 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-533)) (-15 -3682 ($ (-619 |#1|))) (IF (|has| |#1| (-360)) (-15 -3682 ($ (-619 |#1|))) |%noBranch|)))) (-1063)) (T -874)) +((-3775 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-619 *3)) (|:| |image| (-619 *3)))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3765 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-360)) (-4 *3 (-1063)))) (-3682 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) +(-13 (-872 |#1|) (-10 -8 (-15 -3775 ((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $)) (-15 -3765 ($ (-619 (-619 |#1|)))) (-15 -3743 ($ (-619 (-619 |#1|)))) (-15 -3743 ($ (-619 |#1|))) (-15 -3755 ($ (-619 (-619 |#1|)))) (-15 -2512 ((-745) $)) (-15 -3836 ((-1065 |#1|) $)) (-15 -3744 ((-940) $)) (-15 -1672 ((-745) $)) (-15 -3731 ((-745) $)) (-15 -2672 ((-548) $)) (-15 -3718 ((-112) $)) (-15 -3705 ((-112) $)) (-15 -2490 ((-619 $) (-619 $))) (IF (|has| |#1| (-360)) (-15 -3692 ((-1065 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-533)) (-15 -3682 ($ (-619 |#1|))) (IF (|has| |#1| (-360)) (-15 -3682 ($ (-619 |#1|))) |%noBranch|)))) +((-3963 (((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|)) 128)) (-3994 ((|#1|) 77)) (-3984 (((-410 (-1131 |#4|)) (-1131 |#4|)) 137)) (-4006 (((-410 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)) 69)) (-3975 (((-410 (-1131 |#4|)) (-1131 |#4|)) 147)) (-3949 (((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|) 92))) +(((-875 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3963 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|))) (-15 -3975 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -3984 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -3994 (|#1|)) (-15 -3949 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|)) (-15 -4006 ((-410 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)))) (-878) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -875)) +((-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *7)) (-4 *7 (-821)) (-4 *5 (-878)) (-4 *6 (-767)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-410 (-1131 *8))) (-5 *1 (-875 *5 *6 *7 *8)) (-5 *4 (-1131 *8)))) (-3949 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) (-4 *7 (-918 *5 *6 *4)) (-4 *5 (-878)) (-4 *6 (-767)) (-4 *4 (-821)) (-5 *1 (-875 *5 *6 *4 *7)))) (-3994 (*1 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) (-5 *1 (-875 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-3963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-875 *4 *5 *6 *7))))) +(-10 -7 (-15 -3963 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|))) (-15 -3975 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -3984 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -3994 (|#1|)) (-15 -3949 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|)) (-15 -4006 ((-410 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)))) +((-3963 (((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)) 36)) (-3994 ((|#1|) 54)) (-3984 (((-410 (-1131 |#2|)) (-1131 |#2|)) 102)) (-4006 (((-410 (-1131 |#2|)) (-1131 |#2|)) 90)) (-3975 (((-410 (-1131 |#2|)) (-1131 |#2|)) 113))) +(((-876 |#1| |#2|) (-10 -7 (-15 -3963 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|))) (-15 -3975 ((-410 (-1131 |#2|)) (-1131 |#2|))) (-15 -3984 ((-410 (-1131 |#2|)) (-1131 |#2|))) (-15 -3994 (|#1|)) (-15 -4006 ((-410 (-1131 |#2|)) (-1131 |#2|)))) (-878) (-1194 |#1|)) (T -876)) +((-4006 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-3994 (*1 *2) (-12 (-4 *2 (-878)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1194 *2)))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-3963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-878)) (-5 *1 (-876 *4 *5))))) +(-10 -7 (-15 -3963 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|))) (-15 -3975 ((-410 (-1131 |#2|)) (-1131 |#2|))) (-15 -3984 ((-410 (-1131 |#2|)) (-1131 |#2|))) (-15 -3994 (|#1|)) (-15 -4006 ((-410 (-1131 |#2|)) (-1131 |#2|)))) +((-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 41)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 18)) (-4017 (((-3 $ "failed") $) 35))) +(((-877 |#1|) (-10 -8 (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) (-878)) (T -877)) +NIL +(-10 -8 (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 58)) (-1688 (($ $) 49)) (-2634 (((-410 $) $) 50)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 55)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-1271 (((-112) $) 51)) (-2266 (((-112) $) 30)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-4051 (((-410 (-1131 $)) (-1131 $)) 56)) (-4060 (((-410 (-1131 $)) (-1131 $)) 57)) (-1915 (((-410 $) $) 48)) (-1900 (((-3 $ "failed") $ $) 40)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 54 (|has| $ (-143)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-4017 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-878) (-138)) (T -878)) +((-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-878)))) (-4070 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1)))) (-4060 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1)))) (-4051 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1)))) (-4039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *1))) (-5 *3 (-1131 *1)) (-4 *1 (-878)))) (-4028 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-143)) (-4 *1 (-878)) (-5 *2 (-1218 *1)))) (-4017 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-878))))) +(-13 (-1176) (-10 -8 (-15 -4070 ((-410 (-1131 $)) (-1131 $))) (-15 -4060 ((-410 (-1131 $)) (-1131 $))) (-15 -4051 ((-410 (-1131 $)) (-1131 $))) (-15 -4081 ((-1131 $) (-1131 $) (-1131 $))) (-15 -4039 ((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $))) (IF (|has| $ (-143)) (PROGN (-15 -4028 ((-3 (-1218 $) "failed") (-663 $))) (-15 -4017 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (($ $ (-890)) NIL (|has| $ (-360))) (($ $) NIL)) (-3667 (((-1145 (-890) (-745)) (-548)) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 $ "failed") $) NIL)) (-2375 (($ $) NIL)) (-2455 (($ (-1218 $)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL)) (-3727 (((-112) $) NIL)) (-2208 (($ $) NIL) (($ $ (-745)) NIL)) (-1271 (((-112) $) NIL)) (-1672 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| $ (-360)))) (-2866 (((-112) $) NIL (|has| $ (-360)))) (-3910 (($ $ (-890)) NIL (|has| $ (-360))) (($ $) NIL)) (-3725 (((-3 $ "failed") $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 $) $ (-890)) NIL (|has| $ (-360))) (((-1131 $) $) NIL)) (-2855 (((-890) $) NIL)) (-4288 (((-1131 $) $) NIL (|has| $ (-360)))) (-4278 (((-3 (-1131 $) "failed") $ $) NIL (|has| $ (-360))) (((-1131 $) $) NIL (|has| $ (-360)))) (-4300 (($ $ (-1131 $)) NIL (|has| $ (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL T CONST)) (-3337 (($ (-890)) NIL)) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL (|has| $ (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL)) (-1915 (((-410 $) $) NIL)) (-2373 (((-890)) NIL) (((-807 (-890))) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-3 (-745) "failed") $ $) NIL) (((-745) $) NIL)) (-3402 (((-133)) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2512 (((-890) $) NIL) (((-807 (-890)) $) NIL)) (-3287 (((-1131 $)) NIL)) (-3655 (($) NIL)) (-1255 (($) NIL (|has| $ (-360)))) (-2447 (((-663 $) (-1218 $)) NIL) (((-1218 $) $) NIL)) (-2591 (((-548) $) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3835 (((-745)) NIL)) (-2877 (((-1218 $) (-890)) NIL) (((-1218 $)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $ (-745)) NIL (|has| $ (-360))) (($ $) NIL (|has| $ (-360)))) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) +(((-879 |#1|) (-13 (-341) (-321 $) (-593 (-548))) (-890)) (T -879)) +NIL +(-13 (-341) (-321 $) (-593 (-548))) +((-4099 (((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)) 79)) (-4089 (((-112) (-328 |#2| |#3| |#4| |#5|)) 17)) (-1672 (((-3 (-745) "failed") (-328 |#2| |#3| |#4| |#5|)) 15))) +(((-880 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1672 ((-3 (-745) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -4089 ((-112) (-328 |#2| |#3| |#4| |#5|))) (-15 -4099 ((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) (-13 (-821) (-540) (-1007 (-548))) (-422 |#1|) (-1194 |#2|) (-1194 (-399 |#3|)) (-334 |#2| |#3| |#4|)) (T -880)) +((-4099 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-2 (|:| -1672 (-745)) (|:| -3418 *8))) (-5 *1 (-880 *4 *5 *6 *7 *8)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-112)) (-5 *1 (-880 *4 *5 *6 *7 *8)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-745)) (-5 *1 (-880 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -1672 ((-3 (-745) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -4089 ((-112) (-328 |#2| |#3| |#4| |#5|))) (-15 -4099 ((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) +((-4099 (((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#3|)) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|)) 56)) (-4089 (((-112) (-328 (-399 (-548)) |#1| |#2| |#3|)) 16)) (-1672 (((-3 (-745) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|)) 14))) +(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -1672 ((-3 (-745) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|))) (-15 -4089 ((-112) (-328 (-399 (-548)) |#1| |#2| |#3|))) (-15 -4099 ((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#3|)) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|)))) (-1194 (-399 (-548))) (-1194 (-399 |#1|)) (-334 (-399 (-548)) |#1| |#2|)) (T -881)) +((-4099 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-2 (|:| -1672 (-745)) (|:| -3418 *6))) (-5 *1 (-881 *4 *5 *6)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-881 *4 *5 *6)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-745)) (-5 *1 (-881 *4 *5 *6))))) +(-10 -7 (-15 -1672 ((-3 (-745) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|))) (-15 -4089 ((-112) (-328 (-399 (-548)) |#1| |#2| |#3|))) (-15 -4099 ((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#3|)) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|)))) +((-4152 ((|#2| |#2|) 26)) (-4132 (((-548) (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))))) 15)) (-4112 (((-890) (-548)) 35)) (-4142 (((-548) |#2|) 42)) (-4124 (((-548) |#2|) 21) (((-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))) |#1|) 20))) +(((-882 |#1| |#2|) (-10 -7 (-15 -4112 ((-890) (-548))) (-15 -4124 ((-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))) |#1|)) (-15 -4124 ((-548) |#2|)) (-15 -4132 ((-548) (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548)))))) (-15 -4142 ((-548) |#2|)) (-15 -4152 (|#2| |#2|))) (-1194 (-399 (-548))) (-1194 (-399 |#1|))) (T -882)) +((-4152 (*1 *2 *2) (-12 (-4 *3 (-1194 (-399 (-548)))) (-5 *1 (-882 *3 *2)) (-4 *2 (-1194 (-399 *3))))) (-4142 (*1 *2 *3) (-12 (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1194 (-399 *4))))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))))) (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-399 *4))))) (-4124 (*1 *2 *3) (-12 (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1194 (-399 *4))))) (-4124 (*1 *2 *3) (-12 (-4 *3 (-1194 (-399 (-548)))) (-5 *2 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-1194 (-399 *3))))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-548)) (-4 *4 (-1194 (-399 *3))) (-5 *2 (-890)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-399 *4)))))) +(-10 -7 (-15 -4112 ((-890) (-548))) (-15 -4124 ((-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))) |#1|)) (-15 -4124 ((-548) |#2|)) (-15 -4132 ((-548) (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548)))))) (-15 -4142 ((-548) |#2|)) (-15 -4152 (|#2| |#2|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 ((|#1| $) 81)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) 75)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2939 (($ |#1| (-410 |#1|)) 73)) (-2874 (((-1131 |#1|) |#1| |#1|) 41)) (-2863 (($ $) 49)) (-2266 (((-112) $) NIL)) (-2884 (((-548) $) 78)) (-2894 (($ $ (-548)) 80)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2906 ((|#1| $) 77)) (-2917 (((-410 |#1|) $) 76)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) 74)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2928 (($ $) 39)) (-3743 (((-832) $) 99) (($ (-548)) 54) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 31) (((-399 |#1|) $) 59) (($ (-399 (-410 |#1|))) 67)) (-3835 (((-745)) 52)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 23 T CONST)) (-3118 (($) 12 T CONST)) (-2214 (((-112) $ $) 68)) (-2309 (($ $ $) NIL)) (-2299 (($ $) 88) (($ $ $) NIL)) (-2290 (($ $ $) 38)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 90) (($ $ $) 37) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-883 |#1|) (-13 (-355) (-38 |#1|) (-10 -8 (-15 -3743 ((-399 |#1|) $)) (-15 -3743 ($ (-399 (-410 |#1|)))) (-15 -2928 ($ $)) (-15 -2917 ((-410 |#1|) $)) (-15 -2906 (|#1| $)) (-15 -2894 ($ $ (-548))) (-15 -2884 ((-548) $)) (-15 -2874 ((-1131 |#1|) |#1| |#1|)) (-15 -2863 ($ $)) (-15 -2939 ($ |#1| (-410 |#1|))) (-15 -3875 (|#1| $)))) (-299)) (T -883)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-399 (-410 *3))) (-4 *3 (-299)) (-5 *1 (-883 *3)))) (-2928 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-2906 (*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299)))) (-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-2874 (*1 *2 *3 *3) (-12 (-5 *2 (-1131 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-2863 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299)))) (-2939 (*1 *1 *2 *3) (-12 (-5 *3 (-410 *2)) (-4 *2 (-299)) (-5 *1 (-883 *2)))) (-3875 (*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299))))) +(-13 (-355) (-38 |#1|) (-10 -8 (-15 -3743 ((-399 |#1|) $)) (-15 -3743 ($ (-399 (-410 |#1|)))) (-15 -2928 ($ $)) (-15 -2917 ((-410 |#1|) $)) (-15 -2906 (|#1| $)) (-15 -2894 ($ $ (-548))) (-15 -2884 ((-548) $)) (-15 -2874 ((-1131 |#1|) |#1| |#1|)) (-15 -2863 ($ $)) (-15 -2939 ($ |#1| (-410 |#1|))) (-15 -3875 (|#1| $)))) +((-2939 (((-52) (-921 |#1|) (-410 (-921 |#1|)) (-1135)) 17) (((-52) (-399 (-921 |#1|)) (-1135)) 18))) +(((-884 |#1|) (-10 -7 (-15 -2939 ((-52) (-399 (-921 |#1|)) (-1135))) (-15 -2939 ((-52) (-921 |#1|) (-410 (-921 |#1|)) (-1135)))) (-13 (-299) (-145))) (T -884)) +((-2939 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-410 (-921 *6))) (-5 *5 (-1135)) (-5 *3 (-921 *6)) (-4 *6 (-13 (-299) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *6)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *5))))) +(-10 -7 (-15 -2939 ((-52) (-399 (-921 |#1|)) (-1135))) (-15 -2939 ((-52) (-921 |#1|) (-410 (-921 |#1|)) (-1135)))) +((-2950 ((|#4| (-619 |#4|)) 121) (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3587 (((-1131 |#4|) (-619 (-1131 |#4|))) 114) (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 50) ((|#4| (-619 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3587 (|#4| |#4| |#4|)) (-15 -3587 (|#4| (-619 |#4|))) (-15 -3587 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3587 ((-1131 |#4|) (-619 (-1131 |#4|)))) (-15 -2950 (|#4| |#4| |#4|)) (-15 -2950 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -2950 (|#4| (-619 |#4|)))) (-767) (-821) (-299) (-918 |#3| |#1| |#2|)) (T -885)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)))) (-2950 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2950 (*1 *2 *2 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-619 (-1131 *7))) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-1131 *7)) (-5 *1 (-885 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-3587 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *6)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)))) (-3587 (*1 *2 *2 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4))))) +(-10 -7 (-15 -3587 (|#4| |#4| |#4|)) (-15 -3587 (|#4| (-619 |#4|))) (-15 -3587 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3587 ((-1131 |#4|) (-619 (-1131 |#4|)))) (-15 -2950 (|#4| |#4| |#4|)) (-15 -2950 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -2950 (|#4| (-619 |#4|)))) +((-3089 (((-873 (-548)) (-940)) 23) (((-873 (-548)) (-619 (-548))) 20)) (-2961 (((-873 (-548)) (-619 (-548))) 48) (((-873 (-548)) (-890)) 49)) (-3078 (((-873 (-548))) 24)) (-3057 (((-873 (-548))) 38) (((-873 (-548)) (-619 (-548))) 37)) (-3046 (((-873 (-548))) 36) (((-873 (-548)) (-619 (-548))) 35)) (-3034 (((-873 (-548))) 34) (((-873 (-548)) (-619 (-548))) 33)) (-3024 (((-873 (-548))) 32) (((-873 (-548)) (-619 (-548))) 31)) (-3014 (((-873 (-548))) 30) (((-873 (-548)) (-619 (-548))) 29)) (-3068 (((-873 (-548))) 40) (((-873 (-548)) (-619 (-548))) 39)) (-3004 (((-873 (-548)) (-619 (-548))) 52) (((-873 (-548)) (-890)) 53)) (-2993 (((-873 (-548)) (-619 (-548))) 50) (((-873 (-548)) (-890)) 51)) (-2972 (((-873 (-548)) (-619 (-548))) 46) (((-873 (-548)) (-890)) 47)) (-2983 (((-873 (-548)) (-619 (-890))) 43))) +(((-886) (-10 -7 (-15 -2961 ((-873 (-548)) (-890))) (-15 -2961 ((-873 (-548)) (-619 (-548)))) (-15 -2972 ((-873 (-548)) (-890))) (-15 -2972 ((-873 (-548)) (-619 (-548)))) (-15 -2983 ((-873 (-548)) (-619 (-890)))) (-15 -2993 ((-873 (-548)) (-890))) (-15 -2993 ((-873 (-548)) (-619 (-548)))) (-15 -3004 ((-873 (-548)) (-890))) (-15 -3004 ((-873 (-548)) (-619 (-548)))) (-15 -3014 ((-873 (-548)) (-619 (-548)))) (-15 -3014 ((-873 (-548)))) (-15 -3024 ((-873 (-548)) (-619 (-548)))) (-15 -3024 ((-873 (-548)))) (-15 -3034 ((-873 (-548)) (-619 (-548)))) (-15 -3034 ((-873 (-548)))) (-15 -3046 ((-873 (-548)) (-619 (-548)))) (-15 -3046 ((-873 (-548)))) (-15 -3057 ((-873 (-548)) (-619 (-548)))) (-15 -3057 ((-873 (-548)))) (-15 -3068 ((-873 (-548)) (-619 (-548)))) (-15 -3068 ((-873 (-548)))) (-15 -3078 ((-873 (-548)))) (-15 -3089 ((-873 (-548)) (-619 (-548)))) (-15 -3089 ((-873 (-548)) (-940))))) (T -886)) +((-3089 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3078 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3068 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3057 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3046 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3034 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3024 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3014 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3014 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(-10 -7 (-15 -2961 ((-873 (-548)) (-890))) (-15 -2961 ((-873 (-548)) (-619 (-548)))) (-15 -2972 ((-873 (-548)) (-890))) (-15 -2972 ((-873 (-548)) (-619 (-548)))) (-15 -2983 ((-873 (-548)) (-619 (-890)))) (-15 -2993 ((-873 (-548)) (-890))) (-15 -2993 ((-873 (-548)) (-619 (-548)))) (-15 -3004 ((-873 (-548)) (-890))) (-15 -3004 ((-873 (-548)) (-619 (-548)))) (-15 -3014 ((-873 (-548)) (-619 (-548)))) (-15 -3014 ((-873 (-548)))) (-15 -3024 ((-873 (-548)) (-619 (-548)))) (-15 -3024 ((-873 (-548)))) (-15 -3034 ((-873 (-548)) (-619 (-548)))) (-15 -3034 ((-873 (-548)))) (-15 -3046 ((-873 (-548)) (-619 (-548)))) (-15 -3046 ((-873 (-548)))) (-15 -3057 ((-873 (-548)) (-619 (-548)))) (-15 -3057 ((-873 (-548)))) (-15 -3068 ((-873 (-548)) (-619 (-548)))) (-15 -3068 ((-873 (-548)))) (-15 -3078 ((-873 (-548)))) (-15 -3089 ((-873 (-548)) (-619 (-548)))) (-15 -3089 ((-873 (-548)) (-940)))) +((-3115 (((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))) 12)) (-3103 (((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))) 11))) +(((-887 |#1|) (-10 -7 (-15 -3103 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3115 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))))) (-443)) (T -887)) +((-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-443)) (-5 *1 (-887 *4)))) (-3103 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-443)) (-5 *1 (-887 *4))))) +(-10 -7 (-15 -3103 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3115 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))))) +((-3743 (((-308 |#1|) (-468)) 16))) +(((-888 |#1|) (-10 -7 (-15 -3743 ((-308 |#1|) (-468)))) (-13 (-821) (-540))) (T -888)) +((-3743 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-308 *4)) (-5 *1 (-888 *4)) (-4 *4 (-13 (-821) (-540)))))) +(-10 -7 (-15 -3743 ((-308 |#1|) (-468)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2266 (((-112) $) 30)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-889) (-138)) (T -889)) +((-3136 (*1 *2 *3) (-12 (-4 *1 (-889)) (-5 *2 (-2 (|:| -1489 (-619 *1)) (|:| -4160 *1))) (-5 *3 (-619 *1)))) (-3126 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-889))))) +(-13 (-443) (-10 -8 (-15 -3136 ((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $))) (-15 -3126 ((-3 (-619 $) "failed") (-619 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3587 (($ $ $) NIL)) (-3743 (((-832) $) NIL)) (-3118 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ $ $) NIL))) +(((-890) (-13 (-768) (-701) (-10 -8 (-15 -3587 ($ $ $)) (-6 (-4329 "*"))))) (T -890)) +((-3587 (*1 *1 *1 *1) (-5 *1 (-890)))) +(-13 (-768) (-701) (-10 -8 (-15 -3587 ($ $ $)) (-6 (-4329 "*")))) +((-3146 ((|#2| (-619 |#1|) (-619 |#1|)) 24))) +(((-891 |#1| |#2|) (-10 -7 (-15 -3146 (|#2| (-619 |#1|) (-619 |#1|)))) (-355) (-1194 |#1|)) (T -891)) +((-3146 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-355)) (-4 *2 (-1194 *4)) (-5 *1 (-891 *4 *2))))) +(-10 -7 (-15 -3146 (|#2| (-619 |#1|) (-619 |#1|)))) +((-3657 (((-1131 |#2|) (-619 |#2|) (-619 |#2|)) 17) (((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|)) 13))) +(((-892 |#1| |#2|) (-10 -7 (-15 -3657 ((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|))) (-15 -3657 ((-1131 |#2|) (-619 |#2|) (-619 |#2|)))) (-1135) (-355)) (T -892)) +((-3657 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-355)) (-5 *2 (-1131 *5)) (-5 *1 (-892 *4 *5)) (-14 *4 (-1135)))) (-3657 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1191 *4 *5)) (-5 *3 (-619 *5)) (-14 *4 (-1135)) (-4 *5 (-355)) (-5 *1 (-892 *4 *5))))) +(-10 -7 (-15 -3657 ((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|))) (-15 -3657 ((-1131 |#2|) (-619 |#2|) (-619 |#2|)))) +((-3167 (((-548) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118)) 139)) (-3413 ((|#4| |#4|) 155)) (-3219 (((-619 (-399 (-921 |#1|))) (-619 (-1135))) 118)) (-3401 (((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-548)) 75)) (-3264 (((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-619 |#4|)) 59)) (-3388 (((-663 |#4|) (-663 |#4|) (-619 |#4|)) 55)) (-3180 (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118)) 151)) (-3157 (((-548) (-663 |#4|) (-890) (-1118)) 132) (((-548) (-663 |#4|) (-619 (-1135)) (-890) (-1118)) 131) (((-548) (-663 |#4|) (-619 |#4|) (-890) (-1118)) 130) (((-548) (-663 |#4|) (-1118)) 127) (((-548) (-663 |#4|) (-619 (-1135)) (-1118)) 126) (((-548) (-663 |#4|) (-619 |#4|) (-1118)) 125) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-890)) 124) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890)) 123) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890)) 122) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|)) 120) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135))) 119) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|)) 115)) (-3230 ((|#4| (-921 |#1|)) 68)) (-3354 (((-112) (-619 |#4|) (-619 (-619 |#4|))) 152)) (-3339 (((-619 (-619 (-548))) (-548) (-548)) 129)) (-3325 (((-619 (-619 |#4|)) (-619 (-619 |#4|))) 88)) (-3313 (((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|))))) 86)) (-3299 (((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|))))) 85)) (-3426 (((-112) (-619 (-921 |#1|))) 17) (((-112) (-619 |#4|)) 13)) (-3240 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|)) 71)) (-3288 (((-619 |#4|) |#4|) 49)) (-3205 (((-619 (-399 (-921 |#1|))) (-619 |#4|)) 114) (((-663 (-399 (-921 |#1|))) (-663 |#4|)) 56) (((-399 (-921 |#1|)) |#4|) 111)) (-3192 (((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))))) (|:| |rgsz| (-548))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-745) (-1118) (-548)) 93)) (-3251 (((-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745)) 84)) (-3370 (((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-663 |#4|) (-745)) 101)) (-3275 (((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| -4035 (-663 (-399 (-921 |#1|)))) (|:| |vec| (-619 (-399 (-921 |#1|)))) (|:| -2103 (-745)) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) 48))) +(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-890))) (-15 -3157 ((-548) (-663 |#4|) (-619 |#4|) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 (-1135)) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 |#4|) (-890) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 (-1135)) (-890) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-890) (-1118))) (-15 -3167 ((-548) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118))) (-15 -3180 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118))) (-15 -3192 ((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))))) (|:| |rgsz| (-548))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-745) (-1118) (-548))) (-15 -3205 ((-399 (-921 |#1|)) |#4|)) (-15 -3205 ((-663 (-399 (-921 |#1|))) (-663 |#4|))) (-15 -3205 ((-619 (-399 (-921 |#1|))) (-619 |#4|))) (-15 -3219 ((-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -3230 (|#4| (-921 |#1|))) (-15 -3240 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|))) (-15 -3251 ((-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745))) (-15 -3264 ((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-619 |#4|))) (-15 -3275 ((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| -4035 (-663 (-399 (-921 |#1|)))) (|:| |vec| (-619 (-399 (-921 |#1|)))) (|:| -2103 (-745)) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (-15 -3288 ((-619 |#4|) |#4|)) (-15 -3299 ((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3313 ((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3325 ((-619 (-619 |#4|)) (-619 (-619 |#4|)))) (-15 -3339 ((-619 (-619 (-548))) (-548) (-548))) (-15 -3354 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -3370 ((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-663 |#4|) (-745))) (-15 -3388 ((-663 |#4|) (-663 |#4|) (-619 |#4|))) (-15 -3401 ((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-548))) (-15 -3413 (|#4| |#4|)) (-15 -3426 ((-112) (-619 |#4|))) (-15 -3426 ((-112) (-619 (-921 |#1|))))) (-13 (-299) (-145)) (-13 (-821) (-593 (-1135))) (-767) (-918 |#1| |#3| |#2|)) (T -893)) +((-3426 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3413 (*1 *2 *2) (-12 (-4 *3 (-13 (-299) (-145))) (-4 *4 (-13 (-821) (-593 (-1135)))) (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *2 (-918 *3 *5 *4)))) (-3401 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-5 *4 (-663 *12)) (-5 *5 (-619 (-399 (-921 *9)))) (-5 *6 (-619 (-619 *12))) (-5 *7 (-745)) (-5 *8 (-548)) (-4 *9 (-13 (-299) (-145))) (-4 *12 (-918 *9 *11 *10)) (-4 *10 (-13 (-821) (-593 (-1135)))) (-4 *11 (-767)) (-5 *2 (-2 (|:| |eqzro| (-619 *12)) (|:| |neqzro| (-619 *12)) (|:| |wcond| (-619 (-921 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *9)))) (|:| -2877 (-619 (-1218 (-399 (-921 *9))))))))) (-5 *1 (-893 *9 *10 *11 *12)))) (-3388 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3370 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-745)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |det| *8) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *7 *8)))) (-3339 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-619 (-548)))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-548)) (-4 *7 (-918 *4 *6 *5)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-619 (-619 *6))) (-4 *6 (-918 *3 *5 *4)) (-4 *3 (-13 (-299) (-145))) (-4 *4 (-13 (-821) (-593 (-1135)))) (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *6)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *7) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 *7))))) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *7) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 *7))))) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3288 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-918 *4 *6 *5)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4035 (-663 (-399 (-921 *4)))) (|:| |vec| (-619 (-399 (-921 *4)))) (|:| -2103 (-745)) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) (|:| -2877 (-619 (-1218 (-399 (-921 *4))))))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3264 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) (|:| -2877 (-619 (-1218 (-399 (-921 *4))))))) (-5 *3 (-619 *7)) (-4 *4 (-13 (-299) (-145))) (-4 *7 (-918 *4 *6 *5)) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *8) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 *8))))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-745)))) (-3240 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-4 *7 (-918 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-619 *7)) (|:| |n0| (-619 *7)))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-299) (-145))) (-4 *2 (-918 *4 *6 *5)) (-5 *1 (-893 *4 *5 *6 *2)) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-399 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-399 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-663 (-399 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-399 (-921 *4))) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-918 *4 *6 *5)))) (-3192 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-663 *11)) (-5 *4 (-619 (-399 (-921 *8)))) (-5 *5 (-745)) (-5 *6 (-1118)) (-4 *8 (-13 (-299) (-145))) (-4 *11 (-918 *8 *10 *9)) (-4 *9 (-13 (-821) (-593 (-1135)))) (-4 *10 (-767)) (-5 *2 (-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 *11)) (|:| |neqzro| (-619 *11)) (|:| |wcond| (-619 (-921 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *8)))) (|:| -2877 (-619 (-1218 (-399 (-921 *8)))))))))) (|:| |rgsz| (-548)))) (-5 *1 (-893 *8 *9 *10 *11)) (-5 *7 (-548)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) (|:| |wcond| (-619 (-921 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) (|:| -2877 (-619 (-1218 (-399 (-921 *4)))))))))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) (-5 *4 (-1118)) (-4 *5 (-13 (-299) (-145))) (-4 *8 (-918 *5 *7 *6)) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-890)) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *6 *7 *8 *9)))) (-3157 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-299) (-145))) (-4 *8 (-13 (-821) (-593 (-1135)))) (-4 *9 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *7 *8 *9 *10)))) (-3157 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 *10)) (-5 *5 (-890)) (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-299) (-145))) (-4 *8 (-13 (-821) (-593 (-1135)))) (-4 *9 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *7 *8 *9 *10)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-1118)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *6 *7 *8 *9)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 *9)) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *6 *7 *8 *9)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-890)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) (|:| |wcond| (-619 (-921 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *6)))) (|:| -2877 (-619 (-1218 (-399 (-921 *6)))))))))) (-5 *1 (-893 *6 *7 *8 *9)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) (|:| |wcond| (-619 (-921 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *6)))) (|:| -2877 (-619 (-1218 (-399 (-921 *6)))))))))) (-5 *1 (-893 *6 *7 *8 *9)) (-5 *4 (-619 *9)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) (|:| |wcond| (-619 (-921 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) (|:| -2877 (-619 (-1218 (-399 (-921 *4)))))))))) (-5 *1 (-893 *4 *5 *6 *7)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-619 (-1135))) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) +(-10 -7 (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-890))) (-15 -3157 ((-548) (-663 |#4|) (-619 |#4|) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 (-1135)) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 |#4|) (-890) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 (-1135)) (-890) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-890) (-1118))) (-15 -3167 ((-548) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118))) (-15 -3180 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118))) (-15 -3192 ((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))))) (|:| |rgsz| (-548))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-745) (-1118) (-548))) (-15 -3205 ((-399 (-921 |#1|)) |#4|)) (-15 -3205 ((-663 (-399 (-921 |#1|))) (-663 |#4|))) (-15 -3205 ((-619 (-399 (-921 |#1|))) (-619 |#4|))) (-15 -3219 ((-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -3230 (|#4| (-921 |#1|))) (-15 -3240 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|))) (-15 -3251 ((-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745))) (-15 -3264 ((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-619 |#4|))) (-15 -3275 ((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| -4035 (-663 (-399 (-921 |#1|)))) (|:| |vec| (-619 (-399 (-921 |#1|)))) (|:| -2103 (-745)) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (-15 -3288 ((-619 |#4|) |#4|)) (-15 -3299 ((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3313 ((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3325 ((-619 (-619 |#4|)) (-619 (-619 |#4|)))) (-15 -3339 ((-619 (-619 (-548))) (-548) (-548))) (-15 -3354 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -3370 ((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-663 |#4|) (-745))) (-15 -3388 ((-663 |#4|) (-663 |#4|) (-619 |#4|))) (-15 -3401 ((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-548))) (-15 -3413 (|#4| |#4|)) (-15 -3426 ((-112) (-619 |#4|))) (-15 -3426 ((-112) (-619 (-921 |#1|))))) +((-3438 (((-896) |#1| (-1135)) 17) (((-896) |#1| (-1135) (-1058 (-218))) 21)) (-3583 (((-896) |#1| |#1| (-1135) (-1058 (-218))) 19) (((-896) |#1| (-1135) (-1058 (-218))) 15))) +(((-894 |#1|) (-10 -7 (-15 -3583 ((-896) |#1| (-1135) (-1058 (-218)))) (-15 -3583 ((-896) |#1| |#1| (-1135) (-1058 (-218)))) (-15 -3438 ((-896) |#1| (-1135) (-1058 (-218)))) (-15 -3438 ((-896) |#1| (-1135)))) (-593 (-524))) (T -894)) +((-3438 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) (-3438 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) (-3583 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) (-3583 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-593 (-524)))))) +(-10 -7 (-15 -3583 ((-896) |#1| (-1135) (-1058 (-218)))) (-15 -3583 ((-896) |#1| |#1| (-1135) (-1058 (-218)))) (-15 -3438 ((-896) |#1| (-1135) (-1058 (-218)))) (-15 -3438 ((-896) |#1| (-1135)))) +((-2994 (($ $ (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 70)) (-3948 (((-1058 (-218)) $) 40)) (-3934 (((-1058 (-218)) $) 39)) (-3921 (((-1058 (-218)) $) 38)) (-3561 (((-619 (-619 (-218))) $) 43)) (-3572 (((-1058 (-218)) $) 41)) (-3494 (((-548) (-548)) 32)) (-3538 (((-548) (-548)) 28)) (-3515 (((-548) (-548)) 30)) (-3471 (((-112) (-112)) 35)) (-3506 (((-548)) 31)) (-3933 (($ $ (-1058 (-218))) 73) (($ $) 74)) (-3596 (($ (-1 (-912 (-218)) (-218)) (-1058 (-218))) 78) (($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 79)) (-3583 (($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218))) 81) (($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 82) (($ $ (-1058 (-218))) 76)) (-3459 (((-548)) 36)) (-3549 (((-548)) 27)) (-3527 (((-548)) 29)) (-3360 (((-619 (-619 (-912 (-218)))) $) 95)) (-3448 (((-112) (-112)) 37)) (-3743 (((-832) $) 94)) (-3481 (((-112)) 34))) +(((-895) (-13 (-943) (-10 -8 (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ $ (-1058 (-218)))) (-15 -2994 ($ $ (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3933 ($ $ (-1058 (-218)))) (-15 -3933 ($ $)) (-15 -3572 ((-1058 (-218)) $)) (-15 -3561 ((-619 (-619 (-218))) $)) (-15 -3549 ((-548))) (-15 -3538 ((-548) (-548))) (-15 -3527 ((-548))) (-15 -3515 ((-548) (-548))) (-15 -3506 ((-548))) (-15 -3494 ((-548) (-548))) (-15 -3481 ((-112))) (-15 -3471 ((-112) (-112))) (-15 -3459 ((-548))) (-15 -3448 ((-112) (-112)))))) (T -895)) +((-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-895)))) (-3596 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-895)))) (-3583 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-895)))) (-3583 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-895)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) (-2994 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) (-3933 (*1 *1 *1) (-5 *1 (-895))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-218)))) (-5 *1 (-895)))) (-3549 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3538 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3527 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3506 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3481 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))) (-3459 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) +(-13 (-943) (-10 -8 (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ $ (-1058 (-218)))) (-15 -2994 ($ $ (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3933 ($ $ (-1058 (-218)))) (-15 -3933 ($ $)) (-15 -3572 ((-1058 (-218)) $)) (-15 -3561 ((-619 (-619 (-218))) $)) (-15 -3549 ((-548))) (-15 -3538 ((-548) (-548))) (-15 -3527 ((-548))) (-15 -3515 ((-548) (-548))) (-15 -3506 ((-548))) (-15 -3494 ((-548) (-548))) (-15 -3481 ((-112))) (-15 -3471 ((-112) (-112))) (-15 -3459 ((-548))) (-15 -3448 ((-112) (-112))))) +((-2994 (($ $ (-1058 (-218))) 70) (($ $ (-1058 (-218)) (-1058 (-218))) 71)) (-3934 (((-1058 (-218)) $) 44)) (-3921 (((-1058 (-218)) $) 43)) (-3572 (((-1058 (-218)) $) 45)) (-3467 (((-548) (-548)) 37)) (-3405 (((-548) (-548)) 33)) (-3489 (((-548) (-548)) 35)) (-3444 (((-112) (-112)) 39)) (-3477 (((-548)) 36)) (-3933 (($ $ (-1058 (-218))) 74) (($ $) 75)) (-3596 (($ (-1 (-912 (-218)) (-218)) (-1058 (-218))) 84) (($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 85)) (-3438 (($ (-1 (-218) (-218)) (-1058 (-218))) 92) (($ (-1 (-218) (-218))) 95)) (-3583 (($ (-1 (-218) (-218)) (-1058 (-218))) 79) (($ (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218))) 80) (($ (-619 (-1 (-218) (-218))) (-1058 (-218))) 87) (($ (-619 (-1 (-218) (-218))) (-1058 (-218)) (-1058 (-218))) 88) (($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218))) 81) (($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 82) (($ $ (-1058 (-218))) 76)) (-3430 (((-112) $) 40)) (-3434 (((-548)) 41)) (-3417 (((-548)) 32)) (-3502 (((-548)) 34)) (-3360 (((-619 (-619 (-912 (-218)))) $) 23)) (-3285 (((-112) (-112)) 42)) (-3743 (((-832) $) 106)) (-3455 (((-112)) 38))) +(((-896) (-13 (-924) (-10 -8 (-15 -3583 ($ (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-619 (-1 (-218) (-218))) (-1058 (-218)))) (-15 -3583 ($ (-619 (-1 (-218) (-218))) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3438 ($ (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3438 ($ (-1 (-218) (-218)))) (-15 -3583 ($ $ (-1058 (-218)))) (-15 -3430 ((-112) $)) (-15 -2994 ($ $ (-1058 (-218)))) (-15 -2994 ($ $ (-1058 (-218)) (-1058 (-218)))) (-15 -3933 ($ $ (-1058 (-218)))) (-15 -3933 ($ $)) (-15 -3572 ((-1058 (-218)) $)) (-15 -3417 ((-548))) (-15 -3405 ((-548) (-548))) (-15 -3502 ((-548))) (-15 -3489 ((-548) (-548))) (-15 -3477 ((-548))) (-15 -3467 ((-548) (-548))) (-15 -3455 ((-112))) (-15 -3444 ((-112) (-112))) (-15 -3434 ((-548))) (-15 -3285 ((-112) (-112)))))) (T -896)) +((-3583 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1 (-218) (-218)))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-1 (-218) (-218)))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3596 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3438 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-2994 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-2994 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-3933 (*1 *1 *1) (-5 *1 (-896))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-3417 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3405 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3502 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3477 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3455 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3434 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) +(-13 (-924) (-10 -8 (-15 -3583 ($ (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-619 (-1 (-218) (-218))) (-1058 (-218)))) (-15 -3583 ($ (-619 (-1 (-218) (-218))) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3438 ($ (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3438 ($ (-1 (-218) (-218)))) (-15 -3583 ($ $ (-1058 (-218)))) (-15 -3430 ((-112) $)) (-15 -2994 ($ $ (-1058 (-218)))) (-15 -2994 ($ $ (-1058 (-218)) (-1058 (-218)))) (-15 -3933 ($ $ (-1058 (-218)))) (-15 -3933 ($ $)) (-15 -3572 ((-1058 (-218)) $)) (-15 -3417 ((-548))) (-15 -3405 ((-548) (-548))) (-15 -3502 ((-548))) (-15 -3489 ((-548) (-548))) (-15 -3477 ((-548))) (-15 -3467 ((-548) (-548))) (-15 -3455 ((-112))) (-15 -3444 ((-112) (-112))) (-15 -3434 ((-548))) (-15 -3285 ((-112) (-112))))) +((-3607 (((-619 (-1058 (-218))) (-619 (-619 (-912 (-218))))) 24))) +(((-897) (-10 -7 (-15 -3607 ((-619 (-1058 (-218))) (-619 (-619 (-912 (-218)))))))) (T -897)) +((-3607 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-619 (-1058 (-218)))) (-5 *1 (-897))))) +(-10 -7 (-15 -3607 ((-619 (-1058 (-218))) (-619 (-619 (-912 (-218))))))) +((-2167 ((|#2| |#2|) 26)) (-2190 ((|#2| |#2|) 27)) (-2325 ((|#2| |#2|) 25)) (-2841 ((|#2| |#2| (-1118)) 24))) +(((-898 |#1| |#2|) (-10 -7 (-15 -2841 (|#2| |#2| (-1118))) (-15 -2325 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -2190 (|#2| |#2|))) (-821) (-422 |#1|)) (T -898)) +((-2190 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) (-2841 (*1 *2 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-821)) (-5 *1 (-898 *4 *2)) (-4 *2 (-422 *4))))) +(-10 -7 (-15 -2841 (|#2| |#2| (-1118))) (-15 -2325 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -2190 (|#2| |#2|))) +((-2167 (((-308 (-548)) (-1135)) 16)) (-2190 (((-308 (-548)) (-1135)) 14)) (-2325 (((-308 (-548)) (-1135)) 12)) (-2841 (((-308 (-548)) (-1135) (-1118)) 19))) +(((-899) (-10 -7 (-15 -2841 ((-308 (-548)) (-1135) (-1118))) (-15 -2325 ((-308 (-548)) (-1135))) (-15 -2167 ((-308 (-548)) (-1135))) (-15 -2190 ((-308 (-548)) (-1135))))) (T -899)) +((-2190 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1118)) (-5 *2 (-308 (-548))) (-5 *1 (-899))))) +(-10 -7 (-15 -2841 ((-308 (-548)) (-1135) (-1118))) (-15 -2325 ((-308 (-548)) (-1135))) (-15 -2167 ((-308 (-548)) (-1135))) (-15 -2190 ((-308 (-548)) (-1135)))) +((-3628 (((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)) 25)) (-3617 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -3617 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3628 ((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-855 |#1|) (-13 (-1063) (-1007 |#2|))) (T -900)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-13 (-1063) (-1007 *3))) (-4 *3 (-855 *5)) (-5 *1 (-900 *5 *3 *6)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1063) (-1007 *5))) (-4 *5 (-855 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-900 *4 *5 *6))))) +(-10 -7 (-15 -3617 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3628 ((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)))) +((-3628 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 30))) +(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-13 (-540) (-821) (-855 |#1|)) (-13 (-422 |#2|) (-593 (-861 |#1|)) (-855 |#1|) (-1007 (-591 $)))) (T -901)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-13 (-422 *6) (-593 *4) (-855 *5) (-1007 (-591 $)))) (-5 *4 (-861 *5)) (-4 *6 (-13 (-540) (-821) (-855 *5))) (-5 *1 (-901 *5 *6 *3))))) +(-10 -7 (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) +((-3628 (((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|)) 13))) +(((-902 |#1|) (-10 -7 (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|)))) (-533)) (T -902)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 (-548) *3)) (-5 *4 (-861 (-548))) (-4 *3 (-533)) (-5 *1 (-902 *3))))) +(-10 -7 (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|)))) +((-3628 (((-858 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-858 |#1| |#2|)) 54))) +(((-903 |#1| |#2|) (-10 -7 (-15 -3628 ((-858 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-858 |#1| |#2|)))) (-1063) (-13 (-821) (-1007 (-591 $)) (-593 (-861 |#1|)) (-855 |#1|))) (T -903)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6)) (-5 *3 (-591 *6)) (-4 *5 (-1063)) (-4 *6 (-13 (-821) (-1007 (-591 $)) (-593 *4) (-855 *5))) (-5 *4 (-861 *5)) (-5 *1 (-903 *5 *6))))) +(-10 -7 (-15 -3628 ((-858 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-858 |#1| |#2|)))) +((-3628 (((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)) 15))) +(((-904 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)))) (-1063) (-855 |#1|) (-640 |#2|)) (T -904)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-4 *3 (-640 *6)) (-5 *1 (-904 *5 *6 *3))))) +(-10 -7 (-15 -3628 ((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)))) +((-3628 (((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|)) 17 (|has| |#3| (-855 |#1|))) (((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|))) 16))) +(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3628 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|)))) (IF (|has| |#3| (-855 |#1|)) (-15 -3628 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|))) |%noBranch|)) (-1063) (-767) (-821) (-13 (-1016) (-821) (-855 |#1|)) (-13 (-918 |#4| |#2| |#3|) (-593 (-861 |#1|)))) (T -905)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-13 (-918 *8 *6 *7) (-593 *4))) (-5 *4 (-861 *5)) (-4 *7 (-855 *5)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-13 (-1016) (-821) (-855 *5))) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-3628 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-858 *6 *3) *8 (-861 *6) (-858 *6 *3))) (-4 *8 (-821)) (-5 *2 (-858 *6 *3)) (-5 *4 (-861 *6)) (-4 *6 (-1063)) (-4 *3 (-13 (-918 *9 *7 *8) (-593 *4))) (-4 *7 (-767)) (-4 *9 (-13 (-1016) (-821) (-855 *6))) (-5 *1 (-905 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3628 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|)))) (IF (|has| |#3| (-855 |#1|)) (-15 -3628 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|))) |%noBranch|)) +((-2256 ((|#2| |#2| (-619 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -2256 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2256 (|#2| |#2| (-619 (-1 (-112) |#3|))))) (-821) (-422 |#1|) (-1172)) (T -906)) +((-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-4 *4 (-821)) (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-422 *4)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1172)) (-4 *4 (-821)) (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-422 *4))))) +(-10 -7 (-15 -2256 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2256 (|#2| |#2| (-619 (-1 (-112) |#3|))))) +((-2256 (((-308 (-548)) (-1135) (-619 (-1 (-112) |#1|))) 18) (((-308 (-548)) (-1135) (-1 (-112) |#1|)) 15))) +(((-907 |#1|) (-10 -7 (-15 -2256 ((-308 (-548)) (-1135) (-1 (-112) |#1|))) (-15 -2256 ((-308 (-548)) (-1135) (-619 (-1 (-112) |#1|))))) (-1172)) (T -907)) +((-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-5 *2 (-308 (-548))) (-5 *1 (-907 *5)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1172)) (-5 *2 (-308 (-548))) (-5 *1 (-907 *5))))) +(-10 -7 (-15 -2256 ((-308 (-548)) (-1135) (-1 (-112) |#1|))) (-15 -2256 ((-308 (-548)) (-1135) (-619 (-1 (-112) |#1|))))) +((-3628 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 25))) +(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-13 (-540) (-855 |#1|) (-593 (-861 |#1|))) (-961 |#2|)) (T -908)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-961 *6)) (-4 *6 (-13 (-540) (-855 *5) (-593 *4))) (-5 *4 (-861 *5)) (-5 *1 (-908 *5 *6 *3))))) +(-10 -7 (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) +((-3628 (((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))) 17))) +(((-909 |#1|) (-10 -7 (-15 -3628 ((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))))) (-1063)) (T -909)) +((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 (-1135))) (-5 *3 (-1135)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *1 (-909 *5))))) +(-10 -7 (-15 -3628 ((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))))) +((-3640 (((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) 33)) (-3628 (((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) 32))) +(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-15 -3640 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))) (-1063) (-13 (-1016) (-821)) (-13 (-1016) (-593 (-861 |#1|)) (-1007 |#2|))) (T -910)) +((-3640 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-861 *6))) (-5 *5 (-1 (-858 *6 *8) *8 (-861 *6) (-858 *6 *8))) (-4 *6 (-1063)) (-4 *8 (-13 (-1016) (-593 (-861 *6)) (-1007 *7))) (-5 *2 (-858 *6 *8)) (-4 *7 (-13 (-1016) (-821))) (-5 *1 (-910 *6 *7 *8)))) (-3628 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-619 (-861 *7))) (-5 *5 (-1 *9 (-619 *9))) (-5 *6 (-1 (-858 *7 *9) *9 (-861 *7) (-858 *7 *9))) (-4 *7 (-1063)) (-4 *9 (-13 (-1016) (-593 (-861 *7)) (-1007 *8))) (-5 *2 (-858 *7 *9)) (-5 *3 (-619 *9)) (-4 *8 (-13 (-1016) (-821))) (-5 *1 (-910 *7 *8 *9))))) +(-10 -7 (-15 -3628 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-15 -3640 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))) +((-3736 (((-1131 (-399 (-548))) (-548)) 63)) (-3723 (((-1131 (-548)) (-548)) 66)) (-2125 (((-1131 (-548)) (-548)) 60)) (-3710 (((-548) (-1131 (-548))) 55)) (-3698 (((-1131 (-399 (-548))) (-548)) 49)) (-3686 (((-1131 (-548)) (-548)) 38)) (-3675 (((-1131 (-548)) (-548)) 68)) (-3662 (((-1131 (-548)) (-548)) 67)) (-3651 (((-1131 (-399 (-548))) (-548)) 51))) +(((-911) (-10 -7 (-15 -3651 ((-1131 (-399 (-548))) (-548))) (-15 -3662 ((-1131 (-548)) (-548))) (-15 -3675 ((-1131 (-548)) (-548))) (-15 -3686 ((-1131 (-548)) (-548))) (-15 -3698 ((-1131 (-399 (-548))) (-548))) (-15 -3710 ((-548) (-1131 (-548)))) (-15 -2125 ((-1131 (-548)) (-548))) (-15 -3723 ((-1131 (-548)) (-548))) (-15 -3736 ((-1131 (-399 (-548))) (-548))))) (T -911)) +((-3736 (*1 *2 *3) (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3723 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-2125 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-1131 (-548))) (-5 *2 (-548)) (-5 *1 (-911)))) (-3698 (*1 *2 *3) (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3686 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3675 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3662 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548))))) +(-10 -7 (-15 -3651 ((-1131 (-399 (-548))) (-548))) (-15 -3662 ((-1131 (-548)) (-548))) (-15 -3675 ((-1131 (-548)) (-548))) (-15 -3686 ((-1131 (-548)) (-548))) (-15 -3698 ((-1131 (-399 (-548))) (-548))) (-15 -3710 ((-548) (-1131 (-548)))) (-15 -2125 ((-1131 (-548)) (-548))) (-15 -3723 ((-1131 (-548)) (-548))) (-15 -3736 ((-1131 (-399 (-548))) (-548)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745)) NIL (|has| |#1| (-23)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) 11 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1733 (($ (-619 |#1|)) 13)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) 8)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 10 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4007 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-4248 (((-112) $ (-745)) NIL)) (-3198 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-1656 (($ $ (-619 |#1|)) 26)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) 20) (($ $ (-1185 (-548))) NIL)) (-4029 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-3402 (((-890) $) 16)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4018 (($ $ $) 24)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524)))) (($ (-619 |#1|)) 17)) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2290 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-548) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3643 (((-745) $) 14 (|has| $ (-6 -4327))))) +(((-912 |#1|) (-949 |#1|) (-1016)) (T -912)) +NIL +(-949 |#1|) +((-3769 (((-472 |#1| |#2|) (-921 |#2|)) 20)) (-3802 (((-240 |#1| |#2|) (-921 |#2|)) 33)) (-3779 (((-921 |#2|) (-472 |#1| |#2|)) 25)) (-3759 (((-240 |#1| |#2|) (-472 |#1| |#2|)) 55)) (-3791 (((-921 |#2|) (-240 |#1| |#2|)) 30)) (-3748 (((-472 |#1| |#2|) (-240 |#1| |#2|)) 46))) +(((-913 |#1| |#2|) (-10 -7 (-15 -3748 ((-472 |#1| |#2|) (-240 |#1| |#2|))) (-15 -3759 ((-240 |#1| |#2|) (-472 |#1| |#2|))) (-15 -3769 ((-472 |#1| |#2|) (-921 |#2|))) (-15 -3779 ((-921 |#2|) (-472 |#1| |#2|))) (-15 -3791 ((-921 |#2|) (-240 |#1| |#2|))) (-15 -3802 ((-240 |#1| |#2|) (-921 |#2|)))) (-619 (-1135)) (-1016)) (T -913)) +((-3802 (*1 *2 *3) (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-240 *4 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135))))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-472 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-472 *4 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135))))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-472 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-240 *4 *5)) (-5 *1 (-913 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-472 *4 *5)) (-5 *1 (-913 *4 *5))))) +(-10 -7 (-15 -3748 ((-472 |#1| |#2|) (-240 |#1| |#2|))) (-15 -3759 ((-240 |#1| |#2|) (-472 |#1| |#2|))) (-15 -3769 ((-472 |#1| |#2|) (-921 |#2|))) (-15 -3779 ((-921 |#2|) (-472 |#1| |#2|))) (-15 -3791 ((-921 |#2|) (-240 |#1| |#2|))) (-15 -3802 ((-240 |#1| |#2|) (-921 |#2|)))) +((-3815 (((-619 |#2|) |#2| |#2|) 10)) (-3857 (((-745) (-619 |#1|)) 37 (|has| |#1| (-819)))) (-3828 (((-619 |#2|) |#2|) 11)) (-3868 (((-745) (-619 |#1|) (-548) (-548)) 39 (|has| |#1| (-819)))) (-3842 ((|#1| |#2|) 32 (|has| |#1| (-819))))) +(((-914 |#1| |#2|) (-10 -7 (-15 -3815 ((-619 |#2|) |#2| |#2|)) (-15 -3828 ((-619 |#2|) |#2|)) (IF (|has| |#1| (-819)) (PROGN (-15 -3842 (|#1| |#2|)) (-15 -3857 ((-745) (-619 |#1|))) (-15 -3868 ((-745) (-619 |#1|) (-548) (-548)))) |%noBranch|)) (-355) (-1194 |#1|)) (T -914)) +((-3868 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-548)) (-4 *5 (-819)) (-4 *5 (-355)) (-5 *2 (-745)) (-5 *1 (-914 *5 *6)) (-4 *6 (-1194 *5)))) (-3857 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-819)) (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1194 *4)))) (-3842 (*1 *2 *3) (-12 (-4 *2 (-355)) (-4 *2 (-819)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1194 *2)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1194 *4)))) (-3815 (*1 *2 *3 *3) (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -3815 ((-619 |#2|) |#2| |#2|)) (-15 -3828 ((-619 |#2|) |#2|)) (IF (|has| |#1| (-819)) (PROGN (-15 -3842 (|#1| |#2|)) (-15 -3857 ((-745) (-619 |#1|))) (-15 -3868 ((-745) (-619 |#1|) (-548) (-548)))) |%noBranch|)) +((-2540 (((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)) 19))) +(((-915 |#1| |#2|) (-10 -7 (-15 -2540 ((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)))) (-1016) (-1016)) (T -915)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-921 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-921 *6)) (-5 *1 (-915 *5 *6))))) +(-10 -7 (-15 -2540 ((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)))) +((-1884 (((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)) 18))) +(((-916 |#1| |#2|) (-10 -7 (-15 -1884 ((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)))) (-1135) (-1016)) (T -916)) +((-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-1214 *5)) (-14 *5 (-1135)) (-4 *6 (-1016)) (-5 *2 (-1191 *5 (-921 *6))) (-5 *1 (-916 *5 *6)) (-5 *3 (-921 *6))))) +(-10 -7 (-15 -1884 ((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)))) +((-3892 (((-745) $) 71) (((-745) $ (-619 |#4|)) 74)) (-1688 (($ $) 173)) (-2634 (((-410 $) $) 165)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 116)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL) (((-548) $) NIL) ((|#4| $) 59)) (-1557 (($ $ $ |#4|) 76)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 106) (((-663 |#2|) (-663 $)) 99)) (-4065 (($ $) 180) (($ $ |#4|) 183)) (-1862 (((-619 $) $) 63)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 199) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 192)) (-3915 (((-619 $) $) 28)) (-2024 (($ |#2| |#3|) NIL) (($ $ |#4| (-745)) NIL) (($ $ (-619 |#4|) (-619 (-745))) 57)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#4|) 162)) (-3939 (((-3 (-619 $) "failed") $) 42)) (-3927 (((-3 (-619 $) "failed") $) 31)) (-3954 (((-3 (-2 (|:| |var| |#4|) (|:| -3352 (-745))) "failed") $) 47)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 109)) (-4051 (((-410 (-1131 $)) (-1131 $)) 122)) (-4060 (((-410 (-1131 $)) (-1131 $)) 120)) (-1915 (((-410 $) $) 140)) (-2460 (($ $ (-619 (-286 $))) 21) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-619 |#4|) (-619 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-619 |#4|) (-619 $)) NIL)) (-1566 (($ $ |#4|) 78)) (-2591 (((-861 (-371)) $) 213) (((-861 (-548)) $) 206) (((-524) $) 221)) (-3881 ((|#2| $) NIL) (($ $ |#4|) 175)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 154)) (-1951 ((|#2| $ |#3|) NIL) (($ $ |#4| (-745)) 52) (($ $ (-619 |#4|) (-619 (-745))) 55)) (-4017 (((-3 $ "failed") $) 156)) (-2234 (((-112) $ $) 186))) +(((-917 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1688 (|#1| |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4028 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -4065 (|#1| |#1| |#4|)) (-15 -3881 (|#1| |#1| |#4|)) (-15 -1566 (|#1| |#1| |#4|)) (-15 -1557 (|#1| |#1| |#1| |#4|)) (-15 -1862 ((-619 |#1|) |#1|)) (-15 -3892 ((-745) |#1| (-619 |#4|))) (-15 -3892 ((-745) |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| |#4|) (|:| -3352 (-745))) "failed") |#1|)) (-15 -3939 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3927 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2024 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2024 (|#1| |#1| |#4| (-745))) (-15 -1611 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3915 ((-619 |#1|) |#1|)) (-15 -1951 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -1951 (|#1| |#1| |#4| (-745))) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#4| |#1|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#4| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#4| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2024 (|#1| |#2| |#3|)) (-15 -1951 (|#2| |#1| |#3|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -4065 (|#1| |#1|))) (-918 |#2| |#3| |#4|) (-1016) (-767) (-821)) (T -917)) +NIL +(-10 -8 (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1688 (|#1| |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4028 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -4065 (|#1| |#1| |#4|)) (-15 -3881 (|#1| |#1| |#4|)) (-15 -1566 (|#1| |#1| |#4|)) (-15 -1557 (|#1| |#1| |#1| |#4|)) (-15 -1862 ((-619 |#1|) |#1|)) (-15 -3892 ((-745) |#1| (-619 |#4|))) (-15 -3892 ((-745) |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| |#4|) (|:| -3352 (-745))) "failed") |#1|)) (-15 -3939 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3927 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2024 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2024 (|#1| |#1| |#4| (-745))) (-15 -1611 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3915 ((-619 |#1|) |#1|)) (-15 -1951 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -1951 (|#1| |#1| |#4| (-745))) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#4| |#1|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#4| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#4| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2024 (|#1| |#2| |#3|)) (-15 -1951 (|#2| |#1| |#3|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -4065 (|#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 |#3|) $) 108)) (-1884 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 85 (|has| |#1| (-540)))) (-3303 (($ $) 86 (|has| |#1| (-540)))) (-3279 (((-112) $) 88 (|has| |#1| (-540)))) (-3892 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-1688 (($ $) 96 (|has| |#1| (-443)))) (-2634 (((-410 $) $) 95 (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 162) (((-3 (-399 (-548)) "failed") $) 160 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 158 (|has| |#1| (-1007 (-548)))) (((-3 |#3| "failed") $) 134)) (-2375 ((|#1| $) 163) (((-399 (-548)) $) 159 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 157 (|has| |#1| (-1007 (-548)))) ((|#3| $) 133)) (-1557 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-1872 (($ $) 152)) (-1608 (((-663 (-548)) (-663 $)) 132 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 174 (|has| |#1| (-443))) (($ $ |#3|) 103 (|has| |#1| (-443)))) (-1862 (((-619 $) $) 107)) (-1271 (((-112) $) 94 (|has| |#1| (-878)))) (-4256 (($ $ |#1| |#2| $) 170)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 82 (-12 (|has| |#3| (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 81 (-12 (|has| |#3| (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 167)) (-2036 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-3915 (((-619 $) $) 124)) (-2435 (((-112) $) 150)) (-2024 (($ |#1| |#2|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) 118)) (-3904 ((|#2| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-1795 (($ $ $) 77 (|has| |#1| (-821)))) (-3091 (($ $ $) 76 (|has| |#1| (-821)))) (-4267 (($ (-1 |#2| |#2|) $) 169)) (-2540 (($ (-1 |#1| |#1|) $) 149)) (-3511 (((-3 |#3| "failed") $) 121)) (-2185 (($ $) 147)) (-2197 ((|#1| $) 146)) (-3553 (($ (-619 $)) 92 (|has| |#1| (-443))) (($ $ $) 91 (|has| |#1| (-443)))) (-2546 (((-1118) $) 9)) (-3939 (((-3 (-619 $) "failed") $) 112)) (-3927 (((-3 (-619 $) "failed") $) 113)) (-3954 (((-3 (-2 (|:| |var| |#3|) (|:| -3352 (-745))) "failed") $) 111)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 164)) (-2175 ((|#1| $) 165)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) 90 (|has| |#1| (-443))) (($ $ $) 89 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 97 (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136)) (-1566 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-4050 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37)) (-2512 ((|#2| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127)) (-2591 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) 79 (-12 (|has| |#3| (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) 78 (-12 (|has| |#3| (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) 173 (|has| |#1| (-443))) (($ $ |#3|) 104 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-540))) (($ (-399 (-548))) 70 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548))))))) (-3852 (((-619 |#1|) $) 166)) (-1951 ((|#1| $ |#2|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-4017 (((-3 $ "failed") $) 71 (-1524 (-1723 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 87 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33)) (-2262 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 154 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 156 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 155 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-918 |#1| |#2| |#3|) (-138) (-1016) (-767) (-821)) (T -918)) +((-4065 (*1 *1 *1) (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2512 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-745)))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) (-1951 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *2 (-821)))) (-1951 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) (-3915 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-1884 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-1131 *1)) (-4 *1 (-918 *4 *5 *3)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-1131 *3)))) (-3511 (*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3904 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3904 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) (-1611 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-918 *4 *5 *3)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *2 (-821)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) (-2036 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *4)) (-4 *4 (-1016)) (-4 *1 (-918 *4 *5 *3)) (-4 *5 (-767)) (-4 *3 (-821)))) (-2036 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)))) (-3927 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-3939 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-3954 (*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| |var| *5) (|:| -3352 (-745)))))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-745)))) (-3892 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *5)))) (-1862 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-1557 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-169)))) (-1566 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-169)))) (-3881 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-443)))) (-4065 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-443)))) (-1688 (*1 *1 *1) (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2634 (*1 *2 *1) (-12 (-4 *3 (-443)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-410 *1)) (-4 *1 (-918 *3 *4 *5))))) +(-13 (-869 |t#3|) (-318 |t#1| |t#2|) (-301 $) (-504 |t#3| |t#1|) (-504 |t#3| $) (-1007 |t#3|) (-369 |t#1|) (-10 -8 (-15 -2512 ((-745) $ |t#3|)) (-15 -2512 ((-619 (-745)) $ (-619 |t#3|))) (-15 -1951 ($ $ |t#3| (-745))) (-15 -1951 ($ $ (-619 |t#3|) (-619 (-745)))) (-15 -3915 ((-619 $) $)) (-15 -1884 ((-1131 $) $ |t#3|)) (-15 -1884 ((-1131 |t#1|) $)) (-15 -3511 ((-3 |t#3| "failed") $)) (-15 -3904 ((-745) $ |t#3|)) (-15 -3904 ((-619 (-745)) $ (-619 |t#3|))) (-15 -1611 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |t#3|)) (-15 -2024 ($ $ |t#3| (-745))) (-15 -2024 ($ $ (-619 |t#3|) (-619 (-745)))) (-15 -2036 ($ (-1131 |t#1|) |t#3|)) (-15 -2036 ($ (-1131 $) |t#3|)) (-15 -3927 ((-3 (-619 $) "failed") $)) (-15 -3939 ((-3 (-619 $) "failed") $)) (-15 -3954 ((-3 (-2 (|:| |var| |t#3|) (|:| -3352 (-745))) "failed") $)) (-15 -3892 ((-745) $)) (-15 -3892 ((-745) $ (-619 |t#3|))) (-15 -2049 ((-619 |t#3|) $)) (-15 -1862 ((-619 $) $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (IF (|has| |t#3| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-593 (-861 (-548)))) (IF (|has| |t#3| (-593 (-861 (-548)))) (-6 (-593 (-861 (-548)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-593 (-861 (-371)))) (IF (|has| |t#3| (-593 (-861 (-371)))) (-6 (-593 (-861 (-371)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855 (-548))) (IF (|has| |t#3| (-855 (-548))) (-6 (-855 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855 (-371))) (IF (|has| |t#3| (-855 (-371))) (-6 (-855 (-371))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -1557 ($ $ $ |t#3|)) (-15 -1566 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-443)) (PROGN (-6 (-443)) (-15 -3881 ($ $ |t#3|)) (-15 -4065 ($ $)) (-15 -4065 ($ $ |t#3|)) (-15 -2634 ((-410 $) $)) (-15 -1688 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4325)) (-6 -4325) |%noBranch|) (IF (|has| |t#1| (-878)) (-6 (-878)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-593 (-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548))))) ((-282) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-301 $) . T) ((-318 |#1| |#2|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-878)) (|has| |#1| (-443))) ((-504 |#3| |#1|) . T) ((-504 |#3| $) . T) ((-504 $ $) . T) ((-540) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 |#3|) . T) ((-855 (-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371)))) ((-855 (-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))) ((-878) |has| |#1| (-878)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) +((-2049 (((-619 |#2|) |#5|) 36)) (-1884 (((-1131 |#5|) |#5| |#2| (-1131 |#5|)) 23) (((-399 (-1131 |#5|)) |#5| |#2|) 16)) (-2036 ((|#5| (-399 (-1131 |#5|)) |#2|) 30)) (-3511 (((-3 |#2| "failed") |#5|) 65)) (-3939 (((-3 (-619 |#5|) "failed") |#5|) 59)) (-3968 (((-3 (-2 (|:| |val| |#5|) (|:| -3352 (-548))) "failed") |#5|) 47)) (-3927 (((-3 (-619 |#5|) "failed") |#5|) 61)) (-3954 (((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-548))) "failed") |#5|) 51))) +(((-919 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2049 ((-619 |#2|) |#5|)) (-15 -3511 ((-3 |#2| "failed") |#5|)) (-15 -1884 ((-399 (-1131 |#5|)) |#5| |#2|)) (-15 -2036 (|#5| (-399 (-1131 |#5|)) |#2|)) (-15 -1884 ((-1131 |#5|) |#5| |#2| (-1131 |#5|))) (-15 -3927 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3939 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3954 ((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-548))) "failed") |#5|)) (-15 -3968 ((-3 (-2 (|:| |val| |#5|) (|:| -3352 (-548))) "failed") |#5|))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|) (-13 (-355) (-10 -8 (-15 -3743 ($ |#4|)) (-15 -2470 (|#4| $)) (-15 -2480 (|#4| $))))) (T -919)) +((-3968 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3352 (-548)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-3954 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3352 (-548)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-3939 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-3927 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-1884 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))) (-4 *7 (-918 *6 *5 *4)) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-5 *1 (-919 *5 *4 *6 *7 *3)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-1131 *2))) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *2 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))) (-5 *1 (-919 *5 *4 *6 *7 *2)) (-4 *7 (-918 *6 *5 *4)))) (-1884 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-399 (-1131 *3))) (-5 *1 (-919 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-3511 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-1016)) (-4 *6 (-918 *5 *4 *2)) (-4 *2 (-821)) (-5 *1 (-919 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *6)) (-15 -2470 (*6 $)) (-15 -2480 (*6 $))))))) (-2049 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *5)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $)))))))) +(-10 -7 (-15 -2049 ((-619 |#2|) |#5|)) (-15 -3511 ((-3 |#2| "failed") |#5|)) (-15 -1884 ((-399 (-1131 |#5|)) |#5| |#2|)) (-15 -2036 (|#5| (-399 (-1131 |#5|)) |#2|)) (-15 -1884 ((-1131 |#5|) |#5| |#2| (-1131 |#5|))) (-15 -3927 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3939 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3954 ((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-548))) "failed") |#5|)) (-15 -3968 ((-3 (-2 (|:| |val| |#5|) (|:| -3352 (-548))) "failed") |#5|))) +((-2540 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-920 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2540 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (T -920)) +((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *6 (-767)) (-4 *2 (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (-5 *1 (-920 *6 *7 *8 *5 *2)) (-4 *5 (-918 *8 *6 *7))))) +(-10 -7 (-15 -2540 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1135)) $) 16)) (-1884 (((-1131 $) $ (-1135)) 21) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1135))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 8) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1135) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1135) $) NIL)) (-1557 (($ $ $ (-1135)) NIL (|has| |#1| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-1135)) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 (-1135)) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1135) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1135) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#1|) (-1135)) NIL) (($ (-1131 $) (-1135)) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1135)) NIL)) (-3904 (((-520 (-1135)) $) NIL) (((-745) $ (-1135)) NIL) (((-619 (-745)) $ (-619 (-1135))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 (-1135)) (-520 (-1135))) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3511 (((-3 (-1135) "failed") $) 19)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1135)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $ (-1135)) 29 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1135) |#1|) NIL) (($ $ (-619 (-1135)) (-619 |#1|)) NIL) (($ $ (-1135) $) NIL) (($ $ (-619 (-1135)) (-619 $)) NIL)) (-1566 (($ $ (-1135)) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2512 (((-520 (-1135)) $) NIL) (((-745) $ (-1135)) NIL) (((-619 (-745)) $ (-619 (-1135))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1135) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1135) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1135) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-1135)) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 25) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-1135)) 27) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-921 |#1|) (-13 (-918 |#1| (-520 (-1135)) (-1135)) (-10 -8 (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1135))) |%noBranch|))) (-1016)) (T -921)) +((-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-921 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016))))) +(-13 (-918 |#1| (-520 (-1135)) (-1135)) (-10 -8 (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1135))) |%noBranch|))) +((-3978 (((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#3| (-745)) 38)) (-3988 (((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) (-399 (-548)) (-745)) 34)) (-4011 (((-2 (|:| -3352 (-745)) (|:| -1489 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)) 54)) (-3999 (((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#5| (-745)) 64 (|has| |#3| (-443))))) +(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3978 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#3| (-745))) (-15 -3988 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) (-399 (-548)) (-745))) (IF (|has| |#3| (-443)) (-15 -3999 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#5| (-745))) |%noBranch|) (-15 -4011 ((-2 (|:| -3352 (-745)) (|:| -1489 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)))) (-767) (-821) (-540) (-918 |#3| |#1| |#2|) (-13 (-355) (-10 -8 (-15 -2470 (|#4| $)) (-15 -2480 (|#4| $)) (-15 -3743 ($ |#4|))))) (T -922)) +((-4011 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) (-4 *3 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| (-619 *3)))) (-5 *1 (-922 *5 *6 *7 *3 *8)) (-5 *4 (-745)) (-4 *8 (-13 (-355) (-10 -8 (-15 -2470 (*3 $)) (-15 -2480 (*3 $)) (-15 -3743 ($ *3))))))) (-3999 (*1 *2 *3 *4) (-12 (-4 *7 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) (-4 *8 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| *3))) (-5 *1 (-922 *5 *6 *7 *8 *3)) (-5 *4 (-745)) (-4 *3 (-13 (-355) (-10 -8 (-15 -2470 (*8 $)) (-15 -2480 (*8 $)) (-15 -3743 ($ *8))))))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-548))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) (-4 *8 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *9) (|:| |radicand| *9))) (-5 *1 (-922 *5 *6 *7 *8 *9)) (-5 *4 (-745)) (-4 *9 (-13 (-355) (-10 -8 (-15 -2470 (*8 $)) (-15 -2480 (*8 $)) (-15 -3743 ($ *8))))))) (-3978 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-540)) (-4 *7 (-918 *3 *5 *6)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *8) (|:| |radicand| *8))) (-5 *1 (-922 *5 *6 *3 *7 *8)) (-5 *4 (-745)) (-4 *8 (-13 (-355) (-10 -8 (-15 -2470 (*7 $)) (-15 -2480 (*7 $)) (-15 -3743 ($ *7)))))))) +(-10 -7 (-15 -3978 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#3| (-745))) (-15 -3988 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) (-399 (-548)) (-745))) (IF (|has| |#3| (-443)) (-15 -3999 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#5| (-745))) |%noBranch|) (-15 -4011 ((-2 (|:| -3352 (-745)) (|:| -1489 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)))) +((-3730 (((-112) $ $) NIL)) (-4021 (($ (-1082)) 8)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 14) (((-1082) $) 11)) (-2214 (((-112) $ $) 10))) +(((-923) (-13 (-1063) (-592 (-1082)) (-10 -8 (-15 -4021 ($ (-1082)))))) (T -923)) +((-4021 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-923))))) +(-13 (-1063) (-592 (-1082)) (-10 -8 (-15 -4021 ($ (-1082))))) +((-3934 (((-1058 (-218)) $) 8)) (-3921 (((-1058 (-218)) $) 9)) (-3360 (((-619 (-619 (-912 (-218)))) $) 10)) (-3743 (((-832) $) 6))) +(((-924) (-138)) (T -924)) +((-3360 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-619 (-619 (-912 (-218))))))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-218))))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-218)))))) +(-13 (-592 (-832)) (-10 -8 (-15 -3360 ((-619 (-619 (-912 (-218)))) $)) (-15 -3921 ((-1058 (-218)) $)) (-15 -3934 ((-1058 (-218)) $)))) +(((-592 (-832)) . T)) +((-4032 (((-3 (-663 |#1|) "failed") |#2| (-890)) 15))) +(((-925 |#1| |#2|) (-10 -7 (-15 -4032 ((-3 (-663 |#1|) "failed") |#2| (-890)))) (-540) (-630 |#1|)) (T -925)) +((-4032 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-890)) (-4 *5 (-540)) (-5 *2 (-663 *5)) (-5 *1 (-925 *5 *3)) (-4 *3 (-630 *5))))) +(-10 -7 (-15 -4032 ((-3 (-663 |#1|) "failed") |#2| (-890)))) +((-4040 (((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|) 16)) (-2061 ((|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|) 18)) (-2540 (((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)) 13))) +(((-926 |#1| |#2|) (-10 -7 (-15 -4040 ((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2540 ((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)))) (-1172) (-1172)) (T -926)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-927 *6)) (-5 *1 (-926 *5 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-926 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-927 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-927 *5)) (-5 *1 (-926 *6 *5))))) +(-10 -7 (-15 -4040 ((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2540 ((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) 16 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 15 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 13)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 12)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 10 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) 17 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 11)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) 14) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 8 (|has| $ (-6 -4327))))) +(((-927 |#1|) (-19 |#1|) (-1172)) (T -927)) NIL (-19 |#1|) -((-4160 (((-917 |#2|) (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|) 16)) (-4161 ((|#2| (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|) 18)) (-4275 (((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)) 13))) -(((-918 |#1| |#2|) (-10 -7 (-15 -4160 ((-917 |#2|) (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|)) (-15 -4275 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) (-1159) (-1159)) (T -918)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-917 *6)) (-5 *1 (-918 *5 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-917 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-918 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-917 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-5 *2 (-917 *5)) (-5 *1 (-918 *6 *5))))) -(-10 -7 (-15 -4160 ((-917 |#2|) (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|)) (-15 -4275 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) -((-3132 (($ $ (-1044 $)) 7) (($ $ (-1123)) 6))) -(((-919) (-134)) (T -919)) -((-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-919)))) (-3132 (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-1123))))) -(-13 (-10 -8 (-15 -3132 ($ $ (-1123))) (-15 -3132 ($ $ (-1044 $))))) -((-3133 (((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)) (-1123)) 25) (((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123))) 26) (((-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 |#1|))) (-905 |#1|) (-1123) (-905 |#1|) (-1123)) 43))) -(((-920 |#1|) (-10 -7 (-15 -3133 ((-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 |#1|))) (-905 |#1|) (-1123) (-905 |#1|) (-1123))) (-15 -3133 ((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3133 ((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)) (-1123)))) (-13 (-348) (-141))) (T -920)) -((-3133 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-5 *5 (-1123)) (-4 *6 (-13 (-348) (-141))) (-5 *2 (-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 *6))) (|:| |prim| (-1117 *6)))) (-5 *1 (-920 *6)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-348) (-141))) (-5 *2 (-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 *5))) (|:| |prim| (-1117 *5)))) (-5 *1 (-920 *5)))) (-3133 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-1123)) (-4 *5 (-13 (-348) (-141))) (-5 *2 (-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 *5)))) (-5 *1 (-920 *5))))) -(-10 -7 (-15 -3133 ((-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 |#1|))) (-905 |#1|) (-1123) (-905 |#1|) (-1123))) (-15 -3133 ((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3133 ((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)) (-1123)))) -((-3136 (((-607 |#1|) |#1| |#1|) 42)) (-4045 (((-111) |#1|) 39)) (-3135 ((|#1| |#1|) 65)) (-3134 ((|#1| |#1|) 64))) -(((-921 |#1|) (-10 -7 (-15 -4045 ((-111) |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3136 ((-607 |#1|) |#1| |#1|))) (-525)) (T -921)) -((-3136 (*1 *2 *3 *3) (-12 (-5 *2 (-607 *3)) (-5 *1 (-921 *3)) (-4 *3 (-525)))) (-3135 (*1 *2 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-525)))) (-3134 (*1 *2 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-525)))) (-4045 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-921 *3)) (-4 *3 (-525))))) -(-10 -7 (-15 -4045 ((-111) |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3136 ((-607 |#1|) |#1| |#1|))) -((-3137 (((-1211) (-823)) 9))) -(((-922) (-10 -7 (-15 -3137 ((-1211) (-823))))) (T -922)) -((-3137 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-922))))) -(-10 -7 (-15 -3137 ((-1211) (-823)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))))) (-2702 (($ $ $) 63 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))) (-1345 (((-3 $ "failed") $ $) 50 (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))))) (-3433 (((-735)) 34 (-12 (|has| |#1| (-353)) (|has| |#2| (-353))))) (-3138 ((|#2| $) 21)) (-3139 ((|#1| $) 20)) (-3855 (($) NIL (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) CONST)) (-3781 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))))) (-3294 (($) NIL (-12 (|has| |#1| (-353)) (|has| |#2| (-353))))) (-2471 (((-111) $) NIL (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))))) (-3637 (($ $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-3638 (($ $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-3140 (($ |#1| |#2|) 19)) (-2102 (((-878) $) NIL (-12 (|has| |#1| (-353)) (|has| |#2| (-353))))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 37 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))))) (-2461 (($ (-878)) NIL (-12 (|has| |#1| (-353)) (|has| |#2| (-353))))) (-3555 (((-1070) $) NIL)) (-3309 (($ $ $) NIL (-12 (|has| |#1| (-457)) (|has| |#2| (-457))))) (-2655 (($ $ $) NIL (-12 (|has| |#1| (-457)) (|has| |#2| (-457))))) (-4274 (((-823) $) 14)) (-2957 (($) 40 (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) CONST)) (-2964 (($) 24 (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))) CONST)) (-2863 (((-111) $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-2864 (((-111) $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-3353 (((-111) $ $) 18)) (-2984 (((-111) $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-2985 (((-111) $ $) 66 (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-4265 (($ $ $) NIL (-12 (|has| |#1| (-457)) (|has| |#2| (-457))))) (-4156 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4158 (($ $ $) 43 (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))))) (** (($ $ (-526)) NIL (-12 (|has| |#1| (-457)) (|has| |#2| (-457)))) (($ $ (-735)) 31 (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691))))) (($ $ (-878)) NIL (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))))) (* (($ (-526) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-735) $) 46 (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))) (($ (-878) $) NIL (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))) (($ $ $) 27 (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691))))))) -(((-923 |#1| |#2|) (-13 (-1052) (-10 -8 (IF (|has| |#1| (-353)) (IF (|has| |#2| (-353)) (-6 (-353)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-691)) (IF (|has| |#2| (-691)) (-6 (-691)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-457)) (-6 (-457)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-811)) (IF (|has| |#2| (-811)) (-6 (-811)) |%noBranch|) |%noBranch|) (-15 -3140 ($ |#1| |#2|)) (-15 -3139 (|#1| $)) (-15 -3138 (|#2| $)))) (-1052) (-1052)) (T -923)) -((-3140 (*1 *1 *2 *3) (-12 (-5 *1 (-923 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-923 *2 *3)) (-4 *3 (-1052)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-923 *3 *2)) (-4 *3 (-1052))))) -(-13 (-1052) (-10 -8 (IF (|has| |#1| (-353)) (IF (|has| |#2| (-353)) (-6 (-353)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-691)) (IF (|has| |#2| (-691)) (-6 (-691)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-457)) (-6 (-457)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-811)) (IF (|has| |#2| (-811)) (-6 (-811)) |%noBranch|) |%noBranch|) (-15 -3140 ($ |#1| |#2|)) (-15 -3139 (|#1| $)) (-15 -3138 (|#2| $)))) -((-3721 (((-1054) $) 12)) (-3141 (($ (-1123) (-1054)) 13)) (-3864 (((-1123) $) 10)) (-4274 (((-823) $) 22))) -(((-924) (-13 (-583 (-823)) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -3721 ((-1054) $)) (-15 -3141 ($ (-1123) (-1054)))))) (T -924)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-924)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-924)))) (-3141 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1054)) (-5 *1 (-924))))) -(-13 (-583 (-823)) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -3721 ((-1054) $)) (-15 -3141 ($ (-1123) (-1054))))) -((-3384 (((-1048 (-1123)) $) 19)) (-3152 (((-111) $) 26)) (-4150 (((-1123) $) 27)) (-3154 (((-111) $) 24)) (-3153 ((|#1| $) 25)) (-3146 (((-832 $ $) $) 34)) (-3147 (((-111) $) 33)) (-3156 (($ $ $) 12)) (-3150 (($ $) 29)) (-3151 (((-111) $) 28)) (-3636 (($ $) 10)) (-3144 (((-832 $ $) $) 36)) (-3145 (((-111) $) 35)) (-3157 (($ $ $) 13)) (-3142 (((-832 $ $) $) 38)) (-3143 (((-111) $) 37)) (-3158 (($ $ $) 14)) (-4274 (($ |#1|) 7) (($ (-1123)) 9) (((-823) $) 40 (|has| |#1| (-583 (-823))))) (-3148 (((-832 $ $) $) 32)) (-3149 (((-111) $) 30)) (-3155 (($ $ $) 11))) -(((-925 |#1|) (-13 (-926) (-10 -8 (IF (|has| |#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (-15 -4274 ($ |#1|)) (-15 -4274 ($ (-1123))) (-15 -3384 ((-1048 (-1123)) $)) (-15 -3154 ((-111) $)) (-15 -3153 (|#1| $)) (-15 -3152 ((-111) $)) (-15 -4150 ((-1123) $)) (-15 -3151 ((-111) $)) (-15 -3150 ($ $)) (-15 -3149 ((-111) $)) (-15 -3148 ((-832 $ $) $)) (-15 -3147 ((-111) $)) (-15 -3146 ((-832 $ $) $)) (-15 -3145 ((-111) $)) (-15 -3144 ((-832 $ $) $)) (-15 -3143 ((-111) $)) (-15 -3142 ((-832 $ $) $)))) (-926)) (T -925)) -((-4274 (*1 *1 *2) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1048 (-1123))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3153 (*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3150 (*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(-13 (-926) (-10 -8 (IF (|has| |#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (-15 -4274 ($ |#1|)) (-15 -4274 ($ (-1123))) (-15 -3384 ((-1048 (-1123)) $)) (-15 -3154 ((-111) $)) (-15 -3153 (|#1| $)) (-15 -3152 ((-111) $)) (-15 -4150 ((-1123) $)) (-15 -3151 ((-111) $)) (-15 -3150 ($ $)) (-15 -3149 ((-111) $)) (-15 -3148 ((-832 $ $) $)) (-15 -3147 ((-111) $)) (-15 -3146 ((-832 $ $) $)) (-15 -3145 ((-111) $)) (-15 -3144 ((-832 $ $) $)) (-15 -3143 ((-111) $)) (-15 -3142 ((-832 $ $) $)))) -((-3156 (($ $ $) 8)) (-3636 (($ $) 6)) (-3157 (($ $ $) 9)) (-3158 (($ $ $) 10)) (-3155 (($ $ $) 7))) -(((-926) (-134)) (T -926)) -((-3158 (*1 *1 *1 *1) (-4 *1 (-926))) (-3157 (*1 *1 *1 *1) (-4 *1 (-926))) (-3156 (*1 *1 *1 *1) (-4 *1 (-926))) (-3155 (*1 *1 *1 *1) (-4 *1 (-926))) (-3636 (*1 *1 *1) (-4 *1 (-926)))) -(-13 (-10 -8 (-15 -3636 ($ $)) (-15 -3155 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3157 ($ $ $)) (-15 -3158 ($ $ $)))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-3159 (($ $ $) 43)) (-3832 (($ $ $) 44)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3638 ((|#1| $) 45)) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-927 |#1|) (-134) (-811)) (T -927)) -((-3638 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811)))) (-3832 (*1 *1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811))))) -(-13 (-105 |t#1|) (-10 -8 (-6 -4310) (-15 -3638 (|t#1| $)) (-15 -3832 ($ $ $)) (-15 -3159 ($ $ $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-3171 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|) 85)) (-4074 ((|#2| |#2| |#2|) 83)) (-3172 (((-2 (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|) 87)) (-3173 (((-2 (|:| |coef1| |#2|) (|:| -3457 |#2|)) |#2| |#2|) 89)) (-3180 (((-2 (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|) 107 (|has| |#1| (-436)))) (-3187 (((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 46)) (-3161 (((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 64)) (-3162 (((-2 (|:| |coef1| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 66)) (-3170 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3165 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735)) 71)) (-3175 (((-2 (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|) 97)) (-3168 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735)) 74)) (-3177 (((-607 (-735)) |#2| |#2|) 82)) (-3185 ((|#1| |#2| |#2|) 42)) (-3179 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|) 105 (|has| |#1| (-436)))) (-3178 ((|#1| |#2| |#2|) 103 (|has| |#1| (-436)))) (-3186 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 44)) (-3160 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 63)) (-4075 ((|#1| |#2| |#2|) 61)) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|) 35)) (-3184 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3169 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3504 ((|#2| |#2| |#2|) 75)) (-3164 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735)) 69)) (-3163 ((|#2| |#2| |#2| (-735)) 67)) (-3457 ((|#2| |#2| |#2|) 111 (|has| |#1| (-436)))) (-3780 (((-1205 |#2|) (-1205 |#2|) |#1|) 21)) (-3181 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|) 39)) (-3174 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|) 95)) (-4076 ((|#1| |#2|) 92)) (-3167 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735)) 73)) (-3166 ((|#2| |#2| |#2| (-735)) 72)) (-3176 (((-607 |#2|) |#2| |#2|) 80)) (-3183 ((|#2| |#2| |#1| |#1| (-735)) 50)) (-3182 ((|#1| |#1| |#1| (-735)) 49)) (* (((-1205 |#2|) |#1| (-1205 |#2|)) 16))) -(((-928 |#1| |#2|) (-10 -7 (-15 -4075 (|#1| |#2| |#2|)) (-15 -3160 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3161 ((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3162 ((-2 (|:| |coef1| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3163 (|#2| |#2| |#2| (-735))) (-15 -3164 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3165 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3166 (|#2| |#2| |#2| (-735))) (-15 -3167 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3168 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3504 (|#2| |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3170 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4074 (|#2| |#2| |#2|)) (-15 -3171 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -3172 ((-2 (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -3173 ((-2 (|:| |coef1| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -4076 (|#1| |#2|)) (-15 -3174 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|)) (-15 -3175 ((-2 (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|)) (-15 -3176 ((-607 |#2|) |#2| |#2|)) (-15 -3177 ((-607 (-735)) |#2| |#2|)) (IF (|has| |#1| (-436)) (PROGN (-15 -3178 (|#1| |#2| |#2|)) (-15 -3179 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|)) (-15 -3180 ((-2 (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|)) (-15 -3457 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1205 |#2|) |#1| (-1205 |#2|))) (-15 -3780 ((-1205 |#2|) (-1205 |#2|) |#1|)) (-15 -4071 ((-2 (|:| -4270 |#1|) (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|)) (-15 -3181 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|)) (-15 -3182 (|#1| |#1| |#1| (-735))) (-15 -3183 (|#2| |#2| |#1| |#1| (-735))) (-15 -3184 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3185 (|#1| |#2| |#2|)) (-15 -3186 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3187 ((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|))) (-533) (-1181 |#1|)) (T -928)) -((-3187 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3186 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3185 (*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) (-3184 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3183 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3182 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *2 (-533)) (-5 *1 (-928 *2 *4)) (-4 *4 (-1181 *2)))) (-3181 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-4071 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -4270 *4) (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3780 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-533)) (-5 *1 (-928 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-533)) (-5 *1 (-928 *3 *4)))) (-3457 (*1 *2 *2 *2) (-12 (-4 *3 (-436)) (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3180 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3178 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3179 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3178 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3178 (*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-4 *2 (-436)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) (-3177 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 (-735))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3176 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3175 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4076 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3174 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4076 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-4076 (*1 *2 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) (-3173 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3457 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3172 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3457 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3171 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3457 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-4074 (*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3170 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3169 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3504 (*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3168 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5)))) (-3167 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5)))) (-3166 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-533)) (-5 *1 (-928 *4 *2)) (-4 *2 (-1181 *4)))) (-3165 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5)))) (-3164 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5)))) (-3163 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-533)) (-5 *1 (-928 *4 *2)) (-4 *2 (-1181 *4)))) (-3162 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3161 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3160 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-4075 (*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2))))) -(-10 -7 (-15 -4075 (|#1| |#2| |#2|)) (-15 -3160 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3161 ((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3162 ((-2 (|:| |coef1| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3163 (|#2| |#2| |#2| (-735))) (-15 -3164 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3165 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3166 (|#2| |#2| |#2| (-735))) (-15 -3167 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3168 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3504 (|#2| |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3170 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4074 (|#2| |#2| |#2|)) (-15 -3171 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -3172 ((-2 (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -3173 ((-2 (|:| |coef1| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -4076 (|#1| |#2|)) (-15 -3174 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|)) (-15 -3175 ((-2 (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|)) (-15 -3176 ((-607 |#2|) |#2| |#2|)) (-15 -3177 ((-607 (-735)) |#2| |#2|)) (IF (|has| |#1| (-436)) (PROGN (-15 -3178 (|#1| |#2| |#2|)) (-15 -3179 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|)) (-15 -3180 ((-2 (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|)) (-15 -3457 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1205 |#2|) |#1| (-1205 |#2|))) (-15 -3780 ((-1205 |#2|) (-1205 |#2|) |#1|)) (-15 -4071 ((-2 (|:| -4270 |#1|) (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|)) (-15 -3181 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|)) (-15 -3182 (|#1| |#1| |#1| (-735))) (-15 -3183 (|#2| |#2| |#1| |#1| (-735))) (-15 -3184 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3185 (|#1| |#2| |#2|)) (-15 -3186 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3187 ((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|))) -((-2865 (((-111) $ $) NIL)) (-3630 (((-1160) $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3382 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-929) (-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)) (-15 -3630 ((-1160) $))))) (T -929)) -((-3382 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-929)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-929))))) -(-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)) (-15 -3630 ((-1160) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) 27)) (-3855 (($) NIL T CONST)) (-3189 (((-607 (-607 (-526))) (-607 (-526))) 29)) (-3188 (((-526) $) 45)) (-3190 (($ (-607 (-526))) 17)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4287 (((-607 (-526)) $) 12)) (-3309 (($ $) 32)) (-4274 (((-823) $) 43) (((-607 (-526)) $) 10)) (-2957 (($) 7 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 20)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 19)) (-4158 (($ $ $) 21)) (* (($ (-878) $) NIL) (($ (-735) $) 25))) -(((-930) (-13 (-761) (-584 (-607 (-526))) (-10 -8 (-15 -3190 ($ (-607 (-526)))) (-15 -3189 ((-607 (-607 (-526))) (-607 (-526)))) (-15 -3188 ((-526) $)) (-15 -3309 ($ $)) (-15 -4274 ((-607 (-526)) $))))) (T -930)) -((-3190 (*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-930)))) (-3189 (*1 *2 *3) (-12 (-5 *2 (-607 (-607 (-526)))) (-5 *1 (-930)) (-5 *3 (-607 (-526))))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-930)))) (-3309 (*1 *1 *1) (-5 *1 (-930))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-930))))) -(-13 (-761) (-584 (-607 (-526))) (-10 -8 (-15 -3190 ($ (-607 (-526)))) (-15 -3189 ((-607 (-607 (-526))) (-607 (-526)))) (-15 -3188 ((-526) $)) (-15 -3309 ($ $)) (-15 -4274 ((-607 (-526)) $)))) -((-4265 (($ $ |#2|) 30)) (-4156 (($ $) 22) (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-392 (-526)) $) 26) (($ $ (-392 (-526))) 28))) -(((-931 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4265 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-932 |#2| |#3| |#4|) (-1004) (-756) (-811)) (T -931)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4265 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 |#3|) $) 72)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-3192 (((-111) $) 71)) (-2471 (((-111) $) 30)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-607 |#3|) (-607 |#2|)) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-4264 ((|#2| $) 62)) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3999 ((|#1| $ |#2|) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-932 |#1| |#2| |#3|) (-134) (-1004) (-756) (-811)) (T -932)) -((-3487 (*1 *2 *1) (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *3 (-756)) (-4 *4 (-811)) (-4 *2 (-1004)))) (-3194 (*1 *1 *1) (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *4 (-811)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-932 *3 *2 *4)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *2 (-756)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-932 *4 *3 *2)) (-4 *4 (-1004)) (-4 *3 (-756)) (-4 *2 (-811)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 *5)) (-4 *1 (-932 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-756)) (-4 *6 (-811)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-932 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *5 (-811)) (-5 *2 (-607 *5)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-932 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *5 (-811)) (-5 *2 (-111)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *4 (-811))))) -(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3193 ($ $ |t#3| |t#2|)) (-15 -3193 ($ $ (-607 |t#3|) (-607 |t#2|))) (-15 -3194 ($ $)) (-15 -3487 (|t#1| $)) (-15 -4264 (|t#2| $)) (-15 -3384 ((-607 |t#3|) $)) (-15 -3192 ((-111) $)) (-15 -3191 ($ $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-275) |has| |#1| (-533)) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-3195 (((-1041 (-211)) $) 8)) (-3196 (((-1041 (-211)) $) 9)) (-3197 (((-1041 (-211)) $) 10)) (-3198 (((-607 (-607 (-902 (-211)))) $) 11)) (-4274 (((-823) $) 6))) -(((-933) (-134)) (T -933)) -((-3198 (*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-607 (-607 (-902 (-211))))))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211))))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211))))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211)))))) -(-13 (-583 (-823)) (-10 -8 (-15 -3198 ((-607 (-607 (-902 (-211)))) $)) (-15 -3197 ((-1041 (-211)) $)) (-15 -3196 ((-1041 (-211)) $)) (-15 -3195 ((-1041 (-211)) $)))) -(((-583 (-823)) . T)) -((-3384 (((-607 |#4|) $) 23)) (-3208 (((-111) $) 48)) (-3199 (((-111) $) 47)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#4|) 36)) (-3204 (((-111) $) 49)) (-3206 (((-111) $ $) 55)) (-3205 (((-111) $ $) 58)) (-3207 (((-111) $) 53)) (-3200 (((-607 |#5|) (-607 |#5|) $) 90)) (-3201 (((-607 |#5|) (-607 |#5|) $) 87)) (-3202 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3214 (((-607 |#4|) $) 27)) (-3213 (((-111) |#4| $) 30)) (-3203 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3210 (($ $ |#4|) 33)) (-3212 (($ $ |#4|) 32)) (-3211 (($ $ |#4|) 34)) (-3353 (((-111) $ $) 40))) -(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3199 ((-111) |#1|)) (-15 -3200 ((-607 |#5|) (-607 |#5|) |#1|)) (-15 -3201 ((-607 |#5|) (-607 |#5|) |#1|)) (-15 -3202 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3203 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3204 ((-111) |#1|)) (-15 -3205 ((-111) |#1| |#1|)) (-15 -3206 ((-111) |#1| |#1|)) (-15 -3207 ((-111) |#1|)) (-15 -3208 ((-111) |#1|)) (-15 -3209 ((-2 (|:| |under| |#1|) (|:| -3427 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3210 (|#1| |#1| |#4|)) (-15 -3211 (|#1| |#1| |#4|)) (-15 -3212 (|#1| |#1| |#4|)) (-15 -3213 ((-111) |#4| |#1|)) (-15 -3214 ((-607 |#4|) |#1|)) (-15 -3384 ((-607 |#4|) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-935 |#2| |#3| |#4| |#5|) (-1004) (-757) (-811) (-1018 |#2| |#3| |#4|)) (T -934)) -NIL -(-10 -8 (-15 -3199 ((-111) |#1|)) (-15 -3200 ((-607 |#5|) (-607 |#5|) |#1|)) (-15 -3201 ((-607 |#5|) (-607 |#5|) |#1|)) (-15 -3202 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3203 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3204 ((-111) |#1|)) (-15 -3205 ((-111) |#1| |#1|)) (-15 -3206 ((-111) |#1| |#1|)) (-15 -3207 ((-111) |#1|)) (-15 -3208 ((-111) |#1|)) (-15 -3209 ((-2 (|:| |under| |#1|) (|:| -3427 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3210 (|#1| |#1| |#4|)) (-15 -3211 (|#1| |#1| |#4|)) (-15 -3212 (|#1| |#1| |#4|)) (-15 -3213 ((-111) |#4| |#1|)) (-15 -3214 ((-607 |#4|) |#1|)) (-15 -3384 ((-607 |#4|) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310)))) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310)))) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-3555 (((-1070) $) 10)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) -(((-935 |#1| |#2| |#3| |#4|) (-134) (-1004) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -935)) -((-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *1 (-935 *3 *4 *5 *6)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *1 (-935 *3 *4 *5 *6)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-1018 *3 *4 *2)) (-4 *2 (-811)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5)))) (-3213 (*1 *2 *3 *1) (-12 (-4 *1 (-935 *4 *5 *3 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-111)))) (-3212 (*1 *1 *1 *2) (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *5 (-1018 *3 *4 *2)))) (-3211 (*1 *1 *1 *2) (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *5 (-1018 *3 *4 *2)))) (-3210 (*1 *1 *1 *2) (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *5 (-1018 *3 *4 *2)))) (-3209 (*1 *2 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3427 *1) (|:| |upper| *1))) (-4 *1 (-935 *4 *5 *3 *6)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111)))) (-3206 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111)))) (-3205 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111)))) (-3203 (*1 *2 *3 *1) (-12 (-4 *1 (-935 *4 *5 *6 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3202 (*1 *2 *3 *1) (-12 (-4 *1 (-935 *4 *5 *6 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3201 (*1 *2 *2 *1) (-12 (-5 *2 (-607 *6)) (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)))) (-3200 (*1 *2 *2 *1) (-12 (-5 *2 (-607 *6)) (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) -(-13 (-1052) (-145 |t#4|) (-583 (-607 |t#4|)) (-10 -8 (-6 -4310) (-15 -3470 ((-3 $ "failed") (-607 |t#4|))) (-15 -3469 ($ (-607 |t#4|))) (-15 -3493 (|t#3| $)) (-15 -3384 ((-607 |t#3|) $)) (-15 -3214 ((-607 |t#3|) $)) (-15 -3213 ((-111) |t#3| $)) (-15 -3212 ($ $ |t#3|)) (-15 -3211 ($ $ |t#3|)) (-15 -3210 ($ $ |t#3|)) (-15 -3209 ((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |t#3|)) (-15 -3208 ((-111) $)) (IF (|has| |t#1| (-533)) (PROGN (-15 -3207 ((-111) $)) (-15 -3206 ((-111) $ $)) (-15 -3205 ((-111) $ $)) (-15 -3204 ((-111) $)) (-15 -3203 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3202 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3201 ((-607 |t#4|) (-607 |t#4|) $)) (-15 -3200 ((-607 |t#4|) (-607 |t#4|) $)) (-15 -3199 ((-111) $))) |%noBranch|))) -(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-1052) . T) ((-1159) . T)) -((-3216 (((-607 |#4|) |#4| |#4|) 118)) (-3239 (((-607 |#4|) (-607 |#4|) (-111)) 107 (|has| |#1| (-436))) (((-607 |#4|) (-607 |#4|)) 108 (|has| |#1| (-436)))) (-3226 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|)) 35)) (-3225 (((-111) |#4|) 34)) (-3238 (((-607 |#4|) |#4|) 103 (|has| |#1| (-436)))) (-3221 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-1 (-111) |#4|) (-607 |#4|)) 20)) (-3222 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|)) 22)) (-3223 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|)) 23)) (-3234 (((-3 (-2 (|:| |bas| (-460 |#1| |#2| |#3| |#4|)) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|)) 73)) (-3236 (((-607 |#4|) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3237 (((-607 |#4|) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3215 (((-607 |#4|) (-607 |#4|)) 110)) (-3231 (((-607 |#4|) (-607 |#4|) (-607 |#4|) (-111)) 48) (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 50)) (-3232 ((|#4| |#4| (-607 |#4|)) 49)) (-3240 (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 114 (|has| |#1| (-436)))) (-3242 (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 117 (|has| |#1| (-436)))) (-3241 (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 116 (|has| |#1| (-436)))) (-3217 (((-607 |#4|) (-607 |#4|) (-607 |#4|) (-1 (-607 |#4|) (-607 |#4|))) 87) (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 89) (((-607 |#4|) (-607 |#4|) |#4|) 121) (((-607 |#4|) |#4| |#4|) 119) (((-607 |#4|) (-607 |#4|)) 88)) (-3245 (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 100 (-12 (|has| |#1| (-141)) (|has| |#1| (-292))))) (-3224 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|)) 41)) (-3220 (((-111) (-607 |#4|)) 62)) (-3219 (((-111) (-607 |#4|) (-607 (-607 |#4|))) 53)) (-3228 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|)) 29)) (-3227 (((-111) |#4|) 28)) (-3244 (((-607 |#4|) (-607 |#4|)) 98 (-12 (|has| |#1| (-141)) (|has| |#1| (-292))))) (-3243 (((-607 |#4|) (-607 |#4|)) 99 (-12 (|has| |#1| (-141)) (|has| |#1| (-292))))) (-3233 (((-607 |#4|) (-607 |#4|)) 66)) (-3235 (((-607 |#4|) (-607 |#4|)) 79)) (-3218 (((-111) (-607 |#4|) (-607 |#4|)) 51)) (-3230 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|)) 39)) (-3229 (((-111) |#4|) 36))) -(((-936 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 ((-607 |#4|) (-607 |#4|))) (-15 -3217 ((-607 |#4|) |#4| |#4|)) (-15 -3215 ((-607 |#4|) (-607 |#4|))) (-15 -3216 ((-607 |#4|) |#4| |#4|)) (-15 -3217 ((-607 |#4|) (-607 |#4|) |#4|)) (-15 -3217 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3217 ((-607 |#4|) (-607 |#4|) (-607 |#4|) (-1 (-607 |#4|) (-607 |#4|)))) (-15 -3218 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3219 ((-111) (-607 |#4|) (-607 (-607 |#4|)))) (-15 -3220 ((-111) (-607 |#4|))) (-15 -3221 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-1 (-111) |#4|) (-607 |#4|))) (-15 -3222 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|))) (-15 -3223 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|))) (-15 -3224 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3225 ((-111) |#4|)) (-15 -3226 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3227 ((-111) |#4|)) (-15 -3228 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3229 ((-111) |#4|)) (-15 -3230 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3231 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3231 ((-607 |#4|) (-607 |#4|) (-607 |#4|) (-111))) (-15 -3232 (|#4| |#4| (-607 |#4|))) (-15 -3233 ((-607 |#4|) (-607 |#4|))) (-15 -3234 ((-3 (-2 (|:| |bas| (-460 |#1| |#2| |#3| |#4|)) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|))) (-15 -3235 ((-607 |#4|) (-607 |#4|))) (-15 -3236 ((-607 |#4|) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3237 ((-607 |#4|) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-436)) (PROGN (-15 -3238 ((-607 |#4|) |#4|)) (-15 -3239 ((-607 |#4|) (-607 |#4|))) (-15 -3239 ((-607 |#4|) (-607 |#4|) (-111))) (-15 -3240 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3241 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3242 ((-607 |#4|) (-607 |#4|) (-607 |#4|)))) |%noBranch|) (IF (|has| |#1| (-292)) (IF (|has| |#1| (-141)) (PROGN (-15 -3243 ((-607 |#4|) (-607 |#4|))) (-15 -3244 ((-607 |#4|) (-607 |#4|))) (-15 -3245 ((-607 |#4|) (-607 |#4|) (-607 |#4|)))) |%noBranch|) |%noBranch|)) (-533) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -936)) -((-3245 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3244 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3242 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3241 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3240 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3239 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-111)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3238 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3237 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-936 *5 *6 *7 *8)))) (-3236 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-607 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *1 (-936 *6 *7 *8 *9)))) (-3235 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3234 (*1 *2 *3) (|partial| -12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-460 *4 *5 *6 *7)) (|:| -3643 (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3233 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3232 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *2)))) (-3231 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-111)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3231 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3228 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3227 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3226 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3225 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3224 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1 (-111) *8))) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8)))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1 (-111) *8))) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8)))) (-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-607 *8))) (-5 *3 (-607 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *5 *6 *7 *8)))) (-3218 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3217 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-607 *7) (-607 *7))) (-5 *2 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3217 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3217 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *3)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3215 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3217 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3217 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(-10 -7 (-15 -3217 ((-607 |#4|) (-607 |#4|))) (-15 -3217 ((-607 |#4|) |#4| |#4|)) (-15 -3215 ((-607 |#4|) (-607 |#4|))) (-15 -3216 ((-607 |#4|) |#4| |#4|)) (-15 -3217 ((-607 |#4|) (-607 |#4|) |#4|)) (-15 -3217 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3217 ((-607 |#4|) (-607 |#4|) (-607 |#4|) (-1 (-607 |#4|) (-607 |#4|)))) (-15 -3218 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3219 ((-111) (-607 |#4|) (-607 (-607 |#4|)))) (-15 -3220 ((-111) (-607 |#4|))) (-15 -3221 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-1 (-111) |#4|) (-607 |#4|))) (-15 -3222 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|))) (-15 -3223 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|))) (-15 -3224 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3225 ((-111) |#4|)) (-15 -3226 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3227 ((-111) |#4|)) (-15 -3228 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3229 ((-111) |#4|)) (-15 -3230 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3231 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3231 ((-607 |#4|) (-607 |#4|) (-607 |#4|) (-111))) (-15 -3232 (|#4| |#4| (-607 |#4|))) (-15 -3233 ((-607 |#4|) (-607 |#4|))) (-15 -3234 ((-3 (-2 (|:| |bas| (-460 |#1| |#2| |#3| |#4|)) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|))) (-15 -3235 ((-607 |#4|) (-607 |#4|))) (-15 -3236 ((-607 |#4|) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3237 ((-607 |#4|) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-436)) (PROGN (-15 -3238 ((-607 |#4|) |#4|)) (-15 -3239 ((-607 |#4|) (-607 |#4|))) (-15 -3239 ((-607 |#4|) (-607 |#4|) (-111))) (-15 -3240 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3241 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3242 ((-607 |#4|) (-607 |#4|) (-607 |#4|)))) |%noBranch|) (IF (|has| |#1| (-292)) (IF (|has| |#1| (-141)) (PROGN (-15 -3243 ((-607 |#4|) (-607 |#4|))) (-15 -3244 ((-607 |#4|) (-607 |#4|))) (-15 -3245 ((-607 |#4|) (-607 |#4|) (-607 |#4|)))) |%noBranch|) |%noBranch|)) -((-3246 (((-2 (|:| R (-653 |#1|)) (|:| A (-653 |#1|)) (|:| |Ainv| (-653 |#1|))) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|)) 19)) (-3248 (((-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|)) 36)) (-3247 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|)) 16))) -(((-937 |#1|) (-10 -7 (-15 -3246 ((-2 (|:| R (-653 |#1|)) (|:| A (-653 |#1|)) (|:| |Ainv| (-653 |#1|))) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -3247 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -3248 ((-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|)))) (-348)) (T -937)) -((-3248 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-5 *2 (-607 (-2 (|:| C (-653 *5)) (|:| |g| (-1205 *5))))) (-5 *1 (-937 *5)) (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)))) (-3247 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-653 *5)) (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) (-5 *1 (-937 *5)))) (-3246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-97 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-348)) (-5 *2 (-2 (|:| R (-653 *6)) (|:| A (-653 *6)) (|:| |Ainv| (-653 *6)))) (-5 *1 (-937 *6)) (-5 *3 (-653 *6))))) -(-10 -7 (-15 -3246 ((-2 (|:| R (-653 |#1|)) (|:| A (-653 |#1|)) (|:| |Ainv| (-653 |#1|))) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -3247 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -3248 ((-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|)))) -((-4286 (((-390 |#4|) |#4|) 48))) -(((-938 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4286 ((-390 |#4|) |#4|))) (-811) (-757) (-436) (-909 |#3| |#2| |#1|)) (T -938)) -((-4286 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-436)) (-5 *2 (-390 *3)) (-5 *1 (-938 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4))))) -(-10 -7 (-15 -4286 ((-390 |#4|) |#4|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-4157 (($ (-735)) 112 (|has| |#1| (-23)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-3738 (((-526) (-1 (-111) |#1|) $) 97) (((-526) |#1| $) 96 (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) 95 (|has| |#1| (-1052)))) (-4028 (($ (-607 |#1|)) 118)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) 105 (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4151 ((|#1| $) 102 (-12 (|has| |#1| (-1004)) (|has| |#1| (-960))))) (-4038 (((-111) $ (-735)) 10)) (-4152 ((|#1| $) 103 (-12 (|has| |#1| (-1004)) (|has| |#1| (-960))))) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-4087 (($ $ (-607 |#1|)) 115)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-4155 ((|#1| $ $) 106 (|has| |#1| (-1004)))) (-4230 (((-878) $) 117)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-4153 (($ $ $) 104)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515)))) (($ (-607 |#1|)) 116)) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 83 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 85 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 82 (|has| |#1| (-811)))) (-4156 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4158 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-526) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-691))) (($ $ |#1|) 107 (|has| |#1| (-691)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-939 |#1|) (-134) (-1004)) (T -939)) -((-4028 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-939 *3)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-939 *3)) (-4 *3 (-1004)) (-5 *2 (-878)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-939 *3)))) (-4153 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-1004)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-939 *3)) (-4 *3 (-1004))))) -(-13 (-1204 |t#1|) (-10 -8 (-15 -4028 ($ (-607 |t#1|))) (-15 -4230 ((-878) $)) (-15 -4287 ($ (-607 |t#1|))) (-15 -4153 ($ $ $)) (-15 -4087 ($ $ (-607 |t#1|))))) -(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-357 |#1|) . T) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-19 |#1|) . T) ((-811) |has| |#1| (-811)) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1159) . T) ((-1204 |#1|) . T)) -((-4275 (((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)) 17))) -(((-940 |#1| |#2|) (-10 -7 (-15 -4275 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) (-1004) (-1004)) (T -940)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-902 *6)) (-5 *1 (-940 *5 *6))))) -(-10 -7 (-15 -4275 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) -((-3251 ((|#1| (-902 |#1|)) 13)) (-3250 ((|#1| (-902 |#1|)) 12)) (-3249 ((|#1| (-902 |#1|)) 11)) (-3253 ((|#1| (-902 |#1|)) 15)) (-3257 ((|#1| (-902 |#1|)) 21)) (-3252 ((|#1| (-902 |#1|)) 14)) (-3254 ((|#1| (-902 |#1|)) 16)) (-3256 ((|#1| (-902 |#1|)) 20)) (-3255 ((|#1| (-902 |#1|)) 19))) -(((-941 |#1|) (-10 -7 (-15 -3249 (|#1| (-902 |#1|))) (-15 -3250 (|#1| (-902 |#1|))) (-15 -3251 (|#1| (-902 |#1|))) (-15 -3252 (|#1| (-902 |#1|))) (-15 -3253 (|#1| (-902 |#1|))) (-15 -3254 (|#1| (-902 |#1|))) (-15 -3255 (|#1| (-902 |#1|))) (-15 -3256 (|#1| (-902 |#1|))) (-15 -3257 (|#1| (-902 |#1|)))) (-1004)) (T -941)) -((-3257 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(-10 -7 (-15 -3249 (|#1| (-902 |#1|))) (-15 -3250 (|#1| (-902 |#1|))) (-15 -3251 (|#1| (-902 |#1|))) (-15 -3252 (|#1| (-902 |#1|))) (-15 -3253 (|#1| (-902 |#1|))) (-15 -3254 (|#1| (-902 |#1|))) (-15 -3255 (|#1| (-902 |#1|))) (-15 -3256 (|#1| (-902 |#1|))) (-15 -3257 (|#1| (-902 |#1|)))) -((-3275 (((-3 |#1| "failed") |#1|) 18)) (-3263 (((-3 |#1| "failed") |#1|) 6)) (-3273 (((-3 |#1| "failed") |#1|) 16)) (-3261 (((-3 |#1| "failed") |#1|) 4)) (-3277 (((-3 |#1| "failed") |#1|) 20)) (-3265 (((-3 |#1| "failed") |#1|) 8)) (-3258 (((-3 |#1| "failed") |#1| (-735)) 1)) (-3260 (((-3 |#1| "failed") |#1|) 3)) (-3259 (((-3 |#1| "failed") |#1|) 2)) (-3278 (((-3 |#1| "failed") |#1|) 21)) (-3266 (((-3 |#1| "failed") |#1|) 9)) (-3276 (((-3 |#1| "failed") |#1|) 19)) (-3264 (((-3 |#1| "failed") |#1|) 7)) (-3274 (((-3 |#1| "failed") |#1|) 17)) (-3262 (((-3 |#1| "failed") |#1|) 5)) (-3281 (((-3 |#1| "failed") |#1|) 24)) (-3269 (((-3 |#1| "failed") |#1|) 12)) (-3279 (((-3 |#1| "failed") |#1|) 22)) (-3267 (((-3 |#1| "failed") |#1|) 10)) (-3283 (((-3 |#1| "failed") |#1|) 26)) (-3271 (((-3 |#1| "failed") |#1|) 14)) (-3284 (((-3 |#1| "failed") |#1|) 27)) (-3272 (((-3 |#1| "failed") |#1|) 15)) (-3282 (((-3 |#1| "failed") |#1|) 25)) (-3270 (((-3 |#1| "failed") |#1|) 13)) (-3280 (((-3 |#1| "failed") |#1|) 23)) (-3268 (((-3 |#1| "failed") |#1|) 11))) -(((-942 |#1|) (-134) (-1145)) (T -942)) -((-3284 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3283 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3282 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3281 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3280 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3279 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3278 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3277 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3276 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3275 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3274 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3273 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3272 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3271 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3270 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3269 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3268 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3267 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3266 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3265 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3264 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3263 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3262 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3261 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3260 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3259 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3258 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-735)) (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(-13 (-10 -7 (-15 -3258 ((-3 |t#1| "failed") |t#1| (-735))) (-15 -3259 ((-3 |t#1| "failed") |t#1|)) (-15 -3260 ((-3 |t#1| "failed") |t#1|)) (-15 -3261 ((-3 |t#1| "failed") |t#1|)) (-15 -3262 ((-3 |t#1| "failed") |t#1|)) (-15 -3263 ((-3 |t#1| "failed") |t#1|)) (-15 -3264 ((-3 |t#1| "failed") |t#1|)) (-15 -3265 ((-3 |t#1| "failed") |t#1|)) (-15 -3266 ((-3 |t#1| "failed") |t#1|)) (-15 -3267 ((-3 |t#1| "failed") |t#1|)) (-15 -3268 ((-3 |t#1| "failed") |t#1|)) (-15 -3269 ((-3 |t#1| "failed") |t#1|)) (-15 -3270 ((-3 |t#1| "failed") |t#1|)) (-15 -3271 ((-3 |t#1| "failed") |t#1|)) (-15 -3272 ((-3 |t#1| "failed") |t#1|)) (-15 -3273 ((-3 |t#1| "failed") |t#1|)) (-15 -3274 ((-3 |t#1| "failed") |t#1|)) (-15 -3275 ((-3 |t#1| "failed") |t#1|)) (-15 -3276 ((-3 |t#1| "failed") |t#1|)) (-15 -3277 ((-3 |t#1| "failed") |t#1|)) (-15 -3278 ((-3 |t#1| "failed") |t#1|)) (-15 -3279 ((-3 |t#1| "failed") |t#1|)) (-15 -3280 ((-3 |t#1| "failed") |t#1|)) (-15 -3281 ((-3 |t#1| "failed") |t#1|)) (-15 -3282 ((-3 |t#1| "failed") |t#1|)) (-15 -3283 ((-3 |t#1| "failed") |t#1|)) (-15 -3284 ((-3 |t#1| "failed") |t#1|)))) -((-3286 ((|#4| |#4| (-607 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3285 ((|#4| |#4| (-607 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4275 ((|#4| (-1 |#4| (-905 |#1|)) |#4|) 30))) -(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3285 (|#4| |#4| |#3|)) (-15 -3285 (|#4| |#4| (-607 |#3|))) (-15 -3286 (|#4| |#4| |#3|)) (-15 -3286 (|#4| |#4| (-607 |#3|))) (-15 -4275 (|#4| (-1 |#4| (-905 |#1|)) |#4|))) (-1004) (-757) (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123))))) (-909 (-905 |#1|) |#2| |#3|)) (T -943)) -((-4275 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-905 *4))) (-4 *4 (-1004)) (-4 *2 (-909 (-905 *4) *5 *6)) (-4 *5 (-757)) (-4 *6 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1="failed") (-1123)))))) (-5 *1 (-943 *4 *5 *6 *2)))) (-3286 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) (-4 *4 (-1004)) (-4 *5 (-757)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *2 (-909 (-905 *4) *5 *6)))) (-3286 (*1 *2 *2 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) (-5 *1 (-943 *4 *5 *3 *2)) (-4 *2 (-909 (-905 *4) *5 *3)))) (-3285 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) (-4 *4 (-1004)) (-4 *5 (-757)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *2 (-909 (-905 *4) *5 *6)))) (-3285 (*1 *2 *2 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) (-5 *1 (-943 *4 *5 *3 *2)) (-4 *2 (-909 (-905 *4) *5 *3))))) -(-10 -7 (-15 -3285 (|#4| |#4| |#3|)) (-15 -3285 (|#4| |#4| (-607 |#3|))) (-15 -3286 (|#4| |#4| |#3|)) (-15 -3286 (|#4| |#4| (-607 |#3|))) (-15 -4275 (|#4| (-1 |#4| (-905 |#1|)) |#4|))) -((-3287 ((|#2| |#3|) 35)) (-4238 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|) 73)) (-4237 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) 89))) -(((-944 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|)) (-15 -3287 (|#2| |#3|))) (-335) (-1181 |#1|) (-1181 |#2|) (-689 |#2| |#3|)) (T -944)) -((-3287 (*1 *2 *3) (-12 (-4 *3 (-1181 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-944 *4 *2 *3 *5)) (-4 *4 (-335)) (-4 *5 (-689 *2 *3)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-944 *4 *3 *5 *6)) (-4 *6 (-689 *3 *5)))) (-4237 (*1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -2104 (-653 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-653 *4)))) (-5 *1 (-944 *3 *4 *5 *6)) (-4 *6 (-689 *4 *5))))) -(-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|)) (-15 -3287 (|#2| |#3|))) -((-2865 (((-111) $ $) NIL)) (-3720 (((-3 (-111) #1="failed") $) 69)) (-3971 (($ $) 36 (-12 (|has| |#1| (-141)) (|has| |#1| (-292))))) (-3291 (($ $ (-3 (-111) #1#)) 70)) (-3292 (($ (-607 |#4|) |#4|) 25)) (-3554 (((-1106) $) NIL)) (-3288 (($ $) 67)) (-3555 (((-1070) $) NIL)) (-3722 (((-111) $) 68)) (-3887 (($) 30)) (-3289 ((|#4| $) 72)) (-3290 (((-607 |#4|) $) 71)) (-4274 (((-823) $) 66)) (-3353 (((-111) $ $) NIL))) -(((-945 |#1| |#2| |#3| |#4|) (-13 (-1052) (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -3292 ($ (-607 |#4|) |#4|)) (-15 -3720 ((-3 (-111) #1="failed") $)) (-15 -3291 ($ $ (-3 (-111) #1#))) (-15 -3722 ((-111) $)) (-15 -3290 ((-607 |#4|) $)) (-15 -3289 (|#4| $)) (-15 -3288 ($ $)) (IF (|has| |#1| (-292)) (IF (|has| |#1| (-141)) (-15 -3971 ($ $)) |%noBranch|) |%noBranch|))) (-436) (-811) (-757) (-909 |#1| |#3| |#2|)) (T -945)) -((-3887 (*1 *1) (-12 (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) (-4 *5 (-909 *2 *4 *3)))) (-3292 (*1 *1 *2 *3) (-12 (-5 *2 (-607 *3)) (-4 *3 (-909 *4 *6 *5)) (-4 *4 (-436)) (-4 *5 (-811)) (-4 *6 (-757)) (-5 *1 (-945 *4 *5 *6 *3)))) (-3720 (*1 *2 *1) (|partial| -12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) (-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) (-3722 (*1 *2 *1) (-12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) (-3290 (*1 *2 *1) (-12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-607 *6)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) (-3289 (*1 *2 *1) (-12 (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)))) (-3288 (*1 *1 *1) (-12 (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) (-4 *5 (-909 *2 *4 *3)))) (-3971 (*1 *1 *1) (-12 (-4 *2 (-141)) (-4 *2 (-292)) (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) (-4 *5 (-909 *2 *4 *3))))) -(-13 (-1052) (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -3292 ($ (-607 |#4|) |#4|)) (-15 -3720 ((-3 (-111) #1="failed") $)) (-15 -3291 ($ $ (-3 (-111) #1#))) (-15 -3722 ((-111) $)) (-15 -3290 ((-607 |#4|) $)) (-15 -3289 (|#4| $)) (-15 -3288 ($ $)) (IF (|has| |#1| (-292)) (IF (|has| |#1| (-141)) (-15 -3971 ($ $)) |%noBranch|) |%noBranch|))) -((-3293 (((-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526)))) (-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526))))) 69))) -(((-946 |#1| |#2|) (-10 -7 (-15 -3293 ((-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526)))) (-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526))))))) (-607 (-1123)) (-735)) (T -946)) -((-3293 (*1 *2 *2) (-12 (-5 *2 (-945 (-392 (-526)) (-824 *3) (-225 *4 (-735)) (-233 *3 (-392 (-526))))) (-14 *3 (-607 (-1123))) (-14 *4 (-735)) (-5 *1 (-946 *3 *4))))) -(-10 -7 (-15 -3293 ((-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526)))) (-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526))))))) -((-3582 (((-111) |#5| |#5|) 38)) (-3585 (((-111) |#5| |#5|) 52)) (-3590 (((-111) |#5| (-607 |#5|)) 74) (((-111) |#5| |#5|) 61)) (-3586 (((-111) (-607 |#4|) (-607 |#4|)) 58)) (-3592 (((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) 63)) (-3581 (((-1211)) 33)) (-3580 (((-1211) (-1106) (-1106) (-1106)) 29)) (-3591 (((-607 |#5|) (-607 |#5|)) 81)) (-3593 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) 79)) (-3594 (((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111)) 101)) (-3584 (((-111) |#5| |#5|) 47)) (-3589 (((-3 (-111) "failed") |#5| |#5|) 71)) (-3587 (((-111) (-607 |#4|) (-607 |#4|)) 57)) (-3588 (((-111) (-607 |#4|) (-607 |#4|)) 59)) (-4021 (((-111) (-607 |#4|) (-607 |#4|)) 60)) (-3595 (((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)) 97)) (-3583 (((-607 |#5|) (-607 |#5|)) 43))) -(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3580 ((-1211) (-1106) (-1106) (-1106))) (-15 -3581 ((-1211))) (-15 -3582 ((-111) |#5| |#5|)) (-15 -3583 ((-607 |#5|) (-607 |#5|))) (-15 -3584 ((-111) |#5| |#5|)) (-15 -3585 ((-111) |#5| |#5|)) (-15 -3586 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3587 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3588 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -4021 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3589 ((-3 (-111) "failed") |#5| |#5|)) (-15 -3590 ((-111) |#5| |#5|)) (-15 -3590 ((-111) |#5| (-607 |#5|))) (-15 -3591 ((-607 |#5|) (-607 |#5|))) (-15 -3592 ((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3593 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-15 -3594 ((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3595 ((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -947)) -((-3595 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *4) (|:| |ineq| (-607 *9)))) (-5 *1 (-947 *6 *7 *8 *9 *4)) (-5 *3 (-607 *9)) (-4 *4 (-1024 *6 *7 *8 *9)))) (-3594 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-607 *10)) (-5 *5 (-111)) (-4 *10 (-1024 *6 *7 *8 *9)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *10) (|:| |ineq| (-607 *9))))) (-5 *1 (-947 *6 *7 *8 *9 *10)) (-5 *3 (-607 *9)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-607 (-2 (|:| |val| (-607 *6)) (|:| -1636 *7)))) (-4 *6 (-1018 *3 *4 *5)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-947 *3 *4 *5 *6 *7)))) (-3592 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *6 *7)))) (-3590 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-947 *5 *6 *7 *8 *3)))) (-3590 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-4021 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3588 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3586 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3585 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3584 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3583 (*1 *2 *2) (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *6 *7)))) (-3582 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3581 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-947 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3580 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7))))) -(-10 -7 (-15 -3580 ((-1211) (-1106) (-1106) (-1106))) (-15 -3581 ((-1211))) (-15 -3582 ((-111) |#5| |#5|)) (-15 -3583 ((-607 |#5|) (-607 |#5|))) (-15 -3584 ((-111) |#5| |#5|)) (-15 -3585 ((-111) |#5| |#5|)) (-15 -3586 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3587 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3588 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -4021 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3589 ((-3 (-111) "failed") |#5| |#5|)) (-15 -3590 ((-111) |#5| |#5|)) (-15 -3590 ((-111) |#5| (-607 |#5|))) (-15 -3591 ((-607 |#5|) (-607 |#5|))) (-15 -3592 ((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3593 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-15 -3594 ((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3595 ((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)))) -((-4150 (((-1123) $) 15)) (-3721 (((-1106) $) 16)) (-3539 (($ (-1123) (-1106)) 14)) (-4274 (((-823) $) 13))) -(((-948) (-13 (-583 (-823)) (-10 -8 (-15 -3539 ($ (-1123) (-1106))) (-15 -4150 ((-1123) $)) (-15 -3721 ((-1106) $))))) (T -948)) -((-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1106)) (-5 *1 (-948)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-948)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-948))))) -(-13 (-583 (-823)) (-10 -8 (-15 -3539 ($ (-1123) (-1106))) (-15 -4150 ((-1123) $)) (-15 -3721 ((-1106) $)))) -((-3470 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1123) #1#) $) 65) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) 95)) (-3469 ((|#2| $) NIL) (((-1123) $) 60) (((-392 (-526)) $) NIL) (((-526) $) 92)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 112) (((-653 |#2|) (-653 $)) 28)) (-3294 (($) 98)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 75) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 84)) (-3296 (($ $) 10)) (-3763 (((-3 $ "failed") $) 20)) (-4275 (($ (-1 |#2| |#2|) $) 22)) (-3764 (($) 16)) (-3425 (($ $) 54)) (-4129 (($ $) NIL) (($ $ (-735)) NIL) (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3295 (($ $) 12)) (-4287 (((-849 (-526)) $) 70) (((-849 (-363)) $) 79) (((-515) $) 40) (((-363) $) 44) (((-211) $) 47)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 90) (($ |#2|) NIL) (($ (-1123)) 57)) (-3423 (((-735)) 31)) (-2985 (((-111) $ $) 50))) -(((-949 |#1| |#2|) (-10 -8 (-15 -2985 ((-111) |#1| |#1|)) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -4274 (|#1| (-1123))) (-15 -3294 (|#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -4274 ((-823) |#1|))) (-950 |#2|) (-533)) (T -949)) -((-3423 (*1 *2) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-949 *3 *4)) (-4 *3 (-950 *4))))) -(-10 -8 (-15 -2985 ((-111) |#1| |#1|)) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -4274 (|#1| (-1123))) (-15 -3294 (|#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3426 ((|#1| $) 136 (|has| |#1| (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 127 (|has| |#1| (-869)))) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 130 (|has| |#1| (-869)))) (-1681 (((-111) $ $) 57)) (-3945 (((-526) $) 117 (|has| |#1| (-784)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 175) (((-3 (-1123) #2#) $) 125 (|has| |#1| (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) 109 (|has| |#1| (-995 (-526)))) (((-3 (-526) #2#) $) 107 (|has| |#1| (-995 (-526))))) (-3469 ((|#1| $) 174) (((-1123) $) 124 (|has| |#1| (-995 (-1123)))) (((-392 (-526)) $) 108 (|has| |#1| (-995 (-526)))) (((-526) $) 106 (|has| |#1| (-995 (-526))))) (-2861 (($ $ $) 53)) (-2331 (((-653 (-526)) (-653 $)) 149 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 148 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 147) (((-653 |#1|) (-653 $)) 146)) (-3781 (((-3 $ "failed") $) 32)) (-3294 (($) 134 (|has| |#1| (-525)))) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-3500 (((-111) $) 119 (|has| |#1| (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 143 (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 142 (|has| |#1| (-845 (-363))))) (-2471 (((-111) $) 30)) (-3296 (($ $) 138)) (-3298 ((|#1| $) 140)) (-3763 (((-3 $ "failed") $) 105 (|has| |#1| (-1099)))) (-3501 (((-111) $) 118 (|has| |#1| (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) 50)) (-3637 (($ $ $) 115 (|has| |#1| (-811)))) (-3638 (($ $ $) 114 (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) 166)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3764 (($) 104 (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3425 (($ $) 135 (|has| |#1| (-292)))) (-3427 ((|#1| $) 132 (|has| |#1| (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 129 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 128 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 172 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 170 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 169 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 168 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) 167 (|has| |#1| (-496 (-1123) |#1|)))) (-1680 (((-735) $) 56)) (-4118 (($ $ |#1|) 173 (|has| |#1| (-271 |#1| |#1|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4129 (($ $) 165 (|has| |#1| (-219))) (($ $ (-735)) 163 (|has| |#1| (-219))) (($ $ (-1123)) 161 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 160 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 159 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 158 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3295 (($ $) 137)) (-3297 ((|#1| $) 139)) (-4287 (((-849 (-526)) $) 145 (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) 144 (|has| |#1| (-584 (-849 (-363))))) (((-515) $) 122 (|has| |#1| (-584 (-515)))) (((-363) $) 121 (|has| |#1| (-977))) (((-211) $) 120 (|has| |#1| (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 131 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ |#1|) 178) (($ (-1123)) 126 (|has| |#1| (-995 (-1123))))) (-3002 (((-3 $ "failed") $) 123 (-3850 (|has| |#1| (-139)) (-3155 (|has| $ (-139)) (|has| |#1| (-869)))))) (-3423 (((-735)) 28)) (-3428 ((|#1| $) 133 (|has| |#1| (-525)))) (-2150 (((-111) $ $) 37)) (-3702 (($ $) 116 (|has| |#1| (-784)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $) 164 (|has| |#1| (-219))) (($ $ (-735)) 162 (|has| |#1| (-219))) (($ $ (-1123)) 157 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 156 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 155 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 154 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2863 (((-111) $ $) 112 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 111 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 113 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 110 (|has| |#1| (-811)))) (-4265 (($ $ $) 62) (($ |#1| |#1|) 141)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-950 |#1|) (-134) (-533)) (T -950)) -((-4265 (*1 *1 *2 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-292)))) (-3425 (*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-292)))) (-3294 (*1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-525)) (-4 *2 (-533)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-525)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-525))))) -(-13 (-348) (-37 |t#1|) (-995 |t#1|) (-323 |t#1|) (-217 |t#1|) (-362 |t#1|) (-843 |t#1|) (-385 |t#1|) (-10 -8 (-15 -4265 ($ |t#1| |t#1|)) (-15 -3298 (|t#1| $)) (-15 -3297 (|t#1| $)) (-15 -3296 ($ $)) (-15 -3295 ($ $)) (IF (|has| |t#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |t#1| (-995 (-526))) (PROGN (-6 (-995 (-526))) (-6 (-995 (-392 (-526))))) |%noBranch|) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-977)) (-6 (-977)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-995 (-1123))) (-6 (-995 (-1123))) |%noBranch|) (IF (|has| |t#1| (-292)) (PROGN (-15 -3426 (|t#1| $)) (-15 -3425 ($ $))) |%noBranch|) (IF (|has| |t#1| (-525)) (PROGN (-15 -3294 ($)) (-15 -3428 (|t#1| $)) (-15 -3427 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-869)) (-6 (-869)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 (-211)) |has| |#1| (-977)) ((-584 (-363)) |has| |#1| (-977)) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526)))) ((-217 |#1|) . T) ((-219) |has| |#1| (-219)) ((-229) . T) ((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-275) . T) ((-292) . T) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-348) . T) ((-323 |#1|) . T) ((-362 |#1|) . T) ((-385 |#1|) . T) ((-436) . T) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|)) ((-533) . T) ((-613 #1#) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) . T) ((-682 |#1|) . T) ((-682 $) . T) ((-691) . T) ((-755) |has| |#1| (-784)) ((-756) |has| |#1| (-784)) ((-758) |has| |#1| (-784)) ((-761) |has| |#1| (-784)) ((-784) |has| |#1| (-784)) ((-809) |has| |#1| (-784)) ((-811) -3850 (|has| |#1| (-811)) (|has| |#1| (-784))) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-843 |#1|) . T) ((-869) |has| |#1| (-869)) ((-880) . T) ((-977) |has| |#1| (-977)) ((-995 (-392 (-526))) |has| |#1| (-995 (-526))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 (-1123)) |has| |#1| (-995 (-1123))) ((-995 |#1|) . T) ((-1010 #1#) . T) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-1099)) ((-1159) . T) ((-1164) . T)) -((-4275 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-951 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#2| |#1|) |#3|))) (-533) (-533) (-950 |#1|) (-950 |#2|)) (T -951)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-533)) (-4 *6 (-533)) (-4 *2 (-950 *6)) (-5 *1 (-951 *5 *6 *4 *2)) (-4 *4 (-950 *5))))) -(-10 -7 (-15 -4275 (|#4| (-1 |#2| |#1|) |#3|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3299 (($ (-1090 |#1| |#2|)) 11)) (-3421 (((-1090 |#1| |#2|) $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4118 ((|#2| $ (-225 |#1| |#2|)) 16)) (-4274 (((-823) $) NIL)) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL))) -(((-952 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3299 ($ (-1090 |#1| |#2|))) (-15 -3421 ((-1090 |#1| |#2|) $)) (-15 -4118 (|#2| $ (-225 |#1| |#2|))))) (-878) (-348)) (T -952)) -((-3299 (*1 *1 *2) (-12 (-5 *2 (-1090 *3 *4)) (-14 *3 (-878)) (-4 *4 (-348)) (-5 *1 (-952 *3 *4)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-1090 *3 *4)) (-5 *1 (-952 *3 *4)) (-14 *3 (-878)) (-4 *4 (-348)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-225 *4 *2)) (-14 *4 (-878)) (-4 *2 (-348)) (-5 *1 (-952 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3299 ($ (-1090 |#1| |#2|))) (-15 -3421 ((-1090 |#1| |#2|) $)) (-15 -4118 (|#2| $ (-225 |#1| |#2|))))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-3302 (($ $) 46)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-4152 (((-735) $) 45)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-3301 ((|#1| $) 44)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3304 ((|#1| |#1| $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3303 ((|#1| $) 47)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-3300 ((|#1| $) 43)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-953 |#1|) (-134) (-1159)) (T -953)) -((-3304 (*1 *2 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-953 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) -(-13 (-105 |t#1|) (-10 -8 (-6 -4310) (-15 -3304 (|t#1| |t#1| $)) (-15 -3303 (|t#1| $)) (-15 -3302 ($ $)) (-15 -4152 ((-735) $)) (-15 -3301 (|t#1| $)) (-15 -3300 (|t#1| $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3965 ((|#1| $) 12)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL (|has| |#1| (-525)))) (-3323 (((-111) $) NIL (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) NIL (|has| |#1| (-525)))) (-3305 (($ |#1| |#1| |#1| |#1|) 16)) (-2471 (((-111) $) NIL)) (-3429 ((|#1| $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-3306 ((|#1| $) 15)) (-3307 ((|#1| $) 14)) (-3308 ((|#1| $) 13)) (-3555 (((-1070) $) NIL)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|)))) (-4118 (($ $ |#1|) NIL (|has| |#1| (-271 |#1| |#1|)))) (-4129 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3309 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-3702 ((|#1| $) NIL (|has| |#1| (-1013)))) (-2957 (($) 8 T CONST)) (-2964 (($) 10 T CONST)) (-2969 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-348))) (($ (-392 (-526)) $) NIL (|has| |#1| (-348))))) -(((-954 |#1|) (-956 |#1|) (-163)) (T -954)) -NIL -(-956 |#1|) -((-3502 (((-111) $) 42)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#2| $) 43)) (-3324 (((-3 (-392 (-526)) "failed") $) 78)) (-3323 (((-111) $) 72)) (-3322 (((-392 (-526)) $) 76)) (-2471 (((-111) $) 41)) (-3429 ((|#2| $) 22)) (-4275 (($ (-1 |#2| |#2|) $) 19)) (-2703 (($ $) 61)) (-4129 (($ $) NIL) (($ $ (-735)) NIL) (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4287 (((-515) $) 67)) (-3309 (($ $) 17)) (-4274 (((-823) $) 56) (($ (-526)) 38) (($ |#2|) 36) (($ (-392 (-526))) NIL)) (-3423 (((-735)) 10)) (-3702 ((|#2| $) 71)) (-3353 (((-111) $ $) 25)) (-2985 (((-111) $ $) 69)) (-4156 (($ $) 29) (($ $ $) 28)) (-4158 (($ $ $) 26)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) -(((-955 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| (-392 (-526)))) (-15 -2985 ((-111) |#1| |#1|)) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 * (|#1| |#1| (-392 (-526)))) (-15 -2703 (|#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3702 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -2471 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-956 |#2|) (-163)) (T -955)) -((-3423 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-955 *3 *4)) (-4 *3 (-956 *4))))) -(-10 -8 (-15 -4274 (|#1| (-392 (-526)))) (-15 -2985 ((-111) |#1| |#1|)) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 * (|#1| |#1| (-392 (-526)))) (-15 -2703 (|#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3702 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -2471 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 116 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 114 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 113)) (-3469 (((-526) $) 117 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 115 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 112)) (-2331 (((-653 (-526)) (-653 $)) 87 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 86 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 85) (((-653 |#1|) (-653 $)) 84)) (-3781 (((-3 $ "failed") $) 32)) (-3965 ((|#1| $) 77)) (-3324 (((-3 (-392 (-526)) "failed") $) 73 (|has| |#1| (-525)))) (-3323 (((-111) $) 75 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 74 (|has| |#1| (-525)))) (-3305 (($ |#1| |#1| |#1| |#1|) 78)) (-2471 (((-111) $) 30)) (-3429 ((|#1| $) 79)) (-3637 (($ $ $) 66 (|has| |#1| (-811)))) (-3638 (($ $ $) 65 (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) 88)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 70 (|has| |#1| (-348)))) (-3306 ((|#1| $) 80)) (-3307 ((|#1| $) 81)) (-3308 ((|#1| $) 82)) (-3555 (((-1070) $) 10)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 94 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 92 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 91 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 90 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) 89 (|has| |#1| (-496 (-1123) |#1|)))) (-4118 (($ $ |#1|) 95 (|has| |#1| (-271 |#1| |#1|)))) (-4129 (($ $) 111 (|has| |#1| (-219))) (($ $ (-735)) 109 (|has| |#1| (-219))) (($ $ (-1123)) 107 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 106 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 105 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 104 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4287 (((-515) $) 71 (|has| |#1| (-584 (-515))))) (-3309 (($ $) 83)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35) (($ (-392 (-526))) 60 (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (((-3 $ "failed") $) 72 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-3702 ((|#1| $) 76 (|has| |#1| (-1013)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $) 110 (|has| |#1| (-219))) (($ $ (-735)) 108 (|has| |#1| (-219))) (($ $ (-1123)) 103 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 102 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 101 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 100 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2863 (((-111) $ $) 63 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 62 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 64 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 61 (|has| |#1| (-811)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 69 (|has| |#1| (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-392 (-526))) 68 (|has| |#1| (-348))) (($ (-392 (-526)) $) 67 (|has| |#1| (-348))))) -(((-956 |#1|) (-134) (-163)) (T -956)) -((-3309 (*1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3305 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526)))))) -(-13 (-37 |t#1|) (-397 |t#1|) (-217 |t#1|) (-323 |t#1|) (-362 |t#1|) (-10 -8 (-15 -3309 ($ $)) (-15 -3308 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -3306 (|t#1| $)) (-15 -3429 (|t#1| $)) (-15 -3305 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3965 (|t#1| $)) (IF (|has| |t#1| (-275)) (-6 (-275)) |%noBranch|) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-229)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-15 -3702 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-348)) ((-37 |#1|) . T) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-348)) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-348)) (|has| |#1| (-275))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-217 |#1|) . T) ((-219) |has| |#1| (-219)) ((-229) |has| |#1| (-348)) ((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-275) -3850 (|has| |#1| (-348)) (|has| |#1| (-275))) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-323 |#1|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|)) ((-613 #1#) |has| |#1| (-348)) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) |has| |#1| (-348)) ((-682 |#1|) . T) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 #1#) |has| |#1| (-348)) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-348)) (|has| |#1| (-275))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-4275 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-957 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) (-956 |#2|) (-163) (-956 |#4|) (-163)) (T -957)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-956 *6)) (-5 *1 (-957 *4 *5 *2 *6)) (-4 *4 (-956 *5))))) -(-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3302 (($ $) 20)) (-3310 (($ (-607 |#1|)) 29)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-4152 (((-735) $) 22)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) 24)) (-3929 (($ |#1| $) 15)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-3301 ((|#1| $) 23)) (-1307 ((|#1| $) 19)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3304 ((|#1| |#1| $) 14)) (-3722 (((-111) $) 17)) (-3887 (($) NIL)) (-3303 ((|#1| $) 18)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) NIL)) (-3300 ((|#1| $) 26)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-958 |#1|) (-13 (-953 |#1|) (-10 -8 (-15 -3310 ($ (-607 |#1|))))) (-1052)) (T -958)) -((-3310 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-958 *3))))) -(-13 (-953 |#1|) (-10 -8 (-15 -3310 ($ (-607 |#1|))))) -((-3337 (($ $) 12)) (-3311 (($ $ (-526)) 13))) -(((-959 |#1|) (-10 -8 (-15 -3337 (|#1| |#1|)) (-15 -3311 (|#1| |#1| (-526)))) (-960)) (T -959)) -NIL -(-10 -8 (-15 -3337 (|#1| |#1|)) (-15 -3311 (|#1| |#1| (-526)))) -((-3337 (($ $) 6)) (-3311 (($ $ (-526)) 7)) (** (($ $ (-392 (-526))) 8))) -(((-960) (-134)) (T -960)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-392 (-526))))) (-3311 (*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-526)))) (-3337 (*1 *1 *1) (-4 *1 (-960)))) -(-13 (-10 -8 (-15 -3337 ($ $)) (-15 -3311 ($ $ (-526))) (-15 ** ($ $ (-392 (-526)))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1739 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| (-392 |#2|) (-348)))) (-2151 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-2149 (((-111) $) NIL (|has| (-392 |#2|) (-348)))) (-1877 (((-653 (-392 |#2|)) (-1205 $)) NIL) (((-653 (-392 |#2|))) NIL)) (-3649 (((-392 |#2|) $) NIL)) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-392 |#2|) (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-4286 (((-390 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1681 (((-111) $ $) NIL (|has| (-392 |#2|) (-348)))) (-3433 (((-735)) NIL (|has| (-392 |#2|) (-353)))) (-1753 (((-111)) NIL)) (-1752 (((-111) |#1|) 144) (((-111) |#2|) 149)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| (-392 |#2|) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-3 (-392 |#2|) #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| (-392 |#2|) (-995 (-526)))) (((-392 (-526)) $) NIL (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-392 |#2|) $) NIL)) (-1887 (($ (-1205 (-392 |#2|)) (-1205 $)) NIL) (($ (-1205 (-392 |#2|))) 70) (($ (-1205 |#2|) |#2|) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-392 |#2|) (-335)))) (-2861 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-1876 (((-653 (-392 |#2|)) $ (-1205 $)) NIL) (((-653 (-392 |#2|)) $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-392 |#2|))) (|:| |vec| (-1205 (-392 |#2|)))) (-653 $) (-1205 $)) NIL) (((-653 (-392 |#2|)) (-653 $)) NIL)) (-1744 (((-1205 $) (-1205 $)) NIL)) (-4161 (($ |#3|) 65) (((-3 $ "failed") (-392 |#3|)) NIL (|has| (-392 |#2|) (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-1731 (((-607 (-607 |#1|))) NIL (|has| |#1| (-353)))) (-1756 (((-111) |#1| |#1|) NIL)) (-3406 (((-878)) NIL)) (-3294 (($) NIL (|has| (-392 |#2|) (-353)))) (-1751 (((-111)) NIL)) (-1750 (((-111) |#1|) 56) (((-111) |#2|) 146)) (-2860 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| (-392 |#2|) (-348)))) (-3817 (($ $) NIL)) (-3133 (($) NIL (|has| (-392 |#2|) (-335)))) (-1772 (((-111) $) NIL (|has| (-392 |#2|) (-335)))) (-1862 (($ $ (-735)) NIL (|has| (-392 |#2|) (-335))) (($ $) NIL (|has| (-392 |#2|) (-335)))) (-4045 (((-111) $) NIL (|has| (-392 |#2|) (-348)))) (-4090 (((-878) $) NIL (|has| (-392 |#2|) (-335))) (((-796 (-878)) $) NIL (|has| (-392 |#2|) (-335)))) (-2471 (((-111) $) NIL)) (-3696 (((-735)) NIL)) (-1745 (((-1205 $) (-1205 $)) NIL)) (-3429 (((-392 |#2|) $) NIL)) (-1732 (((-607 (-905 |#1|)) (-1123)) NIL (|has| |#1| (-348)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-392 |#2|) (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| (-392 |#2|) (-348)))) (-2106 ((|#3| $) NIL (|has| (-392 |#2|) (-348)))) (-2102 (((-878) $) NIL (|has| (-392 |#2|) (-353)))) (-3379 ((|#3| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| (-392 |#2|) (-348))) (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-3554 (((-1106) $) NIL)) (-1740 (((-653 (-392 |#2|))) 52)) (-1742 (((-653 (-392 |#2|))) 51)) (-2703 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-1737 (($ (-1205 |#2|) |#2|) 71)) (-1741 (((-653 (-392 |#2|))) 50)) (-1743 (((-653 (-392 |#2|))) 49)) (-1736 (((-2 (|:| |num| (-653 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1738 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) 77)) (-1749 (((-1205 $)) 46)) (-4237 (((-1205 $)) 45)) (-1748 (((-111) $) NIL)) (-1747 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3764 (($) NIL (|has| (-392 |#2|) (-335)) CONST)) (-2461 (($ (-878)) NIL (|has| (-392 |#2|) (-353)))) (-1734 (((-3 |#2| #3="failed")) 63)) (-3555 (((-1070) $) NIL)) (-1758 (((-735)) NIL)) (-2470 (($) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| (-392 |#2|) (-348)))) (-3457 (($ (-607 $)) NIL (|has| (-392 |#2|) (-348))) (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-392 |#2|) (-335)))) (-4051 (((-390 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-392 |#2|) (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| (-392 |#2|) (-348)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| (-392 |#2|) (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1680 (((-735) $) NIL (|has| (-392 |#2|) (-348)))) (-4118 ((|#1| $ |#1| |#1|) NIL)) (-1735 (((-3 |#2| #3#)) 62)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| (-392 |#2|) (-348)))) (-4076 (((-392 |#2|) (-1205 $)) NIL) (((-392 |#2|)) 42)) (-1863 (((-735) $) NIL (|has| (-392 |#2|) (-335))) (((-3 (-735) "failed") $ $) NIL (|has| (-392 |#2|) (-335)))) (-4129 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-2469 (((-653 (-392 |#2|)) (-1205 $) (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348)))) (-3499 ((|#3|) 53)) (-1766 (($) NIL (|has| (-392 |#2|) (-335)))) (-3537 (((-1205 (-392 |#2|)) $ (-1205 $)) NIL) (((-653 (-392 |#2|)) (-1205 $) (-1205 $)) NIL) (((-1205 (-392 |#2|)) $) 72) (((-653 (-392 |#2|)) (-1205 $)) NIL)) (-4287 (((-1205 (-392 |#2|)) $) NIL) (($ (-1205 (-392 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-392 |#2|) (-335)))) (-1746 (((-1205 $) (-1205 $)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 |#2|)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-995 (-392 (-526)))))) (($ $) NIL (|has| (-392 |#2|) (-348)))) (-3002 (($ $) NIL (|has| (-392 |#2|) (-335))) (((-3 $ "failed") $) NIL (|has| (-392 |#2|) (-139)))) (-2667 ((|#3| $) NIL)) (-3423 (((-735)) NIL)) (-1755 (((-111)) 60)) (-1754 (((-111) |#1|) 150) (((-111) |#2|) 151)) (-2104 (((-1205 $)) 121)) (-2150 (((-111) $ $) NIL (|has| (-392 |#2|) (-348)))) (-1733 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1757 (((-111)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| (-392 |#2|) (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 |#2|)) NIL) (($ (-392 |#2|) $) NIL) (($ (-392 (-526)) $) NIL (|has| (-392 |#2|) (-348))) (($ $ (-392 (-526))) NIL (|has| (-392 |#2|) (-348))))) -(((-961 |#1| |#2| |#3| |#4| |#5|) (-327 |#1| |#2| |#3|) (-1164) (-1181 |#1|) (-1181 (-392 |#2|)) (-392 |#2|) (-735)) (T -961)) -NIL -(-327 |#1| |#2| |#3|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3317 (((-607 (-526)) $) 54)) (-3313 (($ (-607 (-526))) 62)) (-3426 (((-526) $) 40 (|has| (-526) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-526) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) 49) (((-3 (-1123) #2#) $) NIL (|has| (-526) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) 47 (|has| (-526) (-995 (-526)))) (((-3 (-526) #2#) $) 49 (|has| (-526) (-995 (-526))))) (-3469 (((-526) $) NIL) (((-1123) $) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-526) (-995 (-526)))) (((-526) $) NIL (|has| (-526) (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-526) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3315 (((-607 (-526)) $) 60)) (-3500 (((-111) $) NIL (|has| (-526) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-526) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-526) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-526) $) 37)) (-3763 (((-3 $ "failed") $) NIL (|has| (-526) (-1099)))) (-3501 (((-111) $) NIL (|has| (-526) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-526) (-811)))) (-4275 (($ (-1 (-526) (-526)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-526) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-526) (-292))) (((-392 (-526)) $) 42)) (-3316 (((-1101 (-526)) $) 59)) (-3312 (($ (-607 (-526)) (-607 (-526))) 63)) (-3427 (((-526) $) 53 (|has| (-526) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-526)) (-607 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-526) (-526)) NIL (|has| (-526) (-294 (-526)))) (($ $ (-278 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-278 (-526)))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-1123)) (-607 (-526))) NIL (|has| (-526) (-496 (-1123) (-526)))) (($ $ (-1123) (-526)) NIL (|has| (-526) (-496 (-1123) (-526))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-526)) NIL (|has| (-526) (-271 (-526) (-526))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) 11 (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-526) $) 39)) (-3314 (((-607 (-526)) $) 61)) (-4287 (((-849 (-526)) $) NIL (|has| (-526) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-526) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-526) (-584 (-515)))) (((-363) $) NIL (|has| (-526) (-977))) (((-211) $) NIL (|has| (-526) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-526) (-869))))) (-4274 (((-823) $) 77) (($ (-526)) 43) (($ $) NIL) (($ (-392 (-526))) 20) (($ (-526)) 43) (($ (-1123)) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) 18)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-526) (-869))) (|has| (-526) (-139))))) (-3423 (((-735)) 9)) (-3428 (((-526) $) 51 (|has| (-526) (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-526) (-784)))) (-2957 (($) 10 T CONST)) (-2964 (($) 12 T CONST)) (-2969 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-526) (-811)))) (-3353 (((-111) $ $) 14)) (-2984 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2985 (((-111) $ $) 33 (|has| (-526) (-811)))) (-4265 (($ $ $) 29) (($ (-526) (-526)) 31)) (-4156 (($ $) 15) (($ $ $) 23)) (-4158 (($ $ $) 21)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 25) (($ $ $) 27) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-526) $) 25) (($ $ (-526)) NIL))) -(((-962 |#1|) (-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -3317 ((-607 (-526)) $)) (-15 -3316 ((-1101 (-526)) $)) (-15 -3315 ((-607 (-526)) $)) (-15 -3314 ((-607 (-526)) $)) (-15 -3313 ($ (-607 (-526)))) (-15 -3312 ($ (-607 (-526)) (-607 (-526)))))) (-526)) (T -962)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3312 (*1 *1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) -(-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -3317 ((-607 (-526)) $)) (-15 -3316 ((-1101 (-526)) $)) (-15 -3315 ((-607 (-526)) $)) (-15 -3314 ((-607 (-526)) $)) (-15 -3313 ($ (-607 (-526)))) (-15 -3312 ($ (-607 (-526)) (-607 (-526)))))) -((-3318 (((-50) (-392 (-526)) (-526)) 9))) -(((-963) (-10 -7 (-15 -3318 ((-50) (-392 (-526)) (-526))))) (T -963)) -((-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-526))) (-5 *4 (-526)) (-5 *2 (-50)) (-5 *1 (-963))))) -(-10 -7 (-15 -3318 ((-50) (-392 (-526)) (-526)))) -((-3433 (((-526)) 13)) (-3321 (((-526)) 16)) (-3320 (((-1211) (-526)) 15)) (-3319 (((-526) (-526)) 17) (((-526)) 12))) -(((-964) (-10 -7 (-15 -3319 ((-526))) (-15 -3433 ((-526))) (-15 -3319 ((-526) (-526))) (-15 -3320 ((-1211) (-526))) (-15 -3321 ((-526))))) (T -964)) -((-3321 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-964)))) (-3319 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) (-3433 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) (-3319 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964))))) -(-10 -7 (-15 -3319 ((-526))) (-15 -3433 ((-526))) (-15 -3319 ((-526) (-526))) (-15 -3320 ((-1211) (-526))) (-15 -3321 ((-526)))) -((-4052 (((-390 |#1|) |#1|) 41)) (-4051 (((-390 |#1|) |#1|) 40))) -(((-965 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1|))) (-1181 (-392 (-526)))) (T -965)) -((-4052 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1181 (-392 (-526)))))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1181 (-392 (-526))))))) -(-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1|))) -((-3324 (((-3 (-392 (-526)) "failed") |#1|) 15)) (-3323 (((-111) |#1|) 14)) (-3322 (((-392 (-526)) |#1|) 10))) -(((-966 |#1|) (-10 -7 (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|))) (-995 (-392 (-526)))) (T -966)) -((-3324 (*1 *2 *3) (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-966 *3)) (-4 *3 (-995 *2)))) (-3323 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-966 *3)) (-4 *3 (-995 (-392 (-526)))))) (-3322 (*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-966 *3)) (-4 *3 (-995 *2))))) -(-10 -7 (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|))) -((-4106 ((|#2| $ "value" |#2|) 12)) (-4118 ((|#2| $ "value") 10)) (-3328 (((-111) $ $) 18))) -(((-967 |#1| |#2|) (-10 -8 (-15 -4106 (|#2| |#1| "value" |#2|)) (-15 -3328 ((-111) |#1| |#1|)) (-15 -4118 (|#2| |#1| "value"))) (-968 |#2|) (-1159)) (T -967)) -NIL -(-10 -8 (-15 -4106 (|#2| |#1| "value" |#2|)) (-15 -3328 ((-111) |#1| |#1|)) (-15 -4118 (|#2| |#1| "value"))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ "value") 47)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-968 |#1|) (-134) (-1159)) (T -968)) -((-3836 (*1 *2 *1) (-12 (-4 *3 (-1159)) (-5 *2 (-607 *1)) (-4 *1 (-968 *3)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-1159)) (-5 *2 (-607 *1)) (-4 *1 (-968 *3)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-968 *2)) (-4 *2 (-1159)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-607 *3)))) (-3329 (*1 *2 *1 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-526)))) (-3328 (*1 *2 *1 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-3327 (*1 *2 *1 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-3326 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *1)) (|has| *1 (-6 -4311)) (-4 *1 (-968 *3)) (-4 *3 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4311)) (-4 *1 (-968 *2)) (-4 *2 (-1159)))) (-3325 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-968 *2)) (-4 *2 (-1159))))) -(-13 (-472 |t#1|) (-10 -8 (-15 -3836 ((-607 $) $)) (-15 -3331 ((-607 $) $)) (-15 -3841 ((-111) $)) (-15 -3721 (|t#1| $)) (-15 -4118 (|t#1| $ "value")) (-15 -3955 ((-111) $)) (-15 -3330 ((-607 |t#1|) $)) (-15 -3329 ((-526) $ $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -3328 ((-111) $ $)) (-15 -3327 ((-111) $ $))) |%noBranch|) (IF (|has| $ (-6 -4311)) (PROGN (-15 -3326 ($ $ (-607 $))) (-15 -4106 (|t#1| $ "value" |t#1|)) (-15 -3325 (|t#1| $ |t#1|))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-3337 (($ $) 9) (($ $ (-878)) 43) (($ (-392 (-526))) 13) (($ (-526)) 15)) (-3497 (((-3 $ "failed") (-1117 $) (-878) (-823)) 23) (((-3 $ "failed") (-1117 $) (-878)) 28)) (-3311 (($ $ (-526)) 49)) (-3423 (((-735)) 17)) (-3498 (((-607 $) (-1117 $)) NIL) (((-607 $) (-1117 (-392 (-526)))) 54) (((-607 $) (-1117 (-526))) 59) (((-607 $) (-905 $)) 63) (((-607 $) (-905 (-392 (-526)))) 67) (((-607 $) (-905 (-526))) 71)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL) (($ $ (-392 (-526))) 47))) -(((-969 |#1|) (-10 -8 (-15 -3337 (|#1| (-526))) (-15 -3337 (|#1| (-392 (-526)))) (-15 -3337 (|#1| |#1| (-878))) (-15 -3498 ((-607 |#1|) (-905 (-526)))) (-15 -3498 ((-607 |#1|) (-905 (-392 (-526))))) (-15 -3498 ((-607 |#1|) (-905 |#1|))) (-15 -3498 ((-607 |#1|) (-1117 (-526)))) (-15 -3498 ((-607 |#1|) (-1117 (-392 (-526))))) (-15 -3498 ((-607 |#1|) (-1117 |#1|))) (-15 -3497 ((-3 |#1| "failed") (-1117 |#1|) (-878))) (-15 -3497 ((-3 |#1| "failed") (-1117 |#1|) (-878) (-823))) (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3311 (|#1| |#1| (-526))) (-15 -3337 (|#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -3423 ((-735))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878)))) (-970)) (T -969)) -((-3423 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-969 *3)) (-4 *3 (-970))))) -(-10 -8 (-15 -3337 (|#1| (-526))) (-15 -3337 (|#1| (-392 (-526)))) (-15 -3337 (|#1| |#1| (-878))) (-15 -3498 ((-607 |#1|) (-905 (-526)))) (-15 -3498 ((-607 |#1|) (-905 (-392 (-526))))) (-15 -3498 ((-607 |#1|) (-905 |#1|))) (-15 -3498 ((-607 |#1|) (-1117 (-526)))) (-15 -3498 ((-607 |#1|) (-1117 (-392 (-526))))) (-15 -3498 ((-607 |#1|) (-1117 |#1|))) (-15 -3497 ((-3 |#1| "failed") (-1117 |#1|) (-878))) (-15 -3497 ((-3 |#1| "failed") (-1117 |#1|) (-878) (-823))) (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3311 (|#1| |#1| (-526))) (-15 -3337 (|#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -3423 ((-735))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 87)) (-2151 (($ $) 88)) (-2149 (((-111) $) 90)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 107)) (-4286 (((-390 $) $) 108)) (-3337 (($ $) 71) (($ $ (-878)) 57) (($ (-392 (-526))) 56) (($ (-526)) 55)) (-1681 (((-111) $ $) 98)) (-3945 (((-526) $) 124)) (-3855 (($) 17 T CONST)) (-3497 (((-3 $ "failed") (-1117 $) (-878) (-823)) 65) (((-3 $ "failed") (-1117 $) (-878)) 64)) (-3470 (((-3 (-526) #1="failed") $) 83 (|has| (-392 (-526)) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 81 (|has| (-392 (-526)) (-995 (-392 (-526))))) (((-3 (-392 (-526)) #1#) $) 79)) (-3469 (((-526) $) 84 (|has| (-392 (-526)) (-995 (-526)))) (((-392 (-526)) $) 82 (|has| (-392 (-526)) (-995 (-392 (-526))))) (((-392 (-526)) $) 78)) (-3333 (($ $ (-823)) 54)) (-3332 (($ $ (-823)) 53)) (-2861 (($ $ $) 102)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 101)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 96)) (-4045 (((-111) $) 109)) (-3500 (((-111) $) 122)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 70)) (-3501 (((-111) $) 123)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 105)) (-3637 (($ $ $) 121)) (-3638 (($ $ $) 120)) (-3334 (((-3 (-1117 $) "failed") $) 66)) (-3336 (((-3 (-823) "failed") $) 68)) (-3335 (((-3 (-1117 $) "failed") $) 67)) (-1989 (($ (-607 $)) 94) (($ $ $) 93)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 110)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 95)) (-3457 (($ (-607 $)) 92) (($ $ $) 91)) (-4051 (((-390 $) $) 106)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 103)) (-3780 (((-3 $ "failed") $ $) 86)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 97)) (-1680 (((-735) $) 99)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 100)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 114) (($ $) 85) (($ (-392 (-526))) 80) (($ (-526)) 77) (($ (-392 (-526))) 74)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 89)) (-4088 (((-392 (-526)) $ $) 52)) (-3498 (((-607 $) (-1117 $)) 63) (((-607 $) (-1117 (-392 (-526)))) 62) (((-607 $) (-1117 (-526))) 61) (((-607 $) (-905 $)) 60) (((-607 $) (-905 (-392 (-526)))) 59) (((-607 $) (-905 (-526))) 58)) (-3702 (($ $) 125)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 118)) (-2864 (((-111) $ $) 117)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 119)) (-2985 (((-111) $ $) 116)) (-4265 (($ $ $) 115)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 111) (($ $ (-392 (-526))) 69)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ (-392 (-526)) $) 113) (($ $ (-392 (-526))) 112) (($ (-526) $) 76) (($ $ (-526)) 75) (($ (-392 (-526)) $) 73) (($ $ (-392 (-526))) 72))) -(((-970) (-134)) (T -970)) -((-3337 (*1 *1 *1) (-4 *1 (-970))) (-3336 (*1 *2 *1) (|partial| -12 (-4 *1 (-970)) (-5 *2 (-823)))) (-3335 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117 *1)) (-4 *1 (-970)))) (-3334 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117 *1)) (-4 *1 (-970)))) (-3497 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1117 *1)) (-5 *3 (-878)) (-5 *4 (-823)) (-4 *1 (-970)))) (-3497 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1117 *1)) (-5 *3 (-878)) (-4 *1 (-970)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-970)) (-5 *2 (-607 *1)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-1117 (-392 (-526)))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-1117 (-526))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-970)) (-5 *2 (-607 *1)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-905 (-526))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) (-3337 (*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-878)))) (-3337 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-970)))) (-3337 (*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-970)))) (-3333 (*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-823)))) (-3332 (*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-823)))) (-4088 (*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-392 (-526)))))) -(-13 (-141) (-809) (-163) (-348) (-397 (-392 (-526))) (-37 (-526)) (-37 (-392 (-526))) (-960) (-10 -8 (-15 -3336 ((-3 (-823) "failed") $)) (-15 -3335 ((-3 (-1117 $) "failed") $)) (-15 -3334 ((-3 (-1117 $) "failed") $)) (-15 -3497 ((-3 $ "failed") (-1117 $) (-878) (-823))) (-15 -3497 ((-3 $ "failed") (-1117 $) (-878))) (-15 -3498 ((-607 $) (-1117 $))) (-15 -3498 ((-607 $) (-1117 (-392 (-526))))) (-15 -3498 ((-607 $) (-1117 (-526)))) (-15 -3498 ((-607 $) (-905 $))) (-15 -3498 ((-607 $) (-905 (-392 (-526))))) (-15 -3498 ((-607 $) (-905 (-526)))) (-15 -3337 ($ $ (-878))) (-15 -3337 ($ $)) (-15 -3337 ($ (-392 (-526)))) (-15 -3337 ($ (-526))) (-15 -3333 ($ $ (-823))) (-15 -3332 ($ $ (-823))) (-15 -4088 ((-392 (-526)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 #2=(-526)) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 #2# #2#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-397 (-392 (-526))) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 #2#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 #2#) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-809) . T) ((-811) . T) ((-880) . T) ((-960) . T) ((-995 (-392 (-526))) . T) ((-995 (-526)) |has| (-392 (-526)) (-995 (-526))) ((-1010 #1#) . T) ((-1010 #2#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) -((-3338 (((-2 (|:| |ans| |#2|) (|:| -3434 |#2|) (|:| |sol?| (-111))) (-526) |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-971 |#1| |#2|) (-10 -7 (-15 -3338 ((-2 (|:| |ans| |#2|) (|:| -3434 |#2|) (|:| |sol?| (-111))) (-526) |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-27) (-406 |#1|))) (T -971)) -((-3338 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1123)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-607 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1145) (-27) (-406 *8))) (-4 *8 (-13 (-436) (-811) (-141) (-995 *3) (-606 *3))) (-5 *3 (-526)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3434 *4) (|:| |sol?| (-111)))) (-5 *1 (-971 *8 *4))))) -(-10 -7 (-15 -3338 ((-2 (|:| |ans| |#2|) (|:| -3434 |#2|) (|:| |sol?| (-111))) (-526) |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3339 (((-3 (-607 |#2|) "failed") (-526) |#2| |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-972 |#1| |#2|) (-10 -7 (-15 -3339 ((-3 (-607 |#2|) "failed") (-526) |#2| |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-27) (-406 |#1|))) (T -972)) -((-3339 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1123)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-607 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1145) (-27) (-406 *8))) (-4 *8 (-13 (-436) (-811) (-141) (-995 *3) (-606 *3))) (-5 *3 (-526)) (-5 *2 (-607 *4)) (-5 *1 (-972 *8 *4))))) -(-10 -7 (-15 -3339 ((-3 (-607 |#2|) "failed") (-526) |#2| |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3342 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -3578 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-526)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-526) (-1 |#2| |#2|)) 30)) (-3340 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |c| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|)) 58)) (-3341 (((-2 (|:| |ans| (-392 |#2|)) (|:| |nosol| (-111))) (-392 |#2|) (-392 |#2|)) 63))) -(((-973 |#1| |#2|) (-10 -7 (-15 -3340 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |c| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|))) (-15 -3341 ((-2 (|:| |ans| (-392 |#2|)) (|:| |nosol| (-111))) (-392 |#2|) (-392 |#2|))) (-15 -3342 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -3578 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-526)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-526) (-1 |#2| |#2|)))) (-13 (-348) (-141) (-995 (-526))) (-1181 |#1|)) (T -973)) -((-3342 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1181 *6)) (-4 *6 (-13 (-348) (-141) (-995 *4))) (-5 *4 (-526)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) (|:| -3578 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-973 *6 *3)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| |ans| (-392 *5)) (|:| |nosol| (-111)))) (-5 *1 (-973 *4 *5)) (-5 *3 (-392 *5)))) (-3340 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-392 *6)) (|:| |c| (-392 *6)) (|:| -3396 *6))) (-5 *1 (-973 *5 *6)) (-5 *3 (-392 *6))))) -(-10 -7 (-15 -3340 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |c| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|))) (-15 -3341 ((-2 (|:| |ans| (-392 |#2|)) (|:| |nosol| (-111))) (-392 |#2|) (-392 |#2|))) (-15 -3342 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -3578 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-526)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-526) (-1 |#2| |#2|)))) -((-3343 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |h| |#2|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|)) 22)) (-3344 (((-3 (-607 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|)) 33))) -(((-974 |#1| |#2|) (-10 -7 (-15 -3343 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |h| |#2|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|))) (-15 -3344 ((-3 (-607 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|)))) (-13 (-348) (-141) (-995 (-526))) (-1181 |#1|)) (T -974)) -((-3344 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-392 *5))) (-5 *1 (-974 *4 *5)) (-5 *3 (-392 *5)))) (-3343 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-392 *6)) (|:| |h| *6) (|:| |c1| (-392 *6)) (|:| |c2| (-392 *6)) (|:| -3396 *6))) (-5 *1 (-974 *5 *6)) (-5 *3 (-392 *6))))) -(-10 -7 (-15 -3343 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |h| |#2|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|))) (-15 -3344 ((-3 (-607 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|)))) -((-3345 (((-1 |#1|) (-607 (-2 (|:| -3721 |#1|) (|:| -1553 (-526))))) 37)) (-3398 (((-1 |#1|) (-1048 |#1|)) 45)) (-3346 (((-1 |#1|) (-1205 |#1|) (-1205 (-526)) (-526)) 34))) -(((-975 |#1|) (-10 -7 (-15 -3398 ((-1 |#1|) (-1048 |#1|))) (-15 -3345 ((-1 |#1|) (-607 (-2 (|:| -3721 |#1|) (|:| -1553 (-526)))))) (-15 -3346 ((-1 |#1|) (-1205 |#1|) (-1205 (-526)) (-526)))) (-1052)) (T -975)) -((-3346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1205 *6)) (-5 *4 (-1205 (-526))) (-5 *5 (-526)) (-4 *6 (-1052)) (-5 *2 (-1 *6)) (-5 *1 (-975 *6)))) (-3345 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3721 *4) (|:| -1553 (-526))))) (-4 *4 (-1052)) (-5 *2 (-1 *4)) (-5 *1 (-975 *4)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1048 *4)) (-4 *4 (-1052)) (-5 *2 (-1 *4)) (-5 *1 (-975 *4))))) -(-10 -7 (-15 -3398 ((-1 |#1|) (-1048 |#1|))) (-15 -3345 ((-1 |#1|) (-607 (-2 (|:| -3721 |#1|) (|:| -1553 (-526)))))) (-15 -3346 ((-1 |#1|) (-1205 |#1|) (-1205 (-526)) (-526)))) -((-4090 (((-735) (-318 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4090 ((-735) (-318 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|) (-13 (-353) (-348))) (T -976)) -((-4090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-318 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-4 *4 (-1181 (-392 *7))) (-4 *8 (-327 *6 *7 *4)) (-4 *9 (-13 (-353) (-348))) (-5 *2 (-735)) (-5 *1 (-976 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -4090 ((-735) (-318 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-4287 (((-211) $) 6) (((-363) $) 9))) -(((-977) (-134)) (T -977)) -NIL -(-13 (-584 (-211)) (-584 (-363))) -(((-584 (-211)) . T) ((-584 (-363)) . T)) -((-3431 (((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 31) (((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526))) 28)) (-3349 (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526))) 33) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526))) 29) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 32) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|) 27)) (-3348 (((-607 (-392 (-526))) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) 19)) (-3347 (((-392 (-526)) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 16))) -(((-978 |#1|) (-10 -7 (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|)) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526)))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3347 ((-392 (-526)) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3348 ((-607 (-392 (-526))) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))))) (-1181 (-526))) (T -978)) -((-3348 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *2 (-607 (-392 (-526)))) (-5 *1 (-978 *4)) (-4 *4 (-1181 (-526))))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *2 (-392 (-526))) (-5 *1 (-978 *4)) (-4 *4 (-1181 (-526))))) (-3431 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) (-3431 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *4 (-392 (-526))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) (-3349 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *5) (|:| -3434 *5)))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) (-5 *4 (-2 (|:| -3435 *5) (|:| -3434 *5))))) (-3349 (*1 *2 *3 *4) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) (-5 *4 (-392 (-526))))) (-3349 (*1 *2 *3 *4) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) (-5 *4 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-3349 (*1 *2 *3) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526)))))) -(-10 -7 (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|)) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526)))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3347 ((-392 (-526)) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3348 ((-607 (-392 (-526))) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))))) -((-3431 (((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 35) (((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526))) 32)) (-3349 (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526))) 30) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526))) 26) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 28) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|) 24))) -(((-979 |#1|) (-10 -7 (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|)) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526)))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-1181 (-392 (-526)))) (T -979)) -((-3431 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))))) (-3431 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *4 (-392 (-526))) (-5 *1 (-979 *3)) (-4 *3 (-1181 *4)))) (-3349 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *5) (|:| -3434 *5)))) (-5 *1 (-979 *3)) (-4 *3 (-1181 *5)) (-5 *4 (-2 (|:| -3435 *5) (|:| -3434 *5))))) (-3349 (*1 *2 *3 *4) (-12 (-5 *4 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *4) (|:| -3434 *4)))) (-5 *1 (-979 *3)) (-4 *3 (-1181 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))) (-5 *4 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-3349 (*1 *2 *3) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526))))))) -(-10 -7 (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|)) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526)))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) -((-3895 (((-607 (-363)) (-905 (-526)) (-363)) 28) (((-607 (-363)) (-905 (-392 (-526))) (-363)) 27)) (-4284 (((-607 (-607 (-363))) (-607 (-905 (-526))) (-607 (-1123)) (-363)) 37))) -(((-980) (-10 -7 (-15 -3895 ((-607 (-363)) (-905 (-392 (-526))) (-363))) (-15 -3895 ((-607 (-363)) (-905 (-526)) (-363))) (-15 -4284 ((-607 (-607 (-363))) (-607 (-905 (-526))) (-607 (-1123)) (-363))))) (T -980)) -((-4284 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-607 (-1123))) (-5 *2 (-607 (-607 (-363)))) (-5 *1 (-980)) (-5 *5 (-363)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-526))) (-5 *2 (-607 (-363))) (-5 *1 (-980)) (-5 *4 (-363)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *2 (-607 (-363))) (-5 *1 (-980)) (-5 *4 (-363))))) -(-10 -7 (-15 -3895 ((-607 (-363)) (-905 (-392 (-526))) (-363))) (-15 -3895 ((-607 (-363)) (-905 (-526)) (-363))) (-15 -4284 ((-607 (-607 (-363))) (-607 (-905 (-526))) (-607 (-1123)) (-363)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 70)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) NIL) (($ $ (-878)) NIL) (($ (-392 (-526))) NIL) (($ (-526)) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) 65)) (-3855 (($) NIL T CONST)) (-3497 (((-3 $ #1="failed") (-1117 $) (-878) (-823)) NIL) (((-3 $ #1#) (-1117 $) (-878)) 50)) (-3470 (((-3 (-392 (-526)) #2="failed") $) NIL (|has| (-392 (-526)) (-995 (-392 (-526))))) (((-3 (-392 (-526)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-526) #2#) $) NIL (-3850 (|has| (-392 (-526)) (-995 (-526))) (|has| |#1| (-995 (-526)))))) (-3469 (((-392 (-526)) $) 15 (|has| (-392 (-526)) (-995 (-392 (-526))))) (((-392 (-526)) $) 15) ((|#1| $) 108) (((-526) $) NIL (-3850 (|has| (-392 (-526)) (-995 (-526))) (|has| |#1| (-995 (-526)))))) (-3333 (($ $ (-823)) 42)) (-3332 (($ $ (-823)) 43)) (-2861 (($ $ $) NIL)) (-3496 (((-392 (-526)) $ $) 19)) (-3781 (((-3 $ "failed") $) 83)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) 61)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL)) (-3501 (((-111) $) 64)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3334 (((-3 (-1117 $) #1#) $) 78)) (-3336 (((-3 (-823) #1#) $) 77)) (-3335 (((-3 (-1117 $) #1#) $) 75)) (-3350 (((-3 (-1014 $ (-1117 $)) "failed") $) 73)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 84)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4274 (((-823) $) 82) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ $) 58) (($ (-392 (-526))) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 110)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-4088 (((-392 (-526)) $ $) 25)) (-3498 (((-607 $) (-1117 $)) 56) (((-607 $) (-1117 (-392 (-526)))) NIL) (((-607 $) (-1117 (-526))) NIL) (((-607 $) (-905 $)) NIL) (((-607 $) (-905 (-392 (-526)))) NIL) (((-607 $) (-905 (-526))) NIL)) (-3351 (($ (-1014 $ (-1117 $)) (-823)) 41)) (-3702 (($ $) 20)) (-2957 (($) 29 T CONST)) (-2964 (($) 35 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 71)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 22)) (-4265 (($ $ $) 33)) (-4156 (($ $) 34) (($ $ $) 69)) (-4158 (($ $ $) 103)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL) (($ $ (-392 (-526))) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 91) (($ $ $) 96) (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ (-526) $) 91) (($ $ (-526)) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-981 |#1|) (-13 (-970) (-397 |#1|) (-37 |#1|) (-10 -8 (-15 -3351 ($ (-1014 $ (-1117 $)) (-823))) (-15 -3350 ((-3 (-1014 $ (-1117 $)) "failed") $)) (-15 -3496 ((-392 (-526)) $ $)))) (-13 (-809) (-348) (-977))) (T -981)) -((-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1014 (-981 *4) (-1117 (-981 *4)))) (-5 *3 (-823)) (-5 *1 (-981 *4)) (-4 *4 (-13 (-809) (-348) (-977))))) (-3350 (*1 *2 *1) (|partial| -12 (-5 *2 (-1014 (-981 *3) (-1117 (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-13 (-809) (-348) (-977))))) (-3496 (*1 *2 *1 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-981 *3)) (-4 *3 (-13 (-809) (-348) (-977)))))) -(-13 (-970) (-397 |#1|) (-37 |#1|) (-10 -8 (-15 -3351 ($ (-1014 $ (-1117 $)) (-823))) (-15 -3350 ((-3 (-1014 $ (-1117 $)) "failed") $)) (-15 -3496 ((-392 (-526)) $ $)))) -((-3352 (((-2 (|:| -3578 |#2|) (|:| -2805 (-607 |#1|))) |#2| (-607 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-982 |#1| |#2|) (-10 -7 (-15 -3352 (|#2| |#2| |#1|)) (-15 -3352 ((-2 (|:| -3578 |#2|) (|:| -2805 (-607 |#1|))) |#2| (-607 |#1|)))) (-348) (-623 |#1|)) (T -982)) -((-3352 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-5 *2 (-2 (|:| -3578 *3) (|:| -2805 (-607 *5)))) (-5 *1 (-982 *5 *3)) (-5 *4 (-607 *5)) (-4 *3 (-623 *5)))) (-3352 (*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-982 *3 *2)) (-4 *2 (-623 *3))))) -(-10 -7 (-15 -3352 (|#2| |#2| |#1|)) (-15 -3352 ((-2 (|:| -3578 |#2|) (|:| -2805 (-607 |#1|))) |#2| (-607 |#1|)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3354 ((|#1| $ |#1|) 14)) (-4106 ((|#1| $ |#1|) 12)) (-3356 (($ |#1|) 10)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4118 ((|#1| $) 11)) (-3355 ((|#1| $) 13)) (-4274 (((-823) $) 21 (|has| |#1| (-1052)))) (-3353 (((-111) $ $) 9))) -(((-983 |#1|) (-13 (-1159) (-10 -8 (-15 -3356 ($ |#1|)) (-15 -4118 (|#1| $)) (-15 -4106 (|#1| $ |#1|)) (-15 -3355 (|#1| $)) (-15 -3354 (|#1| $ |#1|)) (-15 -3353 ((-111) $ $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) (-1159)) (T -983)) -((-3356 (*1 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-4106 (*1 *2 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-3355 (*1 *2 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-3354 (*1 *2 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-3353 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-983 *3)) (-4 *3 (-1159))))) -(-13 (-1159) (-10 -8 (-15 -3356 ($ |#1|)) (-15 -4118 (|#1| $)) (-15 -4106 (|#1| $ |#1|)) (-15 -3355 (|#1| $)) (-15 -3354 (|#1| $ |#1|)) (-15 -3353 ((-111) $ $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) NIL)) (-4004 (((-607 $) (-607 |#4|)) 105) (((-607 $) (-607 |#4|) (-111)) 106) (((-607 $) (-607 |#4|) (-111) (-111)) 104) (((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111)) 107)) (-3384 (((-607 |#3|) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4010 ((|#4| |#4| $) NIL)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 99)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) 26 (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3200 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) NIL)) (-3469 (($ (-607 |#4|)) NIL)) (-4117 (((-3 $ #1#) $) 39)) (-4007 ((|#4| |#4| $) 57)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-4005 ((|#4| |#4| $) NIL)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) NIL)) (-3511 (((-111) |#4| $) NIL)) (-3509 (((-111) |#4| $) NIL)) (-3512 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3757 (((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111)) 119)) (-2044 (((-607 |#4|) $) 16 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3493 ((|#3| $) 33)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 17 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2048 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 21)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) NIL)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 97)) (-4116 (((-3 |#4| #1#) $) 37)) (-3506 (((-607 $) |#4| $) 80)) (-3508 (((-3 (-111) (-607 $)) |#4| $) NIL)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 90) (((-111) |#4| $) 52)) (-3550 (((-607 $) |#4| $) 102) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) 103) (((-607 $) |#4| (-607 $)) NIL)) (-3758 (((-607 $) (-607 |#4|) (-111) (-111) (-111)) 114)) (-3759 (($ |#4| $) 70) (($ (-607 |#4|) $) 71) (((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 67)) (-4019 (((-607 |#4|) $) NIL)) (-4013 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4008 ((|#4| |#4| $) NIL)) (-4021 (((-111) $ $) NIL)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4009 ((|#4| |#4| $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 |#4| #1#) $) 35)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-4001 (((-3 $ #1#) $ |#4|) 48)) (-4087 (($ $ |#4|) NIL) (((-607 $) |#4| $) 82) (((-607 $) |#4| (-607 $)) NIL) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) 77)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 15)) (-3887 (($) 13)) (-4264 (((-735) $) NIL)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) 12)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 20)) (-3210 (($ $ |#3|) 42)) (-3212 (($ $ |#3|) 44)) (-4006 (($ $) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) 31) (((-607 |#4|) $) 40)) (-4000 (((-735) $) NIL (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) NIL)) (-3503 (((-607 $) |#4| $) 79) (((-607 $) |#4| (-607 $)) NIL) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) NIL)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) NIL)) (-3510 (((-111) |#4| $) NIL)) (-4250 (((-111) |#3| $) 53)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-984 |#1| |#2| |#3| |#4|) (-13 (-1024 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3759 ((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111))) (-15 -3758 ((-607 $) (-607 |#4|) (-111) (-111) (-111))) (-15 -3757 ((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111))))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -984)) -((-3759 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *3))) (-5 *1 (-984 *5 *6 *7 *3)) (-4 *3 (-1018 *5 *6 *7)))) (-4004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) (-5 *1 (-984 *5 *6 *7 *8)))) (-4004 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) (-5 *1 (-984 *5 *6 *7 *8)))) (-3758 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) (-5 *1 (-984 *5 *6 *7 *8)))) (-3757 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-607 *8)) (|:| |towers| (-607 (-984 *5 *6 *7 *8))))) (-5 *1 (-984 *5 *6 *7 *8)) (-5 *3 (-607 *8))))) -(-13 (-1024 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3759 ((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111))) (-15 -3758 ((-607 $) (-607 |#4|) (-111) (-111) (-111))) (-15 -3757 ((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111))))) -((-3357 (((-607 (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) (|:| |radvect| (-607 (-653 (-299 (-526))))))) (-653 (-392 (-905 (-526))))) 59)) (-3358 (((-607 (-653 (-299 (-526)))) (-299 (-526)) (-653 (-392 (-905 (-526))))) 48)) (-3359 (((-607 (-299 (-526))) (-653 (-392 (-905 (-526))))) 41)) (-3363 (((-607 (-653 (-299 (-526)))) (-653 (-392 (-905 (-526))))) 68)) (-3361 (((-653 (-299 (-526))) (-653 (-299 (-526)))) 34)) (-3362 (((-607 (-653 (-299 (-526)))) (-607 (-653 (-299 (-526))))) 62)) (-3360 (((-3 (-653 (-299 (-526))) "failed") (-653 (-392 (-905 (-526))))) 66))) -(((-985) (-10 -7 (-15 -3357 ((-607 (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) (|:| |radvect| (-607 (-653 (-299 (-526))))))) (-653 (-392 (-905 (-526)))))) (-15 -3358 ((-607 (-653 (-299 (-526)))) (-299 (-526)) (-653 (-392 (-905 (-526)))))) (-15 -3359 ((-607 (-299 (-526))) (-653 (-392 (-905 (-526)))))) (-15 -3360 ((-3 (-653 (-299 (-526))) "failed") (-653 (-392 (-905 (-526)))))) (-15 -3361 ((-653 (-299 (-526))) (-653 (-299 (-526))))) (-15 -3362 ((-607 (-653 (-299 (-526)))) (-607 (-653 (-299 (-526)))))) (-15 -3363 ((-607 (-653 (-299 (-526)))) (-653 (-392 (-905 (-526)))))))) (T -985)) -((-3363 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-653 (-299 (-526))))) (-5 *1 (-985)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-607 (-653 (-299 (-526))))) (-5 *1 (-985)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-653 (-299 (-526)))) (-5 *1 (-985)))) (-3360 (*1 *2 *3) (|partial| -12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-653 (-299 (-526)))) (-5 *1 (-985)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-299 (-526)))) (-5 *1 (-985)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-653 (-299 (-526))))) (-5 *1 (-985)) (-5 *3 (-299 (-526))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) (|:| |radvect| (-607 (-653 (-299 (-526)))))))) (-5 *1 (-985))))) -(-10 -7 (-15 -3357 ((-607 (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) (|:| |radvect| (-607 (-653 (-299 (-526))))))) (-653 (-392 (-905 (-526)))))) (-15 -3358 ((-607 (-653 (-299 (-526)))) (-299 (-526)) (-653 (-392 (-905 (-526)))))) (-15 -3359 ((-607 (-299 (-526))) (-653 (-392 (-905 (-526)))))) (-15 -3360 ((-3 (-653 (-299 (-526))) "failed") (-653 (-392 (-905 (-526)))))) (-15 -3361 ((-653 (-299 (-526))) (-653 (-299 (-526))))) (-15 -3362 ((-607 (-653 (-299 (-526)))) (-607 (-653 (-299 (-526)))))) (-15 -3363 ((-607 (-653 (-299 (-526)))) (-653 (-392 (-905 (-526))))))) -((-3367 (((-607 (-653 |#1|)) (-607 (-653 |#1|))) 58) (((-653 |#1|) (-653 |#1|)) 57) (((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-607 (-653 |#1|))) 56) (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 53)) (-3366 (((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878)) 52) (((-653 |#1|) (-653 |#1|) (-878)) 51)) (-3368 (((-607 (-653 (-526))) (-607 (-607 (-526)))) 68) (((-607 (-653 (-526))) (-607 (-861 (-526))) (-526)) 67) (((-653 (-526)) (-607 (-526))) 64) (((-653 (-526)) (-861 (-526)) (-526)) 63)) (-3365 (((-653 (-905 |#1|)) (-735)) 81)) (-3364 (((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878)) 37 (|has| |#1| (-6 (-4312 "*")))) (((-653 |#1|) (-653 |#1|) (-878)) 35 (|has| |#1| (-6 (-4312 "*")))))) -(((-986 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4312 "*"))) (-15 -3364 ((-653 |#1|) (-653 |#1|) (-878))) |%noBranch|) (IF (|has| |#1| (-6 (-4312 "*"))) (-15 -3364 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878))) |%noBranch|) (-15 -3365 ((-653 (-905 |#1|)) (-735))) (-15 -3366 ((-653 |#1|) (-653 |#1|) (-878))) (-15 -3366 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878))) (-15 -3367 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -3367 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3367 ((-653 |#1|) (-653 |#1|))) (-15 -3367 ((-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3368 ((-653 (-526)) (-861 (-526)) (-526))) (-15 -3368 ((-653 (-526)) (-607 (-526)))) (-15 -3368 ((-607 (-653 (-526))) (-607 (-861 (-526))) (-526))) (-15 -3368 ((-607 (-653 (-526))) (-607 (-607 (-526)))))) (-1004)) (T -986)) -((-3368 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-526)))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-986 *4)) (-4 *4 (-1004)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-861 (-526)))) (-5 *4 (-526)) (-5 *2 (-607 (-653 *4))) (-5 *1 (-986 *5)) (-4 *5 (-1004)))) (-3368 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-986 *4)) (-4 *4 (-1004)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-861 (-526))) (-5 *4 (-526)) (-5 *2 (-653 *4)) (-5 *1 (-986 *5)) (-4 *5 (-1004)))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-607 (-653 *3))) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) (-3367 (*1 *2 *2 *2) (-12 (-5 *2 (-607 (-653 *3))) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) (-3367 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) (-3366 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-653 *4))) (-5 *3 (-878)) (-4 *4 (-1004)) (-5 *1 (-986 *4)))) (-3366 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-878)) (-4 *4 (-1004)) (-5 *1 (-986 *4)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-653 (-905 *4))) (-5 *1 (-986 *4)) (-4 *4 (-1004)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-653 *4))) (-5 *3 (-878)) (|has| *4 (-6 (-4312 "*"))) (-4 *4 (-1004)) (-5 *1 (-986 *4)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-878)) (|has| *4 (-6 (-4312 "*"))) (-4 *4 (-1004)) (-5 *1 (-986 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4312 "*"))) (-15 -3364 ((-653 |#1|) (-653 |#1|) (-878))) |%noBranch|) (IF (|has| |#1| (-6 (-4312 "*"))) (-15 -3364 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878))) |%noBranch|) (-15 -3365 ((-653 (-905 |#1|)) (-735))) (-15 -3366 ((-653 |#1|) (-653 |#1|) (-878))) (-15 -3366 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878))) (-15 -3367 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -3367 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3367 ((-653 |#1|) (-653 |#1|))) (-15 -3367 ((-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3368 ((-653 (-526)) (-861 (-526)) (-526))) (-15 -3368 ((-653 (-526)) (-607 (-526)))) (-15 -3368 ((-607 (-653 (-526))) (-607 (-861 (-526))) (-526))) (-15 -3368 ((-607 (-653 (-526))) (-607 (-607 (-526)))))) -((-3372 (((-653 |#1|) (-607 (-653 |#1|)) (-1205 |#1|)) 50 (|has| |#1| (-292)))) (-3737 (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 (-1205 |#1|))) 76 (|has| |#1| (-348))) (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 |#1|)) 79 (|has| |#1| (-348)))) (-3376 (((-1205 |#1|) (-607 (-1205 |#1|)) (-526)) 93 (-12 (|has| |#1| (-348)) (|has| |#1| (-353))))) (-3375 (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-878)) 85 (-12 (|has| |#1| (-348)) (|has| |#1| (-353)))) (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111)) 83 (-12 (|has| |#1| (-348)) (|has| |#1| (-353)))) (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|))) 82 (-12 (|has| |#1| (-348)) (|has| |#1| (-353)))) (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111) (-526) (-526)) 81 (-12 (|has| |#1| (-348)) (|has| |#1| (-353))))) (-3374 (((-111) (-607 (-653 |#1|))) 71 (|has| |#1| (-348))) (((-111) (-607 (-653 |#1|)) (-526)) 73 (|has| |#1| (-348)))) (-3371 (((-1205 (-1205 |#1|)) (-607 (-653 |#1|)) (-1205 |#1|)) 48 (|has| |#1| (-292)))) (-3370 (((-653 |#1|) (-607 (-653 |#1|)) (-653 |#1|)) 34)) (-3369 (((-653 |#1|) (-1205 (-1205 |#1|))) 31)) (-3373 (((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-526)) 65 (|has| |#1| (-348))) (((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|))) 64 (|has| |#1| (-348))) (((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-111) (-526)) 69 (|has| |#1| (-348))))) -(((-987 |#1|) (-10 -7 (-15 -3369 ((-653 |#1|) (-1205 (-1205 |#1|)))) (-15 -3370 ((-653 |#1|) (-607 (-653 |#1|)) (-653 |#1|))) (IF (|has| |#1| (-292)) (PROGN (-15 -3371 ((-1205 (-1205 |#1|)) (-607 (-653 |#1|)) (-1205 |#1|))) (-15 -3372 ((-653 |#1|) (-607 (-653 |#1|)) (-1205 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-111) (-526))) (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-526))) (-15 -3374 ((-111) (-607 (-653 |#1|)) (-526))) (-15 -3374 ((-111) (-607 (-653 |#1|)))) (-15 -3737 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 |#1|))) (-15 -3737 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 (-1205 |#1|))))) |%noBranch|) (IF (|has| |#1| (-353)) (IF (|has| |#1| (-348)) (PROGN (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111) (-526) (-526))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-878))) (-15 -3376 ((-1205 |#1|) (-607 (-1205 |#1|)) (-526)))) |%noBranch|) |%noBranch|)) (-1004)) (T -987)) -((-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1205 *5))) (-5 *4 (-526)) (-5 *2 (-1205 *5)) (-5 *1 (-987 *5)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)) (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)) (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) (-3375 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *4 (-353)) (-4 *4 (-1004)) (-5 *2 (-607 (-607 (-653 *4)))) (-5 *1 (-987 *4)) (-5 *3 (-607 (-653 *4))))) (-3375 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-526)) (-4 *6 (-348)) (-4 *6 (-353)) (-4 *6 (-1004)) (-5 *2 (-607 (-607 (-653 *6)))) (-5 *1 (-987 *6)) (-5 *3 (-607 (-653 *6))))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-1205 (-1205 *5))) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-607 (-653 *4))) (-4 *4 (-348)) (-4 *4 (-1004)) (-5 *2 (-111)) (-5 *1 (-987 *4)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-526)) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-111)) (-5 *1 (-987 *5)))) (-3373 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-526)) (-5 *2 (-653 *5)) (-5 *1 (-987 *5)) (-4 *5 (-348)) (-4 *5 (-1004)))) (-3373 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-653 *4))) (-5 *2 (-653 *4)) (-5 *1 (-987 *4)) (-4 *4 (-348)) (-4 *4 (-1004)))) (-3373 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-607 (-653 *6))) (-5 *4 (-111)) (-5 *5 (-526)) (-5 *2 (-653 *6)) (-5 *1 (-987 *6)) (-4 *6 (-348)) (-4 *6 (-1004)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-1205 *5)) (-4 *5 (-292)) (-4 *5 (-1004)) (-5 *2 (-653 *5)) (-5 *1 (-987 *5)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-653 *5))) (-4 *5 (-292)) (-4 *5 (-1004)) (-5 *2 (-1205 (-1205 *5))) (-5 *1 (-987 *5)) (-5 *4 (-1205 *5)))) (-3370 (*1 *2 *3 *2) (-12 (-5 *3 (-607 (-653 *4))) (-5 *2 (-653 *4)) (-4 *4 (-1004)) (-5 *1 (-987 *4)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-1205 (-1205 *4))) (-4 *4 (-1004)) (-5 *2 (-653 *4)) (-5 *1 (-987 *4))))) -(-10 -7 (-15 -3369 ((-653 |#1|) (-1205 (-1205 |#1|)))) (-15 -3370 ((-653 |#1|) (-607 (-653 |#1|)) (-653 |#1|))) (IF (|has| |#1| (-292)) (PROGN (-15 -3371 ((-1205 (-1205 |#1|)) (-607 (-653 |#1|)) (-1205 |#1|))) (-15 -3372 ((-653 |#1|) (-607 (-653 |#1|)) (-1205 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-111) (-526))) (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-526))) (-15 -3374 ((-111) (-607 (-653 |#1|)) (-526))) (-15 -3374 ((-111) (-607 (-653 |#1|)))) (-15 -3737 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 |#1|))) (-15 -3737 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 (-1205 |#1|))))) |%noBranch|) (IF (|has| |#1| (-353)) (IF (|has| |#1| (-348)) (PROGN (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111) (-526) (-526))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-878))) (-15 -3376 ((-1205 |#1|) (-607 (-1205 |#1|)) (-526)))) |%noBranch|) |%noBranch|)) -((-3377 ((|#1| (-878) |#1|) 9))) -(((-988 |#1|) (-10 -7 (-15 -3377 (|#1| (-878) |#1|))) (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $))))) (T -988)) -((-3377 (*1 *2 *3 *2) (-12 (-5 *3 (-878)) (-5 *1 (-988 *2)) (-4 *2 (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)))))))) -(-10 -7 (-15 -3377 (|#1| (-878) |#1|))) -((-3378 ((|#1| |#1| (-878)) 9))) -(((-989 |#1|) (-10 -7 (-15 -3378 (|#1| |#1| (-878)))) (-13 (-1052) (-10 -8 (-15 * ($ $ $))))) (T -989)) -((-3378 (*1 *2 *2 *3) (-12 (-5 *3 (-878)) (-5 *1 (-989 *2)) (-4 *2 (-13 (-1052) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3378 (|#1| |#1| (-878)))) -((-4274 ((|#1| (-296)) 11) (((-1211) |#1|) 9))) -(((-990 |#1|) (-10 -7 (-15 -4274 ((-1211) |#1|)) (-15 -4274 (|#1| (-296)))) (-1159)) (T -990)) -((-4274 (*1 *2 *3) (-12 (-5 *3 (-296)) (-5 *1 (-990 *2)) (-4 *2 (-1159)))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-1211)) (-5 *1 (-990 *3)) (-4 *3 (-1159))))) -(-10 -7 (-15 -4274 ((-1211) |#1|)) (-15 -4274 (|#1| (-296)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4161 (($ |#4|) 25)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3379 ((|#4| $) 27)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 46) (($ (-526)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3423 (((-735)) 43)) (-2957 (($) 21 T CONST)) (-2964 (($) 23 T CONST)) (-3353 (((-111) $ $) 40)) (-4156 (($ $) 31) (($ $ $) NIL)) (-4158 (($ $ $) 29)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-991 |#1| |#2| |#3| |#4| |#5|) (-13 (-163) (-37 |#1|) (-10 -8 (-15 -4161 ($ |#4|)) (-15 -4274 ($ |#4|)) (-15 -3379 (|#4| $)))) (-348) (-757) (-811) (-909 |#1| |#2| |#3|) (-607 |#4|)) (T -991)) -((-4161 (*1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *2 (-909 *3 *4 *5)) (-14 *6 (-607 *2)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *2 (-909 *3 *4 *5)) (-14 *6 (-607 *2)))) (-3379 (*1 *2 *1) (-12 (-4 *2 (-909 *3 *4 *5)) (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-14 *6 (-607 *2))))) -(-13 (-163) (-37 |#1|) (-10 -8 (-15 -4161 ($ |#4|)) (-15 -4274 ($ |#4|)) (-15 -3379 (|#4| $)))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2276 (((-1211) $ (-1123) (-1123)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-3381 (((-111) (-111)) 39)) (-3380 (((-111) (-111)) 38)) (-4106 (((-50) $ (-1123) (-50)) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 (-50) #1="failed") (-1123) $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3724 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-3 (-50) #1#) (-1123) $) NIL)) (-3725 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-50) $ (-1123) (-50)) NIL (|has| $ (-6 -4311)))) (-3410 (((-50) $ (-1123)) NIL)) (-2044 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1123) $) NIL (|has| (-1123) (-811)))) (-2480 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2279 (((-1123) $) NIL (|has| (-1123) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-2713 (((-607 (-1123)) $) 34)) (-2286 (((-111) (-1123) $) NIL)) (-1306 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-2281 (((-607 (-1123)) $) NIL)) (-2282 (((-111) (-1123) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-4119 (((-50) $) NIL (|has| (-1123) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) "failed") (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL)) (-2277 (($ $ (-50)) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-50)) (-607 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-278 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-607 (-278 (-50)))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2283 (((-607 (-50)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-50) $ (-1123)) 35) (((-50) $ (-1123) (-50)) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-735) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052)))) (((-735) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-4274 (((-823) $) 37 (-3850 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-583 (-823))) (|has| (-50) (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-992) (-13 (-1136 (-1123) (-50)) (-10 -7 (-15 -3381 ((-111) (-111))) (-15 -3380 ((-111) (-111))) (-6 -4310)))) (T -992)) -((-3381 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-992)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-992))))) -(-13 (-1136 (-1123) (-50)) (-10 -7 (-15 -3381 ((-111) (-111))) (-15 -3380 ((-111) (-111))) (-6 -4310))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3382 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-993) (-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $))))) (T -993)) -((-3382 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-993))))) -(-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)))) -((-3469 ((|#2| $) 10))) -(((-994 |#1| |#2|) (-10 -8 (-15 -3469 (|#2| |#1|))) (-995 |#2|) (-1159)) (T -994)) -NIL -(-10 -8 (-15 -3469 (|#2| |#1|))) -((-3470 (((-3 |#1| "failed") $) 7)) (-3469 ((|#1| $) 8)) (-4274 (($ |#1|) 6))) -(((-995 |#1|) (-134) (-1159)) (T -995)) -((-3469 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) (-3470 (*1 *2 *1) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) (-4274 (*1 *1 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1159))))) -(-13 (-10 -8 (-15 -4274 ($ |t#1|)) (-15 -3470 ((-3 |t#1| "failed") $)) (-15 -3469 (|t#1| $)))) -((-3383 (((-607 (-607 (-278 (-392 (-905 |#2|))))) (-607 (-905 |#2|)) (-607 (-1123))) 38))) -(((-996 |#1| |#2|) (-10 -7 (-15 -3383 ((-607 (-607 (-278 (-392 (-905 |#2|))))) (-607 (-905 |#2|)) (-607 (-1123))))) (-533) (-13 (-533) (-995 |#1|))) (T -996)) -((-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-4 *6 (-13 (-533) (-995 *5))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *6)))))) (-5 *1 (-996 *5 *6))))) -(-10 -7 (-15 -3383 ((-607 (-607 (-278 (-392 (-905 |#2|))))) (-607 (-905 |#2|)) (-607 (-1123))))) -((-3384 (((-607 (-1123)) (-392 (-905 |#1|))) 17)) (-3386 (((-392 (-1117 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123)) 24)) (-3387 (((-392 (-905 |#1|)) (-392 (-1117 (-392 (-905 |#1|)))) (-1123)) 26)) (-3385 (((-3 (-1123) "failed") (-392 (-905 |#1|))) 20)) (-4086 (((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-278 (-392 (-905 |#1|))))) 32) (((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|)))) 33) (((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-1123)) (-607 (-392 (-905 |#1|)))) 28) (((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|))) 29)) (-4274 (((-392 (-905 |#1|)) |#1|) 11))) -(((-997 |#1|) (-10 -7 (-15 -3384 ((-607 (-1123)) (-392 (-905 |#1|)))) (-15 -3385 ((-3 (-1123) "failed") (-392 (-905 |#1|)))) (-15 -3386 ((-392 (-1117 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123))) (-15 -3387 ((-392 (-905 |#1|)) (-392 (-1117 (-392 (-905 |#1|)))) (-1123))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-1123)) (-607 (-392 (-905 |#1|))))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -4274 ((-392 (-905 |#1|)) |#1|))) (-533)) (T -997)) -((-4274 (*1 *2 *3) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-997 *3)) (-4 *3 (-533)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-278 (-392 (-905 *4))))) (-5 *2 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *1 (-997 *4)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *3 (-278 (-392 (-905 *4)))) (-5 *2 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *1 (-997 *4)))) (-4086 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-607 (-1123))) (-5 *4 (-607 (-392 (-905 *5)))) (-5 *2 (-392 (-905 *5))) (-4 *5 (-533)) (-5 *1 (-997 *5)))) (-4086 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-392 (-905 *4))) (-5 *3 (-1123)) (-4 *4 (-533)) (-5 *1 (-997 *4)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-1117 (-392 (-905 *5))))) (-5 *4 (-1123)) (-5 *2 (-392 (-905 *5))) (-5 *1 (-997 *5)) (-4 *5 (-533)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-392 (-1117 (-392 (-905 *5))))) (-5 *1 (-997 *5)) (-5 *3 (-392 (-905 *5))))) (-3385 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-1123)) (-5 *1 (-997 *4)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-607 (-1123))) (-5 *1 (-997 *4))))) -(-10 -7 (-15 -3384 ((-607 (-1123)) (-392 (-905 |#1|)))) (-15 -3385 ((-3 (-1123) "failed") (-392 (-905 |#1|)))) (-15 -3386 ((-392 (-1117 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123))) (-15 -3387 ((-392 (-905 |#1|)) (-392 (-1117 (-392 (-905 |#1|)))) (-1123))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-1123)) (-607 (-392 (-905 |#1|))))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -4274 ((-392 (-905 |#1|)) |#1|))) -((-3388 (((-363)) 15)) (-3398 (((-1 (-363)) (-363) (-363)) 20)) (-3396 (((-1 (-363)) (-735)) 43)) (-3389 (((-363)) 34)) (-3392 (((-1 (-363)) (-363) (-363)) 35)) (-3390 (((-363)) 26)) (-3393 (((-1 (-363)) (-363)) 27)) (-3391 (((-363) (-735)) 38)) (-3394 (((-1 (-363)) (-735)) 39)) (-3395 (((-1 (-363)) (-735) (-735)) 42)) (-3703 (((-1 (-363)) (-735) (-735)) 40))) -(((-998) (-10 -7 (-15 -3388 ((-363))) (-15 -3389 ((-363))) (-15 -3390 ((-363))) (-15 -3391 ((-363) (-735))) (-15 -3398 ((-1 (-363)) (-363) (-363))) (-15 -3392 ((-1 (-363)) (-363) (-363))) (-15 -3393 ((-1 (-363)) (-363))) (-15 -3394 ((-1 (-363)) (-735))) (-15 -3703 ((-1 (-363)) (-735) (-735))) (-15 -3395 ((-1 (-363)) (-735) (-735))) (-15 -3396 ((-1 (-363)) (-735))))) (T -998)) -((-3396 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) (-3393 (*1 *2 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363)))) (-3398 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-363)) (-5 *1 (-998)))) (-3390 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998)))) (-3389 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998)))) (-3388 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998))))) -(-10 -7 (-15 -3388 ((-363))) (-15 -3389 ((-363))) (-15 -3390 ((-363))) (-15 -3391 ((-363) (-735))) (-15 -3398 ((-1 (-363)) (-363) (-363))) (-15 -3392 ((-1 (-363)) (-363) (-363))) (-15 -3393 ((-1 (-363)) (-363))) (-15 -3394 ((-1 (-363)) (-735))) (-15 -3703 ((-1 (-363)) (-735) (-735))) (-15 -3395 ((-1 (-363)) (-735) (-735))) (-15 -3396 ((-1 (-363)) (-735)))) -((-4051 (((-390 |#1|) |#1|) 33))) -(((-999 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1|))) (-1181 (-392 (-905 (-526))))) (T -999)) -((-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1181 (-392 (-905 (-526)))))))) -(-10 -7 (-15 -4051 ((-390 |#1|) |#1|))) -((-3397 (((-392 (-390 (-905 |#1|))) (-392 (-905 |#1|))) 14))) -(((-1000 |#1|) (-10 -7 (-15 -3397 ((-392 (-390 (-905 |#1|))) (-392 (-905 |#1|))))) (-292)) (T -1000)) -((-3397 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-292)) (-5 *2 (-392 (-390 (-905 *4)))) (-5 *1 (-1000 *4))))) -(-10 -7 (-15 -3397 ((-392 (-390 (-905 |#1|))) (-392 (-905 |#1|))))) -((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 (-744 |#1| (-824 |#2|)))))) (-607 (-744 |#1| (-824 |#2|)))) NIL)) (-4004 (((-607 $) (-607 (-744 |#1| (-824 |#2|)))) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-111)) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-111) (-111)) NIL)) (-3384 (((-607 (-824 |#2|)) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-4010 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-4093 (((-607 (-2 (|:| |val| (-744 |#1| (-824 |#2|))) (|:| -1636 $))) (-744 |#1| (-824 |#2|)) $) NIL)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ (-824 |#2|)) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 (-744 |#1| (-824 |#2|)) #1="failed") $ (-824 |#2|)) NIL)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) NIL (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))) $ (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL)) (-3200 (((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 (-744 |#1| (-824 |#2|)))) NIL)) (-3469 (($ (-607 (-744 |#1| (-824 |#2|)))) NIL)) (-4117 (((-3 $ #1#) $) NIL)) (-4007 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052))))) (-3725 (($ (-744 |#1| (-824 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (($ (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-744 |#1| (-824 |#2|))) (|:| |den| |#1|)) (-744 |#1| (-824 |#2|)) $) NIL (|has| |#1| (-533)))) (-4016 (((-111) (-744 |#1| (-824 |#2|)) $ (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL)) (-4005 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-4161 (((-744 |#1| (-824 |#2|)) (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $ (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (((-744 |#1| (-824 |#2|)) (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $ (-744 |#1| (-824 |#2|))) NIL (|has| $ (-6 -4310))) (((-744 |#1| (-824 |#2|)) (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $ (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL)) (-4018 (((-2 (|:| -4180 (-607 (-744 |#1| (-824 |#2|)))) (|:| -1794 (-607 (-744 |#1| (-824 |#2|))))) $) NIL)) (-3511 (((-111) (-744 |#1| (-824 |#2|)) $) NIL)) (-3509 (((-111) (-744 |#1| (-824 |#2|)) $) NIL)) (-3512 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-2044 (((-607 (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4017 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-3493 (((-824 |#2|) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-744 |#1| (-824 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052))))) (-2048 (($ (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $) NIL)) (-3214 (((-607 (-824 |#2|)) $) NIL)) (-3213 (((-111) (-824 |#2|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3505 (((-3 (-744 |#1| (-824 |#2|)) (-607 $)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-3504 (((-607 (-2 (|:| |val| (-744 |#1| (-824 |#2|))) (|:| -1636 $))) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-4116 (((-3 (-744 |#1| (-824 |#2|)) #1#) $) NIL)) (-3506 (((-607 $) (-744 |#1| (-824 |#2|)) $) NIL)) (-3508 (((-3 (-111) (-607 $)) (-744 |#1| (-824 |#2|)) $) NIL)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) (-744 |#1| (-824 |#2|)) $) NIL)) (-3550 (((-607 $) (-744 |#1| (-824 |#2|)) $) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) $) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-607 $)) NIL) (((-607 $) (-744 |#1| (-824 |#2|)) (-607 $)) NIL)) (-3759 (($ (-744 |#1| (-824 |#2|)) $) NIL) (($ (-607 (-744 |#1| (-824 |#2|))) $) NIL)) (-4019 (((-607 (-744 |#1| (-824 |#2|))) $) NIL)) (-4013 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-4008 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-4021 (((-111) $ $) NIL)) (-3203 (((-2 (|:| |num| (-744 |#1| (-824 |#2|))) (|:| |den| |#1|)) (-744 |#1| (-824 |#2|)) $) NIL (|has| |#1| (-533)))) (-4014 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-4009 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 (-744 |#1| (-824 |#2|)) #1#) $) NIL)) (-1376 (((-3 (-744 |#1| (-824 |#2|)) "failed") (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL)) (-4001 (((-3 $ #1#) $ (-744 |#1| (-824 |#2|))) NIL)) (-4087 (($ $ (-744 |#1| (-824 |#2|))) NIL) (((-607 $) (-744 |#1| (-824 |#2|)) $) NIL) (((-607 $) (-744 |#1| (-824 |#2|)) (-607 $)) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) $) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-607 $)) NIL)) (-2046 (((-111) (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|)))) NIL (-12 (|has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|)))) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (($ $ (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) NIL (-12 (|has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|)))) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (($ $ (-278 (-744 |#1| (-824 |#2|)))) NIL (-12 (|has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|)))) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (($ $ (-607 (-278 (-744 |#1| (-824 |#2|))))) NIL (-12 (|has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|)))) (|has| (-744 |#1| (-824 |#2|)) (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4264 (((-735) $) NIL)) (-2045 (((-735) (-744 |#1| (-824 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (((-735) (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-744 |#1| (-824 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-744 |#1| (-824 |#2|)))) NIL)) (-3210 (($ $ (-824 |#2|)) NIL)) (-3212 (($ $ (-824 |#2|)) NIL)) (-4006 (($ $) NIL)) (-3211 (($ $ (-824 |#2|)) NIL)) (-4274 (((-823) $) NIL) (((-607 (-744 |#1| (-824 |#2|))) $) NIL)) (-4000 (((-735) $) NIL (|has| (-824 |#2|) (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 (-744 |#1| (-824 |#2|))))) #1#) (-607 (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 (-744 |#1| (-824 |#2|))))) #1#) (-607 (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL)) (-4012 (((-111) $ (-1 (-111) (-744 |#1| (-824 |#2|)) (-607 (-744 |#1| (-824 |#2|))))) NIL)) (-3503 (((-607 $) (-744 |#1| (-824 |#2|)) $) NIL) (((-607 $) (-744 |#1| (-824 |#2|)) (-607 $)) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) $) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-607 $)) NIL)) (-2047 (((-111) (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 (-824 |#2|)) $) NIL)) (-3510 (((-111) (-744 |#1| (-824 |#2|)) $) NIL)) (-4250 (((-111) (-824 |#2|) $) NIL)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1001 |#1| |#2|) (-13 (-1024 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) (-10 -8 (-15 -4004 ((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-111) (-111))))) (-436) (-607 (-1123))) (T -1001)) -((-4004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-1001 *5 *6))))) -(-13 (-1024 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) (-10 -8 (-15 -4004 ((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-111) (-111))))) -((-3398 (((-1 (-526)) (-1041 (-526))) 33)) (-3402 (((-526) (-526) (-526) (-526) (-526)) 30)) (-3400 (((-1 (-526)) |RationalNumber|) NIL)) (-3401 (((-1 (-526)) |RationalNumber|) NIL)) (-3399 (((-1 (-526)) (-526) |RationalNumber|) NIL))) -(((-1002) (-10 -7 (-15 -3398 ((-1 (-526)) (-1041 (-526)))) (-15 -3399 ((-1 (-526)) (-526) |RationalNumber|)) (-15 -3400 ((-1 (-526)) |RationalNumber|)) (-15 -3401 ((-1 (-526)) |RationalNumber|)) (-15 -3402 ((-526) (-526) (-526) (-526) (-526))))) (T -1002)) -((-3402 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1002)))) (-3401 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002)))) (-3400 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002)) (-5 *3 (-526)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1041 (-526))) (-5 *2 (-1 (-526))) (-5 *1 (-1002))))) -(-10 -7 (-15 -3398 ((-1 (-526)) (-1041 (-526)))) (-15 -3399 ((-1 (-526)) (-526) |RationalNumber|)) (-15 -3400 ((-1 (-526)) |RationalNumber|)) (-15 -3401 ((-1 (-526)) |RationalNumber|)) (-15 -3402 ((-526) (-526) (-526) (-526) (-526)))) -((-4274 (((-823) $) NIL) (($ (-526)) 10))) -(((-1003 |#1|) (-10 -8 (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-1004)) (T -1003)) -NIL -(-10 -8 (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-1004) (-134)) (T -1004)) -((-3423 (*1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-735)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1004))))) -(-13 (-1011) (-691) (-613 $) (-10 -8 (-15 -3423 ((-735))) (-15 -4274 ($ (-526))) (-6 -4307))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-3403 (((-392 (-905 |#2|)) (-607 |#2|) (-607 |#2|) (-735) (-735)) 46))) -(((-1005 |#1| |#2|) (-10 -7 (-15 -3403 ((-392 (-905 |#2|)) (-607 |#2|) (-607 |#2|) (-735) (-735)))) (-1123) (-348)) (T -1005)) -((-3403 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-735)) (-4 *6 (-348)) (-5 *2 (-392 (-905 *6))) (-5 *1 (-1005 *5 *6)) (-14 *5 (-1123))))) -(-10 -7 (-15 -3403 ((-392 (-905 |#2|)) (-607 |#2|) (-607 |#2|) (-735) (-735)))) -((-3418 (((-111) $) 29)) (-3420 (((-111) $) 16)) (-3412 (((-735) $) 13)) (-3411 (((-735) $) 14)) (-3419 (((-111) $) 26)) (-3417 (((-111) $) 31))) -(((-1006 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3411 ((-735) |#1|)) (-15 -3412 ((-735) |#1|)) (-15 -3417 ((-111) |#1|)) (-15 -3418 ((-111) |#1|)) (-15 -3419 ((-111) |#1|)) (-15 -3420 ((-111) |#1|))) (-1007 |#2| |#3| |#4| |#5| |#6|) (-735) (-735) (-1004) (-224 |#3| |#4|) (-224 |#2| |#4|)) (T -1006)) -NIL -(-10 -8 (-15 -3411 ((-735) |#1|)) (-15 -3412 ((-735) |#1|)) (-15 -3417 ((-111) |#1|)) (-15 -3418 ((-111) |#1|)) (-15 -3419 ((-111) |#1|)) (-15 -3420 ((-111) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3418 (((-111) $) 51)) (-1345 (((-3 $ "failed") $ $) 19)) (-3420 (((-111) $) 53)) (-1244 (((-111) $ (-735)) 61)) (-3855 (($) 17 T CONST)) (-3407 (($ $) 34 (|has| |#3| (-292)))) (-3409 ((|#4| $ (-526)) 39)) (-3406 (((-735) $) 33 (|has| |#3| (-533)))) (-3410 ((|#3| $ (-526) (-526)) 41)) (-2044 (((-607 |#3|) $) 68 (|has| $ (-6 -4310)))) (-3405 (((-735) $) 32 (|has| |#3| (-533)))) (-3404 (((-607 |#5|) $) 31 (|has| |#3| (-533)))) (-3412 (((-735) $) 45)) (-3411 (((-735) $) 44)) (-4041 (((-111) $ (-735)) 60)) (-3416 (((-526) $) 49)) (-3414 (((-526) $) 47)) (-2480 (((-607 |#3|) $) 69 (|has| $ (-6 -4310)))) (-3557 (((-111) |#3| $) 71 (-12 (|has| |#3| (-1052)) (|has| $ (-6 -4310))))) (-3415 (((-526) $) 48)) (-3413 (((-526) $) 46)) (-3421 (($ (-607 (-607 |#3|))) 54)) (-2048 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3915 (((-607 (-607 |#3|)) $) 43)) (-4038 (((-111) $ (-735)) 59)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-533)))) (-2046 (((-111) (-1 (-111) |#3|) $) 66 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#3|) (-607 |#3|)) 75 (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-278 |#3|)) 73 (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-607 (-278 |#3|))) 72 (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))))) (-1245 (((-111) $ $) 55)) (-3722 (((-111) $) 58)) (-3887 (($) 57)) (-4118 ((|#3| $ (-526) (-526)) 42) ((|#3| $ (-526) (-526) |#3|) 40)) (-3419 (((-111) $) 52)) (-2045 (((-735) |#3| $) 70 (-12 (|has| |#3| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#3|) $) 67 (|has| $ (-6 -4310)))) (-3719 (($ $) 56)) (-3408 ((|#5| $ (-526)) 38)) (-4274 (((-823) $) 11)) (-2047 (((-111) (-1 (-111) |#3|) $) 65 (|has| $ (-6 -4310)))) (-3417 (((-111) $) 50)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#3|) 35 (|has| |#3| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4273 (((-735) $) 62 (|has| $ (-6 -4310))))) -(((-1007 |#1| |#2| |#3| |#4| |#5|) (-134) (-735) (-735) (-1004) (-224 |t#2| |t#3|) (-224 |t#1| |t#3|)) (T -1007)) -((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *5))) (-4 *5 (-1004)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-111)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-111)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-111)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-111)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-526)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-526)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-526)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-526)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-735)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-735)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-607 (-607 *5))))) (-4118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *6 (-224 *5 *2)) (-4 *7 (-224 *4 *2)) (-4 *2 (-1004)))) (-3410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *6 (-224 *5 *2)) (-4 *7 (-224 *4 *2)) (-4 *2 (-1004)))) (-4118 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *2 (-1004)) (-4 *6 (-224 *5 *2)) (-4 *7 (-224 *4 *2)))) (-3409 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *6 *2 *7)) (-4 *6 (-1004)) (-4 *7 (-224 *4 *6)) (-4 *2 (-224 *5 *6)))) (-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *6 *7 *2)) (-4 *6 (-1004)) (-4 *7 (-224 *5 *6)) (-4 *2 (-224 *4 *6)))) (-4275 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *2 (-1004)) (-4 *5 (-224 *4 *2)) (-4 *6 (-224 *3 *2)) (-4 *2 (-533)))) (-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *2 (-1004)) (-4 *5 (-224 *4 *2)) (-4 *6 (-224 *3 *2)) (-4 *2 (-348)))) (-3407 (*1 *1 *1) (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *2 *4)) (-4 *4 (-292)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-735)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-735)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-607 *7))))) -(-13 (-110 |t#3| |t#3|) (-472 |t#3|) (-10 -8 (-6 -4310) (IF (|has| |t#3| (-163)) (-6 (-682 |t#3|)) |%noBranch|) (-15 -3421 ($ (-607 (-607 |t#3|)))) (-15 -3420 ((-111) $)) (-15 -3419 ((-111) $)) (-15 -3418 ((-111) $)) (-15 -3417 ((-111) $)) (-15 -3416 ((-526) $)) (-15 -3415 ((-526) $)) (-15 -3414 ((-526) $)) (-15 -3413 ((-526) $)) (-15 -3412 ((-735) $)) (-15 -3411 ((-735) $)) (-15 -3915 ((-607 (-607 |t#3|)) $)) (-15 -4118 (|t#3| $ (-526) (-526))) (-15 -3410 (|t#3| $ (-526) (-526))) (-15 -4118 (|t#3| $ (-526) (-526) |t#3|)) (-15 -3409 (|t#4| $ (-526))) (-15 -3408 (|t#5| $ (-526))) (-15 -4275 ($ (-1 |t#3| |t#3|) $)) (-15 -4275 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-533)) (-15 -3780 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-348)) (-15 -4265 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-292)) (-15 -3407 ($ $)) |%noBranch|) (IF (|has| |t#3| (-533)) (PROGN (-15 -3406 ((-735) $)) (-15 -3405 ((-735) $)) (-15 -3404 ((-607 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-100) . T) ((-110 |#3| |#3|) . T) ((-129) . T) ((-583 (-823)) . T) ((-294 |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))) ((-472 |#3|) . T) ((-496 |#3| |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))) ((-613 |#3|) . T) ((-682 |#3|) |has| |#3| (-163)) ((-1010 |#3|) . T) ((-1052) . T) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3418 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3407 (($ $) 43 (|has| |#3| (-292)))) (-3409 (((-225 |#2| |#3|) $ (-526)) 32)) (-3422 (($ (-653 |#3|)) 41)) (-3406 (((-735) $) 45 (|has| |#3| (-533)))) (-3410 ((|#3| $ (-526) (-526)) NIL)) (-2044 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-3405 (((-735) $) 47 (|has| |#3| (-533)))) (-3404 (((-607 (-225 |#1| |#3|)) $) 51 (|has| |#3| (-533)))) (-3412 (((-735) $) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#3|))) 27)) (-2048 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3915 (((-607 (-607 |#3|)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-533)))) (-2046 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#3|) (-607 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-607 (-278 |#3|))) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#3| $ (-526) (-526)) NIL) ((|#3| $ (-526) (-526) |#3|) NIL)) (-4230 (((-131)) 54 (|has| |#3| (-348)))) (-3419 (((-111) $) NIL)) (-2045 (((-735) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052)))) (((-735) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 63 (|has| |#3| (-584 (-515))))) (-3408 (((-225 |#1| |#3|) $ (-526)) 36)) (-4274 (((-823) $) 16) (((-653 |#3|) $) 38)) (-2047 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-2957 (($) 13 T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#3|) NIL (|has| |#3| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1008 |#1| |#2| |#3|) (-13 (-1007 |#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) (-583 (-653 |#3|)) (-10 -8 (IF (|has| |#3| (-348)) (-6 (-1213 |#3|)) |%noBranch|) (IF (|has| |#3| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (-15 -3422 ($ (-653 |#3|))) (-15 -4274 ((-653 |#3|) $)))) (-735) (-735) (-1004)) (T -1008)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-653 *5)) (-5 *1 (-1008 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) (-4 *5 (-1004)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-653 *5)) (-4 *5 (-1004)) (-5 *1 (-1008 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735))))) -(-13 (-1007 |#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) (-583 (-653 |#3|)) (-10 -8 (IF (|has| |#3| (-348)) (-6 (-1213 |#3|)) |%noBranch|) (IF (|has| |#3| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (-15 -3422 ($ (-653 |#3|))) (-15 -4274 ((-653 |#3|) $)))) -((-4161 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4275 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1009 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4275 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4161 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-735) (-735) (-1004) (-224 |#2| |#3|) (-224 |#1| |#3|) (-1007 |#1| |#2| |#3| |#4| |#5|) (-1004) (-224 |#2| |#7|) (-224 |#1| |#7|) (-1007 |#1| |#2| |#7| |#8| |#9|)) (T -1009)) -((-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1004)) (-4 *2 (-1004)) (-14 *5 (-735)) (-14 *6 (-735)) (-4 *8 (-224 *6 *7)) (-4 *9 (-224 *5 *7)) (-4 *10 (-224 *6 *2)) (-4 *11 (-224 *5 *2)) (-5 *1 (-1009 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1007 *5 *6 *7 *8 *9)) (-4 *12 (-1007 *5 *6 *2 *10 *11)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1004)) (-4 *10 (-1004)) (-14 *5 (-735)) (-14 *6 (-735)) (-4 *8 (-224 *6 *7)) (-4 *9 (-224 *5 *7)) (-4 *2 (-1007 *5 *6 *10 *11 *12)) (-5 *1 (-1009 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1007 *5 *6 *7 *8 *9)) (-4 *11 (-224 *6 *10)) (-4 *12 (-224 *5 *10))))) -(-10 -7 (-15 -4275 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4161 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ |#1|) 23))) -(((-1010 |#1|) (-134) (-1011)) (T -1010)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1011))))) +((-4044 (($ $ (-1056 $)) 7) (($ $ (-1135)) 6))) +(((-928) (-138)) (T -928)) +((-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-928)))) (-4044 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-1135))))) +(-13 (-10 -8 (-15 -4044 ($ $ (-1135))) (-15 -4044 ($ $ (-1056 $))))) +((-2771 (((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)) 25) (((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135))) 26) (((-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135)) 43))) +(((-929 |#1|) (-10 -7 (-15 -2771 ((-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135))) (-15 -2771 ((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -2771 ((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)))) (-13 (-355) (-145))) (T -929)) +((-2771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-5 *5 (-1135)) (-4 *6 (-13 (-355) (-145))) (-5 *2 (-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 *6))) (|:| |prim| (-1131 *6)))) (-5 *1 (-929 *6)))) (-2771 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-355) (-145))) (-5 *2 (-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 *5))) (|:| |prim| (-1131 *5)))) (-5 *1 (-929 *5)))) (-2771 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-1135)) (-4 *5 (-13 (-355) (-145))) (-5 *2 (-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) (|:| |prim| (-1131 *5)))) (-5 *1 (-929 *5))))) +(-10 -7 (-15 -2771 ((-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135))) (-15 -2771 ((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -2771 ((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)))) +((-2793 (((-619 |#1|) |#1| |#1|) 42)) (-1271 (((-112) |#1|) 39)) (-2787 ((|#1| |#1|) 65)) (-2779 ((|#1| |#1|) 64))) +(((-930 |#1|) (-10 -7 (-15 -1271 ((-112) |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2793 ((-619 |#1|) |#1| |#1|))) (-533)) (T -930)) +((-2793 (*1 *2 *3 *3) (-12 (-5 *2 (-619 *3)) (-5 *1 (-930 *3)) (-4 *3 (-533)))) (-2787 (*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-533)))) (-2779 (*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-533)))) (-1271 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-930 *3)) (-4 *3 (-533))))) +(-10 -7 (-15 -1271 ((-112) |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2793 ((-619 |#1|) |#1| |#1|))) +((-1667 (((-1223) (-832)) 9))) +(((-931) (-10 -7 (-15 -1667 ((-1223) (-832))))) (T -931)) +((-1667 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-931))))) +(-10 -7 (-15 -1667 ((-1223) (-832)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 61 (|has| |#1| (-540)))) (-3303 (($ $) 62 (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 28)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) 24)) (-3859 (((-3 $ "failed") $) 35)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-4256 (($ $ |#1| |#2| $) 48)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) 16)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-3904 ((|#2| $) 19)) (-4267 (($ (-1 |#2| |#2|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2185 (($ $) 23)) (-2197 ((|#1| $) 21)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 40)) (-2175 ((|#1| $) NIL)) (-1362 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-540))))) (-1900 (((-3 $ "failed") $ $) 74 (|has| |#1| (-540))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-540)))) (-2512 ((|#2| $) 17)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) 39) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) 34) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ |#2|) 31)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 15)) (-4243 (($ $ $ (-745)) 57 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 67 (|has| |#1| (-540)))) (-3107 (($) 22 T CONST)) (-3118 (($) 12 T CONST)) (-2214 (((-112) $ $) 66)) (-2309 (($ $ |#1|) 75 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) 54) (($ $ (-745)) 52)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-932 |#1| |#2|) (-13 (-318 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-540)) (IF (|has| |#2| (-130)) (-15 -1362 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) (-1016) (-766)) (T -932)) +((-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *2 (-766))))) +(-13 (-318 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-540)) (IF (|has| |#2| (-130)) (-15 -1362 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (-2857 (($ $ $) 63 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (-4104 (((-3 $ "failed") $ $) 50 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (-3423 (((-745)) 34 (-12 (|has| |#1| (-360)) (|has| |#2| (-360))))) (-2803 ((|#2| $) 21)) (-2812 ((|#1| $) 20)) (-3030 (($) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) CONST)) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (-2545 (($) NIL (-12 (|has| |#1| (-360)) (|has| |#2| (-360))))) (-2266 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (-1795 (($ $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-3091 (($ $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2822 (($ |#1| |#2|) 19)) (-2855 (((-890) $) NIL (-12 (|has| |#1| (-360)) (|has| |#2| (-360))))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 37 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))))) (-3337 (($ (-890)) NIL (-12 (|has| |#1| (-360)) (|has| |#2| (-360))))) (-3932 (((-1082) $) NIL)) (-2128 (($ $ $) NIL (-12 (|has| |#1| (-464)) (|has| |#2| (-464))))) (-3652 (($ $ $) NIL (-12 (|has| |#1| (-464)) (|has| |#2| (-464))))) (-3743 (((-832) $) 14)) (-3107 (($) 40 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) CONST)) (-3118 (($) 24 (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) CONST)) (-2262 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2241 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2214 (((-112) $ $) 18)) (-2252 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2234 (((-112) $ $) 66 (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2309 (($ $ $) NIL (-12 (|has| |#1| (-464)) (|has| |#2| (-464))))) (-2299 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2290 (($ $ $) 43 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (** (($ $ (-548)) NIL (-12 (|has| |#1| (-464)) (|has| |#2| (-464)))) (($ $ (-745)) 31 (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (* (($ (-548) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-745) $) 46 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (($ (-890) $) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (($ $ $) 27 (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))))) +(((-933 |#1| |#2|) (-13 (-1063) (-10 -8 (IF (|has| |#1| (-360)) (IF (|has| |#2| (-360)) (-6 (-360)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-701)) (IF (|has| |#2| (-701)) (-6 (-701)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-464)) (-6 (-464)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-767)) (IF (|has| |#2| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-821)) (IF (|has| |#2| (-821)) (-6 (-821)) |%noBranch|) |%noBranch|) (-15 -2822 ($ |#1| |#2|)) (-15 -2812 (|#1| $)) (-15 -2803 (|#2| $)))) (-1063) (-1063)) (T -933)) +((-2822 (*1 *1 *2 *3) (-12 (-5 *1 (-933 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2812 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-933 *2 *3)) (-4 *3 (-1063)))) (-2803 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-933 *3 *2)) (-4 *3 (-1063))))) +(-13 (-1063) (-10 -8 (IF (|has| |#1| (-360)) (IF (|has| |#2| (-360)) (-6 (-360)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-701)) (IF (|has| |#2| (-701)) (-6 (-701)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-464)) (-6 (-464)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-767)) (IF (|has| |#2| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-821)) (IF (|has| |#2| (-821)) (-6 (-821)) |%noBranch|) |%noBranch|) (-15 -2822 ($ |#1| |#2|)) (-15 -2812 (|#1| $)) (-15 -2803 (|#2| $)))) +((-4056 (((-1067) $) 12)) (-1812 (($ (-1135) (-1067)) 13)) (-2275 (((-1135) $) 10)) (-3743 (((-832) $) 22))) +(((-934) (-13 (-592 (-832)) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -4056 ((-1067) $)) (-15 -1812 ($ (-1135) (-1067)))))) (T -934)) +((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-934)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-934)))) (-1812 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-934))))) +(-13 (-592 (-832)) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -4056 ((-1067) $)) (-15 -1812 ($ (-1135) (-1067))))) +((-2049 (((-1065 (-1135)) $) 19)) (-2921 (((-112) $) 26)) (-2754 (((-1135) $) 27)) (-2943 (((-112) $) 24)) (-2932 ((|#1| $) 25)) (-2868 (((-842 $ $) $) 34)) (-2878 (((-112) $) 33)) (-4168 (($ $ $) 12)) (-2911 (($ $) 29)) (-3191 (((-112) $) 28)) (-3958 (($ $) 10)) (-2848 (((-842 $ $) $) 36)) (-2856 (((-112) $) 35)) (-2202 (($ $ $) 13)) (-2828 (((-842 $ $) $) 38)) (-2838 (((-112) $) 37)) (-2954 (($ $ $) 14)) (-3743 (($ |#1|) 7) (($ (-1135)) 9) (((-832) $) 40 (|has| |#1| (-592 (-832))))) (-2888 (((-842 $ $) $) 32)) (-2899 (((-112) $) 30)) (-1723 (($ $ $) 11))) +(((-935 |#1|) (-13 (-936) (-10 -8 (IF (|has| |#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (-15 -3743 ($ |#1|)) (-15 -3743 ($ (-1135))) (-15 -2049 ((-1065 (-1135)) $)) (-15 -2943 ((-112) $)) (-15 -2932 (|#1| $)) (-15 -2921 ((-112) $)) (-15 -2754 ((-1135) $)) (-15 -3191 ((-112) $)) (-15 -2911 ($ $)) (-15 -2899 ((-112) $)) (-15 -2888 ((-842 $ $) $)) (-15 -2878 ((-112) $)) (-15 -2868 ((-842 $ $) $)) (-15 -2856 ((-112) $)) (-15 -2848 ((-842 $ $) $)) (-15 -2838 ((-112) $)) (-15 -2828 ((-842 $ $) $)))) (-936)) (T -935)) +((-3743 (*1 *1 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-1065 (-1135))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2932 (*1 *2 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2911 (*1 *1 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(-13 (-936) (-10 -8 (IF (|has| |#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (-15 -3743 ($ |#1|)) (-15 -3743 ($ (-1135))) (-15 -2049 ((-1065 (-1135)) $)) (-15 -2943 ((-112) $)) (-15 -2932 (|#1| $)) (-15 -2921 ((-112) $)) (-15 -2754 ((-1135) $)) (-15 -3191 ((-112) $)) (-15 -2911 ($ $)) (-15 -2899 ((-112) $)) (-15 -2888 ((-842 $ $) $)) (-15 -2878 ((-112) $)) (-15 -2868 ((-842 $ $) $)) (-15 -2856 ((-112) $)) (-15 -2848 ((-842 $ $) $)) (-15 -2838 ((-112) $)) (-15 -2828 ((-842 $ $) $)))) +((-4168 (($ $ $) 8)) (-3958 (($ $) 6)) (-2202 (($ $ $) 9)) (-2954 (($ $ $) 10)) (-1723 (($ $ $) 7))) +(((-936) (-138)) (T -936)) +((-2954 (*1 *1 *1 *1) (-4 *1 (-936))) (-2202 (*1 *1 *1 *1) (-4 *1 (-936))) (-4168 (*1 *1 *1 *1) (-4 *1 (-936))) (-1723 (*1 *1 *1 *1) (-4 *1 (-936))) (-3958 (*1 *1 *1) (-4 *1 (-936)))) +(-13 (-10 -8 (-15 -3958 ($ $)) (-15 -1723 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -2202 ($ $ $)) (-15 -2954 ($ $ $)))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2965 (($ $ $) 43)) (-2913 (($ $ $) 44)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3091 ((|#1| $) 45)) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-937 |#1|) (-138) (-821)) (T -937)) +((-3091 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) (-2965 (*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4327) (-15 -3091 (|t#1| $)) (-15 -2913 ($ $ $)) (-15 -2965 ($ $ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3097 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|) 85)) (-1548 ((|#2| |#2| |#2|) 83)) (-3109 (((-2 (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|) 87)) (-3120 (((-2 (|:| |coef1| |#2|) (|:| -3587 |#2|)) |#2| |#2|) 89)) (-3196 (((-2 (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|) 107 (|has| |#1| (-443)))) (-3280 (((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 46)) (-2987 (((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 64)) (-2998 (((-2 (|:| |coef1| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 66)) (-3083 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3028 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 71)) (-3140 (((-2 (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|) 97)) (-3061 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 74)) (-3161 (((-619 (-745)) |#2| |#2|) 82)) (-3256 ((|#1| |#2| |#2|) 42)) (-3185 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|) 105 (|has| |#1| (-443)))) (-3173 ((|#1| |#2| |#2|) 103 (|has| |#1| (-443)))) (-3268 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 44)) (-2977 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 63)) (-1557 ((|#1| |#2| |#2|) 61)) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|) 35)) (-3244 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3072 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3353 ((|#2| |#2| |#2|) 75)) (-3018 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 69)) (-3008 ((|#2| |#2| |#2| (-745)) 67)) (-3587 ((|#2| |#2| |#2|) 111 (|has| |#1| (-443)))) (-1900 (((-1218 |#2|) (-1218 |#2|) |#1|) 21)) (-3209 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|) 39)) (-3130 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|) 95)) (-1566 ((|#1| |#2|) 92)) (-3051 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 73)) (-3039 ((|#2| |#2| |#2| (-745)) 72)) (-3150 (((-619 |#2|) |#2| |#2|) 80)) (-3234 ((|#2| |#2| |#1| |#1| (-745)) 50)) (-3223 ((|#1| |#1| |#1| (-745)) 49)) (* (((-1218 |#2|) |#1| (-1218 |#2|)) 16))) +(((-938 |#1| |#2|) (-10 -7 (-15 -1557 (|#1| |#2| |#2|)) (-15 -2977 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -2987 ((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -3008 (|#2| |#2| |#2| (-745))) (-15 -3018 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3028 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3039 (|#2| |#2| |#2| (-745))) (-15 -3051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3061 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3353 (|#2| |#2| |#2|)) (-15 -3072 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3083 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1548 (|#2| |#2| |#2|)) (-15 -3097 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -3109 ((-2 (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -3120 ((-2 (|:| |coef1| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -1566 (|#1| |#2|)) (-15 -3130 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|)) (-15 -3140 ((-2 (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|)) (-15 -3150 ((-619 |#2|) |#2| |#2|)) (-15 -3161 ((-619 (-745)) |#2| |#2|)) (IF (|has| |#1| (-443)) (PROGN (-15 -3173 (|#1| |#2| |#2|)) (-15 -3185 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|)) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|)) (-15 -3587 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1218 |#2|) |#1| (-1218 |#2|))) (-15 -1900 ((-1218 |#2|) (-1218 |#2|) |#1|)) (-15 -1519 ((-2 (|:| -1489 |#1|) (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|)) (-15 -3223 (|#1| |#1| |#1| (-745))) (-15 -3234 (|#2| |#2| |#1| |#1| (-745))) (-15 -3244 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3256 (|#1| |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|))) (-540) (-1194 |#1|)) (T -938)) +((-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-3244 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3234 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3223 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *2 (-540)) (-5 *1 (-938 *2 *4)) (-4 *4 (-1194 *2)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1519 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| -1489 *4) (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1900 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-540)) (-5 *1 (-938 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-540)) (-5 *1 (-938 *3 *4)))) (-3587 (*1 *2 *2 *2) (-12 (-4 *3 (-443)) (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3196 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3173 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3185 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3173 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3173 (*1 *2 *3 *3) (-12 (-4 *2 (-540)) (-4 *2 (-443)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-3161 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 (-745))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3150 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3140 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1566 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3130 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1566 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1566 (*1 *2 *3) (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-3120 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3587 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3109 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3587 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3097 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3587 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1548 (*1 *2 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3072 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3353 (*1 *2 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3061 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3051 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3039 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-540)) (-5 *1 (-938 *4 *2)) (-4 *2 (-1194 *4)))) (-3028 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3018 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3008 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-540)) (-5 *1 (-938 *4 *2)) (-4 *2 (-1194 *4)))) (-2998 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2987 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2977 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1557 (*1 *2 *3 *3) (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2))))) +(-10 -7 (-15 -1557 (|#1| |#2| |#2|)) (-15 -2977 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -2987 ((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -3008 (|#2| |#2| |#2| (-745))) (-15 -3018 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3028 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3039 (|#2| |#2| |#2| (-745))) (-15 -3051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3061 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3353 (|#2| |#2| |#2|)) (-15 -3072 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3083 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1548 (|#2| |#2| |#2|)) (-15 -3097 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -3109 ((-2 (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -3120 ((-2 (|:| |coef1| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -1566 (|#1| |#2|)) (-15 -3130 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|)) (-15 -3140 ((-2 (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|)) (-15 -3150 ((-619 |#2|) |#2| |#2|)) (-15 -3161 ((-619 (-745)) |#2| |#2|)) (IF (|has| |#1| (-443)) (PROGN (-15 -3173 (|#1| |#2| |#2|)) (-15 -3185 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|)) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|)) (-15 -3587 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1218 |#2|) |#1| (-1218 |#2|))) (-15 -1900 ((-1218 |#2|) (-1218 |#2|) |#1|)) (-15 -1519 ((-2 (|:| -1489 |#1|) (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|)) (-15 -3223 (|#1| |#1| |#1| (-745))) (-15 -3234 (|#2| |#2| |#1| |#1| (-745))) (-15 -3244 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3256 (|#1| |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|))) +((-3730 (((-112) $ $) NIL)) (-1949 (((-1171) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-939) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1949 ((-1171) $))))) (T -939)) +((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-939)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-939))))) +(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1949 ((-1171) $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) 27)) (-3030 (($) NIL T CONST)) (-3304 (((-619 (-619 (-548))) (-619 (-548))) 29)) (-3291 (((-548) $) 45)) (-3317 (($ (-619 (-548))) 17)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2591 (((-619 (-548)) $) 12)) (-2128 (($ $) 32)) (-3743 (((-832) $) 43) (((-619 (-548)) $) 10)) (-3107 (($) 7 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 20)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 19)) (-2290 (($ $ $) 21)) (* (($ (-890) $) NIL) (($ (-745) $) 25))) +(((-940) (-13 (-769) (-593 (-619 (-548))) (-10 -8 (-15 -3317 ($ (-619 (-548)))) (-15 -3304 ((-619 (-619 (-548))) (-619 (-548)))) (-15 -3291 ((-548) $)) (-15 -2128 ($ $)) (-15 -3743 ((-619 (-548)) $))))) (T -940)) +((-3317 (*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-940)))) (-3304 (*1 *2 *3) (-12 (-5 *2 (-619 (-619 (-548)))) (-5 *1 (-940)) (-5 *3 (-619 (-548))))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-940)))) (-2128 (*1 *1 *1) (-5 *1 (-940))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-940))))) +(-13 (-769) (-593 (-619 (-548))) (-10 -8 (-15 -3317 ($ (-619 (-548)))) (-15 -3304 ((-619 (-619 (-548))) (-619 (-548)))) (-15 -3291 ((-548) $)) (-15 -2128 ($ $)) (-15 -3743 ((-619 (-548)) $)))) +((-2309 (($ $ |#2|) 30)) (-2299 (($ $) 22) (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-399 (-548)) $) 26) (($ $ (-399 (-548))) 28))) +(((-941 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2309 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-942 |#2| |#3| |#4|) (-1016) (-766) (-821)) (T -941)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2309 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 |#3|) $) 72)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-3345 (((-112) $) 71)) (-2266 (((-112) $) 30)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-619 |#3|) (-619 |#2|)) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-2512 ((|#2| $) 62)) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1951 ((|#1| $ |#2|) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-942 |#1| |#2| |#3|) (-138) (-1016) (-766) (-821)) (T -942)) +((-2197 (*1 *2 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *3 (-766)) (-4 *4 (-821)) (-4 *2 (-1016)))) (-2185 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *4 (-821)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *2 *4)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *2 (-766)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-942 *4 *3 *2)) (-4 *4 (-1016)) (-4 *3 (-766)) (-4 *2 (-821)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 *5)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-766)) (-4 *6 (-821)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *5 (-821)) (-5 *2 (-619 *5)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3330 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *4 (-821))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2024 ($ $ |t#3| |t#2|)) (-15 -2024 ($ $ (-619 |t#3|) (-619 |t#2|))) (-15 -2185 ($ $)) (-15 -2197 (|t#1| $)) (-15 -2512 (|t#2| $)) (-15 -2049 ((-619 |t#3|) $)) (-15 -3345 ((-112) $)) (-15 -3330 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-282) |has| |#1| (-540)) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3948 (((-1058 (-218)) $) 8)) (-3934 (((-1058 (-218)) $) 9)) (-3921 (((-1058 (-218)) $) 10)) (-3360 (((-619 (-619 (-912 (-218)))) $) 11)) (-3743 (((-832) $) 6))) +(((-943) (-138)) (T -943)) +((-3360 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-619 (-619 (-912 (-218))))))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218))))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218))))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218)))))) +(-13 (-592 (-832)) (-10 -8 (-15 -3360 ((-619 (-619 (-912 (-218)))) $)) (-15 -3921 ((-1058 (-218)) $)) (-15 -3934 ((-1058 (-218)) $)) (-15 -3948 ((-1058 (-218)) $)))) +(((-592 (-832)) . T)) +((-2049 (((-619 |#4|) $) 23)) (-2289 (((-112) $) 48)) (-3376 (((-112) $) 47)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#4|) 36)) (-2251 (((-112) $) 49)) (-2271 (((-112) $ $) 55)) (-2261 (((-112) $ $) 58)) (-2280 (((-112) $) 53)) (-2213 (((-619 |#5|) (-619 |#5|) $) 90)) (-2223 (((-619 |#5|) (-619 |#5|) $) 87)) (-2233 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2338 (((-619 |#4|) $) 27)) (-2329 (((-112) |#4| $) 30)) (-2240 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2298 (($ $ |#4|) 33)) (-2319 (($ $ |#4|) 32)) (-2308 (($ $ |#4|) 34)) (-2214 (((-112) $ $) 40))) +(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3376 ((-112) |#1|)) (-15 -2213 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2223 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2233 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2240 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2251 ((-112) |#1|)) (-15 -2261 ((-112) |#1| |#1|)) (-15 -2271 ((-112) |#1| |#1|)) (-15 -2280 ((-112) |#1|)) (-15 -2289 ((-112) |#1|)) (-15 -2490 ((-2 (|:| |under| |#1|) (|:| -3887 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2298 (|#1| |#1| |#4|)) (-15 -2308 (|#1| |#1| |#4|)) (-15 -2319 (|#1| |#1| |#4|)) (-15 -2329 ((-112) |#4| |#1|)) (-15 -2338 ((-619 |#4|) |#1|)) (-15 -2049 ((-619 |#4|) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-945 |#2| |#3| |#4| |#5|) (-1016) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -944)) +NIL +(-10 -8 (-15 -3376 ((-112) |#1|)) (-15 -2213 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2223 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2233 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2240 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2251 ((-112) |#1|)) (-15 -2261 ((-112) |#1| |#1|)) (-15 -2271 ((-112) |#1| |#1|)) (-15 -2280 ((-112) |#1|)) (-15 -2289 ((-112) |#1|)) (-15 -2490 ((-2 (|:| |under| |#1|) (|:| -3887 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2298 (|#1| |#1| |#4|)) (-15 -2308 (|#1| |#1| |#4|)) (-15 -2319 (|#1| |#1| |#4|)) (-15 -2329 ((-112) |#4| |#1|)) (-15 -2338 ((-619 |#4|) |#1|)) (-15 -2049 ((-619 |#4|) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327)))) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327)))) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-3932 (((-1082) $) 10)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) +(((-945 |#1| |#2| |#3| |#4|) (-138) (-1016) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -945)) +((-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-1030 *3 *4 *2)) (-4 *2 (-821)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-2329 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *3 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) (-2319 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-2308 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-2298 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-2490 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3887 *1) (|:| |upper| *1))) (-4 *1 (-945 *4 *5 *3 *6)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112)))) (-2271 (*1 *2 *1 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112)))) (-2261 (*1 *2 *1 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112)))) (-2251 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112)))) (-2240 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2233 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2223 (*1 *2 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)))) (-2213 (*1 *2 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112))))) +(-13 (-1063) (-149 |t#4|) (-592 (-619 |t#4|)) (-10 -8 (-6 -4327) (-15 -2441 ((-3 $ "failed") (-619 |t#4|))) (-15 -2375 ($ (-619 |t#4|))) (-15 -3239 (|t#3| $)) (-15 -2049 ((-619 |t#3|) $)) (-15 -2338 ((-619 |t#3|) $)) (-15 -2329 ((-112) |t#3| $)) (-15 -2319 ($ $ |t#3|)) (-15 -2308 ($ $ |t#3|)) (-15 -2298 ($ $ |t#3|)) (-15 -2490 ((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |t#3|)) (-15 -2289 ((-112) $)) (IF (|has| |t#1| (-540)) (PROGN (-15 -2280 ((-112) $)) (-15 -2271 ((-112) $ $)) (-15 -2261 ((-112) $ $)) (-15 -2251 ((-112) $)) (-15 -2240 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2233 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2223 ((-619 |t#4|) (-619 |t#4|) $)) (-15 -2213 ((-619 |t#4|) (-619 |t#4|) $)) (-15 -3376 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-1063) . T) ((-1172) . T)) +((-2358 (((-619 |#4|) |#4| |#4|) 118)) (-2599 (((-619 |#4|) (-619 |#4|) (-112)) 107 (|has| |#1| (-443))) (((-619 |#4|) (-619 |#4|)) 108 (|has| |#1| (-443)))) (-2463 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 35)) (-2451 (((-112) |#4|) 34)) (-2589 (((-619 |#4|) |#4|) 103 (|has| |#1| (-443)))) (-2410 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|)) 20)) (-2419 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|)) 22)) (-2429 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|)) 23)) (-2550 (((-3 (-2 (|:| |bas| (-467 |#1| |#2| |#3| |#4|)) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|)) 73)) (-2570 (((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2579 (((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2347 (((-619 |#4|) (-619 |#4|)) 110)) (-2515 (((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112)) 48) (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 50)) (-2525 ((|#4| |#4| (-619 |#4|)) 49)) (-2609 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 114 (|has| |#1| (-443)))) (-2628 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 117 (|has| |#1| (-443)))) (-2619 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 116 (|has| |#1| (-443)))) (-2367 (((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|))) 87) (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 89) (((-619 |#4|) (-619 |#4|) |#4|) 121) (((-619 |#4|) |#4| |#4|) 119) (((-619 |#4|) (-619 |#4|)) 88)) (-2659 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-299))))) (-2438 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 41)) (-2399 (((-112) (-619 |#4|)) 62)) (-2388 (((-112) (-619 |#4|) (-619 (-619 |#4|))) 53)) (-2484 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 29)) (-2474 (((-112) |#4|) 28)) (-2649 (((-619 |#4|) (-619 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-299))))) (-2637 (((-619 |#4|) (-619 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-299))))) (-2537 (((-619 |#4|) (-619 |#4|)) 66)) (-2561 (((-619 |#4|) (-619 |#4|)) 79)) (-2377 (((-112) (-619 |#4|) (-619 |#4|)) 51)) (-2506 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 39)) (-2496 (((-112) |#4|) 36))) +(((-946 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-619 |#4|) (-619 |#4|))) (-15 -2367 ((-619 |#4|) |#4| |#4|)) (-15 -2347 ((-619 |#4|) (-619 |#4|))) (-15 -2358 ((-619 |#4|) |#4| |#4|)) (-15 -2367 ((-619 |#4|) (-619 |#4|) |#4|)) (-15 -2367 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2367 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|)))) (-15 -2377 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2388 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -2399 ((-112) (-619 |#4|))) (-15 -2410 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|))) (-15 -2419 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2429 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2438 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2451 ((-112) |#4|)) (-15 -2463 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2474 ((-112) |#4|)) (-15 -2484 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2496 ((-112) |#4|)) (-15 -2506 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2515 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2515 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2525 (|#4| |#4| (-619 |#4|))) (-15 -2537 ((-619 |#4|) (-619 |#4|))) (-15 -2550 ((-3 (-2 (|:| |bas| (-467 |#1| |#2| |#3| |#4|)) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|))) (-15 -2561 ((-619 |#4|) (-619 |#4|))) (-15 -2570 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2579 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-443)) (PROGN (-15 -2589 ((-619 |#4|) |#4|)) (-15 -2599 ((-619 |#4|) (-619 |#4|))) (-15 -2599 ((-619 |#4|) (-619 |#4|) (-112))) (-15 -2609 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2619 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2628 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) (IF (|has| |#1| (-299)) (IF (|has| |#1| (-145)) (PROGN (-15 -2637 ((-619 |#4|) (-619 |#4|))) (-15 -2649 ((-619 |#4|) (-619 |#4|))) (-15 -2659 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) |%noBranch|)) (-540) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -946)) +((-2659 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2637 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2628 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2619 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2609 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2599 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2589 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2579 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-946 *5 *6 *7 *8)))) (-2570 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-619 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *1 (-946 *6 *7 *8 *9)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2550 (*1 *2 *3) (|partial| -12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-467 *4 *5 *6 *7)) (|:| -2088 (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *2)))) (-2515 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2515 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2506 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2484 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2474 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2463 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2451 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2438 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *5 *6 *7 *8)))) (-2377 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2367 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-619 *7) (-619 *7))) (-5 *2 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2367 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2367 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *3)))) (-2358 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2367 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) +(-10 -7 (-15 -2367 ((-619 |#4|) (-619 |#4|))) (-15 -2367 ((-619 |#4|) |#4| |#4|)) (-15 -2347 ((-619 |#4|) (-619 |#4|))) (-15 -2358 ((-619 |#4|) |#4| |#4|)) (-15 -2367 ((-619 |#4|) (-619 |#4|) |#4|)) (-15 -2367 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2367 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|)))) (-15 -2377 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2388 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -2399 ((-112) (-619 |#4|))) (-15 -2410 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|))) (-15 -2419 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2429 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2438 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2451 ((-112) |#4|)) (-15 -2463 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2474 ((-112) |#4|)) (-15 -2484 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2496 ((-112) |#4|)) (-15 -2506 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2515 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2515 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2525 (|#4| |#4| (-619 |#4|))) (-15 -2537 ((-619 |#4|) (-619 |#4|))) (-15 -2550 ((-3 (-2 (|:| |bas| (-467 |#1| |#2| |#3| |#4|)) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|))) (-15 -2561 ((-619 |#4|) (-619 |#4|))) (-15 -2570 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2579 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-443)) (PROGN (-15 -2589 ((-619 |#4|) |#4|)) (-15 -2599 ((-619 |#4|) (-619 |#4|))) (-15 -2599 ((-619 |#4|) (-619 |#4|) (-112))) (-15 -2609 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2619 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2628 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) (IF (|has| |#1| (-299)) (IF (|has| |#1| (-145)) (PROGN (-15 -2637 ((-619 |#4|) (-619 |#4|))) (-15 -2649 ((-619 |#4|) (-619 |#4|))) (-15 -2659 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) |%noBranch|)) +((-2670 (((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-2688 (((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)) 36)) (-2678 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) +(((-947 |#1|) (-10 -7 (-15 -2670 ((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2678 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2688 ((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)))) (-355)) (T -947)) +((-2688 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-5 *2 (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5))))) (-5 *1 (-947 *5)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)))) (-2678 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-663 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) (-5 *1 (-947 *5)))) (-2670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-355)) (-5 *2 (-2 (|:| R (-663 *6)) (|:| A (-663 *6)) (|:| |Ainv| (-663 *6)))) (-5 *1 (-947 *6)) (-5 *3 (-663 *6))))) +(-10 -7 (-15 -2670 ((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2678 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2688 ((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)))) +((-2634 (((-410 |#4|) |#4|) 48))) +(((-948 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2634 ((-410 |#4|) |#4|))) (-821) (-767) (-443) (-918 |#3| |#2| |#1|)) (T -948)) +((-2634 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-443)) (-5 *2 (-410 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) +(-10 -7 (-15 -2634 ((-410 |#4|) |#4|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3320 (($ (-745)) 112 (|has| |#1| (-23)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-2621 (((-548) (-1 (-112) |#1|) $) 97) (((-548) |#1| $) 96 (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) 95 (|has| |#1| (-1063)))) (-1733 (($ (-619 |#1|)) 118)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) 105 (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4007 ((|#1| $) 102 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-4248 (((-112) $ (-745)) 10)) (-3198 ((|#1| $) 103 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-1656 (($ $ (-619 |#1|)) 115)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-4029 ((|#1| $ $) 106 (|has| |#1| (-1016)))) (-3402 (((-890) $) 117)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-4018 (($ $ $) 104)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524)))) (($ (-619 |#1|)) 116)) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 82 (|has| |#1| (-821)))) (-2299 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2290 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-548) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-701))) (($ $ |#1|) 107 (|has| |#1| (-701)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-949 |#1|) (-138) (-1016)) (T -949)) +((-1733 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1016)) (-5 *2 (-890)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1016)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-949 *3)) (-4 *3 (-1016))))) +(-13 (-1216 |t#1|) (-10 -8 (-15 -1733 ($ (-619 |t#1|))) (-15 -3402 ((-890) $)) (-15 -2591 ($ (-619 |t#1|))) (-15 -4018 ($ $ $)) (-15 -1656 ($ $ (-619 |t#1|))))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-365 |#1|) . T) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-19 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T) ((-1216 |#1|) . T)) +((-2540 (((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)) 17))) +(((-950 |#1| |#2|) (-10 -7 (-15 -2540 ((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)))) (-1016) (-1016)) (T -950)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-912 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-912 *6)) (-5 *1 (-950 *5 *6))))) +(-10 -7 (-15 -2540 ((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)))) +((-2713 ((|#1| (-912 |#1|)) 13)) (-2704 ((|#1| (-912 |#1|)) 12)) (-2697 ((|#1| (-912 |#1|)) 11)) (-2730 ((|#1| (-912 |#1|)) 15)) (-1646 ((|#1| (-912 |#1|)) 21)) (-2722 ((|#1| (-912 |#1|)) 14)) (-2738 ((|#1| (-912 |#1|)) 16)) (-2756 ((|#1| (-912 |#1|)) 20)) (-2747 ((|#1| (-912 |#1|)) 19))) +(((-951 |#1|) (-10 -7 (-15 -2697 (|#1| (-912 |#1|))) (-15 -2704 (|#1| (-912 |#1|))) (-15 -2713 (|#1| (-912 |#1|))) (-15 -2722 (|#1| (-912 |#1|))) (-15 -2730 (|#1| (-912 |#1|))) (-15 -2738 (|#1| (-912 |#1|))) (-15 -2747 (|#1| (-912 |#1|))) (-15 -2756 (|#1| (-912 |#1|))) (-15 -1646 (|#1| (-912 |#1|)))) (-1016)) (T -951)) +((-1646 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(-10 -7 (-15 -2697 (|#1| (-912 |#1|))) (-15 -2704 (|#1| (-912 |#1|))) (-15 -2713 (|#1| (-912 |#1|))) (-15 -2722 (|#1| (-912 |#1|))) (-15 -2730 (|#1| (-912 |#1|))) (-15 -2738 (|#1| (-912 |#1|))) (-15 -2747 (|#1| (-912 |#1|))) (-15 -2756 (|#1| (-912 |#1|))) (-15 -1646 (|#1| (-912 |#1|)))) +((-1798 (((-3 |#1| "failed") |#1|) 18)) (-1694 (((-3 |#1| "failed") |#1|) 6)) (-1780 (((-3 |#1| "failed") |#1|) 16)) (-1678 (((-3 |#1| "failed") |#1|) 4)) (-1819 (((-3 |#1| "failed") |#1|) 20)) (-1708 (((-3 |#1| "failed") |#1|) 8)) (-1654 (((-3 |#1| "failed") |#1| (-745)) 1)) (-1670 (((-3 |#1| "failed") |#1|) 3)) (-1663 (((-3 |#1| "failed") |#1|) 2)) (-1829 (((-3 |#1| "failed") |#1|) 21)) (-1717 (((-3 |#1| "failed") |#1|) 9)) (-1808 (((-3 |#1| "failed") |#1|) 19)) (-1700 (((-3 |#1| "failed") |#1|) 7)) (-1788 (((-3 |#1| "failed") |#1|) 17)) (-1686 (((-3 |#1| "failed") |#1|) 5)) (-1855 (((-3 |#1| "failed") |#1|) 24)) (-1746 (((-3 |#1| "failed") |#1|) 12)) (-1837 (((-3 |#1| "failed") |#1|) 22)) (-1726 (((-3 |#1| "failed") |#1|) 10)) (-1874 (((-3 |#1| "failed") |#1|) 26)) (-1764 (((-3 |#1| "failed") |#1|) 14)) (-1883 (((-3 |#1| "failed") |#1|) 27)) (-1772 (((-3 |#1| "failed") |#1|) 15)) (-1864 (((-3 |#1| "failed") |#1|) 25)) (-1755 (((-3 |#1| "failed") |#1|) 13)) (-1846 (((-3 |#1| "failed") |#1|) 23)) (-1736 (((-3 |#1| "failed") |#1|) 11))) +(((-952 |#1|) (-138) (-1157)) (T -952)) +((-1883 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1874 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1864 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1855 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1846 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1837 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1829 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1819 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1808 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1798 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1788 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1780 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1772 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1764 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1755 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1746 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1736 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1726 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1717 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1708 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1700 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1694 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1686 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1678 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1670 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1663 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1654 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(-13 (-10 -7 (-15 -1654 ((-3 |t#1| "failed") |t#1| (-745))) (-15 -1663 ((-3 |t#1| "failed") |t#1|)) (-15 -1670 ((-3 |t#1| "failed") |t#1|)) (-15 -1678 ((-3 |t#1| "failed") |t#1|)) (-15 -1686 ((-3 |t#1| "failed") |t#1|)) (-15 -1694 ((-3 |t#1| "failed") |t#1|)) (-15 -1700 ((-3 |t#1| "failed") |t#1|)) (-15 -1708 ((-3 |t#1| "failed") |t#1|)) (-15 -1717 ((-3 |t#1| "failed") |t#1|)) (-15 -1726 ((-3 |t#1| "failed") |t#1|)) (-15 -1736 ((-3 |t#1| "failed") |t#1|)) (-15 -1746 ((-3 |t#1| "failed") |t#1|)) (-15 -1755 ((-3 |t#1| "failed") |t#1|)) (-15 -1764 ((-3 |t#1| "failed") |t#1|)) (-15 -1772 ((-3 |t#1| "failed") |t#1|)) (-15 -1780 ((-3 |t#1| "failed") |t#1|)) (-15 -1788 ((-3 |t#1| "failed") |t#1|)) (-15 -1798 ((-3 |t#1| "failed") |t#1|)) (-15 -1808 ((-3 |t#1| "failed") |t#1|)) (-15 -1819 ((-3 |t#1| "failed") |t#1|)) (-15 -1829 ((-3 |t#1| "failed") |t#1|)) (-15 -1837 ((-3 |t#1| "failed") |t#1|)) (-15 -1846 ((-3 |t#1| "failed") |t#1|)) (-15 -1855 ((-3 |t#1| "failed") |t#1|)) (-15 -1864 ((-3 |t#1| "failed") |t#1|)) (-15 -1874 ((-3 |t#1| "failed") |t#1|)) (-15 -1883 ((-3 |t#1| "failed") |t#1|)))) +((-1904 ((|#4| |#4| (-619 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1893 ((|#4| |#4| (-619 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2540 ((|#4| (-1 |#4| (-921 |#1|)) |#4|) 30))) +(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| |#4| |#3|)) (-15 -1893 (|#4| |#4| (-619 |#3|))) (-15 -1904 (|#4| |#4| |#3|)) (-15 -1904 (|#4| |#4| (-619 |#3|))) (-15 -2540 (|#4| (-1 |#4| (-921 |#1|)) |#4|))) (-1016) (-767) (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135))))) (-918 (-921 |#1|) |#2| |#3|)) (T -953)) +((-2540 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-921 *4))) (-4 *4 (-1016)) (-4 *2 (-918 (-921 *4) *5 *6)) (-4 *5 (-767)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *6 *2)))) (-1904 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *2 (-918 (-921 *4) *5 *6)))) (-1904 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) (-1893 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *2 (-918 (-921 *4) *5 *6)))) (-1893 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3))))) +(-10 -7 (-15 -1893 (|#4| |#4| |#3|)) (-15 -1893 (|#4| |#4| (-619 |#3|))) (-15 -1904 (|#4| |#4| |#3|)) (-15 -1904 (|#4| |#4| (-619 |#3|))) (-15 -2540 (|#4| (-1 |#4| (-921 |#1|)) |#4|))) +((-1914 ((|#2| |#3|) 35)) (-3490 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|) 73)) (-3478 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) 89))) +(((-954 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)) (-15 -1914 (|#2| |#3|))) (-341) (-1194 |#1|) (-1194 |#2|) (-699 |#2| |#3|)) (T -954)) +((-1914 (*1 *2 *3) (-12 (-4 *3 (-1194 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-954 *4 *2 *3 *5)) (-4 *4 (-341)) (-4 *5 (-699 *2 *3)))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-954 *4 *3 *5 *6)) (-4 *6 (-699 *3 *5)))) (-3478 (*1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -2877 (-663 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-663 *4)))) (-5 *1 (-954 *3 *4 *5 *6)) (-4 *6 (-699 *4 *5))))) +(-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)) (-15 -1914 (|#2| |#3|))) +((-1980 (((-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548)))) (-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548))))) 69))) +(((-955 |#1| |#2|) (-10 -7 (-15 -1980 ((-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548)))) (-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548))))))) (-619 (-1135)) (-745)) (T -955)) +((-1980 (*1 *2 *2) (-12 (-5 *2 (-956 (-399 (-548)) (-834 *3) (-233 *4 (-745)) (-240 *3 (-399 (-548))))) (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-955 *3 *4))))) +(-10 -7 (-15 -1980 ((-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548)))) (-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548))))))) +((-3730 (((-112) $ $) NIL)) (-1902 (((-3 (-112) "failed") $) 69)) (-2805 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-299))))) (-1960 (($ $ (-3 (-112) "failed")) 70)) (-1969 (($ (-619 |#4|) |#4|) 25)) (-2546 (((-1118) $) NIL)) (-1925 (($ $) 67)) (-3932 (((-1082) $) NIL)) (-1616 (((-112) $) 68)) (-3319 (($) 30)) (-1936 ((|#4| $) 72)) (-1947 (((-619 |#4|) $) 71)) (-3743 (((-832) $) 66)) (-2214 (((-112) $ $) NIL))) +(((-956 |#1| |#2| |#3| |#4|) (-13 (-1063) (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -1969 ($ (-619 |#4|) |#4|)) (-15 -1902 ((-3 (-112) "failed") $)) (-15 -1960 ($ $ (-3 (-112) "failed"))) (-15 -1616 ((-112) $)) (-15 -1947 ((-619 |#4|) $)) (-15 -1936 (|#4| $)) (-15 -1925 ($ $)) (IF (|has| |#1| (-299)) (IF (|has| |#1| (-145)) (-15 -2805 ($ $)) |%noBranch|) |%noBranch|))) (-443) (-821) (-767) (-918 |#1| |#3| |#2|)) (T -956)) +((-3319 (*1 *1) (-12 (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) (-1969 (*1 *1 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-918 *4 *6 *5)) (-4 *4 (-443)) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *1 (-956 *4 *5 *6 *3)))) (-1902 (*1 *2 *1) (|partial| -12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1960 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1616 (*1 *2 *1) (-12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1947 (*1 *2 *1) (-12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-619 *6)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1936 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-956 *3 *4 *5 *2)) (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)))) (-1925 (*1 *1 *1) (-12 (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) (-2805 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-299)) (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3))))) +(-13 (-1063) (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -1969 ($ (-619 |#4|) |#4|)) (-15 -1902 ((-3 (-112) "failed") $)) (-15 -1960 ($ $ (-3 (-112) "failed"))) (-15 -1616 ((-112) $)) (-15 -1947 ((-619 |#4|) $)) (-15 -1936 (|#4| $)) (-15 -1925 ($ $)) (IF (|has| |#1| (-299)) (IF (|has| |#1| (-145)) (-15 -2805 ($ $)) |%noBranch|) |%noBranch|))) +((-2710 (((-112) |#5| |#5|) 38)) (-2735 (((-112) |#5| |#5|) 52)) (-2776 (((-112) |#5| (-619 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-2744 (((-112) (-619 |#4|) (-619 |#4|)) 58)) (-1675 (((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) 63)) (-2702 (((-1223)) 33)) (-2694 (((-1223) (-1118) (-1118) (-1118)) 29)) (-2784 (((-619 |#5|) (-619 |#5|)) 81)) (-1683 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) 79)) (-1691 (((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112)) 101)) (-2727 (((-112) |#5| |#5|) 47)) (-2768 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2752 (((-112) (-619 |#4|) (-619 |#4|)) 57)) (-2761 (((-112) (-619 |#4|) (-619 |#4|)) 59)) (-2199 (((-112) (-619 |#4|) (-619 |#4|)) 60)) (-1697 (((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-2718 (((-619 |#5|) (-619 |#5|)) 43))) +(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2694 ((-1223) (-1118) (-1118) (-1118))) (-15 -2702 ((-1223))) (-15 -2710 ((-112) |#5| |#5|)) (-15 -2718 ((-619 |#5|) (-619 |#5|))) (-15 -2727 ((-112) |#5| |#5|)) (-15 -2735 ((-112) |#5| |#5|)) (-15 -2744 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2752 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2761 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2199 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2768 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2776 ((-112) |#5| |#5|)) (-15 -2776 ((-112) |#5| (-619 |#5|))) (-15 -2784 ((-619 |#5|) (-619 |#5|))) (-15 -1675 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1683 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-15 -1691 ((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -1697 ((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -957)) +((-1697 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| -2383 (-619 *9)) (|:| -1806 *4) (|:| |ineq| (-619 *9)))) (-5 *1 (-957 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) (-4 *4 (-1036 *6 *7 *8 *9)))) (-1691 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| -2383 (-619 *9)) (|:| -1806 *10) (|:| |ineq| (-619 *9))))) (-5 *1 (-957 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1806 *7)))) (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-1675 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-957 *5 *6 *7 *8 *3)))) (-2776 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2768 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2199 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2761 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2752 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2735 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2727 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-2710 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2702 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-957 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-2694 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(-10 -7 (-15 -2694 ((-1223) (-1118) (-1118) (-1118))) (-15 -2702 ((-1223))) (-15 -2710 ((-112) |#5| |#5|)) (-15 -2718 ((-619 |#5|) (-619 |#5|))) (-15 -2727 ((-112) |#5| |#5|)) (-15 -2735 ((-112) |#5| |#5|)) (-15 -2744 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2752 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2761 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2199 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2768 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2776 ((-112) |#5| |#5|)) (-15 -2776 ((-112) |#5| (-619 |#5|))) (-15 -2784 ((-619 |#5|) (-619 |#5|))) (-15 -1675 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1683 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-15 -1691 ((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -1697 ((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2754 (((-1135) $) 15)) (-4056 (((-1118) $) 16)) (-2155 (($ (-1135) (-1118)) 14)) (-3743 (((-832) $) 13))) +(((-958) (-13 (-592 (-832)) (-10 -8 (-15 -2155 ($ (-1135) (-1118))) (-15 -2754 ((-1135) $)) (-15 -4056 ((-1118) $))))) (T -958)) +((-2155 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-958)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-958)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-958))))) +(-13 (-592 (-832)) (-10 -8 (-15 -2155 ($ (-1135) (-1118))) (-15 -2754 ((-1135) $)) (-15 -4056 ((-1118) $)))) +((-2540 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-959 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#2| |#1|) |#3|))) (-540) (-540) (-961 |#1|) (-961 |#2|)) (T -959)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-540)) (-4 *6 (-540)) (-4 *2 (-961 *6)) (-5 *1 (-959 *5 *6 *4 *2)) (-4 *4 (-961 *5))))) +(-10 -7 (-15 -2540 (|#4| (-1 |#2| |#1|) |#3|))) +((-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-1135) "failed") $) 65) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) 95)) (-2375 ((|#2| $) NIL) (((-1135) $) 60) (((-399 (-548)) $) NIL) (((-548) $) 92)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 112) (((-663 |#2|) (-663 $)) 28)) (-2545 (($) 98)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 75) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 84)) (-2002 (($ $) 10)) (-3725 (((-3 $ "failed") $) 20)) (-2540 (($ (-1 |#2| |#2|) $) 22)) (-3410 (($) 16)) (-3862 (($ $) 54)) (-4050 (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1993 (($ $) 12)) (-2591 (((-861 (-548)) $) 70) (((-861 (-371)) $) 79) (((-524) $) 40) (((-371) $) 44) (((-218) $) 47)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 90) (($ |#2|) NIL) (($ (-1135)) 57)) (-3835 (((-745)) 31)) (-2234 (((-112) $ $) 50))) +(((-960 |#1| |#2|) (-10 -8 (-15 -2234 ((-112) |#1| |#1|)) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -3743 (|#1| (-1135))) (-15 -2545 (|#1|)) (-15 -3862 (|#1| |#1|)) (-15 -1993 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -3743 ((-832) |#1|))) (-961 |#2|) (-540)) (T -960)) +((-3835 (*1 *2) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-960 *3 *4)) (-4 *3 (-961 *4))))) +(-10 -8 (-15 -2234 ((-112) |#1| |#1|)) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -3743 (|#1| (-1135))) (-15 -2545 (|#1|)) (-15 -3862 (|#1| |#1|)) (-15 -1993 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3875 ((|#1| $) 136 (|has| |#1| (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 127 (|has| |#1| (-878)))) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 130 (|has| |#1| (-878)))) (-4087 (((-112) $ $) 57)) (-2672 (((-548) $) 117 (|has| |#1| (-794)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 175) (((-3 (-1135) "failed") $) 125 (|has| |#1| (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) 109 (|has| |#1| (-1007 (-548)))) (((-3 (-548) "failed") $) 107 (|has| |#1| (-1007 (-548))))) (-2375 ((|#1| $) 174) (((-1135) $) 124 (|has| |#1| (-1007 (-1135)))) (((-399 (-548)) $) 108 (|has| |#1| (-1007 (-548)))) (((-548) $) 106 (|has| |#1| (-1007 (-548))))) (-1945 (($ $ $) 53)) (-1608 (((-663 (-548)) (-663 $)) 149 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 148 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 147) (((-663 |#1|) (-663 $)) 146)) (-3859 (((-3 $ "failed") $) 32)) (-2545 (($) 134 (|has| |#1| (-533)))) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-3298 (((-112) $) 119 (|has| |#1| (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 143 (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 142 (|has| |#1| (-855 (-371))))) (-2266 (((-112) $) 30)) (-2002 (($ $) 138)) (-2470 ((|#1| $) 140)) (-3725 (((-3 $ "failed") $) 105 (|has| |#1| (-1111)))) (-3312 (((-112) $) 118 (|has| |#1| (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1795 (($ $ $) 115 (|has| |#1| (-821)))) (-3091 (($ $ $) 114 (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) 166)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3410 (($) 104 (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3862 (($ $) 135 (|has| |#1| (-299)))) (-3887 ((|#1| $) 132 (|has| |#1| (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 129 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 128 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 172 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 170 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 169 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 168 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) 167 (|has| |#1| (-504 (-1135) |#1|)))) (-4077 (((-745) $) 56)) (-3171 (($ $ |#1|) 173 (|has| |#1| (-278 |#1| |#1|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-4050 (($ $) 165 (|has| |#1| (-226))) (($ $ (-745)) 163 (|has| |#1| (-226))) (($ $ (-1135)) 161 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 160 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 159 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 158 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-1993 (($ $) 137)) (-2480 ((|#1| $) 139)) (-2591 (((-861 (-548)) $) 145 (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) 144 (|has| |#1| (-593 (-861 (-371))))) (((-524) $) 122 (|has| |#1| (-593 (-524)))) (((-371) $) 121 (|has| |#1| (-991))) (((-218) $) 120 (|has| |#1| (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 131 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ |#1|) 178) (($ (-1135)) 126 (|has| |#1| (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) 123 (-1524 (|has| |#1| (-143)) (-1723 (|has| $ (-143)) (|has| |#1| (-878)))))) (-3835 (((-745)) 28)) (-3897 ((|#1| $) 133 (|has| |#1| (-533)))) (-3290 (((-112) $ $) 37)) (-1446 (($ $) 116 (|has| |#1| (-794)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $) 164 (|has| |#1| (-226))) (($ $ (-745)) 162 (|has| |#1| (-226))) (($ $ (-1135)) 157 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 156 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 155 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 154 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2262 (((-112) $ $) 112 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 111 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 113 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 110 (|has| |#1| (-821)))) (-2309 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-961 |#1|) (-138) (-540)) (T -961)) +((-2309 (*1 *1 *2 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-2470 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-2002 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-1993 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-299)))) (-3862 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-299)))) (-2545 (*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-533)) (-4 *2 (-540)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-533)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-533))))) +(-13 (-355) (-38 |t#1|) (-1007 |t#1|) (-330 |t#1|) (-224 |t#1|) (-369 |t#1|) (-853 |t#1|) (-392 |t#1|) (-10 -8 (-15 -2309 ($ |t#1| |t#1|)) (-15 -2470 (|t#1| $)) (-15 -2480 (|t#1| $)) (-15 -2002 ($ $)) (-15 -1993 ($ $)) (IF (|has| |t#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |t#1| (-1007 (-548))) (PROGN (-6 (-1007 (-548))) (-6 (-1007 (-399 (-548))))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1007 (-1135))) (-6 (-1007 (-1135))) |%noBranch|) (IF (|has| |t#1| (-299)) (PROGN (-15 -3875 (|t#1| $)) (-15 -3862 ($ $))) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -2545 ($)) (-15 -3897 (|t#1| $)) (-15 -3887 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-878)) (-6 (-878)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 (-218)) |has| |#1| (-991)) ((-593 (-371)) |has| |#1| (-991)) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548)))) ((-224 |#1|) . T) ((-226) |has| |#1| (-226)) ((-236) . T) ((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-282) . T) ((-299) . T) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-355) . T) ((-330 |#1|) . T) ((-369 |#1|) . T) ((-392 |#1|) . T) ((-443) . T) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|)) ((-540) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-765) |has| |#1| (-794)) ((-766) |has| |#1| (-794)) ((-768) |has| |#1| (-794)) ((-769) |has| |#1| (-794)) ((-794) |has| |#1| (-794)) ((-819) |has| |#1| (-794)) ((-821) -1524 (|has| |#1| (-821)) (|has| |#1| (-794))) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-853 |#1|) . T) ((-878) |has| |#1| (-878)) ((-889) . T) ((-991) |has| |#1| (-991)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-548))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 (-1135)) |has| |#1| (-1007 (-1135))) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-1111)) ((-1172) . T) ((-1176) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2013 (($ (-1102 |#1| |#2|)) 11)) (-3817 (((-1102 |#1| |#2|) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3171 ((|#2| $ (-233 |#1| |#2|)) 16)) (-3743 (((-832) $) NIL)) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL))) +(((-962 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2013 ($ (-1102 |#1| |#2|))) (-15 -3817 ((-1102 |#1| |#2|) $)) (-15 -3171 (|#2| $ (-233 |#1| |#2|))))) (-890) (-355)) (T -962)) +((-2013 (*1 *1 *2) (-12 (-5 *2 (-1102 *3 *4)) (-14 *3 (-890)) (-4 *4 (-355)) (-5 *1 (-962 *3 *4)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-1102 *3 *4)) (-5 *1 (-962 *3 *4)) (-14 *3 (-890)) (-4 *4 (-355)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-890)) (-4 *2 (-355)) (-5 *1 (-962 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -2013 ($ (-1102 |#1| |#2|))) (-15 -3817 ((-1102 |#1| |#2|) $)) (-15 -3171 (|#2| $ (-233 |#1| |#2|))))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-963) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $))))) (T -963)) +((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-963))))) +(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-2048 (($ $) 46)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-3198 (((-745) $) 45)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2035 ((|#1| $) 44)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-2071 ((|#1| |#1| $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2060 ((|#1| $) 47)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-2025 ((|#1| $) 43)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-964 |#1|) (-138) (-1172)) (T -964)) +((-2071 (*1 *2 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-964 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4327) (-15 -2071 (|t#1| |t#1| $)) (-15 -2060 (|t#1| $)) (-15 -2048 ($ $)) (-15 -3198 ((-745) $)) (-15 -2035 (|t#1| $)) (-15 -2025 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3324 (((-112) $) 42)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#2| $) 43)) (-4182 (((-3 (-399 (-548)) "failed") $) 78)) (-4172 (((-112) $) 72)) (-4161 (((-399 (-548)) $) 76)) (-2266 (((-112) $) 41)) (-3910 ((|#2| $) 22)) (-2540 (($ (-1 |#2| |#2|) $) 19)) (-2153 (($ $) 61)) (-4050 (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2591 (((-524) $) 67)) (-2128 (($ $) 17)) (-3743 (((-832) $) 56) (($ (-548)) 38) (($ |#2|) 36) (($ (-399 (-548))) NIL)) (-3835 (((-745)) 10)) (-1446 ((|#2| $) 71)) (-2214 (((-112) $ $) 25)) (-2234 (((-112) $ $) 69)) (-2299 (($ $) 29) (($ $ $) 28)) (-2290 (($ $ $) 26)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) +(((-965 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| (-399 (-548)))) (-15 -2234 ((-112) |#1| |#1|)) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 * (|#1| |#1| (-399 (-548)))) (-15 -2153 (|#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -2266 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-966 |#2|) (-169)) (T -965)) +((-3835 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-965 *3 *4)) (-4 *3 (-966 *4))))) +(-10 -8 (-15 -3743 (|#1| (-399 (-548)))) (-15 -2234 ((-112) |#1| |#1|)) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 * (|#1| |#1| (-399 (-548)))) (-15 -2153 (|#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -2266 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 116 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 114 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 113)) (-2375 (((-548) $) 117 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 115 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 112)) (-1608 (((-663 (-548)) (-663 $)) 87 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 86 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 85) (((-663 |#1|) (-663 $)) 84)) (-3859 (((-3 $ "failed") $) 32)) (-1937 ((|#1| $) 77)) (-4182 (((-3 (-399 (-548)) "failed") $) 73 (|has| |#1| (-533)))) (-4172 (((-112) $) 75 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 74 (|has| |#1| (-533)))) (-2080 (($ |#1| |#1| |#1| |#1|) 78)) (-2266 (((-112) $) 30)) (-3910 ((|#1| $) 79)) (-1795 (($ $ $) 66 (|has| |#1| (-821)))) (-3091 (($ $ $) 65 (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) 88)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 70 (|has| |#1| (-355)))) (-2093 ((|#1| $) 80)) (-2106 ((|#1| $) 81)) (-2118 ((|#1| $) 82)) (-3932 (((-1082) $) 10)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 94 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 92 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 91 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 90 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) 89 (|has| |#1| (-504 (-1135) |#1|)))) (-3171 (($ $ |#1|) 95 (|has| |#1| (-278 |#1| |#1|)))) (-4050 (($ $) 111 (|has| |#1| (-226))) (($ $ (-745)) 109 (|has| |#1| (-226))) (($ $ (-1135)) 107 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 106 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 105 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 104 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2591 (((-524) $) 71 (|has| |#1| (-593 (-524))))) (-2128 (($ $) 83)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35) (($ (-399 (-548))) 60 (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-1446 ((|#1| $) 76 (|has| |#1| (-1025)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $) 110 (|has| |#1| (-226))) (($ $ (-745)) 108 (|has| |#1| (-226))) (($ $ (-1135)) 103 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 102 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 101 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 100 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2262 (((-112) $ $) 63 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 62 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 64 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 61 (|has| |#1| (-821)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 69 (|has| |#1| (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-399 (-548))) 68 (|has| |#1| (-355))) (($ (-399 (-548)) $) 67 (|has| |#1| (-355))))) +(((-966 |#1|) (-138) (-169)) (T -966)) +((-2128 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2080 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548))))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548)))))) +(-13 (-38 |t#1|) (-403 |t#1|) (-224 |t#1|) (-330 |t#1|) (-369 |t#1|) (-10 -8 (-15 -2128 ($ $)) (-15 -2118 (|t#1| $)) (-15 -2106 (|t#1| $)) (-15 -2093 (|t#1| $)) (-15 -3910 (|t#1| $)) (-15 -2080 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1937 (|t#1| $)) (IF (|has| |t#1| (-282)) (-6 (-282)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-355)) (-6 (-236)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -1446 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-355)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-355)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-355)) (|has| |#1| (-282))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-224 |#1|) . T) ((-226) |has| |#1| (-226)) ((-236) |has| |#1| (-355)) ((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-282) -1524 (|has| |#1| (-355)) (|has| |#1| (-282))) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-330 |#1|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|)) ((-622 #0#) |has| |#1| (-355)) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-355)) ((-692 |#1|) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-355)) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-355)) (|has| |#1| (-282))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2540 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-967 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) (-966 |#2|) (-169) (-966 |#4|) (-169)) (T -967)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-966 *6)) (-5 *1 (-967 *4 *5 *2 *6)) (-4 *4 (-966 *5))))) +(-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 12)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-533)))) (-4172 (((-112) $) NIL (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) NIL (|has| |#1| (-533)))) (-2080 (($ |#1| |#1| |#1| |#1|) 16)) (-2266 (((-112) $) NIL)) (-3910 ((|#1| $) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-2093 ((|#1| $) 15)) (-2106 ((|#1| $) 14)) (-2118 ((|#1| $) 13)) (-3932 (((-1082) $) NIL)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|)))) (-3171 (($ $ |#1|) NIL (|has| |#1| (-278 |#1| |#1|)))) (-4050 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-2128 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-1446 ((|#1| $) NIL (|has| |#1| (-1025)))) (-3107 (($) 8 T CONST)) (-3118 (($) 10 T CONST)) (-3296 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-355))) (($ (-399 (-548)) $) NIL (|has| |#1| (-355))))) +(((-968 |#1|) (-966 |#1|) (-169)) (T -968)) +NIL +(-966 |#1|) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-2048 (($ $) 20)) (-2140 (($ (-619 |#1|)) 29)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3198 (((-745) $) 22)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) 24)) (-2539 (($ |#1| $) 15)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2035 ((|#1| $) 23)) (-1357 ((|#1| $) 19)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-2071 ((|#1| |#1| $) 14)) (-1616 (((-112) $) 17)) (-3319 (($) NIL)) (-2060 ((|#1| $) 18)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) NIL)) (-2025 ((|#1| $) 26)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-969 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -2140 ($ (-619 |#1|))))) (-1063)) (T -969)) +((-2140 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-969 *3))))) +(-13 (-964 |#1|) (-10 -8 (-15 -2140 ($ (-619 |#1|))))) +((-1926 (($ $) 12)) (-2154 (($ $ (-548)) 13))) +(((-970 |#1|) (-10 -8 (-15 -1926 (|#1| |#1|)) (-15 -2154 (|#1| |#1| (-548)))) (-971)) (T -970)) +NIL +(-10 -8 (-15 -1926 (|#1| |#1|)) (-15 -2154 (|#1| |#1| (-548)))) +((-1926 (($ $) 6)) (-2154 (($ $ (-548)) 7)) (** (($ $ (-399 (-548))) 8))) +(((-971) (-138)) (T -971)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-399 (-548))))) (-2154 (*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-548)))) (-1926 (*1 *1 *1) (-4 *1 (-971)))) +(-13 (-10 -8 (-15 -1926 ($ $)) (-15 -2154 ($ $ (-548))) (-15 ** ($ $ (-399 (-548)))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-1562 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| (-399 |#2|) (-355)))) (-3303 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-3279 (((-112) $) NIL (|has| (-399 |#2|) (-355)))) (-2350 (((-663 (-399 |#2|)) (-1218 $)) NIL) (((-663 (-399 |#2|))) NIL)) (-2707 (((-399 |#2|) $) NIL)) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-399 |#2|) (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-2634 (((-410 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4087 (((-112) $ $) NIL (|has| (-399 |#2|) (-355)))) (-3423 (((-745)) NIL (|has| (-399 |#2|) (-360)))) (-3509 (((-112)) NIL)) (-3497 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| (-399 |#2|) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-3 (-399 |#2|) "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| (-399 |#2|) (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-399 |#2|) $) NIL)) (-2455 (($ (-1218 (-399 |#2|)) (-1218 $)) NIL) (($ (-1218 (-399 |#2|))) 70) (($ (-1218 |#2|) |#2|) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-399 |#2|) (-341)))) (-1945 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2341 (((-663 (-399 |#2|)) $ (-1218 $)) NIL) (((-663 (-399 |#2|)) $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-399 |#2|))) (|:| |vec| (-1218 (-399 |#2|)))) (-663 $) (-1218 $)) NIL) (((-663 (-399 |#2|)) (-663 $)) NIL)) (-3409 (((-1218 $) (-1218 $)) NIL)) (-2061 (($ |#3|) 65) (((-3 $ "failed") (-399 |#3|)) NIL (|has| (-399 |#2|) (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-1479 (((-619 (-619 |#1|))) NIL (|has| |#1| (-360)))) (-3542 (((-112) |#1| |#1|) NIL)) (-2103 (((-890)) NIL)) (-2545 (($) NIL (|has| (-399 |#2|) (-360)))) (-3485 (((-112)) NIL)) (-3473 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-1922 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| (-399 |#2|) (-355)))) (-4065 (($ $) NIL)) (-2771 (($) NIL (|has| (-399 |#2|) (-341)))) (-3727 (((-112) $) NIL (|has| (-399 |#2|) (-341)))) (-2208 (($ $ (-745)) NIL (|has| (-399 |#2|) (-341))) (($ $) NIL (|has| (-399 |#2|) (-341)))) (-1271 (((-112) $) NIL (|has| (-399 |#2|) (-355)))) (-1672 (((-890) $) NIL (|has| (-399 |#2|) (-341))) (((-807 (-890)) $) NIL (|has| (-399 |#2|) (-341)))) (-2266 (((-112) $) NIL)) (-1400 (((-745)) NIL)) (-3421 (((-1218 $) (-1218 $)) NIL)) (-3910 (((-399 |#2|) $) NIL)) (-1492 (((-619 (-921 |#1|)) (-1135)) NIL (|has| |#1| (-355)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-399 |#2|) (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-399 |#2|) (-355)))) (-2898 ((|#3| $) NIL (|has| (-399 |#2|) (-355)))) (-2855 (((-890) $) NIL (|has| (-399 |#2|) (-360)))) (-2050 ((|#3| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| (-399 |#2|) (-355))) (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2546 (((-1118) $) NIL)) (-3349 (((-663 (-399 |#2|))) 52)) (-3383 (((-663 (-399 |#2|))) 51)) (-2153 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-1544 (($ (-1218 |#2|) |#2|) 71)) (-3365 (((-663 (-399 |#2|))) 50)) (-3396 (((-663 (-399 |#2|))) 49)) (-1535 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1553 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 77)) (-3463 (((-1218 $)) 46)) (-3478 (((-1218 $)) 45)) (-3451 (((-112) $) NIL)) (-3441 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3410 (($) NIL (|has| (-399 |#2|) (-341)) CONST)) (-3337 (($ (-890)) NIL (|has| (-399 |#2|) (-360)))) (-1515 (((-3 |#2| "failed")) 63)) (-3932 (((-1082) $) NIL)) (-3564 (((-745)) NIL)) (-4160 (($) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-399 |#2|) (-355)))) (-3587 (($ (-619 $)) NIL (|has| (-399 |#2|) (-355))) (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-399 |#2|) (-341)))) (-1915 (((-410 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-399 |#2|) (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| (-399 |#2|) (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4077 (((-745) $) NIL (|has| (-399 |#2|) (-355)))) (-3171 ((|#1| $ |#1| |#1|) NIL)) (-1525 (((-3 |#2| "failed")) 62)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1566 (((-399 |#2|) (-1218 $)) NIL) (((-399 |#2|)) 42)) (-2217 (((-745) $) NIL (|has| (-399 |#2|) (-341))) (((-3 (-745) "failed") $ $) NIL (|has| (-399 |#2|) (-341)))) (-4050 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2257 (((-663 (-399 |#2|)) (-1218 $) (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355)))) (-3287 ((|#3|) 53)) (-3655 (($) NIL (|has| (-399 |#2|) (-341)))) (-2447 (((-1218 (-399 |#2|)) $ (-1218 $)) NIL) (((-663 (-399 |#2|)) (-1218 $) (-1218 $)) NIL) (((-1218 (-399 |#2|)) $) 72) (((-663 (-399 |#2|)) (-1218 $)) NIL)) (-2591 (((-1218 (-399 |#2|)) $) NIL) (($ (-1218 (-399 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-399 |#2|) (-341)))) (-3433 (((-1218 $) (-1218 $)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 |#2|)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| (-399 |#2|) (-1007 (-399 (-548)))) (|has| (-399 |#2|) (-355)))) (($ $) NIL (|has| (-399 |#2|) (-355)))) (-4017 (($ $) NIL (|has| (-399 |#2|) (-341))) (((-3 $ "failed") $) NIL (|has| (-399 |#2|) (-143)))) (-3780 ((|#3| $) NIL)) (-3835 (((-745)) NIL)) (-3531 (((-112)) 60)) (-3518 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2877 (((-1218 $)) 121)) (-3290 (((-112) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1503 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3554 (((-112)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| (-399 |#2|) (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 |#2|)) NIL) (($ (-399 |#2|) $) NIL) (($ (-399 (-548)) $) NIL (|has| (-399 |#2|) (-355))) (($ $ (-399 (-548))) NIL (|has| (-399 |#2|) (-355))))) +(((-972 |#1| |#2| |#3| |#4| |#5|) (-334 |#1| |#2| |#3|) (-1176) (-1194 |#1|) (-1194 (-399 |#2|)) (-399 |#2|) (-745)) (T -972)) +NIL +(-334 |#1| |#2| |#3|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4110 (((-619 (-548)) $) 54)) (-2177 (($ (-619 (-548))) 62)) (-3875 (((-548) $) 40 (|has| (-548) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-548) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) 49) (((-3 (-1135) "failed") $) NIL (|has| (-548) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) 47 (|has| (-548) (-1007 (-548)))) (((-3 (-548) "failed") $) 49 (|has| (-548) (-1007 (-548))))) (-2375 (((-548) $) NIL) (((-1135) $) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-548) (-1007 (-548)))) (((-548) $) NIL (|has| (-548) (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-548) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2196 (((-619 (-548)) $) 60)) (-3298 (((-112) $) NIL (|has| (-548) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-548) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-548) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-548) $) 37)) (-3725 (((-3 $ "failed") $) NIL (|has| (-548) (-1111)))) (-3312 (((-112) $) NIL (|has| (-548) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-548) (-821)))) (-2540 (($ (-1 (-548) (-548)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-548) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-548) (-299))) (((-399 (-548)) $) 42)) (-4097 (((-1116 (-548)) $) 59)) (-2166 (($ (-619 (-548)) (-619 (-548))) 63)) (-3887 (((-548) $) 53 (|has| (-548) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-548)) (-619 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-548) (-548)) NIL (|has| (-548) (-301 (-548)))) (($ $ (-286 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-286 (-548)))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-1135)) (-619 (-548))) NIL (|has| (-548) (-504 (-1135) (-548)))) (($ $ (-1135) (-548)) NIL (|has| (-548) (-504 (-1135) (-548))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-548)) NIL (|has| (-548) (-278 (-548) (-548))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) 11 (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-548) $) 39)) (-2186 (((-619 (-548)) $) 61)) (-2591 (((-861 (-548)) $) NIL (|has| (-548) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-548) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-548) (-593 (-524)))) (((-371) $) NIL (|has| (-548) (-991))) (((-218) $) NIL (|has| (-548) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-548) (-878))))) (-3743 (((-832) $) 77) (($ (-548)) 43) (($ $) NIL) (($ (-399 (-548))) 20) (($ (-548)) 43) (($ (-1135)) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) 18)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-548) (-878))) (|has| (-548) (-143))))) (-3835 (((-745)) 9)) (-3897 (((-548) $) 51 (|has| (-548) (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-548) (-794)))) (-3107 (($) 10 T CONST)) (-3118 (($) 12 T CONST)) (-3296 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2214 (((-112) $ $) 14)) (-2252 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2234 (((-112) $ $) 33 (|has| (-548) (-821)))) (-2309 (($ $ $) 29) (($ (-548) (-548)) 31)) (-2299 (($ $) 15) (($ $ $) 23)) (-2290 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 25) (($ $ $) 27) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-548) $) 25) (($ $ (-548)) NIL))) +(((-973 |#1|) (-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -4110 ((-619 (-548)) $)) (-15 -4097 ((-1116 (-548)) $)) (-15 -2196 ((-619 (-548)) $)) (-15 -2186 ((-619 (-548)) $)) (-15 -2177 ($ (-619 (-548)))) (-15 -2166 ($ (-619 (-548)) (-619 (-548)))))) (-548)) (T -973)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-2177 (*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-2166 (*1 *1 *2 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) +(-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -4110 ((-619 (-548)) $)) (-15 -4097 ((-1116 (-548)) $)) (-15 -2196 ((-619 (-548)) $)) (-15 -2186 ((-619 (-548)) $)) (-15 -2177 ($ (-619 (-548)))) (-15 -2166 ($ (-619 (-548)) (-619 (-548)))))) +((-4122 (((-52) (-399 (-548)) (-548)) 9))) +(((-974) (-10 -7 (-15 -4122 ((-52) (-399 (-548)) (-548))))) (T -974)) +((-4122 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-548))) (-5 *4 (-548)) (-5 *2 (-52)) (-5 *1 (-974))))) +(-10 -7 (-15 -4122 ((-52) (-399 (-548)) (-548)))) +((-3423 (((-548)) 13)) (-4150 (((-548)) 16)) (-4140 (((-1223) (-548)) 15)) (-4130 (((-548) (-548)) 17) (((-548)) 12))) +(((-975) (-10 -7 (-15 -4130 ((-548))) (-15 -3423 ((-548))) (-15 -4130 ((-548) (-548))) (-15 -4140 ((-1223) (-548))) (-15 -4150 ((-548))))) (T -975)) +((-4150 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-975)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) (-3423 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) (-4130 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975))))) +(-10 -7 (-15 -4130 ((-548))) (-15 -3423 ((-548))) (-15 -4130 ((-548) (-548))) (-15 -4140 ((-1223) (-548))) (-15 -4150 ((-548)))) +((-1329 (((-410 |#1|) |#1|) 41)) (-1915 (((-410 |#1|) |#1|) 40))) +(((-976 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1|))) (-1194 (-399 (-548)))) (T -976)) +((-1329 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1194 (-399 (-548)))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1194 (-399 (-548))))))) +(-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1|))) +((-4182 (((-3 (-399 (-548)) "failed") |#1|) 15)) (-4172 (((-112) |#1|) 14)) (-4161 (((-399 (-548)) |#1|) 10))) +(((-977 |#1|) (-10 -7 (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|))) (-1007 (-399 (-548)))) (T -977)) +((-4182 (*1 *2 *3) (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2)))) (-4172 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-1007 (-399 (-548)))))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2))))) +(-10 -7 (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|))) +((-2089 ((|#2| $ "value" |#2|) 12)) (-3171 ((|#2| $ "value") 10)) (-4224 (((-112) $ $) 18))) +(((-978 |#1| |#2|) (-10 -8 (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -3171 (|#2| |#1| "value"))) (-979 |#2|) (-1172)) (T -978)) +NIL +(-10 -8 (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -3171 (|#2| |#1| "value"))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-979 |#1|) (-138) (-1172)) (T -979)) +((-2956 (*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) (-4245 (*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-4234 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-548)))) (-4224 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4213 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *1)) (|has| *1 (-6 -4328)) (-4 *1 (-979 *3)) (-4 *3 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4328)) (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-4192 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-979 *2)) (-4 *2 (-1172))))) +(-13 (-480 |t#1|) (-10 -8 (-15 -2956 ((-619 $) $)) (-15 -4245 ((-619 $) $)) (-15 -3010 ((-112) $)) (-15 -4056 (|t#1| $)) (-15 -3171 (|t#1| $ "value")) (-15 -2740 ((-112) $)) (-15 -2869 ((-619 |t#1|) $)) (-15 -4234 ((-548) $ $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -4224 ((-112) $ $)) (-15 -4213 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4328)) (PROGN (-15 -4202 ($ $ (-619 $))) (-15 -2089 (|t#1| $ "value" |t#1|)) (-15 -4192 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-1926 (($ $) 9) (($ $ (-890)) 43) (($ (-399 (-548))) 13) (($ (-548)) 15)) (-3263 (((-3 $ "failed") (-1131 $) (-890) (-832)) 23) (((-3 $ "failed") (-1131 $) (-890)) 28)) (-2154 (($ $ (-548)) 49)) (-3835 (((-745)) 17)) (-3274 (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 (-399 (-548)))) 54) (((-619 $) (-1131 (-548))) 59) (((-619 $) (-921 $)) 63) (((-619 $) (-921 (-399 (-548)))) 67) (((-619 $) (-921 (-548))) 71)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL) (($ $ (-399 (-548))) 47))) +(((-980 |#1|) (-10 -8 (-15 -1926 (|#1| (-548))) (-15 -1926 (|#1| (-399 (-548)))) (-15 -1926 (|#1| |#1| (-890))) (-15 -3274 ((-619 |#1|) (-921 (-548)))) (-15 -3274 ((-619 |#1|) (-921 (-399 (-548))))) (-15 -3274 ((-619 |#1|) (-921 |#1|))) (-15 -3274 ((-619 |#1|) (-1131 (-548)))) (-15 -3274 ((-619 |#1|) (-1131 (-399 (-548))))) (-15 -3274 ((-619 |#1|) (-1131 |#1|))) (-15 -3263 ((-3 |#1| "failed") (-1131 |#1|) (-890))) (-15 -3263 ((-3 |#1| "failed") (-1131 |#1|) (-890) (-832))) (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -2154 (|#1| |#1| (-548))) (-15 -1926 (|#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -3835 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) (-981)) (T -980)) +((-3835 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-980 *3)) (-4 *3 (-981))))) +(-10 -8 (-15 -1926 (|#1| (-548))) (-15 -1926 (|#1| (-399 (-548)))) (-15 -1926 (|#1| |#1| (-890))) (-15 -3274 ((-619 |#1|) (-921 (-548)))) (-15 -3274 ((-619 |#1|) (-921 (-399 (-548))))) (-15 -3274 ((-619 |#1|) (-921 |#1|))) (-15 -3274 ((-619 |#1|) (-1131 (-548)))) (-15 -3274 ((-619 |#1|) (-1131 (-399 (-548))))) (-15 -3274 ((-619 |#1|) (-1131 |#1|))) (-15 -3263 ((-3 |#1| "failed") (-1131 |#1|) (-890))) (-15 -3263 ((-3 |#1| "failed") (-1131 |#1|) (-890) (-832))) (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -2154 (|#1| |#1| (-548))) (-15 -1926 (|#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -3835 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 87)) (-3303 (($ $) 88)) (-3279 (((-112) $) 90)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 107)) (-2634 (((-410 $) $) 108)) (-1926 (($ $) 71) (($ $ (-890)) 57) (($ (-399 (-548))) 56) (($ (-548)) 55)) (-4087 (((-112) $ $) 98)) (-2672 (((-548) $) 124)) (-3030 (($) 17 T CONST)) (-3263 (((-3 $ "failed") (-1131 $) (-890) (-832)) 65) (((-3 $ "failed") (-1131 $) (-890)) 64)) (-2441 (((-3 (-548) "failed") $) 83 (|has| (-399 (-548)) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 81 (|has| (-399 (-548)) (-1007 (-399 (-548))))) (((-3 (-399 (-548)) "failed") $) 79)) (-2375 (((-548) $) 84 (|has| (-399 (-548)) (-1007 (-548)))) (((-399 (-548)) $) 82 (|has| (-399 (-548)) (-1007 (-399 (-548))))) (((-399 (-548)) $) 78)) (-4269 (($ $ (-832)) 54)) (-4258 (($ $ (-832)) 53)) (-1945 (($ $ $) 102)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 101)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 96)) (-1271 (((-112) $) 109)) (-3298 (((-112) $) 122)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 70)) (-3312 (((-112) $) 123)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 105)) (-1795 (($ $ $) 121)) (-3091 (($ $ $) 120)) (-4280 (((-3 (-1131 $) "failed") $) 66)) (-4302 (((-3 (-832) "failed") $) 68)) (-4290 (((-3 (-1131 $) "failed") $) 67)) (-3553 (($ (-619 $)) 94) (($ $ $) 93)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 110)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 95)) (-3587 (($ (-619 $)) 92) (($ $ $) 91)) (-1915 (((-410 $) $) 106)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 103)) (-1900 (((-3 $ "failed") $ $) 86)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 97)) (-4077 (((-745) $) 99)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 100)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 114) (($ $) 85) (($ (-399 (-548))) 80) (($ (-548)) 77) (($ (-399 (-548))) 74)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 89)) (-2439 (((-399 (-548)) $ $) 52)) (-3274 (((-619 $) (-1131 $)) 63) (((-619 $) (-1131 (-399 (-548)))) 62) (((-619 $) (-1131 (-548))) 61) (((-619 $) (-921 $)) 60) (((-619 $) (-921 (-399 (-548)))) 59) (((-619 $) (-921 (-548))) 58)) (-1446 (($ $) 125)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 118)) (-2241 (((-112) $ $) 117)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 119)) (-2234 (((-112) $ $) 116)) (-2309 (($ $ $) 115)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 111) (($ $ (-399 (-548))) 69)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ (-399 (-548)) $) 113) (($ $ (-399 (-548))) 112) (($ (-548) $) 76) (($ $ (-548)) 75) (($ (-399 (-548)) $) 73) (($ $ (-399 (-548))) 72))) +(((-981) (-138)) (T -981)) +((-1926 (*1 *1 *1) (-4 *1 (-981))) (-4302 (*1 *2 *1) (|partial| -12 (-4 *1 (-981)) (-5 *2 (-832)))) (-4290 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981)))) (-4280 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981)))) (-3263 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-5 *4 (-832)) (-4 *1 (-981)))) (-3263 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-4 *1 (-981)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-1131 (-399 (-548)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-1131 (-548))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-921 (-548))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-1926 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-890)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-4 *1 (-981)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-981)))) (-4269 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))) (-4258 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))) (-2439 (*1 *2 *1 *1) (-12 (-4 *1 (-981)) (-5 *2 (-399 (-548)))))) +(-13 (-145) (-819) (-169) (-355) (-403 (-399 (-548))) (-38 (-548)) (-38 (-399 (-548))) (-971) (-10 -8 (-15 -4302 ((-3 (-832) "failed") $)) (-15 -4290 ((-3 (-1131 $) "failed") $)) (-15 -4280 ((-3 (-1131 $) "failed") $)) (-15 -3263 ((-3 $ "failed") (-1131 $) (-890) (-832))) (-15 -3263 ((-3 $ "failed") (-1131 $) (-890))) (-15 -3274 ((-619 $) (-1131 $))) (-15 -3274 ((-619 $) (-1131 (-399 (-548))))) (-15 -3274 ((-619 $) (-1131 (-548)))) (-15 -3274 ((-619 $) (-921 $))) (-15 -3274 ((-619 $) (-921 (-399 (-548))))) (-15 -3274 ((-619 $) (-921 (-548)))) (-15 -1926 ($ $ (-890))) (-15 -1926 ($ $)) (-15 -1926 ($ (-399 (-548)))) (-15 -1926 ($ (-548))) (-15 -4269 ($ $ (-832))) (-15 -4258 ($ $ (-832))) (-15 -2439 ((-399 (-548)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 #1=(-548)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-403 (-399 (-548))) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 #1#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 #1#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-889) . T) ((-971) . T) ((-1007 (-399 (-548))) . T) ((-1007 (-548)) |has| (-399 (-548)) (-1007 (-548))) ((-1022 #0#) . T) ((-1022 #1#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-1257 (((-2 (|:| |ans| |#2|) (|:| -3676 |#2|) (|:| |sol?| (-112))) (-548) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-982 |#1| |#2|) (-10 -7 (-15 -1257 ((-2 (|:| |ans| |#2|) (|:| -3676 |#2|) (|:| |sol?| (-112))) (-548) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-27) (-422 |#1|))) (T -982)) +((-1257 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1135)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-619 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1157) (-27) (-422 *8))) (-4 *8 (-13 (-443) (-821) (-145) (-1007 *3) (-615 *3))) (-5 *3 (-548)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3676 *4) (|:| |sol?| (-112)))) (-5 *1 (-982 *8 *4))))) +(-10 -7 (-15 -1257 ((-2 (|:| |ans| |#2|) (|:| -3676 |#2|) (|:| |sol?| (-112))) (-548) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1269 (((-3 (-619 |#2|) "failed") (-548) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-983 |#1| |#2|) (-10 -7 (-15 -1269 ((-3 (-619 |#2|) "failed") (-548) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-27) (-422 |#1|))) (T -983)) +((-1269 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1135)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-619 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1157) (-27) (-422 *8))) (-4 *8 (-13 (-443) (-821) (-145) (-1007 *3) (-615 *3))) (-5 *3 (-548)) (-5 *2 (-619 *4)) (-5 *1 (-983 *8 *4))))) +(-10 -7 (-15 -1269 ((-3 (-619 |#2|) "failed") (-548) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1304 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2383 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-548)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-548) (-1 |#2| |#2|)) 30)) (-1282 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |c| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|)) 58)) (-1293 (((-2 (|:| |ans| (-399 |#2|)) (|:| |nosol| (-112))) (-399 |#2|) (-399 |#2|)) 63))) +(((-984 |#1| |#2|) (-10 -7 (-15 -1282 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |c| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1293 ((-2 (|:| |ans| (-399 |#2|)) (|:| |nosol| (-112))) (-399 |#2|) (-399 |#2|))) (-15 -1304 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2383 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-548)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-548) (-1 |#2| |#2|)))) (-13 (-355) (-145) (-1007 (-548))) (-1194 |#1|)) (T -984)) +((-1304 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1194 *6)) (-4 *6 (-13 (-355) (-145) (-1007 *4))) (-5 *4 (-548)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2383 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-984 *6 *3)))) (-1293 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |ans| (-399 *5)) (|:| |nosol| (-112)))) (-5 *1 (-984 *4 *5)) (-5 *3 (-399 *5)))) (-1282 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-399 *6)) (|:| |c| (-399 *6)) (|:| -2405 *6))) (-5 *1 (-984 *5 *6)) (-5 *3 (-399 *6))))) +(-10 -7 (-15 -1282 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |c| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1293 ((-2 (|:| |ans| (-399 |#2|)) (|:| |nosol| (-112))) (-399 |#2|) (-399 |#2|))) (-15 -1304 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2383 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-548)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-548) (-1 |#2| |#2|)))) +((-1316 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |h| |#2|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|)) 22)) (-1327 (((-3 (-619 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|)) 33))) +(((-985 |#1| |#2|) (-10 -7 (-15 -1316 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |h| |#2|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1327 ((-3 (-619 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|)))) (-13 (-355) (-145) (-1007 (-548))) (-1194 |#1|)) (T -985)) +((-1327 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-399 *5))) (-5 *1 (-985 *4 *5)) (-5 *3 (-399 *5)))) (-1316 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-399 *6)) (|:| |h| *6) (|:| |c1| (-399 *6)) (|:| |c2| (-399 *6)) (|:| -2405 *6))) (-5 *1 (-985 *5 *6)) (-5 *3 (-399 *6))))) +(-10 -7 (-15 -1316 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |h| |#2|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1327 ((-3 (-619 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|)))) +((-1339 (((-1 |#1|) (-619 (-2 (|:| -4056 |#1|) (|:| -3266 (-548))))) 37)) (-3602 (((-1 |#1|) (-1065 |#1|)) 45)) (-1349 (((-1 |#1|) (-1218 |#1|) (-1218 (-548)) (-548)) 34))) +(((-986 |#1|) (-10 -7 (-15 -3602 ((-1 |#1|) (-1065 |#1|))) (-15 -1339 ((-1 |#1|) (-619 (-2 (|:| -4056 |#1|) (|:| -3266 (-548)))))) (-15 -1349 ((-1 |#1|) (-1218 |#1|) (-1218 (-548)) (-548)))) (-1063)) (T -986)) +((-1349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1218 *6)) (-5 *4 (-1218 (-548))) (-5 *5 (-548)) (-4 *6 (-1063)) (-5 *2 (-1 *6)) (-5 *1 (-986 *6)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -4056 *4) (|:| -3266 (-548))))) (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1065 *4)) (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4))))) +(-10 -7 (-15 -3602 ((-1 |#1|) (-1065 |#1|))) (-15 -1339 ((-1 |#1|) (-619 (-2 (|:| -4056 |#1|) (|:| -3266 (-548)))))) (-15 -1349 ((-1 |#1|) (-1218 |#1|) (-1218 (-548)) (-548)))) +((-1672 (((-745) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1672 ((-745) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|) (-13 (-360) (-355))) (T -987)) +((-1672 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-4 *4 (-1194 (-399 *7))) (-4 *8 (-334 *6 *7 *4)) (-4 *9 (-13 (-360) (-355))) (-5 *2 (-745)) (-5 *1 (-987 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -1672 ((-745) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3730 (((-112) $ $) NIL)) (-1402 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 11)) (-2214 (((-112) $ $) NIL))) +(((-988) (-13 (-1047) (-10 -8 (-15 -1402 ((-1140) $)) (-15 -2286 ((-1140) $))))) (T -988)) +((-1402 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988))))) +(-13 (-1047) (-10 -8 (-15 -1402 ((-1140) $)) (-15 -2286 ((-1140) $)))) +((-3933 (((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 31) (((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548))) 28)) (-1383 (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548))) 33) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548))) 29) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 32) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|) 27)) (-1372 (((-619 (-399 (-548))) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) 19)) (-1360 (((-399 (-548)) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 16))) +(((-989 |#1|) (-10 -7 (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|)) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548)))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1360 ((-399 (-548)) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1372 ((-619 (-399 (-548))) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))))) (-1194 (-548))) (T -989)) +((-1372 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *2 (-619 (-399 (-548)))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-548))))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *2 (-399 (-548))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-548))))) (-3933 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) (-3933 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *4 (-399 (-548))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) (-1383 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-399 (-548))) (-5 *2 (-619 (-2 (|:| -3663 *5) (|:| -3676 *5)))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) (-5 *4 (-2 (|:| -3663 *5) (|:| -3676 *5))))) (-1383 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) (-5 *4 (-399 (-548))))) (-1383 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) (-5 *4 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-1383 (*1 *2 *3) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548)))))) +(-10 -7 (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|)) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548)))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1360 ((-399 (-548)) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1372 ((-619 (-399 (-548))) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))))) +((-3933 (((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 35) (((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548))) 32)) (-1383 (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548))) 30) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548))) 26) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 28) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|) 24))) +(((-990 |#1|) (-10 -7 (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|)) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548)))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-1194 (-399 (-548)))) (T -990)) +((-3933 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))))) (-3933 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *4 (-399 (-548))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) (-1383 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-399 (-548))) (-5 *2 (-619 (-2 (|:| -3663 *5) (|:| -3676 *5)))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *5)) (-5 *4 (-2 (|:| -3663 *5) (|:| -3676 *5))))) (-1383 (*1 *2 *3 *4) (-12 (-5 *4 (-399 (-548))) (-5 *2 (-619 (-2 (|:| -3663 *4) (|:| -3676 *4)))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))) (-5 *4 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-1383 (*1 *2 *3) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548))))))) +(-10 -7 (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|)) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548)))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) +((-2591 (((-218) $) 6) (((-371) $) 9))) +(((-991) (-138)) (T -991)) +NIL +(-13 (-593 (-218)) (-593 (-371))) +(((-593 (-218)) . T) ((-593 (-371)) . T)) +((-3408 (((-619 (-371)) (-921 (-548)) (-371)) 28) (((-619 (-371)) (-921 (-399 (-548))) (-371)) 27)) (-2615 (((-619 (-619 (-371))) (-619 (-921 (-548))) (-619 (-1135)) (-371)) 37))) +(((-992) (-10 -7 (-15 -3408 ((-619 (-371)) (-921 (-399 (-548))) (-371))) (-15 -3408 ((-619 (-371)) (-921 (-548)) (-371))) (-15 -2615 ((-619 (-619 (-371))) (-619 (-921 (-548))) (-619 (-1135)) (-371))))) (T -992)) +((-2615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-371)))) (-5 *1 (-992)) (-5 *5 (-371)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-548))) (-5 *2 (-619 (-371))) (-5 *1 (-992)) (-5 *4 (-371)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *2 (-619 (-371))) (-5 *1 (-992)) (-5 *4 (-371))))) +(-10 -7 (-15 -3408 ((-619 (-371)) (-921 (-399 (-548))) (-371))) (-15 -3408 ((-619 (-371)) (-921 (-548)) (-371))) (-15 -2615 ((-619 (-619 (-371))) (-619 (-921 (-548))) (-619 (-1135)) (-371)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 70)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) NIL) (($ $ (-890)) NIL) (($ (-399 (-548))) NIL) (($ (-548)) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) 65)) (-3030 (($) NIL T CONST)) (-3263 (((-3 $ "failed") (-1131 $) (-890) (-832)) NIL) (((-3 $ "failed") (-1131 $) (-890)) 50)) (-2441 (((-3 (-399 (-548)) "failed") $) NIL (|has| (-399 (-548)) (-1007 (-399 (-548))))) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-548) "failed") $) NIL (-1524 (|has| (-399 (-548)) (-1007 (-548))) (|has| |#1| (-1007 (-548)))))) (-2375 (((-399 (-548)) $) 15 (|has| (-399 (-548)) (-1007 (-399 (-548))))) (((-399 (-548)) $) 15) ((|#1| $) 108) (((-548) $) NIL (-1524 (|has| (-399 (-548)) (-1007 (-548))) (|has| |#1| (-1007 (-548)))))) (-4269 (($ $ (-832)) 42)) (-4258 (($ $ (-832)) 43)) (-1945 (($ $ $) NIL)) (-3250 (((-399 (-548)) $ $) 19)) (-3859 (((-3 $ "failed") $) 83)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) 61)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL)) (-3312 (((-112) $) 64)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-4280 (((-3 (-1131 $) "failed") $) 78)) (-4302 (((-3 (-832) "failed") $) 77)) (-4290 (((-3 (-1131 $) "failed") $) 75)) (-1393 (((-3 (-1026 $ (-1131 $)) "failed") $) 73)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 84)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3743 (((-832) $) 82) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ $) 58) (($ (-399 (-548))) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 110)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-2439 (((-399 (-548)) $ $) 25)) (-3274 (((-619 $) (-1131 $)) 56) (((-619 $) (-1131 (-399 (-548)))) NIL) (((-619 $) (-1131 (-548))) NIL) (((-619 $) (-921 $)) NIL) (((-619 $) (-921 (-399 (-548)))) NIL) (((-619 $) (-921 (-548))) NIL)) (-1403 (($ (-1026 $ (-1131 $)) (-832)) 41)) (-1446 (($ $) 20)) (-3107 (($) 29 T CONST)) (-3118 (($) 35 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 71)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 22)) (-2309 (($ $ $) 33)) (-2299 (($ $) 34) (($ $ $) 69)) (-2290 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL) (($ $ (-399 (-548))) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 91) (($ $ $) 96) (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ (-548) $) 91) (($ $ (-548)) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-993 |#1|) (-13 (-981) (-403 |#1|) (-38 |#1|) (-10 -8 (-15 -1403 ($ (-1026 $ (-1131 $)) (-832))) (-15 -1393 ((-3 (-1026 $ (-1131 $)) "failed") $)) (-15 -3250 ((-399 (-548)) $ $)))) (-13 (-819) (-355) (-991))) (T -993)) +((-1403 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-993 *4) (-1131 (-993 *4)))) (-5 *3 (-832)) (-5 *1 (-993 *4)) (-4 *4 (-13 (-819) (-355) (-991))))) (-1393 (*1 *2 *1) (|partial| -12 (-5 *2 (-1026 (-993 *3) (-1131 (-993 *3)))) (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-355) (-991))))) (-3250 (*1 *2 *1 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-355) (-991)))))) +(-13 (-981) (-403 |#1|) (-38 |#1|) (-10 -8 (-15 -1403 ($ (-1026 $ (-1131 $)) (-832))) (-15 -1393 ((-3 (-1026 $ (-1131 $)) "failed") $)) (-15 -3250 ((-399 (-548)) $ $)))) +((-1414 (((-2 (|:| -2383 |#2|) (|:| -2503 (-619 |#1|))) |#2| (-619 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-994 |#1| |#2|) (-10 -7 (-15 -1414 (|#2| |#2| |#1|)) (-15 -1414 ((-2 (|:| -2383 |#2|) (|:| -2503 (-619 |#1|))) |#2| (-619 |#1|)))) (-355) (-630 |#1|)) (T -994)) +((-1414 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-5 *2 (-2 (|:| -2383 *3) (|:| -2503 (-619 *5)))) (-5 *1 (-994 *5 *3)) (-5 *4 (-619 *5)) (-4 *3 (-630 *5)))) (-1414 (*1 *2 *2 *3) (-12 (-4 *3 (-355)) (-5 *1 (-994 *3 *2)) (-4 *2 (-630 *3))))) +(-10 -7 (-15 -1414 (|#2| |#2| |#1|)) (-15 -1414 ((-2 (|:| -2383 |#2|) (|:| -2503 (-619 |#1|))) |#2| (-619 |#1|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1425 ((|#1| $ |#1|) 14)) (-2089 ((|#1| $ |#1|) 12)) (-1449 (($ |#1|) 10)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3171 ((|#1| $) 11)) (-1438 ((|#1| $) 13)) (-3743 (((-832) $) 21 (|has| |#1| (-1063)))) (-2214 (((-112) $ $) 9))) +(((-995 |#1|) (-13 (-1172) (-10 -8 (-15 -1449 ($ |#1|)) (-15 -3171 (|#1| $)) (-15 -2089 (|#1| $ |#1|)) (-15 -1438 (|#1| $)) (-15 -1425 (|#1| $ |#1|)) (-15 -2214 ((-112) $ $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -995)) +((-1449 (*1 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-2089 (*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-1438 (*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-1425 (*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-995 *3)) (-4 *3 (-1172))))) +(-13 (-1172) (-10 -8 (-15 -1449 ($ |#1|)) (-15 -3171 (|#1| $)) (-15 -2089 (|#1| $ |#1|)) (-15 -1438 (|#1| $)) (-15 -1425 (|#1| $ |#1|)) (-15 -2214 ((-112) $ $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2004 (((-619 $) (-619 |#4|)) 105) (((-619 $) (-619 |#4|) (-112)) 106) (((-619 $) (-619 |#4|) (-112) (-112)) 104) (((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2049 (((-619 |#3|) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2073 ((|#4| |#4| $) NIL)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 99)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 54)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) 26 (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2213 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2375 (($ (-619 |#4|)) NIL)) (-3465 (((-3 $ "failed") $) 39)) (-2038 ((|#4| |#4| $) 57)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) NIL)) (-2258 (((-112) |#4| $) NIL)) (-3425 (((-112) |#4| $) NIL)) (-2267 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3665 (((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)) 119)) (-1934 (((-619 |#4|) $) 16 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3239 ((|#3| $) 33)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 17 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3960 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 21)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) NIL)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 97)) (-3724 (((-3 |#4| "failed") $) 37)) (-3387 (((-619 $) |#4| $) 80)) (-3412 (((-3 (-112) (-619 $)) |#4| $) NIL)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-2520 (((-619 $) |#4| $) 102) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 103) (((-619 $) |#4| (-619 $)) NIL)) (-3678 (((-619 $) (-619 |#4|) (-112) (-112) (-112)) 114)) (-3688 (($ |#4| $) 70) (($ (-619 |#4|) $) 71) (((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2179 (((-619 |#4|) $) NIL)) (-2109 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2052 ((|#4| |#4| $) NIL)) (-2199 (((-112) $ $) NIL)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2063 ((|#4| |#4| $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 |#4| "failed") $) 35)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1971 (((-3 $ "failed") $ |#4|) 48)) (-1656 (($ $ |#4|) NIL) (((-619 $) |#4| $) 82) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 77)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 15)) (-3319 (($) 13)) (-2512 (((-745) $) NIL)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) 12)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 20)) (-2298 (($ $ |#3|) 42)) (-2319 (($ $ |#3|) 44)) (-2027 (($ $) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) 31) (((-619 |#4|) $) 40)) (-1962 (((-745) $) NIL (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-3338 (((-619 $) |#4| $) 79) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) NIL)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) NIL)) (-2247 (((-112) |#4| $) NIL)) (-2406 (((-112) |#3| $) 53)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-996 |#1| |#2| |#3| |#4|) (-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3688 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -3678 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -3665 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -996)) +((-3688 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *3))) (-5 *1 (-996 *5 *6 *7 *3)) (-4 *3 (-1030 *5 *6 *7)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-2004 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-3678 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-3665 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-996 *5 *6 *7 *8))))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3688 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -3678 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -3665 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) +((-1564 (((-619 (-663 |#1|)) (-619 (-663 |#1|))) 58) (((-663 |#1|) (-663 |#1|)) 57) (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|))) 56) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 53)) (-1555 (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890)) 52) (((-663 |#1|) (-663 |#1|) (-890)) 51)) (-1572 (((-619 (-663 (-548))) (-619 (-619 (-548)))) 68) (((-619 (-663 (-548))) (-619 (-874 (-548))) (-548)) 67) (((-663 (-548)) (-619 (-548))) 64) (((-663 (-548)) (-874 (-548)) (-548)) 63)) (-1546 (((-663 (-921 |#1|)) (-745)) 81)) (-1537 (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890)) 37 (|has| |#1| (-6 (-4329 "*")))) (((-663 |#1|) (-663 |#1|) (-890)) 35 (|has| |#1| (-6 (-4329 "*")))))) +(((-997 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4329 "*"))) (-15 -1537 ((-663 |#1|) (-663 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4329 "*"))) (-15 -1537 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) |%noBranch|) (-15 -1546 ((-663 (-921 |#1|)) (-745))) (-15 -1555 ((-663 |#1|) (-663 |#1|) (-890))) (-15 -1555 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) (-15 -1564 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1564 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1564 ((-663 |#1|) (-663 |#1|))) (-15 -1564 ((-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1572 ((-663 (-548)) (-874 (-548)) (-548))) (-15 -1572 ((-663 (-548)) (-619 (-548)))) (-15 -1572 ((-619 (-663 (-548))) (-619 (-874 (-548))) (-548))) (-15 -1572 ((-619 (-663 (-548))) (-619 (-619 (-548)))))) (-1016)) (T -997)) +((-1572 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-548)))) (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1572 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-874 (-548)))) (-5 *4 (-548)) (-5 *2 (-619 (-663 *4))) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1572 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-548))) (-5 *4 (-548)) (-5 *2 (-663 *4)) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-663 (-921 *4))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1537 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (|has| *4 (-6 (-4329 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-1537 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4329 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4329 "*"))) (-15 -1537 ((-663 |#1|) (-663 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4329 "*"))) (-15 -1537 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) |%noBranch|) (-15 -1546 ((-663 (-921 |#1|)) (-745))) (-15 -1555 ((-663 |#1|) (-663 |#1|) (-890))) (-15 -1555 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) (-15 -1564 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1564 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1564 ((-663 |#1|) (-663 |#1|))) (-15 -1564 ((-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1572 ((-663 (-548)) (-874 (-548)) (-548))) (-15 -1572 ((-663 (-548)) (-619 (-548)))) (-15 -1572 ((-619 (-663 (-548))) (-619 (-874 (-548))) (-548))) (-15 -1572 ((-619 (-663 (-548))) (-619 (-619 (-548)))))) +((-1609 (((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)) 50 (|has| |#1| (-299)))) (-3530 (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))) 76 (|has| |#1| (-355))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|)) 79 (|has| |#1| (-355)))) (-3454 (((-1218 |#1|) (-619 (-1218 |#1|)) (-548)) 93 (-12 (|has| |#1| (-355)) (|has| |#1| (-360))))) (-3443 (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890)) 85 (-12 (|has| |#1| (-355)) (|has| |#1| (-360)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112)) 83 (-12 (|has| |#1| (-355)) (|has| |#1| (-360)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|))) 82 (-12 (|has| |#1| (-355)) (|has| |#1| (-360)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-548) (-548)) 81 (-12 (|has| |#1| (-355)) (|has| |#1| (-360))))) (-1629 (((-112) (-619 (-663 |#1|))) 71 (|has| |#1| (-355))) (((-112) (-619 (-663 |#1|)) (-548)) 73 (|has| |#1| (-355)))) (-1600 (((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|)) 48 (|has| |#1| (-299)))) (-1592 (((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|)) 34)) (-1582 (((-663 |#1|) (-1218 (-1218 |#1|))) 31)) (-1621 (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-548)) 65 (|has| |#1| (-355))) (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|))) 64 (|has| |#1| (-355))) (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-548)) 69 (|has| |#1| (-355))))) +(((-998 |#1|) (-10 -7 (-15 -1582 ((-663 |#1|) (-1218 (-1218 |#1|)))) (-15 -1592 ((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-299)) (PROGN (-15 -1600 ((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -1609 ((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-548))) (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-548))) (-15 -1629 ((-112) (-619 (-663 |#1|)) (-548))) (-15 -1629 ((-112) (-619 (-663 |#1|)))) (-15 -3530 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -3530 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))))) |%noBranch|) (IF (|has| |#1| (-360)) (IF (|has| |#1| (-355)) (PROGN (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-548) (-548))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890))) (-15 -3454 ((-1218 |#1|) (-619 (-1218 |#1|)) (-548)))) |%noBranch|) |%noBranch|)) (-1016)) (T -998)) +((-3454 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1218 *5))) (-5 *4 (-548)) (-5 *2 (-1218 *5)) (-5 *1 (-998 *5)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-355)) (-4 *4 (-360)) (-4 *4 (-1016)) (-5 *2 (-619 (-619 (-663 *4)))) (-5 *1 (-998 *4)) (-5 *3 (-619 (-663 *4))))) (-3443 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-548)) (-4 *6 (-355)) (-4 *6 (-360)) (-4 *6 (-1016)) (-5 *2 (-619 (-619 (-663 *6)))) (-5 *1 (-998 *6)) (-5 *3 (-619 (-663 *6))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1218 (-1218 *5))) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1218 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-355)) (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *4)))) (-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-548)) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *5)))) (-1621 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-548)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)) (-4 *5 (-355)) (-4 *5 (-1016)))) (-1621 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-5 *1 (-998 *4)) (-4 *4 (-355)) (-4 *4 (-1016)))) (-1621 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-619 (-663 *6))) (-5 *4 (-112)) (-5 *5 (-548)) (-5 *2 (-663 *6)) (-5 *1 (-998 *6)) (-4 *6 (-355)) (-4 *6 (-1016)))) (-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-1218 *5)) (-4 *5 (-299)) (-4 *5 (-1016)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-4 *5 (-299)) (-4 *5 (-1016)) (-5 *2 (-1218 (-1218 *5))) (-5 *1 (-998 *5)) (-5 *4 (-1218 *5)))) (-1592 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-998 *4)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-1218 (-1218 *4))) (-4 *4 (-1016)) (-5 *2 (-663 *4)) (-5 *1 (-998 *4))))) +(-10 -7 (-15 -1582 ((-663 |#1|) (-1218 (-1218 |#1|)))) (-15 -1592 ((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-299)) (PROGN (-15 -1600 ((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -1609 ((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-548))) (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-548))) (-15 -1629 ((-112) (-619 (-663 |#1|)) (-548))) (-15 -1629 ((-112) (-619 (-663 |#1|)))) (-15 -3530 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -3530 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))))) |%noBranch|) (IF (|has| |#1| (-360)) (IF (|has| |#1| (-355)) (PROGN (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-548) (-548))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890))) (-15 -3454 ((-1218 |#1|) (-619 (-1218 |#1|)) (-548)))) |%noBranch|) |%noBranch|)) +((-3877 ((|#1| (-890) |#1|) 9))) +(((-999 |#1|) (-10 -7 (-15 -3877 (|#1| (-890) |#1|))) (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $))))) (T -999)) +((-3877 (*1 *2 *3 *2) (-12 (-5 *3 (-890)) (-5 *1 (-999 *2)) (-4 *2 (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)))))))) +(-10 -7 (-15 -3877 (|#1| (-890) |#1|))) +((-1459 (((-619 (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) (|:| |radvect| (-619 (-663 (-308 (-548))))))) (-663 (-399 (-921 (-548))))) 59)) (-1471 (((-619 (-663 (-308 (-548)))) (-308 (-548)) (-663 (-399 (-921 (-548))))) 48)) (-1482 (((-619 (-308 (-548))) (-663 (-399 (-921 (-548))))) 41)) (-1527 (((-619 (-663 (-308 (-548)))) (-663 (-399 (-921 (-548))))) 68)) (-1506 (((-663 (-308 (-548))) (-663 (-308 (-548)))) 34)) (-1517 (((-619 (-663 (-308 (-548)))) (-619 (-663 (-308 (-548))))) 62)) (-1494 (((-3 (-663 (-308 (-548))) "failed") (-663 (-399 (-921 (-548))))) 66))) +(((-1000) (-10 -7 (-15 -1459 ((-619 (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) (|:| |radvect| (-619 (-663 (-308 (-548))))))) (-663 (-399 (-921 (-548)))))) (-15 -1471 ((-619 (-663 (-308 (-548)))) (-308 (-548)) (-663 (-399 (-921 (-548)))))) (-15 -1482 ((-619 (-308 (-548))) (-663 (-399 (-921 (-548)))))) (-15 -1494 ((-3 (-663 (-308 (-548))) "failed") (-663 (-399 (-921 (-548)))))) (-15 -1506 ((-663 (-308 (-548))) (-663 (-308 (-548))))) (-15 -1517 ((-619 (-663 (-308 (-548)))) (-619 (-663 (-308 (-548)))))) (-15 -1527 ((-619 (-663 (-308 (-548)))) (-663 (-399 (-921 (-548)))))))) (T -1000)) +((-1527 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-663 (-308 (-548)))) (-5 *1 (-1000)))) (-1494 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-663 (-308 (-548)))) (-5 *1 (-1000)))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-308 (-548)))) (-5 *1 (-1000)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000)) (-5 *3 (-308 (-548))))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) (|:| |radvect| (-619 (-663 (-308 (-548)))))))) (-5 *1 (-1000))))) +(-10 -7 (-15 -1459 ((-619 (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) (|:| |radvect| (-619 (-663 (-308 (-548))))))) (-663 (-399 (-921 (-548)))))) (-15 -1471 ((-619 (-663 (-308 (-548)))) (-308 (-548)) (-663 (-399 (-921 (-548)))))) (-15 -1482 ((-619 (-308 (-548))) (-663 (-399 (-921 (-548)))))) (-15 -1494 ((-3 (-663 (-308 (-548))) "failed") (-663 (-399 (-921 (-548)))))) (-15 -1506 ((-663 (-308 (-548))) (-663 (-308 (-548))))) (-15 -1517 ((-619 (-663 (-308 (-548)))) (-619 (-663 (-308 (-548)))))) (-15 -1527 ((-619 (-663 (-308 (-548)))) (-663 (-399 (-921 (-548))))))) +((-3466 ((|#1| |#1| (-890)) 9))) +(((-1001 |#1|) (-10 -7 (-15 -3466 (|#1| |#1| (-890)))) (-13 (-1063) (-10 -8 (-15 * ($ $ $))))) (T -1001)) +((-3466 (*1 *2 *2 *3) (-12 (-5 *3 (-890)) (-5 *1 (-1001 *2)) (-4 *2 (-13 (-1063) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3466 (|#1| |#1| (-890)))) +((-3743 ((|#1| (-304)) 11) (((-1223) |#1|) 9))) +(((-1002 |#1|) (-10 -7 (-15 -3743 ((-1223) |#1|)) (-15 -3743 (|#1| (-304)))) (-1172)) (T -1002)) +((-3743 (*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1002 *2)) (-4 *2 (-1172)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-1223)) (-5 *1 (-1002 *3)) (-4 *3 (-1172))))) +(-10 -7 (-15 -3743 ((-1223) |#1|)) (-15 -3743 (|#1| (-304)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2061 (($ |#4|) 25)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2050 ((|#4| $) 27)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 46) (($ (-548)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3835 (((-745)) 43)) (-3107 (($) 21 T CONST)) (-3118 (($) 23 T CONST)) (-2214 (((-112) $ $) 40)) (-2299 (($ $) 31) (($ $ $) NIL)) (-2290 (($ $ $) 29)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1003 |#1| |#2| |#3| |#4| |#5|) (-13 (-169) (-38 |#1|) (-10 -8 (-15 -2061 ($ |#4|)) (-15 -3743 ($ |#4|)) (-15 -2050 (|#4| $)))) (-355) (-767) (-821) (-918 |#1| |#2| |#3|) (-619 |#4|)) (T -1003)) +((-2061 (*1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) (-2050 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-14 *6 (-619 *2))))) +(-13 (-169) (-38 |#1|) (-10 -8 (-15 -2061 ($ |#4|)) (-15 -3743 ($ |#4|)) (-15 -2050 (|#4| $)))) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-4149 (((-1223) $ (-1135) (-1135)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-3487 (((-112) (-112)) 39)) (-3476 (((-112) (-112)) 38)) (-2089 (((-52) $ (-1135) (-52)) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 (-52) "failed") (-1135) $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-1636 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-3 (-52) "failed") (-1135) $) NIL)) (-3699 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-52) $ (-1135) (-52)) NIL (|has| $ (-6 -4328)))) (-3899 (((-52) $ (-1135)) NIL)) (-1934 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1135) $) NIL (|has| (-1135) (-821)))) (-2342 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4181 (((-1135) $) NIL (|has| (-1135) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-4043 (((-619 (-1135)) $) 34)) (-4233 (((-112) (-1135) $) NIL)) (-1346 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-4201 (((-619 (-1135)) $) NIL)) (-4212 (((-112) (-1135) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3453 (((-52) $) NIL (|has| (-1135) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) "failed") (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL)) (-4159 (($ $ (-52)) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-286 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-286 (-52)))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4223 (((-619 (-52)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-52) $ (-1135)) 35) (((-52) $ (-1135) (-52)) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3743 (((-832) $) 37 (-1524 (|has| (-52) (-592 (-832))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1004) (-13 (-1148 (-1135) (-52)) (-10 -7 (-15 -3487 ((-112) (-112))) (-15 -3476 ((-112) (-112))) (-6 -4327)))) (T -1004)) +((-3487 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) +(-13 (-1148 (-1135) (-52)) (-10 -7 (-15 -3487 ((-112) (-112))) (-15 -3476 ((-112) (-112))) (-6 -4327))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-1005) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $))))) (T -1005)) +((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1005))))) +(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)))) +((-2375 ((|#2| $) 10))) +(((-1006 |#1| |#2|) (-10 -8 (-15 -2375 (|#2| |#1|))) (-1007 |#2|) (-1172)) (T -1006)) +NIL +(-10 -8 (-15 -2375 (|#2| |#1|))) +((-2441 (((-3 |#1| "failed") $) 7)) (-2375 ((|#1| $) 8)) (-3743 (($ |#1|) 6))) +(((-1007 |#1|) (-138) (-1172)) (T -1007)) +((-2375 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) (-2441 (*1 *2 *1) (|partial| -12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) (-3743 (*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172))))) +(-13 (-10 -8 (-15 -3743 ($ |t#1|)) (-15 -2441 ((-3 |t#1| "failed") $)) (-15 -2375 (|t#1| $)))) +((-3500 (((-619 (-619 (-286 (-399 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))) 38))) +(((-1008 |#1| |#2|) (-10 -7 (-15 -3500 ((-619 (-619 (-286 (-399 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))))) (-540) (-13 (-540) (-1007 |#1|))) (T -1008)) +((-3500 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-13 (-540) (-1007 *5))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *6)))))) (-5 *1 (-1008 *5 *6))))) +(-10 -7 (-15 -3500 ((-619 (-619 (-286 (-399 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))))) +((-3522 (((-371)) 15)) (-3602 (((-1 (-371)) (-371) (-371)) 20)) (-2405 (((-1 (-371)) (-745)) 43)) (-3533 (((-371)) 34)) (-3944 (((-1 (-371)) (-371) (-371)) 35)) (-3544 (((-371)) 26)) (-3567 (((-1 (-371)) (-371)) 27)) (-3556 (((-371) (-745)) 38)) (-3578 (((-1 (-371)) (-745)) 39)) (-1426 (((-1 (-371)) (-745) (-745)) 42)) (-1456 (((-1 (-371)) (-745) (-745)) 40))) +(((-1009) (-10 -7 (-15 -3522 ((-371))) (-15 -3533 ((-371))) (-15 -3544 ((-371))) (-15 -3556 ((-371) (-745))) (-15 -3602 ((-1 (-371)) (-371) (-371))) (-15 -3944 ((-1 (-371)) (-371) (-371))) (-15 -3567 ((-1 (-371)) (-371))) (-15 -3578 ((-1 (-371)) (-745))) (-15 -1456 ((-1 (-371)) (-745) (-745))) (-15 -1426 ((-1 (-371)) (-745) (-745))) (-15 -2405 ((-1 (-371)) (-745))))) (T -1009)) +((-2405 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) (-1426 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) (-1456 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) (-3567 (*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371)))) (-3944 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371)))) (-3602 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-371)) (-5 *1 (-1009)))) (-3544 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009)))) (-3533 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009)))) (-3522 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009))))) +(-10 -7 (-15 -3522 ((-371))) (-15 -3533 ((-371))) (-15 -3544 ((-371))) (-15 -3556 ((-371) (-745))) (-15 -3602 ((-1 (-371)) (-371) (-371))) (-15 -3944 ((-1 (-371)) (-371) (-371))) (-15 -3567 ((-1 (-371)) (-371))) (-15 -3578 ((-1 (-371)) (-745))) (-15 -1456 ((-1 (-371)) (-745) (-745))) (-15 -1426 ((-1 (-371)) (-745) (-745))) (-15 -2405 ((-1 (-371)) (-745)))) +((-1915 (((-410 |#1|) |#1|) 33))) +(((-1010 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1|))) (-1194 (-399 (-921 (-548))))) (T -1010)) +((-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1194 (-399 (-921 (-548)))))))) +(-10 -7 (-15 -1915 ((-410 |#1|) |#1|))) +((-3590 (((-399 (-410 (-921 |#1|))) (-399 (-921 |#1|))) 14))) +(((-1011 |#1|) (-10 -7 (-15 -3590 ((-399 (-410 (-921 |#1|))) (-399 (-921 |#1|))))) (-299)) (T -1011)) +((-3590 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-299)) (-5 *2 (-399 (-410 (-921 *4)))) (-5 *1 (-1011 *4))))) +(-10 -7 (-15 -3590 ((-399 (-410 (-921 |#1|))) (-399 (-921 |#1|))))) +((-2049 (((-619 (-1135)) (-399 (-921 |#1|))) 17)) (-1884 (((-399 (-1131 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135)) 24)) (-2036 (((-399 (-921 |#1|)) (-399 (-1131 (-399 (-921 |#1|)))) (-1135)) 26)) (-3511 (((-3 (-1135) "failed") (-399 (-921 |#1|))) 20)) (-2460 (((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-286 (-399 (-921 |#1|))))) 32) (((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|)))) 33) (((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-1135)) (-619 (-399 (-921 |#1|)))) 28) (((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|))) 29)) (-3743 (((-399 (-921 |#1|)) |#1|) 11))) +(((-1012 |#1|) (-10 -7 (-15 -2049 ((-619 (-1135)) (-399 (-921 |#1|)))) (-15 -3511 ((-3 (-1135) "failed") (-399 (-921 |#1|)))) (-15 -1884 ((-399 (-1131 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135))) (-15 -2036 ((-399 (-921 |#1|)) (-399 (-1131 (-399 (-921 |#1|)))) (-1135))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-1135)) (-619 (-399 (-921 |#1|))))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -3743 ((-399 (-921 |#1|)) |#1|))) (-540)) (T -1012)) +((-3743 (*1 *2 *3) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-1012 *3)) (-4 *3 (-540)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-286 (-399 (-921 *4))))) (-5 *2 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *1 (-1012 *4)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *3 (-286 (-399 (-921 *4)))) (-5 *2 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *1 (-1012 *4)))) (-2460 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-5 *4 (-619 (-399 (-921 *5)))) (-5 *2 (-399 (-921 *5))) (-4 *5 (-540)) (-5 *1 (-1012 *5)))) (-2460 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-399 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-540)) (-5 *1 (-1012 *4)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-1131 (-399 (-921 *5))))) (-5 *4 (-1135)) (-5 *2 (-399 (-921 *5))) (-5 *1 (-1012 *5)) (-4 *5 (-540)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-540)) (-5 *2 (-399 (-1131 (-399 (-921 *5))))) (-5 *1 (-1012 *5)) (-5 *3 (-399 (-921 *5))))) (-3511 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-1135)) (-5 *1 (-1012 *4)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-619 (-1135))) (-5 *1 (-1012 *4))))) +(-10 -7 (-15 -2049 ((-619 (-1135)) (-399 (-921 |#1|)))) (-15 -3511 ((-3 (-1135) "failed") (-399 (-921 |#1|)))) (-15 -1884 ((-399 (-1131 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135))) (-15 -2036 ((-399 (-921 |#1|)) (-399 (-1131 (-399 (-921 |#1|)))) (-1135))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-1135)) (-619 (-399 (-921 |#1|))))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -3743 ((-399 (-921 |#1|)) |#1|))) +((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 (-754 |#1| (-834 |#2|)))))) (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2004 (((-619 $) (-619 (-754 |#1| (-834 |#2|)))) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112)) NIL)) (-2049 (((-619 (-834 |#2|)) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2073 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-1688 (((-619 (-2 (|:| |val| (-754 |#1| (-834 |#2|))) (|:| -1806 $))) (-754 |#1| (-834 |#2|)) $) NIL)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ (-834 |#2|)) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 (-754 |#1| (-834 |#2|)) "failed") $ (-834 |#2|)) NIL)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) NIL (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2213 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2375 (($ (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-3465 (((-3 $ "failed") $) NIL)) (-2038 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-3699 (($ (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-754 |#1| (-834 |#2|))) (|:| |den| |#1|)) (-754 |#1| (-834 |#2|)) $) NIL (|has| |#1| (-540)))) (-2143 (((-112) (-754 |#1| (-834 |#2|)) $ (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2015 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2061 (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $ (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $ (-754 |#1| (-834 |#2|))) NIL (|has| $ (-6 -4327))) (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2169 (((-2 (|:| -2466 (-619 (-754 |#1| (-834 |#2|)))) (|:| -1280 (-619 (-754 |#1| (-834 |#2|))))) $) NIL)) (-2258 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-3425 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-2267 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-1934 (((-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2157 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-3239 (((-834 |#2|) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-3960 (($ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL)) (-2338 (((-619 (-834 |#2|)) $) NIL)) (-2329 (((-112) (-834 |#2|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3369 (((-3 (-754 |#1| (-834 |#2|)) (-619 $)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3353 (((-619 (-2 (|:| |val| (-754 |#1| (-834 |#2|))) (|:| -1806 $))) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3724 (((-3 (-754 |#1| (-834 |#2|)) "failed") $) NIL)) (-3387 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL)) (-3412 (((-3 (-112) (-619 $)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-2520 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL)) (-3688 (($ (-754 |#1| (-834 |#2|)) $) NIL) (($ (-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-2179 (((-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-2109 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2052 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2199 (((-112) $ $) NIL)) (-2240 (((-2 (|:| |num| (-754 |#1| (-834 |#2|))) (|:| |den| |#1|)) (-754 |#1| (-834 |#2|)) $) NIL (|has| |#1| (-540)))) (-2121 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2063 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 (-754 |#1| (-834 |#2|)) "failed") $) NIL)) (-4030 (((-3 (-754 |#1| (-834 |#2|)) "failed") (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL)) (-1971 (((-3 $ "failed") $ (-754 |#1| (-834 |#2|))) NIL)) (-1656 (($ $ (-754 |#1| (-834 |#2|))) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL)) (-3537 (((-112) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|)))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-286 (-754 |#1| (-834 |#2|)))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-619 (-286 (-754 |#1| (-834 |#2|))))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-2512 (((-745) $) NIL)) (-3945 (((-745) (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (((-745) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-754 |#1| (-834 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2298 (($ $ (-834 |#2|)) NIL)) (-2319 (($ $ (-834 |#2|)) NIL)) (-2027 (($ $) NIL)) (-2308 (($ $ (-834 |#2|)) NIL)) (-3743 (((-832) $) NIL) (((-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-1962 (((-745) $) NIL (|has| (-834 |#2|) (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 (-754 |#1| (-834 |#2|))))) "failed") (-619 (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 (-754 |#1| (-834 |#2|))))) "failed") (-619 (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2096 (((-112) $ (-1 (-112) (-754 |#1| (-834 |#2|)) (-619 (-754 |#1| (-834 |#2|))))) NIL)) (-3338 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL)) (-3548 (((-112) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 (-834 |#2|)) $) NIL)) (-2247 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-2406 (((-112) (-834 |#2|) $) NIL)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1013 |#1| |#2|) (-13 (-1036 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) (-10 -8 (-15 -2004 ((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112))))) (-443) (-619 (-1135))) (T -1013)) +((-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1013 *5 *6))))) +(-13 (-1036 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) (-10 -8 (-15 -2004 ((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112))))) +((-3602 (((-1 (-548)) (-1058 (-548))) 33)) (-3646 (((-548) (-548) (-548) (-548) (-548)) 30)) (-3622 (((-1 (-548)) |RationalNumber|) NIL)) (-3633 (((-1 (-548)) |RationalNumber|) NIL)) (-3612 (((-1 (-548)) (-548) |RationalNumber|) NIL))) +(((-1014) (-10 -7 (-15 -3602 ((-1 (-548)) (-1058 (-548)))) (-15 -3612 ((-1 (-548)) (-548) |RationalNumber|)) (-15 -3622 ((-1 (-548)) |RationalNumber|)) (-15 -3633 ((-1 (-548)) |RationalNumber|)) (-15 -3646 ((-548) (-548) (-548) (-548) (-548))))) (T -1014)) +((-3646 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1014)))) (-3633 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014)))) (-3622 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014)) (-5 *3 (-548)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1058 (-548))) (-5 *2 (-1 (-548))) (-5 *1 (-1014))))) +(-10 -7 (-15 -3602 ((-1 (-548)) (-1058 (-548)))) (-15 -3612 ((-1 (-548)) (-548) |RationalNumber|)) (-15 -3622 ((-1 (-548)) |RationalNumber|)) (-15 -3633 ((-1 (-548)) |RationalNumber|)) (-15 -3646 ((-548) (-548) (-548) (-548) (-548)))) +((-3743 (((-832) $) NIL) (($ (-548)) 10))) +(((-1015 |#1|) (-10 -8 (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-1016)) (T -1015)) +NIL +(-10 -8 (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-1016) (-138)) (T -1016)) +((-3835 (*1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-745)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1016))))) +(-13 (-1023) (-701) (-622 $) (-10 -8 (-15 -3835 ((-745))) (-15 -3743 ($ (-548))) (-6 -4324))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3657 (((-399 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)) 46))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -3657 ((-399 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)))) (-1135) (-355)) (T -1017)) +((-3657 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-745)) (-4 *6 (-355)) (-5 *2 (-399 (-921 *6))) (-5 *1 (-1017 *5 *6)) (-14 *5 (-1135))))) +(-10 -7 (-15 -3657 ((-399 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)))) +((-3785 (((-112) $) 29)) (-3808 (((-112) $) 16)) (-4205 (((-745) $) 13)) (-4216 (((-745) $) 14)) (-3797 (((-112) $) 26)) (-3774 (((-112) $) 31))) +(((-1018 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4216 ((-745) |#1|)) (-15 -4205 ((-745) |#1|)) (-15 -3774 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -3808 ((-112) |#1|))) (-1019 |#2| |#3| |#4| |#5| |#6|) (-745) (-745) (-1016) (-231 |#3| |#4|) (-231 |#2| |#4|)) (T -1018)) +NIL +(-10 -8 (-15 -4216 ((-745) |#1|)) (-15 -4205 ((-745) |#1|)) (-15 -3774 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -3808 ((-112) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3785 (((-112) $) 51)) (-4104 (((-3 $ "failed") $ $) 19)) (-3808 (((-112) $) 53)) (-2028 (((-112) $ (-745)) 61)) (-3030 (($) 17 T CONST)) (-3691 (($ $) 34 (|has| |#3| (-299)))) (-3717 ((|#4| $ (-548)) 39)) (-2103 (((-745) $) 33 (|has| |#3| (-540)))) (-3899 ((|#3| $ (-548) (-548)) 41)) (-1934 (((-619 |#3|) $) 68 (|has| $ (-6 -4327)))) (-3681 (((-745) $) 32 (|has| |#3| (-540)))) (-3669 (((-619 |#5|) $) 31 (|has| |#3| (-540)))) (-4205 (((-745) $) 45)) (-4216 (((-745) $) 44)) (-4282 (((-112) $ (-745)) 60)) (-3764 (((-548) $) 49)) (-3742 (((-548) $) 47)) (-2342 (((-619 |#3|) $) 69 (|has| $ (-6 -4327)))) (-2556 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1063)) (|has| $ (-6 -4327))))) (-3753 (((-548) $) 48)) (-3729 (((-548) $) 46)) (-3817 (($ (-619 (-619 |#3|))) 54)) (-3960 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2401 (((-619 (-619 |#3|)) $) 43)) (-4248 (((-112) $ (-745)) 59)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-540)))) (-3537 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#3|) (-619 |#3|)) 75 (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-286 |#3|)) 73 (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 (-286 |#3|))) 72 (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))))) (-2039 (((-112) $ $) 55)) (-1616 (((-112) $) 58)) (-3319 (($) 57)) (-3171 ((|#3| $ (-548) (-548)) 42) ((|#3| $ (-548) (-548) |#3|) 40)) (-3797 (((-112) $) 52)) (-3945 (((-745) |#3| $) 70 (-12 (|has| |#3| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4327)))) (-2113 (($ $) 56)) (-3704 ((|#5| $ (-548)) 38)) (-3743 (((-832) $) 11)) (-3548 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4327)))) (-3774 (((-112) $) 50)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#3|) 35 (|has| |#3| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3643 (((-745) $) 62 (|has| $ (-6 -4327))))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-138) (-745) (-745) (-1016) (-231 |t#2| |t#3|) (-231 |t#1| |t#3|)) (T -1019)) +((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *5))) (-4 *5 (-1016)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-745)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-745)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-619 (-619 *5))))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)) (-4 *2 (-1016)))) (-3899 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)) (-4 *2 (-1016)))) (-3171 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *2 (-1016)) (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *6 *2 *7)) (-4 *6 (-1016)) (-4 *7 (-231 *4 *6)) (-4 *2 (-231 *5 *6)))) (-3704 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *6 *7 *2)) (-4 *6 (-1016)) (-4 *7 (-231 *5 *6)) (-4 *2 (-231 *4 *6)))) (-2540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) (-4 *5 (-231 *4 *2)) (-4 *6 (-231 *3 *2)) (-4 *2 (-540)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) (-4 *5 (-231 *4 *2)) (-4 *6 (-231 *3 *2)) (-4 *2 (-355)))) (-3691 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *2 *4)) (-4 *4 (-299)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) (-5 *2 (-745)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) (-5 *2 (-745)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) (-5 *2 (-619 *7))))) +(-13 (-111 |t#3| |t#3|) (-480 |t#3|) (-10 -8 (-6 -4327) (IF (|has| |t#3| (-169)) (-6 (-692 |t#3|)) |%noBranch|) (-15 -3817 ($ (-619 (-619 |t#3|)))) (-15 -3808 ((-112) $)) (-15 -3797 ((-112) $)) (-15 -3785 ((-112) $)) (-15 -3774 ((-112) $)) (-15 -3764 ((-548) $)) (-15 -3753 ((-548) $)) (-15 -3742 ((-548) $)) (-15 -3729 ((-548) $)) (-15 -4205 ((-745) $)) (-15 -4216 ((-745) $)) (-15 -2401 ((-619 (-619 |t#3|)) $)) (-15 -3171 (|t#3| $ (-548) (-548))) (-15 -3899 (|t#3| $ (-548) (-548))) (-15 -3171 (|t#3| $ (-548) (-548) |t#3|)) (-15 -3717 (|t#4| $ (-548))) (-15 -3704 (|t#5| $ (-548))) (-15 -2540 ($ (-1 |t#3| |t#3|) $)) (-15 -2540 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-540)) (-15 -1900 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-355)) (-15 -2309 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-299)) (-15 -3691 ($ $)) |%noBranch|) (IF (|has| |t#3| (-540)) (PROGN (-15 -2103 ((-745) $)) (-15 -3681 ((-745) $)) (-15 -3669 ((-619 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-592 (-832)) . T) ((-301 |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))) ((-480 |#3|) . T) ((-504 |#3| |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))) ((-622 |#3|) . T) ((-692 |#3|) |has| |#3| (-169)) ((-1022 |#3|) . T) ((-1063) . T) ((-1172) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3785 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-3691 (($ $) 43 (|has| |#3| (-299)))) (-3717 (((-233 |#2| |#3|) $ (-548)) 32)) (-3821 (($ (-663 |#3|)) 41)) (-2103 (((-745) $) 45 (|has| |#3| (-540)))) (-3899 ((|#3| $ (-548) (-548)) NIL)) (-1934 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-3681 (((-745) $) 47 (|has| |#3| (-540)))) (-3669 (((-619 (-233 |#1| |#3|)) $) 51 (|has| |#3| (-540)))) (-4205 (((-745) $) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#3|))) 27)) (-3960 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2401 (((-619 (-619 |#3|)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-540)))) (-3537 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 (-286 |#3|))) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#3| $ (-548) (-548)) NIL) ((|#3| $ (-548) (-548) |#3|) NIL)) (-3402 (((-133)) 54 (|has| |#3| (-355)))) (-3797 (((-112) $) NIL)) (-3945 (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063)))) (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 63 (|has| |#3| (-593 (-524))))) (-3704 (((-233 |#1| |#3|) $ (-548)) 36)) (-3743 (((-832) $) 16) (((-663 |#3|) $) 38)) (-3548 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-3107 (($) 13 T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#3|) NIL (|has| |#3| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1020 |#1| |#2| |#3|) (-13 (-1019 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-592 (-663 |#3|)) (-10 -8 (IF (|has| |#3| (-355)) (-6 (-1225 |#3|)) |%noBranch|) (IF (|has| |#3| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (-15 -3821 ($ (-663 |#3|))) (-15 -3743 ((-663 |#3|) $)))) (-745) (-745) (-1016)) (T -1020)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-663 *5)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-1016)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-1016)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745))))) +(-13 (-1019 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-592 (-663 |#3|)) (-10 -8 (IF (|has| |#3| (-355)) (-6 (-1225 |#3|)) |%noBranch|) (IF (|has| |#3| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (-15 -3821 ($ (-663 |#3|))) (-15 -3743 ((-663 |#3|) $)))) +((-2061 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2540 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1021 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2540 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2061 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-745) (-745) (-1016) (-231 |#2| |#3|) (-231 |#1| |#3|) (-1019 |#1| |#2| |#3| |#4| |#5|) (-1016) (-231 |#2| |#7|) (-231 |#1| |#7|) (-1019 |#1| |#2| |#7| |#8| |#9|)) (T -1021)) +((-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1016)) (-4 *2 (-1016)) (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-231 *6 *7)) (-4 *9 (-231 *5 *7)) (-4 *10 (-231 *6 *2)) (-4 *11 (-231 *5 *2)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *12 (-1019 *5 *6 *2 *10 *11)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1016)) (-4 *10 (-1016)) (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-231 *6 *7)) (-4 *9 (-231 *5 *7)) (-4 *2 (-1019 *5 *6 *10 *11 *12)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *11 (-231 *6 *10)) (-4 *12 (-231 *5 *10))))) +(-10 -7 (-15 -2540 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2061 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ |#1|) 23))) +(((-1022 |#1|) (-138) (-1023)) (T -1022)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1023))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-1011) (-134)) (T -1011)) -NIL -(-13 (-21) (-1063)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1063) . T) ((-1052) . T)) -((-4089 (($ $) 16)) (-3424 (($ $) 22)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 49)) (-3429 (($ $) 24)) (-3425 (($ $) 11)) (-3427 (($ $) 38)) (-4287 (((-363) $) NIL) (((-211) $) NIL) (((-849 (-363)) $) 33)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 28) (($ (-526)) NIL) (($ (-392 (-526))) 28)) (-3423 (((-735)) 8)) (-3428 (($ $) 39))) -(((-1012 |#1|) (-10 -8 (-15 -3424 (|#1| |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -4274 ((-823) |#1|))) (-1013)) (T -1012)) -((-3423 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1012 *3)) (-4 *3 (-1013))))) -(-10 -8 (-15 -3424 (|#1| |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3426 (((-526) $) 86)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-4089 (($ $) 84)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3337 (($ $) 94)) (-1681 (((-111) $ $) 57)) (-3945 (((-526) $) 111)) (-3855 (($) 17 T CONST)) (-3424 (($ $) 83)) (-3470 (((-3 (-526) #1="failed") $) 99) (((-3 (-392 (-526)) #1#) $) 96)) (-3469 (((-526) $) 98) (((-392 (-526)) $) 95)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-3500 (((-111) $) 109)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 90)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 93)) (-3429 (($ $) 89)) (-3501 (((-111) $) 110)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 50)) (-3637 (($ $ $) 108)) (-3638 (($ $ $) 107)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3425 (($ $) 85)) (-3427 (($ $) 87)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4287 (((-363) $) 102) (((-211) $) 101) (((-849 (-363)) $) 91)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ (-526)) 100) (($ (-392 (-526))) 97)) (-3423 (((-735)) 28)) (-3428 (($ $) 88)) (-2150 (((-111) $ $) 37)) (-3702 (($ $) 112)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 105)) (-2864 (((-111) $ $) 104)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 106)) (-2985 (((-111) $ $) 103)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66) (($ $ (-392 (-526))) 92)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) -(((-1013) (-134)) (T -1013)) -((-3702 (*1 *1 *1) (-4 *1 (-1013))) (-3429 (*1 *1 *1) (-4 *1 (-1013))) (-3428 (*1 *1 *1) (-4 *1 (-1013))) (-3427 (*1 *1 *1) (-4 *1 (-1013))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-526)))) (-3425 (*1 *1 *1) (-4 *1 (-1013))) (-4089 (*1 *1 *1) (-4 *1 (-1013))) (-3424 (*1 *1 *1) (-4 *1 (-1013)))) -(-13 (-348) (-809) (-977) (-995 (-526)) (-995 (-392 (-526))) (-960) (-584 (-849 (-363))) (-845 (-363)) (-141) (-10 -8 (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ((-526) $)) (-15 -3425 ($ $)) (-15 -4089 ($ $)) (-15 -3424 ($ $)) (-15 -3702 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-163) . T) ((-584 (-211)) . T) ((-584 (-363)) . T) ((-584 (-849 (-363))) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-809) . T) ((-811) . T) ((-845 (-363)) . T) ((-880) . T) ((-960) . T) ((-977) . T) ((-995 (-392 (-526))) . T) ((-995 (-526)) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) |#2| $) 23)) (-3433 ((|#1| $) 10)) (-3945 (((-526) |#2| $) 88)) (-3497 (((-3 $ #1="failed") |#2| (-878)) 57)) (-3434 ((|#1| $) 28)) (-3496 ((|#1| |#2| $ |#1|) 37)) (-3431 (($ $) 25)) (-3781 (((-3 |#2| #1#) |#2| $) 87)) (-3500 (((-111) |#2| $) NIL)) (-3501 (((-111) |#2| $) NIL)) (-3430 (((-111) |#2| $) 24)) (-3432 ((|#1| $) 89)) (-3435 ((|#1| $) 27)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3499 ((|#2| $) 79)) (-4274 (((-823) $) 70)) (-4088 ((|#1| |#2| $ |#1|) 38)) (-3498 (((-607 $) |#2|) 59)) (-3353 (((-111) $ $) 74))) -(((-1014 |#1| |#2|) (-13 (-1021 |#1| |#2|) (-10 -8 (-15 -3435 (|#1| $)) (-15 -3434 (|#1| $)) (-15 -3433 (|#1| $)) (-15 -3432 (|#1| $)) (-15 -3431 ($ $)) (-15 -3430 ((-111) |#2| $)) (-15 -3496 (|#1| |#2| $ |#1|)))) (-13 (-809) (-348)) (-1181 |#1|)) (T -1014)) -((-3496 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3435 (*1 *2 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3434 (*1 *2 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3433 (*1 *2 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3432 (*1 *2 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3431 (*1 *1 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3430 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-809) (-348))) (-5 *2 (-111)) (-5 *1 (-1014 *4 *3)) (-4 *3 (-1181 *4))))) -(-13 (-1021 |#1| |#2|) (-10 -8 (-15 -3435 (|#1| $)) (-15 -3434 (|#1| $)) (-15 -3433 (|#1| $)) (-15 -3432 (|#1| $)) (-15 -3431 ($ $)) (-15 -3430 ((-111) |#2| $)) (-15 -3496 (|#1| |#2| $ |#1|)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2135 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2130 (($ $ $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-2659 (($ $ $) NIL)) (-3855 (($) NIL T CONST)) (-3436 (($ (-1123)) 10) (($ (-526)) 7)) (-3470 (((-3 (-526) "failed") $) NIL)) (-3469 (((-526) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL)) (-3323 (((-111) $) NIL)) (-3322 (((-392 (-526)) $) NIL)) (-3294 (($) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2128 (($ $ $ $) NIL)) (-2136 (($ $ $) NIL)) (-3500 (((-111) $) NIL)) (-1394 (($ $ $) NIL)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL)) (-2471 (((-111) $) NIL)) (-2973 (((-111) $) NIL)) (-3763 (((-3 $ "failed") $) NIL)) (-3501 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2129 (($ $ $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2132 (($ $) NIL)) (-4152 (($ $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2127 (($ $ $) NIL)) (-3764 (($) NIL T CONST)) (-2134 (($ $) NIL)) (-3555 (((-1070) $) NIL) (($ $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1392 (($ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-2133 (($ $) NIL)) (-3719 (($ $) NIL)) (-4287 (((-526) $) 16) (((-515) $) NIL) (((-849 (-526)) $) NIL) (((-363) $) NIL) (((-211) $) NIL) (($ (-1123)) 9)) (-4274 (((-823) $) 20) (($ (-526)) 6) (($ $) NIL) (($ (-526)) 6)) (-3423 (((-735)) NIL)) (-2137 (((-111) $ $) NIL)) (-3399 (($ $ $) NIL)) (-2994 (($) NIL)) (-2150 (((-111) $ $) NIL)) (-2131 (($ $ $ $) NIL)) (-3702 (($ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4156 (($ $) 19) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL))) -(((-1015) (-13 (-525) (-10 -8 (-6 -4297) (-6 -4302) (-6 -4298) (-15 -4287 ($ (-1123))) (-15 -3436 ($ (-1123))) (-15 -3436 ($ (-526)))))) (T -1015)) -((-4287 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1015)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1015)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1015))))) -(-13 (-525) (-10 -8 (-6 -4297) (-6 -4302) (-6 -4298) (-15 -4287 ($ (-1123))) (-15 -3436 ($ (-1123))) (-15 -3436 ($ (-526))))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2276 (((-1211) $ (-1123) (-1123)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-3438 (($) 9)) (-4106 (((-50) $ (-1123) (-50)) NIL)) (-3446 (($ $) 30)) (-3449 (($ $) 28)) (-3450 (($ $) 27)) (-3448 (($ $) 29)) (-3445 (($ $) 32)) (-3444 (($ $) 33)) (-3451 (($ $) 26)) (-3447 (($ $) 31)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) 25 (|has| $ (-6 -4310)))) (-2285 (((-3 (-50) #1="failed") (-1123) $) 40)) (-3855 (($) NIL T CONST)) (-3452 (($) 7)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3724 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) 50 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-3 (-50) #1#) (-1123) $) NIL)) (-3725 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-3437 (((-3 (-1106) "failed") $ (-1106) (-526)) 59)) (-1613 (((-50) $ (-1123) (-50)) NIL (|has| $ (-6 -4311)))) (-3410 (((-50) $ (-1123)) NIL)) (-2044 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1123) $) NIL (|has| (-1123) (-811)))) (-2480 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) 35 (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2279 (((-1123) $) NIL (|has| (-1123) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-2713 (((-607 (-1123)) $) NIL)) (-2286 (((-111) (-1123) $) NIL)) (-1306 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) 43)) (-2281 (((-607 (-1123)) $) NIL)) (-2282 (((-111) (-1123) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3441 (((-363) $ (-1123)) 49)) (-3440 (((-607 (-1106)) $ (-1106)) 60)) (-4119 (((-50) $) NIL (|has| (-1123) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) "failed") (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL)) (-2277 (($ $ (-50)) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-50)) (-607 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-278 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-607 (-278 (-50)))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2283 (((-607 (-50)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-50) $ (-1123)) NIL) (((-50) $ (-1123) (-50)) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-3439 (($ $ (-1123)) 51)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-735) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052)))) (((-735) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) 37)) (-4120 (($ $ $) 38)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-583 (-823))) (|has| (-50) (-583 (-823)))))) (-3443 (($ $ (-1123) (-363)) 47)) (-3442 (($ $ (-1123) (-363)) 48)) (-1308 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1016) (-13 (-1136 (-1123) (-50)) (-10 -8 (-15 -4120 ($ $ $)) (-15 -3452 ($)) (-15 -3451 ($ $)) (-15 -3450 ($ $)) (-15 -3449 ($ $)) (-15 -3448 ($ $)) (-15 -3447 ($ $)) (-15 -3446 ($ $)) (-15 -3445 ($ $)) (-15 -3444 ($ $)) (-15 -3443 ($ $ (-1123) (-363))) (-15 -3442 ($ $ (-1123) (-363))) (-15 -3441 ((-363) $ (-1123))) (-15 -3440 ((-607 (-1106)) $ (-1106))) (-15 -3439 ($ $ (-1123))) (-15 -3438 ($)) (-15 -3437 ((-3 (-1106) "failed") $ (-1106) (-526))) (-6 -4310)))) (T -1016)) -((-4120 (*1 *1 *1 *1) (-5 *1 (-1016))) (-3452 (*1 *1) (-5 *1 (-1016))) (-3451 (*1 *1 *1) (-5 *1 (-1016))) (-3450 (*1 *1 *1) (-5 *1 (-1016))) (-3449 (*1 *1 *1) (-5 *1 (-1016))) (-3448 (*1 *1 *1) (-5 *1 (-1016))) (-3447 (*1 *1 *1) (-5 *1 (-1016))) (-3446 (*1 *1 *1) (-5 *1 (-1016))) (-3445 (*1 *1 *1) (-5 *1 (-1016))) (-3444 (*1 *1 *1) (-5 *1 (-1016))) (-3443 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-363)) (-5 *1 (-1016)))) (-3442 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-363)) (-5 *1 (-1016)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-363)) (-5 *1 (-1016)))) (-3440 (*1 *2 *1 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1016)) (-5 *3 (-1106)))) (-3439 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1016)))) (-3438 (*1 *1) (-5 *1 (-1016))) (-3437 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-1016))))) -(-13 (-1136 (-1123) (-50)) (-10 -8 (-15 -4120 ($ $ $)) (-15 -3452 ($)) (-15 -3451 ($ $)) (-15 -3450 ($ $)) (-15 -3449 ($ $)) (-15 -3448 ($ $)) (-15 -3447 ($ $)) (-15 -3446 ($ $)) (-15 -3445 ($ $)) (-15 -3444 ($ $)) (-15 -3443 ($ $ (-1123) (-363))) (-15 -3442 ($ $ (-1123) (-363))) (-15 -3441 ((-363) $ (-1123))) (-15 -3440 ((-607 (-1106)) $ (-1106))) (-15 -3439 ($ $ (-1123))) (-15 -3438 ($)) (-15 -3437 ((-3 (-1106) "failed") $ (-1106) (-526))) (-6 -4310))) -((-4115 (($ $) 45)) (-3479 (((-111) $ $) 74)) (-3470 (((-3 |#2| #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-905 (-392 (-526)))) 227) (((-3 $ "failed") (-905 (-526))) 226) (((-3 $ "failed") (-905 |#2|)) 229)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL) (((-526) $) NIL) ((|#4| $) NIL) (($ (-905 (-392 (-526)))) 215) (($ (-905 (-526))) 211) (($ (-905 |#2|)) 231)) (-4276 (($ $) NIL) (($ $ |#4|) 43)) (-4016 (((-111) $ $) 112) (((-111) $ (-607 $)) 113)) (-3485 (((-111) $) 56)) (-4071 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 107)) (-3456 (($ $) 138)) (-3467 (($ $) 134)) (-3468 (($ $) 133)) (-3478 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3477 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4017 (((-111) $ $) 121) (((-111) $ (-607 $)) 122)) (-3493 ((|#4| $) 33)) (-3472 (($ $ $) 110)) (-3486 (((-111) $) 55)) (-3492 (((-735) $) 35)) (-3453 (($ $) 152)) (-3454 (($ $) 149)) (-3481 (((-607 $) $) 68)) (-3484 (($ $) 57)) (-3455 (($ $) 145)) (-3482 (((-607 $) $) 65)) (-3483 (($ $) 59)) (-3487 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3471 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3795 (-735))) $ $) 111)) (-3473 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $) 108) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $ |#4|) 109)) (-3474 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $) 104) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $ |#4|) 105)) (-3476 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3475 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3489 (((-607 $) $) 51)) (-4013 (((-111) $ $) 118) (((-111) $ (-607 $)) 119)) (-4008 (($ $ $) 103)) (-3764 (($ $) 37)) (-4021 (((-111) $ $) 72)) (-4014 (((-111) $ $) 114) (((-111) $ (-607 $)) 116)) (-4009 (($ $ $) 101)) (-3491 (($ $) 40)) (-3457 ((|#2| |#2| $) 142) (($ (-607 $)) NIL) (($ $ $) NIL)) (-3465 (($ $ |#2|) NIL) (($ $ $) 131)) (-3466 (($ $ |#2|) 126) (($ $ $) 129)) (-3490 (($ $) 48)) (-3488 (($ $) 52)) (-4287 (((-849 (-363)) $) NIL) (((-849 (-526)) $) NIL) (((-515) $) NIL) (($ (-905 (-392 (-526)))) 217) (($ (-905 (-526))) 213) (($ (-905 |#2|)) 228) (((-1106) $) 250) (((-905 |#2|) $) 162)) (-4274 (((-823) $) 30) (($ (-526)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-905 |#2|) $) 163) (($ (-392 (-526))) NIL) (($ $) NIL)) (-3480 (((-3 (-111) "failed") $ $) 71))) -(((-1017 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 ((-905 |#2|) |#1|)) (-15 -4287 ((-905 |#2|) |#1|)) (-15 -4287 ((-1106) |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3454 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3457 (|#2| |#2| |#1|)) (-15 -3465 (|#1| |#1| |#1|)) (-15 -3466 (|#1| |#1| |#1|)) (-15 -3465 (|#1| |#1| |#2|)) (-15 -3466 (|#1| |#1| |#2|)) (-15 -3467 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -4287 (|#1| (-905 |#2|))) (-15 -3469 (|#1| (-905 |#2|))) (-15 -3470 ((-3 |#1| "failed") (-905 |#2|))) (-15 -4287 (|#1| (-905 (-526)))) (-15 -3469 (|#1| (-905 (-526)))) (-15 -3470 ((-3 |#1| "failed") (-905 (-526)))) (-15 -4287 (|#1| (-905 (-392 (-526))))) (-15 -3469 (|#1| (-905 (-392 (-526))))) (-15 -3470 ((-3 |#1| "failed") (-905 (-392 (-526))))) (-15 -4008 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -3471 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3795 (-735))) |#1| |#1|)) (-15 -3472 (|#1| |#1| |#1|)) (-15 -4071 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3474 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3474 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3475 (|#1| |#1| |#1| |#4|)) (-15 -3476 (|#1| |#1| |#1| |#4|)) (-15 -3475 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3477 (|#1| |#1| |#1| |#4|)) (-15 -3478 (|#1| |#1| |#1| |#4|)) (-15 -3477 (|#1| |#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -4017 ((-111) |#1| (-607 |#1|))) (-15 -4017 ((-111) |#1| |#1|)) (-15 -4013 ((-111) |#1| (-607 |#1|))) (-15 -4013 ((-111) |#1| |#1|)) (-15 -4014 ((-111) |#1| (-607 |#1|))) (-15 -4014 ((-111) |#1| |#1|)) (-15 -4016 ((-111) |#1| (-607 |#1|))) (-15 -4016 ((-111) |#1| |#1|)) (-15 -3479 ((-111) |#1| |#1|)) (-15 -4021 ((-111) |#1| |#1|)) (-15 -3480 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3481 ((-607 |#1|) |#1|)) (-15 -3482 ((-607 |#1|) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3485 ((-111) |#1|)) (-15 -3486 ((-111) |#1|)) (-15 -4276 (|#1| |#1| |#4|)) (-15 -3487 (|#1| |#1| |#4|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 ((-607 |#1|) |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3492 ((-735) |#1|)) (-15 -3493 (|#4| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -3469 (|#4| |#1|)) (-15 -3470 ((-3 |#4| #1="failed") |#1|)) (-15 -4274 (|#1| |#4|)) (-15 -3487 (|#2| |#1|)) (-15 -4276 (|#1| |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-1018 |#2| |#3| |#4|) (-1004) (-757) (-811)) (T -1017)) -NIL -(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 ((-905 |#2|) |#1|)) (-15 -4287 ((-905 |#2|) |#1|)) (-15 -4287 ((-1106) |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3454 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3457 (|#2| |#2| |#1|)) (-15 -3465 (|#1| |#1| |#1|)) (-15 -3466 (|#1| |#1| |#1|)) (-15 -3465 (|#1| |#1| |#2|)) (-15 -3466 (|#1| |#1| |#2|)) (-15 -3467 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -4287 (|#1| (-905 |#2|))) (-15 -3469 (|#1| (-905 |#2|))) (-15 -3470 ((-3 |#1| "failed") (-905 |#2|))) (-15 -4287 (|#1| (-905 (-526)))) (-15 -3469 (|#1| (-905 (-526)))) (-15 -3470 ((-3 |#1| "failed") (-905 (-526)))) (-15 -4287 (|#1| (-905 (-392 (-526))))) (-15 -3469 (|#1| (-905 (-392 (-526))))) (-15 -3470 ((-3 |#1| "failed") (-905 (-392 (-526))))) (-15 -4008 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -3471 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3795 (-735))) |#1| |#1|)) (-15 -3472 (|#1| |#1| |#1|)) (-15 -4071 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3474 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3474 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3475 (|#1| |#1| |#1| |#4|)) (-15 -3476 (|#1| |#1| |#1| |#4|)) (-15 -3475 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3477 (|#1| |#1| |#1| |#4|)) (-15 -3478 (|#1| |#1| |#1| |#4|)) (-15 -3477 (|#1| |#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -4017 ((-111) |#1| (-607 |#1|))) (-15 -4017 ((-111) |#1| |#1|)) (-15 -4013 ((-111) |#1| (-607 |#1|))) (-15 -4013 ((-111) |#1| |#1|)) (-15 -4014 ((-111) |#1| (-607 |#1|))) (-15 -4014 ((-111) |#1| |#1|)) (-15 -4016 ((-111) |#1| (-607 |#1|))) (-15 -4016 ((-111) |#1| |#1|)) (-15 -3479 ((-111) |#1| |#1|)) (-15 -4021 ((-111) |#1| |#1|)) (-15 -3480 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3481 ((-607 |#1|) |#1|)) (-15 -3482 ((-607 |#1|) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3485 ((-111) |#1|)) (-15 -3486 ((-111) |#1|)) (-15 -4276 (|#1| |#1| |#4|)) (-15 -3487 (|#1| |#1| |#4|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 ((-607 |#1|) |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3492 ((-735) |#1|)) (-15 -3493 (|#4| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -3469 (|#4| |#1|)) (-15 -3470 ((-3 |#4| #1="failed") |#1|)) (-15 -4274 (|#1| |#4|)) (-15 -3487 (|#2| |#1|)) (-15 -4276 (|#1| |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 |#3|) $) 108)) (-3386 (((-1117 $) $ |#3|) 123) (((-1117 |#1|) $) 122)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85 (|has| |#1| (-533)))) (-2151 (($ $) 86 (|has| |#1| (-533)))) (-2149 (((-111) $) 88 (|has| |#1| (-533)))) (-3119 (((-735) $) 110) (((-735) $ (-607 |#3|)) 109)) (-4115 (($ $) 269)) (-3479 (((-111) $ $) 255)) (-1345 (((-3 $ "failed") $ $) 19)) (-4074 (($ $ $) 214 (|has| |#1| (-533)))) (-3461 (((-607 $) $ $) 209 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) 98 (|has| |#1| (-869)))) (-4093 (($ $) 96 (|has| |#1| (-436)))) (-4286 (((-390 $) $) 95 (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 101 (|has| |#1| (-869)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 162) (((-3 (-392 (-526)) #2#) $) 160 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) 158 (|has| |#1| (-995 (-526)))) (((-3 |#3| #2#) $) 134) (((-3 $ "failed") (-905 (-392 (-526)))) 229 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))) (((-3 $ "failed") (-905 (-526))) 226 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123)))))) (((-3 $ "failed") (-905 |#1|)) 223 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-37 (-526)))) (|has| |#3| (-584 (-1123)))) (-12 (-3636 (|has| |#1| (-525))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (-3636 (|has| |#1| (-950 (-526)))) (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))))) (-3469 ((|#1| $) 163) (((-392 (-526)) $) 159 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 157 (|has| |#1| (-995 (-526)))) ((|#3| $) 133) (($ (-905 (-392 (-526)))) 228 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))) (($ (-905 (-526))) 225 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123)))))) (($ (-905 |#1|)) 222 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-37 (-526)))) (|has| |#3| (-584 (-1123)))) (-12 (-3636 (|has| |#1| (-525))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (-3636 (|has| |#1| (-950 (-526)))) (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))))) (-4075 (($ $ $ |#3|) 106 (|has| |#1| (-163))) (($ $ $) 210 (|has| |#1| (-533)))) (-4276 (($ $) 152) (($ $ |#3|) 264)) (-2331 (((-653 (-526)) (-653 $)) 132 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 131 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 130) (((-653 |#1|) (-653 $)) 129)) (-4016 (((-111) $ $) 254) (((-111) $ (-607 $)) 253)) (-3781 (((-3 $ "failed") $) 32)) (-3485 (((-111) $) 262)) (-4071 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 234)) (-3456 (($ $) 203 (|has| |#1| (-436)))) (-3817 (($ $) 174 (|has| |#1| (-436))) (($ $ |#3|) 103 (|has| |#1| (-436)))) (-3118 (((-607 $) $) 107)) (-4045 (((-111) $) 94 (|has| |#1| (-869)))) (-3467 (($ $) 219 (|has| |#1| (-533)))) (-3468 (($ $) 220 (|has| |#1| (-533)))) (-3478 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3477 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1697 (($ $ |#1| |#2| $) 170)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 82 (-12 (|has| |#3| (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 81 (-12 (|has| |#3| (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 167)) (-4017 (((-111) $ $) 248) (((-111) $ (-607 $)) 247)) (-3458 (($ $ $ $ $) 205 (|has| |#1| (-533)))) (-3493 ((|#3| $) 273)) (-3387 (($ (-1117 |#1|) |#3|) 115) (($ (-1117 $) |#3|) 114)) (-3121 (((-607 $) $) 124)) (-4254 (((-111) $) 150)) (-3193 (($ |#1| |#2|) 151) (($ $ |#3| (-735)) 117) (($ $ (-607 |#3|) (-607 (-735))) 116)) (-3472 (($ $ $) 233)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) 118)) (-3486 (((-111) $) 263)) (-3120 ((|#2| $) 168) (((-735) $ |#3|) 120) (((-607 (-735)) $ (-607 |#3|)) 119)) (-3637 (($ $ $) 77 (|has| |#1| (-811)))) (-3492 (((-735) $) 272)) (-3638 (($ $ $) 76 (|has| |#1| (-811)))) (-1698 (($ (-1 |#2| |#2|) $) 169)) (-4275 (($ (-1 |#1| |#1|) $) 149)) (-3385 (((-3 |#3| #3="failed") $) 121)) (-3453 (($ $) 200 (|has| |#1| (-436)))) (-3454 (($ $) 201 (|has| |#1| (-436)))) (-3481 (((-607 $) $) 258)) (-3484 (($ $) 261)) (-3455 (($ $) 202 (|has| |#1| (-436)))) (-3482 (((-607 $) $) 259)) (-3483 (($ $) 260)) (-3194 (($ $) 147)) (-3487 ((|#1| $) 146) (($ $ |#3|) 265)) (-1989 (($ (-607 $)) 92 (|has| |#1| (-436))) (($ $ $) 91 (|has| |#1| (-436)))) (-3471 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3795 (-735))) $ $) 232)) (-3473 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $) 236) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) 235)) (-3474 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $) 238) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $ |#3|) 237)) (-3476 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3475 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3554 (((-1106) $) 9)) (-3504 (($ $ $) 208 (|has| |#1| (-533)))) (-3489 (((-607 $) $) 267)) (-3123 (((-3 (-607 $) #3#) $) 112)) (-3122 (((-3 (-607 $) #3#) $) 113)) (-3124 (((-3 (-2 (|:| |var| |#3|) (|:| -2462 (-735))) #3#) $) 111)) (-4013 (((-111) $ $) 250) (((-111) $ (-607 $)) 249)) (-4008 (($ $ $) 230)) (-3764 (($ $) 271)) (-4021 (((-111) $ $) 256)) (-4014 (((-111) $ $) 252) (((-111) $ (-607 $)) 251)) (-4009 (($ $ $) 231)) (-3491 (($ $) 270)) (-3555 (((-1070) $) 10)) (-3462 (((-2 (|:| -3457 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-533)))) (-3463 (((-2 (|:| -3457 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-533)))) (-1892 (((-111) $) 164)) (-1891 ((|#1| $) 165)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 93 (|has| |#1| (-436)))) (-3457 ((|#1| |#1| $) 204 (|has| |#1| (-436))) (($ (-607 $)) 90 (|has| |#1| (-436))) (($ $ $) 89 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 100 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 99 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 97 (|has| |#1| (-869)))) (-3464 (((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-533)))) (-3780 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-3465 (($ $ |#1|) 217 (|has| |#1| (-533))) (($ $ $) 215 (|has| |#1| (-533)))) (-3466 (($ $ |#1|) 218 (|has| |#1| (-533))) (($ $ $) 216 (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-607 $) (-607 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-607 |#3|) (-607 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-607 |#3|) (-607 $)) 136)) (-4076 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-4129 (($ $ |#3|) 40) (($ $ (-607 |#3|)) 39) (($ $ |#3| (-735)) 38) (($ $ (-607 |#3|) (-607 (-735))) 37)) (-4264 ((|#2| $) 148) (((-735) $ |#3|) 128) (((-607 (-735)) $ (-607 |#3|)) 127)) (-3490 (($ $) 268)) (-3488 (($ $) 266)) (-4287 (((-849 (-363)) $) 80 (-12 (|has| |#3| (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) 79 (-12 (|has| |#3| (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) 78 (-12 (|has| |#3| (-584 (-515))) (|has| |#1| (-584 (-515))))) (($ (-905 (-392 (-526)))) 227 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))) (($ (-905 (-526))) 224 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123)))))) (($ (-905 |#1|)) 221 (|has| |#3| (-584 (-1123)))) (((-1106) $) 199 (-12 (|has| |#1| (-995 (-526))) (|has| |#3| (-584 (-1123))))) (((-905 |#1|) $) 198 (|has| |#3| (-584 (-1123))))) (-3117 ((|#1| $) 173 (|has| |#1| (-436))) (($ $ |#3|) 104 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 102 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-905 |#1|) $) 197 (|has| |#3| (-584 (-1123)))) (($ (-392 (-526))) 70 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526)))))) (($ $) 83 (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) 166)) (-3999 ((|#1| $ |#2|) 153) (($ $ |#3| (-735)) 126) (($ $ (-607 |#3|) (-607 (-735))) 125)) (-3002 (((-3 $ #1#) $) 71 (-3850 (-3155 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 171 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 87 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-3480 (((-3 (-111) "failed") $ $) 257)) (-2964 (($) 29 T CONST)) (-3459 (($ $ $ $ (-735)) 206 (|has| |#1| (-533)))) (-3460 (($ $ $ (-735)) 207 (|has| |#1| (-533)))) (-2969 (($ $ |#3|) 36) (($ $ (-607 |#3|)) 35) (($ $ |#3| (-735)) 34) (($ $ (-607 |#3|) (-607 (-735))) 33)) (-2863 (((-111) $ $) 74 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 73 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 75 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 72 (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 154 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 156 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 155 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1018 |#1| |#2| |#3|) (-134) (-1004) (-757) (-811)) (T -1018)) -((-3493 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-735)))) (-3764 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3490 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3489 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5)))) (-3488 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3487 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-4276 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-3484 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3482 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5)))) (-3480 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4021 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-3479 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4016 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4016 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) (-4014 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4014 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) (-4013 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4013 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) (-4017 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4017 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) (-3478 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3477 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3478 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3477 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3476 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3475 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3476 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3475 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3474 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -3202 *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3474 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -3202 *1))) (-4 *1 (-1018 *4 *5 *3)))) (-3473 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3473 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1018 *4 *5 *3)))) (-4071 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3472 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3471 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3795 (-735)))) (-4 *1 (-1018 *3 *4 *5)))) (-4009 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-4008 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)))) (-3470 (*1 *1 *2) (|partial| -3850 (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))))) (-3469 (*1 *1 *2) (-3850 (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))))) (-4287 (*1 *1 *2) (-3850 (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))))) (-3470 (*1 *1 *2) (|partial| -3850 (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-3636 (-4 *3 (-37 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-525))) (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-950 (-526)))) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))))) (-3469 (*1 *1 *2) (-3850 (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-3636 (-4 *3 (-37 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-525))) (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-950 (-526)))) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *5 (-584 (-1123))) (-4 *4 (-757)) (-4 *5 (-811)))) (-3468 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3467 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3466 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3465 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3466 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3465 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-4074 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3464 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -3457 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3463 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -3457 *1) (|:| |coef1| *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3462 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -3457 *1) (|:| |coef2| *1))) (-4 *1 (-1018 *3 *4 *5)))) (-4075 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3461 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5)))) (-3504 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3460 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *3 (-533)))) (-3459 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *3 (-533)))) (-3458 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3457 (*1 *2 *2 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-3456 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-3455 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-3454 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-3453 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436))))) -(-13 (-909 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3493 (|t#3| $)) (-15 -3492 ((-735) $)) (-15 -3764 ($ $)) (-15 -3491 ($ $)) (-15 -4115 ($ $)) (-15 -3490 ($ $)) (-15 -3489 ((-607 $) $)) (-15 -3488 ($ $)) (-15 -3487 ($ $ |t#3|)) (-15 -4276 ($ $ |t#3|)) (-15 -3486 ((-111) $)) (-15 -3485 ((-111) $)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ((-607 $) $)) (-15 -3481 ((-607 $) $)) (-15 -3480 ((-3 (-111) "failed") $ $)) (-15 -4021 ((-111) $ $)) (-15 -3479 ((-111) $ $)) (-15 -4016 ((-111) $ $)) (-15 -4016 ((-111) $ (-607 $))) (-15 -4014 ((-111) $ $)) (-15 -4014 ((-111) $ (-607 $))) (-15 -4013 ((-111) $ $)) (-15 -4013 ((-111) $ (-607 $))) (-15 -4017 ((-111) $ $)) (-15 -4017 ((-111) $ (-607 $))) (-15 -3478 ($ $ $)) (-15 -3477 ($ $ $)) (-15 -3478 ($ $ $ |t#3|)) (-15 -3477 ($ $ $ |t#3|)) (-15 -3476 ($ $ $)) (-15 -3475 ($ $ $)) (-15 -3476 ($ $ $ |t#3|)) (-15 -3475 ($ $ $ |t#3|)) (-15 -3474 ((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $)) (-15 -3474 ((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $ |t#3|)) (-15 -3473 ((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -3473 ((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $ |t#3|)) (-15 -4071 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -3472 ($ $ $)) (-15 -3471 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3795 (-735))) $ $)) (-15 -4009 ($ $ $)) (-15 -4008 ($ $ $)) (IF (|has| |t#3| (-584 (-1123))) (PROGN (-6 (-583 (-905 |t#1|))) (-6 (-584 (-905 |t#1|))) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -3470 ((-3 $ "failed") (-905 (-392 (-526))))) (-15 -3469 ($ (-905 (-392 (-526))))) (-15 -4287 ($ (-905 (-392 (-526))))) (-15 -3470 ((-3 $ "failed") (-905 (-526)))) (-15 -3469 ($ (-905 (-526)))) (-15 -4287 ($ (-905 (-526)))) (IF (|has| |t#1| (-950 (-526))) |%noBranch| (PROGN (-15 -3470 ((-3 $ "failed") (-905 |t#1|))) (-15 -3469 ($ (-905 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-526))) (IF (|has| |t#1| (-37 (-392 (-526)))) |%noBranch| (PROGN (-15 -3470 ((-3 $ "failed") (-905 (-526)))) (-15 -3469 ($ (-905 (-526)))) (-15 -4287 ($ (-905 (-526)))) (IF (|has| |t#1| (-525)) |%noBranch| (PROGN (-15 -3470 ((-3 $ "failed") (-905 |t#1|))) (-15 -3469 ($ (-905 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-526))) |%noBranch| (IF (|has| |t#1| (-37 (-392 (-526)))) |%noBranch| (PROGN (-15 -3470 ((-3 $ "failed") (-905 |t#1|))) (-15 -3469 ($ (-905 |t#1|)))))) (-15 -4287 ($ (-905 |t#1|))) (IF (|has| |t#1| (-995 (-526))) (-6 (-584 (-1106))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -3466 ($ $ |t#1|)) (-15 -3465 ($ $ |t#1|)) (-15 -3466 ($ $ $)) (-15 -3465 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -3464 ((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3463 ((-2 (|:| -3457 $) (|:| |coef1| $)) $ $)) (-15 -3462 ((-2 (|:| -3457 $) (|:| |coef2| $)) $ $)) (-15 -4075 ($ $ $)) (-15 -3461 ((-607 $) $ $)) (-15 -3504 ($ $ $)) (-15 -3460 ($ $ $ (-735))) (-15 -3459 ($ $ $ $ (-735))) (-15 -3458 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-436)) (PROGN (-15 -3457 (|t#1| |t#1| $)) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -3454 ($ $)) (-15 -3453 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-583 (-905 |#1|)) |has| |#3| (-584 (-1123))) ((-163) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-584 (-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526))))) ((-584 (-905 |#1|)) |has| |#3| (-584 (-1123))) ((-584 (-1106)) -12 (|has| |#1| (-995 (-526))) (|has| |#3| (-584 (-1123)))) ((-275) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-294 $) . T) ((-311 |#1| |#2|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-869)) (|has| |#1| (-436))) ((-496 |#3| |#1|) . T) ((-496 |#3| $) . T) ((-496 $ $) . T) ((-533) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 |#3|) . T) ((-845 (-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))) ((-909 |#1| |#2| |#3|) . T) ((-869) |has| |#1| (-869)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-995 |#3|) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) |has| |#1| (-869))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3495 (((-607 (-1128)) $) 13)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3494 (((-1128) $) 15)) (-3353 (((-111) $ $) NIL))) -(((-1019) (-13 (-1035) (-10 -8 (-15 -3495 ((-607 (-1128)) $)) (-15 -3494 ((-1128) $))))) (T -1019)) -((-3495 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1019)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1019))))) -(-13 (-1035) (-10 -8 (-15 -3495 ((-607 (-1128)) $)) (-15 -3494 ((-1128) $)))) -((-3502 (((-111) |#3| $) 13)) (-3497 (((-3 $ "failed") |#3| (-878)) 23)) (-3781 (((-3 |#3| "failed") |#3| $) 38)) (-3500 (((-111) |#3| $) 16)) (-3501 (((-111) |#3| $) 14))) -(((-1020 |#1| |#2| |#3|) (-10 -8 (-15 -3497 ((-3 |#1| "failed") |#3| (-878))) (-15 -3781 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3500 ((-111) |#3| |#1|)) (-15 -3501 ((-111) |#3| |#1|)) (-15 -3502 ((-111) |#3| |#1|))) (-1021 |#2| |#3|) (-13 (-809) (-348)) (-1181 |#2|)) (T -1020)) -NIL -(-10 -8 (-15 -3497 ((-3 |#1| "failed") |#3| (-878))) (-15 -3781 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3500 ((-111) |#3| |#1|)) (-15 -3501 ((-111) |#3| |#1|)) (-15 -3502 ((-111) |#3| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) |#2| $) 21)) (-3945 (((-526) |#2| $) 22)) (-3497 (((-3 $ "failed") |#2| (-878)) 15)) (-3496 ((|#1| |#2| $ |#1|) 13)) (-3781 (((-3 |#2| "failed") |#2| $) 18)) (-3500 (((-111) |#2| $) 19)) (-3501 (((-111) |#2| $) 20)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3499 ((|#2| $) 17)) (-4274 (((-823) $) 11)) (-4088 ((|#1| |#2| $ |#1|) 14)) (-3498 (((-607 $) |#2|) 16)) (-3353 (((-111) $ $) 6))) -(((-1021 |#1| |#2|) (-134) (-13 (-809) (-348)) (-1181 |t#1|)) (T -1021)) -((-3945 (*1 *2 *3 *1) (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-526)))) (-3502 (*1 *2 *3 *1) (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-111)))) (-3501 (*1 *2 *3 *1) (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-111)))) (-3500 (*1 *2 *3 *1) (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-111)))) (-3781 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1021 *3 *2)) (-4 *3 (-13 (-809) (-348))) (-4 *2 (-1181 *3)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2)) (-4 *3 (-13 (-809) (-348))) (-4 *2 (-1181 *3)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-607 *1)) (-4 *1 (-1021 *4 *3)))) (-3497 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-878)) (-4 *4 (-13 (-809) (-348))) (-4 *1 (-1021 *4 *2)) (-4 *2 (-1181 *4)))) (-4088 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1021 *2 *3)) (-4 *2 (-13 (-809) (-348))) (-4 *3 (-1181 *2)))) (-3496 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1021 *2 *3)) (-4 *2 (-13 (-809) (-348))) (-4 *3 (-1181 *2))))) -(-13 (-1052) (-10 -8 (-15 -3945 ((-526) |t#2| $)) (-15 -3502 ((-111) |t#2| $)) (-15 -3501 ((-111) |t#2| $)) (-15 -3500 ((-111) |t#2| $)) (-15 -3781 ((-3 |t#2| "failed") |t#2| $)) (-15 -3499 (|t#2| $)) (-15 -3498 ((-607 $) |t#2|)) (-15 -3497 ((-3 $ "failed") |t#2| (-878))) (-15 -4088 (|t#1| |t#2| $ |t#1|)) (-15 -3496 (|t#1| |t#2| $ |t#1|)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-3755 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735)) 96)) (-3752 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735)) 56)) (-3756 (((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)) 87)) (-3750 (((-735) (-607 |#4|) (-607 |#5|)) 27)) (-3753 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735)) 58) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111)) 60)) (-3754 (((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111)) 78) (((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111)) 79)) (-4287 (((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) 82)) (-3751 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-111)) 55)) (-3749 (((-735) (-607 |#4|) (-607 |#5|)) 19))) -(((-1022 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3749 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3750 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3751 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-111))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3755 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735))) (-15 -4287 ((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3756 ((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1022)) -((-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *4 (-735)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-1211)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1106)) (-5 *1 (-1022 *4 *5 *6 *7 *8)))) (-3755 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-607 *11)) (|:| |todo| (-607 (-2 (|:| |val| *3) (|:| -1636 *11)))))) (-5 *6 (-735)) (-5 *2 (-607 (-2 (|:| |val| (-607 *10)) (|:| -1636 *11)))) (-5 *3 (-607 *10)) (-5 *4 (-607 *11)) (-4 *10 (-1018 *7 *8 *9)) (-4 *11 (-1024 *7 *8 *9 *10)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) (-5 *1 (-1022 *7 *8 *9 *10 *11)))) (-3754 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) (-3754 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) (-3753 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3753 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3753 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-735)) (-5 *6 (-111)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) (-4 *3 (-1018 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *7 *8 *9 *3 *4)) (-4 *4 (-1024 *7 *8 *9 *3)))) (-3752 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3752 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3751 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-735)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-735)) (-5 *1 (-1022 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3749 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3750 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3751 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-111))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3755 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735))) (-15 -4287 ((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3756 ((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)))) -((-3511 (((-111) |#5| $) 21)) (-3509 (((-111) |#5| $) 24)) (-3512 (((-111) |#5| $) 16) (((-111) $) 45)) (-3550 (((-607 $) |#5| $) NIL) (((-607 $) (-607 |#5|) $) 77) (((-607 $) (-607 |#5|) (-607 $)) 75) (((-607 $) |#5| (-607 $)) 78)) (-4087 (($ $ |#5|) NIL) (((-607 $) |#5| $) NIL) (((-607 $) |#5| (-607 $)) 60) (((-607 $) (-607 |#5|) $) 62) (((-607 $) (-607 |#5|) (-607 $)) 64)) (-3503 (((-607 $) |#5| $) NIL) (((-607 $) |#5| (-607 $)) 54) (((-607 $) (-607 |#5|) $) 56) (((-607 $) (-607 |#5|) (-607 $)) 58)) (-3510 (((-111) |#5| $) 27))) -(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4087 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -4087 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -4087 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -4087 ((-607 |#1|) |#5| |#1|)) (-15 -3503 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -3503 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -3503 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -3503 ((-607 |#1|) |#5| |#1|)) (-15 -3550 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -3550 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -3550 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -3550 ((-607 |#1|) |#5| |#1|)) (-15 -3509 ((-111) |#5| |#1|)) (-15 -3512 ((-111) |#1|)) (-15 -3510 ((-111) |#5| |#1|)) (-15 -3511 ((-111) |#5| |#1|)) (-15 -3512 ((-111) |#5| |#1|)) (-15 -4087 (|#1| |#1| |#5|))) (-1024 |#2| |#3| |#4| |#5|) (-436) (-757) (-811) (-1018 |#2| |#3| |#4|)) (T -1023)) -NIL -(-10 -8 (-15 -4087 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -4087 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -4087 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -4087 ((-607 |#1|) |#5| |#1|)) (-15 -3503 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -3503 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -3503 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -3503 ((-607 |#1|) |#5| |#1|)) (-15 -3550 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -3550 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -3550 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -3550 ((-607 |#1|) |#5| |#1|)) (-15 -3509 ((-111) |#5| |#1|)) (-15 -3512 ((-111) |#1|)) (-15 -3510 ((-111) |#5| |#1|)) (-15 -3511 ((-111) |#5| |#1|)) (-15 -3512 ((-111) |#5| |#1|)) (-15 -4087 (|#1| |#1| |#5|))) -((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86) (((-607 $) (-607 |#4|) (-111)) 111)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 126)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ #1#) $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-3511 (((-111) |#4| $) 136)) (-3509 (((-111) |#4| $) 133)) (-3512 (((-111) |#4| $) 137) (((-111) $) 134)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) 128)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 127)) (-4116 (((-3 |#4| #1#) $) 83)) (-3506 (((-607 $) |#4| $) 129)) (-3508 (((-3 (-111) (-607 $)) |#4| $) 132)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3550 (((-607 $) |#4| $) 125) (((-607 $) (-607 |#4|) $) 124) (((-607 $) (-607 |#4|) (-607 $)) 123) (((-607 $) |#4| (-607 $)) 122)) (-3759 (($ |#4| $) 117) (($ (-607 |#4|) $) 116)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| #1#) $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ #1#) $ |#4|) 78)) (-4087 (($ $ |#4|) 77) (((-607 $) |#4| $) 115) (((-607 $) |#4| (-607 $)) 114) (((-607 $) (-607 |#4|) $) 113) (((-607 $) (-607 |#4|) (-607 $)) 112)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-3503 (((-607 $) |#4| $) 121) (((-607 $) |#4| (-607 $)) 120) (((-607 $) (-607 |#4|) $) 119) (((-607 $) (-607 |#4|) (-607 $)) 118)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-3510 (((-111) |#4| $) 135)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) -(((-1024 |#1| |#2| |#3| |#4|) (-134) (-436) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -1024)) -((-3512 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3511 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3510 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-3509 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3508 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-3 (-111) (-607 *1))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3507 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *1)))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3507 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3506 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3505 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-3 *3 (-607 *1))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3504 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *1)))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-4093 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *1)))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3550 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3550 (*1 *2 *3 *1) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) (-3550 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) (-3550 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) (-3503 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3503 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) (-3503 (*1 *2 *3 *1) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) (-3503 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) (-3759 (*1 *1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-3759 (*1 *1 *2 *1) (-12 (-5 *2 (-607 *6)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)))) (-4087 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) (-4087 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) (-4087 (*1 *2 *3 *1) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) (-4087 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *5 *6 *7 *8))))) -(-13 (-1154 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3512 ((-111) |t#4| $)) (-15 -3511 ((-111) |t#4| $)) (-15 -3510 ((-111) |t#4| $)) (-15 -3512 ((-111) $)) (-15 -3509 ((-111) |t#4| $)) (-15 -3508 ((-3 (-111) (-607 $)) |t#4| $)) (-15 -3507 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |t#4| $)) (-15 -3507 ((-111) |t#4| $)) (-15 -3506 ((-607 $) |t#4| $)) (-15 -3505 ((-3 |t#4| (-607 $)) |t#4| |t#4| $)) (-15 -3504 ((-607 (-2 (|:| |val| |t#4|) (|:| -1636 $))) |t#4| |t#4| $)) (-15 -4093 ((-607 (-2 (|:| |val| |t#4|) (|:| -1636 $))) |t#4| $)) (-15 -3550 ((-607 $) |t#4| $)) (-15 -3550 ((-607 $) (-607 |t#4|) $)) (-15 -3550 ((-607 $) (-607 |t#4|) (-607 $))) (-15 -3550 ((-607 $) |t#4| (-607 $))) (-15 -3503 ((-607 $) |t#4| $)) (-15 -3503 ((-607 $) |t#4| (-607 $))) (-15 -3503 ((-607 $) (-607 |t#4|) $)) (-15 -3503 ((-607 $) (-607 |t#4|) (-607 $))) (-15 -3759 ($ |t#4| $)) (-15 -3759 ($ (-607 |t#4|) $)) (-15 -4087 ((-607 $) |t#4| $)) (-15 -4087 ((-607 $) |t#4| (-607 $))) (-15 -4087 ((-607 $) (-607 |t#4|) $)) (-15 -4087 ((-607 $) (-607 |t#4|) (-607 $))) (-15 -4004 ((-607 $) (-607 |t#4|) (-111))))) -(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1154 |#1| |#2| |#3| |#4|) . T) ((-1159) . T)) -((-3519 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|) 81)) (-3516 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|) 113)) (-3518 (((-607 |#5|) |#4| |#5|) 70)) (-3517 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-3599 (((-1211)) 37)) (-3597 (((-1211)) 26)) (-3598 (((-1211) (-1106) (-1106) (-1106)) 33)) (-3596 (((-1211) (-1106) (-1106) (-1106)) 22)) (-3513 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|) 96)) (-3514 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111)) 107) (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3515 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|) 102))) -(((-1025 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3596 ((-1211) (-1106) (-1106) (-1106))) (-15 -3597 ((-1211))) (-15 -3598 ((-1211) (-1106) (-1106) (-1106))) (-15 -3599 ((-1211))) (-15 -3513 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3514 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3514 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111))) (-15 -3515 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3516 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3517 ((-111) |#4| |#5|)) (-15 -3517 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3518 ((-607 |#5|) |#4| |#5|)) (-15 -3519 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1025)) -((-3519 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3518 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 *4)) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3516 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3515 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *5 (-111)) (-4 *8 (-1018 *6 *7 *4)) (-4 *9 (-1024 *6 *7 *4 *8)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *4 (-811)) (-5 *2 (-607 (-2 (|:| |val| *8) (|:| -1636 *9)))) (-5 *1 (-1025 *6 *7 *4 *8 *9)))) (-3514 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1025 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3513 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3599 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3598 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3597 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3596 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7))))) -(-10 -7 (-15 -3596 ((-1211) (-1106) (-1106) (-1106))) (-15 -3597 ((-1211))) (-15 -3598 ((-1211) (-1106) (-1106) (-1106))) (-15 -3599 ((-1211))) (-15 -3513 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3514 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3514 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111))) (-15 -3515 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3516 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3517 ((-111) |#4| |#5|)) (-15 -3517 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3518 ((-607 |#5|) |#4| |#5|)) (-15 -3519 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|))) -((-2865 (((-111) $ $) NIL)) (-3522 (($ $ (-607 (-1123)) (-1 (-111) (-607 |#3|))) 33)) (-3523 (($ |#3| |#3|) 22) (($ |#3| |#3| (-607 (-1123))) 20)) (-3842 ((|#3| $) 13)) (-3470 (((-3 (-278 |#3|) "failed") $) 58)) (-3469 (((-278 |#3|) $) NIL)) (-3520 (((-607 (-1123)) $) 16)) (-3521 (((-849 |#1|) $) 11)) (-3843 ((|#3| $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4118 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-878)) 39)) (-4274 (((-823) $) 86) (($ (-278 |#3|)) 21)) (-3353 (((-111) $ $) 36))) -(((-1026 |#1| |#2| |#3|) (-13 (-1052) (-271 |#3| |#3|) (-995 (-278 |#3|)) (-10 -8 (-15 -3523 ($ |#3| |#3|)) (-15 -3523 ($ |#3| |#3| (-607 (-1123)))) (-15 -3522 ($ $ (-607 (-1123)) (-1 (-111) (-607 |#3|)))) (-15 -3521 ((-849 |#1|) $)) (-15 -3843 (|#3| $)) (-15 -3842 (|#3| $)) (-15 -4118 (|#3| $ |#3| (-878))) (-15 -3520 ((-607 (-1123)) $)))) (-1052) (-13 (-1004) (-845 |#1|) (-811) (-584 (-849 |#1|))) (-13 (-406 |#2|) (-845 |#1|) (-584 (-849 |#1|)))) (T -1026)) -((-3523 (*1 *1 *2 *2) (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) (-5 *1 (-1026 *3 *4 *2)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))))) (-3523 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-1026 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-1 (-111) (-607 *6))) (-4 *6 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-1026 *4 *5 *6)))) (-3521 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 *2))) (-5 *2 (-849 *3)) (-5 *1 (-1026 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-845 *3) (-584 *2))))) (-3843 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) (-5 *1 (-1026 *3 *4 *2)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))))) (-3842 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) (-5 *1 (-1026 *3 *4 *2)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))))) (-4118 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-878)) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-1026 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) (-3520 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) (-5 *2 (-607 (-1123))) (-5 *1 (-1026 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3))))))) -(-13 (-1052) (-271 |#3| |#3|) (-995 (-278 |#3|)) (-10 -8 (-15 -3523 ($ |#3| |#3|)) (-15 -3523 ($ |#3| |#3| (-607 (-1123)))) (-15 -3522 ($ $ (-607 (-1123)) (-1 (-111) (-607 |#3|)))) (-15 -3521 ((-849 |#1|) $)) (-15 -3843 (|#3| $)) (-15 -3842 (|#3| $)) (-15 -4118 (|#3| $ |#3| (-878))) (-15 -3520 ((-607 (-1123)) $)))) -((-2865 (((-111) $ $) NIL)) (-3864 (((-1123) $) 8)) (-3554 (((-1106) $) 16)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 13))) -(((-1027 |#1|) (-13 (-1052) (-10 -8 (-15 -3864 ((-1123) $)))) (-1123)) (T -1027)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1027 *3)) (-14 *3 *2)))) -(-13 (-1052) (-10 -8 (-15 -3864 ((-1123) $)))) -((-2865 (((-111) $ $) NIL)) (-3525 (($ (-607 (-1026 |#1| |#2| |#3|))) 13)) (-3524 (((-607 (-1026 |#1| |#2| |#3|)) $) 20)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4118 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-878)) 26)) (-4274 (((-823) $) 16)) (-3353 (((-111) $ $) 19))) -(((-1028 |#1| |#2| |#3|) (-13 (-1052) (-271 |#3| |#3|) (-10 -8 (-15 -3525 ($ (-607 (-1026 |#1| |#2| |#3|)))) (-15 -3524 ((-607 (-1026 |#1| |#2| |#3|)) $)) (-15 -4118 (|#3| $ |#3| (-878))))) (-1052) (-13 (-1004) (-845 |#1|) (-811) (-584 (-849 |#1|))) (-13 (-406 |#2|) (-845 |#1|) (-584 (-849 |#1|)))) (T -1028)) -((-3525 (*1 *1 *2) (-12 (-5 *2 (-607 (-1026 *3 *4 *5))) (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) (-5 *1 (-1028 *3 *4 *5)))) (-3524 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) (-5 *2 (-607 (-1026 *3 *4 *5))) (-5 *1 (-1028 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))))) (-4118 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-878)) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-1028 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4))))))) -(-13 (-1052) (-271 |#3| |#3|) (-10 -8 (-15 -3525 ($ (-607 (-1026 |#1| |#2| |#3|)))) (-15 -3524 ((-607 (-1026 |#1| |#2| |#3|)) $)) (-15 -4118 (|#3| $ |#3| (-878))))) -((-3526 (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111)) 75) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|))) 77) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111)) 76))) -(((-1029 |#1| |#2|) (-10 -7 (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111))) (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111)))) (-13 (-292) (-141)) (-607 (-1123))) (T -1029)) -((-3526 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1029 *5 *6)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))))) (-3526 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-607 (-905 *4))) (-14 *5 (-607 (-1123))))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1029 *5 *6)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123)))))) -(-10 -7 (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111))) (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 126)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-348)))) (-2151 (($ $) NIL (|has| |#1| (-348)))) (-2149 (((-111) $) NIL (|has| |#1| (-348)))) (-1877 (((-653 |#1|) (-1205 $)) NIL) (((-653 |#1|)) 115)) (-3649 ((|#1| $) 119)) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3433 (((-735)) 40 (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|) (-1205 $)) NIL) (($ (-1205 |#1|)) 43)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-335)))) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-1876 (((-653 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 106) (((-653 |#1|) (-653 $)) 101)) (-4161 (($ |#2|) 61) (((-3 $ "failed") (-392 |#2|)) NIL (|has| |#1| (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-3406 (((-878)) 77)) (-3294 (($) 44 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-3133 (($) NIL (|has| |#1| (-335)))) (-1772 (((-111) $) NIL (|has| |#1| (-335)))) (-1862 (($ $ (-735)) NIL (|has| |#1| (-335))) (($ $) NIL (|has| |#1| (-335)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-4090 (((-878) $) NIL (|has| |#1| (-335))) (((-796 (-878)) $) NIL (|has| |#1| (-335)))) (-2471 (((-111) $) NIL)) (-3429 ((|#1| $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-2106 ((|#2| $) 84 (|has| |#1| (-348)))) (-2102 (((-878) $) 131 (|has| |#1| (-353)))) (-3379 ((|#2| $) 58)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-3764 (($) NIL (|has| |#1| (-335)) CONST)) (-2461 (($ (-878)) 125 (|has| |#1| (-353)))) (-3555 (((-1070) $) NIL)) (-2470 (($) 121)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-335)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4076 ((|#1| (-1205 $)) NIL) ((|#1|) 109)) (-1863 (((-735) $) NIL (|has| |#1| (-335))) (((-3 (-735) "failed") $ $) NIL (|has| |#1| (-335)))) (-4129 (($ $) NIL (-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-735)) NIL (-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-1 |#1| |#1|) (-735)) NIL (|has| |#1| (-348))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-348)))) (-2469 (((-653 |#1|) (-1205 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-348)))) (-3499 ((|#2|) 73)) (-1766 (($) NIL (|has| |#1| (-335)))) (-3537 (((-1205 |#1|) $ (-1205 $)) 89) (((-653 |#1|) (-1205 $) (-1205 $)) NIL) (((-1205 |#1|) $) 71) (((-653 |#1|) (-1205 $)) 85)) (-4287 (((-1205 |#1|) $) NIL) (($ (-1205 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-335)))) (-4274 (((-823) $) 57) (($ (-526)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-348))) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (($ $) NIL (|has| |#1| (-335))) (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-2667 ((|#2| $) 82)) (-3423 (((-735)) 75)) (-2104 (((-1205 $)) 81)) (-2150 (((-111) $ $) NIL (|has| |#1| (-348)))) (-2957 (($) 30 T CONST)) (-2964 (($) 19 T CONST)) (-2969 (($ $) NIL (-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-735)) NIL (-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-1 |#1| |#1|) (-735)) NIL (|has| |#1| (-348))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-348)))) (-3353 (((-111) $ $) 63)) (-4265 (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) 67) (($ $ $) NIL)) (-4158 (($ $ $) 65)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-392 (-526)) $) NIL (|has| |#1| (-348))) (($ $ (-392 (-526))) NIL (|has| |#1| (-348))))) -(((-1030 |#1| |#2| |#3|) (-689 |#1| |#2|) (-163) (-1181 |#1|) |#2|) (T -1030)) -NIL -(-689 |#1| |#2|) -((-4051 (((-390 |#3|) |#3|) 18))) -(((-1031 |#1| |#2| |#3|) (-10 -7 (-15 -4051 ((-390 |#3|) |#3|))) (-1181 (-392 (-526))) (-13 (-348) (-141) (-689 (-392 (-526)) |#1|)) (-1181 |#2|)) (T -1031)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-13 (-348) (-141) (-689 (-392 (-526)) *4))) (-5 *2 (-390 *3)) (-5 *1 (-1031 *4 *5 *3)) (-4 *3 (-1181 *5))))) -(-10 -7 (-15 -4051 ((-390 |#3|) |#3|))) -((-4051 (((-390 |#3|) |#3|) 19))) -(((-1032 |#1| |#2| |#3|) (-10 -7 (-15 -4051 ((-390 |#3|) |#3|))) (-1181 (-392 (-905 (-526)))) (-13 (-348) (-141) (-689 (-392 (-905 (-526))) |#1|)) (-1181 |#2|)) (T -1032)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-1181 (-392 (-905 (-526))))) (-4 *5 (-13 (-348) (-141) (-689 (-392 (-905 (-526))) *4))) (-5 *2 (-390 *3)) (-5 *1 (-1032 *4 *5 *3)) (-4 *3 (-1181 *5))))) -(-10 -7 (-15 -4051 ((-390 |#3|) |#3|))) -((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) 14)) (-3638 (($ $ $) 15)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3527 (($) 6)) (-4287 (((-1123) $) 18)) (-4274 (((-823) $) 12)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 13)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 8))) -(((-1033) (-13 (-811) (-10 -8 (-15 -3527 ($)) (-15 -4287 ((-1123) $))))) (T -1033)) -((-3527 (*1 *1) (-5 *1 (-1033))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1033))))) -(-13 (-811) (-10 -8 (-15 -3527 ($)) (-15 -4287 ((-1123) $)))) -((-4274 (((-823) $) 37) (((-1128) $) NIL))) -(((-1034 |#1|) (-10 -8 (-15 -4274 ((-1128) |#1|)) (-15 -4274 ((-823) |#1|))) (-1035)) (T -1034)) -NIL -(-10 -8 (-15 -4274 ((-1128) |#1|)) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (((-1128) $) 14)) (-3353 (((-111) $ $) 6))) -(((-1035) (-134)) (T -1035)) -NIL -(-13 (-91)) -(((-91) . T) ((-100) . T) ((-583 (-823)) . T) ((-583 (-1128)) . T) ((-1052) . T)) -((-3530 ((|#1| |#1| (-1 (-526) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-111) |#1|)) 20)) (-3528 (((-1211)) 15)) (-3529 (((-607 |#1|)) 9))) -(((-1036 |#1|) (-10 -7 (-15 -3528 ((-1211))) (-15 -3529 ((-607 |#1|))) (-15 -3530 (|#1| |#1| (-1 (-111) |#1|))) (-15 -3530 (|#1| |#1| (-1 (-526) |#1| |#1|)))) (-130)) (T -1036)) -((-3530 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-526) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1036 *2)))) (-3530 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1036 *2)))) (-3529 (*1 *2) (-12 (-5 *2 (-607 *3)) (-5 *1 (-1036 *3)) (-4 *3 (-130)))) (-3528 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1036 *3)) (-4 *3 (-130))))) -(-10 -7 (-15 -3528 ((-1211))) (-15 -3529 ((-607 |#1|))) (-15 -3530 (|#1| |#1| (-1 (-111) |#1|))) (-15 -3530 (|#1| |#1| (-1 (-526) |#1| |#1|)))) -((-3533 (($ (-107) $) 16)) (-3534 (((-3 (-107) "failed") (-1123) $) 15)) (-3887 (($) 7)) (-3532 (($) 17)) (-3531 (($) 18)) (-3535 (((-607 (-166)) $) 10)) (-4274 (((-823) $) 21))) -(((-1037) (-13 (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -3535 ((-607 (-166)) $)) (-15 -3534 ((-3 (-107) "failed") (-1123) $)) (-15 -3533 ($ (-107) $)) (-15 -3532 ($)) (-15 -3531 ($))))) (T -1037)) -((-3887 (*1 *1) (-5 *1 (-1037))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-607 (-166))) (-5 *1 (-1037)))) (-3534 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-107)) (-5 *1 (-1037)))) (-3533 (*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1037)))) (-3532 (*1 *1) (-5 *1 (-1037))) (-3531 (*1 *1) (-5 *1 (-1037)))) -(-13 (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -3535 ((-607 (-166)) $)) (-15 -3534 ((-3 (-107) "failed") (-1123) $)) (-15 -3533 ($ (-107) $)) (-15 -3532 ($)) (-15 -3531 ($)))) -((-3536 (((-1205 (-653 |#1|)) (-607 (-653 |#1|))) 42) (((-1205 (-653 (-905 |#1|))) (-607 (-1123)) (-653 (-905 |#1|))) 63) (((-1205 (-653 (-392 (-905 |#1|)))) (-607 (-1123)) (-653 (-392 (-905 |#1|)))) 79)) (-3537 (((-1205 |#1|) (-653 |#1|) (-607 (-653 |#1|))) 36))) -(((-1038 |#1|) (-10 -7 (-15 -3536 ((-1205 (-653 (-392 (-905 |#1|)))) (-607 (-1123)) (-653 (-392 (-905 |#1|))))) (-15 -3536 ((-1205 (-653 (-905 |#1|))) (-607 (-1123)) (-653 (-905 |#1|)))) (-15 -3536 ((-1205 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3537 ((-1205 |#1|) (-653 |#1|) (-607 (-653 |#1|))))) (-348)) (T -1038)) -((-3537 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-653 *5))) (-5 *3 (-653 *5)) (-4 *5 (-348)) (-5 *2 (-1205 *5)) (-5 *1 (-1038 *5)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-607 (-653 *4))) (-4 *4 (-348)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-1038 *4)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1123))) (-4 *5 (-348)) (-5 *2 (-1205 (-653 (-905 *5)))) (-5 *1 (-1038 *5)) (-5 *4 (-653 (-905 *5))))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1123))) (-4 *5 (-348)) (-5 *2 (-1205 (-653 (-392 (-905 *5))))) (-5 *1 (-1038 *5)) (-5 *4 (-653 (-392 (-905 *5))))))) -(-10 -7 (-15 -3536 ((-1205 (-653 (-392 (-905 |#1|)))) (-607 (-1123)) (-653 (-392 (-905 |#1|))))) (-15 -3536 ((-1205 (-653 (-905 |#1|))) (-607 (-1123)) (-653 (-905 |#1|)))) (-15 -3536 ((-1205 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3537 ((-1205 |#1|) (-653 |#1|) (-607 (-653 |#1|))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1519 (((-607 (-735)) $) NIL) (((-607 (-735)) $ (-1123)) NIL)) (-1553 (((-735) $) NIL) (((-735) $ (-1123)) NIL)) (-3384 (((-607 (-1040 (-1123))) $) NIL)) (-3386 (((-1117 $) $ (-1040 (-1123))) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1040 (-1123)))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1515 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1040 (-1123)) #2#) $) NIL) (((-3 (-1123) #2#) $) NIL) (((-3 (-1075 |#1| (-1123)) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1040 (-1123)) $) NIL) (((-1123) $) NIL) (((-1075 |#1| (-1123)) $) NIL)) (-4075 (($ $ $ (-1040 (-1123))) NIL (|has| |#1| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-1040 (-1123))) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 (-1040 (-1123))) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1040 (-1123)) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1040 (-1123)) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ (-1123)) NIL) (((-735) $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#1|) (-1040 (-1123))) NIL) (($ (-1117 $) (-1040 (-1123))) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 (-1040 (-1123)))) NIL) (($ $ (-1040 (-1123)) (-735)) NIL) (($ $ (-607 (-1040 (-1123))) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1040 (-1123))) NIL)) (-3120 (((-512 (-1040 (-1123))) $) NIL) (((-735) $ (-1040 (-1123))) NIL) (((-607 (-735)) $ (-607 (-1040 (-1123)))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 (-1040 (-1123))) (-512 (-1040 (-1123)))) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1554 (((-1 $ (-735)) (-1123)) NIL) (((-1 $ (-735)) $) NIL (|has| |#1| (-219)))) (-3385 (((-3 (-1040 (-1123)) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1517 (((-1040 (-1123)) $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-1518 (((-111) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1040 (-1123))) (|:| -2462 (-735))) #3#) $) NIL)) (-1516 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1040 (-1123)) |#1|) NIL) (($ $ (-607 (-1040 (-1123))) (-607 |#1|)) NIL) (($ $ (-1040 (-1123)) $) NIL) (($ $ (-607 (-1040 (-1123))) (-607 $)) NIL) (($ $ (-1123) $) NIL (|has| |#1| (-219))) (($ $ (-607 (-1123)) (-607 $)) NIL (|has| |#1| (-219))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-219))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-219)))) (-4076 (($ $ (-1040 (-1123))) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-1040 (-1123))) NIL) (($ $ (-607 (-1040 (-1123)))) NIL) (($ $ (-1040 (-1123)) (-735)) NIL) (($ $ (-607 (-1040 (-1123))) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1520 (((-607 (-1123)) $) NIL)) (-4264 (((-512 (-1040 (-1123))) $) NIL) (((-735) $ (-1040 (-1123))) NIL) (((-607 (-735)) $ (-607 (-1040 (-1123)))) NIL) (((-735) $ (-1123)) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1040 (-1123)) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1040 (-1123)) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1040 (-1123)) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-1040 (-1123))) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-1040 (-1123))) NIL) (($ (-1123)) NIL) (($ (-1075 |#1| (-1123))) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 (-1040 (-1123)))) NIL) (($ $ (-1040 (-1123)) (-735)) NIL) (($ $ (-607 (-1040 (-1123))) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1040 (-1123))) NIL) (($ $ (-607 (-1040 (-1123)))) NIL) (($ $ (-1040 (-1123)) (-735)) NIL) (($ $ (-607 (-1040 (-1123))) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1039 |#1|) (-13 (-238 |#1| (-1123) (-1040 (-1123)) (-512 (-1040 (-1123)))) (-995 (-1075 |#1| (-1123)))) (-1004)) (T -1039)) -NIL -(-13 (-238 |#1| (-1123) (-1040 (-1123)) (-512 (-1040 (-1123)))) (-995 (-1075 |#1| (-1123)))) -((-2865 (((-111) $ $) NIL)) (-1553 (((-735) $) NIL)) (-4150 ((|#1| $) 10)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-4090 (((-735) $) 11)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-1554 (($ |#1| (-735)) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4129 (($ $) NIL) (($ $ (-735)) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 15))) -(((-1040 |#1|) (-251 |#1|) (-811)) (T -1040)) -NIL -(-251 |#1|) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4055 (($ |#1| |#1|) 15)) (-4275 (((-607 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-809)))) (-3542 ((|#1| $) 10)) (-3544 ((|#1| $) 9)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3540 (((-526) $) 14)) (-3541 ((|#1| $) 12)) (-3543 ((|#1| $) 11)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4280 (((-607 |#1|) $) 36 (|has| |#1| (-809))) (((-607 |#1|) (-607 $)) 35 (|has| |#1| (-809)))) (-4287 (($ |#1|) 26)) (-4274 (((-823) $) 25 (|has| |#1| (-1052)))) (-4056 (($ |#1| |#1|) 8)) (-3545 (($ $ (-526)) 16)) (-3353 (((-111) $ $) 19 (|has| |#1| (-1052))))) -(((-1041 |#1|) (-13 (-1046 |#1|) (-10 -7 (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-1047 |#1| (-607 |#1|))) |%noBranch|))) (-1159)) (T -1041)) -NIL -(-13 (-1046 |#1|) (-10 -7 (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-1047 |#1| (-607 |#1|))) |%noBranch|))) -((-4275 (((-607 |#2|) (-1 |#2| |#1|) (-1041 |#1|)) 24 (|has| |#1| (-809))) (((-1041 |#2|) (-1 |#2| |#1|) (-1041 |#1|)) 14))) -(((-1042 |#1| |#2|) (-10 -7 (-15 -4275 ((-1041 |#2|) (-1 |#2| |#1|) (-1041 |#1|))) (IF (|has| |#1| (-809)) (-15 -4275 ((-607 |#2|) (-1 |#2| |#1|) (-1041 |#1|))) |%noBranch|)) (-1159) (-1159)) (T -1042)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1041 *5)) (-4 *5 (-809)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-607 *6)) (-5 *1 (-1042 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1041 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1041 *6)) (-5 *1 (-1042 *5 *6))))) -(-10 -7 (-15 -4275 ((-1041 |#2|) (-1 |#2| |#1|) (-1041 |#1|))) (IF (|has| |#1| (-809)) (-15 -4275 ((-607 |#2|) (-1 |#2| |#1|) (-1041 |#1|))) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3538 (((-607 (-1128)) $) 9)) (-3353 (((-111) $ $) NIL))) -(((-1043) (-13 (-1035) (-10 -8 (-15 -3538 ((-607 (-1128)) $))))) (T -1043)) -((-3538 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1043))))) -(-13 (-1035) (-10 -8 (-15 -3538 ((-607 (-1128)) $)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4150 (((-1123) $) 11)) (-4055 (((-1041 |#1|) $) 12)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-3539 (($ (-1123) (-1041 |#1|)) 10)) (-4274 (((-823) $) 20 (|has| |#1| (-1052)))) (-3353 (((-111) $ $) 15 (|has| |#1| (-1052))))) -(((-1044 |#1|) (-13 (-1159) (-10 -8 (-15 -3539 ($ (-1123) (-1041 |#1|))) (-15 -4150 ((-1123) $)) (-15 -4055 ((-1041 |#1|) $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) (-1159)) (T -1044)) -((-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1041 *4)) (-4 *4 (-1159)) (-5 *1 (-1044 *4)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1044 *3)) (-4 *3 (-1159)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-1041 *3)) (-5 *1 (-1044 *3)) (-4 *3 (-1159))))) -(-13 (-1159) (-10 -8 (-15 -3539 ($ (-1123) (-1041 |#1|))) (-15 -4150 ((-1123) $)) (-15 -4055 ((-1041 |#1|) $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) -((-4275 (((-1044 |#2|) (-1 |#2| |#1|) (-1044 |#1|)) 19))) -(((-1045 |#1| |#2|) (-10 -7 (-15 -4275 ((-1044 |#2|) (-1 |#2| |#1|) (-1044 |#1|)))) (-1159) (-1159)) (T -1045)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1044 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1044 *6)) (-5 *1 (-1045 *5 *6))))) -(-10 -7 (-15 -4275 ((-1044 |#2|) (-1 |#2| |#1|) (-1044 |#1|)))) -((-4055 (($ |#1| |#1|) 7)) (-3542 ((|#1| $) 10)) (-3544 ((|#1| $) 12)) (-3540 (((-526) $) 8)) (-3541 ((|#1| $) 9)) (-3543 ((|#1| $) 11)) (-4287 (($ |#1|) 6)) (-4056 (($ |#1| |#1|) 14)) (-3545 (($ $ (-526)) 13))) -(((-1046 |#1|) (-134) (-1159)) (T -1046)) -((-4056 (*1 *1 *2 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3545 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1046 *3)) (-4 *3 (-1159)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-1159)) (-5 *2 (-526)))) (-4055 (*1 *1 *2 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) -(-13 (-1159) (-10 -8 (-15 -4056 ($ |t#1| |t#1|)) (-15 -3545 ($ $ (-526))) (-15 -3544 (|t#1| $)) (-15 -3543 (|t#1| $)) (-15 -3542 (|t#1| $)) (-15 -3541 (|t#1| $)) (-15 -3540 ((-526) $)) (-15 -4055 ($ |t#1| |t#1|)) (-15 -4287 ($ |t#1|)))) -(((-1159) . T)) -((-4055 (($ |#1| |#1|) 7)) (-4275 ((|#2| (-1 |#1| |#1|) $) 16)) (-3542 ((|#1| $) 10)) (-3544 ((|#1| $) 12)) (-3540 (((-526) $) 8)) (-3541 ((|#1| $) 9)) (-3543 ((|#1| $) 11)) (-4280 ((|#2| (-607 $)) 18) ((|#2| $) 17)) (-4287 (($ |#1|) 6)) (-4056 (($ |#1| |#1|) 14)) (-3545 (($ $ (-526)) 13))) -(((-1047 |#1| |#2|) (-134) (-809) (-1097 |t#1|)) (T -1047)) -((-4280 (*1 *2 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1047 *4 *2)) (-4 *4 (-809)) (-4 *2 (-1097 *4)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *2)) (-4 *3 (-809)) (-4 *2 (-1097 *3)))) (-4275 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1047 *4 *2)) (-4 *4 (-809)) (-4 *2 (-1097 *4))))) -(-13 (-1046 |t#1|) (-10 -8 (-15 -4280 (|t#2| (-607 $))) (-15 -4280 (|t#2| $)) (-15 -4275 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1046 |#1|) . T) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-1897 (($) NIL (|has| |#1| (-353)))) (-3546 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3548 (($ $ $) 72)) (-3547 (((-111) $ $) 73)) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3551 (($ (-607 |#1|)) NIL) (($) 13)) (-1607 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) 67 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4310)))) (-3294 (($) NIL (|has| |#1| (-353)))) (-2044 (((-607 |#1|) $) 19 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3637 ((|#1| $) 57 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 66 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3638 ((|#1| $) 55 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 34)) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3550 (($ $ $) 70)) (-1306 ((|#1| $) 25)) (-3929 (($ |#1| $) 65)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-3555 (((-1070) $) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 31)) (-1307 ((|#1| $) 27)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 21)) (-3887 (($) 11)) (-3549 (($ $ |#1|) NIL) (($ $ $) 71)) (-1499 (($) NIL) (($ (-607 |#1|)) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 16)) (-4287 (((-515) $) 52 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 61)) (-1898 (($ $) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) NIL)) (-1899 (((-735) $) NIL)) (-3552 (($ (-607 |#1|)) NIL) (($) 12)) (-1308 (($ (-607 |#1|)) NIL)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 54)) (-4273 (((-735) $) 10 (|has| $ (-6 -4310))))) -(((-1048 |#1|) (-411 |#1|) (-1052)) (T -1048)) -NIL -(-411 |#1|) -((-3546 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3548 (($ $ $) 10)) (-3549 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1049 |#1| |#2|) (-10 -8 (-15 -3546 (|#1| |#2| |#1|)) (-15 -3546 (|#1| |#1| |#2|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#2|)) (-15 -3549 (|#1| |#1| |#1|))) (-1050 |#2|) (-1052)) (T -1049)) -NIL -(-10 -8 (-15 -3546 (|#1| |#2| |#1|)) (-15 -3546 (|#1| |#1| |#2|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#2|)) (-15 -3549 (|#1| |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-3546 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3548 (($ $ $) 20)) (-3547 (((-111) $ $) 19)) (-1244 (((-111) $ (-735)) 35)) (-3551 (($) 25) (($ (-607 |#1|)) 24)) (-4032 (($ (-1 (-111) |#1|) $) 56 (|has| $ (-6 -4310)))) (-3855 (($) 36 T CONST)) (-1375 (($ $) 59 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 43 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 28)) (-4041 (((-111) $ (-735)) 34)) (-2480 (((-607 |#1|) $) 44 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 46 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 38)) (-4038 (((-111) $ (-735)) 33)) (-3554 (((-1106) $) 9)) (-3550 (($ $ $) 23)) (-3555 (((-1070) $) 10)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 52)) (-2046 (((-111) (-1 (-111) |#1|) $) 41 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 50 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 48 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 (-278 |#1|))) 47 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 29)) (-3722 (((-111) $) 32)) (-3887 (($) 31)) (-3549 (($ $ $) 22) (($ $ |#1|) 21)) (-2045 (((-735) |#1| $) 45 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#1|) $) 42 (|has| $ (-6 -4310)))) (-3719 (($ $) 30)) (-4287 (((-515) $) 60 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 51)) (-4274 (((-823) $) 11)) (-3552 (($) 27) (($ (-607 |#1|)) 26)) (-2047 (((-111) (-1 (-111) |#1|) $) 40 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 37 (|has| $ (-6 -4310))))) -(((-1050 |#1|) (-134) (-1052)) (T -1050)) -((-3553 (*1 *2 *1 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-3552 (*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-1050 *3)))) (-3551 (*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-1050 *3)))) (-3550 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3549 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3549 (*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3548 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3547 (*1 *2 *1 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-3546 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3546 (*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3546 (*1 *1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) -(-13 (-1052) (-145 |t#1|) (-10 -8 (-6 -4300) (-15 -3553 ((-111) $ $)) (-15 -3552 ($)) (-15 -3552 ($ (-607 |t#1|))) (-15 -3551 ($)) (-15 -3551 ($ (-607 |t#1|))) (-15 -3550 ($ $ $)) (-15 -3549 ($ $ $)) (-15 -3549 ($ $ |t#1|)) (-15 -3548 ($ $ $)) (-15 -3547 ((-111) $ $)) (-15 -3546 ($ $ $)) (-15 -3546 ($ $ |t#1|)) (-15 -3546 ($ |t#1| $)))) -(((-33) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) . T) ((-1159) . T)) -((-3554 (((-1106) $) 10)) (-3555 (((-1070) $) 8))) -(((-1051 |#1|) (-10 -8 (-15 -3554 ((-1106) |#1|)) (-15 -3555 ((-1070) |#1|))) (-1052)) (T -1051)) -NIL -(-10 -8 (-15 -3554 ((-1106) |#1|)) (-15 -3555 ((-1070) |#1|))) -((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) -(((-1052) (-134)) (T -1052)) -((-3555 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1070)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1106))))) -(-13 (-100) (-583 (-823)) (-10 -8 (-15 -3555 ((-1070) $)) (-15 -3554 ((-1106) $)))) -(((-100) . T) ((-583 (-823)) . T)) -((-2865 (((-111) $ $) NIL)) (-3433 (((-735)) 30)) (-3559 (($ (-607 (-878))) 52)) (-3561 (((-3 $ #1="failed") $ (-878) (-878)) 58)) (-3294 (($) 32)) (-3557 (((-111) (-878) $) 35)) (-2102 (((-878) $) 50)) (-3554 (((-1106) $) NIL)) (-2461 (($ (-878)) 31)) (-3562 (((-3 $ #1#) $ (-878)) 55)) (-3555 (((-1070) $) NIL)) (-3558 (((-1205 $)) 40)) (-3560 (((-607 (-878)) $) 24)) (-3556 (((-735) $ (-878) (-878)) 56)) (-4274 (((-823) $) 29)) (-3353 (((-111) $ $) 21))) -(((-1053 |#1| |#2|) (-13 (-353) (-10 -8 (-15 -3562 ((-3 $ #1="failed") $ (-878))) (-15 -3561 ((-3 $ #1#) $ (-878) (-878))) (-15 -3560 ((-607 (-878)) $)) (-15 -3559 ($ (-607 (-878)))) (-15 -3558 ((-1205 $))) (-15 -3557 ((-111) (-878) $)) (-15 -3556 ((-735) $ (-878) (-878))))) (-878) (-878)) (T -1053)) -((-3562 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-878)) (-5 *1 (-1053 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3561 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-878)) (-5 *1 (-1053 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-3558 (*1 *2) (-12 (-5 *2 (-1205 (-1053 *3 *4))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-3557 (*1 *2 *3 *1) (-12 (-5 *3 (-878)) (-5 *2 (-111)) (-5 *1 (-1053 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3556 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-735)) (-5 *1 (-1053 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-353) (-10 -8 (-15 -3562 ((-3 $ #1="failed") $ (-878))) (-15 -3561 ((-3 $ #1#) $ (-878) (-878))) (-15 -3560 ((-607 (-878)) $)) (-15 -3559 ($ (-607 (-878)))) (-15 -3558 ((-1205 $))) (-15 -3557 ((-111) (-878) $)) (-15 -3556 ((-735) $ (-878) (-878))))) -((-2865 (((-111) $ $) NIL)) (-3572 (((-111) $) NIL)) (-3568 (((-1123) $) NIL)) (-3573 (((-111) $) NIL)) (-3857 (((-1106) $) NIL)) (-3575 (((-111) $) NIL)) (-3577 (((-111) $) NIL)) (-3574 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-3571 (((-111) $) NIL)) (-3567 (((-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-3570 (((-111) $) NIL)) (-3566 (((-211) $) NIL)) (-3565 (((-823) $) NIL)) (-3578 (((-111) $ $) NIL)) (-4118 (($ $ (-526)) NIL) (($ $ (-607 (-526))) NIL)) (-3569 (((-607 $) $) NIL)) (-4287 (($ (-607 $)) NIL) (($ (-1106)) NIL) (($ (-1123)) NIL) (($ (-526)) NIL) (($ (-211)) NIL) (($ (-823)) NIL)) (-4274 (((-823) $) NIL)) (-3563 (($ $) NIL)) (-3564 (($ $) NIL)) (-3576 (((-111) $) NIL)) (-3353 (((-111) $ $) NIL)) (-4273 (((-526) $) NIL))) -(((-1054) (-1055 (-1106) (-1123) (-526) (-211) (-823))) (T -1054)) -NIL -(-1055 (-1106) (-1123) (-526) (-211) (-823)) -((-2865 (((-111) $ $) 7)) (-3572 (((-111) $) 32)) (-3568 ((|#2| $) 27)) (-3573 (((-111) $) 33)) (-3857 ((|#1| $) 28)) (-3575 (((-111) $) 35)) (-3577 (((-111) $) 37)) (-3574 (((-111) $) 34)) (-3554 (((-1106) $) 9)) (-3571 (((-111) $) 31)) (-3567 ((|#3| $) 26)) (-3555 (((-1070) $) 10)) (-3570 (((-111) $) 30)) (-3566 ((|#4| $) 25)) (-3565 ((|#5| $) 24)) (-3578 (((-111) $ $) 38)) (-4118 (($ $ (-526)) 14) (($ $ (-607 (-526))) 13)) (-3569 (((-607 $) $) 29)) (-4287 (($ (-607 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4274 (((-823) $) 11)) (-3563 (($ $) 16)) (-3564 (($ $) 17)) (-3576 (((-111) $) 36)) (-3353 (((-111) $ $) 6)) (-4273 (((-526) $) 15))) -(((-1055 |#1| |#2| |#3| |#4| |#5|) (-134) (-1052) (-1052) (-1052) (-1052) (-1052)) (T -1055)) -((-3578 (*1 *2 *1 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3569 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-607 *1)) (-4 *1 (-1055 *3 *4 *5 *6 *7)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *2 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *2)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *3 *2 *4 *5 *6)) (-4 *3 (-1052)) (-4 *2 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *2 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *2 (-1052)) (-4 *6 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *2)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3564 (*1 *1 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-526)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052))))) -(-13 (-1052) (-10 -8 (-15 -3578 ((-111) $ $)) (-15 -3577 ((-111) $)) (-15 -3576 ((-111) $)) (-15 -3575 ((-111) $)) (-15 -3574 ((-111) $)) (-15 -3573 ((-111) $)) (-15 -3572 ((-111) $)) (-15 -3571 ((-111) $)) (-15 -3570 ((-111) $)) (-15 -3569 ((-607 $) $)) (-15 -3857 (|t#1| $)) (-15 -3568 (|t#2| $)) (-15 -3567 (|t#3| $)) (-15 -3566 (|t#4| $)) (-15 -3565 (|t#5| $)) (-15 -4287 ($ (-607 $))) (-15 -4287 ($ |t#1|)) (-15 -4287 ($ |t#2|)) (-15 -4287 ($ |t#3|)) (-15 -4287 ($ |t#4|)) (-15 -4287 ($ |t#5|)) (-15 -3564 ($ $)) (-15 -3563 ($ $)) (-15 -4273 ((-526) $)) (-15 -4118 ($ $ (-526))) (-15 -4118 ($ $ (-607 (-526)))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3572 (((-111) $) 38)) (-3568 ((|#2| $) 42)) (-3573 (((-111) $) 37)) (-3857 ((|#1| $) 41)) (-3575 (((-111) $) 35)) (-3577 (((-111) $) 14)) (-3574 (((-111) $) 36)) (-3554 (((-1106) $) NIL)) (-3571 (((-111) $) 39)) (-3567 ((|#3| $) 44)) (-3555 (((-1070) $) NIL)) (-3570 (((-111) $) 40)) (-3566 ((|#4| $) 43)) (-3565 ((|#5| $) 45)) (-3578 (((-111) $ $) 34)) (-4118 (($ $ (-526)) 56) (($ $ (-607 (-526))) 58)) (-3569 (((-607 $) $) 22)) (-4287 (($ (-607 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4274 (((-823) $) 23)) (-3563 (($ $) 21)) (-3564 (($ $) 52)) (-3576 (((-111) $) 18)) (-3353 (((-111) $ $) 33)) (-4273 (((-526) $) 54))) -(((-1056 |#1| |#2| |#3| |#4| |#5|) (-1055 |#1| |#2| |#3| |#4| |#5|) (-1052) (-1052) (-1052) (-1052) (-1052)) (T -1056)) -NIL -(-1055 |#1| |#2| |#3| |#4| |#5|) -((-3699 (((-1211) $) 23)) (-3579 (($ (-1123) (-419) |#2|) 11)) (-4274 (((-823) $) 16))) -(((-1057 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3579 ($ (-1123) (-419) |#2|)))) (-811) (-406 |#1|)) (T -1057)) -((-3579 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-419)) (-4 *5 (-811)) (-5 *1 (-1057 *5 *4)) (-4 *4 (-406 *5))))) -(-13 (-381) (-10 -8 (-15 -3579 ($ (-1123) (-419) |#2|)))) -((-3582 (((-111) |#5| |#5|) 38)) (-3585 (((-111) |#5| |#5|) 52)) (-3590 (((-111) |#5| (-607 |#5|)) 75) (((-111) |#5| |#5|) 61)) (-3586 (((-111) (-607 |#4|) (-607 |#4|)) 58)) (-3592 (((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) 63)) (-3581 (((-1211)) 33)) (-3580 (((-1211) (-1106) (-1106) (-1106)) 29)) (-3591 (((-607 |#5|) (-607 |#5|)) 82)) (-3593 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) 80)) (-3594 (((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111)) 102)) (-3584 (((-111) |#5| |#5|) 47)) (-3589 (((-3 (-111) "failed") |#5| |#5|) 71)) (-3587 (((-111) (-607 |#4|) (-607 |#4|)) 57)) (-3588 (((-111) (-607 |#4|) (-607 |#4|)) 59)) (-4021 (((-111) (-607 |#4|) (-607 |#4|)) 60)) (-3595 (((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)) 98)) (-3583 (((-607 |#5|) (-607 |#5|)) 43))) -(((-1058 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3580 ((-1211) (-1106) (-1106) (-1106))) (-15 -3581 ((-1211))) (-15 -3582 ((-111) |#5| |#5|)) (-15 -3583 ((-607 |#5|) (-607 |#5|))) (-15 -3584 ((-111) |#5| |#5|)) (-15 -3585 ((-111) |#5| |#5|)) (-15 -3586 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3587 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3588 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -4021 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3589 ((-3 (-111) "failed") |#5| |#5|)) (-15 -3590 ((-111) |#5| |#5|)) (-15 -3590 ((-111) |#5| (-607 |#5|))) (-15 -3591 ((-607 |#5|) (-607 |#5|))) (-15 -3592 ((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3593 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-15 -3594 ((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3595 ((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1058)) -((-3595 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *4) (|:| |ineq| (-607 *9)))) (-5 *1 (-1058 *6 *7 *8 *9 *4)) (-5 *3 (-607 *9)) (-4 *4 (-1024 *6 *7 *8 *9)))) (-3594 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-607 *10)) (-5 *5 (-111)) (-4 *10 (-1024 *6 *7 *8 *9)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *10) (|:| |ineq| (-607 *9))))) (-5 *1 (-1058 *6 *7 *8 *9 *10)) (-5 *3 (-607 *9)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-607 (-2 (|:| |val| (-607 *6)) (|:| -1636 *7)))) (-4 *6 (-1018 *3 *4 *5)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1058 *3 *4 *5 *6 *7)))) (-3592 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-1058 *3 *4 *5 *6 *7)))) (-3590 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1058 *5 *6 *7 *8 *3)))) (-3590 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-4021 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3588 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3586 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3585 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3584 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3583 (*1 *2 *2) (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-1058 *3 *4 *5 *6 *7)))) (-3582 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3581 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1058 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3580 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7))))) -(-10 -7 (-15 -3580 ((-1211) (-1106) (-1106) (-1106))) (-15 -3581 ((-1211))) (-15 -3582 ((-111) |#5| |#5|)) (-15 -3583 ((-607 |#5|) (-607 |#5|))) (-15 -3584 ((-111) |#5| |#5|)) (-15 -3585 ((-111) |#5| |#5|)) (-15 -3586 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3587 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3588 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -4021 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3589 ((-3 (-111) "failed") |#5| |#5|)) (-15 -3590 ((-111) |#5| |#5|)) (-15 -3590 ((-111) |#5| (-607 |#5|))) (-15 -3591 ((-607 |#5|) (-607 |#5|))) (-15 -3592 ((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3593 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-15 -3594 ((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3595 ((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)))) -((-3610 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|) 96)) (-3600 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|) 72)) (-3603 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|) 91)) (-3605 (((-607 |#5|) |#4| |#5|) 110)) (-3607 (((-607 |#5|) |#4| |#5|) 117)) (-3609 (((-607 |#5|) |#4| |#5|) 118)) (-3604 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 97)) (-3606 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 116)) (-3608 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-3601 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111)) 84) (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3602 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|) 79)) (-3599 (((-1211)) 37)) (-3597 (((-1211)) 26)) (-3598 (((-1211) (-1106) (-1106) (-1106)) 33)) (-3596 (((-1211) (-1106) (-1106) (-1106)) 22))) -(((-1059 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3596 ((-1211) (-1106) (-1106) (-1106))) (-15 -3597 ((-1211))) (-15 -3598 ((-1211) (-1106) (-1106) (-1106))) (-15 -3599 ((-1211))) (-15 -3600 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3601 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3601 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111))) (-15 -3602 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3603 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3608 ((-111) |#4| |#5|)) (-15 -3604 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3605 ((-607 |#5|) |#4| |#5|)) (-15 -3606 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3607 ((-607 |#5|) |#4| |#5|)) (-15 -3608 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3609 ((-607 |#5|) |#4| |#5|)) (-15 -3610 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1059)) -((-3610 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3609 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3608 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3606 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3605 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3604 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3608 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3603 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3602 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *5 (-111)) (-4 *8 (-1018 *6 *7 *4)) (-4 *9 (-1024 *6 *7 *4 *8)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *4 (-811)) (-5 *2 (-607 (-2 (|:| |val| *8) (|:| -1636 *9)))) (-5 *1 (-1059 *6 *7 *4 *8 *9)))) (-3601 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3600 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3599 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3598 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3597 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3596 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7))))) -(-10 -7 (-15 -3596 ((-1211) (-1106) (-1106) (-1106))) (-15 -3597 ((-1211))) (-15 -3598 ((-1211) (-1106) (-1106) (-1106))) (-15 -3599 ((-1211))) (-15 -3600 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3601 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3601 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111))) (-15 -3602 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3603 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3608 ((-111) |#4| |#5|)) (-15 -3604 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3605 ((-607 |#5|) |#4| |#5|)) (-15 -3606 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3607 ((-607 |#5|) |#4| |#5|)) (-15 -3608 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3609 ((-607 |#5|) |#4| |#5|)) (-15 -3610 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|))) -((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86) (((-607 $) (-607 |#4|) (-111)) 111)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 126)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ #1#) $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-3511 (((-111) |#4| $) 136)) (-3509 (((-111) |#4| $) 133)) (-3512 (((-111) |#4| $) 137) (((-111) $) 134)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) 128)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 127)) (-4116 (((-3 |#4| #1#) $) 83)) (-3506 (((-607 $) |#4| $) 129)) (-3508 (((-3 (-111) (-607 $)) |#4| $) 132)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3550 (((-607 $) |#4| $) 125) (((-607 $) (-607 |#4|) $) 124) (((-607 $) (-607 |#4|) (-607 $)) 123) (((-607 $) |#4| (-607 $)) 122)) (-3759 (($ |#4| $) 117) (($ (-607 |#4|) $) 116)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| #1#) $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ #1#) $ |#4|) 78)) (-4087 (($ $ |#4|) 77) (((-607 $) |#4| $) 115) (((-607 $) |#4| (-607 $)) 114) (((-607 $) (-607 |#4|) $) 113) (((-607 $) (-607 |#4|) (-607 $)) 112)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-3503 (((-607 $) |#4| $) 121) (((-607 $) |#4| (-607 $)) 120) (((-607 $) (-607 |#4|) $) 119) (((-607 $) (-607 |#4|) (-607 $)) 118)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-3510 (((-111) |#4| $) 135)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) -(((-1060 |#1| |#2| |#3| |#4|) (-134) (-436) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -1060)) -NIL -(-13 (-1024 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1024 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1154 |#1| |#2| |#3| |#4|) . T) ((-1159) . T)) -((-3621 (((-607 (-526)) (-526) (-526) (-526)) 22)) (-3620 (((-607 (-526)) (-526) (-526) (-526)) 12)) (-3619 (((-607 (-526)) (-526) (-526) (-526)) 18)) (-3618 (((-526) (-526) (-526)) 9)) (-3617 (((-1205 (-526)) (-607 (-526)) (-1205 (-526)) (-526)) 46) (((-1205 (-526)) (-1205 (-526)) (-1205 (-526)) (-526)) 41)) (-3616 (((-607 (-526)) (-607 (-526)) (-607 (-526)) (-111)) 28)) (-3615 (((-653 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526))) 45)) (-3614 (((-653 (-526)) (-607 (-526)) (-607 (-526))) 33)) (-3613 (((-607 (-653 (-526))) (-607 (-526))) 35)) (-3612 (((-607 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526))) 49)) (-3611 (((-653 (-526)) (-607 (-526)) (-607 (-526)) (-607 (-526))) 57))) -(((-1061) (-10 -7 (-15 -3611 ((-653 (-526)) (-607 (-526)) (-607 (-526)) (-607 (-526)))) (-15 -3612 ((-607 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526)))) (-15 -3613 ((-607 (-653 (-526))) (-607 (-526)))) (-15 -3614 ((-653 (-526)) (-607 (-526)) (-607 (-526)))) (-15 -3615 ((-653 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526)))) (-15 -3616 ((-607 (-526)) (-607 (-526)) (-607 (-526)) (-111))) (-15 -3617 ((-1205 (-526)) (-1205 (-526)) (-1205 (-526)) (-526))) (-15 -3617 ((-1205 (-526)) (-607 (-526)) (-1205 (-526)) (-526))) (-15 -3618 ((-526) (-526) (-526))) (-15 -3619 ((-607 (-526)) (-526) (-526) (-526))) (-15 -3620 ((-607 (-526)) (-526) (-526) (-526))) (-15 -3621 ((-607 (-526)) (-526) (-526) (-526))))) (T -1061)) -((-3621 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526)))) (-3620 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526)))) (-3619 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526)))) (-3618 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1061)))) (-3617 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1205 (-526))) (-5 *3 (-607 (-526))) (-5 *4 (-526)) (-5 *1 (-1061)))) (-3617 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1205 (-526))) (-5 *3 (-526)) (-5 *1 (-1061)))) (-3616 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *3 (-111)) (-5 *1 (-1061)))) (-3615 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-653 (-526))) (-5 *3 (-607 (-526))) (-5 *1 (-1061)))) (-3614 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-1061)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-1061)))) (-3612 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *3 (-653 (-526))) (-5 *1 (-1061)))) (-3611 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-1061))))) -(-10 -7 (-15 -3611 ((-653 (-526)) (-607 (-526)) (-607 (-526)) (-607 (-526)))) (-15 -3612 ((-607 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526)))) (-15 -3613 ((-607 (-653 (-526))) (-607 (-526)))) (-15 -3614 ((-653 (-526)) (-607 (-526)) (-607 (-526)))) (-15 -3615 ((-653 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526)))) (-15 -3616 ((-607 (-526)) (-607 (-526)) (-607 (-526)) (-111))) (-15 -3617 ((-1205 (-526)) (-1205 (-526)) (-1205 (-526)) (-526))) (-15 -3617 ((-1205 (-526)) (-607 (-526)) (-1205 (-526)) (-526))) (-15 -3618 ((-526) (-526) (-526))) (-15 -3619 ((-607 (-526)) (-526) (-526) (-526))) (-15 -3620 ((-607 (-526)) (-526) (-526) (-526))) (-15 -3621 ((-607 (-526)) (-526) (-526) (-526)))) -((** (($ $ (-878)) 10))) -(((-1062 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-878)))) (-1063)) (T -1062)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-878)))) -((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6)) (** (($ $ (-878)) 13)) (* (($ $ $) 14))) -(((-1063) (-134)) (T -1063)) -((* (*1 *1 *1 *1) (-4 *1 (-1063))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1063)) (-5 *2 (-878))))) -(-13 (-1052) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-878))))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL (|has| |#3| (-1052)))) (-3502 (((-111) $) NIL (|has| |#3| (-129)))) (-4029 (($ (-878)) NIL (|has| |#3| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#3| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#3| (-129)))) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#3| (-353)))) (-3945 (((-526) $) NIL (|has| |#3| (-809)))) (-4106 ((|#3| $ (-526) |#3|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1052)))) (-3469 (((-526) $) NIL (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) ((|#3| $) NIL (|has| |#3| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) (((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 $) (-1205 $)) NIL (|has| |#3| (-1004))) (((-653 |#3|) (-653 $)) NIL (|has| |#3| (-1004)))) (-3781 (((-3 $ "failed") $) NIL (|has| |#3| (-691)))) (-3294 (($) NIL (|has| |#3| (-353)))) (-1613 ((|#3| $ (-526) |#3|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#3| $ (-526)) 12)) (-3500 (((-111) $) NIL (|has| |#3| (-809)))) (-2044 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (|has| |#3| (-691)))) (-3501 (((-111) $) NIL (|has| |#3| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2480 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2048 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#3| |#3|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#3| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#3| (-1052)))) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#3| (-353)))) (-3555 (((-1070) $) NIL (|has| |#3| (-1052)))) (-4119 ((|#3| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#3|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#3|))) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-607 |#3|) (-607 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-2283 (((-607 |#3|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#3| $ (-526) |#3|) NIL) ((|#3| $ (-526)) NIL)) (-4155 ((|#3| $ $) NIL (|has| |#3| (-1004)))) (-1501 (($ (-1205 |#3|)) NIL)) (-4230 (((-131)) NIL (|has| |#3| (-348)))) (-4129 (($ $) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1 |#3| |#3|) (-735)) NIL (|has| |#3| (-1004))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1004)))) (-2045 (((-735) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310))) (((-735) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#3|) $) NIL) (($ (-526)) NIL (-3850 (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052))) (|has| |#3| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) (($ |#3|) NIL (|has| |#3| (-1052))) (((-823) $) NIL (|has| |#3| (-583 (-823))))) (-3423 (((-735)) NIL (|has| |#3| (-1004)))) (-2047 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#3| (-809)))) (-2957 (($) NIL (|has| |#3| (-129)) CONST)) (-2964 (($) NIL (|has| |#3| (-691)) CONST)) (-2969 (($ $) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1 |#3| |#3|) (-735)) NIL (|has| |#3| (-1004))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1004)))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-3353 (((-111) $ $) NIL (|has| |#3| (-1052)))) (-2984 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2985 (((-111) $ $) 17 (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-4265 (($ $ |#3|) NIL (|has| |#3| (-348)))) (-4156 (($ $ $) NIL (|has| |#3| (-1004))) (($ $) NIL (|has| |#3| (-1004)))) (-4158 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-735)) NIL (|has| |#3| (-691))) (($ $ (-878)) NIL (|has| |#3| (-691)))) (* (($ (-526) $) NIL (|has| |#3| (-1004))) (($ $ $) NIL (|has| |#3| (-691))) (($ $ |#3|) NIL (|has| |#3| (-691))) (($ |#3| $) NIL (|has| |#3| (-691))) (($ (-735) $) NIL (|has| |#3| (-129))) (($ (-878) $) NIL (|has| |#3| (-25)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1064 |#1| |#2| |#3|) (-224 |#1| |#3|) (-735) (-735) (-757)) (T -1064)) -NIL -(-224 |#1| |#3|) -((-3622 (((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 37)) (-3628 (((-526) (-1174 |#2| |#1|)) 69 (|has| |#1| (-436)))) (-3626 (((-526) (-1174 |#2| |#1|)) 54)) (-3623 (((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 45)) (-3627 (((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 68 (|has| |#1| (-436)))) (-3624 (((-607 |#1|) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 48)) (-3625 (((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 53))) -(((-1065 |#1| |#2|) (-10 -7 (-15 -3622 ((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3623 ((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3624 ((-607 |#1|) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3625 ((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3626 ((-526) (-1174 |#2| |#1|))) (IF (|has| |#1| (-436)) (PROGN (-15 -3627 ((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3628 ((-526) (-1174 |#2| |#1|)))) |%noBranch|)) (-784) (-1123)) (T -1065)) -((-3628 (*1 *2 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-436)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) (-5 *1 (-1065 *4 *5)))) (-3627 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-436)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) (-5 *1 (-1065 *4 *5)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) (-5 *1 (-1065 *4 *5)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) (-5 *1 (-1065 *4 *5)))) (-3624 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 *4)) (-5 *1 (-1065 *4 *5)))) (-3623 (*1 *2 *3 *3) (-12 (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 (-1174 *5 *4))) (-5 *1 (-1065 *4 *5)) (-5 *3 (-1174 *5 *4)))) (-3622 (*1 *2 *3 *3) (-12 (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 (-1174 *5 *4))) (-5 *1 (-1065 *4 *5)) (-5 *3 (-1174 *5 *4))))) -(-10 -7 (-15 -3622 ((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3623 ((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3624 ((-607 |#1|) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3625 ((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3626 ((-526) (-1174 |#2| |#1|))) (IF (|has| |#1| (-436)) (PROGN (-15 -3627 ((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3628 ((-526) (-1174 |#2| |#1|)))) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3630 (((-1128) $) 10)) (-3629 (((-607 (-1128)) $) 11)) (-3631 (($ (-607 (-1128)) (-1128)) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 20)) (-3353 (((-111) $ $) 14))) -(((-1066) (-13 (-1052) (-10 -8 (-15 -3631 ($ (-607 (-1128)) (-1128))) (-15 -3630 ((-1128) $)) (-15 -3629 ((-607 (-1128)) $))))) (T -1066)) -((-3631 (*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1128))) (-5 *3 (-1128)) (-5 *1 (-1066)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1066)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1066))))) -(-13 (-1052) (-10 -8 (-15 -3631 ($ (-607 (-1128)) (-1128))) (-15 -3630 ((-1128) $)) (-15 -3629 ((-607 (-1128)) $)))) -((-3945 (((-3 (-526) #1="failed") |#2| (-1123) |#2| (-1106)) 17) (((-3 (-526) #1#) |#2| (-1123) (-803 |#2|)) 15) (((-3 (-526) #1#) |#2|) 54))) -(((-1067 |#1| |#2|) (-10 -7 (-15 -3945 ((-3 (-526) #1="failed") |#2|)) (-15 -3945 ((-3 (-526) #1#) |#2| (-1123) (-803 |#2|))) (-15 -3945 ((-3 (-526) #1#) |#2| (-1123) |#2| (-1106)))) (-13 (-533) (-811) (-995 (-526)) (-606 (-526)) (-436)) (-13 (-27) (-1145) (-406 |#1|))) (T -1067)) -((-3945 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-1106)) (-4 *6 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) (-5 *1 (-1067 *6 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))))) (-3945 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-803 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) (-5 *1 (-1067 *6 *3)))) (-3945 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) (-5 *1 (-1067 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4)))))) -(-10 -7 (-15 -3945 ((-3 (-526) #1="failed") |#2|)) (-15 -3945 ((-3 (-526) #1#) |#2| (-1123) (-803 |#2|))) (-15 -3945 ((-3 (-526) #1#) |#2| (-1123) |#2| (-1106)))) -((-3945 (((-3 (-526) #1="failed") (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)) (-1106)) 35) (((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-803 (-392 (-905 |#1|)))) 30) (((-3 (-526) #1#) (-392 (-905 |#1|))) 13))) -(((-1068 |#1|) (-10 -7 (-15 -3945 ((-3 (-526) #1="failed") (-392 (-905 |#1|)))) (-15 -3945 ((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-803 (-392 (-905 |#1|))))) (-15 -3945 ((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)) (-1106)))) (-436)) (T -1068)) -((-3945 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-392 (-905 *6))) (-5 *4 (-1123)) (-5 *5 (-1106)) (-4 *6 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *6)))) (-3945 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-803 (-392 (-905 *6)))) (-5 *3 (-392 (-905 *6))) (-4 *6 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *6)))) (-3945 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *4))))) -(-10 -7 (-15 -3945 ((-3 (-526) #1="failed") (-392 (-905 |#1|)))) (-15 -3945 ((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-803 (-392 (-905 |#1|))))) (-15 -3945 ((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)) (-1106)))) -((-3971 (((-299 (-526)) (-47)) 12))) -(((-1069) (-10 -7 (-15 -3971 ((-299 (-526)) (-47))))) (T -1069)) -((-3971 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-299 (-526))) (-5 *1 (-1069))))) -(-10 -7 (-15 -3971 ((-299 (-526)) (-47)))) -((-2865 (((-111) $ $) NIL)) (-3639 (($ $) 41)) (-3502 (((-111) $) 65)) (-3635 (($ $ $) 48)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2135 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2130 (($ $ $ $) 74)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-2659 (($ $ $) 71)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) "failed") $) NIL)) (-3469 (((-526) $) NIL)) (-2861 (($ $ $) 59)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 79) (((-653 (-526)) (-653 $)) 28)) (-3781 (((-3 $ "failed") $) NIL)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL)) (-3323 (((-111) $) NIL)) (-3322 (((-392 (-526)) $) NIL)) (-3294 (($) 82) (($ $) 83)) (-2860 (($ $ $) 58)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2128 (($ $ $ $) NIL)) (-2136 (($ $ $) 80)) (-3500 (((-111) $) NIL)) (-1394 (($ $ $) NIL)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL)) (-2471 (((-111) $) 66)) (-2973 (((-111) $) 64)) (-3636 (($ $) 42)) (-3763 (((-3 $ "failed") $) NIL)) (-3501 (((-111) $) 75)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2129 (($ $ $ $) 72)) (-3637 (($ $ $) 68) (($) 39)) (-3638 (($ $ $) 67) (($) 38)) (-2132 (($ $) NIL)) (-4152 (($ $) 70)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2127 (($ $ $) NIL)) (-3764 (($) NIL T CONST)) (-2134 (($ $) 50)) (-3555 (((-1070) $) NIL) (($ $) 69)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) 62) (($ (-607 $)) NIL)) (-1392 (($ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 61)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-2133 (($ $) 51)) (-3719 (($ $) NIL)) (-4287 (((-526) $) 32) (((-515) $) NIL) (((-849 (-526)) $) NIL) (((-363) $) NIL) (((-211) $) NIL)) (-4274 (((-823) $) 31) (($ (-526)) 81) (($ $) NIL) (($ (-526)) 81)) (-3423 (((-735)) NIL)) (-2137 (((-111) $ $) NIL)) (-3399 (($ $ $) NIL)) (-2994 (($) 37)) (-2150 (((-111) $ $) NIL)) (-2131 (($ $ $ $) 73)) (-3702 (($ $) 63)) (-3641 (($ $ $) 44)) (-2957 (($) 35 T CONST)) (-3632 (($ $ $) 47)) (-2964 (($) 36 T CONST)) (-2803 (((-1106) $) 21) (((-1106) $ (-111)) 23) (((-1211) (-787) $) 24) (((-1211) (-787) $ (-111)) 25)) (-3634 (($ $) 45)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3633 (($ $ $) 46)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 40)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 49)) (-3640 (($ $ $) 43)) (-4156 (($ $) 52) (($ $ $) 54)) (-4158 (($ $ $) 53)) (** (($ $ (-878)) NIL) (($ $ (-735)) 57)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 34) (($ $ $) 55))) -(((-1070) (-13 (-525) (-627) (-785) (-10 -8 (-6 -4297) (-6 -4302) (-6 -4298) (-15 -3638 ($)) (-15 -3637 ($)) (-15 -3636 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $ $)) (-15 -3641 ($ $ $)) (-15 -3635 ($ $ $)) (-15 -3634 ($ $)) (-15 -3633 ($ $ $)) (-15 -3632 ($ $ $))))) (T -1070)) -((-3641 (*1 *1 *1 *1) (-5 *1 (-1070))) (-3640 (*1 *1 *1 *1) (-5 *1 (-1070))) (-3639 (*1 *1 *1) (-5 *1 (-1070))) (-3638 (*1 *1) (-5 *1 (-1070))) (-3637 (*1 *1) (-5 *1 (-1070))) (-3636 (*1 *1 *1) (-5 *1 (-1070))) (-3635 (*1 *1 *1 *1) (-5 *1 (-1070))) (-3634 (*1 *1 *1) (-5 *1 (-1070))) (-3633 (*1 *1 *1 *1) (-5 *1 (-1070))) (-3632 (*1 *1 *1 *1) (-5 *1 (-1070)))) -(-13 (-525) (-627) (-785) (-10 -8 (-6 -4297) (-6 -4302) (-6 -4298) (-15 -3638 ($)) (-15 -3637 ($)) (-15 -3636 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $ $)) (-15 -3641 ($ $ $)) (-15 -3635 ($ $ $)) (-15 -3634 ($ $)) (-15 -3633 ($ $ $)) (-15 -3632 ($ $ $)))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3643 ((|#1| $) 44)) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-3645 ((|#1| |#1| $) 46)) (-3644 ((|#1| $) 45)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3642 (((-735) $) 43)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-1071 |#1|) (-134) (-1159)) (T -1071)) -((-3645 (*1 *2 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1159)) (-5 *2 (-735))))) -(-13 (-105 |t#1|) (-10 -8 (-6 -4310) (-15 -3645 (|t#1| |t#1| $)) (-15 -3644 (|t#1| $)) (-15 -3643 (|t#1| $)) (-15 -3642 ((-735) $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-3649 ((|#3| $) 76)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#3| $) 37)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 $) (-1205 $)) 73) (((-653 |#3|) (-653 $)) 65)) (-4129 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-3648 ((|#3| $) 78)) (-3650 ((|#4| $) 32)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ |#3|) 16)) (** (($ $ (-878)) NIL) (($ $ (-735)) 15) (($ $ (-526)) 82))) -(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-526))) (-15 -3648 (|#3| |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -3650 (|#4| |#1|)) (-15 -2331 ((-653 |#3|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#3|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|) (-735))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4274 (|#1| (-526))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878))) (-15 -4274 ((-823) |#1|))) (-1073 |#2| |#3| |#4| |#5|) (-735) (-1004) (-224 |#2| |#3|) (-224 |#2| |#3|)) (T -1072)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-526))) (-15 -3648 (|#3| |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -3650 (|#4| |#1|)) (-15 -2331 ((-653 |#3|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#3|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|) (-735))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4274 (|#1| (-526))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3649 ((|#2| $) 70)) (-3418 (((-111) $) 110)) (-1345 (((-3 $ "failed") $ $) 19)) (-3420 (((-111) $) 108)) (-1244 (((-111) $ (-735)) 100)) (-3652 (($ |#2|) 73)) (-3855 (($) 17 T CONST)) (-3407 (($ $) 127 (|has| |#2| (-292)))) (-3409 ((|#3| $ (-526)) 122)) (-3470 (((-3 (-526) #1="failed") $) 84 (|has| |#2| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 82 (|has| |#2| (-995 (-392 (-526))))) (((-3 |#2| #1#) $) 79)) (-3469 (((-526) $) 85 (|has| |#2| (-995 (-526)))) (((-392 (-526)) $) 83 (|has| |#2| (-995 (-392 (-526))))) ((|#2| $) 78)) (-2331 (((-653 (-526)) (-653 $)) 77 (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 76 (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 75) (((-653 |#2|) (-653 $)) 74)) (-3781 (((-3 $ "failed") $) 32)) (-3406 (((-735) $) 128 (|has| |#2| (-533)))) (-3410 ((|#2| $ (-526) (-526)) 120)) (-2044 (((-607 |#2|) $) 93 (|has| $ (-6 -4310)))) (-2471 (((-111) $) 30)) (-3405 (((-735) $) 129 (|has| |#2| (-533)))) (-3404 (((-607 |#4|) $) 130 (|has| |#2| (-533)))) (-3412 (((-735) $) 116)) (-3411 (((-735) $) 117)) (-4041 (((-111) $ (-735)) 101)) (-3646 ((|#2| $) 65 (|has| |#2| (-6 (-4312 #2="*"))))) (-3416 (((-526) $) 112)) (-3414 (((-526) $) 114)) (-2480 (((-607 |#2|) $) 92 (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) 90 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-3415 (((-526) $) 113)) (-3413 (((-526) $) 115)) (-3421 (($ (-607 (-607 |#2|))) 107)) (-2048 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3915 (((-607 (-607 |#2|)) $) 118)) (-4038 (((-111) $ (-735)) 102)) (-3554 (((-1106) $) 9)) (-3911 (((-3 $ "failed") $) 64 (|has| |#2| (-348)))) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-533)))) (-2046 (((-111) (-1 (-111) |#2|) $) 95 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) 89 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 88 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 86 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) 106)) (-3722 (((-111) $) 103)) (-3887 (($) 104)) (-4118 ((|#2| $ (-526) (-526) |#2|) 121) ((|#2| $ (-526) (-526)) 119)) (-4129 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-735)) 49) (($ $ (-607 (-1123)) (-607 (-735))) 42 (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) 41 (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) 40 (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) 39 (|has| |#2| (-859 (-1123)))) (($ $ (-735)) 37 (|has| |#2| (-219))) (($ $) 35 (|has| |#2| (-219)))) (-3648 ((|#2| $) 69)) (-3651 (($ (-607 |#2|)) 72)) (-3419 (((-111) $) 109)) (-3650 ((|#3| $) 71)) (-3647 ((|#2| $) 66 (|has| |#2| (-6 (-4312 #2#))))) (-2045 (((-735) (-1 (-111) |#2|) $) 94 (|has| $ (-6 -4310))) (((-735) |#2| $) 91 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 105)) (-3408 ((|#4| $ (-526)) 123)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 81 (|has| |#2| (-995 (-392 (-526))))) (($ |#2|) 80)) (-3423 (((-735)) 28)) (-2047 (((-111) (-1 (-111) |#2|) $) 96 (|has| $ (-6 -4310)))) (-3417 (((-111) $) 111)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-735)) 47) (($ $ (-607 (-1123)) (-607 (-735))) 46 (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) 45 (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) 44 (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) 43 (|has| |#2| (-859 (-1123)))) (($ $ (-735)) 38 (|has| |#2| (-219))) (($ $) 36 (|has| |#2| (-219)))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#2|) 126 (|has| |#2| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 63 (|has| |#2| (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-4273 (((-735) $) 99 (|has| $ (-6 -4310))))) -(((-1073 |#1| |#2| |#3| |#4|) (-134) (-735) (-1004) (-224 |t#1| |t#2|) (-224 |t#1| |t#2|)) (T -1073)) -((-3652 (*1 *1 *2) (-12 (-4 *2 (-1004)) (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-607 *4)) (-4 *4 (-1004)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *3 *4)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *2 *5)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) (-4 *2 (-224 *3 *4)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) (-4 *2 (-1004)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) (-4 *2 (-1004)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) (-4 *2 (-224 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *2 *5)) (-4 *4 (-1004)) (-4 *2 (-224 *3 *4)) (-4 *5 (-224 *3 *4)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) (|has| *2 (-6 (-4312 #1="*"))) (-4 *2 (-1004)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) (|has| *2 (-6 (-4312 #1#))) (-4 *2 (-1004)))) (-3911 (*1 *1 *1) (|partial| -12 (-4 *1 (-1073 *2 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-224 *2 *3)) (-4 *5 (-224 *2 *3)) (-4 *3 (-348)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *3 *4)) (-4 *4 (-348))))) -(-13 (-217 |t#2|) (-110 |t#2| |t#2|) (-1007 |t#1| |t#1| |t#2| |t#3| |t#4|) (-397 |t#2|) (-362 |t#2|) (-10 -8 (IF (|has| |t#2| (-163)) (-6 (-682 |t#2|)) |%noBranch|) (-15 -3652 ($ |t#2|)) (-15 -3651 ($ (-607 |t#2|))) (-15 -3650 (|t#3| $)) (-15 -3649 (|t#2| $)) (-15 -3648 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4312 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3647 (|t#2| $)) (-15 -3646 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-348)) (PROGN (-15 -3911 ((-3 $ "failed") $)) (-15 ** ($ $ (-526)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4312 #1="*"))) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-583 (-823)) . T) ((-217 |#2|) . T) ((-219) |has| |#2| (-219)) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-362 |#2|) . T) ((-397 |#2|) . T) ((-472 |#2|) . T) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-613 |#2|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#2| (-606 (-526))) ((-606 |#2|) . T) ((-682 |#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-6 (-4312 #1#)))) ((-691) . T) ((-859 (-1123)) |has| |#2| (-859 (-1123))) ((-1007 |#1| |#1| |#2| |#3| |#4|) . T) ((-995 (-392 (-526))) |has| |#2| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#2| (-995 (-526))) ((-995 |#2|) . T) ((-1010 |#2|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1159) . T)) -((-3655 ((|#4| |#4|) 70)) (-3653 ((|#4| |#4|) 65)) (-3657 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|) 78)) (-3656 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3654 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1074 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3653 (|#4| |#4|)) (-15 -3654 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3655 (|#4| |#4|)) (-15 -3656 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3657 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|))) (-292) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|)) (T -1074)) -((-3657 (*1 *2 *3 *4) (-12 (-4 *5 (-292)) (-4 *6 (-357 *5)) (-4 *4 (-357 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-1074 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) (-3656 (*1 *2 *3) (-12 (-4 *4 (-292)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1074 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-292)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1074 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-3654 (*1 *2 *3) (-12 (-4 *4 (-292)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1074 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-292)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1074 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) -(-10 -7 (-15 -3653 (|#4| |#4|)) (-15 -3654 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3655 (|#4| |#4|)) (-15 -3656 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3657 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 17)) (-3384 (((-607 |#2|) $) 159)) (-3386 (((-1117 $) $ |#2|) 54) (((-1117 |#1|) $) 43)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 108 (|has| |#1| (-533)))) (-2151 (($ $) 110 (|has| |#1| (-533)))) (-2149 (((-111) $) 112 (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 |#2|)) 192)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) 156) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 |#2| #2#) $) NIL)) (-3469 ((|#1| $) 154) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) ((|#2| $) NIL)) (-4075 (($ $ $ |#2|) NIL (|has| |#1| (-163)))) (-4276 (($ $) 196)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) 82)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ |#2|) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 |#2|) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| |#1| (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| |#1| (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) 19)) (-2479 (((-735) $) 26)) (-3387 (($ (-1117 |#1|) |#2|) 48) (($ (-1117 $) |#2|) 64)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) 32)) (-3193 (($ |#1| (-512 |#2|)) 71) (($ $ |#2| (-735)) 52) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#2|) NIL)) (-3120 (((-512 |#2|) $) 186) (((-735) $ |#2|) 187) (((-607 (-735)) $ (-607 |#2|)) 188)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 |#2|) (-512 |#2|)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 120)) (-3385 (((-3 |#2| #3="failed") $) 161)) (-3194 (($ $) 195)) (-3487 ((|#1| $) 37)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 33)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 138 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) 143 (|has| |#1| (-436))) (($ $ $) 130 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-607 |#2|) (-607 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-607 |#2|) (-607 $)) 176)) (-4076 (($ $ |#2|) NIL (|has| |#1| (-163)))) (-4129 (($ $ |#2|) 194) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4264 (((-512 |#2|) $) 182) (((-735) $ |#2|) 178) (((-607 (-735)) $ (-607 |#2|)) 180)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| |#1| (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#1| $) 126 (|has| |#1| (-436))) (($ $ |#2|) 129 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 149) (($ (-526)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-533))) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-4136 (((-607 |#1|) $) 152)) (-3999 ((|#1| $ (-512 |#2|)) 73) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 79)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) 115 (|has| |#1| (-533)))) (-2957 (($) 12 T CONST)) (-2964 (($) 14 T CONST)) (-2969 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 97)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 124 (|has| |#1| (-348)))) (-4156 (($ $) 85) (($ $ $) 95)) (-4158 (($ $ $) 49)) (** (($ $ (-878)) 102) (($ $ (-735)) 100)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 88) (($ $ $) 65) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1075 |#1| |#2|) (-909 |#1| (-512 |#2|) |#2|) (-1004) (-811)) (T -1075)) -NIL -(-909 |#1| (-512 |#2|) |#2|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3806 (($ $) 143 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-3808 (($ $) 147 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4133 (((-905 |#1|) $ (-735)) NIL) (((-905 |#1|) $ (-735) (-735)) NIL)) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $ |#2|) NIL) (((-735) $ |#2| (-735)) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4254 (((-111) $) NIL)) (-3193 (($ $ (-607 |#2|) (-607 (-512 |#2|))) NIL) (($ $ |#2| (-512 |#2|)) NIL) (($ |#1| (-512 |#2|)) NIL) (($ $ |#2| (-735)) 58) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) 113 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4131 (($ $ |#2|) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3998 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-392 (-526)))))) (-4087 (($ $ (-735)) 15)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4260 (($ $) 111 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (($ $ |#2| $) 97) (($ $ (-607 |#2|) (-607 $)) 90) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL)) (-4129 (($ $ |#2|) 100) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4264 (((-512 |#2|) $) NIL)) (-3658 (((-1 (-1101 |#3|) |#3|) (-607 |#2|) (-607 (-1101 |#3|))) 79)) (-3809 (($ $) 149 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 145 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 17)) (-4274 (((-823) $) 182) (($ (-526)) NIL) (($ |#1|) 44 (|has| |#1| (-163))) (($ $) NIL (|has| |#1| (-533))) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#2|) 65) (($ |#3|) 63)) (-3999 ((|#1| $ (-512 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL) ((|#3| $ (-735)) 42)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-3812 (($ $) 155 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 151 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 159 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3815 (($ $) 161 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 157 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 153 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 10 T CONST)) (-2969 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) 184 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 61)) (** (($ $ (-878)) NIL) (($ $ (-735)) 70) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 103 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 60) (($ $ (-392 (-526))) 108 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 106 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) -(((-1076 |#1| |#2| |#3|) (-13 (-705 |#1| |#2|) (-10 -8 (-15 -3999 (|#3| $ (-735))) (-15 -4274 ($ |#2|)) (-15 -4274 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3658 ((-1 (-1101 |#3|) |#3|) (-607 |#2|) (-607 (-1101 |#3|)))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ |#2| |#1|)) (-15 -3998 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1004) (-811) (-909 |#1| (-512 |#2|) |#2|)) (T -1076)) -((-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *2 (-909 *4 (-512 *5) *5)) (-5 *1 (-1076 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-811)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *2 (-811)) (-5 *1 (-1076 *3 *2 *4)) (-4 *4 (-909 *3 (-512 *2) *2)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-5 *1 (-1076 *3 *4 *2)) (-4 *2 (-909 *3 (-512 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-5 *1 (-1076 *3 *4 *2)) (-4 *2 (-909 *3 (-512 *4) *4)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-1101 *7))) (-4 *6 (-811)) (-4 *7 (-909 *5 (-512 *6) *6)) (-4 *5 (-1004)) (-5 *2 (-1 (-1101 *7) *7)) (-5 *1 (-1076 *5 *6 *7)))) (-4131 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-4 *2 (-811)) (-5 *1 (-1076 *3 *2 *4)) (-4 *4 (-909 *3 (-512 *2) *2)))) (-3998 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1076 *4 *3 *5))) (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004)) (-4 *3 (-811)) (-5 *1 (-1076 *4 *3 *5)) (-4 *5 (-909 *4 (-512 *3) *3))))) -(-13 (-705 |#1| |#2|) (-10 -8 (-15 -3999 (|#3| $ (-735))) (-15 -4274 ($ |#2|)) (-15 -4274 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3658 ((-1 (-1101 |#3|) |#3|) (-607 |#2|) (-607 (-1101 |#3|)))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ |#2| |#1|)) (-15 -3998 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86) (((-607 $) (-607 |#4|) (-111)) 111)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 126)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ #1#) $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-3511 (((-111) |#4| $) 136)) (-3509 (((-111) |#4| $) 133)) (-3512 (((-111) |#4| $) 137) (((-111) $) 134)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) 128)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 127)) (-4116 (((-3 |#4| #1#) $) 83)) (-3506 (((-607 $) |#4| $) 129)) (-3508 (((-3 (-111) (-607 $)) |#4| $) 132)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3550 (((-607 $) |#4| $) 125) (((-607 $) (-607 |#4|) $) 124) (((-607 $) (-607 |#4|) (-607 $)) 123) (((-607 $) |#4| (-607 $)) 122)) (-3759 (($ |#4| $) 117) (($ (-607 |#4|) $) 116)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| #1#) $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ #1#) $ |#4|) 78)) (-4087 (($ $ |#4|) 77) (((-607 $) |#4| $) 115) (((-607 $) |#4| (-607 $)) 114) (((-607 $) (-607 |#4|) $) 113) (((-607 $) (-607 |#4|) (-607 $)) 112)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-3503 (((-607 $) |#4| $) 121) (((-607 $) |#4| (-607 $)) 120) (((-607 $) (-607 |#4|) $) 119) (((-607 $) (-607 |#4|) (-607 $)) 118)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-3510 (((-111) |#4| $) 135)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) -(((-1077 |#1| |#2| |#3| |#4|) (-134) (-436) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -1077)) -NIL -(-13 (-1060 |t#1| |t#2| |t#3| |t#4|) (-748 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-748 |#1| |#2| |#3| |#4|) . T) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1024 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1060 |#1| |#2| |#3| |#4|) . T) ((-1154 |#1| |#2| |#3| |#4|) . T) ((-1159) . T)) -((-3895 (((-607 |#2|) |#1|) 12)) (-3664 (((-607 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-607 |#2|) |#1|) 52)) (-3662 (((-607 |#2|) |#2| |#2| |#2|) 39) (((-607 |#2|) |#1|) 50)) (-3659 ((|#2| |#1|) 46)) (-3660 (((-2 (|:| |solns| (-607 |#2|)) (|:| |maps| (-607 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3661 (((-607 |#2|) |#2| |#2|) 38) (((-607 |#2|) |#1|) 49)) (-3663 (((-607 |#2|) |#2| |#2| |#2| |#2|) 40) (((-607 |#2|) |#1|) 51)) (-3668 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3666 ((|#2| |#2| |#2| |#2|) 43)) (-3665 ((|#2| |#2| |#2|) 42)) (-3667 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1078 |#1| |#2|) (-10 -7 (-15 -3895 ((-607 |#2|) |#1|)) (-15 -3659 (|#2| |#1|)) (-15 -3660 ((-2 (|:| |solns| (-607 |#2|)) (|:| |maps| (-607 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3661 ((-607 |#2|) |#1|)) (-15 -3662 ((-607 |#2|) |#1|)) (-15 -3663 ((-607 |#2|) |#1|)) (-15 -3664 ((-607 |#2|) |#1|)) (-15 -3661 ((-607 |#2|) |#2| |#2|)) (-15 -3662 ((-607 |#2|) |#2| |#2| |#2|)) (-15 -3663 ((-607 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3664 ((-607 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3665 (|#2| |#2| |#2|)) (-15 -3666 (|#2| |#2| |#2| |#2|)) (-15 -3667 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3668 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1181 |#2|) (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (T -1078)) -((-3668 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3667 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3666 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3665 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3664 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3)))) (-3663 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3)))) (-3662 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3)))) (-3661 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3)))) (-3664 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-2 (|:| |solns| (-607 *5)) (|:| |maps| (-607 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1078 *3 *5)) (-4 *3 (-1181 *5)))) (-3659 (*1 *2 *3) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -3895 ((-607 |#2|) |#1|)) (-15 -3659 (|#2| |#1|)) (-15 -3660 ((-2 (|:| |solns| (-607 |#2|)) (|:| |maps| (-607 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3661 ((-607 |#2|) |#1|)) (-15 -3662 ((-607 |#2|) |#1|)) (-15 -3663 ((-607 |#2|) |#1|)) (-15 -3664 ((-607 |#2|) |#1|)) (-15 -3661 ((-607 |#2|) |#2| |#2|)) (-15 -3662 ((-607 |#2|) |#2| |#2| |#2|)) (-15 -3663 ((-607 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3664 ((-607 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3665 (|#2| |#2| |#2|)) (-15 -3666 (|#2| |#2| |#2| |#2|)) (-15 -3667 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3668 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3669 (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|))))) 95) (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123))) 94) (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|)))) 92) (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))) (-607 (-1123))) 90) (((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|)))) 75) (((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))) (-1123)) 76) (((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|))) 70) (((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)) (-1123)) 59)) (-3670 (((-607 (-607 (-299 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123))) 88) (((-607 (-299 |#1|)) (-392 (-905 |#1|)) (-1123)) 43)) (-3671 (((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-392 (-905 |#1|)) (-1123)) 98) (((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123)) 97))) -(((-1079 |#1|) (-10 -7 (-15 -3669 ((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123)))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -3670 ((-607 (-299 |#1|)) (-392 (-905 |#1|)) (-1123))) (-15 -3670 ((-607 (-607 (-299 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3671 ((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3671 ((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-392 (-905 |#1|)) (-1123)))) (-13 (-292) (-811) (-141))) (T -1079)) -((-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-1113 (-607 (-299 *5)) (-607 (-278 (-299 *5))))) (-5 *1 (-1079 *5)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-392 (-905 *5)))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-1113 (-607 (-299 *5)) (-607 (-278 (-299 *5))))) (-5 *1 (-1079 *5)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-299 *5)))) (-5 *1 (-1079 *5)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-299 *5))) (-5 *1 (-1079 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-607 (-278 (-392 (-905 *4))))) (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *4))))) (-5 *1 (-1079 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-278 (-392 (-905 *5))))) (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) (-5 *1 (-1079 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-607 (-392 (-905 *4)))) (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *4))))) (-5 *1 (-1079 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) (-5 *1 (-1079 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-278 (-392 (-905 *4)))) (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1079 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-392 (-905 *5)))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1079 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1079 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1079 *5))))) -(-10 -7 (-15 -3669 ((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123)))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -3670 ((-607 (-299 |#1|)) (-392 (-905 |#1|)) (-1123))) (-15 -3670 ((-607 (-607 (-299 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3671 ((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3671 ((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-392 (-905 |#1|)) (-1123)))) -((-3673 (((-392 (-1117 (-299 |#1|))) (-1205 (-299 |#1|)) (-392 (-1117 (-299 |#1|))) (-526)) 29)) (-3672 (((-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|)))) 40))) -(((-1080 |#1|) (-10 -7 (-15 -3672 ((-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))))) (-15 -3673 ((-392 (-1117 (-299 |#1|))) (-1205 (-299 |#1|)) (-392 (-1117 (-299 |#1|))) (-526)))) (-13 (-533) (-811))) (T -1080)) -((-3673 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-392 (-1117 (-299 *5)))) (-5 *3 (-1205 (-299 *5))) (-5 *4 (-526)) (-4 *5 (-13 (-533) (-811))) (-5 *1 (-1080 *5)))) (-3672 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-392 (-1117 (-299 *3)))) (-4 *3 (-13 (-533) (-811))) (-5 *1 (-1080 *3))))) -(-10 -7 (-15 -3672 ((-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))))) (-15 -3673 ((-392 (-1117 (-299 |#1|))) (-1205 (-299 |#1|)) (-392 (-1117 (-299 |#1|))) (-526)))) -((-3895 (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-299 |#1|))) (-607 (-1123))) 224) (((-607 (-278 (-299 |#1|))) (-299 |#1|) (-1123)) 20) (((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)) (-1123)) 26) (((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|))) 25) (((-607 (-278 (-299 |#1|))) (-299 |#1|)) 21))) -(((-1081 |#1|) (-10 -7 (-15 -3895 ((-607 (-278 (-299 |#1|))) (-299 |#1|))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)) (-1123))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-299 |#1|) (-1123))) (-15 -3895 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-299 |#1|))) (-607 (-1123))))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (T -1081)) -((-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) (-5 *1 (-1081 *5)) (-5 *3 (-607 (-278 (-299 *5)))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1081 *5)) (-5 *3 (-299 *5)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1081 *5)) (-5 *3 (-278 (-299 *5))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-278 (-299 *4))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-299 *4))))) -(-10 -7 (-15 -3895 ((-607 (-278 (-299 |#1|))) (-299 |#1|))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)) (-1123))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-299 |#1|) (-1123))) (-15 -3895 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-299 |#1|))) (-607 (-1123))))) -((-3675 ((|#2| |#2|) 20 (|has| |#1| (-811))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 17)) (-3674 ((|#2| |#2|) 19 (|has| |#1| (-811))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 16))) -(((-1082 |#1| |#2|) (-10 -7 (-15 -3674 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -3675 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-811)) (PROGN (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|))) |%noBranch|)) (-1159) (-13 (-574 (-526) |#1|) (-10 -7 (-6 -4310) (-6 -4311)))) (T -1082)) -((-3675 (*1 *2 *2) (-12 (-4 *3 (-811)) (-4 *3 (-1159)) (-5 *1 (-1082 *3 *2)) (-4 *2 (-13 (-574 (-526) *3) (-10 -7 (-6 -4310) (-6 -4311)))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-811)) (-4 *3 (-1159)) (-5 *1 (-1082 *3 *2)) (-4 *2 (-13 (-574 (-526) *3) (-10 -7 (-6 -4310) (-6 -4311)))))) (-3675 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-574 (-526) *4) (-10 -7 (-6 -4310) (-6 -4311)))))) (-3674 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-574 (-526) *4) (-10 -7 (-6 -4310) (-6 -4311))))))) -(-10 -7 (-15 -3674 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -3675 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-811)) (PROGN (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|))) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-4207 (((-1112 3 |#1|) $) 107)) (-3685 (((-111) $) 72)) (-3686 (($ $ (-607 (-902 |#1|))) 20) (($ $ (-607 (-607 |#1|))) 75) (($ (-607 (-902 |#1|))) 74) (((-607 (-902 |#1|)) $) 73)) (-3691 (((-111) $) 41)) (-4028 (($ $ (-902 |#1|)) 46) (($ $ (-607 |#1|)) 51) (($ $ (-735)) 53) (($ (-902 |#1|)) 47) (((-902 |#1|) $) 45)) (-3677 (((-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) (|:| |constructs| (-735))) $) 105)) (-3695 (((-735) $) 26)) (-3696 (((-735) $) 25)) (-4206 (($ $ (-735) (-902 |#1|)) 39)) (-3683 (((-111) $) 82)) (-3684 (($ $ (-607 (-607 (-902 |#1|))) (-607 (-162)) (-162)) 89) (($ $ (-607 (-607 (-607 |#1|))) (-607 (-162)) (-162)) 91) (($ $ (-607 (-607 (-902 |#1|))) (-111) (-111)) 85) (($ $ (-607 (-607 (-607 |#1|))) (-111) (-111)) 93) (($ (-607 (-607 (-902 |#1|)))) 86) (($ (-607 (-607 (-902 |#1|))) (-111) (-111)) 87) (((-607 (-607 (-902 |#1|))) $) 84)) (-3832 (($ (-607 $)) 28) (($ $ $) 29)) (-3678 (((-607 (-162)) $) 102)) (-3682 (((-607 (-902 |#1|)) $) 96)) (-3679 (((-607 (-607 (-162))) $) 101)) (-3680 (((-607 (-607 (-607 (-902 |#1|)))) $) NIL)) (-3681 (((-607 (-607 (-607 (-735)))) $) 99)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3692 (((-735) $ (-607 (-902 |#1|))) 37)) (-3689 (((-111) $) 54)) (-3690 (($ $ (-607 (-902 |#1|))) 56) (($ $ (-607 (-607 |#1|))) 62) (($ (-607 (-902 |#1|))) 57) (((-607 (-902 |#1|)) $) 55)) (-3697 (($) 23) (($ (-1112 3 |#1|)) 24)) (-3719 (($ $) 35)) (-3693 (((-607 $) $) 34)) (-4073 (($ (-607 $)) 31)) (-3694 (((-607 $) $) 33)) (-4274 (((-823) $) 111)) (-3687 (((-111) $) 64)) (-3688 (($ $ (-607 (-902 |#1|))) 66) (($ $ (-607 (-607 |#1|))) 69) (($ (-607 (-902 |#1|))) 67) (((-607 (-902 |#1|)) $) 65)) (-3676 (($ $) 106)) (-3353 (((-111) $ $) NIL))) -(((-1083 |#1|) (-1084 |#1|) (-1004)) (T -1083)) -NIL -(-1084 |#1|) -((-2865 (((-111) $ $) 7)) (-4207 (((-1112 3 |#1|) $) 13)) (-3685 (((-111) $) 29)) (-3686 (($ $ (-607 (-902 |#1|))) 33) (($ $ (-607 (-607 |#1|))) 32) (($ (-607 (-902 |#1|))) 31) (((-607 (-902 |#1|)) $) 30)) (-3691 (((-111) $) 44)) (-4028 (($ $ (-902 |#1|)) 49) (($ $ (-607 |#1|)) 48) (($ $ (-735)) 47) (($ (-902 |#1|)) 46) (((-902 |#1|) $) 45)) (-3677 (((-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) (|:| |constructs| (-735))) $) 15)) (-3695 (((-735) $) 58)) (-3696 (((-735) $) 59)) (-4206 (($ $ (-735) (-902 |#1|)) 50)) (-3683 (((-111) $) 21)) (-3684 (($ $ (-607 (-607 (-902 |#1|))) (-607 (-162)) (-162)) 28) (($ $ (-607 (-607 (-607 |#1|))) (-607 (-162)) (-162)) 27) (($ $ (-607 (-607 (-902 |#1|))) (-111) (-111)) 26) (($ $ (-607 (-607 (-607 |#1|))) (-111) (-111)) 25) (($ (-607 (-607 (-902 |#1|)))) 24) (($ (-607 (-607 (-902 |#1|))) (-111) (-111)) 23) (((-607 (-607 (-902 |#1|))) $) 22)) (-3832 (($ (-607 $)) 57) (($ $ $) 56)) (-3678 (((-607 (-162)) $) 16)) (-3682 (((-607 (-902 |#1|)) $) 20)) (-3679 (((-607 (-607 (-162))) $) 17)) (-3680 (((-607 (-607 (-607 (-902 |#1|)))) $) 18)) (-3681 (((-607 (-607 (-607 (-735)))) $) 19)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3692 (((-735) $ (-607 (-902 |#1|))) 51)) (-3689 (((-111) $) 39)) (-3690 (($ $ (-607 (-902 |#1|))) 43) (($ $ (-607 (-607 |#1|))) 42) (($ (-607 (-902 |#1|))) 41) (((-607 (-902 |#1|)) $) 40)) (-3697 (($) 61) (($ (-1112 3 |#1|)) 60)) (-3719 (($ $) 52)) (-3693 (((-607 $) $) 53)) (-4073 (($ (-607 $)) 55)) (-3694 (((-607 $) $) 54)) (-4274 (((-823) $) 11)) (-3687 (((-111) $) 34)) (-3688 (($ $ (-607 (-902 |#1|))) 38) (($ $ (-607 (-607 |#1|))) 37) (($ (-607 (-902 |#1|))) 36) (((-607 (-902 |#1|)) $) 35)) (-3676 (($ $) 14)) (-3353 (((-111) $ $) 6))) -(((-1084 |#1|) (-134) (-1004)) (T -1084)) -((-4274 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-823)))) (-3697 (*1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-1112 3 *3)) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3832 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3694 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)))) (-3693 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)))) (-3719 (*1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-607 (-902 *4))) (-4 *1 (-1084 *4)) (-4 *4 (-1004)) (-5 *2 (-735)))) (-4206 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-902 *4)) (-4 *1 (-1084 *4)) (-4 *4 (-1004)))) (-4028 (*1 *1 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-4028 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-4028 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-902 *3)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3684 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-607 (-902 *5)))) (-5 *3 (-607 (-162))) (-5 *4 (-162)) (-4 *1 (-1084 *5)) (-4 *5 (-1004)))) (-3684 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-607 (-607 *5)))) (-5 *3 (-607 (-162))) (-5 *4 (-162)) (-4 *1 (-1084 *5)) (-4 *5 (-1004)))) (-3684 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-607 (-607 (-902 *4)))) (-5 *3 (-111)) (-4 *1 (-1084 *4)) (-4 *4 (-1004)))) (-3684 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-607 (-607 (-607 *4)))) (-5 *3 (-111)) (-4 *1 (-1084 *4)) (-4 *4 (-1004)))) (-3684 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 *3)))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3684 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-607 (-607 (-902 *4)))) (-5 *3 (-111)) (-4 *4 (-1004)) (-4 *1 (-1084 *4)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-902 *3)))))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-607 (-735))))))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-607 (-902 *3))))))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-162)))))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-162))))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) (|:| |constructs| (-735)))))) (-3676 (*1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-1112 3 *3))))) -(-13 (-1052) (-10 -8 (-15 -3697 ($)) (-15 -3697 ($ (-1112 3 |t#1|))) (-15 -3696 ((-735) $)) (-15 -3695 ((-735) $)) (-15 -3832 ($ (-607 $))) (-15 -3832 ($ $ $)) (-15 -4073 ($ (-607 $))) (-15 -3694 ((-607 $) $)) (-15 -3693 ((-607 $) $)) (-15 -3719 ($ $)) (-15 -3692 ((-735) $ (-607 (-902 |t#1|)))) (-15 -4206 ($ $ (-735) (-902 |t#1|))) (-15 -4028 ($ $ (-902 |t#1|))) (-15 -4028 ($ $ (-607 |t#1|))) (-15 -4028 ($ $ (-735))) (-15 -4028 ($ (-902 |t#1|))) (-15 -4028 ((-902 |t#1|) $)) (-15 -3691 ((-111) $)) (-15 -3690 ($ $ (-607 (-902 |t#1|)))) (-15 -3690 ($ $ (-607 (-607 |t#1|)))) (-15 -3690 ($ (-607 (-902 |t#1|)))) (-15 -3690 ((-607 (-902 |t#1|)) $)) (-15 -3689 ((-111) $)) (-15 -3688 ($ $ (-607 (-902 |t#1|)))) (-15 -3688 ($ $ (-607 (-607 |t#1|)))) (-15 -3688 ($ (-607 (-902 |t#1|)))) (-15 -3688 ((-607 (-902 |t#1|)) $)) (-15 -3687 ((-111) $)) (-15 -3686 ($ $ (-607 (-902 |t#1|)))) (-15 -3686 ($ $ (-607 (-607 |t#1|)))) (-15 -3686 ($ (-607 (-902 |t#1|)))) (-15 -3686 ((-607 (-902 |t#1|)) $)) (-15 -3685 ((-111) $)) (-15 -3684 ($ $ (-607 (-607 (-902 |t#1|))) (-607 (-162)) (-162))) (-15 -3684 ($ $ (-607 (-607 (-607 |t#1|))) (-607 (-162)) (-162))) (-15 -3684 ($ $ (-607 (-607 (-902 |t#1|))) (-111) (-111))) (-15 -3684 ($ $ (-607 (-607 (-607 |t#1|))) (-111) (-111))) (-15 -3684 ($ (-607 (-607 (-902 |t#1|))))) (-15 -3684 ($ (-607 (-607 (-902 |t#1|))) (-111) (-111))) (-15 -3684 ((-607 (-607 (-902 |t#1|))) $)) (-15 -3683 ((-111) $)) (-15 -3682 ((-607 (-902 |t#1|)) $)) (-15 -3681 ((-607 (-607 (-607 (-735)))) $)) (-15 -3680 ((-607 (-607 (-607 (-902 |t#1|)))) $)) (-15 -3679 ((-607 (-607 (-162))) $)) (-15 -3678 ((-607 (-162)) $)) (-15 -3677 ((-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) (|:| |constructs| (-735))) $)) (-15 -3676 ($ $)) (-15 -4207 ((-1112 3 |t#1|) $)) (-15 -4274 ((-823) $)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-3698 (((-607 (-1128)) (-1106)) 9))) -(((-1085) (-10 -7 (-15 -3698 ((-607 (-1128)) (-1106))))) (T -1085)) -((-3698 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-607 (-1128))) (-5 *1 (-1085))))) -(-10 -7 (-15 -3698 ((-607 (-1128)) (-1106)))) -((-3701 (((-1211) (-607 (-823))) 23) (((-1211) (-823)) 22)) (-3700 (((-1211) (-607 (-823))) 21) (((-1211) (-823)) 20)) (-3699 (((-1211) (-607 (-823))) 19) (((-1211) (-823)) 11) (((-1211) (-1106) (-823)) 17))) -(((-1086) (-10 -7 (-15 -3699 ((-1211) (-1106) (-823))) (-15 -3699 ((-1211) (-823))) (-15 -3700 ((-1211) (-823))) (-15 -3701 ((-1211) (-823))) (-15 -3699 ((-1211) (-607 (-823)))) (-15 -3700 ((-1211) (-607 (-823)))) (-15 -3701 ((-1211) (-607 (-823)))))) (T -1086)) -((-3701 (*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086))))) -(-10 -7 (-15 -3699 ((-1211) (-1106) (-823))) (-15 -3699 ((-1211) (-823))) (-15 -3700 ((-1211) (-823))) (-15 -3701 ((-1211) (-823))) (-15 -3699 ((-1211) (-607 (-823)))) (-15 -3700 ((-1211) (-607 (-823)))) (-15 -3701 ((-1211) (-607 (-823))))) -((-3705 (($ $ $) 10)) (-3704 (($ $) 9)) (-3708 (($ $ $) 13)) (-3710 (($ $ $) 15)) (-3707 (($ $ $) 12)) (-3709 (($ $ $) 14)) (-3712 (($ $) 17)) (-3711 (($ $) 16)) (-3702 (($ $) 6)) (-3706 (($ $ $) 11) (($ $) 7)) (-3703 (($ $ $) 8))) -(((-1087) (-134)) (T -1087)) -((-3712 (*1 *1 *1) (-4 *1 (-1087))) (-3711 (*1 *1 *1) (-4 *1 (-1087))) (-3710 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3709 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3708 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3707 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3706 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3705 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3704 (*1 *1 *1) (-4 *1 (-1087))) (-3703 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3706 (*1 *1 *1) (-4 *1 (-1087))) (-3702 (*1 *1 *1) (-4 *1 (-1087)))) -(-13 (-10 -8 (-15 -3702 ($ $)) (-15 -3706 ($ $)) (-15 -3703 ($ $ $)) (-15 -3704 ($ $)) (-15 -3705 ($ $ $)) (-15 -3706 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3709 ($ $ $)) (-15 -3710 ($ $ $)) (-15 -3711 ($ $)) (-15 -3712 ($ $)))) -((-2865 (((-111) $ $) 41)) (-3721 ((|#1| $) 15)) (-3713 (((-111) $ $ (-1 (-111) |#2| |#2|)) 36)) (-3720 (((-111) $) 17)) (-3718 (($ $ |#1|) 28)) (-3716 (($ $ (-111)) 30)) (-3715 (($ $) 31)) (-3717 (($ $ |#2|) 29)) (-3554 (((-1106) $) NIL)) (-3714 (((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|)) 35)) (-3555 (((-1070) $) NIL)) (-3722 (((-111) $) 14)) (-3887 (($) 10)) (-3719 (($ $) 27)) (-3844 (($ |#1| |#2| (-111)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1636 |#2|))) 21) (((-607 $) (-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|)))) 24) (((-607 $) |#1| (-607 |#2|)) 26)) (-4239 ((|#2| $) 16)) (-4274 (((-823) $) 50)) (-3353 (((-111) $ $) 39))) -(((-1088 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -3887 ($)) (-15 -3722 ((-111) $)) (-15 -3721 (|#1| $)) (-15 -4239 (|#2| $)) (-15 -3720 ((-111) $)) (-15 -3844 ($ |#1| |#2| (-111))) (-15 -3844 ($ |#1| |#2|)) (-15 -3844 ($ (-2 (|:| |val| |#1|) (|:| -1636 |#2|)))) (-15 -3844 ((-607 $) (-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))))) (-15 -3844 ((-607 $) |#1| (-607 |#2|))) (-15 -3719 ($ $)) (-15 -3718 ($ $ |#1|)) (-15 -3717 ($ $ |#2|)) (-15 -3716 ($ $ (-111))) (-15 -3715 ($ $)) (-15 -3714 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -3713 ((-111) $ $ (-1 (-111) |#2| |#2|))))) (-13 (-1052) (-33)) (-13 (-1052) (-33))) (T -1088)) -((-3887 (*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3721 (*1 *2 *1) (-12 (-4 *2 (-13 (-1052) (-33))) (-5 *1 (-1088 *2 *3)) (-4 *3 (-13 (-1052) (-33))))) (-4239 (*1 *2 *1) (-12 (-4 *2 (-13 (-1052) (-33))) (-5 *1 (-1088 *3 *2)) (-4 *3 (-13 (-1052) (-33))))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1636 *4))) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1088 *3 *4)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| |val| *4) (|:| -1636 *5)))) (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-607 (-1088 *4 *5))) (-5 *1 (-1088 *4 *5)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *5)) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-607 (-1088 *3 *5))) (-5 *1 (-1088 *3 *5)) (-4 *3 (-13 (-1052) (-33))))) (-3719 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3718 (*1 *1 *1 *2) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3717 (*1 *1 *1 *2) (-12 (-5 *1 (-1088 *3 *2)) (-4 *3 (-13 (-1052) (-33))) (-4 *2 (-13 (-1052) (-33))))) (-3716 (*1 *1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3715 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3714 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1052) (-33))) (-4 *6 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1088 *5 *6)))) (-3713 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1088 *4 *5)) (-4 *4 (-13 (-1052) (-33)))))) -(-13 (-1052) (-10 -8 (-15 -3887 ($)) (-15 -3722 ((-111) $)) (-15 -3721 (|#1| $)) (-15 -4239 (|#2| $)) (-15 -3720 ((-111) $)) (-15 -3844 ($ |#1| |#2| (-111))) (-15 -3844 ($ |#1| |#2|)) (-15 -3844 ($ (-2 (|:| |val| |#1|) (|:| -1636 |#2|)))) (-15 -3844 ((-607 $) (-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))))) (-15 -3844 ((-607 $) |#1| (-607 |#2|))) (-15 -3719 ($ $)) (-15 -3718 ($ $ |#1|)) (-15 -3717 ($ $ |#2|)) (-15 -3716 ($ $ (-111))) (-15 -3715 ($ $)) (-15 -3714 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -3713 ((-111) $ $ (-1 (-111) |#2| |#2|))))) -((-2865 (((-111) $ $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-3721 (((-1088 |#1| |#2|) $) 25)) (-3730 (($ $) 76)) (-3726 (((-111) (-1088 |#1| |#2|) $ (-1 (-111) |#2| |#2|)) 85)) (-3723 (($ $ $ (-607 (-1088 |#1| |#2|))) 90) (($ $ $ (-607 (-1088 |#1| |#2|)) (-1 (-111) |#2| |#2|)) 91)) (-1244 (((-111) $ (-735)) NIL)) (-3325 (((-1088 |#1| |#2|) $ (-1088 |#1| |#2|)) 43 (|has| $ (-6 -4311)))) (-4106 (((-1088 |#1| |#2|) $ #1="value" (-1088 |#1| |#2|)) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3728 (((-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))) $) 80)) (-3724 (($ (-1088 |#1| |#2|) $) 39)) (-3725 (($ (-1088 |#1| |#2|) $) 31)) (-2044 (((-607 (-1088 |#1| |#2|)) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 51)) (-3727 (((-111) (-1088 |#1| |#2|) $) 82)) (-3327 (((-111) $ $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 (-1088 |#1| |#2|)) $) 55 (|has| $ (-6 -4310)))) (-3557 (((-111) (-1088 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-1088 |#1| |#2|) (-1052))))) (-2048 (($ (-1 (-1088 |#1| |#2|) (-1088 |#1| |#2|)) $) 47 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-1088 |#1| |#2|) (-1088 |#1| |#2|)) $) 46)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 (-1088 |#1| |#2|)) $) 53)) (-3841 (((-111) $) 42)) (-3554 (((-1106) $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-3555 (((-1070) $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-3731 (((-3 $ "failed") $) 75)) (-2046 (((-111) (-1 (-111) (-1088 |#1| |#2|)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-1088 |#1| |#2|)))) NIL (-12 (|has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|))) (|has| (-1088 |#1| |#2|) (-1052)))) (($ $ (-278 (-1088 |#1| |#2|))) NIL (-12 (|has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|))) (|has| (-1088 |#1| |#2|) (-1052)))) (($ $ (-1088 |#1| |#2|) (-1088 |#1| |#2|)) NIL (-12 (|has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|))) (|has| (-1088 |#1| |#2|) (-1052)))) (($ $ (-607 (-1088 |#1| |#2|)) (-607 (-1088 |#1| |#2|))) NIL (-12 (|has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|))) (|has| (-1088 |#1| |#2|) (-1052))))) (-1245 (((-111) $ $) 50)) (-3722 (((-111) $) 22)) (-3887 (($) 24)) (-4118 (((-1088 |#1| |#2|) $ #1#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) 44)) (-2045 (((-735) (-1 (-111) (-1088 |#1| |#2|)) $) NIL (|has| $ (-6 -4310))) (((-735) (-1088 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-1088 |#1| |#2|) (-1052))))) (-3719 (($ $) 49)) (-3844 (($ (-1088 |#1| |#2|)) 9) (($ |#1| |#2| (-607 $)) 12) (($ |#1| |#2| (-607 (-1088 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-607 |#2|)) 17)) (-3729 (((-607 |#2|) $) 81)) (-4274 (((-823) $) 73 (|has| (-1088 |#1| |#2|) (-583 (-823))))) (-3836 (((-607 $) $) 28)) (-3328 (((-111) $ $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-2047 (((-111) (-1 (-111) (-1088 |#1| |#2|)) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 64 (|has| (-1088 |#1| |#2|) (-1052)))) (-4273 (((-735) $) 58 (|has| $ (-6 -4310))))) -(((-1089 |#1| |#2|) (-13 (-968 (-1088 |#1| |#2|)) (-10 -8 (-6 -4311) (-6 -4310) (-15 -3731 ((-3 $ "failed") $)) (-15 -3730 ($ $)) (-15 -3844 ($ (-1088 |#1| |#2|))) (-15 -3844 ($ |#1| |#2| (-607 $))) (-15 -3844 ($ |#1| |#2| (-607 (-1088 |#1| |#2|)))) (-15 -3844 ($ |#1| |#2| |#1| (-607 |#2|))) (-15 -3729 ((-607 |#2|) $)) (-15 -3728 ((-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))) $)) (-15 -3727 ((-111) (-1088 |#1| |#2|) $)) (-15 -3726 ((-111) (-1088 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -3725 ($ (-1088 |#1| |#2|) $)) (-15 -3724 ($ (-1088 |#1| |#2|) $)) (-15 -3723 ($ $ $ (-607 (-1088 |#1| |#2|)))) (-15 -3723 ($ $ $ (-607 (-1088 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) (-13 (-1052) (-33)) (-13 (-1052) (-33))) (T -1089)) -((-3731 (*1 *1 *1) (|partial| -12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-607 (-1089 *2 *3))) (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-607 (-1088 *2 *3))) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))) (-5 *1 (-1089 *2 *3)))) (-3844 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-1052) (-33))) (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-607 *4)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1089 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3727 (*1 *2 *3 *1) (-12 (-5 *3 (-1088 *4 *5)) (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1089 *4 *5)))) (-3726 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1088 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1052) (-33))) (-4 *6 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1089 *5 *6)))) (-3725 (*1 *1 *2 *1) (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) (-3723 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-607 (-1088 *3 *4))) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) (-3723 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1088 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) (-5 *1 (-1089 *4 *5))))) -(-13 (-968 (-1088 |#1| |#2|)) (-10 -8 (-6 -4311) (-6 -4310) (-15 -3731 ((-3 $ "failed") $)) (-15 -3730 ($ $)) (-15 -3844 ($ (-1088 |#1| |#2|))) (-15 -3844 ($ |#1| |#2| (-607 $))) (-15 -3844 ($ |#1| |#2| (-607 (-1088 |#1| |#2|)))) (-15 -3844 ($ |#1| |#2| |#1| (-607 |#2|))) (-15 -3729 ((-607 |#2|) $)) (-15 -3728 ((-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))) $)) (-15 -3727 ((-111) (-1088 |#1| |#2|) $)) (-15 -3726 ((-111) (-1088 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -3725 ($ (-1088 |#1| |#2|) $)) (-15 -3724 ($ (-1088 |#1| |#2|) $)) (-15 -3723 ($ $ $ (-607 (-1088 |#1| |#2|)))) (-15 -3723 ($ $ $ (-607 (-1088 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3733 (($ $) NIL)) (-3649 ((|#2| $) NIL)) (-3418 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3732 (($ (-653 |#2|)) 47)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3652 (($ |#2|) 9)) (-3855 (($) NIL T CONST)) (-3407 (($ $) 60 (|has| |#2| (-292)))) (-3409 (((-225 |#1| |#2|) $ (-526)) 34)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 |#2| #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) ((|#2| $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) 74)) (-3406 (((-735) $) 62 (|has| |#2| (-533)))) (-3410 ((|#2| $ (-526) (-526)) NIL)) (-2044 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL)) (-3405 (((-735) $) 64 (|has| |#2| (-533)))) (-3404 (((-607 (-225 |#1| |#2|)) $) 68 (|has| |#2| (-533)))) (-3412 (((-735) $) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#2| $) 58 (|has| |#2| (-6 (-4312 #2="*"))))) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#2|))) 29)) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3915 (((-607 (-607 |#2|)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3911 (((-3 $ "failed") $) 71 (|has| |#2| (-348)))) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533)))) (-2046 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) (-526) |#2|) NIL) ((|#2| $ (-526) (-526)) NIL)) (-4129 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3648 ((|#2| $) NIL)) (-3651 (($ (-607 |#2|)) 42)) (-3419 (((-111) $) NIL)) (-3650 (((-225 |#1| |#2|) $) NIL)) (-3647 ((|#2| $) 56 (|has| |#2| (-6 (-4312 #2#))))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 83 (|has| |#2| (-584 (-515))))) (-3408 (((-225 |#1| |#2|) $ (-526)) 36)) (-4274 (((-823) $) 39) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#2| (-995 (-392 (-526))))) (($ |#2|) NIL) (((-653 |#2|) $) 44)) (-3423 (((-735)) 17)) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-2957 (($) 11 T CONST)) (-2964 (($) 14 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) 54) (($ $ (-526)) 73 (|has| |#2| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-225 |#1| |#2|) $ (-225 |#1| |#2|)) 50) (((-225 |#1| |#2|) (-225 |#1| |#2|) $) 52)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1090 |#1| |#2|) (-13 (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-583 (-653 |#2|)) (-10 -8 (-15 -3733 ($ $)) (-15 -3732 ($ (-653 |#2|))) (-15 -4274 ((-653 |#2|) $)) (IF (|has| |#2| (-6 (-4312 "*"))) (-6 -4299) |%noBranch|) (IF (|has| |#2| (-6 (-4312 "*"))) (IF (|has| |#2| (-6 -4307)) (-6 -4307) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) (-735) (-1004)) (T -1090)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-653 *4)) (-5 *1 (-1090 *3 *4)) (-14 *3 (-735)) (-4 *4 (-1004)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-1090 *2 *3)) (-14 *2 (-735)) (-4 *3 (-1004)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-653 *4)) (-4 *4 (-1004)) (-5 *1 (-1090 *3 *4)) (-14 *3 (-735))))) -(-13 (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-583 (-653 |#2|)) (-10 -8 (-15 -3733 ($ $)) (-15 -3732 ($ (-653 |#2|))) (-15 -4274 ((-653 |#2|) $)) (IF (|has| |#2| (-6 (-4312 "*"))) (-6 -4299) |%noBranch|) (IF (|has| |#2| (-6 (-4312 "*"))) (IF (|has| |#2| (-6 -4307)) (-6 -4307) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) -((-3746 (($ $) 19)) (-3736 (($ $ (-138)) 10) (($ $ (-135)) 14)) (-3744 (((-111) $ $) 24)) (-3748 (($ $) 17)) (-4118 (((-138) $ (-526) (-138)) NIL) (((-138) $ (-526)) NIL) (($ $ (-1172 (-526))) NIL) (($ $ $) 29)) (-4274 (($ (-138)) 27) (((-823) $) NIL))) -(((-1091 |#1|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -3736 (|#1| |#1| (-135))) (-15 -3736 (|#1| |#1| (-138))) (-15 -4274 (|#1| (-138))) (-15 -3744 ((-111) |#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4118 ((-138) |#1| (-526))) (-15 -4118 ((-138) |#1| (-526) (-138)))) (-1092)) (T -1091)) -NIL -(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -3736 (|#1| |#1| (-135))) (-15 -3736 (|#1| |#1| (-138))) (-15 -4274 (|#1| (-138))) (-15 -3744 ((-111) |#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4118 ((-138) |#1| (-526))) (-15 -4118 ((-138) |#1| (-526) (-138)))) -((-2865 (((-111) $ $) 19 (|has| (-138) (-1052)))) (-3745 (($ $) 120)) (-3746 (($ $) 121)) (-3736 (($ $ (-138)) 108) (($ $ (-135)) 107)) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-3743 (((-111) $ $) 118)) (-3742 (((-111) $ $ (-526)) 117)) (-3737 (((-607 $) $ (-138)) 110) (((-607 $) $ (-135)) 109)) (-1824 (((-111) (-1 (-111) (-138) (-138)) $) 98) (((-111) $) 92 (|has| (-138) (-811)))) (-1822 (($ (-1 (-111) (-138) (-138)) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| (-138) (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) (-138) (-138)) $) 99) (($ $) 93 (|has| (-138) (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 (((-138) $ (-526) (-138)) 52 (|has| $ (-6 -4311))) (((-138) $ (-1172 (-526)) (-138)) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-138)) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-3734 (($ $ (-138)) 104) (($ $ (-135)) 103)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-3739 (($ $ (-1172 (-526)) $) 114)) (-1375 (($ $) 78 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-138) $) 77 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-138)) $) 74 (|has| $ (-6 -4310)))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) 76 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) 73 (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $) 72 (|has| $ (-6 -4310)))) (-1613 (((-138) $ (-526) (-138)) 53 (|has| $ (-6 -4311)))) (-3410 (((-138) $ (-526)) 51)) (-3744 (((-111) $ $) 119)) (-3738 (((-526) (-1 (-111) (-138)) $) 97) (((-526) (-138) $) 96 (|has| (-138) (-1052))) (((-526) (-138) $ (-526)) 95 (|has| (-138) (-1052))) (((-526) $ $ (-526)) 113) (((-526) (-135) $ (-526)) 112)) (-2044 (((-607 (-138)) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-138)) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| (-138) (-811)))) (-3832 (($ (-1 (-111) (-138) (-138)) $ $) 101) (($ $ $) 94 (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) 27 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| (-138) (-811)))) (-3740 (((-111) $ $ (-138)) 115)) (-3741 (((-735) $ $ (-138)) 116)) (-2048 (($ (-1 (-138) (-138)) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) 35) (($ (-1 (-138) (-138) (-138)) $ $) 64)) (-3747 (($ $) 122)) (-3748 (($ $) 123)) (-4038 (((-111) $ (-735)) 10)) (-3735 (($ $ (-138)) 106) (($ $ (-135)) 105)) (-3554 (((-1106) $) 22 (|has| (-138) (-1052)))) (-2351 (($ (-138) $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| (-138) (-1052)))) (-4119 (((-138) $) 42 (|has| (-526) (-811)))) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) 71)) (-2277 (($ $ (-138)) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-138)) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-138)))) 26 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) 25 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) 24 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-138)) (-607 (-138))) 23 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) (-138) $) 45 (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2283 (((-607 (-138)) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 (((-138) $ (-526) (-138)) 50) (((-138) $ (-526)) 49) (($ $ (-1172 (-526))) 63) (($ $ $) 102)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) (-138)) $) 31 (|has| $ (-6 -4310))) (((-735) (-138) $) 28 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| (-138) (-584 (-515))))) (-3844 (($ (-607 (-138))) 70)) (-4120 (($ $ (-138)) 68) (($ (-138) $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (($ (-138)) 111) (((-823) $) 18 (|has| (-138) (-583 (-823))))) (-2047 (((-111) (-1 (-111) (-138)) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| (-138) (-811)))) (-2864 (((-111) $ $) 83 (|has| (-138) (-811)))) (-3353 (((-111) $ $) 20 (|has| (-138) (-1052)))) (-2984 (((-111) $ $) 85 (|has| (-138) (-811)))) (-2985 (((-111) $ $) 82 (|has| (-138) (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-1092) (-134)) (T -1092)) -((-3748 (*1 *1 *1) (-4 *1 (-1092))) (-3747 (*1 *1 *1) (-4 *1 (-1092))) (-3746 (*1 *1 *1) (-4 *1 (-1092))) (-3745 (*1 *1 *1) (-4 *1 (-1092))) (-3744 (*1 *2 *1 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-111)))) (-3743 (*1 *2 *1 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-111)))) (-3742 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-526)) (-5 *2 (-111)))) (-3741 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-138)) (-5 *2 (-735)))) (-3740 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-138)) (-5 *2 (-111)))) (-3739 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1172 (-526))))) (-3738 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-526)))) (-3738 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-526)) (-5 *3 (-135)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-138)) (-4 *1 (-1092)))) (-3737 (*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-607 *1)) (-4 *1 (-1092)))) (-3737 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-607 *1)) (-4 *1 (-1092)))) (-3736 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138)))) (-3736 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) (-3735 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138)))) (-3735 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) (-3734 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138)))) (-3734 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) (-4118 (*1 *1 *1 *1) (-4 *1 (-1092)))) -(-13 (-19 (-138)) (-10 -8 (-15 -3748 ($ $)) (-15 -3747 ($ $)) (-15 -3746 ($ $)) (-15 -3745 ($ $)) (-15 -3744 ((-111) $ $)) (-15 -3743 ((-111) $ $)) (-15 -3742 ((-111) $ $ (-526))) (-15 -3741 ((-735) $ $ (-138))) (-15 -3740 ((-111) $ $ (-138))) (-15 -3739 ($ $ (-1172 (-526)) $)) (-15 -3738 ((-526) $ $ (-526))) (-15 -3738 ((-526) (-135) $ (-526))) (-15 -4274 ($ (-138))) (-15 -3737 ((-607 $) $ (-138))) (-15 -3737 ((-607 $) $ (-135))) (-15 -3736 ($ $ (-138))) (-15 -3736 ($ $ (-135))) (-15 -3735 ($ $ (-138))) (-15 -3735 ($ $ (-135))) (-15 -3734 ($ $ (-138))) (-15 -3734 ($ $ (-135))) (-15 -4118 ($ $ $)))) -(((-33) . T) ((-100) -3850 (|has| (-138) (-1052)) (|has| (-138) (-811))) ((-583 (-823)) -3850 (|has| (-138) (-1052)) (|has| (-138) (-811)) (|has| (-138) (-583 (-823)))) ((-145 #1=(-138)) . T) ((-584 (-515)) |has| (-138) (-584 (-515))) ((-271 #2=(-526) #1#) . T) ((-273 #2# #1#) . T) ((-294 #1#) -12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))) ((-357 #1#) . T) ((-472 #1#) . T) ((-574 #2# #1#) . T) ((-496 #1# #1#) -12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))) ((-616 #1#) . T) ((-19 #1#) . T) ((-811) |has| (-138) (-811)) ((-1052) -3850 (|has| (-138) (-1052)) (|has| (-138) (-811))) ((-1159) . T)) -((-3755 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735)) 94)) (-3752 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735)) 54)) (-3756 (((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)) 85)) (-3750 (((-735) (-607 |#4|) (-607 |#5|)) 27)) (-3753 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735)) 56) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111)) 58)) (-3754 (((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111)) 76) (((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111)) 77)) (-4287 (((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) 80)) (-3751 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 53)) (-3749 (((-735) (-607 |#4|) (-607 |#5|)) 19))) -(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3749 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3750 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3751 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3755 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735))) (-15 -4287 ((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3756 ((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1060 |#1| |#2| |#3| |#4|)) (T -1093)) -((-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *4 (-735)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-1211)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1060 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1106)) (-5 *1 (-1093 *4 *5 *6 *7 *8)))) (-3755 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-607 *11)) (|:| |todo| (-607 (-2 (|:| |val| *3) (|:| -1636 *11)))))) (-5 *6 (-735)) (-5 *2 (-607 (-2 (|:| |val| (-607 *10)) (|:| -1636 *11)))) (-5 *3 (-607 *10)) (-5 *4 (-607 *11)) (-4 *10 (-1018 *7 *8 *9)) (-4 *11 (-1060 *7 *8 *9 *10)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) (-5 *1 (-1093 *7 *8 *9 *10 *11)))) (-3754 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) (-3754 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) (-3753 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3)))) (-3753 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1060 *6 *7 *8 *3)))) (-3753 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-735)) (-5 *6 (-111)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) (-4 *3 (-1018 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *7 *8 *9 *3 *4)) (-4 *4 (-1060 *7 *8 *9 *3)))) (-3752 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3)))) (-3752 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1060 *6 *7 *8 *3)))) (-3751 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3)))) (-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-735)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-735)) (-5 *1 (-1093 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3749 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3750 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3751 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3755 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735))) (-15 -4287 ((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3756 ((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)))) -((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) NIL)) (-4004 (((-607 $) (-607 |#4|)) 110) (((-607 $) (-607 |#4|) (-111)) 111) (((-607 $) (-607 |#4|) (-111) (-111)) 109) (((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111)) 112)) (-3384 (((-607 |#3|) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4010 ((|#4| |#4| $) NIL)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 84)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) 26 (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3200 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) NIL)) (-3469 (($ (-607 |#4|)) NIL)) (-4117 (((-3 $ #1#) $) 39)) (-4007 ((|#4| |#4| $) 65)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-4005 ((|#4| |#4| $) NIL)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) NIL)) (-3511 (((-111) |#4| $) NIL)) (-3509 (((-111) |#4| $) NIL)) (-3512 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3757 (((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111)) 124)) (-2044 (((-607 |#4|) $) 16 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3493 ((|#3| $) 33)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 17 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2048 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 21)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) NIL)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 103)) (-4116 (((-3 |#4| #1#) $) 37)) (-3506 (((-607 $) |#4| $) 88)) (-3508 (((-3 (-111) (-607 $)) |#4| $) NIL)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 98) (((-111) |#4| $) 53)) (-3550 (((-607 $) |#4| $) 107) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) 108) (((-607 $) |#4| (-607 $)) NIL)) (-3758 (((-607 $) (-607 |#4|) (-111) (-111) (-111)) 119)) (-3759 (($ |#4| $) 75) (($ (-607 |#4|) $) 76) (((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 74)) (-4019 (((-607 |#4|) $) NIL)) (-4013 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4008 ((|#4| |#4| $) NIL)) (-4021 (((-111) $ $) NIL)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4009 ((|#4| |#4| $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 |#4| #1#) $) 35)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-4001 (((-3 $ #1#) $ |#4|) 48)) (-4087 (($ $ |#4|) NIL) (((-607 $) |#4| $) 90) (((-607 $) |#4| (-607 $)) NIL) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) 86)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 15)) (-3887 (($) 13)) (-4264 (((-735) $) NIL)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) 12)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 20)) (-3210 (($ $ |#3|) 42)) (-3212 (($ $ |#3|) 44)) (-4006 (($ $) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) 31) (((-607 |#4|) $) 40)) (-4000 (((-735) $) NIL (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) NIL)) (-3503 (((-607 $) |#4| $) 54) (((-607 $) |#4| (-607 $)) NIL) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) NIL)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) NIL)) (-3510 (((-111) |#4| $) NIL)) (-4250 (((-111) |#3| $) 61)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1094 |#1| |#2| |#3| |#4|) (-13 (-1060 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3759 ((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111))) (-15 -3758 ((-607 $) (-607 |#4|) (-111) (-111) (-111))) (-15 -3757 ((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111))))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -1094)) -((-3759 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *3))) (-5 *1 (-1094 *5 *6 *7 *3)) (-4 *3 (-1018 *5 *6 *7)))) (-4004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) (-5 *1 (-1094 *5 *6 *7 *8)))) (-4004 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) (-5 *1 (-1094 *5 *6 *7 *8)))) (-3758 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) (-5 *1 (-1094 *5 *6 *7 *8)))) (-3757 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-607 *8)) (|:| |towers| (-607 (-1094 *5 *6 *7 *8))))) (-5 *1 (-1094 *5 *6 *7 *8)) (-5 *3 (-607 *8))))) -(-13 (-1060 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3759 ((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111))) (-15 -3758 ((-607 $) (-607 |#4|) (-111) (-111) (-111))) (-15 -3757 ((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111))))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3643 ((|#1| $) 34)) (-3760 (($ (-607 |#1|)) 39)) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3645 ((|#1| |#1| $) 36)) (-3644 ((|#1| $) 32)) (-2044 (((-607 |#1|) $) 18 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 22)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) 35)) (-3929 (($ |#1| $) 37)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1307 ((|#1| $) 33)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 31)) (-3887 (($) 38)) (-3642 (((-735) $) 29)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 27)) (-4274 (((-823) $) 14 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) NIL)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 17 (|has| |#1| (-1052)))) (-4273 (((-735) $) 30 (|has| $ (-6 -4310))))) -(((-1095 |#1|) (-13 (-1071 |#1|) (-10 -8 (-15 -3760 ($ (-607 |#1|))))) (-1159)) (T -1095)) -((-3760 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1095 *3))))) -(-13 (-1071 |#1|) (-10 -8 (-15 -3760 ($ (-607 |#1|))))) -((-4106 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1172 (-526)) |#2|) 44) ((|#2| $ (-526) |#2|) 41)) (-3761 (((-111) $) 12)) (-2048 (($ (-1 |#2| |#2|) $) 39)) (-4119 ((|#2| $) NIL) (($ $ (-735)) 17)) (-2277 (($ $ |#2|) 40)) (-3762 (((-111) $) 11)) (-4118 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1172 (-526))) 31) ((|#2| $ (-526)) 23) ((|#2| $ (-526) |#2|) NIL)) (-4109 (($ $ $) 47) (($ $ |#2|) NIL)) (-4120 (($ $ $) 33) (($ |#2| $) NIL) (($ (-607 $)) 36) (($ $ |#2|) NIL))) -(((-1096 |#1| |#2|) (-10 -8 (-15 -3761 ((-111) |#1|)) (-15 -3762 ((-111) |#1|)) (-15 -4106 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -2277 (|#1| |#1| |#2|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4106 (|#2| |#1| (-1172 (-526)) |#2|)) (-15 -4106 (|#2| |#1| #1="last" |#2|)) (-15 -4106 (|#1| |#1| #2="rest" |#1|)) (-15 -4106 (|#2| |#1| #3="first" |#2|)) (-15 -4109 (|#1| |#1| |#2|)) (-15 -4109 (|#1| |#1| |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -4118 (|#1| |#1| #2#)) (-15 -4119 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| #3#)) (-15 -4119 (|#2| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4106 (|#2| |#1| #4="value" |#2|)) (-15 -4118 (|#2| |#1| #4#)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|))) (-1097 |#2|) (-1159)) (T -1096)) -NIL -(-10 -8 (-15 -3761 ((-111) |#1|)) (-15 -3762 ((-111) |#1|)) (-15 -4106 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -2277 (|#1| |#1| |#2|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4106 (|#2| |#1| (-1172 (-526)) |#2|)) (-15 -4106 (|#2| |#1| #1="last" |#2|)) (-15 -4106 (|#1| |#1| #2="rest" |#1|)) (-15 -4106 (|#2| |#1| #3="first" |#2|)) (-15 -4109 (|#1| |#1| |#2|)) (-15 -4109 (|#1| |#1| |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -4118 (|#1| |#1| #2#)) (-15 -4119 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| #3#)) (-15 -4119 (|#2| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4106 (|#2| |#1| #4="value" |#2|)) (-15 -4118 (|#2| |#1| #4#)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4113 ((|#1| $) 65)) (-4115 (($ $) 67)) (-2276 (((-1211) $ (-526) (-526)) 97 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 52 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 56 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) 54 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 58 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 117 (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) 86 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4310)))) (-4114 ((|#1| $) 66)) (-3855 (($) 7 T CONST)) (-4117 (($ $) 73) (($ $ (-735)) 71)) (-1375 (($ $) 99 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4310))) (($ |#1| $) 100 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1613 ((|#1| $ (-526) |#1|) 85 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 87)) (-3761 (((-111) $) 83)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) 108)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 95 (|has| (-526) (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 94 (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 70) (($ $ (-735)) 68)) (-2351 (($ $ $ (-526)) 116) (($ |#1| $ (-526)) 115)) (-2281 (((-607 (-526)) $) 92)) (-2282 (((-111) (-526) $) 91)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 76) (($ $ (-735)) 74)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2277 (($ $ |#1|) 96 (|has| $ (-6 -4311)))) (-3762 (((-111) $) 84)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 90)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1172 (-526))) 112) ((|#1| $ (-526)) 89) ((|#1| $ (-526) |#1|) 88)) (-3329 (((-526) $ $) 44)) (-2352 (($ $ (-1172 (-526))) 114) (($ $ (-526)) 113)) (-3955 (((-111) $) 46)) (-4110 (($ $) 62)) (-4108 (($ $) 59 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 63)) (-4112 (($ $) 64)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 98 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 107)) (-4109 (($ $ $) 61 (|has| $ (-6 -4311))) (($ $ |#1|) 60 (|has| $ (-6 -4311)))) (-4120 (($ $ $) 78) (($ |#1| $) 77) (($ (-607 $)) 110) (($ $ |#1|) 109)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-1097 |#1|) (-134) (-1159)) (T -1097)) -((-3762 (*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) -(-13 (-1194 |t#1|) (-616 |t#1|) (-10 -8 (-15 -3762 ((-111) $)) (-15 -3761 ((-111) $)))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T) ((-1194 |#1|) . T)) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) NIL)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1098 |#1| |#2| |#3|) (-1136 |#1| |#2|) (-1052) (-1052) |#2|) (T -1098)) -NIL -(-1136 |#1| |#2|) -((-2865 (((-111) $ $) 7)) (-3763 (((-3 $ "failed") $) 13)) (-3554 (((-1106) $) 9)) (-3764 (($) 14 T CONST)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) -(((-1099) (-134)) (T -1099)) -((-3764 (*1 *1) (-4 *1 (-1099))) (-3763 (*1 *1 *1) (|partial| -4 *1 (-1099)))) -(-13 (-1052) (-10 -8 (-15 -3764 ($) -4268) (-15 -3763 ((-3 $ "failed") $)))) -(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) -((-3767 (((-1101 |#1|) (-1101 |#1|)) 17)) (-3765 (((-1101 |#1|) (-1101 |#1|)) 13)) (-3768 (((-1101 |#1|) (-1101 |#1|) (-526) (-526)) 20)) (-3766 (((-1101 |#1|) (-1101 |#1|)) 15))) -(((-1100 |#1|) (-10 -7 (-15 -3765 ((-1101 |#1|) (-1101 |#1|))) (-15 -3766 ((-1101 |#1|) (-1101 |#1|))) (-15 -3767 ((-1101 |#1|) (-1101 |#1|))) (-15 -3768 ((-1101 |#1|) (-1101 |#1|) (-526) (-526)))) (-13 (-533) (-141))) (T -1100)) -((-3768 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-1100 *4)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3))))) -(-10 -7 (-15 -3765 ((-1101 |#1|) (-1101 |#1|))) (-15 -3766 ((-1101 |#1|) (-1101 |#1|))) (-15 -3767 ((-1101 |#1|) (-1101 |#1|))) (-15 -3768 ((-1101 |#1|) (-1101 |#1|) (-526) (-526)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-4115 (($ $) 51)) (-2276 (((-1211) $ (-526) (-526)) 76 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 110 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-3773 (((-823) $) 41 (|has| |#1| (-1052)))) (-3772 (((-111)) 40 (|has| |#1| (-1052)))) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) 98 (|has| $ (-6 -4311))) (($ $ (-526) $) 122)) (-4104 ((|#1| $ |#1|) 107 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 102 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 104 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 106 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) 109 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 89 (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) 55 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 58)) (-4114 ((|#1| $) NIL)) (-3855 (($) NIL T CONST)) (-2367 (($ $) 14)) (-4117 (($ $) 29) (($ $ (-735)) 88)) (-3778 (((-111) (-607 |#1|) $) 116 (|has| |#1| (-1052)))) (-3779 (($ (-607 |#1|)) 112)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) 57)) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3774 (((-1211) (-526) $) 121 (|has| |#1| (-1052)))) (-2366 (((-735) $) 118)) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-2369 (($ $) 90)) (-2370 (((-111) $) 13)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-4116 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) 74)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-3771 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2368 ((|#1| $) 10)) (-4119 ((|#1| $) 28) (($ $ (-735)) 49)) (-3777 (((-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735))) (-735) $) 25)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3770 (($ (-1 (-111) |#1|) $) 126)) (-3769 (($ (-1 (-111) |#1|) $) 127)) (-2277 (($ $ |#1|) 68 (|has| $ (-6 -4311)))) (-4087 (($ $ (-526)) 32)) (-3762 (((-111) $) 72)) (-2371 (((-111) $) 12)) (-2372 (((-111) $) 117)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 20)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) 15)) (-3887 (($) 43)) (-4118 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1172 (-526))) NIL) ((|#1| $ (-526)) 54) ((|#1| $ (-526) |#1|) NIL)) (-3329 (((-526) $ $) 48)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-3776 (($ (-1 $)) 47)) (-3955 (((-111) $) 69)) (-4110 (($ $) 70)) (-4108 (($ $) 99 (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 44)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 53)) (-3775 (($ |#1| $) 97)) (-4109 (($ $ $) 100 (|has| $ (-6 -4311))) (($ $ |#1|) 101 (|has| $ (-6 -4311)))) (-4120 (($ $ $) 78) (($ |#1| $) 45) (($ (-607 $)) 83) (($ $ |#1|) 77)) (-3191 (($ $) 50)) (-4274 (($ (-607 |#1|)) 111) (((-823) $) 42 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 114 (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1101 |#1|) (-13 (-639 |#1|) (-10 -8 (-6 -4311) (-15 -4274 ($ (-607 |#1|))) (-15 -3779 ($ (-607 |#1|))) (IF (|has| |#1| (-1052)) (-15 -3778 ((-111) (-607 |#1|) $)) |%noBranch|) (-15 -3777 ((-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735))) (-735) $)) (-15 -3776 ($ (-1 $))) (-15 -3775 ($ |#1| $)) (IF (|has| |#1| (-1052)) (PROGN (-15 -3774 ((-1211) (-526) $)) (-15 -3773 ((-823) $)) (-15 -3772 ((-111)))) |%noBranch|) (-15 -4105 ($ $ (-526) $)) (-15 -3771 ($ (-1 |#1|))) (-15 -3771 ($ (-1 |#1| |#1|) |#1|)) (-15 -3770 ($ (-1 (-111) |#1|) $)) (-15 -3769 ($ (-1 (-111) |#1|) $)))) (-1159)) (T -1101)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3778 (*1 *2 *3 *1) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-4 *4 (-1159)) (-5 *2 (-111)) (-5 *1 (-1101 *4)))) (-3777 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735)))) (-5 *1 (-1101 *4)) (-4 *4 (-1159)) (-5 *3 (-735)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-1 (-1101 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1159)))) (-3775 (*1 *1 *2 *1) (-12 (-5 *1 (-1101 *2)) (-4 *2 (-1159)))) (-3774 (*1 *2 *3 *1) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1101 *4)) (-4 *4 (-1052)) (-4 *4 (-1159)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1101 *3)) (-4 *3 (-1052)) (-4 *3 (-1159)))) (-3772 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1101 *3)) (-4 *3 (-1052)) (-4 *3 (-1159)))) (-4105 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1101 *3)) (-4 *3 (-1159)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3771 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3769 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) -(-13 (-639 |#1|) (-10 -8 (-6 -4311) (-15 -4274 ($ (-607 |#1|))) (-15 -3779 ($ (-607 |#1|))) (IF (|has| |#1| (-1052)) (-15 -3778 ((-111) (-607 |#1|) $)) |%noBranch|) (-15 -3777 ((-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735))) (-735) $)) (-15 -3776 ($ (-1 $))) (-15 -3775 ($ |#1| $)) (IF (|has| |#1| (-1052)) (PROGN (-15 -3774 ((-1211) (-526) $)) (-15 -3773 ((-823) $)) (-15 -3772 ((-111)))) |%noBranch|) (-15 -4105 ($ $ (-526) $)) (-15 -3771 ($ (-1 |#1|))) (-15 -3771 ($ (-1 |#1| |#1|) |#1|)) (-15 -3770 ($ (-1 (-111) |#1|) $)) (-15 -3769 ($ (-1 (-111) |#1|) $)))) -((-4120 (((-1101 |#1|) (-1101 (-1101 |#1|))) 15))) -(((-1102 |#1|) (-10 -7 (-15 -4120 ((-1101 |#1|) (-1101 (-1101 |#1|))))) (-1159)) (T -1102)) -((-4120 (*1 *2 *3) (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1102 *4)) (-4 *4 (-1159))))) -(-10 -7 (-15 -4120 ((-1101 |#1|) (-1101 (-1101 |#1|))))) -((-4160 (((-1101 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|)) 25)) (-4161 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|)) 26)) (-4275 (((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|)) 16))) -(((-1103 |#1| |#2|) (-10 -7 (-15 -4275 ((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|))) (-15 -4160 ((-1101 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|))) (-15 -4161 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|)))) (-1159) (-1159)) (T -1103)) -((-4161 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1101 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-1103 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1101 *6)) (-4 *6 (-1159)) (-4 *3 (-1159)) (-5 *2 (-1101 *3)) (-5 *1 (-1103 *6 *3)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1101 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1101 *6)) (-5 *1 (-1103 *5 *6))))) -(-10 -7 (-15 -4275 ((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|))) (-15 -4160 ((-1101 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|))) (-15 -4161 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|)))) -((-4275 (((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-1101 |#2|)) 21))) -(((-1104 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-1101 |#2|)))) (-1159) (-1159) (-1159)) (T -1104)) -((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1101 *6)) (-5 *5 (-1101 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) (-5 *1 (-1104 *6 *7 *8))))) -(-10 -7 (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-1101 |#2|)))) -((-2865 (((-111) $ $) 19)) (-3745 (($ $) 120)) (-3746 (($ $) 121)) (-3736 (($ $ (-138)) 108) (($ $ (-135)) 107)) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-3743 (((-111) $ $) 118)) (-3742 (((-111) $ $ (-526)) 117)) (-3857 (($ (-526)) 127)) (-3737 (((-607 $) $ (-138)) 110) (((-607 $) $ (-135)) 109)) (-1824 (((-111) (-1 (-111) (-138) (-138)) $) 98) (((-111) $) 92 (|has| (-138) (-811)))) (-1822 (($ (-1 (-111) (-138) (-138)) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| (-138) (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) (-138) (-138)) $) 99) (($ $) 93 (|has| (-138) (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 (((-138) $ (-526) (-138)) 52 (|has| $ (-6 -4311))) (((-138) $ (-1172 (-526)) (-138)) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-138)) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-3734 (($ $ (-138)) 104) (($ $ (-135)) 103)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-3739 (($ $ (-1172 (-526)) $) 114)) (-1375 (($ $) 78 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-138) $) 77 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-138)) $) 74 (|has| $ (-6 -4310)))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) 76 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) 73 (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $) 72 (|has| $ (-6 -4310)))) (-1613 (((-138) $ (-526) (-138)) 53 (|has| $ (-6 -4311)))) (-3410 (((-138) $ (-526)) 51)) (-3744 (((-111) $ $) 119)) (-3738 (((-526) (-1 (-111) (-138)) $) 97) (((-526) (-138) $) 96 (|has| (-138) (-1052))) (((-526) (-138) $ (-526)) 95 (|has| (-138) (-1052))) (((-526) $ $ (-526)) 113) (((-526) (-135) $ (-526)) 112)) (-2044 (((-607 (-138)) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-138)) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| (-138) (-811)))) (-3832 (($ (-1 (-111) (-138) (-138)) $ $) 101) (($ $ $) 94 (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) 27 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| (-138) (-811)))) (-3740 (((-111) $ $ (-138)) 115)) (-3741 (((-735) $ $ (-138)) 116)) (-2048 (($ (-1 (-138) (-138)) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) 35) (($ (-1 (-138) (-138) (-138)) $ $) 64)) (-3747 (($ $) 122)) (-3748 (($ $) 123)) (-4038 (((-111) $ (-735)) 10)) (-3735 (($ $ (-138)) 106) (($ $ (-135)) 105)) (-3554 (((-1106) $) 22)) (-2351 (($ (-138) $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21)) (-4119 (((-138) $) 42 (|has| (-526) (-811)))) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) 71)) (-2277 (($ $ (-138)) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-138)) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-138)))) 26 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) 25 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) 24 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-138)) (-607 (-138))) 23 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) (-138) $) 45 (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2283 (((-607 (-138)) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 (((-138) $ (-526) (-138)) 50) (((-138) $ (-526)) 49) (($ $ (-1172 (-526))) 63) (($ $ $) 102)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) (-138)) $) 31 (|has| $ (-6 -4310))) (((-735) (-138) $) 28 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| (-138) (-584 (-515))))) (-3844 (($ (-607 (-138))) 70)) (-4120 (($ $ (-138)) 68) (($ (-138) $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (($ (-138)) 111) (((-823) $) 18)) (-2047 (((-111) (-1 (-111) (-138)) $) 33 (|has| $ (-6 -4310)))) (-2803 (((-1106) $) 131) (((-1106) $ (-111)) 130) (((-1211) (-787) $) 129) (((-1211) (-787) $ (-111)) 128)) (-2863 (((-111) $ $) 84 (|has| (-138) (-811)))) (-2864 (((-111) $ $) 83 (|has| (-138) (-811)))) (-3353 (((-111) $ $) 20)) (-2984 (((-111) $ $) 85 (|has| (-138) (-811)))) (-2985 (((-111) $ $) 82 (|has| (-138) (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-1105) (-134)) (T -1105)) -((-3857 (*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1105))))) -(-13 (-1092) (-1052) (-785) (-10 -8 (-15 -3857 ($ (-526))))) -(((-33) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 #1=(-138)) . T) ((-584 (-515)) |has| (-138) (-584 (-515))) ((-271 #2=(-526) #1#) . T) ((-273 #2# #1#) . T) ((-294 #1#) -12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))) ((-357 #1#) . T) ((-472 #1#) . T) ((-574 #2# #1#) . T) ((-496 #1# #1#) -12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))) ((-616 #1#) . T) ((-19 #1#) . T) ((-785) . T) ((-811) |has| (-138) (-811)) ((-1052) . T) ((-1092) . T) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3745 (($ $) NIL)) (-3746 (($ $) NIL)) (-3736 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-3743 (((-111) $ $) NIL)) (-3742 (((-111) $ $ (-526)) NIL)) (-3857 (($ (-526)) 7)) (-3737 (((-607 $) $ (-138)) NIL) (((-607 $) $ (-135)) NIL)) (-1824 (((-111) (-1 (-111) (-138) (-138)) $) NIL) (((-111) $) NIL (|has| (-138) (-811)))) (-1822 (($ (-1 (-111) (-138) (-138)) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-138) (-811))))) (-3209 (($ (-1 (-111) (-138) (-138)) $) NIL) (($ $) NIL (|has| (-138) (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-138) $ (-526) (-138)) NIL (|has| $ (-6 -4311))) (((-138) $ (-1172 (-526)) (-138)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-3734 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-3739 (($ $ (-1172 (-526)) $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3725 (($ (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-138) $ (-526) (-138)) NIL (|has| $ (-6 -4311)))) (-3410 (((-138) $ (-526)) NIL)) (-3744 (((-111) $ $) NIL)) (-3738 (((-526) (-1 (-111) (-138)) $) NIL) (((-526) (-138) $) NIL (|has| (-138) (-1052))) (((-526) (-138) $ (-526)) NIL (|has| (-138) (-1052))) (((-526) $ $ (-526)) NIL) (((-526) (-135) $ (-526)) NIL)) (-2044 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-138)) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| (-138) (-811)))) (-3832 (($ (-1 (-111) (-138) (-138)) $ $) NIL) (($ $ $) NIL (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-138) (-811)))) (-3740 (((-111) $ $ (-138)) NIL)) (-3741 (((-735) $ $ (-138)) NIL)) (-2048 (($ (-1 (-138) (-138)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) NIL) (($ (-1 (-138) (-138) (-138)) $ $) NIL)) (-3747 (($ $) NIL)) (-3748 (($ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3735 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-3554 (((-1106) $) NIL)) (-2351 (($ (-138) $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-138) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-2277 (($ $ (-138)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-138)))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-138)) (-607 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2283 (((-607 (-138)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-138) $ (-526) (-138)) NIL) (((-138) $ (-526)) NIL) (($ $ (-1172 (-526))) NIL) (($ $ $) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310))) (((-735) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-138) (-584 (-515))))) (-3844 (($ (-607 (-138))) NIL)) (-4120 (($ $ (-138)) NIL) (($ (-138) $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (($ (-138)) NIL) (((-823) $) NIL)) (-2047 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-2803 (((-1106) $) 18) (((-1106) $ (-111)) 20) (((-1211) (-787) $) 21) (((-1211) (-787) $ (-111)) 22)) (-2863 (((-111) $ $) NIL (|has| (-138) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-138) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-138) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-138) (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1106) (-1105)) (T -1106)) -NIL -(-1105) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)) (|has| |#1| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-2276 (((-1211) $ (-1106) (-1106)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-1106) |#1|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#1| #1="failed") (-1106) $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#1| #1#) (-1106) $) NIL)) (-3725 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-1106) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-1106)) NIL)) (-2044 (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2480 (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)) (|has| |#1| (-1052))))) (-2713 (((-607 (-1106)) $) NIL)) (-2286 (((-111) (-1106) $) NIL)) (-1306 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-2281 (((-607 (-1106)) $) NIL)) (-2282 (((-111) (-1106) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)) (|has| |#1| (-1052))))) (-4119 ((|#1| $) NIL (|has| (-1106) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) "failed") (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-1106)) NIL) ((|#1| $ (-1106) |#1|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-583 (-823))) (|has| |#1| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)) (|has| |#1| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1107 |#1|) (-13 (-1136 (-1106) |#1|) (-10 -7 (-6 -4310))) (-1052)) (T -1107)) -NIL -(-13 (-1136 (-1106) |#1|) (-10 -7 (-6 -4310))) -((-4123 (((-1101 |#1|) (-1101 |#1|)) 77)) (-3781 (((-3 (-1101 |#1|) "failed") (-1101 |#1|)) 37)) (-3792 (((-1101 |#1|) (-392 (-526)) (-1101 |#1|)) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3795 (((-1101 |#1|) |#1| (-1101 |#1|)) 127 (|has| |#1| (-348)))) (-4126 (((-1101 |#1|) (-1101 |#1|)) 90)) (-3783 (((-1101 (-526)) (-526)) 57)) (-3791 (((-1101 |#1|) (-1101 (-1101 |#1|))) 109 (|has| |#1| (-37 (-392 (-526)))))) (-4122 (((-1101 |#1|) (-526) (-526) (-1101 |#1|)) 95)) (-4255 (((-1101 |#1|) |#1| (-526)) 45)) (-3785 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 60)) (-3793 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 124 (|has| |#1| (-348)))) (-3790 (((-1101 |#1|) |#1| (-1 (-1101 |#1|))) 108 (|has| |#1| (-37 (-392 (-526)))))) (-3794 (((-1101 |#1|) (-1 |#1| (-526)) |#1| (-1 (-1101 |#1|))) 125 (|has| |#1| (-348)))) (-4127 (((-1101 |#1|) (-1101 |#1|)) 89)) (-4128 (((-1101 |#1|) (-1101 |#1|)) 76)) (-4121 (((-1101 |#1|) (-526) (-526) (-1101 |#1|)) 96)) (-4131 (((-1101 |#1|) |#1| (-1101 |#1|)) 105 (|has| |#1| (-37 (-392 (-526)))))) (-3782 (((-1101 (-526)) (-526)) 56)) (-3784 (((-1101 |#1|) |#1|) 59)) (-4124 (((-1101 |#1|) (-1101 |#1|) (-526) (-526)) 92)) (-3787 (((-1101 |#1|) (-1 |#1| (-526)) (-1101 |#1|)) 66)) (-3780 (((-3 (-1101 |#1|) "failed") (-1101 |#1|) (-1101 |#1|)) 35)) (-4125 (((-1101 |#1|) (-1101 |#1|)) 91)) (-4086 (((-1101 |#1|) (-1101 |#1|) |#1|) 71)) (-3786 (((-1101 |#1|) (-1101 |#1|)) 62)) (-3788 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 72)) (-4274 (((-1101 |#1|) |#1|) 67)) (-3789 (((-1101 |#1|) (-1101 (-1101 |#1|))) 82)) (-4265 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 36)) (-4156 (((-1101 |#1|) (-1101 |#1|)) 21) (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 23)) (-4158 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 17)) (* (((-1101 |#1|) (-1101 |#1|) |#1|) 29) (((-1101 |#1|) |#1| (-1101 |#1|)) 26) (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 27))) -(((-1108 |#1|) (-10 -7 (-15 -4158 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4156 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4156 ((-1101 |#1|) (-1101 |#1|))) (-15 * ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 * ((-1101 |#1|) |#1| (-1101 |#1|))) (-15 * ((-1101 |#1|) (-1101 |#1|) |#1|)) (-15 -3780 ((-3 (-1101 |#1|) "failed") (-1101 |#1|) (-1101 |#1|))) (-15 -4265 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3781 ((-3 (-1101 |#1|) "failed") (-1101 |#1|))) (-15 -4255 ((-1101 |#1|) |#1| (-526))) (-15 -3782 ((-1101 (-526)) (-526))) (-15 -3783 ((-1101 (-526)) (-526))) (-15 -3784 ((-1101 |#1|) |#1|)) (-15 -3785 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3786 ((-1101 |#1|) (-1101 |#1|))) (-15 -3787 ((-1101 |#1|) (-1 |#1| (-526)) (-1101 |#1|))) (-15 -4274 ((-1101 |#1|) |#1|)) (-15 -4086 ((-1101 |#1|) (-1101 |#1|) |#1|)) (-15 -3788 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4128 ((-1101 |#1|) (-1101 |#1|))) (-15 -4123 ((-1101 |#1|) (-1101 |#1|))) (-15 -3789 ((-1101 |#1|) (-1101 (-1101 |#1|)))) (-15 -4127 ((-1101 |#1|) (-1101 |#1|))) (-15 -4126 ((-1101 |#1|) (-1101 |#1|))) (-15 -4125 ((-1101 |#1|) (-1101 |#1|))) (-15 -4124 ((-1101 |#1|) (-1101 |#1|) (-526) (-526))) (-15 -4122 ((-1101 |#1|) (-526) (-526) (-1101 |#1|))) (-15 -4121 ((-1101 |#1|) (-526) (-526) (-1101 |#1|))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ((-1101 |#1|) |#1| (-1101 |#1|))) (-15 -3790 ((-1101 |#1|) |#1| (-1 (-1101 |#1|)))) (-15 -3791 ((-1101 |#1|) (-1101 (-1101 |#1|)))) (-15 -3792 ((-1101 |#1|) (-392 (-526)) (-1101 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -3793 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3794 ((-1101 |#1|) (-1 |#1| (-526)) |#1| (-1 (-1101 |#1|)))) (-15 -3795 ((-1101 |#1|) |#1| (-1101 |#1|)))) |%noBranch|)) (-1004)) (T -1108)) -((-3795 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-526))) (-5 *5 (-1 (-1101 *4))) (-4 *4 (-348)) (-4 *4 (-1004)) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3792 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *4)) (-4 *4 (-37 *3)) (-4 *4 (-1004)) (-5 *3 (-392 (-526))) (-5 *1 (-1108 *4)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)) (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1101 *3))) (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)))) (-4131 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4121 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) (-4122 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) (-4124 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4126 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)) (-4 *4 (-1004)))) (-4123 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3788 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) (-3787 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-1 *4 (-526))) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3785 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3784 (*1 *2 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) (-3783 (*1 *2 *3) (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-1108 *4)) (-4 *4 (-1004)) (-5 *3 (-526)))) (-3782 (*1 *2 *3) (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-1108 *4)) (-4 *4 (-1004)) (-5 *3 (-526)))) (-4255 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) (-3781 (*1 *2 *2) (|partial| -12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4265 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3780 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4158 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) -(-10 -7 (-15 -4158 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4156 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4156 ((-1101 |#1|) (-1101 |#1|))) (-15 * ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 * ((-1101 |#1|) |#1| (-1101 |#1|))) (-15 * ((-1101 |#1|) (-1101 |#1|) |#1|)) (-15 -3780 ((-3 (-1101 |#1|) "failed") (-1101 |#1|) (-1101 |#1|))) (-15 -4265 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3781 ((-3 (-1101 |#1|) "failed") (-1101 |#1|))) (-15 -4255 ((-1101 |#1|) |#1| (-526))) (-15 -3782 ((-1101 (-526)) (-526))) (-15 -3783 ((-1101 (-526)) (-526))) (-15 -3784 ((-1101 |#1|) |#1|)) (-15 -3785 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3786 ((-1101 |#1|) (-1101 |#1|))) (-15 -3787 ((-1101 |#1|) (-1 |#1| (-526)) (-1101 |#1|))) (-15 -4274 ((-1101 |#1|) |#1|)) (-15 -4086 ((-1101 |#1|) (-1101 |#1|) |#1|)) (-15 -3788 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4128 ((-1101 |#1|) (-1101 |#1|))) (-15 -4123 ((-1101 |#1|) (-1101 |#1|))) (-15 -3789 ((-1101 |#1|) (-1101 (-1101 |#1|)))) (-15 -4127 ((-1101 |#1|) (-1101 |#1|))) (-15 -4126 ((-1101 |#1|) (-1101 |#1|))) (-15 -4125 ((-1101 |#1|) (-1101 |#1|))) (-15 -4124 ((-1101 |#1|) (-1101 |#1|) (-526) (-526))) (-15 -4122 ((-1101 |#1|) (-526) (-526) (-1101 |#1|))) (-15 -4121 ((-1101 |#1|) (-526) (-526) (-1101 |#1|))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ((-1101 |#1|) |#1| (-1101 |#1|))) (-15 -3790 ((-1101 |#1|) |#1| (-1 (-1101 |#1|)))) (-15 -3791 ((-1101 |#1|) (-1101 (-1101 |#1|)))) (-15 -3792 ((-1101 |#1|) (-392 (-526)) (-1101 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -3793 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3794 ((-1101 |#1|) (-1 |#1| (-526)) |#1| (-1 (-1101 |#1|)))) (-15 -3795 ((-1101 |#1|) |#1| (-1101 |#1|)))) |%noBranch|)) -((-3806 (((-1101 |#1|) (-1101 |#1|)) 100)) (-3961 (((-1101 |#1|) (-1101 |#1|)) 64)) (-3797 (((-2 (|:| -3804 (-1101 |#1|)) (|:| -3805 (-1101 |#1|))) (-1101 |#1|)) 96)) (-3804 (((-1101 |#1|) (-1101 |#1|)) 97)) (-3796 (((-2 (|:| -3960 (-1101 |#1|)) (|:| -3956 (-1101 |#1|))) (-1101 |#1|)) 53)) (-3960 (((-1101 |#1|) (-1101 |#1|)) 54)) (-3808 (((-1101 |#1|) (-1101 |#1|)) 102)) (-3959 (((-1101 |#1|) (-1101 |#1|)) 71)) (-4259 (((-1101 |#1|) (-1101 |#1|)) 39)) (-4260 (((-1101 |#1|) (-1101 |#1|)) 36)) (-3809 (((-1101 |#1|) (-1101 |#1|)) 103)) (-3958 (((-1101 |#1|) (-1101 |#1|)) 72)) (-3807 (((-1101 |#1|) (-1101 |#1|)) 101)) (-3957 (((-1101 |#1|) (-1101 |#1|)) 67)) (-3805 (((-1101 |#1|) (-1101 |#1|)) 98)) (-3956 (((-1101 |#1|) (-1101 |#1|)) 55)) (-3812 (((-1101 |#1|) (-1101 |#1|)) 111)) (-3800 (((-1101 |#1|) (-1101 |#1|)) 86)) (-3810 (((-1101 |#1|) (-1101 |#1|)) 105)) (-3798 (((-1101 |#1|) (-1101 |#1|)) 82)) (-3814 (((-1101 |#1|) (-1101 |#1|)) 115)) (-3802 (((-1101 |#1|) (-1101 |#1|)) 90)) (-3815 (((-1101 |#1|) (-1101 |#1|)) 117)) (-3803 (((-1101 |#1|) (-1101 |#1|)) 92)) (-3813 (((-1101 |#1|) (-1101 |#1|)) 113)) (-3801 (((-1101 |#1|) (-1101 |#1|)) 88)) (-3811 (((-1101 |#1|) (-1101 |#1|)) 107)) (-3799 (((-1101 |#1|) (-1101 |#1|)) 84)) (** (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 40))) -(((-1109 |#1|) (-10 -7 (-15 -4260 ((-1101 |#1|) (-1101 |#1|))) (-15 -4259 ((-1101 |#1|) (-1101 |#1|))) (-15 ** ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3796 ((-2 (|:| -3960 (-1101 |#1|)) (|:| -3956 (-1101 |#1|))) (-1101 |#1|))) (-15 -3960 ((-1101 |#1|) (-1101 |#1|))) (-15 -3956 ((-1101 |#1|) (-1101 |#1|))) (-15 -3961 ((-1101 |#1|) (-1101 |#1|))) (-15 -3957 ((-1101 |#1|) (-1101 |#1|))) (-15 -3959 ((-1101 |#1|) (-1101 |#1|))) (-15 -3958 ((-1101 |#1|) (-1101 |#1|))) (-15 -3798 ((-1101 |#1|) (-1101 |#1|))) (-15 -3799 ((-1101 |#1|) (-1101 |#1|))) (-15 -3800 ((-1101 |#1|) (-1101 |#1|))) (-15 -3801 ((-1101 |#1|) (-1101 |#1|))) (-15 -3802 ((-1101 |#1|) (-1101 |#1|))) (-15 -3803 ((-1101 |#1|) (-1101 |#1|))) (-15 -3797 ((-2 (|:| -3804 (-1101 |#1|)) (|:| -3805 (-1101 |#1|))) (-1101 |#1|))) (-15 -3804 ((-1101 |#1|) (-1101 |#1|))) (-15 -3805 ((-1101 |#1|) (-1101 |#1|))) (-15 -3806 ((-1101 |#1|) (-1101 |#1|))) (-15 -3807 ((-1101 |#1|) (-1101 |#1|))) (-15 -3808 ((-1101 |#1|) (-1101 |#1|))) (-15 -3809 ((-1101 |#1|) (-1101 |#1|))) (-15 -3810 ((-1101 |#1|) (-1101 |#1|))) (-15 -3811 ((-1101 |#1|) (-1101 |#1|))) (-15 -3812 ((-1101 |#1|) (-1101 |#1|))) (-15 -3813 ((-1101 |#1|) (-1101 |#1|))) (-15 -3814 ((-1101 |#1|) (-1101 |#1|))) (-15 -3815 ((-1101 |#1|) (-1101 |#1|)))) (-37 (-392 (-526)))) (T -1109)) -((-3815 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-2 (|:| -3804 (-1101 *4)) (|:| -3805 (-1101 *4)))) (-5 *1 (-1109 *4)) (-5 *3 (-1101 *4)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-2 (|:| -3960 (-1101 *4)) (|:| -3956 (-1101 *4)))) (-5 *1 (-1109 *4)) (-5 *3 (-1101 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3))))) -(-10 -7 (-15 -4260 ((-1101 |#1|) (-1101 |#1|))) (-15 -4259 ((-1101 |#1|) (-1101 |#1|))) (-15 ** ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3796 ((-2 (|:| -3960 (-1101 |#1|)) (|:| -3956 (-1101 |#1|))) (-1101 |#1|))) (-15 -3960 ((-1101 |#1|) (-1101 |#1|))) (-15 -3956 ((-1101 |#1|) (-1101 |#1|))) (-15 -3961 ((-1101 |#1|) (-1101 |#1|))) (-15 -3957 ((-1101 |#1|) (-1101 |#1|))) (-15 -3959 ((-1101 |#1|) (-1101 |#1|))) (-15 -3958 ((-1101 |#1|) (-1101 |#1|))) (-15 -3798 ((-1101 |#1|) (-1101 |#1|))) (-15 -3799 ((-1101 |#1|) (-1101 |#1|))) (-15 -3800 ((-1101 |#1|) (-1101 |#1|))) (-15 -3801 ((-1101 |#1|) (-1101 |#1|))) (-15 -3802 ((-1101 |#1|) (-1101 |#1|))) (-15 -3803 ((-1101 |#1|) (-1101 |#1|))) (-15 -3797 ((-2 (|:| -3804 (-1101 |#1|)) (|:| -3805 (-1101 |#1|))) (-1101 |#1|))) (-15 -3804 ((-1101 |#1|) (-1101 |#1|))) (-15 -3805 ((-1101 |#1|) (-1101 |#1|))) (-15 -3806 ((-1101 |#1|) (-1101 |#1|))) (-15 -3807 ((-1101 |#1|) (-1101 |#1|))) (-15 -3808 ((-1101 |#1|) (-1101 |#1|))) (-15 -3809 ((-1101 |#1|) (-1101 |#1|))) (-15 -3810 ((-1101 |#1|) (-1101 |#1|))) (-15 -3811 ((-1101 |#1|) (-1101 |#1|))) (-15 -3812 ((-1101 |#1|) (-1101 |#1|))) (-15 -3813 ((-1101 |#1|) (-1101 |#1|))) (-15 -3814 ((-1101 |#1|) (-1101 |#1|))) (-15 -3815 ((-1101 |#1|) (-1101 |#1|)))) -((-3806 (((-1101 |#1|) (-1101 |#1|)) 57)) (-3961 (((-1101 |#1|) (-1101 |#1|)) 39)) (-3804 (((-1101 |#1|) (-1101 |#1|)) 53)) (-3960 (((-1101 |#1|) (-1101 |#1|)) 35)) (-3808 (((-1101 |#1|) (-1101 |#1|)) 60)) (-3959 (((-1101 |#1|) (-1101 |#1|)) 42)) (-4259 (((-1101 |#1|) (-1101 |#1|)) 31)) (-4260 (((-1101 |#1|) (-1101 |#1|)) 27)) (-3809 (((-1101 |#1|) (-1101 |#1|)) 61)) (-3958 (((-1101 |#1|) (-1101 |#1|)) 43)) (-3807 (((-1101 |#1|) (-1101 |#1|)) 58)) (-3957 (((-1101 |#1|) (-1101 |#1|)) 40)) (-3805 (((-1101 |#1|) (-1101 |#1|)) 55)) (-3956 (((-1101 |#1|) (-1101 |#1|)) 37)) (-3812 (((-1101 |#1|) (-1101 |#1|)) 65)) (-3800 (((-1101 |#1|) (-1101 |#1|)) 47)) (-3810 (((-1101 |#1|) (-1101 |#1|)) 63)) (-3798 (((-1101 |#1|) (-1101 |#1|)) 45)) (-3814 (((-1101 |#1|) (-1101 |#1|)) 68)) (-3802 (((-1101 |#1|) (-1101 |#1|)) 50)) (-3815 (((-1101 |#1|) (-1101 |#1|)) 69)) (-3803 (((-1101 |#1|) (-1101 |#1|)) 51)) (-3813 (((-1101 |#1|) (-1101 |#1|)) 67)) (-3801 (((-1101 |#1|) (-1101 |#1|)) 49)) (-3811 (((-1101 |#1|) (-1101 |#1|)) 66)) (-3799 (((-1101 |#1|) (-1101 |#1|)) 48)) (** (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 33))) -(((-1110 |#1|) (-10 -7 (-15 -4260 ((-1101 |#1|) (-1101 |#1|))) (-15 -4259 ((-1101 |#1|) (-1101 |#1|))) (-15 ** ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3960 ((-1101 |#1|) (-1101 |#1|))) (-15 -3956 ((-1101 |#1|) (-1101 |#1|))) (-15 -3961 ((-1101 |#1|) (-1101 |#1|))) (-15 -3957 ((-1101 |#1|) (-1101 |#1|))) (-15 -3959 ((-1101 |#1|) (-1101 |#1|))) (-15 -3958 ((-1101 |#1|) (-1101 |#1|))) (-15 -3798 ((-1101 |#1|) (-1101 |#1|))) (-15 -3799 ((-1101 |#1|) (-1101 |#1|))) (-15 -3800 ((-1101 |#1|) (-1101 |#1|))) (-15 -3801 ((-1101 |#1|) (-1101 |#1|))) (-15 -3802 ((-1101 |#1|) (-1101 |#1|))) (-15 -3803 ((-1101 |#1|) (-1101 |#1|))) (-15 -3804 ((-1101 |#1|) (-1101 |#1|))) (-15 -3805 ((-1101 |#1|) (-1101 |#1|))) (-15 -3806 ((-1101 |#1|) (-1101 |#1|))) (-15 -3807 ((-1101 |#1|) (-1101 |#1|))) (-15 -3808 ((-1101 |#1|) (-1101 |#1|))) (-15 -3809 ((-1101 |#1|) (-1101 |#1|))) (-15 -3810 ((-1101 |#1|) (-1101 |#1|))) (-15 -3811 ((-1101 |#1|) (-1101 |#1|))) (-15 -3812 ((-1101 |#1|) (-1101 |#1|))) (-15 -3813 ((-1101 |#1|) (-1101 |#1|))) (-15 -3814 ((-1101 |#1|) (-1101 |#1|))) (-15 -3815 ((-1101 |#1|) (-1101 |#1|)))) (-37 (-392 (-526)))) (T -1110)) -((-3815 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(-10 -7 (-15 -4260 ((-1101 |#1|) (-1101 |#1|))) (-15 -4259 ((-1101 |#1|) (-1101 |#1|))) (-15 ** ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3960 ((-1101 |#1|) (-1101 |#1|))) (-15 -3956 ((-1101 |#1|) (-1101 |#1|))) (-15 -3961 ((-1101 |#1|) (-1101 |#1|))) (-15 -3957 ((-1101 |#1|) (-1101 |#1|))) (-15 -3959 ((-1101 |#1|) (-1101 |#1|))) (-15 -3958 ((-1101 |#1|) (-1101 |#1|))) (-15 -3798 ((-1101 |#1|) (-1101 |#1|))) (-15 -3799 ((-1101 |#1|) (-1101 |#1|))) (-15 -3800 ((-1101 |#1|) (-1101 |#1|))) (-15 -3801 ((-1101 |#1|) (-1101 |#1|))) (-15 -3802 ((-1101 |#1|) (-1101 |#1|))) (-15 -3803 ((-1101 |#1|) (-1101 |#1|))) (-15 -3804 ((-1101 |#1|) (-1101 |#1|))) (-15 -3805 ((-1101 |#1|) (-1101 |#1|))) (-15 -3806 ((-1101 |#1|) (-1101 |#1|))) (-15 -3807 ((-1101 |#1|) (-1101 |#1|))) (-15 -3808 ((-1101 |#1|) (-1101 |#1|))) (-15 -3809 ((-1101 |#1|) (-1101 |#1|))) (-15 -3810 ((-1101 |#1|) (-1101 |#1|))) (-15 -3811 ((-1101 |#1|) (-1101 |#1|))) (-15 -3812 ((-1101 |#1|) (-1101 |#1|))) (-15 -3813 ((-1101 |#1|) (-1101 |#1|))) (-15 -3814 ((-1101 |#1|) (-1101 |#1|))) (-15 -3815 ((-1101 |#1|) (-1101 |#1|)))) -((-3816 (((-917 |#2|) |#2| |#2|) 35)) (-3817 ((|#2| |#2| |#1|) 19 (|has| |#1| (-292))))) -(((-1111 |#1| |#2|) (-10 -7 (-15 -3816 ((-917 |#2|) |#2| |#2|)) (IF (|has| |#1| (-292)) (-15 -3817 (|#2| |#2| |#1|)) |%noBranch|)) (-533) (-1181 |#1|)) (T -1111)) -((-3817 (*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-4 *3 (-533)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-1181 *3)))) (-3816 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-917 *3)) (-5 *1 (-1111 *4 *3)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -3816 ((-917 |#2|) |#2| |#2|)) (IF (|has| |#1| (-292)) (-15 -3817 (|#2| |#2| |#1|)) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3825 (($ $ (-607 (-735))) 67)) (-4207 (($) 26)) (-3834 (($ $) 42)) (-4070 (((-607 $) $) 51)) (-3840 (((-111) $) 16)) (-3818 (((-607 (-902 |#2|)) $) 74)) (-3819 (($ $) 68)) (-3835 (((-735) $) 37)) (-3936 (($) 25)) (-3828 (($ $ (-607 (-735)) (-902 |#2|)) 60) (($ $ (-607 (-735)) (-735)) 61) (($ $ (-735) (-902 |#2|)) 63)) (-3832 (($ $ $) 48) (($ (-607 $)) 50)) (-3820 (((-735) $) 75)) (-3841 (((-111) $) 15)) (-3554 (((-1106) $) NIL)) (-3839 (((-111) $) 18)) (-3555 (((-1070) $) NIL)) (-3821 (((-162) $) 73)) (-3824 (((-902 |#2|) $) 69)) (-3823 (((-735) $) 70)) (-3822 (((-111) $) 72)) (-3826 (($ $ (-607 (-735)) (-162)) 66)) (-3833 (($ $) 43)) (-4274 (((-823) $) 86)) (-3827 (($ $ (-607 (-735)) (-111)) 65)) (-3836 (((-607 $) $) 11)) (-3837 (($ $ (-735)) 36)) (-3838 (($ $) 32)) (-3829 (($ $ $ (-902 |#2|) (-735)) 56)) (-3830 (($ $ (-902 |#2|)) 55)) (-3831 (($ $ (-607 (-735)) (-902 |#2|)) 54) (($ $ (-607 (-735)) (-735)) 58) (((-735) $ (-902 |#2|)) 59)) (-3353 (((-111) $ $) 80))) -(((-1112 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -3841 ((-111) $)) (-15 -3840 ((-111) $)) (-15 -3839 ((-111) $)) (-15 -3936 ($)) (-15 -4207 ($)) (-15 -3838 ($ $)) (-15 -3837 ($ $ (-735))) (-15 -3836 ((-607 $) $)) (-15 -3835 ((-735) $)) (-15 -3834 ($ $)) (-15 -3833 ($ $)) (-15 -3832 ($ $ $)) (-15 -3832 ($ (-607 $))) (-15 -4070 ((-607 $) $)) (-15 -3831 ($ $ (-607 (-735)) (-902 |#2|))) (-15 -3830 ($ $ (-902 |#2|))) (-15 -3829 ($ $ $ (-902 |#2|) (-735))) (-15 -3828 ($ $ (-607 (-735)) (-902 |#2|))) (-15 -3831 ($ $ (-607 (-735)) (-735))) (-15 -3828 ($ $ (-607 (-735)) (-735))) (-15 -3831 ((-735) $ (-902 |#2|))) (-15 -3828 ($ $ (-735) (-902 |#2|))) (-15 -3827 ($ $ (-607 (-735)) (-111))) (-15 -3826 ($ $ (-607 (-735)) (-162))) (-15 -3825 ($ $ (-607 (-735)))) (-15 -3824 ((-902 |#2|) $)) (-15 -3823 ((-735) $)) (-15 -3822 ((-111) $)) (-15 -3821 ((-162) $)) (-15 -3820 ((-735) $)) (-15 -3819 ($ $)) (-15 -3818 ((-607 (-902 |#2|)) $)))) (-878) (-1004)) (T -1112)) -((-3841 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3936 (*1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-4207 (*1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3834 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3832 (*1 *1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3830 (*1 *1 *1 *2) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1004)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)))) (-3829 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-902 *5)) (-5 *3 (-735)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3828 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-735)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)) (-4 *5 (-1004)))) (-3828 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-735)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)) (-4 *5 (-1004)))) (-3831 (*1 *2 *1 *3) (-12 (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *2 (-735)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3828 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-111)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)) (-4 *5 (-1004)))) (-3826 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-162)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)) (-4 *5 (-1004)))) (-3825 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-902 *4)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-162)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3819 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-607 (-902 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(-13 (-1052) (-10 -8 (-15 -3841 ((-111) $)) (-15 -3840 ((-111) $)) (-15 -3839 ((-111) $)) (-15 -3936 ($)) (-15 -4207 ($)) (-15 -3838 ($ $)) (-15 -3837 ($ $ (-735))) (-15 -3836 ((-607 $) $)) (-15 -3835 ((-735) $)) (-15 -3834 ($ $)) (-15 -3833 ($ $)) (-15 -3832 ($ $ $)) (-15 -3832 ($ (-607 $))) (-15 -4070 ((-607 $) $)) (-15 -3831 ($ $ (-607 (-735)) (-902 |#2|))) (-15 -3830 ($ $ (-902 |#2|))) (-15 -3829 ($ $ $ (-902 |#2|) (-735))) (-15 -3828 ($ $ (-607 (-735)) (-902 |#2|))) (-15 -3831 ($ $ (-607 (-735)) (-735))) (-15 -3828 ($ $ (-607 (-735)) (-735))) (-15 -3831 ((-735) $ (-902 |#2|))) (-15 -3828 ($ $ (-735) (-902 |#2|))) (-15 -3827 ($ $ (-607 (-735)) (-111))) (-15 -3826 ($ $ (-607 (-735)) (-162))) (-15 -3825 ($ $ (-607 (-735)))) (-15 -3824 ((-902 |#2|) $)) (-15 -3823 ((-735) $)) (-15 -3822 ((-111) $)) (-15 -3821 ((-162) $)) (-15 -3820 ((-735) $)) (-15 -3819 ($ $)) (-15 -3818 ((-607 (-902 |#2|)) $)))) -((-2865 (((-111) $ $) NIL)) (-3842 ((|#2| $) 11)) (-3843 ((|#1| $) 10)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3844 (($ |#1| |#2|) 9)) (-4274 (((-823) $) 16)) (-3353 (((-111) $ $) NIL))) -(((-1113 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -3844 ($ |#1| |#2|)) (-15 -3843 (|#1| $)) (-15 -3842 (|#2| $)))) (-1052) (-1052)) (T -1113)) -((-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3843 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1113 *2 *3)) (-4 *3 (-1052)))) (-3842 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1052))))) -(-13 (-1052) (-10 -8 (-15 -3844 ($ |#1| |#2|)) (-15 -3843 (|#1| $)) (-15 -3842 (|#2| $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-1121 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-292)) (|has| |#1| (-348))))) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 11)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-2151 (($ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-2149 (((-111) $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-4089 (($ $ (-526)) NIL) (($ $ (-526) (-526)) 66)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) NIL)) (-4050 (((-1121 |#1| |#2| |#3|) $) 36)) (-4047 (((-3 (-1121 |#1| |#2| |#3|) "failed") $) 29)) (-4048 (((-1121 |#1| |#2| |#3|) $) 30)) (-3806 (($ $) 107 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 83 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) 103 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 79 (|has| |#1| (-37 (-392 (-526)))))) (-3945 (((-526) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) 111 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 87 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1121 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1123) #2#) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (((-3 (-392 (-526)) #2#) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348)))) (((-3 (-526) #2#) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))))) (-3469 (((-1121 |#1| |#2| |#3|) $) 131) (((-1123) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (((-392 (-526)) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348)))) (((-526) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))))) (-4049 (($ $) 34) (($ (-526) $) 35)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-1121 |#1| |#2| |#3|)) (-653 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-1121 |#1| |#2| |#3|))) (|:| |vec| (-1205 (-1121 |#1| |#2| |#3|)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-606 (-526))) (|has| |#1| (-348)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-606 (-526))) (|has| |#1| (-348))))) (-3781 (((-3 $ "failed") $) 48)) (-4046 (((-392 (-905 |#1|)) $ (-526)) 65 (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) 67 (|has| |#1| (-533)))) (-3294 (($) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3500 (((-111) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-3192 (((-111) $) 25)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-845 (-526))) (|has| |#1| (-348)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-845 (-363))) (|has| |#1| (-348))))) (-4090 (((-526) $) NIL) (((-526) $ (-526)) 24)) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-348)))) (-3298 (((-1121 |#1| |#2| |#3|) $) 38 (|has| |#1| (-348)))) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3763 (((-3 $ "failed") $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-1099)) (|has| |#1| (-348))))) (-3501 (((-111) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-4095 (($ $ (-878)) NIL)) (-4134 (($ (-1 |#1| (-526)) $) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-526)) 18) (($ $ (-1033) (-526)) NIL) (($ $ (-607 (-1033)) (-607 (-526))) NIL)) (-3637 (($ $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-3638 (($ $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-348)))) (-4259 (($ $) 72 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4097 (($ (-526) (-1121 |#1| |#2| |#3|)) 33)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 70 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 71 (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-1099)) (|has| |#1| (-348))) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3425 (($ $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-292)) (|has| |#1| (-348))))) (-3427 (((-1121 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-526)) 145)) (-3780 (((-3 $ "failed") $ $) 49 (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) 73 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-526))))) (($ $ (-1123) (-1121 |#1| |#2| |#3|)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-496 (-1123) (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 (-1121 |#1| |#2| |#3|))) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-496 (-1123) (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-278 (-1121 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-278 (-1121 |#1| |#2| |#3|))) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-1121 |#1| |#2| |#3|)) (-607 (-1121 |#1| |#2| |#3|))) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) NIL) (($ $ $) 54 (|has| (-526) (-1063))) (($ $ (-1121 |#1| |#2| |#3|)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-271 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|))) NIL (|has| |#1| (-348))) (($ $ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) (-735)) NIL (|has| |#1| (-348))) (($ $ (-1202 |#2|)) 51) (($ $ (-735)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 50 (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-3295 (($ $) NIL (|has| |#1| (-348)))) (-3297 (((-1121 |#1| |#2| |#3|) $) 41 (|has| |#1| (-348)))) (-4264 (((-526) $) 37)) (-3809 (($ $) 113 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 89 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 109 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 85 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 105 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 81 (|has| |#1| (-37 (-392 (-526)))))) (-4287 (((-515) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-584 (-515))) (|has| |#1| (-348)))) (((-363) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-977)) (|has| |#1| (-348)))) (((-211) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-977)) (|has| |#1| (-348)))) (((-849 (-363)) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-584 (-849 (-363)))) (|has| |#1| (-348)))) (((-849 (-526)) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-584 (-849 (-526)))) (|has| |#1| (-348))))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) 149) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1121 |#1| |#2| |#3|)) 27) (($ (-1202 |#2|)) 23) (($ (-1123)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (($ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533)))) (($ (-392 (-526))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))) (|has| |#1| (-37 (-392 (-526))))))) (-3999 ((|#1| $ (-526)) 68)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-139)) (|has| |#1| (-348))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 12)) (-3428 (((-1121 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-3812 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 95 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-3810 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 91 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 99 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 101 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 97 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 93 (|has| |#1| (-37 (-392 (-526)))))) (-3702 (($ $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-2957 (($) 20 T CONST)) (-2964 (($) 16 T CONST)) (-2969 (($ $ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|))) NIL (|has| |#1| (-348))) (($ $ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) (-735)) NIL (|has| |#1| (-348))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-2863 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-2864 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-2985 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) 44 (|has| |#1| (-348))) (($ (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) 45 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 21)) (** (($ $ (-878)) NIL) (($ $ (-735)) 53) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) 74 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 128 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1121 |#1| |#2| |#3|)) 43 (|has| |#1| (-348))) (($ (-1121 |#1| |#2| |#3|) $) 42 (|has| |#1| (-348))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1114 |#1| |#2| |#3|) (-13 (-1169 |#1| (-1121 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1114)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) -(-13 (-1169 |#1| (-1121 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) -((-3845 ((|#2| |#2| (-1044 |#2|)) 26) ((|#2| |#2| (-1123)) 28))) -(((-1115 |#1| |#2|) (-10 -7 (-15 -3845 (|#2| |#2| (-1123))) (-15 -3845 (|#2| |#2| (-1044 |#2|)))) (-13 (-533) (-811) (-995 (-526)) (-606 (-526))) (-13 (-406 |#1|) (-152) (-27) (-1145))) (T -1115)) -((-3845 (*1 *2 *2 *3) (-12 (-5 *3 (-1044 *2)) (-4 *2 (-13 (-406 *4) (-152) (-27) (-1145))) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1115 *4 *2)))) (-3845 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1115 *4 *2)) (-4 *2 (-13 (-406 *4) (-152) (-27) (-1145)))))) -(-10 -7 (-15 -3845 (|#2| |#2| (-1123))) (-15 -3845 (|#2| |#2| (-1044 |#2|)))) -((-3845 (((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1044 (-392 (-905 |#1|)))) 31) (((-392 (-905 |#1|)) (-905 |#1|) (-1044 (-905 |#1|))) 44) (((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1123)) 33) (((-392 (-905 |#1|)) (-905 |#1|) (-1123)) 36))) -(((-1116 |#1|) (-10 -7 (-15 -3845 ((-392 (-905 |#1|)) (-905 |#1|) (-1123))) (-15 -3845 ((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1123))) (-15 -3845 ((-392 (-905 |#1|)) (-905 |#1|) (-1044 (-905 |#1|)))) (-15 -3845 ((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1044 (-392 (-905 |#1|)))))) (-13 (-533) (-811) (-995 (-526)))) (T -1116)) -((-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-3 *3 (-299 *5))) (-5 *1 (-1116 *5)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-905 *5))) (-5 *3 (-905 *5)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-392 *3)) (-5 *1 (-1116 *5)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-3 (-392 (-905 *5)) (-299 *5))) (-5 *1 (-1116 *5)) (-5 *3 (-392 (-905 *5))))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-392 (-905 *5))) (-5 *1 (-1116 *5)) (-5 *3 (-905 *5))))) -(-10 -7 (-15 -3845 ((-392 (-905 |#1|)) (-905 |#1|) (-1123))) (-15 -3845 ((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1123))) (-15 -3845 ((-392 (-905 |#1|)) (-905 |#1|) (-1044 (-905 |#1|)))) (-15 -3845 ((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1044 (-392 (-905 |#1|)))))) -((-2865 (((-111) $ $) 137)) (-3502 (((-111) $) 28)) (-4085 (((-1205 |#1|) $ (-735)) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4083 (($ (-1117 |#1|)) NIL)) (-3386 (((-1117 $) $ (-1033)) 58) (((-1117 |#1|) $) 47)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) 132 (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4074 (($ $ $) 126 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) 71 (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 91 (|has| |#1| (-869)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-4079 (($ $ (-735)) 40)) (-4078 (($ $ (-735)) 41)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-436)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1033) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1033) $) NIL)) (-4075 (($ $ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $ $) 128 (|has| |#1| (-163)))) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) 56)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4077 (($ $ $) 104)) (-4072 (($ $ $) NIL (|has| |#1| (-533)))) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-3817 (($ $) 133 (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-735) $) 45)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1033) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1033) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-3846 (((-823) $ (-823)) 117)) (-4090 (((-735) $ $) NIL (|has| |#1| (-533)))) (-2471 (((-111) $) 30)) (-2479 (((-735) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-1099)))) (-3387 (($ (-1117 |#1|) (-1033)) 49) (($ (-1117 $) (-1033)) 65)) (-4095 (($ $ (-735)) 32)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) 63) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) NIL) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 121)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4084 (((-1117 |#1|) $) NIL)) (-3385 (((-3 (-1033) #4="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) 52)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) 39)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) NIL)) (-4131 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 31)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 79 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) 135 (|has| |#1| (-436)))) (-4057 (($ $ (-735) |#1| $) 99)) (-3005 (((-390 (-1117 $)) (-1117 $)) 77 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 76 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 84 (|has| |#1| (-869)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#1|) NIL) (($ $ (-607 (-1033)) (-607 |#1|)) NIL) (($ $ (-1033) $) NIL) (($ $ (-607 (-1033)) (-607 $)) NIL)) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-392 $) (-392 $) (-392 $)) NIL (|has| |#1| (-533))) ((|#1| (-392 $) |#1|) NIL (|has| |#1| (-348))) (((-392 $) $ (-392 $)) NIL (|has| |#1| (-533)))) (-4082 (((-3 $ #5="failed") $ (-735)) 35)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 138 (|has| |#1| (-348)))) (-4076 (($ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $) 124 (|has| |#1| (-163)))) (-4129 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4264 (((-735) $) 54) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1033) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) 130 (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4073 (((-3 $ #5#) $ $) NIL (|has| |#1| (-533))) (((-3 (-392 $) #5#) (-392 $) $) NIL (|has| |#1| (-533)))) (-4274 (((-823) $) 118) (($ (-526)) NIL) (($ |#1|) 53) (($ (-1033)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) 26 (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 15 T CONST)) (-2964 (($) 16 T CONST)) (-2969 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 96)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 139 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 66)) (** (($ $ (-878)) 14) (($ $ (-735)) 12)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 25) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1117 |#1|) (-13 (-1181 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-823))) (-15 -4057 ($ $ (-735) |#1| $)))) (-1004)) (T -1117)) -((-3846 (*1 *2 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1117 *3)) (-4 *3 (-1004)))) (-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1117 *3)) (-4 *3 (-1004))))) -(-13 (-1181 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-823))) (-15 -4057 ($ $ (-735) |#1| $)))) -((-4275 (((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)) 13))) -(((-1118 |#1| |#2|) (-10 -7 (-15 -4275 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)))) (-1004) (-1004)) (T -1118)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-1117 *6)) (-5 *1 (-1118 *5 *6))))) -(-10 -7 (-15 -4275 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)))) -((-4286 (((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|))) 51)) (-4051 (((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|))) 52))) -(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|)))) (-15 -4286 ((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|))))) (-757) (-811) (-436) (-909 |#3| |#1| |#2|)) (T -1119)) -((-4286 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-436)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-390 (-1117 (-392 *7)))) (-5 *1 (-1119 *4 *5 *6 *7)) (-5 *3 (-1117 (-392 *7))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-436)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-390 (-1117 (-392 *7)))) (-5 *1 (-1119 *4 *5 *6 *7)) (-5 *3 (-1117 (-392 *7)))))) -(-10 -7 (-15 -4051 ((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|)))) (-15 -4286 ((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 11)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) NIL) (($ $ (-392 (-526)) (-392 (-526))) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1114 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1121 |#1| |#2| |#3|) #1#) $) 36)) (-3469 (((-1114 |#1| |#2| |#3|) $) NIL) (((-1121 |#1| |#2| |#3|) $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4099 (((-392 (-526)) $) 55)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4100 (($ (-392 (-526)) (-1114 |#1| |#2| |#3|)) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) NIL) (((-392 (-526)) $ (-392 (-526))) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL) (($ $ (-392 (-526))) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) 20) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4098 (((-1114 |#1| |#2| |#3|) $) 41)) (-4096 (((-3 (-1114 |#1| |#2| |#3|) "failed") $) NIL)) (-4097 (((-1114 |#1| |#2| |#3|) $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 39 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 40 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) NIL) (($ $ $) NIL (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $ (-1202 |#2|)) 38)) (-4264 (((-392 (-526)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) 58) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1114 |#1| |#2| |#3|)) 30) (($ (-1121 |#1| |#2| |#3|)) 31) (($ (-1202 |#2|)) 26) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 12)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 22 T CONST)) (-2964 (($) 16 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 24)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1120 |#1| |#2| |#3|) (-13 (-1190 |#1| (-1114 |#1| |#2| |#3|)) (-995 (-1121 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1120)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) -(-13 (-1190 |#1| (-1114 |#1| |#2| |#3|)) (-995 (-1121 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 125)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 116)) (-4130 (((-1174 |#2| |#1|) $ (-735)) 63)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-735)) 79) (($ $ (-735) (-735)) 76)) (-4092 (((-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|))) $) 102)) (-3806 (($ $) 169 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 145 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) 165 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|)))) 115) (($ (-1101 |#1|)) 110)) (-3808 (($ $) 173 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 149 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) 23)) (-4135 (($ $) 26)) (-4133 (((-905 |#1|) $ (-735)) 75) (((-905 |#1|) $ (-735) (-735)) 77)) (-3192 (((-111) $) 120)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $) 122) (((-735) $ (-735)) 124)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL)) (-4134 (($ (-1 |#1| (-526)) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) 13) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4131 (($ $) 129 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-4087 (($ $ (-735)) 15)) (-3780 (((-3 $ "failed") $ $) 24 (|has| |#1| (-533)))) (-4260 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-735)))))) (-4118 ((|#1| $ (-735)) 119) (($ $ $) 128 (|has| (-735) (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $ (-1202 |#2|)) 29)) (-4264 (((-735) $) NIL)) (-3809 (($ $) 175 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 151 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 171 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 147 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 167 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 143 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) 201) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) 126 (|has| |#1| (-163))) (($ (-1174 |#2| |#1|)) 51) (($ (-1202 |#2|)) 32)) (-4136 (((-1101 |#1|) $) 98)) (-3999 ((|#1| $ (-735)) 118)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 54)) (-3812 (($ $) 181 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 157 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 177 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 153 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 185 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 161 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-735)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-735)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 187 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 163 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 183 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 159 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 179 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 155 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 17 T CONST)) (-2964 (($) 19 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) 194)) (-4158 (($ $ $) 31)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ |#1|) 198 (|has| |#1| (-348))) (($ $ $) 134 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 137 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1121 |#1| |#2| |#3|) (-13 (-1198 |#1|) (-10 -8 (-15 -4274 ($ (-1174 |#2| |#1|))) (-15 -4130 ((-1174 |#2| |#1|) $ (-735))) (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1121)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1174 *4 *3)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) (-5 *1 (-1121 *3 *4 *5)))) (-4130 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1174 *5 *4)) (-5 *1 (-1121 *4 *5 *6)) (-4 *4 (-1004)) (-14 *5 (-1123)) (-14 *6 *4))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) -(-13 (-1198 |#1|) (-10 -8 (-15 -4274 ($ (-1174 |#2| |#1|))) (-15 -4130 ((-1174 |#2| |#1|) $ (-735))) (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) -((-4274 (((-823) $) 27) (($ (-1123)) 29)) (-3850 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 40)) (-3847 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 33) (($ $) 34)) (-3854 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 35)) (-3852 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 37)) (-3853 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 36)) (-3851 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 38)) (-3849 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 39))) -(((-1122) (-13 (-583 (-823)) (-10 -8 (-15 -4274 ($ (-1123))) (-15 -3854 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3853 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3852 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3851 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3850 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3849 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3847 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3847 ($ $))))) (T -1122)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1122)))) (-3854 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3853 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3852 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3851 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3850 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3849 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3847 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3847 (*1 *1 *1) (-5 *1 (-1122)))) -(-13 (-583 (-823)) (-10 -8 (-15 -4274 ($ (-1123))) (-15 -3854 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3853 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3852 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3851 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3850 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3849 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3847 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3847 ($ $)))) -((-2865 (((-111) $ $) NIL)) (-3859 (($ $ (-607 (-823))) 59)) (-3860 (($ $ (-607 (-823))) 57)) (-3857 (((-1106) $) 84)) (-3862 (((-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))) $) 87)) (-3863 (((-111) $) 22)) (-3861 (($ $ (-607 (-607 (-823)))) 56) (($ $ (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823))))) 82)) (-3855 (($) 124 T CONST)) (-3865 (((-1211)) 106)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 66) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 73)) (-3936 (($) 95) (($ $) 101)) (-3864 (($ $) 83)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3856 (((-607 $) $) 107)) (-3554 (((-1106) $) 90)) (-3555 (((-1070) $) NIL)) (-4118 (($ $ (-607 (-823))) 58)) (-4287 (((-515) $) 46) (((-1123) $) 47) (((-849 (-526)) $) 77) (((-849 (-363)) $) 75)) (-4274 (((-823) $) 53) (($ (-1106)) 48)) (-3858 (($ $ (-607 (-823))) 60)) (-2803 (((-1106) $) 33) (((-1106) $ (-111)) 34) (((-1211) (-787) $) 35) (((-1211) (-787) $ (-111)) 36)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 49)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 50))) -(((-1123) (-13 (-811) (-584 (-515)) (-785) (-584 (-1123)) (-584 (-849 (-526))) (-584 (-849 (-363))) (-845 (-526)) (-845 (-363)) (-10 -8 (-15 -3936 ($)) (-15 -3936 ($ $)) (-15 -3865 ((-1211))) (-15 -4274 ($ (-1106))) (-15 -3864 ($ $)) (-15 -3863 ((-111) $)) (-15 -3862 ((-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))) $)) (-15 -3861 ($ $ (-607 (-607 (-823))))) (-15 -3861 ($ $ (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))))) (-15 -3860 ($ $ (-607 (-823)))) (-15 -3859 ($ $ (-607 (-823)))) (-15 -3858 ($ $ (-607 (-823)))) (-15 -4118 ($ $ (-607 (-823)))) (-15 -3857 ((-1106) $)) (-15 -3856 ((-607 $) $)) (-15 -3855 ($) -4268)))) (T -1123)) -((-3936 (*1 *1) (-5 *1 (-1123))) (-3936 (*1 *1 *1) (-5 *1 (-1123))) (-3865 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1123)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1123)))) (-3864 (*1 *1 *1) (-5 *1 (-1123))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1123)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823))))) (-5 *1 (-1123)))) (-3861 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 (-823)))) (-5 *1 (-1123)))) (-3861 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823))))) (-5 *1 (-1123)))) (-3860 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) (-3859 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1123)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1123)))) (-3855 (*1 *1) (-5 *1 (-1123)))) -(-13 (-811) (-584 (-515)) (-785) (-584 (-1123)) (-584 (-849 (-526))) (-584 (-849 (-363))) (-845 (-526)) (-845 (-363)) (-10 -8 (-15 -3936 ($)) (-15 -3936 ($ $)) (-15 -3865 ((-1211))) (-15 -4274 ($ (-1106))) (-15 -3864 ($ $)) (-15 -3863 ((-111) $)) (-15 -3862 ((-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))) $)) (-15 -3861 ($ $ (-607 (-607 (-823))))) (-15 -3861 ($ $ (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))))) (-15 -3860 ($ $ (-607 (-823)))) (-15 -3859 ($ $ (-607 (-823)))) (-15 -3858 ($ $ (-607 (-823)))) (-15 -4118 ($ $ (-607 (-823)))) (-15 -3857 ((-1106) $)) (-15 -3856 ((-607 $) $)) (-15 -3855 ($) -4268))) -((-3866 (((-1205 |#1|) |#1| (-878)) 16) (((-1205 |#1|) (-607 |#1|)) 20))) -(((-1124 |#1|) (-10 -7 (-15 -3866 ((-1205 |#1|) (-607 |#1|))) (-15 -3866 ((-1205 |#1|) |#1| (-878)))) (-1004)) (T -1124)) -((-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-5 *2 (-1205 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1004)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1004)) (-5 *2 (-1205 *4)) (-5 *1 (-1124 *4))))) -(-10 -7 (-15 -3866 ((-1205 |#1|) (-607 |#1|))) (-15 -3866 ((-1205 |#1|) |#1| (-878)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-1697 (($ $ |#1| (-930) $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-930)) NIL)) (-3120 (((-930) $) NIL)) (-1698 (($ (-1 (-930) (-930)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-4057 (($ $ (-930) |#1| $) NIL (-12 (|has| (-930) (-129)) (|has| |#1| (-533))))) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533)))) (-4264 (((-930) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-930)) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 9 T CONST)) (-2964 (($) 14 T CONST)) (-3353 (((-111) $ $) 16)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 19)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1125 |#1|) (-13 (-311 |#1| (-930)) (-10 -8 (IF (|has| |#1| (-533)) (IF (|has| (-930) (-129)) (-15 -4057 ($ $ (-930) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) (-1004)) (T -1125)) -((-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-930)) (-4 *2 (-129)) (-5 *1 (-1125 *3)) (-4 *3 (-533)) (-4 *3 (-1004))))) -(-13 (-311 |#1| #1=(-930)) (-10 -8 (IF (|has| |#1| (-533)) (IF (|has| #1# (-129)) (-15 -4057 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) -((-3867 (((-1127) (-1123) $) 25)) (-3877 (($) 29)) (-3869 (((-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) (-1123) $) 22)) (-3871 (((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) $) 41) (((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) 42) (((-1211) (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) 43)) (-3879 (((-1211) (-1123)) 58)) (-3870 (((-1211) (-1123) $) 55) (((-1211) (-1123)) 56) (((-1211)) 57)) (-3875 (((-1211) (-1123)) 37)) (-3873 (((-1123)) 36)) (-3887 (($) 34)) (-3886 (((-421) (-1123) (-421) (-1123) $) 45) (((-421) (-607 (-1123)) (-421) (-1123) $) 49) (((-421) (-1123) (-421)) 46) (((-421) (-1123) (-421) (-1123)) 50)) (-3874 (((-1123)) 35)) (-4274 (((-823) $) 28)) (-3876 (((-1211)) 30) (((-1211) (-1123)) 33)) (-3868 (((-607 (-1123)) (-1123) $) 24)) (-3872 (((-1211) (-1123) (-607 (-1123)) $) 38) (((-1211) (-1123) (-607 (-1123))) 39) (((-1211) (-607 (-1123))) 40))) -(((-1126) (-13 (-583 (-823)) (-10 -8 (-15 -3877 ($)) (-15 -3876 ((-1211))) (-15 -3876 ((-1211) (-1123))) (-15 -3886 ((-421) (-1123) (-421) (-1123) $)) (-15 -3886 ((-421) (-607 (-1123)) (-421) (-1123) $)) (-15 -3886 ((-421) (-1123) (-421))) (-15 -3886 ((-421) (-1123) (-421) (-1123))) (-15 -3875 ((-1211) (-1123))) (-15 -3874 ((-1123))) (-15 -3873 ((-1123))) (-15 -3872 ((-1211) (-1123) (-607 (-1123)) $)) (-15 -3872 ((-1211) (-1123) (-607 (-1123)))) (-15 -3872 ((-1211) (-607 (-1123)))) (-15 -3871 ((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $)) (-15 -3871 ((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)))) (-15 -3871 ((-1211) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)))) (-15 -3870 ((-1211) (-1123) $)) (-15 -3870 ((-1211) (-1123))) (-15 -3870 ((-1211))) (-15 -3879 ((-1211) (-1123))) (-15 -3887 ($)) (-15 -3869 ((-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-1123) $)) (-15 -3868 ((-607 (-1123)) (-1123) $)) (-15 -3867 ((-1127) (-1123) $))))) (T -1126)) -((-3877 (*1 *1) (-5 *1 (-1126))) (-3876 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3886 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) (-3886 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-421)) (-5 *3 (-607 (-1123))) (-5 *4 (-1123)) (-5 *1 (-1126)))) (-3886 (*1 *2 *3 *2) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) (-3886 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3874 (*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1126)))) (-3873 (*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1126)))) (-3872 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3871 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1123)) (-5 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3870 (*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3870 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3887 (*1 *1) (-5 *1 (-1126))) (-3869 (*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *1 (-1126)))) (-3868 (*1 *2 *3 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1126)) (-5 *3 (-1123)))) (-3867 (*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-1127)) (-5 *1 (-1126))))) -(-13 (-583 (-823)) (-10 -8 (-15 -3877 ($)) (-15 -3876 ((-1211))) (-15 -3876 ((-1211) (-1123))) (-15 -3886 ((-421) (-1123) (-421) (-1123) $)) (-15 -3886 ((-421) (-607 (-1123)) (-421) (-1123) $)) (-15 -3886 ((-421) (-1123) (-421))) (-15 -3886 ((-421) (-1123) (-421) (-1123))) (-15 -3875 ((-1211) (-1123))) (-15 -3874 ((-1123))) (-15 -3873 ((-1123))) (-15 -3872 ((-1211) (-1123) (-607 (-1123)) $)) (-15 -3872 ((-1211) (-1123) (-607 (-1123)))) (-15 -3872 ((-1211) (-607 (-1123)))) (-15 -3871 ((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $)) (-15 -3871 ((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)))) (-15 -3871 ((-1211) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)))) (-15 -3870 ((-1211) (-1123) $)) (-15 -3870 ((-1211) (-1123))) (-15 -3870 ((-1211))) (-15 -3879 ((-1211) (-1123))) (-15 -3887 ($)) (-15 -3869 ((-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-1123) $)) (-15 -3868 ((-607 (-1123)) (-1123) $)) (-15 -3867 ((-1127) (-1123) $)))) -((-3881 (((-607 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) $) 59)) (-3883 (((-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))) (-419) $) 43)) (-3878 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421))))) 17)) (-3879 (((-1211) $) 67)) (-3884 (((-607 (-1123)) $) 22)) (-3880 (((-1054) $) 55)) (-3885 (((-421) (-1123) $) 27)) (-3882 (((-607 (-1123)) $) 30)) (-3887 (($) 19)) (-3886 (((-421) (-607 (-1123)) (-421) $) 25) (((-421) (-1123) (-421) $) 24)) (-4274 (((-823) $) 9) (((-1132 (-1123) (-421)) $) 13))) -(((-1127) (-13 (-583 (-823)) (-10 -8 (-15 -4274 ((-1132 (-1123) (-421)) $)) (-15 -3887 ($)) (-15 -3886 ((-421) (-607 (-1123)) (-421) $)) (-15 -3886 ((-421) (-1123) (-421) $)) (-15 -3885 ((-421) (-1123) $)) (-15 -3884 ((-607 (-1123)) $)) (-15 -3883 ((-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))) (-419) $)) (-15 -3882 ((-607 (-1123)) $)) (-15 -3881 ((-607 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) $)) (-15 -3880 ((-1054) $)) (-15 -3879 ((-1211) $)) (-15 -3878 ($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421))))))))) (T -1127)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-1132 (-1123) (-421))) (-5 *1 (-1127)))) (-3887 (*1 *1) (-5 *1 (-1127))) (-3886 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-607 (-1123))) (-5 *1 (-1127)))) (-3886 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1127)))) (-3885 (*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-421)) (-5 *1 (-1127)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1127)))) (-3883 (*1 *2 *3 *1) (-12 (-5 *3 (-419)) (-5 *2 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) (-5 *1 (-1127)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1127)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))))) (-5 *1 (-1127)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-1127)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1127)))) (-3878 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421))))) (-5 *1 (-1127))))) -(-13 (-583 (-823)) (-10 -8 (-15 -4274 ((-1132 (-1123) (-421)) $)) (-15 -3887 ($)) (-15 -3886 ((-421) (-607 (-1123)) (-421) $)) (-15 -3886 ((-421) (-1123) (-421) $)) (-15 -3885 ((-421) (-1123) $)) (-15 -3884 ((-607 (-1123)) $)) (-15 -3883 ((-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))) (-419) $)) (-15 -3882 ((-607 (-1123)) $)) (-15 -3881 ((-607 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) $)) (-15 -3880 ((-1054) $)) (-15 -3879 ((-1211) $)) (-15 -3878 ($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421)))))))) -((-2865 (((-111) $ $) NIL)) (-3892 (((-111) $) 42)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3891 (((-3 (-526) (-211) (-1123) (-1106) $) $) 50)) (-3890 (((-607 $) $) 55)) (-4287 (((-1054) $) 24) (($ (-1054)) 25)) (-3889 (((-111) $) 52)) (-4274 (((-823) $) NIL) (($ (-526)) 26) (((-526) $) 28) (($ (-211)) 29) (((-211) $) 31) (($ (-1123)) 32) (((-1123) $) 34) (($ (-1106)) 35) (((-1106) $) 37)) (-3888 (((-111) $ (|[\|\|]| (-526))) 11) (((-111) $ (|[\|\|]| (-211))) 15) (((-111) $ (|[\|\|]| (-1123))) 23) (((-111) $ (|[\|\|]| (-1106))) 19)) (-3893 (($ (-1123) (-607 $)) 39) (($ $ (-607 $)) 40)) (-3894 (((-526) $) 27) (((-211) $) 30) (((-1123) $) 33) (((-1106) $) 36)) (-3353 (((-111) $ $) 7))) -(((-1128) (-13 (-1201) (-1052) (-10 -8 (-15 -4287 ((-1054) $)) (-15 -4287 ($ (-1054))) (-15 -4274 ($ (-526))) (-15 -4274 ((-526) $)) (-15 -3894 ((-526) $)) (-15 -4274 ($ (-211))) (-15 -4274 ((-211) $)) (-15 -3894 ((-211) $)) (-15 -4274 ($ (-1123))) (-15 -4274 ((-1123) $)) (-15 -3894 ((-1123) $)) (-15 -4274 ($ (-1106))) (-15 -4274 ((-1106) $)) (-15 -3894 ((-1106) $)) (-15 -3893 ($ (-1123) (-607 $))) (-15 -3893 ($ $ (-607 $))) (-15 -3892 ((-111) $)) (-15 -3891 ((-3 (-526) (-211) (-1123) (-1106) $) $)) (-15 -3890 ((-607 $) $)) (-15 -3889 ((-111) $)) (-15 -3888 ((-111) $ (|[\|\|]| (-526)))) (-15 -3888 ((-111) $ (|[\|\|]| (-211)))) (-15 -3888 ((-111) $ (|[\|\|]| (-1123)))) (-15 -3888 ((-111) $ (|[\|\|]| (-1106))))))) (T -1128)) -((-4287 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-1128)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-1128)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) (-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-1128))) (-5 *1 (-1128)))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1128)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1128)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-3 (-526) (-211) (-1123) (-1106) (-1128))) (-5 *1 (-1128)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1128)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1128)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-111)) (-5 *1 (-1128)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-211))) (-5 *2 (-111)) (-5 *1 (-1128)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-111)) (-5 *1 (-1128)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-111)) (-5 *1 (-1128))))) -(-13 (-1201) (-1052) (-10 -8 (-15 -4287 ((-1054) $)) (-15 -4287 ($ (-1054))) (-15 -4274 ($ (-526))) (-15 -4274 ((-526) $)) (-15 -3894 ((-526) $)) (-15 -4274 ($ (-211))) (-15 -4274 ((-211) $)) (-15 -3894 ((-211) $)) (-15 -4274 ($ (-1123))) (-15 -4274 ((-1123) $)) (-15 -3894 ((-1123) $)) (-15 -4274 ($ (-1106))) (-15 -4274 ((-1106) $)) (-15 -3894 ((-1106) $)) (-15 -3893 ($ (-1123) (-607 $))) (-15 -3893 ($ $ (-607 $))) (-15 -3892 ((-111) $)) (-15 -3891 ((-3 (-526) (-211) (-1123) (-1106) $) $)) (-15 -3890 ((-607 $) $)) (-15 -3889 ((-111) $)) (-15 -3888 ((-111) $ (|[\|\|]| (-526)))) (-15 -3888 ((-111) $ (|[\|\|]| (-211)))) (-15 -3888 ((-111) $ (|[\|\|]| (-1123)))) (-15 -3888 ((-111) $ (|[\|\|]| (-1106)))))) -((-3896 (((-607 (-607 (-905 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123))) 57)) (-3895 (((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|)))) 69) (((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|))) 65) (((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123)) 70) (((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123)) 64) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|))))) 93) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|)))) 92) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123))) 94) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))) (-607 (-1123))) 91))) -(((-1129 |#1|) (-10 -7 (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))))) (-15 -3896 ((-607 (-607 (-905 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123))))) (-533)) (T -1129)) -((-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-905 *5)))) (-5 *1 (-1129 *5)))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *4))))) (-5 *1 (-1129 *4)) (-5 *3 (-278 (-392 (-905 *4)))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *4))))) (-5 *1 (-1129 *4)) (-5 *3 (-392 (-905 *4))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *5))))) (-5 *1 (-1129 *5)) (-5 *3 (-278 (-392 (-905 *5)))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *5))))) (-5 *1 (-1129 *5)) (-5 *3 (-392 (-905 *5))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-1129 *4)) (-5 *3 (-607 (-278 (-392 (-905 *4))))))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-607 (-392 (-905 *4)))) (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-1129 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-1129 *5)) (-5 *3 (-607 (-278 (-392 (-905 *5))))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-1129 *5))))) -(-10 -7 (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))))) (-15 -3896 ((-607 (-607 (-905 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123))))) -((-3897 (((-1106)) 7)) (-3899 (((-1106)) 9)) (-3900 (((-1211) (-1106)) 11)) (-3898 (((-1106)) 8))) -(((-1130) (-10 -7 (-15 -3897 ((-1106))) (-15 -3898 ((-1106))) (-15 -3899 ((-1106))) (-15 -3900 ((-1211) (-1106))))) (T -1130)) -((-3900 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1130)))) (-3899 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130)))) (-3898 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130)))) (-3897 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130))))) -(-10 -7 (-15 -3897 ((-1106))) (-15 -3898 ((-1106))) (-15 -3899 ((-1106))) (-15 -3900 ((-1211) (-1106)))) -((-3904 (((-607 (-607 |#1|)) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|)))) 38)) (-3907 (((-607 (-607 (-607 |#1|))) (-607 (-607 |#1|))) 24)) (-3908 (((-1133 (-607 |#1|)) (-607 |#1|)) 34)) (-3910 (((-607 (-607 |#1|)) (-607 |#1|)) 30)) (-3913 (((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 (-607 (-607 |#1|)))) 37)) (-3912 (((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 |#1|) (-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|)))) 36)) (-3909 (((-607 (-607 |#1|)) (-607 (-607 |#1|))) 28)) (-3911 (((-607 |#1|) (-607 |#1|)) 31)) (-3903 (((-607 (-607 (-607 |#1|))) (-607 |#1|) (-607 (-607 (-607 |#1|)))) 18)) (-3902 (((-607 (-607 (-607 |#1|))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 (-607 |#1|)))) 16)) (-3901 (((-2 (|:| |fs| (-111)) (|:| |sd| (-607 |#1|)) (|:| |td| (-607 (-607 |#1|)))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 |#1|))) 14)) (-3905 (((-607 (-607 |#1|)) (-607 (-607 (-607 |#1|)))) 39)) (-3906 (((-607 (-607 |#1|)) (-1133 (-607 |#1|))) 41))) -(((-1131 |#1|) (-10 -7 (-15 -3901 ((-2 (|:| |fs| (-111)) (|:| |sd| (-607 |#1|)) (|:| |td| (-607 (-607 |#1|)))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 |#1|)))) (-15 -3902 ((-607 (-607 (-607 |#1|))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 (-607 |#1|))))) (-15 -3903 ((-607 (-607 (-607 |#1|))) (-607 |#1|) (-607 (-607 (-607 |#1|))))) (-15 -3904 ((-607 (-607 |#1|)) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))))) (-15 -3905 ((-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))))) (-15 -3906 ((-607 (-607 |#1|)) (-1133 (-607 |#1|)))) (-15 -3907 ((-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)))) (-15 -3908 ((-1133 (-607 |#1|)) (-607 |#1|))) (-15 -3909 ((-607 (-607 |#1|)) (-607 (-607 |#1|)))) (-15 -3910 ((-607 (-607 |#1|)) (-607 |#1|))) (-15 -3911 ((-607 |#1|) (-607 |#1|))) (-15 -3912 ((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 |#1|) (-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))))) (-15 -3913 ((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 (-607 (-607 |#1|)))))) (-811)) (T -1131)) -((-3913 (*1 *2 *3) (-12 (-4 *4 (-811)) (-5 *2 (-2 (|:| |f1| (-607 *4)) (|:| |f2| (-607 (-607 (-607 *4)))) (|:| |f3| (-607 (-607 *4))) (|:| |f4| (-607 (-607 (-607 *4)))))) (-5 *1 (-1131 *4)) (-5 *3 (-607 (-607 (-607 *4)))))) (-3912 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-811)) (-5 *3 (-607 *6)) (-5 *5 (-607 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-607 *5)) (|:| |f3| *5) (|:| |f4| (-607 *5)))) (-5 *1 (-1131 *6)) (-5 *4 (-607 *5)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-1131 *3)))) (-3910 (*1 *2 *3) (-12 (-4 *4 (-811)) (-5 *2 (-607 (-607 *4))) (-5 *1 (-1131 *4)) (-5 *3 (-607 *4)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-811)) (-5 *1 (-1131 *3)))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-811)) (-5 *2 (-1133 (-607 *4))) (-5 *1 (-1131 *4)) (-5 *3 (-607 *4)))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-811)) (-5 *2 (-607 (-607 (-607 *4)))) (-5 *1 (-1131 *4)) (-5 *3 (-607 (-607 *4))))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1133 (-607 *4))) (-4 *4 (-811)) (-5 *2 (-607 (-607 *4))) (-5 *1 (-1131 *4)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-607 *4)))) (-5 *2 (-607 (-607 *4))) (-5 *1 (-1131 *4)) (-4 *4 (-811)))) (-3904 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-607 (-607 *4)))) (-5 *2 (-607 (-607 *4))) (-4 *4 (-811)) (-5 *1 (-1131 *4)))) (-3903 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-607 (-607 *4)))) (-5 *3 (-607 *4)) (-4 *4 (-811)) (-5 *1 (-1131 *4)))) (-3902 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-607 (-607 (-607 *5)))) (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-607 *5)) (-4 *5 (-811)) (-5 *1 (-1131 *5)))) (-3901 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-811)) (-5 *4 (-607 *6)) (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-607 *4)))) (-5 *1 (-1131 *6)) (-5 *5 (-607 *4))))) -(-10 -7 (-15 -3901 ((-2 (|:| |fs| (-111)) (|:| |sd| (-607 |#1|)) (|:| |td| (-607 (-607 |#1|)))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 |#1|)))) (-15 -3902 ((-607 (-607 (-607 |#1|))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 (-607 |#1|))))) (-15 -3903 ((-607 (-607 (-607 |#1|))) (-607 |#1|) (-607 (-607 (-607 |#1|))))) (-15 -3904 ((-607 (-607 |#1|)) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))))) (-15 -3905 ((-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))))) (-15 -3906 ((-607 (-607 |#1|)) (-1133 (-607 |#1|)))) (-15 -3907 ((-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)))) (-15 -3908 ((-1133 (-607 |#1|)) (-607 |#1|))) (-15 -3909 ((-607 (-607 |#1|)) (-607 (-607 |#1|)))) (-15 -3910 ((-607 (-607 |#1|)) (-607 |#1|))) (-15 -3911 ((-607 |#1|) (-607 |#1|))) (-15 -3912 ((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 |#1|) (-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))))) (-15 -3913 ((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 (-607 (-607 |#1|)))))) -((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) NIL)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1132 |#1| |#2|) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) (-1052) (-1052)) (T -1132)) -NIL -(-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) -((-3914 (($ (-607 (-607 |#1|))) 10)) (-3915 (((-607 (-607 |#1|)) $) 11)) (-4274 (((-823) $) 26))) -(((-1133 |#1|) (-10 -8 (-15 -3914 ($ (-607 (-607 |#1|)))) (-15 -3915 ((-607 (-607 |#1|)) $)) (-15 -4274 ((-823) $))) (-1052)) (T -1133)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1133 *3)) (-4 *3 (-1052)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 *3))) (-5 *1 (-1133 *3)) (-4 *3 (-1052)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-1133 *3))))) -(-10 -8 (-15 -3914 ($ (-607 (-607 |#1|)))) (-15 -3915 ((-607 (-607 |#1|)) $)) (-15 -4274 ((-823) $))) -((-3916 ((|#1| (-607 |#1|)) 32)) (-3918 ((|#1| |#1| (-526)) 18)) (-3917 (((-1117 |#1|) |#1| (-878)) 15))) -(((-1134 |#1|) (-10 -7 (-15 -3916 (|#1| (-607 |#1|))) (-15 -3917 ((-1117 |#1|) |#1| (-878))) (-15 -3918 (|#1| |#1| (-526)))) (-348)) (T -1134)) -((-3918 (*1 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-1134 *2)) (-4 *2 (-348)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-5 *2 (-1117 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-348)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-1134 *2)) (-4 *2 (-348))))) -(-10 -7 (-15 -3916 (|#1| (-607 |#1|))) (-15 -3917 ((-1117 |#1|) |#1| (-878))) (-15 -3918 (|#1| |#1| (-526)))) -((-3919 (($) 10) (($ (-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)))) 14)) (-3724 (($ (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 61) (($ (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) 39) (((-607 |#3|) $) 41)) (-2048 (($ (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4275 (($ (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1306 (((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 54)) (-3929 (($ (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 16)) (-2281 (((-607 |#2|) $) 19)) (-2282 (((-111) |#2| $) 59)) (-1376 (((-3 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) "failed") (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) 58)) (-1307 (((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 63)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 67)) (-2283 (((-607 |#3|) $) 43)) (-4118 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) NIL) (((-735) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) NIL) (((-735) |#3| $) NIL) (((-735) (-1 (-111) |#3|) $) 68)) (-4274 (((-823) $) 27)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 65)) (-3353 (((-111) $ $) 49))) -(((-1135 |#1| |#2| |#3|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3919 (|#1| (-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))))) (-15 -3919 (|#1|)) (-15 -4275 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2048 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#3|) |#1|)) (-15 -2044 ((-607 |#3|) |#1|)) (-15 -2045 ((-735) |#3| |#1|)) (-15 -4118 (|#3| |#1| |#2| |#3|)) (-15 -4118 (|#3| |#1| |#2|)) (-15 -2283 ((-607 |#3|) |#1|)) (-15 -2282 ((-111) |#2| |#1|)) (-15 -2281 ((-607 |#2|) |#1|)) (-15 -3724 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3724 (|#1| (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -3724 (|#1| (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -1376 ((-3 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) "failed") (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -1306 ((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -3929 (|#1| (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -1307 ((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -2045 ((-735) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -2044 ((-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2045 ((-735) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2046 ((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2047 ((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2048 (|#1| (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -4275 (|#1| (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|))) (-1136 |#2| |#3|) (-1052) (-1052)) (T -1135)) -NIL -(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3919 (|#1| (-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))))) (-15 -3919 (|#1|)) (-15 -4275 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2048 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#3|) |#1|)) (-15 -2044 ((-607 |#3|) |#1|)) (-15 -2045 ((-735) |#3| |#1|)) (-15 -4118 (|#3| |#1| |#2| |#3|)) (-15 -4118 (|#3| |#1| |#2|)) (-15 -2283 ((-607 |#3|) |#1|)) (-15 -2282 ((-111) |#2| |#1|)) (-15 -2281 ((-607 |#2|) |#1|)) (-15 -3724 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3724 (|#1| (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -3724 (|#1| (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -1376 ((-3 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) "failed") (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -1306 ((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -3929 (|#1| (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -1307 ((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -2045 ((-735) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -2044 ((-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2045 ((-735) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2046 ((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2047 ((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2048 (|#1| (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -4275 (|#1| (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|))) -((-2865 (((-111) $ $) 19 (-3850 (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3919 (($) 72) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 71)) (-2276 (((-1211) $ |#1| |#1|) 99 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#2| $ |#1| |#2|) 73)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 55 (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) 61)) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 46 (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) 62)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 54 (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 56 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 53 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 52 (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) 88)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 30 (|has| $ (-6 -4310))) (((-607 |#2|) $) 79 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2278 ((|#1| $) 96 (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 29 (|has| $ (-6 -4310))) (((-607 |#2|) $) 80 (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-2279 ((|#1| $) 95 (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 34 (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (-3850 (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2713 (((-607 |#1|) $) 63)) (-2286 (((-111) |#1| $) 64)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 39)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 40)) (-2281 (((-607 |#1|) $) 93)) (-2282 (((-111) |#1| $) 92)) (-3555 (((-1070) $) 21 (-3850 (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-4119 ((|#2| $) 97 (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 51)) (-2277 (($ $ |#2|) 98 (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 41)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 32 (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) 26 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 25 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 24 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 23 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 86 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 84 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) 83 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) 91)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1499 (($) 49) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 48)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 31 (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-735) |#2| $) 81 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4310)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 50)) (-4274 (((-823) $) 18 (-3850 (|has| |#2| (-583 (-823))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 42)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 33 (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (-3850 (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-1136 |#1| |#2|) (-134) (-1052) (-1052)) (T -1136)) -((-4106 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-3919 (*1 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 *3) (|:| -2164 *4)))) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *1 (-1136 *3 *4)))) (-4275 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) -(-13 (-580 |t#1| |t#2|) (-574 |t#1| |t#2|) (-10 -8 (-15 -4106 (|t#2| $ |t#1| |t#2|)) (-15 -3919 ($)) (-15 -3919 ($ (-607 (-2 (|:| -4179 |t#1|) (|:| -2164 |t#2|))))) (-15 -4275 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-33) . T) ((-105 #1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((-100) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))) ((-583 (-823)) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-1052)) (|has| |#2| (-583 (-823)))) ((-145 #1#) . T) ((-584 (-515)) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))) ((-215 #1#) . T) ((-221 #1#) . T) ((-271 |#1| |#2|) . T) ((-273 |#1| |#2|) . T) ((-294 #1#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-472 #1#) . T) ((-472 |#2|) . T) ((-574 |#1| |#2|) . T) ((-496 #1# #1#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-580 |#1| |#2|) . T) ((-1052) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))) ((-1159) . T)) -((-3925 (((-111)) 24)) (-3922 (((-1211) (-1106)) 26)) (-3926 (((-111)) 36)) (-3923 (((-1211)) 34)) (-3921 (((-1211) (-1106) (-1106)) 25)) (-3927 (((-111)) 37)) (-3929 (((-1211) |#1| |#2|) 44)) (-3920 (((-1211)) 20)) (-3928 (((-3 |#2| "failed") |#1|) 42)) (-3924 (((-1211)) 35))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -3920 ((-1211))) (-15 -3921 ((-1211) (-1106) (-1106))) (-15 -3922 ((-1211) (-1106))) (-15 -3923 ((-1211))) (-15 -3924 ((-1211))) (-15 -3925 ((-111))) (-15 -3926 ((-111))) (-15 -3927 ((-111))) (-15 -3928 ((-3 |#2| "failed") |#1|)) (-15 -3929 ((-1211) |#1| |#2|))) (-1052) (-1052)) (T -1137)) -((-3929 (*1 *2 *3 *4) (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3928 (*1 *2 *3) (|partial| -12 (-4 *2 (-1052)) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1052)))) (-3927 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3926 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3925 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3924 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3923 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)))) (-3921 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)))) (-3920 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) -(-10 -7 (-15 -3920 ((-1211))) (-15 -3921 ((-1211) (-1106) (-1106))) (-15 -3922 ((-1211) (-1106))) (-15 -3923 ((-1211))) (-15 -3924 ((-1211))) (-15 -3925 ((-111))) (-15 -3926 ((-111))) (-15 -3927 ((-111))) (-15 -3928 ((-3 |#2| "failed") |#1|)) (-15 -3929 ((-1211) |#1| |#2|))) -((-3931 (((-1106) (-1106)) 18)) (-3930 (((-50) (-1106)) 21))) -(((-1138) (-10 -7 (-15 -3930 ((-50) (-1106))) (-15 -3931 ((-1106) (-1106))))) (T -1138)) -((-3931 (*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1138)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-1138))))) -(-10 -7 (-15 -3930 ((-50) (-1106))) (-15 -3931 ((-1106) (-1106)))) -((-2865 (((-111) $ $) NIL)) (-3937 (((-607 (-1106)) $) 34)) (-3933 (((-607 (-1106)) $ (-607 (-1106))) 37)) (-3932 (((-607 (-1106)) $ (-607 (-1106))) 36)) (-3934 (((-607 (-1106)) $ (-607 (-1106))) 38)) (-3935 (((-607 (-1106)) $) 33)) (-3936 (($) 22)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3938 (((-607 (-1106)) $) 35)) (-3939 (((-1211) $ (-526)) 29) (((-1211) $) 30)) (-4287 (($ (-823) (-526)) 26) (($ (-823) (-526) (-823)) NIL)) (-4274 (((-823) $) 40) (($ (-823)) 24)) (-3353 (((-111) $ $) NIL))) -(((-1139) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-823))) (-15 -4287 ($ (-823) (-526))) (-15 -4287 ($ (-823) (-526) (-823))) (-15 -3939 ((-1211) $ (-526))) (-15 -3939 ((-1211) $)) (-15 -3938 ((-607 (-1106)) $)) (-15 -3937 ((-607 (-1106)) $)) (-15 -3936 ($)) (-15 -3935 ((-607 (-1106)) $)) (-15 -3934 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3933 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3932 ((-607 (-1106)) $ (-607 (-1106))))))) (T -1139)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1139)))) (-4287 (*1 *1 *2 *3) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-1139)))) (-4287 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-1139)))) (-3939 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1139)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1139)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3936 (*1 *1) (-5 *1 (-1139))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3934 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3933 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) -(-13 (-1052) (-10 -8 (-15 -4274 ($ (-823))) (-15 -4287 ($ (-823) (-526))) (-15 -4287 ($ (-823) (-526) (-823))) (-15 -3939 ((-1211) $ (-526))) (-15 -3939 ((-1211) $)) (-15 -3938 ((-607 (-1106)) $)) (-15 -3937 ((-607 (-1106)) $)) (-15 -3936 ($)) (-15 -3935 ((-607 (-1106)) $)) (-15 -3934 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3933 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3932 ((-607 (-1106)) $ (-607 (-1106)))))) -((-4274 (((-1139) |#1|) 11))) -(((-1140 |#1|) (-10 -7 (-15 -4274 ((-1139) |#1|))) (-1052)) (T -1140)) -((-4274 (*1 *2 *3) (-12 (-5 *2 (-1139)) (-5 *1 (-1140 *3)) (-4 *3 (-1052))))) -(-10 -7 (-15 -4274 ((-1139) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3944 (((-1106) $ (-1106)) 17) (((-1106) $) 16)) (-1789 (((-1106) $ (-1106)) 15)) (-1793 (($ $ (-1106)) NIL)) (-3942 (((-3 (-1106) "failed") $) 11)) (-3943 (((-1106) $) 8)) (-3941 (((-3 (-1106) "failed") $) 12)) (-1790 (((-1106) $) 9)) (-1794 (($ (-373)) NIL) (($ (-373) (-1106)) NIL)) (-3864 (((-373) $) NIL)) (-3554 (((-1106) $) NIL)) (-1791 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3940 (((-111) $) 18)) (-4274 (((-823) $) NIL)) (-1792 (($ $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-1141) (-13 (-350 (-373) (-1106)) (-10 -8 (-15 -3944 ((-1106) $ (-1106))) (-15 -3944 ((-1106) $)) (-15 -3943 ((-1106) $)) (-15 -3942 ((-3 (-1106) "failed") $)) (-15 -3941 ((-3 (-1106) "failed") $)) (-15 -3940 ((-111) $))))) (T -1141)) -((-3944 (*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3942 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3941 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1141))))) -(-13 (-350 (-373) (-1106)) (-10 -8 (-15 -3944 ((-1106) $ (-1106))) (-15 -3944 ((-1106) $)) (-15 -3943 ((-1106) $)) (-15 -3942 ((-3 (-1106) "failed") $)) (-15 -3941 ((-3 (-1106) "failed") $)) (-15 -3940 ((-111) $)))) -((-3945 (((-3 (-526) "failed") |#1|) 19)) (-3946 (((-3 (-526) "failed") |#1|) 14)) (-3947 (((-526) (-1106)) 28))) -(((-1142 |#1|) (-10 -7 (-15 -3945 ((-3 (-526) "failed") |#1|)) (-15 -3946 ((-3 (-526) "failed") |#1|)) (-15 -3947 ((-526) (-1106)))) (-1004)) (T -1142)) -((-3947 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-526)) (-5 *1 (-1142 *4)) (-4 *4 (-1004)))) (-3946 (*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-1142 *3)) (-4 *3 (-1004)))) (-3945 (*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-1142 *3)) (-4 *3 (-1004))))) -(-10 -7 (-15 -3945 ((-3 (-526) "failed") |#1|)) (-15 -3946 ((-3 (-526) "failed") |#1|)) (-15 -3947 ((-526) (-1106)))) -((-3948 (((-1083 (-211))) 9))) -(((-1143) (-10 -7 (-15 -3948 ((-1083 (-211)))))) (T -1143)) -((-3948 (*1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1143))))) -(-10 -7 (-15 -3948 ((-1083 (-211))))) -((-3949 (($) 11)) (-3812 (($ $) 35)) (-3810 (($ $) 33)) (-3798 (($ $) 25)) (-3814 (($ $) 17)) (-3815 (($ $) 15)) (-3813 (($ $) 19)) (-3801 (($ $) 30)) (-3811 (($ $) 34)) (-3799 (($ $) 29))) -(((-1144 |#1|) (-10 -8 (-15 -3949 (|#1|)) (-15 -3812 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3799 (|#1| |#1|))) (-1145)) (T -1144)) -NIL -(-10 -8 (-15 -3949 (|#1|)) (-15 -3812 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3799 (|#1| |#1|))) -((-3806 (($ $) 26)) (-3961 (($ $) 11)) (-3804 (($ $) 27)) (-3960 (($ $) 10)) (-3808 (($ $) 28)) (-3959 (($ $) 9)) (-3949 (($) 16)) (-4259 (($ $) 19)) (-4260 (($ $) 18)) (-3809 (($ $) 29)) (-3958 (($ $) 8)) (-3807 (($ $) 30)) (-3957 (($ $) 7)) (-3805 (($ $) 31)) (-3956 (($ $) 6)) (-3812 (($ $) 20)) (-3800 (($ $) 32)) (-3810 (($ $) 21)) (-3798 (($ $) 33)) (-3814 (($ $) 22)) (-3802 (($ $) 34)) (-3815 (($ $) 23)) (-3803 (($ $) 35)) (-3813 (($ $) 24)) (-3801 (($ $) 36)) (-3811 (($ $) 25)) (-3799 (($ $) 37)) (** (($ $ $) 17))) -(((-1145) (-134)) (T -1145)) -((-3949 (*1 *1) (-4 *1 (-1145)))) -(-13 (-1148) (-93) (-475) (-34) (-269) (-10 -8 (-15 -3949 ($)))) -(((-34) . T) ((-93) . T) ((-269) . T) ((-475) . T) ((-1148) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 17)) (-3954 (($ |#1| (-607 $)) 23) (($ (-607 |#1|)) 27) (($ |#1|) 25)) (-1244 (((-111) $ (-735)) 48)) (-3325 ((|#1| $ |#1|) 14 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 13 (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-2044 (((-607 |#1|) $) 52 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 43)) (-3327 (((-111) $ $) 33 (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) 41)) (-2480 (((-607 |#1|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 51 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 22)) (-4038 (((-111) $ (-735)) 40)) (-3330 (((-607 |#1|) $) 37)) (-3841 (((-111) $) 36)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 74)) (-3722 (((-111) $) 9)) (-3887 (($) 10)) (-4118 ((|#1| $ #1#) NIL)) (-3329 (((-526) $ $) 32)) (-3950 (((-607 $) $) 59)) (-3951 (((-111) $ $) 77)) (-3952 (((-607 $) $) 72)) (-3953 (($ $) 73)) (-3955 (((-111) $) 56)) (-2045 (((-735) (-1 (-111) |#1|) $) 20 (|has| $ (-6 -4310))) (((-735) |#1| $) 16 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 58)) (-4274 (((-823) $) 61 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 12)) (-3328 (((-111) $ $) 29 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 49 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 28 (|has| |#1| (-1052)))) (-4273 (((-735) $) 39 (|has| $ (-6 -4310))))) -(((-1146 |#1|) (-13 (-968 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -3954 ($ |#1| (-607 $))) (-15 -3954 ($ (-607 |#1|))) (-15 -3954 ($ |#1|)) (-15 -3955 ((-111) $)) (-15 -3953 ($ $)) (-15 -3952 ((-607 $) $)) (-15 -3951 ((-111) $ $)) (-15 -3950 ((-607 $) $)))) (-1052)) (T -1146)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1146 *3)) (-4 *3 (-1052)))) (-3954 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-1146 *2))) (-5 *1 (-1146 *2)) (-4 *2 (-1052)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-1146 *3)))) (-3954 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1052)))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1052)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-607 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1052)))) (-3951 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1146 *3)) (-4 *3 (-1052)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-607 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) -(-13 (-968 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -3954 ($ |#1| (-607 $))) (-15 -3954 ($ (-607 |#1|))) (-15 -3954 ($ |#1|)) (-15 -3955 ((-111) $)) (-15 -3953 ($ $)) (-15 -3952 ((-607 $) $)) (-15 -3951 ((-111) $ $)) (-15 -3950 ((-607 $) $)))) -((-3961 (($ $) 15)) (-3959 (($ $) 12)) (-3958 (($ $) 10)) (-3957 (($ $) 17))) -(((-1147 |#1|) (-10 -8 (-15 -3957 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3961 (|#1| |#1|))) (-1148)) (T -1147)) -NIL -(-10 -8 (-15 -3957 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3961 (|#1| |#1|))) -((-3961 (($ $) 11)) (-3960 (($ $) 10)) (-3959 (($ $) 9)) (-3958 (($ $) 8)) (-3957 (($ $) 7)) (-3956 (($ $) 6))) -(((-1148) (-134)) (T -1148)) -((-3961 (*1 *1 *1) (-4 *1 (-1148))) (-3960 (*1 *1 *1) (-4 *1 (-1148))) (-3959 (*1 *1 *1) (-4 *1 (-1148))) (-3958 (*1 *1 *1) (-4 *1 (-1148))) (-3957 (*1 *1 *1) (-4 *1 (-1148))) (-3956 (*1 *1 *1) (-4 *1 (-1148)))) -(-13 (-10 -8 (-15 -3956 ($ $)) (-15 -3957 ($ $)) (-15 -3958 ($ $)) (-15 -3959 ($ $)) (-15 -3960 ($ $)) (-15 -3961 ($ $)))) -((-3964 ((|#2| |#2|) 88)) (-3967 (((-111) |#2|) 26)) (-3965 ((|#2| |#2|) 30)) (-3966 ((|#2| |#2|) 32)) (-3962 ((|#2| |#2| (-1123)) 83) ((|#2| |#2|) 84)) (-3968 (((-159 |#2|) |#2|) 28)) (-3963 ((|#2| |#2| (-1123)) 85) ((|#2| |#2|) 86))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3962 (|#2| |#2| (-1123))) (-15 -3963 (|#2| |#2|)) (-15 -3963 (|#2| |#2| (-1123))) (-15 -3964 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -3967 ((-111) |#2|)) (-15 -3968 ((-159 |#2|) |#2|))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -1149)) -((-3968 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-159 *3)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-111)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-3963 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-3962 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-3962 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) -(-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3962 (|#2| |#2| (-1123))) (-15 -3963 (|#2| |#2|)) (-15 -3963 (|#2| |#2| (-1123))) (-15 -3964 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -3967 ((-111) |#2|)) (-15 -3968 ((-159 |#2|) |#2|))) -((-3969 ((|#4| |#4| |#1|) 27)) (-3970 ((|#4| |#4| |#1|) 28))) -(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3969 (|#4| |#4| |#1|)) (-15 -3970 (|#4| |#4| |#1|))) (-533) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|)) (T -1150)) -((-3970 (*1 *2 *2 *3) (-12 (-4 *3 (-533)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1150 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-3969 (*1 *2 *2 *3) (-12 (-4 *3 (-533)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1150 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) -(-10 -7 (-15 -3969 (|#4| |#4| |#1|)) (-15 -3970 (|#4| |#4| |#1|))) -((-3988 ((|#2| |#2|) 133)) (-3990 ((|#2| |#2|) 130)) (-3987 ((|#2| |#2|) 121)) (-3989 ((|#2| |#2|) 118)) (-3986 ((|#2| |#2|) 126)) (-3985 ((|#2| |#2|) 114)) (-3974 ((|#2| |#2|) 43)) (-3973 ((|#2| |#2|) 94)) (-3971 ((|#2| |#2|) 74)) (-3984 ((|#2| |#2|) 128)) (-3983 ((|#2| |#2|) 116)) (-3996 ((|#2| |#2|) 138)) (-3994 ((|#2| |#2|) 136)) (-3995 ((|#2| |#2|) 137)) (-3993 ((|#2| |#2|) 135)) (-3972 ((|#2| |#2|) 148)) (-3997 ((|#2| |#2|) 30 (-12 (|has| |#2| (-584 (-849 |#1|))) (|has| |#2| (-845 |#1|)) (|has| |#1| (-584 (-849 |#1|))) (|has| |#1| (-845 |#1|))))) (-3975 ((|#2| |#2|) 75)) (-3976 ((|#2| |#2|) 139)) (-4280 ((|#2| |#2|) 140)) (-3982 ((|#2| |#2|) 127)) (-3981 ((|#2| |#2|) 115)) (-3980 ((|#2| |#2|) 134)) (-3992 ((|#2| |#2|) 132)) (-3979 ((|#2| |#2|) 122)) (-3991 ((|#2| |#2|) 120)) (-3978 ((|#2| |#2|) 124)) (-3977 ((|#2| |#2|) 112))) -(((-1151 |#1| |#2|) (-10 -7 (-15 -4280 (|#2| |#2|)) (-15 -3971 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3986 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (IF (|has| |#1| (-845 |#1|)) (IF (|has| |#1| (-584 (-849 |#1|))) (IF (|has| |#2| (-584 (-849 |#1|))) (IF (|has| |#2| (-845 |#1|)) (-15 -3997 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-811) (-436)) (-13 (-406 |#1|) (-1145))) (T -1151)) -((-3997 (*1 *2 *2) (-12 (-4 *3 (-584 (-849 *3))) (-4 *3 (-845 *3)) (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-584 (-849 *3))) (-4 *2 (-845 *3)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3972 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3971 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-4280 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145)))))) -(-10 -7 (-15 -4280 (|#2| |#2|)) (-15 -3971 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3986 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (IF (|has| |#1| (-845 |#1|)) (IF (|has| |#1| (-584 (-849 |#1|))) (IF (|has| |#2| (-584 (-849 |#1|))) (IF (|has| |#2| (-845 |#1|)) (-15 -3997 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1123)) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4133 (((-905 |#1|) $ (-735)) 17) (((-905 |#1|) $ (-735) (-735)) NIL)) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $ (-1123)) NIL) (((-735) $ (-1123) (-735)) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4254 (((-111) $) NIL)) (-3193 (($ $ (-607 (-1123)) (-607 (-512 (-1123)))) NIL) (($ $ (-1123) (-512 (-1123))) NIL) (($ |#1| (-512 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4131 (($ $ (-1123)) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3998 (($ (-1 $) (-1123) |#1|) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4087 (($ $ (-735)) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (($ $ (-1123) $) NIL) (($ $ (-607 (-1123)) (-607 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL)) (-4129 (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-4264 (((-512 (-1123)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ $) NIL (|has| |#1| (-533))) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-1123)) NIL) (($ (-905 |#1|)) NIL)) (-3999 ((|#1| $ (-512 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (((-905 |#1|) $ (-735)) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1152 |#1|) (-13 (-705 |#1| (-1123)) (-10 -8 (-15 -3999 ((-905 |#1|) $ (-735))) (-15 -4274 ($ (-1123))) (-15 -4274 ($ (-905 |#1|))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ (-1123) |#1|)) (-15 -3998 ($ (-1 $) (-1123) |#1|))) |%noBranch|))) (-1004)) (T -1152)) -((-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-905 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1004)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1152 *3)) (-4 *3 (-1004)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-5 *1 (-1152 *3)))) (-4131 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *1 (-1152 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)))) (-3998 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1152 *4))) (-5 *3 (-1123)) (-5 *1 (-1152 *4)) (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004))))) -(-13 (-705 |#1| (-1123)) (-10 -8 (-15 -3999 ((-905 |#1|) $ (-735))) (-15 -4274 ($ (-1123))) (-15 -4274 ($ (-905 |#1|))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ (-1123) |#1|)) (-15 -3998 ($ (-1 $) (-1123) |#1|))) |%noBranch|))) -((-4015 (((-111) |#5| $) 60) (((-111) $) 102)) (-4010 ((|#5| |#5| $) 75)) (-4032 (($ (-1 (-111) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4011 (((-607 |#5|) (-607 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 73)) (-3470 (((-3 $ "failed") (-607 |#5|)) 126)) (-4117 (((-3 $ "failed") $) 112)) (-4007 ((|#5| |#5| $) 94)) (-4016 (((-111) |#5| $ (-1 (-111) |#5| |#5|)) 31)) (-4005 ((|#5| |#5| $) 98)) (-4161 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 69)) (-4018 (((-2 (|:| -4180 (-607 |#5|)) (|:| -1794 (-607 |#5|))) $) 55)) (-4017 (((-111) |#5| $) 58) (((-111) $) 103)) (-3493 ((|#4| $) 108)) (-4116 (((-3 |#5| "failed") $) 110)) (-4019 (((-607 |#5|) $) 49)) (-4013 (((-111) |#5| $) 67) (((-111) $) 107)) (-4008 ((|#5| |#5| $) 81)) (-4021 (((-111) $ $) 27)) (-4014 (((-111) |#5| $) 63) (((-111) $) 105)) (-4009 ((|#5| |#5| $) 78)) (-4119 (((-3 |#5| "failed") $) 109)) (-4087 (($ $ |#5|) 127)) (-4264 (((-735) $) 52)) (-3844 (($ (-607 |#5|)) 124)) (-3210 (($ $ |#4|) 122)) (-3212 (($ $ |#4|) 121)) (-4006 (($ $) 120)) (-4274 (((-823) $) NIL) (((-607 |#5|) $) 113)) (-4000 (((-735) $) 130)) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|)) 45)) (-4012 (((-111) $ (-1 (-111) |#5| (-607 |#5|))) 100)) (-4002 (((-607 |#4|) $) 115)) (-4250 (((-111) |#4| $) 118)) (-3353 (((-111) $ $) 19))) -(((-1153 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4000 ((-735) |#1|)) (-15 -4087 (|#1| |#1| |#5|)) (-15 -4032 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4250 ((-111) |#4| |#1|)) (-15 -4002 ((-607 |#4|) |#1|)) (-15 -4117 ((-3 |#1| "failed") |#1|)) (-15 -4116 ((-3 |#5| "failed") |#1|)) (-15 -4119 ((-3 |#5| "failed") |#1|)) (-15 -4005 (|#5| |#5| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4007 (|#5| |#5| |#1|)) (-15 -4008 (|#5| |#5| |#1|)) (-15 -4009 (|#5| |#5| |#1|)) (-15 -4010 (|#5| |#5| |#1|)) (-15 -4011 ((-607 |#5|) (-607 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4161 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4013 ((-111) |#1|)) (-15 -4014 ((-111) |#1|)) (-15 -4015 ((-111) |#1|)) (-15 -4012 ((-111) |#1| (-1 (-111) |#5| (-607 |#5|)))) (-15 -4013 ((-111) |#5| |#1|)) (-15 -4014 ((-111) |#5| |#1|)) (-15 -4015 ((-111) |#5| |#1|)) (-15 -4016 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -4017 ((-111) |#1|)) (-15 -4017 ((-111) |#5| |#1|)) (-15 -4018 ((-2 (|:| -4180 (-607 |#5|)) (|:| -1794 (-607 |#5|))) |#1|)) (-15 -4264 ((-735) |#1|)) (-15 -4019 ((-607 |#5|) |#1|)) (-15 -4020 ((-3 (-2 (|:| |bas| |#1|) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -4020 ((-3 (-2 (|:| |bas| |#1|) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5| |#5|))) (-15 -4021 ((-111) |#1| |#1|)) (-15 -3210 (|#1| |#1| |#4|)) (-15 -3212 (|#1| |#1| |#4|)) (-15 -3493 (|#4| |#1|)) (-15 -3470 ((-3 |#1| "failed") (-607 |#5|))) (-15 -4274 ((-607 |#5|) |#1|)) (-15 -3844 (|#1| (-607 |#5|))) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4032 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-1154 |#2| |#3| |#4| |#5|) (-533) (-757) (-811) (-1018 |#2| |#3| |#4|)) (T -1153)) -NIL -(-10 -8 (-15 -4000 ((-735) |#1|)) (-15 -4087 (|#1| |#1| |#5|)) (-15 -4032 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4250 ((-111) |#4| |#1|)) (-15 -4002 ((-607 |#4|) |#1|)) (-15 -4117 ((-3 |#1| "failed") |#1|)) (-15 -4116 ((-3 |#5| "failed") |#1|)) (-15 -4119 ((-3 |#5| "failed") |#1|)) (-15 -4005 (|#5| |#5| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4007 (|#5| |#5| |#1|)) (-15 -4008 (|#5| |#5| |#1|)) (-15 -4009 (|#5| |#5| |#1|)) (-15 -4010 (|#5| |#5| |#1|)) (-15 -4011 ((-607 |#5|) (-607 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4161 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4013 ((-111) |#1|)) (-15 -4014 ((-111) |#1|)) (-15 -4015 ((-111) |#1|)) (-15 -4012 ((-111) |#1| (-1 (-111) |#5| (-607 |#5|)))) (-15 -4013 ((-111) |#5| |#1|)) (-15 -4014 ((-111) |#5| |#1|)) (-15 -4015 ((-111) |#5| |#1|)) (-15 -4016 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -4017 ((-111) |#1|)) (-15 -4017 ((-111) |#5| |#1|)) (-15 -4018 ((-2 (|:| -4180 (-607 |#5|)) (|:| -1794 (-607 |#5|))) |#1|)) (-15 -4264 ((-735) |#1|)) (-15 -4019 ((-607 |#5|) |#1|)) (-15 -4020 ((-3 (-2 (|:| |bas| |#1|) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -4020 ((-3 (-2 (|:| |bas| |#1|) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5| |#5|))) (-15 -4021 ((-111) |#1| |#1|)) (-15 -3210 (|#1| |#1| |#4|)) (-15 -3212 (|#1| |#1| |#4|)) (-15 -3493 (|#4| |#1|)) (-15 -3470 ((-3 |#1| "failed") (-607 |#5|))) (-15 -4274 ((-607 |#5|) |#1|)) (-15 -3844 (|#1| (-607 |#5|))) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4032 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) -((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| "failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ "failed") $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-4116 (((-3 |#4| "failed") $) 83)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| "failed") $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ "failed") $ |#4|) 78)) (-4087 (($ $ |#4|) 77)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) -(((-1154 |#1| |#2| |#3| |#4|) (-134) (-533) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -1154)) -((-4021 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4020 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3643 (-607 *8)))) (-5 *3 (-607 *8)) (-4 *1 (-1154 *5 *6 *7 *8)))) (-4020 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3643 (-607 *9)))) (-5 *3 (-607 *9)) (-4 *1 (-1154 *6 *7 *8 *9)))) (-4019 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *6)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-735)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-2 (|:| -4180 (-607 *6)) (|:| -1794 (-607 *6)))))) (-4017 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4016 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1154 *5 *6 *7 *3)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-111)))) (-4015 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4014 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4013 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4012 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-111) *7 (-607 *7))) (-4 *1 (-1154 *4 *5 *6 *7)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4161 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) (-4 *1 (-1154 *5 *6 *7 *2)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *2 (-1018 *5 *6 *7)))) (-4011 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-607 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1154 *5 *6 *7 *8)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)))) (-4010 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4009 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4008 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4007 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4006 (*1 *1 *1) (-12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *2 (-533)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-1018 *2 *3 *4)))) (-4005 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1154 *4 *5 *6 *7)))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-607 (-2 (|:| -4180 *1) (|:| -1794 (-607 *7))))) (-5 *3 (-607 *7)) (-4 *1 (-1154 *4 *5 *6 *7)))) (-4119 (*1 *2 *1) (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4116 (*1 *2 *1) (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4117 (*1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *2 (-533)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-1018 *2 *3 *4)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5)))) (-4250 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *3 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-111)))) (-4032 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1154 *4 *5 *3 *2)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *2 (-1018 *4 *5 *3)))) (-4001 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4087 (*1 *1 *1 *2) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *5 (-353)) (-5 *2 (-735))))) -(-13 (-935 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -4021 ((-111) $ $)) (-15 -4020 ((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |t#4|))) "failed") (-607 |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4020 ((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |t#4|))) "failed") (-607 |t#4|) (-1 (-111) |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4019 ((-607 |t#4|) $)) (-15 -4264 ((-735) $)) (-15 -4018 ((-2 (|:| -4180 (-607 |t#4|)) (|:| -1794 (-607 |t#4|))) $)) (-15 -4017 ((-111) |t#4| $)) (-15 -4017 ((-111) $)) (-15 -4016 ((-111) |t#4| $ (-1 (-111) |t#4| |t#4|))) (-15 -4015 ((-111) |t#4| $)) (-15 -4014 ((-111) |t#4| $)) (-15 -4013 ((-111) |t#4| $)) (-15 -4012 ((-111) $ (-1 (-111) |t#4| (-607 |t#4|)))) (-15 -4015 ((-111) $)) (-15 -4014 ((-111) $)) (-15 -4013 ((-111) $)) (-15 -4161 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4011 ((-607 |t#4|) (-607 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4010 (|t#4| |t#4| $)) (-15 -4009 (|t#4| |t#4| $)) (-15 -4008 (|t#4| |t#4| $)) (-15 -4007 (|t#4| |t#4| $)) (-15 -4006 ($ $)) (-15 -4005 (|t#4| |t#4| $)) (-15 -4004 ((-607 $) (-607 |t#4|))) (-15 -4003 ((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |t#4|)))) (-607 |t#4|))) (-15 -4119 ((-3 |t#4| "failed") $)) (-15 -4116 ((-3 |t#4| "failed") $)) (-15 -4117 ((-3 $ "failed") $)) (-15 -4002 ((-607 |t#3|) $)) (-15 -4250 ((-111) |t#3| $)) (-15 -4032 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4001 ((-3 $ "failed") $ |t#4|)) (-15 -4087 ($ $ |t#4|)) (IF (|has| |t#3| (-353)) (-15 -4000 ((-735) $)) |%noBranch|))) -(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1159) . T)) -((-4027 (($ |#1| (-607 (-607 (-902 (-211)))) (-111)) 19)) (-4026 (((-111) $ (-111)) 18)) (-4025 (((-111) $) 17)) (-4023 (((-607 (-607 (-902 (-211)))) $) 13)) (-4022 ((|#1| $) 8)) (-4024 (((-111) $) 15))) -(((-1155 |#1|) (-10 -8 (-15 -4022 (|#1| $)) (-15 -4023 ((-607 (-607 (-902 (-211)))) $)) (-15 -4024 ((-111) $)) (-15 -4025 ((-111) $)) (-15 -4026 ((-111) $ (-111))) (-15 -4027 ($ |#1| (-607 (-607 (-902 (-211)))) (-111)))) (-933)) (T -1155)) -((-4027 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-111)) (-5 *1 (-1155 *2)) (-4 *2 (-933)))) (-4026 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-1155 *3)) (-4 *3 (-933)))) (-4022 (*1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-933))))) -(-10 -8 (-15 -4022 (|#1| $)) (-15 -4023 ((-607 (-607 (-902 (-211)))) $)) (-15 -4024 ((-111) $)) (-15 -4025 ((-111) $)) (-15 -4026 ((-111) $ (-111))) (-15 -4027 ($ |#1| (-607 (-607 (-902 (-211)))) (-111)))) -((-4029 (((-902 (-211)) (-902 (-211))) 25)) (-4028 (((-902 (-211)) (-211) (-211) (-211) (-211)) 10)) (-4031 (((-607 (-902 (-211))) (-902 (-211)) (-902 (-211)) (-902 (-211)) (-211) (-607 (-607 (-211)))) 37)) (-4155 (((-211) (-902 (-211)) (-902 (-211))) 21)) (-4153 (((-902 (-211)) (-902 (-211)) (-902 (-211))) 22)) (-4030 (((-607 (-607 (-211))) (-526)) 31)) (-4156 (((-902 (-211)) (-902 (-211)) (-902 (-211))) 20)) (-4158 (((-902 (-211)) (-902 (-211)) (-902 (-211))) 19)) (* (((-902 (-211)) (-211) (-902 (-211))) 18))) -(((-1156) (-10 -7 (-15 -4028 ((-902 (-211)) (-211) (-211) (-211) (-211))) (-15 * ((-902 (-211)) (-211) (-902 (-211)))) (-15 -4158 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4156 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4155 ((-211) (-902 (-211)) (-902 (-211)))) (-15 -4153 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4029 ((-902 (-211)) (-902 (-211)))) (-15 -4030 ((-607 (-607 (-211))) (-526))) (-15 -4031 ((-607 (-902 (-211))) (-902 (-211)) (-902 (-211)) (-902 (-211)) (-211) (-607 (-607 (-211))))))) (T -1156)) -((-4031 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-607 (-607 (-211)))) (-5 *4 (-211)) (-5 *2 (-607 (-902 *4))) (-5 *1 (-1156)) (-5 *3 (-902 *4)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *2 (-607 (-607 (-211)))) (-5 *1 (-1156)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) (-4153 (*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) (-4155 (*1 *2 *3 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-211)) (-5 *1 (-1156)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) (-4158 (*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-902 (-211))) (-5 *3 (-211)) (-5 *1 (-1156)))) (-4028 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)) (-5 *3 (-211))))) -(-10 -7 (-15 -4028 ((-902 (-211)) (-211) (-211) (-211) (-211))) (-15 * ((-902 (-211)) (-211) (-902 (-211)))) (-15 -4158 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4156 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4155 ((-211) (-902 (-211)) (-902 (-211)))) (-15 -4153 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4029 ((-902 (-211)) (-902 (-211)))) (-15 -4030 ((-607 (-607 (-211))) (-526))) (-15 -4031 ((-607 (-902 (-211))) (-902 (-211)) (-902 (-211)) (-902 (-211)) (-211) (-607 (-607 (-211)))))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4032 ((|#1| $ (-735)) 13)) (-4152 (((-735) $) 12)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4274 (((-917 |#1|) $) 10) (($ (-917 |#1|)) 9) (((-823) $) 23 (|has| |#1| (-583 (-823))))) (-3353 (((-111) $ $) 16 (|has| |#1| (-1052))))) -(((-1157 |#1|) (-13 (-583 (-917 |#1|)) (-10 -8 (-15 -4274 ($ (-917 |#1|))) (-15 -4032 (|#1| $ (-735))) (-15 -4152 ((-735) $)) (IF (|has| |#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) (-1159)) (T -1157)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1159)) (-5 *1 (-1157 *3)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-1157 *2)) (-4 *2 (-1159)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1157 *3)) (-4 *3 (-1159))))) -(-13 (-583 (-917 |#1|)) (-10 -8 (-15 -4274 ($ (-917 |#1|))) (-15 -4032 (|#1| $ (-735))) (-15 -4152 ((-735) $)) (IF (|has| |#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) -((-4035 (((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)) (-526)) 80)) (-4033 (((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|))) 74)) (-4034 (((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|))) 59))) -(((-1158 |#1|) (-10 -7 (-15 -4033 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)))) (-15 -4034 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)))) (-15 -4035 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)) (-526)))) (-335)) (T -1158)) -((-4035 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-4 *5 (-335)) (-5 *2 (-390 (-1117 (-1117 *5)))) (-5 *1 (-1158 *5)) (-5 *3 (-1117 (-1117 *5))))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-390 (-1117 (-1117 *4)))) (-5 *1 (-1158 *4)) (-5 *3 (-1117 (-1117 *4))))) (-4033 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-390 (-1117 (-1117 *4)))) (-5 *1 (-1158 *4)) (-5 *3 (-1117 (-1117 *4)))))) -(-10 -7 (-15 -4033 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)))) (-15 -4034 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)))) (-15 -4035 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)) (-526)))) -NIL -(((-1159) (-134)) (T -1159)) -NIL -(-13 (-10 -7 (-6 -2337))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL) (($ (-1128)) 8)) (-3353 (((-111) $ $) NIL))) -(((-1160) (-13 (-1035) (-10 -8 (-15 -4274 ($ (-1128)))))) (T -1160)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-1160))))) -(-13 (-1035) (-10 -8 (-15 -4274 ($ (-1128))))) -((-4039 (((-111)) 15)) (-4036 (((-1211) (-607 |#1|) (-607 |#1|)) 19) (((-1211) (-607 |#1|)) 20)) (-4041 (((-111) |#1| |#1|) 32 (|has| |#1| (-811)))) (-4038 (((-111) |#1| |#1| (-1 (-111) |#1| |#1|)) 27) (((-3 (-111) "failed") |#1| |#1|) 25)) (-4040 ((|#1| (-607 |#1|)) 33 (|has| |#1| (-811))) ((|#1| (-607 |#1|) (-1 (-111) |#1| |#1|)) 28)) (-4037 (((-2 (|:| -3542 (-607 |#1|)) (|:| -3541 (-607 |#1|)))) 17))) -(((-1161 |#1|) (-10 -7 (-15 -4036 ((-1211) (-607 |#1|))) (-15 -4036 ((-1211) (-607 |#1|) (-607 |#1|))) (-15 -4037 ((-2 (|:| -3542 (-607 |#1|)) (|:| -3541 (-607 |#1|))))) (-15 -4038 ((-3 (-111) "failed") |#1| |#1|)) (-15 -4038 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -4040 (|#1| (-607 |#1|) (-1 (-111) |#1| |#1|))) (-15 -4039 ((-111))) (IF (|has| |#1| (-811)) (PROGN (-15 -4040 (|#1| (-607 |#1|))) (-15 -4041 ((-111) |#1| |#1|))) |%noBranch|)) (-1052)) (T -1161)) -((-4041 (*1 *2 *3 *3) (-12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-811)) (-4 *3 (-1052)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-811)) (-5 *1 (-1161 *2)))) (-4039 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-1052)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1161 *2)) (-4 *2 (-1052)))) (-4038 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1052)) (-5 *2 (-111)) (-5 *1 (-1161 *3)))) (-4038 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-1052)))) (-4037 (*1 *2) (-12 (-5 *2 (-2 (|:| -3542 (-607 *3)) (|:| -3541 (-607 *3)))) (-5 *1 (-1161 *3)) (-4 *3 (-1052)))) (-4036 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-5 *2 (-1211)) (-5 *1 (-1161 *4)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-5 *2 (-1211)) (-5 *1 (-1161 *4))))) -(-10 -7 (-15 -4036 ((-1211) (-607 |#1|))) (-15 -4036 ((-1211) (-607 |#1|) (-607 |#1|))) (-15 -4037 ((-2 (|:| -3542 (-607 |#1|)) (|:| -3541 (-607 |#1|))))) (-15 -4038 ((-3 (-111) "failed") |#1| |#1|)) (-15 -4038 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -4040 (|#1| (-607 |#1|) (-1 (-111) |#1| |#1|))) (-15 -4039 ((-111))) (IF (|has| |#1| (-811)) (PROGN (-15 -4040 (|#1| (-607 |#1|))) (-15 -4041 ((-111) |#1| |#1|))) |%noBranch|)) -((-4042 (((-1211) (-607 (-1123)) (-607 (-1123))) 13) (((-1211) (-607 (-1123))) 11)) (-4044 (((-1211)) 14)) (-4043 (((-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123))))) 18))) -(((-1162) (-10 -7 (-15 -4042 ((-1211) (-607 (-1123)))) (-15 -4042 ((-1211) (-607 (-1123)) (-607 (-1123)))) (-15 -4043 ((-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123)))))) (-15 -4044 ((-1211))))) (T -1162)) -((-4044 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1162)))) (-4043 (*1 *2) (-12 (-5 *2 (-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123))))) (-5 *1 (-1162)))) (-4042 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1162)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1162))))) -(-10 -7 (-15 -4042 ((-1211) (-607 (-1123)))) (-15 -4042 ((-1211) (-607 (-1123)) (-607 (-1123)))) (-15 -4043 ((-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123)))))) (-15 -4044 ((-1211)))) -((-4093 (($ $) 17)) (-4045 (((-111) $) 24))) -(((-1163 |#1|) (-10 -8 (-15 -4093 (|#1| |#1|)) (-15 -4045 ((-111) |#1|))) (-1164)) (T -1163)) -NIL -(-10 -8 (-15 -4093 (|#1| |#1|)) (-15 -4045 ((-111) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 49)) (-4286 (((-390 $) $) 50)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-4045 (((-111) $) 51)) (-2471 (((-111) $) 30)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 48)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) -(((-1164) (-134)) (T -1164)) -((-4045 (*1 *2 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-111)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1164)))) (-4093 (*1 *1 *1) (-4 *1 (-1164))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1164))))) -(-13 (-436) (-10 -8 (-15 -4045 ((-111) $)) (-15 -4286 ((-390 $) $)) (-15 -4093 ($ $)) (-15 -4051 ((-390 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-292)) (|has| |#1| (-348))))) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 10)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-2151 (($ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-2149 (((-111) $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-4089 (($ $ (-526)) NIL) (($ $ (-526) (-526)) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) NIL)) (-4050 (((-1195 |#1| |#2| |#3|) $) NIL)) (-4047 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) NIL)) (-4048 (((-1195 |#1| |#2| |#3|) $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3945 (((-526) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1195 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (((-3 (-392 (-526)) #2#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348)))) (((-3 (-526) #2#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))))) (-3469 (((-1195 |#1| |#2| |#3|) $) NIL) (((-1123) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (((-392 (-526)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348)))) (((-526) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))))) (-4049 (($ $) NIL) (($ (-526) $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-1195 |#1| |#2| |#3|)) (-653 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1205 (-1195 |#1| |#2| |#3|)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-606 (-526))) (|has| |#1| (-348)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-606 (-526))) (|has| |#1| (-348))))) (-3781 (((-3 $ "failed") $) NIL)) (-4046 (((-392 (-905 |#1|)) $ (-526)) NIL (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) NIL (|has| |#1| (-533)))) (-3294 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3500 (((-111) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-845 (-526))) (|has| |#1| (-348)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-845 (-363))) (|has| |#1| (-348))))) (-4090 (((-526) $) NIL) (((-526) $ (-526)) NIL)) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-348)))) (-3298 (((-1195 |#1| |#2| |#3|) $) NIL (|has| |#1| (-348)))) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3763 (((-3 $ "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1099)) (|has| |#1| (-348))))) (-3501 (((-111) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-4095 (($ $ (-878)) NIL)) (-4134 (($ (-1 |#1| (-526)) $) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-526)) 17) (($ $ (-1033) (-526)) NIL) (($ $ (-607 (-1033)) (-607 (-526))) NIL)) (-3637 (($ $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-3638 (($ $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-348)))) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4097 (($ (-526) (-1195 |#1| |#2| |#3|)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 25 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 26 (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1099)) (|has| |#1| (-348))) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3425 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-292)) (|has| |#1| (-348))))) (-3427 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-526)) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-526))))) (($ $ (-1123) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-496 (-1123) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-496 (-1123) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-278 (-1195 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-278 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-1195 |#1| |#2| |#3|)) (-607 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) NIL) (($ $ $) NIL (|has| (-526) (-1063))) (($ $ (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-271 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-348))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-735)) NIL (|has| |#1| (-348))) (($ $ (-1202 |#2|)) 24) (($ $ (-735)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 23 (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-3295 (($ $) NIL (|has| |#1| (-348)))) (-3297 (((-1195 |#1| |#2| |#3|) $) NIL (|has| |#1| (-348)))) (-4264 (((-526) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4287 (((-515) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-584 (-515))) (|has| |#1| (-348)))) (((-363) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-977)) (|has| |#1| (-348)))) (((-211) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-977)) (|has| |#1| (-348)))) (((-849 (-363)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-584 (-849 (-363)))) (|has| |#1| (-348)))) (((-849 (-526)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-584 (-849 (-526)))) (|has| |#1| (-348))))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1195 |#1| |#2| |#3|)) NIL) (($ (-1202 |#2|)) 22) (($ (-1123)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (($ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533)))) (($ (-392 (-526))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))) (|has| |#1| (-37 (-392 (-526))))))) (-3999 ((|#1| $ (-526)) NIL)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-139)) (|has| |#1| (-348))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 11)) (-3428 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3702 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-2957 (($) 19 T CONST)) (-2964 (($) 15 T CONST)) (-2969 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-348))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-735)) NIL (|has| |#1| (-348))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-2863 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-2864 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-2985 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348))) (($ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 20)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1195 |#1| |#2| |#3|)) NIL (|has| |#1| (-348))) (($ (-1195 |#1| |#2| |#3|) $) NIL (|has| |#1| (-348))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1165 |#1| |#2| |#3|) (-13 (-1169 |#1| (-1195 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1165)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) -(-13 (-1169 |#1| (-1195 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) -((-4275 (((-1165 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1165 |#1| |#3| |#5|)) 23))) -(((-1166 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4275 ((-1165 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1165 |#1| |#3| |#5|)))) (-1004) (-1004) (-1123) (-1123) |#1| |#2|) (T -1166)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5 *7 *9)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-14 *7 (-1123)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1165 *6 *8 *10)) (-5 *1 (-1166 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1123))))) -(-10 -7 (-15 -4275 ((-1165 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1165 |#1| |#3| |#5|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-526)) 96) (($ $ (-526) (-526)) 95)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 103)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 160 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-348)))) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) 151 (|has| |#1| (-348)))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 171)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 155 (|has| |#1| (-348)))) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-4046 (((-392 (-905 |#1|)) $ (-526)) 169 (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) 168 (|has| |#1| (-533)))) (-2860 (($ $ $) 154 (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-348)))) (-4045 (((-111) $) 162 (|has| |#1| (-348)))) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-526) $) 98) (((-526) $ (-526)) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 99)) (-4134 (($ (-1 |#1| (-526)) $) 170)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 158 (|has| |#1| (-348)))) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-526)) 59) (($ $ (-1033) (-526)) 74) (($ $ (-607 (-1033)) (-607 (-526))) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-348))) (($ $ $) 146 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 163 (|has| |#1| (-348)))) (-4131 (($ $) 167 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 166 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-348))) (($ $ $) 144 (|has| |#1| (-348)))) (-4051 (((-390 $) $) 159 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-348)))) (-4087 (($ $ (-526)) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-348)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-526)))))) (-1680 (((-735) $) 152 (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) 102) (($ $ $) 79 (|has| (-526) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (-4264 (((-526) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533)))) (-3999 ((|#1| $ (-526)) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348))) (($ $ $) 165 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 164 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-1167 |#1|) (-134) (-1004)) (T -1167)) -((-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-4 *3 (-1004)) (-4 *1 (-1167 *3)))) (-4134 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-526))) (-4 *1 (-1167 *3)) (-4 *3 (-1004)))) (-4046 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1167 *4)) (-4 *4 (-1004)) (-4 *4 (-533)) (-5 *2 (-392 (-905 *4))))) (-4046 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1167 *4)) (-4 *4 (-1004)) (-4 *4 (-533)) (-5 *2 (-392 (-905 *4))))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) (-4131 (*1 *1 *1 *2) (-3850 (-12 (-5 *2 (-1123)) (-4 *1 (-1167 *3)) (-4 *3 (-1004)) (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) (-4 *3 (-37 (-392 (-526)))))) (-12 (-5 *2 (-1123)) (-4 *1 (-1167 *3)) (-4 *3 (-1004)) (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526))))))))) -(-13 (-1184 |t#1| (-526)) (-10 -8 (-15 -4137 ($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |t#1|))))) (-15 -4134 ($ (-1 |t#1| (-526)) $)) (IF (|has| |t#1| (-533)) (PROGN (-15 -4046 ((-392 (-905 |t#1|)) $ (-526))) (-15 -4046 ((-392 (-905 |t#1|)) $ (-526) (-526)))) |%noBranch|) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (IF (|has| |t#1| (-15 -4131 (|t#1| |t#1| (-1123)))) (IF (|has| |t#1| (-15 -3384 ((-607 (-1123)) |t#1|))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1145)) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-29 (-526))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-960)) (-6 (-1145))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-526)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| (-526) |#1|))) ((-229) |has| |#1| (-348)) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 $ $) |has| (-526) (-1063)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-348) |has| |#1| (-348)) ((-436) |has| |#1| (-348)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-613 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) ((-932 |#1| #1# (-1033)) . T) ((-880) |has| |#1| (-348)) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-1010 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1164) |has| |#1| (-348)) ((-1184 |#1| #1#) . T)) -((-3502 (((-111) $) 12)) (-3470 (((-3 |#3| #1="failed") $) 17) (((-3 (-1123) #1#) $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) NIL)) (-3469 ((|#3| $) 14) (((-1123) $) NIL) (((-392 (-526)) $) NIL) (((-526) $) NIL))) -(((-1168 |#1| |#2| |#3|) (-10 -8 (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| #1#) |#1|)) (-15 -3502 ((-111) |#1|))) (-1169 |#2| |#3|) (-1004) (-1198 |#2|)) (T -1168)) -NIL -(-10 -8 (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| #1#) |#1|)) (-15 -3502 ((-111) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3426 ((|#2| $) 228 (-3155 (|has| |#2| (-292)) (|has| |#1| (-348))))) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-526)) 96) (($ $ (-526) (-526)) 95)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 103)) (-4050 ((|#2| $) 264)) (-4047 (((-3 |#2| "failed") $) 260)) (-4048 ((|#2| $) 261)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 237 (-3155 (|has| |#2| (-869)) (|has| |#1| (-348))))) (-4093 (($ $) 160 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-348)))) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 234 (-3155 (|has| |#2| (-869)) (|has| |#1| (-348))))) (-1681 (((-111) $ $) 151 (|has| |#1| (-348)))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-3945 (((-526) $) 246 (-3155 (|has| |#2| (-784)) (|has| |#1| (-348))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 171)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#2| #2="failed") $) 267) (((-3 (-526) #2#) $) 256 (-3155 (|has| |#2| (-995 (-526))) (|has| |#1| (-348)))) (((-3 (-392 (-526)) #2#) $) 254 (-3155 (|has| |#2| (-995 (-526))) (|has| |#1| (-348)))) (((-3 (-1123) #2#) $) 239 (-3155 (|has| |#2| (-995 (-1123))) (|has| |#1| (-348))))) (-3469 ((|#2| $) 266) (((-526) $) 257 (-3155 (|has| |#2| (-995 (-526))) (|has| |#1| (-348)))) (((-392 (-526)) $) 255 (-3155 (|has| |#2| (-995 (-526))) (|has| |#1| (-348)))) (((-1123) $) 240 (-3155 (|has| |#2| (-995 (-1123))) (|has| |#1| (-348))))) (-4049 (($ $) 263) (($ (-526) $) 262)) (-2861 (($ $ $) 155 (|has| |#1| (-348)))) (-4276 (($ $) 58)) (-2331 (((-653 |#2|) (-653 $)) 218 (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 217 (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 216 (-3155 (|has| |#2| (-606 (-526))) (|has| |#1| (-348)))) (((-653 (-526)) (-653 $)) 215 (-3155 (|has| |#2| (-606 (-526))) (|has| |#1| (-348))))) (-3781 (((-3 $ "failed") $) 32)) (-4046 (((-392 (-905 |#1|)) $ (-526)) 169 (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) 168 (|has| |#1| (-533)))) (-3294 (($) 230 (-3155 (|has| |#2| (-525)) (|has| |#1| (-348))))) (-2860 (($ $ $) 154 (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-348)))) (-4045 (((-111) $) 162 (|has| |#1| (-348)))) (-3500 (((-111) $) 244 (-3155 (|has| |#2| (-784)) (|has| |#1| (-348))))) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 222 (-3155 (|has| |#2| (-845 (-363))) (|has| |#1| (-348)))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 221 (-3155 (|has| |#2| (-845 (-526))) (|has| |#1| (-348))))) (-4090 (((-526) $) 98) (((-526) $ (-526)) 97)) (-2471 (((-111) $) 30)) (-3296 (($ $) 226 (|has| |#1| (-348)))) (-3298 ((|#2| $) 224 (|has| |#1| (-348)))) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-3763 (((-3 $ "failed") $) 258 (-3155 (|has| |#2| (-1099)) (|has| |#1| (-348))))) (-3501 (((-111) $) 245 (-3155 (|has| |#2| (-784)) (|has| |#1| (-348))))) (-4095 (($ $ (-878)) 99)) (-4134 (($ (-1 |#1| (-526)) $) 170)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) 158 (|has| |#1| (-348)))) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-526)) 59) (($ $ (-1033) (-526)) 74) (($ $ (-607 (-1033)) (-607 (-526))) 73)) (-3637 (($ $ $) 248 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-3638 (($ $ $) 249 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-4275 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-348)))) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-348))) (($ $ $) 146 (|has| |#1| (-348)))) (-4097 (($ (-526) |#2|) 265)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 163 (|has| |#1| (-348)))) (-4131 (($ $) 167 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 166 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3764 (($) 259 (-3155 (|has| |#2| (-1099)) (|has| |#1| (-348))) CONST)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-348))) (($ $ $) 144 (|has| |#1| (-348)))) (-3425 (($ $) 229 (-3155 (|has| |#2| (-292)) (|has| |#1| (-348))))) (-3427 ((|#2| $) 232 (-3155 (|has| |#2| (-525)) (|has| |#1| (-348))))) (-3005 (((-390 (-1117 $)) (-1117 $)) 235 (-3155 (|has| |#2| (-869)) (|has| |#1| (-348))))) (-3006 (((-390 (-1117 $)) (-1117 $)) 236 (-3155 (|has| |#2| (-869)) (|has| |#1| (-348))))) (-4051 (((-390 $) $) 159 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 157 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-348)))) (-4087 (($ $ (-526)) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-348)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-526))))) (($ $ (-1123) |#2|) 209 (-3155 (|has| |#2| (-496 (-1123) |#2|)) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 |#2|)) 208 (-3155 (|has| |#2| (-496 (-1123) |#2|)) (|has| |#1| (-348)))) (($ $ (-607 (-278 |#2|))) 207 (-3155 (|has| |#2| (-294 |#2|)) (|has| |#1| (-348)))) (($ $ (-278 |#2|)) 206 (-3155 (|has| |#2| (-294 |#2|)) (|has| |#1| (-348)))) (($ $ |#2| |#2|) 205 (-3155 (|has| |#2| (-294 |#2|)) (|has| |#1| (-348)))) (($ $ (-607 |#2|) (-607 |#2|)) 204 (-3155 (|has| |#2| (-294 |#2|)) (|has| |#1| (-348))))) (-1680 (((-735) $) 152 (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) 102) (($ $ $) 79 (|has| (-526) (-1063))) (($ $ |#2|) 203 (-3155 (|has| |#2| (-271 |#2| |#2|)) (|has| |#1| (-348))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-348)))) (-4129 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-348))) (($ $ (-1 |#2| |#2|) (-735)) 213 (|has| |#1| (-348))) (($ $ (-735)) 82 (-3850 (-3155 (|has| |#2| (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 80 (-3850 (-3155 (|has| |#2| (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) 87 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) 86 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) 85 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) 84 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-3295 (($ $) 227 (|has| |#1| (-348)))) (-3297 ((|#2| $) 225 (|has| |#1| (-348)))) (-4264 (((-526) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-4287 (((-211) $) 243 (-3155 (|has| |#2| (-977)) (|has| |#1| (-348)))) (((-363) $) 242 (-3155 (|has| |#2| (-977)) (|has| |#1| (-348)))) (((-515) $) 241 (-3155 (|has| |#2| (-584 (-515))) (|has| |#1| (-348)))) (((-849 (-363)) $) 220 (-3155 (|has| |#2| (-584 (-849 (-363)))) (|has| |#1| (-348)))) (((-849 (-526)) $) 219 (-3155 (|has| |#2| (-584 (-849 (-526)))) (|has| |#1| (-348))))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 233 (-3155 (-3155 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#1| (-348))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ |#2|) 268) (($ (-1123)) 238 (-3155 (|has| |#2| (-995 (-1123))) (|has| |#1| (-348)))) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533)))) (-3999 ((|#1| $ (-526)) 57)) (-3002 (((-3 $ "failed") $) 46 (-3850 (-3155 (-3850 (|has| |#2| (-139)) (-3155 (|has| $ (-139)) (|has| |#2| (-869)))) (|has| |#1| (-348))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3428 ((|#2| $) 231 (-3155 (|has| |#2| (-525)) (|has| |#1| (-348))))) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-3702 (($ $) 247 (-3155 (|has| |#2| (-784)) (|has| |#1| (-348))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-348))) (($ $ (-1 |#2| |#2|) (-735)) 211 (|has| |#1| (-348))) (($ $ (-735)) 83 (-3850 (-3155 (|has| |#2| (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 81 (-3850 (-3155 (|has| |#2| (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) 91 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) 90 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) 89 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) 88 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-2863 (((-111) $ $) 251 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-2864 (((-111) $ $) 252 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 250 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-2985 (((-111) $ $) 253 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348))) (($ $ $) 165 (|has| |#1| (-348))) (($ |#2| |#2|) 223 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 164 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-348))) (($ |#2| $) 201 (|has| |#1| (-348))) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-1169 |#1| |#2|) (-134) (-1004) (-1198 |t#1|)) (T -1169)) -((-4264 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1198 *3)) (-5 *2 (-526)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-1169 *3 *2)) (-4 *2 (-1198 *3)))) (-4097 (*1 *1 *2 *3) (-12 (-5 *2 (-526)) (-4 *4 (-1004)) (-4 *1 (-1169 *4 *3)) (-4 *3 (-1198 *4)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3)))) (-4049 (*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1198 *2)))) (-4049 (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1198 *3)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3)))) (-4047 (*1 *2 *1) (|partial| -12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3))))) -(-13 (-1167 |t#1|) (-995 |t#2|) (-10 -8 (-15 -4097 ($ (-526) |t#2|)) (-15 -4264 ((-526) $)) (-15 -4050 (|t#2| $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)) (-15 -4274 ($ |t#2|)) (-15 -4048 (|t#2| $)) (-15 -4047 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-348)) (-6 (-950 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-526)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 |#2|) |has| |#1| (-348)) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-110 |#1| |#1|) . T) ((-110 |#2| |#2|) |has| |#1| (-348)) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) -3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-139))) (|has| |#1| (-139))) ((-141) -3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-141))) (|has| |#1| (-141))) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-584 (-211)) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) ((-584 (-363)) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) ((-584 (-515)) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-526))))) ((-217 |#2|) |has| |#1| (-348)) ((-219) -3850 (|has| |#1| (-15 * (|#1| (-526) |#1|))) (-12 (|has| |#1| (-348)) (|has| |#2| (-219)))) ((-229) |has| |#1| (-348)) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 |#2| $) -12 (|has| |#1| (-348)) (|has| |#2| (-271 |#2| |#2|))) ((-271 $ $) |has| (-526) (-1063)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-294 |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|))) ((-348) |has| |#1| (-348)) ((-323 |#2|) |has| |#1| (-348)) ((-362 |#2|) |has| |#1| (-348)) ((-385 |#2|) |has| |#1| (-348)) ((-436) |has| |#1| (-348)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-496 (-1123) |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-496 (-1123) |#2|))) ((-496 |#2| |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|))) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-613 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-613 |#1|) . T) ((-613 |#2|) |has| |#1| (-348)) ((-613 $) . T) ((-606 (-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-606 (-526)))) ((-606 |#2|) |has| |#1| (-348)) ((-682 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-682 |#1|) |has| |#1| (-163)) ((-682 |#2|) |has| |#1| (-348)) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-691) . T) ((-755) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-756) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-758) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-761) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-784) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-809) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-811) -3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-811))) (-12 (|has| |#1| (-348)) (|has| |#2| (-784)))) ((-859 (-1123)) -3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123))))) ((-845 (-363)) -12 (|has| |#1| (-348)) (|has| |#2| (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-845 (-526)))) ((-843 |#2|) |has| |#1| (-348)) ((-869) -12 (|has| |#1| (-348)) (|has| |#2| (-869))) ((-932 |#1| #1# (-1033)) . T) ((-880) |has| |#1| (-348)) ((-950 |#2|) |has| |#1| (-348)) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-977) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) ((-995 (-392 (-526))) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526)))) ((-995 (-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526)))) ((-995 (-1123)) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123)))) ((-995 |#2|) . T) ((-1010 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-1010 |#1|) . T) ((-1010 |#2|) |has| |#1| (-348)) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) -12 (|has| |#1| (-348)) (|has| |#2| (-1099))) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1159) |has| |#1| (-348)) ((-1164) |has| |#1| (-348)) ((-1167 |#1|) . T) ((-1184 |#1| #1#) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 70)) (-3426 ((|#2| $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-292))))) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 88)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-526)) 97) (($ $ (-526) (-526)) 99)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 47)) (-4050 ((|#2| $) 11)) (-4047 (((-3 |#2| "failed") $) 30)) (-4048 ((|#2| $) 31)) (-3806 (($ $) 192 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 168 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-869))))) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-869))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) 188 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 164 (|has| |#1| (-37 (-392 (-526)))))) (-3945 (((-526) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-784))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 57)) (-3808 (($ $) 196 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 172 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) 144) (((-3 (-526) #2#) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) (((-3 (-392 (-526)) #2#) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) (((-3 (-1123) #2#) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123)))))) (-3469 ((|#2| $) 143) (((-526) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) (((-392 (-526)) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) (((-1123) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123)))))) (-4049 (($ $) 61) (($ (-526) $) 24)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 |#2|) (-653 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-606 (-526))))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-606 (-526)))))) (-3781 (((-3 $ "failed") $) 77)) (-4046 (((-392 (-905 |#1|)) $ (-526)) 112 (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) 114 (|has| |#1| (-533)))) (-3294 (($) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-525))))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3500 (((-111) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-784))))) (-3192 (((-111) $) 64)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-845 (-526)))))) (-4090 (((-526) $) 93) (((-526) $ (-526)) 95)) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-348)))) (-3298 ((|#2| $) 151 (|has| |#1| (-348)))) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3763 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-1099))))) (-3501 (((-111) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-784))))) (-4095 (($ $ (-878)) 136)) (-4134 (($ (-1 |#1| (-526)) $) 132)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-526)) 19) (($ $ (-1033) (-526)) NIL) (($ $ (-607 (-1033)) (-607 (-526))) NIL)) (-3637 (($ $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-3638 (($ $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-4275 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-348)))) (-4259 (($ $) 162 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4097 (($ (-526) |#2|) 10)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 145 (|has| |#1| (-348)))) (-4131 (($ $) 214 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 219 (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))))))) (-3764 (($) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-1099))) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3425 (($ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-292))))) (-3427 ((|#2| $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-525))))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-869))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-869))))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-526)) 126)) (-3780 (((-3 $ "failed") $ $) 116 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) 160 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-526))))) (($ $ (-1123) |#2|) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-496 (-1123) |#2|)))) (($ $ (-607 (-1123)) (-607 |#2|)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-496 (-1123) |#2|)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) 91) (($ $ $) 79 (|has| (-526) (-1063))) (($ $ |#2|) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-271 |#2| |#2|))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-348))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#1| (-348))) (($ $ (-735)) NIL (-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 137 (-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-1123)) 140 (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123))))))) (-3295 (($ $) NIL (|has| |#1| (-348)))) (-3297 ((|#2| $) 152 (|has| |#1| (-348)))) (-4264 (((-526) $) 12)) (-3809 (($ $) 198 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 174 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 194 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 170 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 190 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 166 (|has| |#1| (-37 (-392 (-526)))))) (-4287 (((-211) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-977)))) (((-363) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-977)))) (((-515) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-584 (-515))))) (((-849 (-363)) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-526))))))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-348)) (|has| |#2| (-869))))) (-3191 (($ $) 124)) (-4274 (((-823) $) 245) (($ (-526)) 23) (($ |#1|) 21 (|has| |#1| (-163))) (($ |#2|) 20) (($ (-1123)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123))))) (($ (-392 (-526))) 155 (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-526)) 74)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-348)) (|has| |#2| (-869))) (|has| |#1| (-139)) (-12 (|has| |#1| (-348)) (|has| |#2| (-139)))))) (-3423 (((-735)) 142)) (-4091 ((|#1| $) 90)) (-3428 ((|#2| $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-525))))) (-3812 (($ $) 204 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 180 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 200 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 176 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 208 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 184 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 210 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 186 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 206 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 182 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 202 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 178 (|has| |#1| (-37 (-392 (-526)))))) (-3702 (($ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-784))))) (-2957 (($) 13 T CONST)) (-2964 (($) 17 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-348))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#1| (-348))) (($ $ (-735)) NIL (-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) NIL (-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123))))))) (-2863 (((-111) $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-2864 (((-111) $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-3353 (((-111) $ $) 63)) (-2984 (((-111) $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-2985 (((-111) $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) 149 (|has| |#1| (-348))) (($ |#2| |#2|) 150 (|has| |#1| (-348)))) (-4156 (($ $) 213) (($ $ $) 68)) (-4158 (($ $ $) 66)) (** (($ $ (-878)) NIL) (($ $ (-735)) 73) (($ $ (-526)) 146 (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 158 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-348))) (($ |#2| $) 147 (|has| |#1| (-348))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1170 |#1| |#2|) (-1169 |#1| |#2|) (-1004) (-1198 |#1|)) (T -1170)) -NIL -(-1169 |#1| |#2|) -((-4053 (((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111)) 12)) (-4052 (((-390 |#1|) |#1|) 22)) (-4051 (((-390 |#1|) |#1|) 21))) -(((-1171 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1|)) (-15 -4053 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111)))) (-1181 (-526))) (T -1171)) -((-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526)))))) -(-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1|)) (-15 -4053 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111)))) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4055 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4275 (((-1101 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-809)))) (-3542 ((|#1| $) 14)) (-3544 ((|#1| $) 10)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3540 (((-526) $) 18)) (-3541 ((|#1| $) 17)) (-3543 ((|#1| $) 11)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4054 (((-111) $) 16)) (-4280 (((-1101 |#1|) $) 38 (|has| |#1| (-809))) (((-1101 |#1|) (-607 $)) 37 (|has| |#1| (-809)))) (-4287 (($ |#1|) 25)) (-4274 (($ (-1041 |#1|)) 24) (((-823) $) 34 (|has| |#1| (-1052)))) (-4056 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3545 (($ $ (-526)) 13)) (-3353 (((-111) $ $) 27 (|has| |#1| (-1052))))) -(((-1172 |#1|) (-13 (-1046 |#1|) (-10 -8 (-15 -4056 ($ |#1|)) (-15 -4055 ($ |#1|)) (-15 -4274 ($ (-1041 |#1|))) (-15 -4054 ((-111) $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-1047 |#1| (-1101 |#1|))) |%noBranch|))) (-1159)) (T -1172)) -((-4056 (*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1159)))) (-4055 (*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1159)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1041 *3)) (-4 *3 (-1159)) (-5 *1 (-1172 *3)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1172 *3)) (-4 *3 (-1159))))) -(-13 (-1046 |#1|) (-10 -8 (-15 -4056 ($ |#1|)) (-15 -4055 ($ |#1|)) (-15 -4274 ($ (-1041 |#1|))) (-15 -4054 ((-111) $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-1047 |#1| (-1101 |#1|))) |%noBranch|))) -((-4275 (((-1101 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 23 (|has| |#1| (-809))) (((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 17))) -(((-1173 |#1| |#2|) (-10 -7 (-15 -4275 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (IF (|has| |#1| (-809)) (-15 -4275 ((-1101 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) |%noBranch|)) (-1159) (-1159)) (T -1173)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-809)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1101 *6)) (-5 *1 (-1173 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1172 *6)) (-5 *1 (-1173 *5 *6))))) -(-10 -7 (-15 -4275 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (IF (|has| |#1| (-809)) (-15 -4275 ((-1101 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) |%noBranch|)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4085 (((-1205 |#2|) $ (-735)) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4083 (($ (-1117 |#2|)) NIL)) (-3386 (((-1117 $) $ (-1033)) NIL) (((-1117 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4074 (($ $ $) NIL (|has| |#2| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-1681 (((-111) $ $) NIL (|has| |#2| (-348)))) (-4079 (($ $ (-735)) NIL)) (-4078 (($ $ (-735)) NIL)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-436)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-1033) #2#) $) NIL)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-1033) $) NIL)) (-4075 (($ $ $ (-1033)) NIL (|has| |#2| (-163))) ((|#2| $ $) NIL (|has| |#2| (-163)))) (-2861 (($ $ $) NIL (|has| |#2| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#2| (-348)))) (-4077 (($ $ $) NIL)) (-4072 (($ $ $) NIL (|has| |#2| (-533)))) (-4071 (((-2 (|:| -4270 |#2|) (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#2| (-348)))) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-1033)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| (-735) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1033) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1033) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-4090 (((-735) $ $) NIL (|has| |#2| (-533)))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#2| (-1099)))) (-3387 (($ (-1117 |#2|) (-1033)) NIL) (($ (-1117 $) (-1033)) NIL)) (-4095 (($ $ (-735)) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#2| (-348)))) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#2| (-735)) 17) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) NIL) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-4084 (((-1117 |#2|) $) NIL)) (-3385 (((-3 (-1033) #4="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) NIL)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) NIL)) (-4131 (($ $) NIL (|has| |#2| (-37 (-392 (-526)))))) (-3764 (($) NIL (|has| |#2| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#2| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-4057 (($ $ (-735) |#2| $) NIL)) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#2| (-348)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#2| (-348)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#2|) NIL) (($ $ (-607 (-1033)) (-607 |#2|)) NIL) (($ $ (-1033) $) NIL) (($ $ (-607 (-1033)) (-607 $)) NIL)) (-1680 (((-735) $) NIL (|has| |#2| (-348)))) (-4118 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-392 $) (-392 $) (-392 $)) NIL (|has| |#2| (-533))) ((|#2| (-392 $) |#2|) NIL (|has| |#2| (-348))) (((-392 $) $ (-392 $)) NIL (|has| |#2| (-533)))) (-4082 (((-3 $ #5="failed") $ (-735)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-348)))) (-4076 (($ $ (-1033)) NIL (|has| |#2| (-163))) ((|#2| $) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4264 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1033) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) NIL (|has| |#2| (-436))) (($ $ (-1033)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4073 (((-3 $ #5#) $ $) NIL (|has| |#2| (-533))) (((-3 (-392 $) #5#) (-392 $) $) NIL (|has| |#2| (-533)))) (-4274 (((-823) $) 13) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-1033)) NIL) (($ (-1202 |#1|)) 19) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#2| (-533)))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-735)) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) 14 T CONST)) (-2969 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1174 |#1| |#2|) (-13 (-1181 |#2|) (-10 -8 (-15 -4274 ($ (-1202 |#1|))) (-15 -4057 ($ $ (-735) |#2| $)))) (-1123) (-1004)) (T -1174)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *3)) (-14 *3 (-1123)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-1004)))) (-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1174 *4 *3)) (-14 *4 (-1123)) (-4 *3 (-1004))))) -(-13 (-1181 |#2|) (-10 -8 (-15 -4274 ($ (-1202 |#1|))) (-15 -4057 ($ $ (-735) |#2| $)))) -((-4275 (((-1174 |#3| |#4|) (-1 |#4| |#2|) (-1174 |#1| |#2|)) 15))) -(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 ((-1174 |#3| |#4|) (-1 |#4| |#2|) (-1174 |#1| |#2|)))) (-1123) (-1004) (-1123) (-1004)) (T -1175)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1174 *5 *6)) (-14 *5 (-1123)) (-4 *6 (-1004)) (-4 *8 (-1004)) (-5 *2 (-1174 *7 *8)) (-5 *1 (-1175 *5 *6 *7 *8)) (-14 *7 (-1123))))) -(-10 -7 (-15 -4275 ((-1174 |#3| |#4|) (-1 |#4| |#2|) (-1174 |#1| |#2|)))) -((-4060 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4058 ((|#1| |#3|) 13)) (-4059 ((|#3| |#3|) 19))) -(((-1176 |#1| |#2| |#3|) (-10 -7 (-15 -4058 (|#1| |#3|)) (-15 -4059 (|#3| |#3|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-533) (-950 |#1|) (-1181 |#2|)) (T -1176)) -((-4060 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1176 *4 *5 *3)) (-4 *3 (-1181 *5)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-533)) (-4 *4 (-950 *3)) (-5 *1 (-1176 *3 *4 *2)) (-4 *2 (-1181 *4)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-1176 *2 *4 *3)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -4058 (|#1| |#3|)) (-15 -4059 (|#3| |#3|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4062 (((-3 |#2| "failed") |#2| (-735) |#1|) 29)) (-4061 (((-3 |#2| "failed") |#2| (-735)) 30)) (-4064 (((-3 (-2 (|:| -3435 |#2|) (|:| -3434 |#2|)) "failed") |#2|) 43)) (-4065 (((-607 |#2|) |#2|) 45)) (-4063 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -4061 ((-3 |#2| "failed") |#2| (-735))) (-15 -4062 ((-3 |#2| "failed") |#2| (-735) |#1|)) (-15 -4063 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4064 ((-3 (-2 (|:| -3435 |#2|) (|:| -3434 |#2|)) "failed") |#2|)) (-15 -4065 ((-607 |#2|) |#2|))) (-13 (-533) (-141)) (-1181 |#1|)) (T -1177)) -((-4065 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-141))) (-5 *2 (-607 *3)) (-5 *1 (-1177 *4 *3)) (-4 *3 (-1181 *4)))) (-4064 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-533) (-141))) (-5 *2 (-2 (|:| -3435 *3) (|:| -3434 *3))) (-5 *1 (-1177 *4 *3)) (-4 *3 (-1181 *4)))) (-4063 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-1181 *3)))) (-4062 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-735)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-1181 *4)))) (-4061 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-735)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-1181 *4))))) -(-10 -7 (-15 -4061 ((-3 |#2| "failed") |#2| (-735))) (-15 -4062 ((-3 |#2| "failed") |#2| (-735) |#1|)) (-15 -4063 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4064 ((-3 (-2 (|:| -3435 |#2|) (|:| -3434 |#2|)) "failed") |#2|)) (-15 -4065 ((-607 |#2|) |#2|))) -((-4066 (((-3 (-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) "failed") |#2| |#2|) 32))) -(((-1178 |#1| |#2|) (-10 -7 (-15 -4066 ((-3 (-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) "failed") |#2| |#2|))) (-533) (-1181 |#1|)) (T -1178)) -((-4066 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-1178 *4 *3)) (-4 *3 (-1181 *4))))) -(-10 -7 (-15 -4066 ((-3 (-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) "failed") |#2| |#2|))) -((-4067 ((|#2| |#2| |#2|) 19)) (-4068 ((|#2| |#2| |#2|) 30)) (-4069 ((|#2| |#2| |#2| (-735) (-735)) 36))) -(((-1179 |#1| |#2|) (-10 -7 (-15 -4067 (|#2| |#2| |#2|)) (-15 -4068 (|#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| (-735) (-735)))) (-1004) (-1181 |#1|)) (T -1179)) -((-4069 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-1179 *4 *2)) (-4 *2 (-1181 *4)))) (-4068 (*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1181 *3)))) (-4067 (*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1181 *3))))) -(-10 -7 (-15 -4067 (|#2| |#2| |#2|)) (-15 -4068 (|#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| (-735) (-735)))) -((-4085 (((-1205 |#2|) $ (-735)) 114)) (-3384 (((-607 (-1033)) $) 15)) (-4083 (($ (-1117 |#2|)) 67)) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) 18)) (-3007 (((-390 (-1117 $)) (-1117 $)) 185)) (-4093 (($ $) 175)) (-4286 (((-390 $) $) 173)) (-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 82)) (-4079 (($ $ (-735)) 71)) (-4078 (($ $ (-735)) 73)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3470 (((-3 |#2| #1="failed") $) 117) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 (-1033) #1#) $) NIL)) (-3469 ((|#2| $) 115) (((-392 (-526)) $) NIL) (((-526) $) NIL) (((-1033) $) NIL)) (-4072 (($ $ $) 151)) (-4071 (((-2 (|:| -4270 |#2|) (|:| -2072 $) (|:| -3202 $)) $ $) 153)) (-4090 (((-735) $ $) 170)) (-3763 (((-3 $ "failed") $) 123)) (-3193 (($ |#2| (-735)) NIL) (($ $ (-1033) (-735)) 47) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) 42) (((-607 (-735)) $ (-607 (-1033))) 43)) (-4084 (((-1117 |#2|) $) 59)) (-3385 (((-3 (-1033) "failed") $) 40)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) 70)) (-4131 (($ $) 197)) (-3764 (($) 119)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 182)) (-3005 (((-390 (-1117 $)) (-1117 $)) 88)) (-3006 (((-390 (-1117 $)) (-1117 $)) 86)) (-4051 (((-390 $) $) 107)) (-4086 (($ $ (-607 (-278 $))) 39) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#2|) 31) (($ $ (-607 (-1033)) (-607 |#2|)) 28) (($ $ (-1033) $) 25) (($ $ (-607 (-1033)) (-607 $)) 23)) (-1680 (((-735) $) 188)) (-4118 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-392 $) (-392 $) (-392 $)) 147) ((|#2| (-392 $) |#2|) 187) (((-392 $) $ (-392 $)) 169)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 191)) (-4129 (($ $ (-1033)) 140) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) 138) (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4264 (((-735) $) NIL) (((-735) $ (-1033)) 16) (((-607 (-735)) $ (-607 (-1033))) 20)) (-3117 ((|#2| $) NIL) (($ $ (-1033)) 125)) (-4073 (((-3 $ "failed") $ $) 161) (((-3 (-392 $) "failed") (-392 $) $) 157)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-1033)) 51) (($ (-392 (-526))) NIL) (($ $) NIL))) -(((-1180 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -4118 ((-392 |#1|) |#1| (-392 |#1|))) (-15 -1680 ((-735) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4118 (|#2| (-392 |#1|) |#2|)) (-15 -4070 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4071 ((-2 (|:| -4270 |#2|) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -4072 (|#1| |#1| |#1|)) (-15 -4073 ((-3 (-392 |#1|) "failed") (-392 |#1|) |#1|)) (-15 -4073 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4090 ((-735) |#1| |#1|)) (-15 -4118 ((-392 |#1|) (-392 |#1|) (-392 |#1|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4078 (|#1| |#1| (-735))) (-15 -4079 (|#1| |#1| (-735))) (-15 -4080 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| (-735))) (-15 -4083 (|#1| (-1117 |#2|))) (-15 -4084 ((-1117 |#2|) |#1|)) (-15 -4085 ((-1205 |#2|) |#1| (-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4118 (|#2| |#1| |#2|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3007 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3117 (|#1| |#1| (-1033))) (-15 -3384 ((-607 (-1033)) |#1|)) (-15 -3119 ((-735) |#1| (-607 (-1033)))) (-15 -3119 ((-735) |#1|)) (-15 -3193 (|#1| |#1| (-607 (-1033)) (-607 (-735)))) (-15 -3193 (|#1| |#1| (-1033) (-735))) (-15 -3120 ((-607 (-735)) |#1| (-607 (-1033)))) (-15 -3120 ((-735) |#1| (-1033))) (-15 -3385 ((-3 (-1033) "failed") |#1|)) (-15 -4264 ((-607 (-735)) |#1| (-607 (-1033)))) (-15 -4264 ((-735) |#1| (-1033))) (-15 -3469 ((-1033) |#1|)) (-15 -3470 ((-3 (-1033) #1="failed") |#1|)) (-15 -4274 (|#1| (-1033))) (-15 -4086 (|#1| |#1| (-607 (-1033)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-1033) |#1|)) (-15 -4086 (|#1| |#1| (-607 (-1033)) (-607 |#2|))) (-15 -4086 (|#1| |#1| (-1033) |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4264 ((-735) |#1|)) (-15 -3193 (|#1| |#2| (-735))) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3120 ((-735) |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -4129 (|#1| |#1| (-607 (-1033)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1033) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1033)))) (-15 -4129 (|#1| |#1| (-1033))) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-1181 |#2|) (-1004)) (T -1180)) -NIL -(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -4118 ((-392 |#1|) |#1| (-392 |#1|))) (-15 -1680 ((-735) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4118 (|#2| (-392 |#1|) |#2|)) (-15 -4070 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4071 ((-2 (|:| -4270 |#2|) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -4072 (|#1| |#1| |#1|)) (-15 -4073 ((-3 (-392 |#1|) "failed") (-392 |#1|) |#1|)) (-15 -4073 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4090 ((-735) |#1| |#1|)) (-15 -4118 ((-392 |#1|) (-392 |#1|) (-392 |#1|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4078 (|#1| |#1| (-735))) (-15 -4079 (|#1| |#1| (-735))) (-15 -4080 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| (-735))) (-15 -4083 (|#1| (-1117 |#2|))) (-15 -4084 ((-1117 |#2|) |#1|)) (-15 -4085 ((-1205 |#2|) |#1| (-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4118 (|#2| |#1| |#2|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3007 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3117 (|#1| |#1| (-1033))) (-15 -3384 ((-607 (-1033)) |#1|)) (-15 -3119 ((-735) |#1| (-607 (-1033)))) (-15 -3119 ((-735) |#1|)) (-15 -3193 (|#1| |#1| (-607 (-1033)) (-607 (-735)))) (-15 -3193 (|#1| |#1| (-1033) (-735))) (-15 -3120 ((-607 (-735)) |#1| (-607 (-1033)))) (-15 -3120 ((-735) |#1| (-1033))) (-15 -3385 ((-3 (-1033) "failed") |#1|)) (-15 -4264 ((-607 (-735)) |#1| (-607 (-1033)))) (-15 -4264 ((-735) |#1| (-1033))) (-15 -3469 ((-1033) |#1|)) (-15 -3470 ((-3 (-1033) #1="failed") |#1|)) (-15 -4274 (|#1| (-1033))) (-15 -4086 (|#1| |#1| (-607 (-1033)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-1033) |#1|)) (-15 -4086 (|#1| |#1| (-607 (-1033)) (-607 |#2|))) (-15 -4086 (|#1| |#1| (-1033) |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4264 ((-735) |#1|)) (-15 -3193 (|#1| |#2| (-735))) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3120 ((-735) |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -4129 (|#1| |#1| (-607 (-1033)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1033) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1033)))) (-15 -4129 (|#1| |#1| (-1033))) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4085 (((-1205 |#1|) $ (-735)) 236)) (-3384 (((-607 (-1033)) $) 108)) (-4083 (($ (-1117 |#1|)) 234)) (-3386 (((-1117 $) $ (-1033)) 123) (((-1117 |#1|) $) 122)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85 (|has| |#1| (-533)))) (-2151 (($ $) 86 (|has| |#1| (-533)))) (-2149 (((-111) $) 88 (|has| |#1| (-533)))) (-3119 (((-735) $) 110) (((-735) $ (-607 (-1033))) 109)) (-1345 (((-3 $ "failed") $ $) 19)) (-4074 (($ $ $) 221 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) 98 (|has| |#1| (-869)))) (-4093 (($ $) 96 (|has| |#1| (-436)))) (-4286 (((-390 $) $) 95 (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 101 (|has| |#1| (-869)))) (-1681 (((-111) $ $) 206 (|has| |#1| (-348)))) (-4079 (($ $ (-735)) 229)) (-4078 (($ $ (-735)) 228)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-436)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 162) (((-3 (-392 (-526)) #2#) $) 160 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) 158 (|has| |#1| (-995 (-526)))) (((-3 (-1033) #2#) $) 134)) (-3469 ((|#1| $) 163) (((-392 (-526)) $) 159 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 157 (|has| |#1| (-995 (-526)))) (((-1033) $) 133)) (-4075 (($ $ $ (-1033)) 106 (|has| |#1| (-163))) ((|#1| $ $) 224 (|has| |#1| (-163)))) (-2861 (($ $ $) 210 (|has| |#1| (-348)))) (-4276 (($ $) 152)) (-2331 (((-653 (-526)) (-653 $)) 132 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 131 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 130) (((-653 |#1|) (-653 $)) 129)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 209 (|has| |#1| (-348)))) (-4077 (($ $ $) 227)) (-4072 (($ $ $) 218 (|has| |#1| (-533)))) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 $) (|:| -3202 $)) $ $) 217 (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 204 (|has| |#1| (-348)))) (-3817 (($ $) 174 (|has| |#1| (-436))) (($ $ (-1033)) 103 (|has| |#1| (-436)))) (-3118 (((-607 $) $) 107)) (-4045 (((-111) $) 94 (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-735) $) 170)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 82 (-12 (|has| (-1033) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 81 (-12 (|has| (-1033) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ $) 222 (|has| |#1| (-533)))) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 167)) (-3763 (((-3 $ "failed") $) 202 (|has| |#1| (-1099)))) (-3387 (($ (-1117 |#1|) (-1033)) 115) (($ (-1117 $) (-1033)) 114)) (-4095 (($ $ (-735)) 233)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) 213 (|has| |#1| (-348)))) (-3121 (((-607 $) $) 124)) (-4254 (((-111) $) 150)) (-3193 (($ |#1| (-735)) 151) (($ $ (-1033) (-735)) 117) (($ $ (-607 (-1033)) (-607 (-735))) 116)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) 118) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 231)) (-3120 (((-735) $) 168) (((-735) $ (-1033)) 120) (((-607 (-735)) $ (-607 (-1033))) 119)) (-3637 (($ $ $) 77 (|has| |#1| (-811)))) (-3638 (($ $ $) 76 (|has| |#1| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) 169)) (-4275 (($ (-1 |#1| |#1|) $) 149)) (-4084 (((-1117 |#1|) $) 235)) (-3385 (((-3 (-1033) #4="failed") $) 121)) (-3194 (($ $) 147)) (-3487 ((|#1| $) 146)) (-1989 (($ (-607 $)) 92 (|has| |#1| (-436))) (($ $ $) 91 (|has| |#1| (-436)))) (-3554 (((-1106) $) 9)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) 230)) (-3123 (((-3 (-607 $) #4#) $) 112)) (-3122 (((-3 (-607 $) #4#) $) 113)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) 111)) (-4131 (($ $) 214 (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) 201 (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 164)) (-1891 ((|#1| $) 165)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 93 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) 90 (|has| |#1| (-436))) (($ $ $) 89 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 100 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 99 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 97 (|has| |#1| (-869)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 212 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 211 (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 205 (|has| |#1| (-348)))) (-4086 (($ $ (-607 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-607 $) (-607 $)) 140) (($ $ (-1033) |#1|) 139) (($ $ (-607 (-1033)) (-607 |#1|)) 138) (($ $ (-1033) $) 137) (($ $ (-607 (-1033)) (-607 $)) 136)) (-1680 (((-735) $) 207 (|has| |#1| (-348)))) (-4118 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-392 $) (-392 $) (-392 $)) 223 (|has| |#1| (-533))) ((|#1| (-392 $) |#1|) 215 (|has| |#1| (-348))) (((-392 $) $ (-392 $)) 203 (|has| |#1| (-533)))) (-4082 (((-3 $ "failed") $ (-735)) 232)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 208 (|has| |#1| (-348)))) (-4076 (($ $ (-1033)) 105 (|has| |#1| (-163))) ((|#1| $) 225 (|has| |#1| (-163)))) (-4129 (($ $ (-1033)) 40) (($ $ (-607 (-1033))) 39) (($ $ (-1033) (-735)) 38) (($ $ (-607 (-1033)) (-607 (-735))) 37) (($ $ (-735)) 251) (($ $) 249) (($ $ (-1123)) 248 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 247 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 246 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 245 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4264 (((-735) $) 148) (((-735) $ (-1033)) 128) (((-607 (-735)) $ (-607 (-1033))) 127)) (-4287 (((-849 (-363)) $) 80 (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) 79 (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) 78 (-12 (|has| (-1033) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) 173 (|has| |#1| (-436))) (($ $ (-1033)) 104 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 102 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4073 (((-3 $ "failed") $ $) 220 (|has| |#1| (-533))) (((-3 (-392 $) "failed") (-392 $) $) 219 (|has| |#1| (-533)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 161) (($ (-1033)) 135) (($ (-392 (-526))) 70 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526)))))) (($ $) 83 (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) 166)) (-3999 ((|#1| $ (-735)) 153) (($ $ (-1033) (-735)) 126) (($ $ (-607 (-1033)) (-607 (-735))) 125)) (-3002 (((-3 $ #1#) $) 71 (-3850 (-3155 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 171 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 87 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1033)) 36) (($ $ (-607 (-1033))) 35) (($ $ (-1033) (-735)) 34) (($ $ (-607 (-1033)) (-607 (-735))) 33) (($ $ (-735)) 252) (($ $) 250) (($ $ (-1123)) 244 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 243 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 242 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 241 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2863 (((-111) $ $) 74 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 73 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 75 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 72 (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 154 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 156 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 155 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1181 |#1|) (-134) (-1004)) (T -1181)) -((-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-1181 *4)) (-4 *4 (-1004)) (-5 *2 (-1205 *4)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-5 *2 (-1117 *3)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1004)) (-4 *1 (-1181 *3)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4082 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4081 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1181 *3)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1181 *4)))) (-4079 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4077 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)))) (-4129 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-163)))) (-4075 (*1 *2 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-163)))) (-4118 (*1 *2 *2 *2) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)))) (-4090 (*1 *2 *1 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)) (-5 *2 (-735)))) (-4074 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) (-4073 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) (-4073 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-392 *1)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)))) (-4072 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) (-4071 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -4270 *3) (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1181 *3)))) (-4070 (*1 *2 *1 *1) (-12 (-4 *3 (-436)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1181 *3)))) (-4118 (*1 *2 *3 *2) (-12 (-5 *3 (-392 *1)) (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526))))))) -(-13 (-909 |t#1| (-735) (-1033)) (-271 |t#1| |t#1|) (-271 $ $) (-219) (-217 |t#1|) (-10 -8 (-15 -4085 ((-1205 |t#1|) $ (-735))) (-15 -4084 ((-1117 |t#1|) $)) (-15 -4083 ($ (-1117 |t#1|))) (-15 -4095 ($ $ (-735))) (-15 -4082 ((-3 $ "failed") $ (-735))) (-15 -4081 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -4080 ((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735))) (-15 -4079 ($ $ (-735))) (-15 -4078 ($ $ (-735))) (-15 -4077 ($ $ $)) (-15 -4129 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-15 -4076 (|t#1| $)) (-15 -4075 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-6 (-271 (-392 $) (-392 $))) (-15 -4118 ((-392 $) (-392 $) (-392 $))) (-15 -4090 ((-735) $ $)) (-15 -4074 ($ $ $)) (-15 -4073 ((-3 $ "failed") $ $)) (-15 -4073 ((-3 (-392 $) "failed") (-392 $) $)) (-15 -4072 ($ $ $)) (-15 -4071 ((-2 (|:| -4270 |t#1|) (|:| -2072 $) (|:| -3202 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-436)) (-15 -4070 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-348)) (PROGN (-6 (-292)) (-6 -4306) (-15 -4118 (|t#1| (-392 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-392 (-526)))) (-15 -4131 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-735)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-100) . T) ((-110 #2# #2#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-584 (-515)) -12 (|has| |#1| (-584 (-515))) (|has| (-1033) (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| (-1033) (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| (-1033) (-584 (-849 (-526))))) ((-217 |#1|) . T) ((-219) . T) ((-271 (-392 $) (-392 $)) |has| |#1| (-533)) ((-271 |#1| |#1|) . T) ((-271 $ $) . T) ((-275) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-294 $) . T) ((-311 |#1| #1#) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-869)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-496 #3=(-1033) |#1|) . T) ((-496 #3# $) . T) ((-496 $ $) . T) ((-533) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-613 #2#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #2#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 #3#) . T) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-845 (-363)) -12 (|has| |#1| (-845 (-363))) (|has| (-1033) (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-845 (-526))) (|has| (-1033) (-845 (-526)))) ((-909 |#1| #1# #3#) . T) ((-869) |has| |#1| (-869)) ((-880) |has| |#1| (-348)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 #3#) . T) ((-995 |#1|) . T) ((-1010 #2#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-1099)) ((-1164) |has| |#1| (-869))) -((-4275 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1182 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|))) (-1004) (-1181 |#1|) (-1004) (-1181 |#3|)) (T -1182)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1181 *6)) (-5 *1 (-1182 *5 *4 *6 *2)) (-4 *4 (-1181 *5))))) -(-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|))) -((-3384 (((-607 (-1033)) $) 28)) (-4276 (($ $) 25)) (-3193 (($ |#2| |#3|) NIL) (($ $ (-1033) |#3|) 22) (($ $ (-607 (-1033)) (-607 |#3|)) 21)) (-3194 (($ $) 14)) (-3487 ((|#2| $) 12)) (-4264 ((|#3| $) 10))) -(((-1183 |#1| |#2| |#3|) (-10 -8 (-15 -3384 ((-607 (-1033)) |#1|)) (-15 -3193 (|#1| |#1| (-607 (-1033)) (-607 |#3|))) (-15 -3193 (|#1| |#1| (-1033) |#3|)) (-15 -4276 (|#1| |#1|)) (-15 -3193 (|#1| |#2| |#3|)) (-15 -4264 (|#3| |#1|)) (-15 -3194 (|#1| |#1|)) (-15 -3487 (|#2| |#1|))) (-1184 |#2| |#3|) (-1004) (-756)) (T -1183)) -NIL -(-10 -8 (-15 -3384 ((-607 (-1033)) |#1|)) (-15 -3193 (|#1| |#1| (-607 (-1033)) (-607 |#3|))) (-15 -3193 (|#1| |#1| (-1033) |#3|)) (-15 -4276 (|#1| |#1|)) (-15 -3193 (|#1| |#2| |#3|)) (-15 -4264 (|#3| |#1|)) (-15 -3194 (|#1| |#1|)) (-15 -3487 (|#2| |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4092 (((-1101 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-3192 (((-111) $) 71)) (-4090 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2471 (((-111) $) 30)) (-4095 (($ $ (-878)) 99)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| |#2|) 59) (($ $ (-1033) |#2|) 74) (($ $ (-607 (-1033)) (-607 |#2|)) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4087 (($ $ |#2|) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4118 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4264 ((|#2| $) 62)) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3999 ((|#1| $ |#2|) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-4088 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-1184 |#1| |#2|) (-134) (-1004) (-756)) (T -1184)) -((-4092 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-1101 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4118 (*1 *2 *1 *3) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-1123)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4090 (*1 *2 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4089 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4088 (*1 *2 *1 *3) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4274 (*2 (-1123)))) (-4 *2 (-1004)))) (-4087 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4086 (*1 *2 *1 *3) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1101 *3))))) -(-13 (-932 |t#1| |t#2| (-1033)) (-10 -8 (-15 -4092 ((-1101 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4118 (|t#1| $ |t#2|)) (-15 -4150 ((-1123) $)) (-15 -4091 (|t#1| $)) (-15 -4095 ($ $ (-878))) (-15 -4090 (|t#2| $)) (-15 -4090 (|t#2| $ |t#2|)) (-15 -4089 ($ $ |t#2|)) (-15 -4089 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4274 (|t#1| (-1123)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4088 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4087 ($ $ |t#2|)) (IF (|has| |t#2| (-1063)) (-6 (-271 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-219)) (IF (|has| |t#1| (-859 (-1123))) (-6 (-859 (-1123))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4086 ((-1101 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-271 $ $) |has| |#2| (-1063)) ((-275) |has| |#1| (-533)) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-932 |#1| |#2| (-1033)) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-4093 ((|#2| |#2|) 12)) (-4286 (((-390 |#2|) |#2|) 14)) (-4094 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-526))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-526)))) 30))) -(((-1185 |#1| |#2|) (-10 -7 (-15 -4286 ((-390 |#2|) |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-526))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-526)))))) (-533) (-13 (-1181 |#1|) (-533) (-10 -8 (-15 -3457 ($ $ $))))) (T -1185)) -((-4094 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-526)))) (-4 *4 (-13 (-1181 *3) (-533) (-10 -8 (-15 -3457 ($ $ $))))) (-4 *3 (-533)) (-5 *1 (-1185 *3 *4)))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-1181 *3) (-533) (-10 -8 (-15 -3457 ($ $ $))))))) (-4286 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-13 (-1181 *4) (-533) (-10 -8 (-15 -3457 ($ $ $)))))))) -(-10 -7 (-15 -4286 ((-390 |#2|) |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-526))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-526)))))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 11)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) NIL) (($ $ (-392 (-526)) (-392 (-526))) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1165 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1195 |#1| |#2| |#3|) #1#) $) 22)) (-3469 (((-1165 |#1| |#2| |#3|) $) NIL) (((-1195 |#1| |#2| |#3|) $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4099 (((-392 (-526)) $) 57)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4100 (($ (-392 (-526)) (-1165 |#1| |#2| |#3|)) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) NIL) (((-392 (-526)) $ (-392 (-526))) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL) (($ $ (-392 (-526))) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) 30) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4098 (((-1165 |#1| |#2| |#3|) $) 60)) (-4096 (((-3 (-1165 |#1| |#2| |#3|) "failed") $) NIL)) (-4097 (((-1165 |#1| |#2| |#3|) $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 39 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 40 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) NIL) (($ $ $) NIL (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $ (-1202 |#2|)) 38)) (-4264 (((-392 (-526)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) 89) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1165 |#1| |#2| |#3|)) 16) (($ (-1195 |#1| |#2| |#3|)) 17) (($ (-1202 |#2|)) 36) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 12)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 32 T CONST)) (-2964 (($) 26 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 34)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1186 |#1| |#2| |#3|) (-13 (-1190 |#1| (-1165 |#1| |#2| |#3|)) (-995 (-1195 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1186)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) -(-13 (-1190 |#1| (-1165 |#1| |#2| |#3|)) (-995 (-1195 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) -((-4275 (((-1186 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1186 |#1| |#3| |#5|)) 24))) -(((-1187 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4275 ((-1186 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1186 |#1| |#3| |#5|)))) (-1004) (-1004) (-1123) (-1123) |#1| |#2|) (T -1187)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5 *7 *9)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-14 *7 (-1123)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1186 *6 *8 *10)) (-5 *1 (-1187 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1123))))) -(-10 -7 (-15 -4275 ((-1186 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1186 |#1| |#3| |#5|)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) 96) (($ $ (-392 (-526)) (-392 (-526))) 95)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) 103)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 160 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-348)))) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) 151 (|has| |#1| (-348)))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) 169)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 155 (|has| |#1| (-348)))) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 154 (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-348)))) (-4045 (((-111) $) 162 (|has| |#1| (-348)))) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) 98) (((-392 (-526)) $ (-392 (-526))) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 99) (($ $ (-392 (-526))) 168)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 158 (|has| |#1| (-348)))) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-392 (-526))) 59) (($ $ (-1033) (-392 (-526))) 74) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-348))) (($ $ $) 146 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 163 (|has| |#1| (-348)))) (-4131 (($ $) 167 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 166 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-348))) (($ $ $) 144 (|has| |#1| (-348)))) (-4051 (((-390 $) $) 159 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-348)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) 152 (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) 102) (($ $ $) 79 (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-4264 (((-392 (-526)) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348))) (($ $ $) 165 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 164 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-1188 |#1|) (-134) (-1004)) (T -1188)) -((-4137 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| *4)))) (-4 *4 (-1004)) (-4 *1 (-1188 *4)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-1188 *3)) (-4 *3 (-1004)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) (-4131 (*1 *1 *1 *2) (-3850 (-12 (-5 *2 (-1123)) (-4 *1 (-1188 *3)) (-4 *3 (-1004)) (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) (-4 *3 (-37 (-392 (-526)))))) (-12 (-5 *2 (-1123)) (-4 *1 (-1188 *3)) (-4 *3 (-1004)) (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526))))))))) -(-13 (-1184 |t#1| (-392 (-526))) (-10 -8 (-15 -4137 ($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |t#1|))))) (-15 -4095 ($ $ (-392 (-526)))) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (IF (|has| |t#1| (-15 -4131 (|t#1| |t#1| (-1123)))) (IF (|has| |t#1| (-15 -3384 ((-607 (-1123)) |t#1|))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1145)) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-29 (-526))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-960)) (-6 (-1145))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-392 (-526))) . T) ((-25) . T) ((-37 #2=(-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) ((-229) |has| |#1| (-348)) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 $ $) |has| (-392 (-526)) (-1063)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-348) |has| |#1| (-348)) ((-436) |has| |#1| (-348)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-613 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) ((-932 |#1| #1# (-1033)) . T) ((-880) |has| |#1| (-348)) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-1010 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1164) |has| |#1| (-348)) ((-1184 |#1| #1#) . T)) -((-3502 (((-111) $) 12)) (-3470 (((-3 |#3| "failed") $) 17)) (-3469 ((|#3| $) 14))) -(((-1189 |#1| |#2| |#3|) (-10 -8 (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| "failed") |#1|)) (-15 -3502 ((-111) |#1|))) (-1190 |#2| |#3|) (-1004) (-1167 |#2|)) (T -1189)) -NIL -(-10 -8 (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| "failed") |#1|)) (-15 -3502 ((-111) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) 96) (($ $ (-392 (-526)) (-392 (-526))) 95)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) 103)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 160 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-348)))) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) 151 (|has| |#1| (-348)))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) 169)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#2| "failed") $) 180)) (-3469 ((|#2| $) 179)) (-2861 (($ $ $) 155 (|has| |#1| (-348)))) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-4099 (((-392 (-526)) $) 177)) (-2860 (($ $ $) 154 (|has| |#1| (-348)))) (-4100 (($ (-392 (-526)) |#2|) 178)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-348)))) (-4045 (((-111) $) 162 (|has| |#1| (-348)))) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) 98) (((-392 (-526)) $ (-392 (-526))) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 99) (($ $ (-392 (-526))) 168)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 158 (|has| |#1| (-348)))) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-392 (-526))) 59) (($ $ (-1033) (-392 (-526))) 74) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-348))) (($ $ $) 146 (|has| |#1| (-348)))) (-4098 ((|#2| $) 176)) (-4096 (((-3 |#2| "failed") $) 174)) (-4097 ((|#2| $) 175)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 163 (|has| |#1| (-348)))) (-4131 (($ $) 167 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 166 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-348))) (($ $ $) 144 (|has| |#1| (-348)))) (-4051 (((-390 $) $) 159 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-348)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) 152 (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) 102) (($ $ $) 79 (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-4264 (((-392 (-526)) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ |#2|) 181) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348))) (($ $ $) 165 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 164 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-1190 |#1| |#2|) (-134) (-1004) (-1167 |t#1|)) (T -1190)) -((-4264 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1167 *3)) (-5 *2 (-392 (-526))))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-1190 *3 *2)) (-4 *2 (-1167 *3)))) (-4100 (*1 *1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-4 *4 (-1004)) (-4 *1 (-1190 *4 *3)) (-4 *3 (-1167 *4)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1167 *3)) (-5 *2 (-392 (-526))))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3)))) (-4096 (*1 *2 *1) (|partial| -12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3))))) -(-13 (-1188 |t#1|) (-995 |t#2|) (-10 -8 (-15 -4100 ($ (-392 (-526)) |t#2|)) (-15 -4099 ((-392 (-526)) $)) (-15 -4098 (|t#2| $)) (-15 -4264 ((-392 (-526)) $)) (-15 -4274 ($ |t#2|)) (-15 -4097 (|t#2| $)) (-15 -4096 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-392 (-526))) . T) ((-25) . T) ((-37 #2=(-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) ((-229) |has| |#1| (-348)) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 $ $) |has| (-392 (-526)) (-1063)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-348) |has| |#1| (-348)) ((-436) |has| |#1| (-348)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-613 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) ((-932 |#1| #1# (-1033)) . T) ((-880) |has| |#1| (-348)) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-995 |#2|) . T) ((-1010 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1164) |has| |#1| (-348)) ((-1184 |#1| #1#) . T) ((-1188 |#1|) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 96)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) 106) (($ $ (-392 (-526)) (-392 (-526))) 108)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) 51)) (-3806 (($ $) 180 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 156 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) 176 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 152 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) 61)) (-3808 (($ $) 184 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 160 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| "failed") $) NIL)) (-3469 ((|#2| $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) 79)) (-4099 (((-392 (-526)) $) 13)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4100 (($ (-392 (-526)) |#2|) 11)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) 68)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) 103) (((-392 (-526)) $ (-392 (-526))) 104)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 120) (($ $ (-392 (-526))) 118)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) 31) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 115)) (-4259 (($ $) 150 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4098 ((|#2| $) 12)) (-4096 (((-3 |#2| "failed") $) 41)) (-4097 ((|#2| $) 42)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 93 (|has| |#1| (-348)))) (-4131 (($ $) 135 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 140 (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) 112)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) 148 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) 100) (($ $ $) 86 (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 127 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-4264 (((-392 (-526)) $) 16)) (-3809 (($ $) 186 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 162 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 182 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 158 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 178 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 154 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 110)) (-4274 (((-823) $) NIL) (($ (-526)) 35) (($ |#1|) 27 (|has| |#1| (-163))) (($ |#2|) 32) (($ (-392 (-526))) 128 (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) 99)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 117)) (-4091 ((|#1| $) 98)) (-3812 (($ $) 192 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 168 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 188 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 164 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 196 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 172 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 198 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 174 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 194 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 170 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 190 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 166 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 21 T CONST)) (-2964 (($) 17 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) 66)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) 92 (|has| |#1| (-348)))) (-4156 (($ $) 131) (($ $ $) 72)) (-4158 (($ $ $) 70)) (** (($ $ (-878)) NIL) (($ $ (-735)) 76) (($ $ (-526)) 145 (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 146 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1191 |#1| |#2|) (-1190 |#1| |#2|) (-1004) (-1167 |#1|)) (T -1191)) -NIL -(-1190 |#1| |#2|) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 34)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| (-1186 |#2| |#3| |#4|) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-995 (-392 (-526))))) (((-3 (-1186 |#2| |#3| |#4|) #1#) $) 20)) (-3469 (((-526) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-995 (-526)))) (((-392 (-526)) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-995 (-392 (-526))))) (((-1186 |#2| |#3| |#4|) $) NIL)) (-4276 (($ $) 35)) (-3781 (((-3 $ "failed") $) 25)) (-3817 (($ $) NIL (|has| (-1186 |#2| |#3| |#4|) (-436)))) (-1697 (($ $ (-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|) $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) 11)) (-4254 (((-111) $) NIL)) (-3193 (($ (-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) 23)) (-3120 (((-304 |#2| |#3| |#4|) $) NIL)) (-1698 (($ (-1 (-304 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) $) NIL)) (-4275 (($ (-1 (-1186 |#2| |#3| |#4|) (-1186 |#2| |#3| |#4|)) $) NIL)) (-4102 (((-3 (-803 |#2|) "failed") $) 75)) (-3194 (($ $) NIL)) (-3487 (((-1186 |#2| |#3| |#4|) $) 18)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 (((-1186 |#2| |#3| |#4|) $) NIL)) (-3780 (((-3 $ "failed") $ (-1186 |#2| |#3| |#4|)) NIL (|has| (-1186 |#2| |#3| |#4|) (-533))) (((-3 $ "failed") $ $) NIL)) (-4101 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1186 |#2| |#3| |#4|)) (|:| |%expon| (-304 |#2| |#3| |#4|)) (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#2|)))))) (|:| |%type| (-1106))) "failed") $) 58)) (-4264 (((-304 |#2| |#3| |#4|) $) 14)) (-3117 (((-1186 |#2| |#3| |#4|) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-1186 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL (-3850 (|has| (-1186 |#2| |#3| |#4|) (-995 (-392 (-526)))) (|has| (-1186 |#2| |#3| |#4|) (-37 (-392 (-526))))))) (-4136 (((-607 (-1186 |#2| |#3| |#4|)) $) NIL)) (-3999 (((-1186 |#2| |#3| |#4|) $ (-304 |#2| |#3| |#4|)) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| (-1186 |#2| |#3| |#4|) (-139)))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| (-1186 |#2| |#3| |#4|) (-163)))) (-2150 (((-111) $ $) NIL)) (-2957 (($) 63 T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ (-1186 |#2| |#3| |#4|)) NIL (|has| (-1186 |#2| |#3| |#4|) (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-1186 |#2| |#3| |#4|)) NIL) (($ (-1186 |#2| |#3| |#4|) $) NIL) (($ (-392 (-526)) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| (-1186 |#2| |#3| |#4|) (-37 (-392 (-526))))))) -(((-1192 |#1| |#2| |#3| |#4|) (-13 (-311 (-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) (-533) (-10 -8 (-15 -4102 ((-3 (-803 |#2|) "failed") $)) (-15 -4101 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1186 |#2| |#3| |#4|)) (|:| |%expon| (-304 |#2| |#3| |#4|)) (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#2|)))))) (|:| |%type| (-1106))) "failed") $)))) (-13 (-811) (-995 (-526)) (-606 (-526)) (-436)) (-13 (-27) (-1145) (-406 |#1|)) (-1123) |#2|) (T -1192)) -((-4102 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *2 (-803 *4)) (-5 *1 (-1192 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4))) (-4101 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1186 *4 *5 *6)) (|:| |%expon| (-304 *4 *5 *6)) (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| *4)))))) (|:| |%type| (-1106)))) (-5 *1 (-1192 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4)))) -(-13 (-311 (-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) (-533) (-10 -8 (-15 -4102 ((-3 (-803 |#2|) "failed") $)) (-15 -4101 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1186 |#2| |#3| |#4|)) (|:| |%expon| (-304 |#2| |#3| |#4|)) (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#2|)))))) (|:| |%type| (-1106))) "failed") $)))) -((-3721 ((|#2| $) 29)) (-4113 ((|#2| $) 18)) (-4115 (($ $) 36)) (-4103 (($ $ (-526)) 64)) (-1244 (((-111) $ (-735)) 33)) (-3325 ((|#2| $ |#2|) 61)) (-4104 ((|#2| $ |#2|) 59)) (-4106 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3326 (($ $ (-607 $)) 60)) (-4114 ((|#2| $) 17)) (-4117 (($ $) NIL) (($ $ (-735)) 42)) (-3331 (((-607 $) $) 26)) (-3327 (((-111) $ $) 50)) (-4041 (((-111) $ (-735)) 32)) (-4038 (((-111) $ (-735)) 31)) (-3841 (((-111) $) 28)) (-4116 ((|#2| $) 24) (($ $ (-735)) 46)) (-4118 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3955 (((-111) $) 22)) (-4110 (($ $) 39)) (-4108 (($ $) 65)) (-4111 (((-735) $) 41)) (-4112 (($ $) 40)) (-4120 (($ $ $) 58) (($ |#2| $) NIL)) (-3836 (((-607 $) $) 27)) (-3353 (((-111) $ $) 48)) (-4273 (((-735) $) 35))) -(((-1193 |#1| |#2|) (-10 -8 (-15 -4103 (|#1| |#1| (-526))) (-15 -4106 (|#2| |#1| "last" |#2|)) (-15 -4104 (|#2| |#1| |#2|)) (-15 -4106 (|#1| |#1| "rest" |#1|)) (-15 -4106 (|#2| |#1| "first" |#2|)) (-15 -4108 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -4111 ((-735) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4113 (|#2| |#1|)) (-15 -4114 (|#2| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "last")) (-15 -4116 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| "rest")) (-15 -4117 (|#1| |#1|)) (-15 -4118 (|#2| |#1| "first")) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#1|)) (-15 -3325 (|#2| |#1| |#2|)) (-15 -4106 (|#2| |#1| #1="value" |#2|)) (-15 -3326 (|#1| |#1| (-607 |#1|))) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -3721 (|#2| |#1|)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735)))) (-1194 |#2|) (-1159)) (T -1193)) -NIL -(-10 -8 (-15 -4103 (|#1| |#1| (-526))) (-15 -4106 (|#2| |#1| "last" |#2|)) (-15 -4104 (|#2| |#1| |#2|)) (-15 -4106 (|#1| |#1| "rest" |#1|)) (-15 -4106 (|#2| |#1| "first" |#2|)) (-15 -4108 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -4111 ((-735) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4113 (|#2| |#1|)) (-15 -4114 (|#2| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "last")) (-15 -4116 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| "rest")) (-15 -4117 (|#1| |#1|)) (-15 -4118 (|#2| |#1| "first")) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#1|)) (-15 -3325 (|#2| |#1| |#2|)) (-15 -4106 (|#2| |#1| #1="value" |#2|)) (-15 -3326 (|#1| |#1| (-607 |#1|))) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -3721 (|#2| |#1|)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735)))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4113 ((|#1| $) 65)) (-4115 (($ $) 67)) (-4103 (($ $ (-526)) 52 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 56 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) 54 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 58 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4311))) (($ $ "rest" $) 55 (|has| $ (-6 -4311))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-4114 ((|#1| $) 66)) (-3855 (($) 7 T CONST)) (-4117 (($ $) 73) (($ $ (-735)) 71)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 70) (($ $ (-735)) 68)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 76) (($ $ (-735)) 74)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-4110 (($ $) 62)) (-4108 (($ $) 59 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 63)) (-4112 (($ $) 64)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4109 (($ $ $) 61 (|has| $ (-6 -4311))) (($ $ |#1|) 60 (|has| $ (-6 -4311)))) (-4120 (($ $ $) 78) (($ |#1| $) 77)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-1194 |#1|) (-134) (-1159)) (T -1194)) -((-4120 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4120 (*1 *1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4117 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4112 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) (-4110 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4109 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4109 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4108 (*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4107 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4105 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4106 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4104 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (|has| *1 (-6 -4311)) (-4 *1 (-1194 *3)) (-4 *3 (-1159))))) -(-13 (-968 |t#1|) (-10 -8 (-15 -4120 ($ $ $)) (-15 -4120 ($ |t#1| $)) (-15 -4119 (|t#1| $)) (-15 -4118 (|t#1| $ "first")) (-15 -4119 ($ $ (-735))) (-15 -4117 ($ $)) (-15 -4118 ($ $ "rest")) (-15 -4117 ($ $ (-735))) (-15 -4116 (|t#1| $)) (-15 -4118 (|t#1| $ "last")) (-15 -4116 ($ $ (-735))) (-15 -4115 ($ $)) (-15 -4114 (|t#1| $)) (-15 -4113 (|t#1| $)) (-15 -4112 ($ $)) (-15 -4111 ((-735) $)) (-15 -4110 ($ $)) (IF (|has| $ (-6 -4311)) (PROGN (-15 -4109 ($ $ $)) (-15 -4109 ($ $ |t#1|)) (-15 -4108 ($ $)) (-15 -4107 (|t#1| $ |t#1|)) (-15 -4106 (|t#1| $ "first" |t#1|)) (-15 -4105 ($ $ $)) (-15 -4106 ($ $ "rest" $)) (-15 -4104 (|t#1| $ |t#1|)) (-15 -4106 (|t#1| $ "last" |t#1|)) (-15 -4103 ($ $ (-526)))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 87)) (-4130 (((-1174 |#2| |#1|) $ (-735)) 73)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) 137 (|has| |#1| (-533)))) (-4089 (($ $ (-735)) 122) (($ $ (-735) (-735)) 124)) (-4092 (((-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|))) $) 42)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|)))) 53) (($ (-1101 |#1|)) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-4123 (($ $) 128)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4135 (($ $) 135)) (-4133 (((-905 |#1|) $ (-735)) 63) (((-905 |#1|) $ (-735) (-735)) 65)) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $) NIL) (((-735) $ (-735)) NIL)) (-2471 (((-111) $) NIL)) (-4126 (($ $) 112)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4122 (($ (-526) (-526) $) 130)) (-4095 (($ $ (-878)) 134)) (-4134 (($ (-1 |#1| (-526)) $) 106)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) 15) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 94)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4127 (($ $) 110)) (-4128 (($ $) 108)) (-4121 (($ (-526) (-526) $) 132)) (-4131 (($ $) 145 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 151 (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 146 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-4124 (($ $ (-526) (-526)) 116)) (-4087 (($ $ (-735)) 118)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4125 (($ $) 114)) (-4086 (((-1101 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-735)))))) (-4118 ((|#1| $ (-735)) 91) (($ $ $) 126 (|has| (-735) (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) 103 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $ (-1202 |#2|)) 99)) (-4264 (((-735) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 120)) (-4274 (((-823) $) NIL) (($ (-526)) 24) (($ (-392 (-526))) 143 (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) 23 (|has| |#1| (-163))) (($ (-1174 |#2| |#1|)) 80) (($ (-1202 |#2|)) 20)) (-4136 (((-1101 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) 90)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 88)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-735)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-735)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 17 T CONST)) (-2964 (($) 13 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) 102)) (-4158 (($ $ $) 18)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ |#1|) 140 (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) -(((-1195 |#1| |#2| |#3|) (-13 (-1198 |#1|) (-10 -8 (-15 -4274 ($ (-1174 |#2| |#1|))) (-15 -4130 ((-1174 |#2| |#1|) $ (-735))) (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (-15 -4128 ($ $)) (-15 -4127 ($ $)) (-15 -4126 ($ $)) (-15 -4125 ($ $)) (-15 -4124 ($ $ (-526) (-526))) (-15 -4123 ($ $)) (-15 -4122 ($ (-526) (-526) $)) (-15 -4121 ($ (-526) (-526) $)) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1195)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-1174 *4 *3)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) (-4130 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1174 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) (-4 *4 (-1004)) (-14 *5 (-1123)) (-14 *6 *4))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4128 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4126 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4125 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4124 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3))) (-4123 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4122 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3))) (-4121 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) -(-13 (-1198 |#1|) (-10 -8 (-15 -4274 ($ (-1174 |#2| |#1|))) (-15 -4130 ((-1174 |#2| |#1|) $ (-735))) (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (-15 -4128 ($ $)) (-15 -4127 ($ $)) (-15 -4126 ($ $)) (-15 -4125 ($ $)) (-15 -4124 ($ $ (-526) (-526))) (-15 -4123 ($ $)) (-15 -4122 ($ (-526) (-526) $)) (-15 -4121 ($ (-526) (-526) $)) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) -((-4275 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#2| |#1|) |#3|))) (-1004) (-1004) (-1198 |#1|) (-1198 |#2|)) (T -1196)) -((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1198 *6)) (-5 *1 (-1196 *5 *6 *4 *2)) (-4 *4 (-1198 *5))))) -(-10 -7 (-15 -4275 (|#4| (-1 |#2| |#1|) |#3|))) -((-3502 (((-111) $) 15)) (-3806 (($ $) 92)) (-3961 (($ $) 68)) (-3804 (($ $) 88)) (-3960 (($ $) 64)) (-3808 (($ $) 96)) (-3959 (($ $) 72)) (-4259 (($ $) 62)) (-4260 (($ $) 60)) (-3809 (($ $) 98)) (-3958 (($ $) 74)) (-3807 (($ $) 94)) (-3957 (($ $) 70)) (-3805 (($ $) 90)) (-3956 (($ $) 66)) (-4274 (((-823) $) 48) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3812 (($ $) 104)) (-3800 (($ $) 80)) (-3810 (($ $) 100)) (-3798 (($ $) 76)) (-3814 (($ $) 108)) (-3802 (($ $) 84)) (-3815 (($ $) 110)) (-3803 (($ $) 86)) (-3813 (($ $) 106)) (-3801 (($ $) 82)) (-3811 (($ $) 102)) (-3799 (($ $) 78)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-392 (-526))) 58))) -(((-1197 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3961 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878))) (-15 -3502 ((-111) |#1|)) (-15 -4274 ((-823) |#1|))) (-1198 |#2|) (-1004)) (T -1197)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3961 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878))) (-15 -3502 ((-111) |#1|)) (-15 -4274 ((-823) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-735)) 96) (($ $ (-735) (-735)) 95)) (-4092 (((-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|))) $) 103)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|)))) 153) (($ (-1101 |#1|)) 151)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-4135 (($ $) 150)) (-4133 (((-905 |#1|) $ (-735)) 148) (((-905 |#1|) $ (-735) (-735)) 147)) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $) 98) (((-735) $ (-735)) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 99)) (-4134 (($ (-1 |#1| (-526)) $) 149)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-735)) 59) (($ $ (-1033) (-735)) 74) (($ $ (-607 (-1033)) (-607 (-735))) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-4131 (($ $) 145 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 144 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3555 (((-1070) $) 10)) (-4087 (($ $ (-735)) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-735)))))) (-4118 ((|#1| $ (-735)) 102) (($ $ $) 79 (|has| (-735) (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (-4264 (((-735) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45 (|has| |#1| (-163)))) (-4136 (((-1101 |#1|) $) 152)) (-3999 ((|#1| $ (-735)) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-735)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-735)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ |#1|) 146 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) -(((-1198 |#1|) (-134) (-1004)) (T -1198)) -((-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 (-2 (|:| |k| (-735)) (|:| |c| *3)))) (-4 *3 (-1004)) (-4 *1 (-1198 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-1004)) (-5 *2 (-1101 *3)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-4 *1 (-1198 *3)))) (-4135 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)))) (-4134 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-526))) (-4 *1 (-1198 *3)) (-4 *3 (-1004)))) (-4133 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-1198 *4)) (-4 *4 (-1004)) (-5 *2 (-905 *4)))) (-4133 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-4 *1 (-1198 *4)) (-4 *4 (-1004)) (-5 *2 (-905 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) (-4131 (*1 *1 *1 *2) (-3850 (-12 (-5 *2 (-1123)) (-4 *1 (-1198 *3)) (-4 *3 (-1004)) (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) (-4 *3 (-37 (-392 (-526)))))) (-12 (-5 *2 (-1123)) (-4 *1 (-1198 *3)) (-4 *3 (-1004)) (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526))))))))) -(-13 (-1184 |t#1| (-735)) (-10 -8 (-15 -4137 ($ (-1101 (-2 (|:| |k| (-735)) (|:| |c| |t#1|))))) (-15 -4136 ((-1101 |t#1|) $)) (-15 -4137 ($ (-1101 |t#1|))) (-15 -4135 ($ $)) (-15 -4134 ($ (-1 |t#1| (-526)) $)) (-15 -4133 ((-905 |t#1|) $ (-735))) (-15 -4133 ((-905 |t#1|) $ (-735) (-735))) (IF (|has| |t#1| (-348)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (IF (|has| |t#1| (-15 -4131 (|t#1| |t#1| (-1123)))) (IF (|has| |t#1| (-15 -3384 ((-607 (-1123)) |t#1|))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1145)) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-29 (-526))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-960)) (-6 (-1145))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-735)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| (-735) |#1|))) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 $ $) |has| (-735) (-1063)) ((-275) |has| |#1| (-533)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-533) |has| |#1| (-533)) ((-613 #2#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|)))) ((-932 |#1| #1# (-1033)) . T) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-1010 #2#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1184 |#1| #1#) . T)) -((-4140 (((-1 (-1101 |#1|) (-607 (-1101 |#1|))) (-1 |#2| (-607 |#2|))) 24)) (-4139 (((-1 (-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4138 (((-1 (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2|)) 13)) (-4143 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4142 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4144 ((|#2| (-1 |#2| (-607 |#2|)) (-607 |#1|)) 54)) (-4145 (((-607 |#2|) (-607 |#1|) (-607 (-1 |#2| (-607 |#2|)))) 61)) (-4141 ((|#2| |#2| |#2|) 43))) -(((-1199 |#1| |#2|) (-10 -7 (-15 -4138 ((-1 (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2|))) (-15 -4139 ((-1 (-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4140 ((-1 (-1101 |#1|) (-607 (-1101 |#1|))) (-1 |#2| (-607 |#2|)))) (-15 -4141 (|#2| |#2| |#2|)) (-15 -4142 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4143 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4144 (|#2| (-1 |#2| (-607 |#2|)) (-607 |#1|))) (-15 -4145 ((-607 |#2|) (-607 |#1|) (-607 (-1 |#2| (-607 |#2|)))))) (-37 (-392 (-526))) (-1198 |#1|)) (T -1199)) -((-4145 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 (-1 *6 (-607 *6)))) (-4 *5 (-37 (-392 (-526)))) (-4 *6 (-1198 *5)) (-5 *2 (-607 *6)) (-5 *1 (-1199 *5 *6)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-607 *2))) (-5 *4 (-607 *5)) (-4 *5 (-37 (-392 (-526)))) (-4 *2 (-1198 *5)) (-5 *1 (-1199 *5 *2)))) (-4143 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1198 *4)) (-5 *1 (-1199 *4 *2)) (-4 *4 (-37 (-392 (-526)))))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1198 *4)) (-5 *1 (-1199 *4 *2)) (-4 *4 (-37 (-392 (-526)))))) (-4141 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-1198 *3)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-607 *5))) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-1 (-1101 *4) (-607 (-1101 *4)))) (-5 *1 (-1199 *4 *5)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-1 (-1101 *4) (-1101 *4) (-1101 *4))) (-5 *1 (-1199 *4 *5)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-1 (-1101 *4) (-1101 *4))) (-5 *1 (-1199 *4 *5))))) -(-10 -7 (-15 -4138 ((-1 (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2|))) (-15 -4139 ((-1 (-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4140 ((-1 (-1101 |#1|) (-607 (-1101 |#1|))) (-1 |#2| (-607 |#2|)))) (-15 -4141 (|#2| |#2| |#2|)) (-15 -4142 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4143 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4144 (|#2| (-1 |#2| (-607 |#2|)) (-607 |#1|))) (-15 -4145 ((-607 |#2|) (-607 |#1|) (-607 (-1 |#2| (-607 |#2|)))))) -((-4147 ((|#2| |#4| (-735)) 30)) (-4146 ((|#4| |#2|) 25)) (-4149 ((|#4| (-392 |#2|)) 52 (|has| |#1| (-533)))) (-4148 (((-1 |#4| (-607 |#4|)) |#3|) 46))) -(((-1200 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4146 (|#4| |#2|)) (-15 -4147 (|#2| |#4| (-735))) (-15 -4148 ((-1 |#4| (-607 |#4|)) |#3|)) (IF (|has| |#1| (-533)) (-15 -4149 (|#4| (-392 |#2|))) |%noBranch|)) (-1004) (-1181 |#1|) (-623 |#2|) (-1198 |#1|)) (T -1200)) -((-4149 (*1 *2 *3) (-12 (-5 *3 (-392 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-533)) (-4 *4 (-1004)) (-4 *2 (-1198 *4)) (-5 *1 (-1200 *4 *5 *6 *2)) (-4 *6 (-623 *5)))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-1181 *4)) (-5 *2 (-1 *6 (-607 *6))) (-5 *1 (-1200 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-1198 *4)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-1004)) (-4 *2 (-1181 *5)) (-5 *1 (-1200 *5 *2 *6 *3)) (-4 *6 (-623 *2)) (-4 *3 (-1198 *5)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *3 (-1181 *4)) (-4 *2 (-1198 *4)) (-5 *1 (-1200 *4 *3 *5 *2)) (-4 *5 (-623 *3))))) -(-10 -7 (-15 -4146 (|#4| |#2|)) (-15 -4147 (|#2| |#4| (-735))) (-15 -4148 ((-1 |#4| (-607 |#4|)) |#3|)) (IF (|has| |#1| (-533)) (-15 -4149 (|#4| (-392 |#2|))) |%noBranch|)) -NIL -(((-1201) (-134)) (T -1201)) -NIL -(-13 (-10 -7 (-6 -2337))) -((-2865 (((-111) $ $) NIL)) (-4150 (((-1123)) 12)) (-3554 (((-1106) $) 17)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11) (((-1123) $) 8)) (-3353 (((-111) $ $) 14))) -(((-1202 |#1|) (-13 (-1052) (-583 (-1123)) (-10 -8 (-15 -4274 ((-1123) $)) (-15 -4150 ((-1123))))) (-1123)) (T -1202)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1202 *3)) (-14 *3 *2))) (-4150 (*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1202 *3)) (-14 *3 *2)))) -(-13 (-1052) (-583 (-1123)) (-10 -8 (-15 -4274 ((-1123) $)) (-15 -4150 ((-1123))))) -((-4157 (($ (-735)) 18)) (-4154 (((-653 |#2|) $ $) 40)) (-4151 ((|#2| $) 48)) (-4152 ((|#2| $) 47)) (-4155 ((|#2| $ $) 35)) (-4153 (($ $ $) 44)) (-4156 (($ $) 22) (($ $ $) 28)) (-4158 (($ $ $) 15)) (* (($ (-526) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1203 |#1| |#2|) (-10 -8 (-15 -4151 (|#2| |#1|)) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| |#1|)) (-15 -4154 ((-653 |#2|) |#1| |#1|)) (-15 -4155 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| (-735))) (-15 -4158 (|#1| |#1| |#1|))) (-1204 |#2|) (-1159)) (T -1203)) -NIL -(-10 -8 (-15 -4151 (|#2| |#1|)) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| |#1|)) (-15 -4154 ((-653 |#2|) |#1| |#1|)) (-15 -4155 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| (-735))) (-15 -4158 (|#1| |#1| |#1|))) -((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-4157 (($ (-735)) 112 (|has| |#1| (-23)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-3738 (((-526) (-1 (-111) |#1|) $) 97) (((-526) |#1| $) 96 (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) 95 (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) 105 (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4151 ((|#1| $) 102 (-12 (|has| |#1| (-1004)) (|has| |#1| (-960))))) (-4038 (((-111) $ (-735)) 10)) (-4152 ((|#1| $) 103 (-12 (|has| |#1| (-1004)) (|has| |#1| (-960))))) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-4155 ((|#1| $ $) 106 (|has| |#1| (-1004)))) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-4153 (($ $ $) 104 (|has| |#1| (-1004)))) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 83 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 85 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 82 (|has| |#1| (-811)))) (-4156 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4158 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-526) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-691))) (($ $ |#1|) 107 (|has| |#1| (-691)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) -(((-1204 |#1|) (-134) (-1159)) (T -1204)) -((-4158 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-25)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1204 *3)) (-4 *3 (-23)) (-4 *3 (-1159)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-21)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-4 *1 (-1204 *3)) (-4 *3 (-1159)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) (-4155 (*1 *2 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-1004)))) (-4154 (*1 *2 *1 *1) (-12 (-4 *1 (-1204 *3)) (-4 *3 (-1159)) (-4 *3 (-1004)) (-5 *2 (-653 *3)))) (-4153 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-1004)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-960)) (-4 *2 (-1004)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-960)) (-4 *2 (-1004))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4158 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4157 ($ (-735))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4156 ($ $)) (-15 -4156 ($ $ $)) (-15 * ($ (-526) $))) |%noBranch|) (IF (|has| |t#1| (-691)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1004)) (PROGN (-15 -4155 (|t#1| $ $)) (-15 -4154 ((-653 |t#1|) $ $)) (-15 -4153 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-960)) (IF (|has| |t#1| (-1004)) (PROGN (-15 -4152 (|t#1| $)) (-15 -4151 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-357 |#1|) . T) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-19 |#1|) . T) ((-811) |has| |#1| (-811)) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1159) . T)) -((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735)) NIL (|has| |#1| (-23)))) (-4159 (($ (-607 |#1|)) 9)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) 15 (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) NIL (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4151 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-4038 (((-111) $ (-735)) NIL)) (-4152 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4155 ((|#1| $ $) NIL (|has| |#1| (-1004)))) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4153 (($ $ $) NIL (|has| |#1| (-1004)))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 19 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 8)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4158 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-526) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-691))) (($ $ |#1|) NIL (|has| |#1| (-691)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1205 |#1|) (-13 (-1204 |#1|) (-10 -8 (-15 -4159 ($ (-607 |#1|))))) (-1159)) (T -1205)) -((-4159 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1205 *3))))) -(-13 (-1204 |#1|) (-10 -8 (-15 -4159 ($ (-607 |#1|))))) -((-4160 (((-1205 |#2|) (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|) 13)) (-4161 ((|#2| (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|) 15)) (-4275 (((-3 (-1205 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1205 |#1|)) 28) (((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|)) 18))) -(((-1206 |#1| |#2|) (-10 -7 (-15 -4160 ((-1205 |#2|) (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|)) (-15 -4275 ((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|))) (-15 -4275 ((-3 (-1205 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1205 |#1|)))) (-1159) (-1159)) (T -1206)) -((-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1205 *6)) (-5 *1 (-1206 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1205 *6)) (-5 *1 (-1206 *5 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-1206 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1205 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-5 *2 (-1205 *5)) (-5 *1 (-1206 *6 *5))))) -(-10 -7 (-15 -4160 ((-1205 |#2|) (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|)) (-15 -4275 ((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|))) (-15 -4275 ((-3 (-1205 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1205 |#1|)))) -((-4162 (((-452) (-607 (-607 (-902 (-211)))) (-607 (-246))) 21) (((-452) (-607 (-607 (-902 (-211))))) 20) (((-452) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246))) 19)) (-4163 (((-1208) (-607 (-607 (-902 (-211)))) (-607 (-246))) 27) (((-1208) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246))) 26)) (-4274 (((-1208) (-452)) 38))) -(((-1207) (-10 -7 (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246)))) (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))))) (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))) (-607 (-246)))) (-15 -4163 ((-1208) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246)))) (-15 -4163 ((-1208) (-607 (-607 (-902 (-211)))) (-607 (-246)))) (-15 -4274 ((-1208) (-452))))) (T -1207)) -((-4274 (*1 *2 *3) (-12 (-5 *3 (-452)) (-5 *2 (-1208)) (-5 *1 (-1207)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-1207)))) (-4163 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *6 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-1207)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-607 (-246))) (-5 *2 (-452)) (-5 *1 (-1207)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-452)) (-5 *1 (-1207)))) (-4162 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *6 (-607 (-246))) (-5 *2 (-452)) (-5 *1 (-1207))))) -(-10 -7 (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246)))) (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))))) (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))) (-607 (-246)))) (-15 -4163 ((-1208) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246)))) (-15 -4163 ((-1208) (-607 (-607 (-902 (-211)))) (-607 (-246)))) (-15 -4274 ((-1208) (-452)))) -((-2865 (((-111) $ $) NIL)) (-4181 (((-1106) $ (-1106)) 90) (((-1106) $ (-1106) (-1106)) 88) (((-1106) $ (-1106) (-607 (-1106))) 87)) (-4177 (($) 59)) (-4164 (((-1211) $ (-452) (-878)) 45)) (-4170 (((-1211) $ (-878) (-1106)) 73) (((-1211) $ (-878) (-833)) 74)) (-4192 (((-1211) $ (-878) (-363) (-363)) 48)) (-4202 (((-1211) $ (-1106)) 69)) (-4165 (((-1211) $ (-878) (-1106)) 78)) (-4166 (((-1211) $ (-878) (-363) (-363)) 49)) (-4203 (((-1211) $ (-878) (-878)) 46)) (-4183 (((-1211) $) 70)) (-4168 (((-1211) $ (-878) (-1106)) 77)) (-4172 (((-1211) $ (-452) (-878)) 31)) (-4169 (((-1211) $ (-878) (-1106)) 76)) (-4205 (((-607 (-246)) $) 23) (($ $ (-607 (-246))) 24)) (-4204 (((-1211) $ (-735) (-735)) 43)) (-4176 (($ $) 60) (($ (-452) (-607 (-246))) 61)) (-3554 (((-1106) $) NIL)) (-4179 (((-526) $) 38)) (-3555 (((-1070) $) NIL)) (-4173 (((-1205 (-3 (-452) "undefined")) $) 37)) (-4174 (((-1205 (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526)))) $) 36)) (-4175 (((-1211) $ (-878) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-833) (-526) (-833) (-526)) 68)) (-4178 (((-607 (-902 (-211))) $) NIL)) (-4171 (((-452) $ (-878)) 33)) (-4201 (((-1211) $ (-735) (-735) (-878) (-878)) 40)) (-4199 (((-1211) $ (-1106)) 79)) (-4167 (((-1211) $ (-878) (-1106)) 75)) (-4274 (((-823) $) 85)) (-4180 (((-1211) $) 80)) (-4198 (((-1211) $ (-878) (-1106)) 71) (((-1211) $ (-878) (-833)) 72)) (-3353 (((-111) $ $) NIL))) -(((-1208) (-13 (-1052) (-10 -8 (-15 -4178 ((-607 (-902 (-211))) $)) (-15 -4177 ($)) (-15 -4176 ($ $)) (-15 -4205 ((-607 (-246)) $)) (-15 -4205 ($ $ (-607 (-246)))) (-15 -4176 ($ (-452) (-607 (-246)))) (-15 -4175 ((-1211) $ (-878) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-833) (-526) (-833) (-526))) (-15 -4174 ((-1205 (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526)))) $)) (-15 -4173 ((-1205 (-3 (-452) "undefined")) $)) (-15 -4202 ((-1211) $ (-1106))) (-15 -4172 ((-1211) $ (-452) (-878))) (-15 -4171 ((-452) $ (-878))) (-15 -4198 ((-1211) $ (-878) (-1106))) (-15 -4198 ((-1211) $ (-878) (-833))) (-15 -4170 ((-1211) $ (-878) (-1106))) (-15 -4170 ((-1211) $ (-878) (-833))) (-15 -4169 ((-1211) $ (-878) (-1106))) (-15 -4168 ((-1211) $ (-878) (-1106))) (-15 -4167 ((-1211) $ (-878) (-1106))) (-15 -4199 ((-1211) $ (-1106))) (-15 -4180 ((-1211) $)) (-15 -4201 ((-1211) $ (-735) (-735) (-878) (-878))) (-15 -4166 ((-1211) $ (-878) (-363) (-363))) (-15 -4192 ((-1211) $ (-878) (-363) (-363))) (-15 -4165 ((-1211) $ (-878) (-1106))) (-15 -4204 ((-1211) $ (-735) (-735))) (-15 -4164 ((-1211) $ (-452) (-878))) (-15 -4203 ((-1211) $ (-878) (-878))) (-15 -4181 ((-1106) $ (-1106))) (-15 -4181 ((-1106) $ (-1106) (-1106))) (-15 -4181 ((-1106) $ (-1106) (-607 (-1106)))) (-15 -4183 ((-1211) $)) (-15 -4179 ((-526) $)) (-15 -4274 ((-823) $))))) (T -1208)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1208)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-607 (-902 (-211)))) (-5 *1 (-1208)))) (-4177 (*1 *1) (-5 *1 (-1208))) (-4176 (*1 *1 *1) (-5 *1 (-1208))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1208)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1208)))) (-4176 (*1 *1 *2 *3) (-12 (-5 *2 (-452)) (-5 *3 (-607 (-246))) (-5 *1 (-1208)))) (-4175 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-878)) (-5 *4 (-211)) (-5 *5 (-526)) (-5 *6 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-1205 (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526))))) (-5 *1 (-1208)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-1205 (-3 (-452) "undefined"))) (-5 *1 (-1208)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4172 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-452)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-878)) (-5 *2 (-452)) (-5 *1 (-1208)))) (-4198 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4198 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4170 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4170 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4169 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4168 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4167 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4201 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-735)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4166 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-878)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4192 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-878)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4165 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4164 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-452)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4181 (*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1208)))) (-4181 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1208)))) (-4181 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-1208)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1208))))) -(-13 (-1052) (-10 -8 (-15 -4178 ((-607 (-902 (-211))) $)) (-15 -4177 ($)) (-15 -4176 ($ $)) (-15 -4205 ((-607 (-246)) $)) (-15 -4205 ($ $ (-607 (-246)))) (-15 -4176 ($ (-452) (-607 (-246)))) (-15 -4175 ((-1211) $ (-878) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-833) (-526) (-833) (-526))) (-15 -4174 ((-1205 (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526)))) $)) (-15 -4173 ((-1205 (-3 (-452) "undefined")) $)) (-15 -4202 ((-1211) $ (-1106))) (-15 -4172 ((-1211) $ (-452) (-878))) (-15 -4171 ((-452) $ (-878))) (-15 -4198 ((-1211) $ (-878) (-1106))) (-15 -4198 ((-1211) $ (-878) (-833))) (-15 -4170 ((-1211) $ (-878) (-1106))) (-15 -4170 ((-1211) $ (-878) (-833))) (-15 -4169 ((-1211) $ (-878) (-1106))) (-15 -4168 ((-1211) $ (-878) (-1106))) (-15 -4167 ((-1211) $ (-878) (-1106))) (-15 -4199 ((-1211) $ (-1106))) (-15 -4180 ((-1211) $)) (-15 -4201 ((-1211) $ (-735) (-735) (-878) (-878))) (-15 -4166 ((-1211) $ (-878) (-363) (-363))) (-15 -4192 ((-1211) $ (-878) (-363) (-363))) (-15 -4165 ((-1211) $ (-878) (-1106))) (-15 -4204 ((-1211) $ (-735) (-735))) (-15 -4164 ((-1211) $ (-452) (-878))) (-15 -4203 ((-1211) $ (-878) (-878))) (-15 -4181 ((-1106) $ (-1106))) (-15 -4181 ((-1106) $ (-1106) (-1106))) (-15 -4181 ((-1106) $ (-1106) (-607 (-1106)))) (-15 -4183 ((-1211) $)) (-15 -4179 ((-526) $)) (-15 -4274 ((-823) $)))) -((-2865 (((-111) $ $) NIL)) (-4193 (((-1211) $ (-363)) 140) (((-1211) $ (-363) (-363) (-363)) 141)) (-4181 (((-1106) $ (-1106)) 148) (((-1106) $ (-1106) (-1106)) 146) (((-1106) $ (-1106) (-607 (-1106))) 145)) (-4209 (($) 50)) (-4200 (((-1211) $ (-363) (-363) (-363) (-363) (-363)) 116) (((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) $) 114) (((-1211) $ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) 115) (((-1211) $ (-526) (-526) (-363) (-363) (-363)) 117) (((-1211) $ (-363) (-363)) 118) (((-1211) $ (-363) (-363) (-363)) 125)) (-4212 (((-363)) 97) (((-363) (-363)) 98)) (-4214 (((-363)) 92) (((-363) (-363)) 94)) (-4213 (((-363)) 95) (((-363) (-363)) 96)) (-4210 (((-363)) 101) (((-363) (-363)) 102)) (-4211 (((-363)) 99) (((-363) (-363)) 100)) (-4192 (((-1211) $ (-363) (-363)) 142)) (-4202 (((-1211) $ (-1106)) 126)) (-4207 (((-1083 (-211)) $) 51) (($ $ (-1083 (-211))) 52)) (-4188 (((-1211) $ (-1106)) 154)) (-4187 (((-1211) $ (-1106)) 155)) (-4194 (((-1211) $ (-363) (-363)) 124) (((-1211) $ (-526) (-526)) 139)) (-4203 (((-1211) $ (-878) (-878)) 132)) (-4183 (((-1211) $) 112)) (-4191 (((-1211) $ (-1106)) 153)) (-4196 (((-1211) $ (-1106)) 109)) (-4205 (((-607 (-246)) $) 53) (($ $ (-607 (-246))) 54)) (-4204 (((-1211) $ (-735) (-735)) 131)) (-4206 (((-1211) $ (-735) (-902 (-211))) 160)) (-4208 (($ $) 56) (($ (-1083 (-211)) (-1106)) 57) (($ (-1083 (-211)) (-607 (-246))) 58)) (-4185 (((-1211) $ (-363) (-363) (-363)) 106)) (-3554 (((-1106) $) NIL)) (-4179 (((-526) $) 103)) (-4184 (((-1211) $ (-363)) 143)) (-4189 (((-1211) $ (-363)) 158)) (-3555 (((-1070) $) NIL)) (-4190 (((-1211) $ (-363)) 157)) (-4195 (((-1211) $ (-1106)) 111)) (-4201 (((-1211) $ (-735) (-735) (-878) (-878)) 130)) (-4197 (((-1211) $ (-1106)) 108)) (-4199 (((-1211) $ (-1106)) 110)) (-4182 (((-1211) $ (-149) (-149)) 129)) (-4274 (((-823) $) 137)) (-4180 (((-1211) $) 113)) (-4186 (((-1211) $ (-1106)) 156)) (-4198 (((-1211) $ (-1106)) 107)) (-3353 (((-111) $ $) NIL))) -(((-1209) (-13 (-1052) (-10 -8 (-15 -4214 ((-363))) (-15 -4214 ((-363) (-363))) (-15 -4213 ((-363))) (-15 -4213 ((-363) (-363))) (-15 -4212 ((-363))) (-15 -4212 ((-363) (-363))) (-15 -4211 ((-363))) (-15 -4211 ((-363) (-363))) (-15 -4210 ((-363))) (-15 -4210 ((-363) (-363))) (-15 -4209 ($)) (-15 -4208 ($ $)) (-15 -4208 ($ (-1083 (-211)) (-1106))) (-15 -4208 ($ (-1083 (-211)) (-607 (-246)))) (-15 -4207 ((-1083 (-211)) $)) (-15 -4207 ($ $ (-1083 (-211)))) (-15 -4206 ((-1211) $ (-735) (-902 (-211)))) (-15 -4205 ((-607 (-246)) $)) (-15 -4205 ($ $ (-607 (-246)))) (-15 -4204 ((-1211) $ (-735) (-735))) (-15 -4203 ((-1211) $ (-878) (-878))) (-15 -4202 ((-1211) $ (-1106))) (-15 -4201 ((-1211) $ (-735) (-735) (-878) (-878))) (-15 -4200 ((-1211) $ (-363) (-363) (-363) (-363) (-363))) (-15 -4200 ((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) $)) (-15 -4200 ((-1211) $ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4200 ((-1211) $ (-526) (-526) (-363) (-363) (-363))) (-15 -4200 ((-1211) $ (-363) (-363))) (-15 -4200 ((-1211) $ (-363) (-363) (-363))) (-15 -4199 ((-1211) $ (-1106))) (-15 -4198 ((-1211) $ (-1106))) (-15 -4197 ((-1211) $ (-1106))) (-15 -4196 ((-1211) $ (-1106))) (-15 -4195 ((-1211) $ (-1106))) (-15 -4194 ((-1211) $ (-363) (-363))) (-15 -4194 ((-1211) $ (-526) (-526))) (-15 -4193 ((-1211) $ (-363))) (-15 -4193 ((-1211) $ (-363) (-363) (-363))) (-15 -4192 ((-1211) $ (-363) (-363))) (-15 -4191 ((-1211) $ (-1106))) (-15 -4190 ((-1211) $ (-363))) (-15 -4189 ((-1211) $ (-363))) (-15 -4188 ((-1211) $ (-1106))) (-15 -4187 ((-1211) $ (-1106))) (-15 -4186 ((-1211) $ (-1106))) (-15 -4185 ((-1211) $ (-363) (-363) (-363))) (-15 -4184 ((-1211) $ (-363))) (-15 -4183 ((-1211) $)) (-15 -4182 ((-1211) $ (-149) (-149))) (-15 -4181 ((-1106) $ (-1106))) (-15 -4181 ((-1106) $ (-1106) (-1106))) (-15 -4181 ((-1106) $ (-1106) (-607 (-1106)))) (-15 -4180 ((-1211) $)) (-15 -4179 ((-526) $))))) (T -1209)) -((-4214 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4214 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4213 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4212 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4212 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4211 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4210 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4210 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4209 (*1 *1) (-5 *1 (-1209))) (-4208 (*1 *1 *1) (-5 *1 (-1209))) (-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-1106)) (-5 *1 (-1209)))) (-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-607 (-246))) (-5 *1 (-1209)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1209)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1209)))) (-4206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-735)) (-5 *4 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1209)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1209)))) (-4204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4201 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-735)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-526)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4198 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4197 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4196 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4195 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4194 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4194 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4193 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4192 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4191 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4187 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4186 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4185 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4182 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-149)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4181 (*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1209)))) (-4181 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1209)))) (-4181 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-1209)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1209))))) -(-13 (-1052) (-10 -8 (-15 -4214 ((-363))) (-15 -4214 ((-363) (-363))) (-15 -4213 ((-363))) (-15 -4213 ((-363) (-363))) (-15 -4212 ((-363))) (-15 -4212 ((-363) (-363))) (-15 -4211 ((-363))) (-15 -4211 ((-363) (-363))) (-15 -4210 ((-363))) (-15 -4210 ((-363) (-363))) (-15 -4209 ($)) (-15 -4208 ($ $)) (-15 -4208 ($ (-1083 (-211)) (-1106))) (-15 -4208 ($ (-1083 (-211)) (-607 (-246)))) (-15 -4207 ((-1083 (-211)) $)) (-15 -4207 ($ $ (-1083 (-211)))) (-15 -4206 ((-1211) $ (-735) (-902 (-211)))) (-15 -4205 ((-607 (-246)) $)) (-15 -4205 ($ $ (-607 (-246)))) (-15 -4204 ((-1211) $ (-735) (-735))) (-15 -4203 ((-1211) $ (-878) (-878))) (-15 -4202 ((-1211) $ (-1106))) (-15 -4201 ((-1211) $ (-735) (-735) (-878) (-878))) (-15 -4200 ((-1211) $ (-363) (-363) (-363) (-363) (-363))) (-15 -4200 ((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) $)) (-15 -4200 ((-1211) $ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4200 ((-1211) $ (-526) (-526) (-363) (-363) (-363))) (-15 -4200 ((-1211) $ (-363) (-363))) (-15 -4200 ((-1211) $ (-363) (-363) (-363))) (-15 -4199 ((-1211) $ (-1106))) (-15 -4198 ((-1211) $ (-1106))) (-15 -4197 ((-1211) $ (-1106))) (-15 -4196 ((-1211) $ (-1106))) (-15 -4195 ((-1211) $ (-1106))) (-15 -4194 ((-1211) $ (-363) (-363))) (-15 -4194 ((-1211) $ (-526) (-526))) (-15 -4193 ((-1211) $ (-363))) (-15 -4193 ((-1211) $ (-363) (-363) (-363))) (-15 -4192 ((-1211) $ (-363) (-363))) (-15 -4191 ((-1211) $ (-1106))) (-15 -4190 ((-1211) $ (-363))) (-15 -4189 ((-1211) $ (-363))) (-15 -4188 ((-1211) $ (-1106))) (-15 -4187 ((-1211) $ (-1106))) (-15 -4186 ((-1211) $ (-1106))) (-15 -4185 ((-1211) $ (-363) (-363) (-363))) (-15 -4184 ((-1211) $ (-363))) (-15 -4183 ((-1211) $)) (-15 -4182 ((-1211) $ (-149) (-149))) (-15 -4181 ((-1106) $ (-1106))) (-15 -4181 ((-1106) $ (-1106) (-1106))) (-15 -4181 ((-1106) $ (-1106) (-607 (-1106)))) (-15 -4180 ((-1211) $)) (-15 -4179 ((-526) $)))) -((-4223 (((-607 (-1106)) (-607 (-1106))) 94) (((-607 (-1106))) 90)) (-4224 (((-607 (-1106))) 88)) (-4221 (((-607 (-878)) (-607 (-878))) 63) (((-607 (-878))) 60)) (-4220 (((-607 (-735)) (-607 (-735))) 57) (((-607 (-735))) 53)) (-4222 (((-1211)) 65)) (-4226 (((-878) (-878)) 81) (((-878)) 80)) (-4225 (((-878) (-878)) 79) (((-878)) 78)) (-4218 (((-833) (-833)) 75) (((-833)) 74)) (-4228 (((-211)) 85) (((-211) (-363)) 87)) (-4227 (((-878)) 82) (((-878) (-878)) 83)) (-4219 (((-878) (-878)) 77) (((-878)) 76)) (-4215 (((-833) (-833)) 69) (((-833)) 67)) (-4216 (((-833) (-833)) 71) (((-833)) 70)) (-4217 (((-833) (-833)) 73) (((-833)) 72))) -(((-1210) (-10 -7 (-15 -4215 ((-833))) (-15 -4215 ((-833) (-833))) (-15 -4216 ((-833))) (-15 -4216 ((-833) (-833))) (-15 -4217 ((-833))) (-15 -4217 ((-833) (-833))) (-15 -4218 ((-833))) (-15 -4218 ((-833) (-833))) (-15 -4219 ((-878))) (-15 -4219 ((-878) (-878))) (-15 -4220 ((-607 (-735)))) (-15 -4220 ((-607 (-735)) (-607 (-735)))) (-15 -4221 ((-607 (-878)))) (-15 -4221 ((-607 (-878)) (-607 (-878)))) (-15 -4222 ((-1211))) (-15 -4223 ((-607 (-1106)))) (-15 -4223 ((-607 (-1106)) (-607 (-1106)))) (-15 -4224 ((-607 (-1106)))) (-15 -4225 ((-878))) (-15 -4226 ((-878))) (-15 -4225 ((-878) (-878))) (-15 -4226 ((-878) (-878))) (-15 -4227 ((-878) (-878))) (-15 -4227 ((-878))) (-15 -4228 ((-211) (-363))) (-15 -4228 ((-211))))) (T -1210)) -((-4228 (*1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-1210)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-211)) (-5 *1 (-1210)))) (-4227 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4227 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4226 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4225 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4226 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4225 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4224 (*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210)))) (-4223 (*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210)))) (-4223 (*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210)))) (-4222 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1210)))) (-4221 (*1 *2 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1210)))) (-4221 (*1 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1210)))) (-4220 (*1 *2 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1210)))) (-4220 (*1 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1210)))) (-4219 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4219 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4218 (*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4217 (*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4217 (*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4216 (*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4215 (*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4215 (*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) -(-10 -7 (-15 -4215 ((-833))) (-15 -4215 ((-833) (-833))) (-15 -4216 ((-833))) (-15 -4216 ((-833) (-833))) (-15 -4217 ((-833))) (-15 -4217 ((-833) (-833))) (-15 -4218 ((-833))) (-15 -4218 ((-833) (-833))) (-15 -4219 ((-878))) (-15 -4219 ((-878) (-878))) (-15 -4220 ((-607 (-735)))) (-15 -4220 ((-607 (-735)) (-607 (-735)))) (-15 -4221 ((-607 (-878)))) (-15 -4221 ((-607 (-878)) (-607 (-878)))) (-15 -4222 ((-1211))) (-15 -4223 ((-607 (-1106)))) (-15 -4223 ((-607 (-1106)) (-607 (-1106)))) (-15 -4224 ((-607 (-1106)))) (-15 -4225 ((-878))) (-15 -4226 ((-878))) (-15 -4225 ((-878) (-878))) (-15 -4226 ((-878) (-878))) (-15 -4227 ((-878) (-878))) (-15 -4227 ((-878))) (-15 -4228 ((-211) (-363))) (-15 -4228 ((-211)))) -((-4229 (($) 7)) (-4274 (((-823) $) 10))) -(((-1211) (-10 -8 (-15 -4229 ($)) (-15 -4274 ((-823) $)))) (T -1211)) -((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1211)))) (-4229 (*1 *1) (-5 *1 (-1211)))) -(-10 -8 (-15 -4229 ($)) (-15 -4274 ((-823) $))) -((-4265 (($ $ |#2|) 10))) -(((-1212 |#1| |#2|) (-10 -8 (-15 -4265 (|#1| |#1| |#2|))) (-1213 |#2|) (-348)) (T -1212)) -NIL -(-10 -8 (-15 -4265 (|#1| |#1| |#2|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4230 (((-131)) 28)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 29)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1213 |#1|) (-134) (-348)) (T -1213)) -((-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-348)))) (-4230 (*1 *2) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-348)) (-5 *2 (-131))))) -(-13 (-682 |t#1|) (-10 -8 (-15 -4265 ($ $ |t#1|)) (-15 -4230 ((-131))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-1010 |#1|) . T) ((-1052) . T)) -((-4235 (((-607 (-1152 |#1|)) (-1123) (-1152 |#1|)) 74)) (-4233 (((-1101 (-1101 (-905 |#1|))) (-1123) (-1101 (-905 |#1|))) 53)) (-4236 (((-1 (-1101 (-1152 |#1|)) (-1101 (-1152 |#1|))) (-735) (-1152 |#1|) (-1101 (-1152 |#1|))) 64)) (-4231 (((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735)) 55)) (-4234 (((-1 (-1117 (-905 |#1|)) (-905 |#1|)) (-1123)) 29)) (-4232 (((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735)) 54))) -(((-1214 |#1|) (-10 -7 (-15 -4231 ((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735))) (-15 -4232 ((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735))) (-15 -4233 ((-1101 (-1101 (-905 |#1|))) (-1123) (-1101 (-905 |#1|)))) (-15 -4234 ((-1 (-1117 (-905 |#1|)) (-905 |#1|)) (-1123))) (-15 -4235 ((-607 (-1152 |#1|)) (-1123) (-1152 |#1|))) (-15 -4236 ((-1 (-1101 (-1152 |#1|)) (-1101 (-1152 |#1|))) (-735) (-1152 |#1|) (-1101 (-1152 |#1|))))) (-348)) (T -1214)) -((-4236 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-735)) (-4 *6 (-348)) (-5 *4 (-1152 *6)) (-5 *2 (-1 (-1101 *4) (-1101 *4))) (-5 *1 (-1214 *6)) (-5 *5 (-1101 *4)))) (-4235 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-4 *5 (-348)) (-5 *2 (-607 (-1152 *5))) (-5 *1 (-1214 *5)) (-5 *4 (-1152 *5)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1 (-1117 (-905 *4)) (-905 *4))) (-5 *1 (-1214 *4)) (-4 *4 (-348)))) (-4233 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-4 *5 (-348)) (-5 *2 (-1101 (-1101 (-905 *5)))) (-5 *1 (-1214 *5)) (-5 *4 (-1101 (-905 *5))))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-1101 (-905 *4)) (-1101 (-905 *4)))) (-5 *1 (-1214 *4)) (-4 *4 (-348)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-1101 (-905 *4)) (-1101 (-905 *4)))) (-5 *1 (-1214 *4)) (-4 *4 (-348))))) -(-10 -7 (-15 -4231 ((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735))) (-15 -4232 ((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735))) (-15 -4233 ((-1101 (-1101 (-905 |#1|))) (-1123) (-1101 (-905 |#1|)))) (-15 -4234 ((-1 (-1117 (-905 |#1|)) (-905 |#1|)) (-1123))) (-15 -4235 ((-607 (-1152 |#1|)) (-1123) (-1152 |#1|))) (-15 -4236 ((-1 (-1101 (-1152 |#1|)) (-1101 (-1152 |#1|))) (-735) (-1152 |#1|) (-1101 (-1152 |#1|))))) -((-4238 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|) 75)) (-4237 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) 74))) -(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|))) (-335) (-1181 |#1|) (-1181 |#2|) (-395 |#2| |#3|)) (T -1215)) -((-4238 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-1215 *4 *3 *5 *6)) (-4 *6 (-395 *3 *5)))) (-4237 (*1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -2104 (-653 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-653 *4)))) (-5 *1 (-1215 *3 *4 *5 *6)) (-4 *6 (-395 *4 *5))))) -(-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|))) -((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4239 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) -(((-1216) (-13 (-1035) (-10 -8 (-15 -4239 ((-1128) $))))) (T -1216)) -((-4239 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1216))))) -(-13 (-1035) (-10 -8 (-15 -4239 ((-1128) $)))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 43)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 64) (($ (-526)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-163)))) (-3423 (((-735)) NIL)) (-4240 (((-1211) (-735)) 16)) (-2957 (($) 27 T CONST)) (-2964 (($) 67 T CONST)) (-3353 (((-111) $ $) 69)) (-4265 (((-3 $ "failed") $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) 71) (($ $ $) NIL)) (-4158 (($ $ $) 47)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) -(((-1217 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1004) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4274 (|#4| $)) (IF (|has| |#1| (-348)) (-15 -4265 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4274 ($ |#4|)) (-15 -4240 ((-1211) (-735))))) (-1004) (-811) (-757) (-909 |#1| |#3| |#2|) (-607 |#2|) (-607 (-735)) (-735)) (T -1217)) -((-4274 (*1 *2 *1) (-12 (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-1217 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-14 *6 (-607 *4)) (-14 *7 (-607 (-735))) (-14 *8 (-735)))) (-4265 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-348)) (-4 *2 (-1004)) (-4 *3 (-811)) (-4 *4 (-757)) (-14 *6 (-607 *3)) (-5 *1 (-1217 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-909 *2 *4 *3)) (-14 *7 (-607 (-735))) (-14 *8 (-735)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-14 *6 (-607 *4)) (-5 *1 (-1217 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-909 *3 *5 *4)) (-14 *7 (-607 (-735))) (-14 *8 (-735)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) (-14 *8 (-607 *5)) (-5 *2 (-1211)) (-5 *1 (-1217 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-909 *4 *6 *5)) (-14 *9 (-607 *3)) (-14 *10 *3)))) -(-13 (-1004) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4274 (|#4| $)) (IF (|has| |#1| (-348)) (-15 -4265 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4274 ($ |#4|)) (-15 -4240 ((-1211) (-735))))) -((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) NIL)) (-4004 (((-607 $) (-607 |#4|)) 88)) (-3384 (((-607 |#3|) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4010 ((|#4| |#4| $) NIL)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) NIL (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 28)) (-3200 (((-607 |#4|) (-607 |#4|) $) 25 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) NIL)) (-3469 (($ (-607 |#4|)) NIL)) (-4117 (((-3 $ #1#) $) 70)) (-4007 ((|#4| |#4| $) 75)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-4005 ((|#4| |#4| $) NIL)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) NIL)) (-2044 (((-607 |#4|) $) NIL (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3493 ((|#3| $) 76)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-4243 (((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-607 |#4|)) 35)) (-2048 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) NIL)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-4116 (((-3 |#4| #1#) $) NIL)) (-4019 (((-607 |#4|) $) 50)) (-4013 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4008 ((|#4| |#4| $) 74)) (-4021 (((-111) $ $) 85)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4009 ((|#4| |#4| $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 |#4| #1#) $) 69)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-4001 (((-3 $ #1#) $ |#4|) NIL)) (-4087 (($ $ |#4|) NIL)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 67)) (-3887 (($) 42)) (-4264 (((-735) $) NIL)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) NIL)) (-3210 (($ $ |#3|) NIL)) (-3212 (($ $ |#3|) NIL)) (-4006 (($ $) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) NIL) (((-607 |#4|) $) 57)) (-4000 (((-735) $) NIL (|has| |#3| (-353)))) (-4242 (((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-607 |#4|)) 41)) (-4241 (((-607 $) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-607 $) (-607 |#4|)) 66)) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) NIL)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) NIL)) (-4250 (((-111) |#3| $) NIL)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) -(((-1218 |#1| |#2| |#3| |#4|) (-13 (-1154 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4243 ((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4243 ((-3 $ "failed") (-607 |#4|))) (-15 -4242 ((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4242 ((-3 $ "failed") (-607 |#4|))) (-15 -4241 ((-607 $) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4241 ((-607 $) (-607 |#4|))))) (-533) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -1218)) -((-4243 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1218 *5 *6 *7 *8)))) (-4243 (*1 *1 *2) (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1218 *3 *4 *5 *6)))) (-4242 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1218 *5 *6 *7 *8)))) (-4242 (*1 *1 *2) (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1218 *3 *4 *5 *6)))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *2 (-607 (-1218 *6 *7 *8 *9))) (-5 *1 (-1218 *6 *7 *8 *9)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 (-1218 *4 *5 *6 *7))) (-5 *1 (-1218 *4 *5 *6 *7))))) -(-13 (-1154 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4243 ((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4243 ((-3 $ "failed") (-607 |#4|))) (-15 -4242 ((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4242 ((-3 $ "failed") (-607 |#4|))) (-15 -4241 ((-607 $) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4241 ((-607 $) (-607 |#4|))))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 36)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-1219 |#1|) (-134) (-1004)) (T -1219)) -((-4274 (*1 *1 *2) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1004))))) -(-13 (-1004) (-110 |t#1| |t#1|) (-10 -8 (-15 -4274 ($ |t#1|)) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) |has| |#1| (-163)) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) -((-2865 (((-111) $ $) 60)) (-3502 (((-111) $) NIL)) (-4251 (((-607 |#1|) $) 45)) (-4263 (($ $ (-735)) 39)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4252 (($ $ (-735)) 18 (|has| |#2| (-163))) (($ $ $) 19 (|has| |#2| (-163)))) (-3855 (($) NIL T CONST)) (-4256 (($ $ $) 63) (($ $ (-783 |#1|)) 49) (($ $ |#1|) 53)) (-3470 (((-3 (-783 |#1|) "failed") $) NIL)) (-3469 (((-783 |#1|) $) NIL)) (-4276 (($ $) 32)) (-3781 (((-3 $ "failed") $) NIL)) (-4267 (((-111) $) NIL)) (-4266 (($ $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-783 |#1|) |#2|) 31)) (-4253 (($ $) 33)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) 12)) (-4271 (((-783 |#1|) $) NIL)) (-4272 (((-783 |#1|) $) 34)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-4257 (($ $ $) 62) (($ $ (-783 |#1|)) 51) (($ $ |#1|) 55)) (-1841 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3194 (((-783 |#1|) $) 28)) (-3487 ((|#2| $) 30)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4264 (((-735) $) 36)) (-4269 (((-111) $) 40)) (-4268 ((|#2| $) NIL)) (-4274 (((-823) $) NIL) (($ (-783 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-526)) NIL)) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-783 |#1|)) NIL)) (-4270 ((|#2| $ $) 65) ((|#2| $ (-783 |#1|)) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) 13 T CONST)) (-2964 (($) 15 T CONST)) (-2963 (((-607 (-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3353 (((-111) $ $) 38)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 22)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-783 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1220 |#1| |#2|) (-13 (-369 |#2| (-783 |#1|)) (-1227 |#1| |#2|)) (-811) (-1004)) (T -1220)) -NIL -(-13 (-369 |#2| (-783 |#1|)) (-1227 |#1| |#2|)) -((-4259 ((|#3| |#3| (-735)) 23)) (-4260 ((|#3| |#3| (-735)) 27)) (-4244 ((|#3| |#3| |#3| (-735)) 28))) -(((-1221 |#1| |#2| |#3|) (-10 -7 (-15 -4260 (|#3| |#3| (-735))) (-15 -4259 (|#3| |#3| (-735))) (-15 -4244 (|#3| |#3| |#3| (-735)))) (-13 (-1004) (-682 (-392 (-526)))) (-811) (-1227 |#2| |#1|)) (T -1221)) -((-4244 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4)))) (-4259 (*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4)))) (-4260 (*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4))))) -(-10 -7 (-15 -4260 (|#3| |#3| (-735))) (-15 -4259 (|#3| |#3| (-735))) (-15 -4244 (|#3| |#3| |#3| (-735)))) -((-4249 (((-111) $) 15)) (-4250 (((-111) $) 14)) (-4245 (($ $) 19) (($ $ (-735)) 20))) -(((-1222 |#1| |#2|) (-10 -8 (-15 -4245 (|#1| |#1| (-735))) (-15 -4245 (|#1| |#1|)) (-15 -4249 ((-111) |#1|)) (-15 -4250 ((-111) |#1|))) (-1223 |#2|) (-348)) (T -1222)) -NIL -(-10 -8 (-15 -4245 (|#1| |#1| (-735))) (-15 -4245 (|#1| |#1|)) (-15 -4249 ((-111) |#1|)) (-15 -4250 ((-111) |#1|))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-4249 (((-111) $) 91)) (-4246 (((-735)) 87)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| "failed") $) 98)) (-3469 ((|#1| $) 97)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-1862 (($ $ (-735)) 84 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) 83 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) 68)) (-4090 (((-796 (-878)) $) 81 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-4248 (((-111) $) 90)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 71)) (-4247 (((-796 (-878))) 88)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1863 (((-3 (-735) "failed") $ $) 82 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) 96)) (-4264 (((-796 (-878)) $) 89)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ |#1|) 99)) (-3002 (((-3 $ "failed") $) 80 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-4250 (((-111) $) 92)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-4245 (($ $) 86 (|has| |#1| (-353))) (($ $ (-735)) 85 (|has| |#1| (-353)))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62) (($ $ |#1|) 95)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1223 |#1|) (-134) (-348)) (T -1223)) -((-4250 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-796 (-878))))) (-4247 (*1 *2) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-796 (-878))))) (-4246 (*1 *2) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-735)))) (-4245 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-348)) (-4 *2 (-353)))) (-4245 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-4 *3 (-353))))) -(-13 (-348) (-995 |t#1|) (-1213 |t#1|) (-10 -8 (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-387)) |%noBranch|) (-15 -4250 ((-111) $)) (-15 -4249 ((-111) $)) (-15 -4248 ((-111) $)) (-15 -4264 ((-796 (-878)) $)) (-15 -4247 ((-796 (-878)))) (-15 -4246 ((-735))) (IF (|has| |t#1| (-353)) (PROGN (-6 (-387)) (-15 -4245 ($ $)) (-15 -4245 ($ $ (-735)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| |#1| (-353)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-387) -3850 (|has| |#1| (-353)) (|has| |#1| (-139))) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 |#1|) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-995 |#1|) . T) ((-1010 #1#) . T) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T) ((-1213 |#1|) . T)) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4251 (((-607 |#1|) $) 38)) (-1345 (((-3 $ "failed") $ $) 19)) (-4252 (($ $ $) 41 (|has| |#2| (-163))) (($ $ (-735)) 40 (|has| |#2| (-163)))) (-3855 (($) 17 T CONST)) (-4256 (($ $ |#1|) 52) (($ $ (-783 |#1|)) 51) (($ $ $) 50)) (-3470 (((-3 (-783 |#1|) "failed") $) 62)) (-3469 (((-783 |#1|) $) 61)) (-3781 (((-3 $ "failed") $) 32)) (-4267 (((-111) $) 43)) (-4266 (($ $) 42)) (-2471 (((-111) $) 30)) (-4254 (((-111) $) 48)) (-4255 (($ (-783 |#1|) |#2|) 49)) (-4253 (($ $) 47)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) 58)) (-4271 (((-783 |#1|) $) 59)) (-4275 (($ (-1 |#2| |#2|) $) 39)) (-4257 (($ $ |#1|) 55) (($ $ (-783 |#1|)) 54) (($ $ $) 53)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4269 (((-111) $) 45)) (-4268 ((|#2| $) 44)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#2|) 66) (($ (-783 |#1|)) 63) (($ |#1|) 46)) (-4270 ((|#2| $ (-783 |#1|)) 57) ((|#2| $ $) 56)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1224 |#1| |#2|) (-134) (-811) (-1004)) (T -1224)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4271 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-783 *3)))) (-4258 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-2 (|:| |k| (-783 *3)) (|:| |c| *4))))) (-4270 (*1 *2 *1 *3) (-12 (-5 *3 (-783 *4)) (-4 *1 (-1224 *4 *2)) (-4 *4 (-811)) (-4 *2 (-1004)))) (-4270 (*1 *2 *1 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) (-4257 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4257 (*1 *1 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) (-4257 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4256 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4256 (*1 *1 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) (-4256 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *2 (-783 *4)) (-4 *4 (-811)) (-4 *1 (-1224 *4 *3)) (-4 *3 (-1004)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) (-4253 (*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4274 (*1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) (-4266 (*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4252 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)) (-4 *3 (-163)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-4 *4 (-163)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-607 *3))))) -(-13 (-1004) (-1219 |t#2|) (-995 (-783 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4271 ((-783 |t#1|) $)) (-15 -4258 ((-2 (|:| |k| (-783 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4270 (|t#2| $ (-783 |t#1|))) (-15 -4270 (|t#2| $ $)) (-15 -4257 ($ $ |t#1|)) (-15 -4257 ($ $ (-783 |t#1|))) (-15 -4257 ($ $ $)) (-15 -4256 ($ $ |t#1|)) (-15 -4256 ($ $ (-783 |t#1|))) (-15 -4256 ($ $ $)) (-15 -4255 ($ (-783 |t#1|) |t#2|)) (-15 -4254 ((-111) $)) (-15 -4253 ($ $)) (-15 -4274 ($ |t#1|)) (-15 -4269 ((-111) $)) (-15 -4268 (|t#2| $)) (-15 -4267 ((-111) $)) (-15 -4266 ($ $)) (IF (|has| |t#2| (-163)) (PROGN (-15 -4252 ($ $ $)) (-15 -4252 ($ $ (-735)))) |%noBranch|) (-15 -4275 ($ (-1 |t#2| |t#2|) $)) (-15 -4251 ((-607 |t#1|) $)) (IF (|has| |t#2| (-6 -4303)) (-6 -4303) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#2|) . T) ((-613 $) . T) ((-682 |#2|) |has| |#2| (-163)) ((-691) . T) ((-995 (-783 |#1|)) . T) ((-1010 |#2|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1219 |#2|) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4251 (((-607 |#1|) $) 86)) (-4263 (($ $ (-735)) 89)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4252 (($ $ $) NIL (|has| |#2| (-163))) (($ $ (-735)) NIL (|has| |#2| (-163)))) (-3855 (($) NIL T CONST)) (-4256 (($ $ |#1|) NIL) (($ $ (-783 |#1|)) NIL) (($ $ $) NIL)) (-3470 (((-3 (-783 |#1|) #1="failed") $) NIL) (((-3 (-852 |#1|) #1#) $) NIL)) (-3469 (((-783 |#1|) $) NIL) (((-852 |#1|) $) NIL)) (-4276 (($ $) 88)) (-3781 (((-3 $ "failed") $) NIL)) (-4267 (((-111) $) 77)) (-4266 (($ $) 81)) (-4261 (($ $ $ (-735)) 90)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-783 |#1|) |#2|) NIL) (($ (-852 |#1|) |#2|) 26)) (-4253 (($ $) 103)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4271 (((-783 |#1|) $) NIL)) (-4272 (((-783 |#1|) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-4257 (($ $ |#1|) NIL) (($ $ (-783 |#1|)) NIL) (($ $ $) NIL)) (-4259 (($ $ (-735)) 97 (|has| |#2| (-682 (-392 (-526)))))) (-1841 (((-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3194 (((-852 |#1|) $) 70)) (-3487 ((|#2| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4260 (($ $ (-735)) 94 (|has| |#2| (-682 (-392 (-526)))))) (-4264 (((-735) $) 87)) (-4269 (((-111) $) 71)) (-4268 ((|#2| $) 75)) (-4274 (((-823) $) 57) (($ (-526)) NIL) (($ |#2|) 51) (($ (-783 |#1|)) NIL) (($ |#1|) 59) (($ (-852 |#1|)) NIL) (($ (-629 |#1| |#2|)) 43) (((-1220 |#1| |#2|) $) 64) (((-1229 |#1| |#2|) $) 69)) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-852 |#1|)) NIL)) (-4270 ((|#2| $ (-783 |#1|)) NIL) ((|#2| $ $) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) 21 T CONST)) (-2964 (($) 25 T CONST)) (-2963 (((-607 (-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4262 (((-3 (-629 |#1| |#2|) "failed") $) 102)) (-3353 (((-111) $ $) 65)) (-4156 (($ $) 96) (($ $ $) 95)) (-4158 (($ $ $) 20)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-852 |#1|)) NIL))) -(((-1225 |#1| |#2|) (-13 (-1227 |#1| |#2|) (-369 |#2| (-852 |#1|)) (-10 -8 (-15 -4274 ($ (-629 |#1| |#2|))) (-15 -4274 ((-1220 |#1| |#2|) $)) (-15 -4274 ((-1229 |#1| |#2|) $)) (-15 -4262 ((-3 (-629 |#1| |#2|) "failed") $)) (-15 -4261 ($ $ $ (-735))) (IF (|has| |#2| (-682 (-392 (-526)))) (PROGN (-15 -4260 ($ $ (-735))) (-15 -4259 ($ $ (-735)))) |%noBranch|))) (-811) (-163)) (T -1225)) -((-4274 (*1 *1 *2) (-12 (-5 *2 (-629 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *1 (-1225 *3 *4)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1229 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4262 (*1 *2 *1) (|partial| -12 (-5 *2 (-629 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4261 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *4 (-682 (-392 (-526)))) (-4 *3 (-811)) (-4 *4 (-163)))) (-4259 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *4 (-682 (-392 (-526)))) (-4 *3 (-811)) (-4 *4 (-163))))) -(-13 (-1227 |#1| |#2|) (-369 |#2| (-852 |#1|)) (-10 -8 (-15 -4274 ($ (-629 |#1| |#2|))) (-15 -4274 ((-1220 |#1| |#2|) $)) (-15 -4274 ((-1229 |#1| |#2|) $)) (-15 -4262 ((-3 (-629 |#1| |#2|) "failed") $)) (-15 -4261 ($ $ $ (-735))) (IF (|has| |#2| (-682 (-392 (-526)))) (PROGN (-15 -4260 ($ $ (-735))) (-15 -4259 ($ $ (-735)))) |%noBranch|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4251 (((-607 (-1123)) $) NIL)) (-4279 (($ (-1220 (-1123) |#1|)) NIL)) (-4263 (($ $ (-735)) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4252 (($ $ $) NIL (|has| |#1| (-163))) (($ $ (-735)) NIL (|has| |#1| (-163)))) (-3855 (($) NIL T CONST)) (-4256 (($ $ (-1123)) NIL) (($ $ (-783 (-1123))) NIL) (($ $ $) NIL)) (-3470 (((-3 (-783 (-1123)) "failed") $) NIL)) (-3469 (((-783 (-1123)) $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4267 (((-111) $) NIL)) (-4266 (($ $) NIL)) (-2471 (((-111) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-783 (-1123)) |#1|) NIL)) (-4253 (($ $) NIL)) (-4258 (((-2 (|:| |k| (-783 (-1123))) (|:| |c| |#1|)) $) NIL)) (-4271 (((-783 (-1123)) $) NIL)) (-4272 (((-783 (-1123)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4257 (($ $ (-1123)) NIL) (($ $ (-783 (-1123))) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4280 (((-1220 (-1123) |#1|) $) NIL)) (-4264 (((-735) $) NIL)) (-4269 (((-111) $) NIL)) (-4268 ((|#1| $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-783 (-1123))) NIL) (($ (-1123)) NIL)) (-4270 ((|#1| $ (-783 (-1123))) NIL) ((|#1| $ $) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) NIL T CONST)) (-4278 (((-607 (-2 (|:| |k| (-1123)) (|:| |c| $))) $) NIL)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1123) $) NIL))) -(((-1226 |#1|) (-13 (-1227 (-1123) |#1|) (-10 -8 (-15 -4280 ((-1220 (-1123) |#1|) $)) (-15 -4279 ($ (-1220 (-1123) |#1|))) (-15 -4278 ((-607 (-2 (|:| |k| (-1123)) (|:| |c| $))) $)))) (-1004)) (T -1226)) -((-4280 (*1 *2 *1) (-12 (-5 *2 (-1220 (-1123) *3)) (-5 *1 (-1226 *3)) (-4 *3 (-1004)))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-1220 (-1123) *3)) (-4 *3 (-1004)) (-5 *1 (-1226 *3)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |k| (-1123)) (|:| |c| (-1226 *3))))) (-5 *1 (-1226 *3)) (-4 *3 (-1004))))) -(-13 (-1227 #1=(-1123) |#1|) (-10 -8 (-15 -4280 ((-1220 #1# |#1|) $)) (-15 -4279 ($ (-1220 #1# |#1|))) (-15 -4278 ((-607 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) -((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4251 (((-607 |#1|) $) 38)) (-4263 (($ $ (-735)) 71)) (-1345 (((-3 $ "failed") $ $) 19)) (-4252 (($ $ $) 41 (|has| |#2| (-163))) (($ $ (-735)) 40 (|has| |#2| (-163)))) (-3855 (($) 17 T CONST)) (-4256 (($ $ |#1|) 52) (($ $ (-783 |#1|)) 51) (($ $ $) 50)) (-3470 (((-3 (-783 |#1|) "failed") $) 62)) (-3469 (((-783 |#1|) $) 61)) (-3781 (((-3 $ "failed") $) 32)) (-4267 (((-111) $) 43)) (-4266 (($ $) 42)) (-2471 (((-111) $) 30)) (-4254 (((-111) $) 48)) (-4255 (($ (-783 |#1|) |#2|) 49)) (-4253 (($ $) 47)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) 58)) (-4271 (((-783 |#1|) $) 59)) (-4272 (((-783 |#1|) $) 73)) (-4275 (($ (-1 |#2| |#2|) $) 39)) (-4257 (($ $ |#1|) 55) (($ $ (-783 |#1|)) 54) (($ $ $) 53)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4264 (((-735) $) 72)) (-4269 (((-111) $) 45)) (-4268 ((|#2| $) 44)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#2|) 66) (($ (-783 |#1|)) 63) (($ |#1|) 46)) (-4270 ((|#2| $ (-783 |#1|)) 57) ((|#2| $ $) 56)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1227 |#1| |#2|) (-134) (-811) (-1004)) (T -1227)) -((-4272 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-783 *3)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-735)))) (-4263 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004))))) -(-13 (-1224 |t#1| |t#2|) (-10 -8 (-15 -4272 ((-783 |t#1|) $)) (-15 -4264 ((-735) $)) (-15 -4263 ($ $ (-735))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#2|) . T) ((-613 $) . T) ((-682 |#2|) |has| |#2| (-163)) ((-691) . T) ((-995 (-783 |#1|)) . T) ((-1010 |#2|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1219 |#2|) . T) ((-1224 |#1| |#2|) . T)) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| "failed") $) NIL)) (-3469 ((|#2| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) 36)) (-4267 (((-111) $) 30)) (-4266 (($ $) 32)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ |#2| |#1|) NIL)) (-4271 ((|#2| $) 19)) (-4272 ((|#2| $) 16)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1841 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3194 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4269 (((-111) $) 27)) (-4268 ((|#1| $) 28)) (-4274 (((-823) $) 55) (($ (-526)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ |#2|) NIL)) (-4270 ((|#1| $ |#2|) 24)) (-3423 (((-735)) 14)) (-2957 (($) 25 T CONST)) (-2964 (($) 11 T CONST)) (-2963 (((-607 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3353 (((-111) $ $) 26)) (-4265 (($ $ |#1|) 57 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 44)) (** (($ $ (-878)) NIL) (($ $ (-735)) 46)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4273 (((-735) $) 15))) -(((-1228 |#1| |#2|) (-13 (-1004) (-1219 |#1|) (-369 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4273 ((-735) $)) (-15 -4274 ($ |#2|)) (-15 -4272 (|#2| $)) (-15 -4271 (|#2| $)) (-15 -4276 ($ $)) (-15 -4270 (|#1| $ |#2|)) (-15 -4269 ((-111) $)) (-15 -4268 (|#1| $)) (-15 -4267 ((-111) $)) (-15 -4266 ($ $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-348)) (-15 -4265 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4303)) (-6 -4303) |%noBranch|) (IF (|has| |#1| (-6 -4307)) (-6 -4307) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) (-1004) (-807)) (T -1228)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807)))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-807)))) (-4274 (*1 *1 *2) (-12 (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-807)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807)))) (-4272 (*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004)))) (-4271 (*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004)))) (-4270 (*1 *2 *1 *3) (-12 (-4 *2 (-1004)) (-5 *1 (-1228 *2 *3)) (-4 *3 (-807)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807)))) (-4268 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-1228 *2 *3)) (-4 *3 (-807)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807)))) (-4266 (*1 *1 *1) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807)))) (-4265 (*1 *1 *1 *2) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-348)) (-4 *2 (-1004)) (-4 *3 (-807))))) -(-13 (-1004) (-1219 |#1|) (-369 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4273 ((-735) $)) (-15 -4274 ($ |#2|)) (-15 -4272 (|#2| $)) (-15 -4271 (|#2| $)) (-15 -4276 ($ $)) (-15 -4270 (|#1| $ |#2|)) (-15 -4269 ((-111) $)) (-15 -4268 (|#1| $)) (-15 -4267 ((-111) $)) (-15 -4266 ($ $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-348)) (-15 -4265 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4303)) (-6 -4303) |%noBranch|) (IF (|has| |#1| (-6 -4307)) (-6 -4307) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) -((-2865 (((-111) $ $) 26)) (-3502 (((-111) $) NIL)) (-4251 (((-607 |#1|) $) 120)) (-4279 (($ (-1220 |#1| |#2|)) 44)) (-4263 (($ $ (-735)) 32)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4252 (($ $ $) 48 (|has| |#2| (-163))) (($ $ (-735)) 46 (|has| |#2| (-163)))) (-3855 (($) NIL T CONST)) (-4256 (($ $ |#1|) 102) (($ $ (-783 |#1|)) 103) (($ $ $) 25)) (-3470 (((-3 (-783 |#1|) "failed") $) NIL)) (-3469 (((-783 |#1|) $) NIL)) (-3781 (((-3 $ "failed") $) 110)) (-4267 (((-111) $) 105)) (-4266 (($ $) 106)) (-2471 (((-111) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-783 |#1|) |#2|) 19)) (-4253 (($ $) NIL)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4271 (((-783 |#1|) $) 111)) (-4272 (((-783 |#1|) $) 114)) (-4275 (($ (-1 |#2| |#2|) $) 119)) (-4257 (($ $ |#1|) 100) (($ $ (-783 |#1|)) 101) (($ $ $) 56)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4280 (((-1220 |#1| |#2|) $) 84)) (-4264 (((-735) $) 117)) (-4269 (((-111) $) 70)) (-4268 ((|#2| $) 28)) (-4274 (((-823) $) 63) (($ (-526)) 77) (($ |#2|) 74) (($ (-783 |#1|)) 17) (($ |#1|) 73)) (-4270 ((|#2| $ (-783 |#1|)) 104) ((|#2| $ $) 27)) (-3423 (((-735)) 108)) (-2957 (($) 14 T CONST)) (-4278 (((-607 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 13)) (-4156 (($ $) 88) (($ $ $) 91)) (-4158 (($ $ $) 55)) (** (($ $ (-878)) NIL) (($ $ (-735)) 49)) (* (($ (-878) $) NIL) (($ (-735) $) 47) (($ (-526) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1229 |#1| |#2|) (-13 (-1227 |#1| |#2|) (-10 -8 (-15 -4280 ((-1220 |#1| |#2|) $)) (-15 -4279 ($ (-1220 |#1| |#2|))) (-15 -4278 ((-607 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-811) (-1004)) (T -1229)) -((-4280 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-1229 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *1 (-1229 *3 *4)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |k| *3) (|:| |c| (-1229 *3 *4))))) (-5 *1 (-1229 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004))))) -(-13 (-1227 |#1| |#2|) (-10 -8 (-15 -4280 ((-1220 |#1| |#2|) $)) (-15 -4279 ($ (-1220 |#1| |#2|))) (-15 -4278 ((-607 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4281 (((-607 (-1101 |#1|)) (-1 (-607 (-1101 |#1|)) (-607 (-1101 |#1|))) (-526)) 15) (((-1101 |#1|) (-1 (-1101 |#1|) (-1101 |#1|))) 11))) -(((-1230 |#1|) (-10 -7 (-15 -4281 ((-1101 |#1|) (-1 (-1101 |#1|) (-1101 |#1|)))) (-15 -4281 ((-607 (-1101 |#1|)) (-1 (-607 (-1101 |#1|)) (-607 (-1101 |#1|))) (-526)))) (-1159)) (T -1230)) -((-4281 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-607 (-1101 *5)) (-607 (-1101 *5)))) (-5 *4 (-526)) (-5 *2 (-607 (-1101 *5))) (-5 *1 (-1230 *5)) (-4 *5 (-1159)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-1 (-1101 *4) (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1230 *4)) (-4 *4 (-1159))))) -(-10 -7 (-15 -4281 ((-1101 |#1|) (-1 (-1101 |#1|) (-1101 |#1|)))) (-15 -4281 ((-607 (-1101 |#1|)) (-1 (-607 (-1101 |#1|)) (-607 (-1101 |#1|))) (-526)))) -((-4283 (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|))) 148) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111)) 147) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111)) 146) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111) (-111)) 145) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-1001 |#1| |#2|)) 130)) (-4282 (((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|))) 72) (((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111)) 71) (((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111) (-111)) 70)) (-4286 (((-607 (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))) (-1001 |#1| |#2|)) 61)) (-4284 (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|))) 115) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111)) 114) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111)) 113) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111) (-111)) 112) (((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|)) 107)) (-4285 (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|))) 120) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111)) 119) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111)) 118) (((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|)) 117)) (-4287 (((-607 (-744 |#1| (-824 |#3|))) (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))) 98) (((-1117 (-981 (-392 |#1|))) (-1117 |#1|)) 89) (((-905 (-981 (-392 |#1|))) (-744 |#1| (-824 |#3|))) 96) (((-905 (-981 (-392 |#1|))) (-905 |#1|)) 94) (((-744 |#1| (-824 |#3|)) (-744 |#1| (-824 |#2|))) 33))) -(((-1231 |#1| |#2| |#3|) (-10 -7 (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111))) (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-1001 |#1| |#2|))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)))) (-15 -4286 ((-607 (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))) (-1001 |#1| |#2|))) (-15 -4287 ((-744 |#1| (-824 |#3|)) (-744 |#1| (-824 |#2|)))) (-15 -4287 ((-905 (-981 (-392 |#1|))) (-905 |#1|))) (-15 -4287 ((-905 (-981 (-392 |#1|))) (-744 |#1| (-824 |#3|)))) (-15 -4287 ((-1117 (-981 (-392 |#1|))) (-1117 |#1|))) (-15 -4287 ((-607 (-744 |#1| (-824 |#3|))) (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))))) (-13 (-809) (-292) (-141) (-977)) (-607 (-1123)) (-607 (-1123))) (T -1231)) -((-4287 (*1 *2 *3) (-12 (-5 *3 (-1094 *4 (-512 (-824 *6)) (-824 *6) (-744 *4 (-824 *6)))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-744 *4 (-824 *6)))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-1117 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-744 *4 (-824 *6))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *6 (-607 (-1123))) (-5 *2 (-905 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-905 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-744 *4 (-824 *5))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-744 *4 (-824 *6))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4286 (*1 *2 *3) (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-1094 *4 (-512 (-824 *6)) (-824 *6) (-744 *4 (-824 *6))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4285 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4284 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4284 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4284 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4283 (*1 *2 *3) (-12 (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) (-5 *1 (-1231 *4 *5 *6)) (-5 *3 (-607 (-905 *4))) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4283 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4283 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4283 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *4 *5))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4282 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4282 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123)))))) -(-10 -7 (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111))) (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-1001 |#1| |#2|))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)))) (-15 -4286 ((-607 (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))) (-1001 |#1| |#2|))) (-15 -4287 ((-744 |#1| (-824 |#3|)) (-744 |#1| (-824 |#2|)))) (-15 -4287 ((-905 (-981 (-392 |#1|))) (-905 |#1|))) (-15 -4287 ((-905 (-981 (-392 |#1|))) (-744 |#1| (-824 |#3|)))) (-15 -4287 ((-1117 (-981 (-392 |#1|))) (-1117 |#1|))) (-15 -4287 ((-607 (-744 |#1| (-824 |#3|))) (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))))) -((-4290 (((-3 (-1205 (-392 (-526))) "failed") (-1205 |#1|) |#1|) 21)) (-4288 (((-111) (-1205 |#1|)) 12)) (-4289 (((-3 (-1205 (-526)) "failed") (-1205 |#1|)) 16))) -(((-1232 |#1|) (-10 -7 (-15 -4288 ((-111) (-1205 |#1|))) (-15 -4289 ((-3 (-1205 (-526)) "failed") (-1205 |#1|))) (-15 -4290 ((-3 (-1205 (-392 (-526))) "failed") (-1205 |#1|) |#1|))) (-606 (-526))) (T -1232)) -((-4290 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) (-5 *2 (-1205 (-392 (-526)))) (-5 *1 (-1232 *4)))) (-4289 (*1 *2 *3) (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) (-5 *2 (-1205 (-526))) (-5 *1 (-1232 *4)))) (-4288 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) (-5 *2 (-111)) (-5 *1 (-1232 *4))))) -(-10 -7 (-15 -4288 ((-111) (-1205 |#1|))) (-15 -4289 ((-3 (-1205 (-526)) "failed") (-1205 |#1|))) (-15 -4290 ((-3 (-1205 (-392 (-526))) "failed") (-1205 |#1|) |#1|))) -((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 11)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735)) 8)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) 43)) (-3294 (($) 36)) (-2471 (((-111) $) NIL)) (-3763 (((-3 $ "failed") $) 29)) (-2102 (((-878) $) 15)) (-3554 (((-1106) $) NIL)) (-3764 (($) 25 T CONST)) (-2461 (($ (-878)) 37)) (-3555 (((-1070) $) NIL)) (-4287 (((-526) $) 13)) (-4274 (((-823) $) 22) (($ (-526)) 19)) (-3423 (((-735)) 9)) (-2957 (($) 23 T CONST)) (-2964 (($) 24 T CONST)) (-3353 (((-111) $ $) 27)) (-4156 (($ $) 38) (($ $ $) 35)) (-4158 (($ $ $) 26)) (** (($ $ (-878)) NIL) (($ $ (-735)) 40)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 32) (($ $ $) 31))) -(((-1233 |#1|) (-13 (-163) (-353) (-584 (-526)) (-1099)) (-878)) (T -1233)) -NIL -(-13 (-163) (-353) (-584 (-526)) (-1099)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3141263 3141268 3141273 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3141248 3141253 3141258 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3141233 3141238 3141243 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3141218 3141223 3141228 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1233 3140394 3141093 3141170 "ZMOD" 3141175 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1232 3139504 3139668 3139877 "ZLINDEP" 3140226 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1231 3128880 3130632 3132591 "ZDSOLVE" 3137646 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1230 3128126 3128267 3128456 "YSTREAM" 3128726 NIL YSTREAM (NIL T) -7 NIL NIL) (-1229 3125937 3127427 3127631 "XRPOLY" 3127969 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1228 3122429 3123712 3124296 "XPR" 3125400 NIL XPR (NIL T T) -8 NIL NIL) (-1227 3120279 3121613 3121668 "XPOLYC" 3121956 NIL XPOLYC (NIL T T) -9 NIL 3122069) (-1226 3118044 3119619 3119823 "XPOLY" 3120119 NIL XPOLY (NIL T) -8 NIL NIL) (-1225 3114464 3116561 3116949 "XPBWPOLY" 3117702 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1224 3109858 3111113 3111168 "XFALG" 3113340 NIL XFALG (NIL T T) -9 NIL 3114128) (-1223 3105847 3108093 3108135 "XF" 3108756 NIL XF (NIL T) -9 NIL 3109155) (-1222 3105468 3105556 3105725 "XF-" 3105730 NIL XF- (NIL T T) -8 NIL NIL) (-1221 3104601 3104705 3104910 "XEXPPKG" 3105360 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1220 3102745 3104451 3104547 "XDPOLY" 3104552 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1219 3101661 3102227 3102270 "XALG" 3102333 NIL XALG (NIL T) -9 NIL 3102453) (-1218 3095157 3099638 3100132 "WUTSET" 3101253 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1217 3093008 3093769 3094122 "WP" 3094938 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1216 3092654 3092830 3092900 "WHILEAST" 3092960 T WHILEAST (NIL) -8 NIL NIL) (-1215 3091540 3091738 3092033 "WFFINTBS" 3092451 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1214 3089444 3089871 3090333 "WEIER" 3091112 NIL WEIER (NIL T) -7 NIL NIL) (-1213 3088591 3089015 3089057 "VSPACE" 3089193 NIL VSPACE (NIL T) -9 NIL 3089267) (-1212 3088429 3088456 3088547 "VSPACE-" 3088552 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1211 3088175 3088218 3088289 "VOID" 3088380 T VOID (NIL) -8 NIL NIL) (-1210 3084600 3085238 3085975 "VIEWDEF" 3087460 T VIEWDEF (NIL) -7 NIL NIL) (-1209 3073938 3076148 3078321 "VIEW3D" 3082449 T VIEW3D (NIL) -8 NIL NIL) (-1208 3066220 3067849 3069428 "VIEW2D" 3072381 T VIEW2D (NIL) -8 NIL NIL) (-1207 3064356 3064715 3065121 "VIEW" 3065836 T VIEW (NIL) -7 NIL NIL) (-1206 3062933 3063192 3063510 "VECTOR2" 3064086 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1205 3058337 3062703 3062795 "VECTOR" 3062876 NIL VECTOR (NIL T) -8 NIL NIL) (-1204 3051864 3056121 3056164 "VECTCAT" 3057157 NIL VECTCAT (NIL T) -9 NIL 3057743) (-1203 3050878 3051132 3051522 "VECTCAT-" 3051527 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1202 3050359 3050529 3050649 "VARIABLE" 3050793 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1201 3050292 3050297 3050327 "UTYPE" 3050332 T UTYPE (NIL) -9 NIL NIL) (-1200 3049122 3049276 3049538 "UTSODETL" 3050118 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1199 3046562 3047022 3047546 "UTSODE" 3048663 NIL UTSODE (NIL T T) -7 NIL NIL) (-1198 3037935 3043254 3043297 "UTSCAT" 3044409 NIL UTSCAT (NIL T) -9 NIL 3045166) (-1197 3035289 3036005 3036994 "UTSCAT-" 3036999 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1196 3034916 3034959 3035092 "UTS2" 3035240 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1195 3026792 3032542 3033031 "UTS" 3034485 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1194 3021068 3023632 3023675 "URAGG" 3025745 NIL URAGG (NIL T) -9 NIL 3026467) (-1193 3018010 3018872 3019994 "URAGG-" 3019999 NIL URAGG- (NIL T T) -8 NIL NIL) (-1192 3013749 3016627 3017098 "UPXSSING" 3017674 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1191 3006864 3013653 3013725 "UPXSCONS" 3013730 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1190 2997226 3003969 3004031 "UPXSCCA" 3004687 NIL UPXSCCA (NIL T T) -9 NIL 3004928) (-1189 2996864 2996949 2997123 "UPXSCCA-" 2997128 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1188 2987150 2993666 2993709 "UPXSCAT" 2994357 NIL UPXSCAT (NIL T) -9 NIL 2994965) (-1187 2986580 2986659 2986838 "UPXS2" 2987065 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1186 2978556 2985697 2985978 "UPXS" 2986357 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1185 2977213 2977465 2977815 "UPSQFREE" 2978300 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1184 2971131 2974140 2974195 "UPSCAT" 2975356 NIL UPSCAT (NIL T T) -9 NIL 2976130) (-1183 2970335 2970542 2970869 "UPSCAT-" 2970874 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1182 2969962 2970005 2970138 "UPOLYC2" 2970286 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1181 2956097 2964055 2964098 "UPOLYC" 2966199 NIL UPOLYC (NIL T) -9 NIL 2967420) (-1180 2947462 2949875 2953010 "UPOLYC-" 2953015 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1179 2946801 2946908 2947072 "UPMP" 2947351 NIL UPMP (NIL T T) -7 NIL NIL) (-1178 2946354 2946435 2946574 "UPDIVP" 2946714 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1177 2944922 2945171 2945487 "UPDECOMP" 2946103 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1176 2944157 2944269 2944454 "UPCDEN" 2944806 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1175 2943676 2943745 2943894 "UP2" 2944082 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1174 2935178 2943242 2943380 "UP" 2943586 NIL UP (NIL NIL T) -8 NIL NIL) (-1173 2934393 2934520 2934725 "UNISEG2" 2935021 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1172 2932910 2933597 2933874 "UNISEG" 2934151 NIL UNISEG (NIL T) -8 NIL NIL) (-1171 2931970 2932150 2932376 "UNIFACT" 2932726 NIL UNIFACT (NIL T) -7 NIL NIL) (-1170 2920035 2931874 2931946 "ULSCONS" 2931951 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1169 2902870 2914782 2914844 "ULSCCAT" 2915564 NIL ULSCCAT (NIL T T) -9 NIL 2915860) (-1168 2901956 2902189 2902565 "ULSCCAT-" 2902570 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1167 2892019 2898449 2898492 "ULSCAT" 2899355 NIL ULSCAT (NIL T) -9 NIL 2900085) (-1166 2891449 2891528 2891707 "ULS2" 2891934 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1165 2875442 2890626 2890877 "ULS" 2891256 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1164 2873880 2874803 2874833 "UFD" 2875045 T UFD (NIL) -9 NIL 2875159) (-1163 2873674 2873720 2873815 "UFD-" 2873820 NIL UFD- (NIL T) -8 NIL NIL) (-1162 2872756 2872939 2873155 "UDVO" 2873480 T UDVO (NIL) -7 NIL NIL) (-1161 2870572 2870981 2871452 "UDPO" 2872320 NIL UDPO (NIL T) -7 NIL NIL) (-1160 2870226 2870394 2870464 "TYPEAST" 2870524 T TYPEAST (NIL) -8 NIL NIL) (-1159 2870159 2870164 2870194 "TYPE" 2870199 T TYPE (NIL) -9 NIL NIL) (-1158 2869130 2869332 2869572 "TWOFACT" 2869953 NIL TWOFACT (NIL T) -7 NIL NIL) (-1157 2868068 2868405 2868668 "TUPLE" 2868902 NIL TUPLE (NIL T) -8 NIL NIL) (-1156 2865759 2866278 2866817 "TUBETOOL" 2867551 T TUBETOOL (NIL) -7 NIL NIL) (-1155 2864608 2864813 2865054 "TUBE" 2865552 NIL TUBE (NIL T) -8 NIL NIL) (-1154 2853275 2857367 2857464 "TSETCAT" 2862733 NIL TSETCAT (NIL T T T T) -9 NIL 2864264) (-1153 2848009 2849607 2851498 "TSETCAT-" 2851503 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1152 2842773 2846981 2847264 "TS" 2847761 NIL TS (NIL T) -8 NIL NIL) (-1151 2837036 2837882 2838824 "TRMANIP" 2841909 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1150 2836477 2836540 2836703 "TRIMAT" 2836968 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1149 2834283 2834520 2834883 "TRIGMNIP" 2836226 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1148 2833803 2833916 2833946 "TRIGCAT" 2834159 T TRIGCAT (NIL) -9 NIL NIL) (-1147 2833472 2833551 2833692 "TRIGCAT-" 2833697 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1146 2830372 2832332 2832612 "TREE" 2833227 NIL TREE (NIL T) -8 NIL NIL) (-1145 2829646 2830174 2830204 "TRANFUN" 2830239 T TRANFUN (NIL) -9 NIL 2830305) (-1144 2828925 2829116 2829396 "TRANFUN-" 2829401 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1143 2828729 2828761 2828822 "TOPSP" 2828886 T TOPSP (NIL) -7 NIL NIL) (-1142 2828077 2828192 2828346 "TOOLSIGN" 2828610 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1141 2826738 2827254 2827493 "TEXTFILE" 2827860 T TEXTFILE (NIL) -8 NIL NIL) (-1140 2826519 2826550 2826622 "TEX1" 2826701 NIL TEX1 (NIL T) -7 NIL NIL) (-1139 2824384 2824898 2825336 "TEX" 2826103 T TEX (NIL) -8 NIL NIL) (-1138 2824032 2824095 2824185 "TEMUTL" 2824316 T TEMUTL (NIL) -7 NIL NIL) (-1137 2822186 2822466 2822791 "TBCMPPK" 2823755 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1136 2814076 2820346 2820402 "TBAGG" 2820802 NIL TBAGG (NIL T T) -9 NIL 2821013) (-1135 2809146 2810634 2812388 "TBAGG-" 2812393 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1134 2808530 2808637 2808782 "TANEXP" 2809035 NIL TANEXP (NIL T) -7 NIL NIL) (-1133 2807942 2808041 2808179 "TABLEAU" 2808427 NIL TABLEAU (NIL T) -8 NIL NIL) (-1132 2801445 2807799 2807892 "TABLE" 2807897 NIL TABLE (NIL T T) -8 NIL NIL) (-1131 2796053 2797273 2798521 "TABLBUMP" 2800231 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1130 2795481 2795581 2795709 "SYSTEM" 2795947 T SYSTEM (NIL) -7 NIL NIL) (-1129 2791944 2792639 2793422 "SYSSOLP" 2794732 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1128 2788235 2788943 2789677 "SYNTAX" 2791232 T SYNTAX (NIL) -8 NIL NIL) (-1127 2785393 2785995 2786627 "SYMTAB" 2787625 T SYMTAB (NIL) -8 NIL NIL) (-1126 2780666 2781562 2782539 "SYMS" 2784438 T SYMS (NIL) -8 NIL NIL) (-1125 2777953 2780127 2780357 "SYMPOLY" 2780474 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1124 2777470 2777545 2777668 "SYMFUNC" 2777865 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1123 2773447 2774707 2775529 "SYMBOL" 2776670 T SYMBOL (NIL) -8 NIL NIL) (-1122 2766986 2768675 2770395 "SWITCH" 2771749 T SWITCH (NIL) -8 NIL NIL) (-1121 2760256 2765807 2766110 "SUTS" 2766741 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1120 2752231 2759373 2759654 "SUPXS" 2760033 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1119 2751390 2751517 2751734 "SUPFRACF" 2752099 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1118 2751011 2751070 2751183 "SUP2" 2751325 NIL SUP2 (NIL T T) -7 NIL NIL) (-1117 2742585 2750629 2750755 "SUP" 2750920 NIL SUP (NIL T) -8 NIL NIL) (-1116 2741003 2741277 2741639 "SUMRF" 2742284 NIL SUMRF (NIL T) -7 NIL NIL) (-1115 2740320 2740386 2740584 "SUMFS" 2740924 NIL SUMFS (NIL T T) -7 NIL NIL) (-1114 2724353 2739497 2739748 "SULS" 2740127 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1113 2723675 2723878 2724018 "SUCH" 2724261 NIL SUCH (NIL T T) -8 NIL NIL) (-1112 2717569 2718581 2719540 "SUBSPACE" 2722763 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1111 2716999 2717089 2717253 "SUBRESP" 2717457 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1110 2711172 2712292 2713439 "STTFNC" 2715899 NIL STTFNC (NIL T) -7 NIL NIL) (-1109 2704541 2705837 2707148 "STTF" 2709908 NIL STTF (NIL T) -7 NIL NIL) (-1108 2695856 2697723 2699517 "STTAYLOR" 2702782 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1107 2689102 2695720 2695803 "STRTBL" 2695808 NIL STRTBL (NIL T) -8 NIL NIL) (-1106 2684493 2689057 2689088 "STRING" 2689093 T STRING (NIL) -8 NIL NIL) (-1105 2679381 2683866 2683896 "STRICAT" 2683955 T STRICAT (NIL) -9 NIL 2684017) (-1104 2678891 2678968 2679112 "STREAM3" 2679298 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1103 2677873 2678056 2678291 "STREAM2" 2678704 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1102 2677561 2677613 2677706 "STREAM1" 2677815 NIL STREAM1 (NIL T) -7 NIL NIL) (-1101 2670277 2675084 2675704 "STREAM" 2676976 NIL STREAM (NIL T) -8 NIL NIL) (-1100 2669293 2669474 2669705 "STINPROD" 2670093 NIL STINPROD (NIL T) -7 NIL NIL) (-1099 2668871 2669055 2669085 "STEP" 2669165 T STEP (NIL) -9 NIL 2669243) (-1098 2662416 2668770 2668847 "STBL" 2668852 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1097 2657593 2661638 2661681 "STAGG" 2661834 NIL STAGG (NIL T) -9 NIL 2661923) (-1096 2655301 2655901 2656771 "STAGG-" 2656776 NIL STAGG- (NIL T T) -8 NIL NIL) (-1095 2653496 2655071 2655163 "STACK" 2655244 NIL STACK (NIL T) -8 NIL NIL) (-1094 2646248 2651637 2652093 "SREGSET" 2653126 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1093 2638674 2640042 2641555 "SRDCMPK" 2644854 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1092 2631641 2636114 2636144 "SRAGG" 2637447 T SRAGG (NIL) -9 NIL 2638055) (-1091 2630658 2630913 2631292 "SRAGG-" 2631297 NIL SRAGG- (NIL T) -8 NIL NIL) (-1090 2625153 2629573 2630001 "SQMATRIX" 2630277 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1089 2618906 2621873 2622599 "SPLTREE" 2624499 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1088 2614896 2615562 2616208 "SPLNODE" 2618332 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1087 2613943 2614176 2614206 "SPFCAT" 2614650 T SPFCAT (NIL) -9 NIL NIL) (-1086 2612680 2612890 2613154 "SPECOUT" 2613701 T SPECOUT (NIL) -7 NIL NIL) (-1085 2612441 2612481 2612550 "SPADPRSR" 2612633 T SPADPRSR (NIL) -7 NIL NIL) (-1084 2604412 2606159 2606202 "SPACEC" 2610575 NIL SPACEC (NIL T) -9 NIL 2612391) (-1083 2602583 2604344 2604393 "SPACE3" 2604398 NIL SPACE3 (NIL T) -8 NIL NIL) (-1082 2601335 2601506 2601797 "SORTPAK" 2602388 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1081 2599391 2599694 2600112 "SOLVETRA" 2600999 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1080 2598402 2598624 2598898 "SOLVESER" 2599164 NIL SOLVESER (NIL T) -7 NIL NIL) (-1079 2593622 2594503 2595505 "SOLVERAD" 2597454 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1078 2589437 2590046 2590775 "SOLVEFOR" 2592989 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1077 2583761 2588786 2588883 "SNTSCAT" 2588888 NIL SNTSCAT (NIL T T T T) -9 NIL 2588958) (-1076 2577903 2582084 2582475 "SMTS" 2583451 NIL SMTS (NIL T T T) -8 NIL NIL) (-1075 2572384 2577791 2577868 "SMP" 2577873 NIL SMP (NIL T T) -8 NIL NIL) (-1074 2570543 2570844 2571242 "SMITH" 2572081 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1073 2563534 2567680 2567783 "SMATCAT" 2569137 NIL SMATCAT (NIL NIL T T T) -9 NIL 2569687) (-1072 2560495 2561311 2562482 "SMATCAT-" 2562487 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1071 2558208 2559731 2559774 "SKAGG" 2560035 NIL SKAGG (NIL T) -9 NIL 2560170) (-1070 2554314 2557312 2557590 "SINT" 2557952 T SINT (NIL) -8 NIL NIL) (-1069 2554086 2554124 2554190 "SIMPAN" 2554270 T SIMPAN (NIL) -7 NIL NIL) (-1068 2552945 2553159 2553427 "SIGNRF" 2553852 NIL SIGNRF (NIL T) -7 NIL NIL) (-1067 2551775 2551919 2552202 "SIGNEF" 2552781 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1066 2551082 2551310 2551450 "SIG" 2551657 T SIG (NIL) -8 NIL NIL) (-1065 2548772 2549226 2549732 "SHP" 2550623 NIL SHP (NIL T NIL) -7 NIL NIL) (-1064 2542691 2548673 2548749 "SHDP" 2548754 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1063 2542290 2542456 2542486 "SGROUP" 2542579 T SGROUP (NIL) -9 NIL 2542641) (-1062 2542148 2542174 2542247 "SGROUP-" 2542252 NIL SGROUP- (NIL T) -8 NIL NIL) (-1061 2538984 2539681 2540404 "SGCF" 2541447 T SGCF (NIL) -7 NIL NIL) (-1060 2533406 2538431 2538528 "SFRTCAT" 2538533 NIL SFRTCAT (NIL T T T T) -9 NIL 2538572) (-1059 2526830 2527845 2528981 "SFRGCD" 2532389 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1058 2519958 2521029 2522215 "SFQCMPK" 2525763 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1057 2519580 2519669 2519779 "SFORT" 2519899 NIL SFORT (NIL T T) -8 NIL NIL) (-1056 2518725 2519420 2519541 "SEXOF" 2519546 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1055 2513501 2514190 2514285 "SEXCAT" 2518056 NIL SEXCAT (NIL T T T T T) -9 NIL 2518675) (-1054 2512635 2513382 2513450 "SEX" 2513455 T SEX (NIL) -8 NIL NIL) (-1053 2510892 2511352 2511655 "SETMN" 2512378 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1052 2510498 2510624 2510654 "SETCAT" 2510771 T SETCAT (NIL) -9 NIL 2510856) (-1051 2510278 2510330 2510429 "SETCAT-" 2510434 NIL SETCAT- (NIL T) -8 NIL NIL) (-1050 2506665 2508739 2508782 "SETAGG" 2509652 NIL SETAGG (NIL T) -9 NIL 2509992) (-1049 2506123 2506239 2506476 "SETAGG-" 2506481 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1048 2503303 2506057 2506105 "SET" 2506110 NIL SET (NIL T) -8 NIL NIL) (-1047 2502507 2502800 2502861 "SEGXCAT" 2503147 NIL SEGXCAT (NIL T T) -9 NIL 2503267) (-1046 2501414 2501627 2501670 "SEGCAT" 2502252 NIL SEGCAT (NIL T) -9 NIL 2502490) (-1045 2501035 2501094 2501207 "SEGBIND2" 2501349 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1044 2500084 2500414 2500614 "SEGBIND" 2500870 NIL SEGBIND (NIL T) -8 NIL NIL) (-1043 2499702 2499885 2499962 "SEGAST" 2500029 T SEGAST (NIL) -8 NIL NIL) (-1042 2498921 2499047 2499251 "SEG2" 2499546 NIL SEG2 (NIL T T) -7 NIL NIL) (-1041 2497977 2498587 2498769 "SEG" 2498774 NIL SEG (NIL T) -8 NIL NIL) (-1040 2497414 2497912 2497959 "SDVAR" 2497964 NIL SDVAR (NIL T) -8 NIL NIL) (-1039 2489752 2497186 2497315 "SDPOL" 2497320 NIL SDPOL (NIL T) -8 NIL NIL) (-1038 2488345 2488611 2488930 "SCPKG" 2489467 NIL SCPKG (NIL T) -7 NIL NIL) (-1037 2487481 2487661 2487861 "SCOPE" 2488167 T SCOPE (NIL) -8 NIL NIL) (-1036 2486702 2486835 2487014 "SCACHE" 2487336 NIL SCACHE (NIL T) -7 NIL NIL) (-1035 2486428 2486571 2486601 "SASTCAT" 2486606 T SASTCAT (NIL) -9 NIL 2486619) (-1034 2486217 2486262 2486360 "SASTCAT-" 2486365 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1033 2485656 2485977 2486062 "SAOS" 2486154 T SAOS (NIL) -8 NIL NIL) (-1032 2485221 2485256 2485429 "SAERFFC" 2485615 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1031 2484814 2484849 2485008 "SAEFACT" 2485180 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1030 2478802 2484711 2484791 "SAE" 2484796 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1029 2477123 2477437 2477838 "RURPK" 2478468 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1028 2475759 2476038 2476350 "RULESET" 2476957 NIL RULESET (NIL T T T) -8 NIL NIL) (-1027 2475398 2475553 2475636 "RULECOLD" 2475711 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1026 2472587 2473090 2473554 "RULE" 2475080 NIL RULE (NIL T T T) -8 NIL NIL) (-1025 2467436 2468230 2469150 "RSETGCD" 2471786 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1024 2456720 2461745 2461842 "RSETCAT" 2465961 NIL RSETCAT (NIL T T T T) -9 NIL 2467058) (-1023 2454647 2455186 2456010 "RSETCAT-" 2456015 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1022 2447034 2448409 2449929 "RSDCMPK" 2453246 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1021 2445039 2445480 2445554 "RRCC" 2446640 NIL RRCC (NIL T T) -9 NIL 2446984) (-1020 2444390 2444564 2444843 "RRCC-" 2444848 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1019 2443877 2444086 2444187 "RPTAST" 2444311 T RPTAST (NIL) -8 NIL NIL) (-1018 2418150 2427698 2427765 "RPOLCAT" 2438429 NIL RPOLCAT (NIL T T T) -9 NIL 2441587) (-1017 2409686 2412012 2415122 "RPOLCAT-" 2415127 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1016 2400735 2407897 2408379 "ROUTINE" 2409226 T ROUTINE (NIL) -8 NIL NIL) (-1015 2397483 2400286 2400435 "ROMAN" 2400608 T ROMAN (NIL) -8 NIL NIL) (-1014 2395760 2396343 2396603 "ROIRC" 2397288 NIL ROIRC (NIL T T) -8 NIL NIL) (-1013 2392219 2394454 2394484 "RNS" 2394788 T RNS (NIL) -9 NIL 2395058) (-1012 2390728 2391111 2391645 "RNS-" 2391720 NIL RNS- (NIL T) -8 NIL NIL) (-1011 2390177 2390559 2390589 "RNG" 2390594 T RNG (NIL) -9 NIL 2390615) (-1010 2389569 2389931 2389974 "RMODULE" 2390036 NIL RMODULE (NIL T) -9 NIL 2390078) (-1009 2388405 2388499 2388835 "RMCAT2" 2389470 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1008 2385110 2387579 2387904 "RMATRIX" 2388139 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1007 2378052 2380286 2380401 "RMATCAT" 2383760 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2384742) (-1006 2377427 2377574 2377881 "RMATCAT-" 2377886 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1005 2376994 2377069 2377197 "RINTERP" 2377346 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1004 2376082 2376602 2376632 "RING" 2376744 T RING (NIL) -9 NIL 2376839) (-1003 2375874 2375918 2376015 "RING-" 2376020 NIL RING- (NIL T) -8 NIL NIL) (-1002 2374715 2374952 2375210 "RIDIST" 2375638 T RIDIST (NIL) -7 NIL NIL) (-1001 2366058 2374183 2374389 "RGCHAIN" 2374563 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1000 2365704 2365767 2365870 "RFFACTOR" 2365989 NIL RFFACTOR (NIL T) -7 NIL NIL) (-999 2365432 2365467 2365562 "RFFACT" 2365663 NIL RFFACT (NIL T) -7 NIL NIL) (-998 2363562 2363926 2364306 "RFDIST" 2365072 T RFDIST (NIL) -7 NIL NIL) (-997 2360567 2361181 2361849 "RF" 2362926 NIL RF (NIL T) -7 NIL NIL) (-996 2360025 2360117 2360277 "RETSOL" 2360469 NIL RETSOL (NIL T T) -7 NIL NIL) (-995 2359618 2359698 2359739 "RETRACT" 2359929 NIL RETRACT (NIL T) -9 NIL NIL) (-994 2359470 2359495 2359579 "RETRACT-" 2359584 NIL RETRACT- (NIL T T) -8 NIL NIL) (-993 2359119 2359295 2359363 "RETAST" 2359422 T RETAST (NIL) -8 NIL NIL) (-992 2351979 2358776 2358901 "RESULT" 2359014 T RESULT (NIL) -8 NIL NIL) (-991 2350610 2351253 2351450 "RESRING" 2351882 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-990 2350250 2350299 2350395 "RESLATC" 2350547 NIL RESLATC (NIL T) -7 NIL NIL) (-989 2349959 2349993 2350098 "REPSQ" 2350209 NIL REPSQ (NIL T) -7 NIL NIL) (-988 2349660 2349694 2349803 "REPDB" 2349918 NIL REPDB (NIL T) -7 NIL NIL) (-987 2343588 2344967 2346188 "REP2" 2348472 NIL REP2 (NIL T) -7 NIL NIL) (-986 2339980 2340661 2341467 "REP1" 2342815 NIL REP1 (NIL T) -7 NIL NIL) (-985 2337411 2337991 2338591 "REP" 2339400 T REP (NIL) -7 NIL NIL) (-984 2330176 2335564 2336018 "REGSET" 2337041 NIL REGSET (NIL T T T T) -8 NIL NIL) (-983 2328997 2329332 2329580 "REF" 2329961 NIL REF (NIL T) -8 NIL NIL) (-982 2328378 2328481 2328646 "REDORDER" 2328881 NIL REDORDER (NIL T T) -7 NIL NIL) (-981 2324435 2327606 2327829 "RECLOS" 2328207 NIL RECLOS (NIL T) -8 NIL NIL) (-980 2323492 2323673 2323886 "REALSOLV" 2324242 T REALSOLV (NIL) -7 NIL NIL) (-979 2319983 2320785 2321667 "REAL0Q" 2322657 NIL REAL0Q (NIL T) -7 NIL NIL) (-978 2315594 2316582 2317641 "REAL0" 2318964 NIL REAL0 (NIL T) -7 NIL NIL) (-977 2315442 2315483 2315511 "REAL" 2315516 T REAL (NIL) -9 NIL 2315551) (-976 2314850 2314922 2315127 "RDIV" 2315364 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-975 2313923 2314097 2314308 "RDIST" 2314672 NIL RDIST (NIL T) -7 NIL NIL) (-974 2312527 2312814 2313183 "RDETRS" 2313631 NIL RDETRS (NIL T T) -7 NIL NIL) (-973 2310348 2310802 2311337 "RDETR" 2312069 NIL RDETR (NIL T T) -7 NIL NIL) (-972 2308964 2309242 2309643 "RDEEFS" 2310064 NIL RDEEFS (NIL T T) -7 NIL NIL) (-971 2307464 2307770 2308199 "RDEEF" 2308652 NIL RDEEF (NIL T T) -7 NIL NIL) (-970 2301817 2304675 2304703 "RCFIELD" 2305980 T RCFIELD (NIL) -9 NIL 2306710) (-969 2299886 2300390 2301083 "RCFIELD-" 2301156 NIL RCFIELD- (NIL T) -8 NIL NIL) (-968 2296217 2298002 2298043 "RCAGG" 2299114 NIL RCAGG (NIL T) -9 NIL 2299579) (-967 2295848 2295942 2296102 "RCAGG-" 2296107 NIL RCAGG- (NIL T T) -8 NIL NIL) (-966 2295192 2295304 2295466 "RATRET" 2295732 NIL RATRET (NIL T) -7 NIL NIL) (-965 2294749 2294816 2294935 "RATFACT" 2295120 NIL RATFACT (NIL T) -7 NIL NIL) (-964 2294064 2294184 2294334 "RANDSRC" 2294619 T RANDSRC (NIL) -7 NIL NIL) (-963 2293801 2293845 2293916 "RADUTIL" 2294013 T RADUTIL (NIL) -7 NIL NIL) (-962 2286894 2292544 2292861 "RADIX" 2293516 NIL RADIX (NIL NIL) -8 NIL NIL) (-961 2278566 2286738 2286866 "RADFF" 2286871 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-960 2278218 2278293 2278321 "RADCAT" 2278478 T RADCAT (NIL) -9 NIL NIL) (-959 2278003 2278051 2278148 "RADCAT-" 2278153 NIL RADCAT- (NIL T) -8 NIL NIL) (-958 2276154 2277778 2277867 "QUEUE" 2277947 NIL QUEUE (NIL T) -8 NIL NIL) (-957 2275792 2275835 2275962 "QUATCT2" 2276105 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-956 2269669 2272958 2272998 "QUATCAT" 2273778 NIL QUATCAT (NIL T) -9 NIL 2274544) (-955 2265834 2266864 2268244 "QUATCAT-" 2268338 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-954 2262422 2265771 2265816 "QUAT" 2265821 NIL QUAT (NIL T) -8 NIL NIL) (-953 2259942 2261506 2261547 "QUAGG" 2261922 NIL QUAGG (NIL T) -9 NIL 2262097) (-952 2258867 2259340 2259512 "QFORM" 2259814 NIL QFORM (NIL NIL T) -8 NIL NIL) (-951 2258505 2258548 2258675 "QFCAT2" 2258818 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-950 2249874 2255054 2255094 "QFCAT" 2255752 NIL QFCAT (NIL T) -9 NIL 2256745) (-949 2245482 2246671 2248250 "QFCAT-" 2248344 NIL QFCAT- (NIL T T) -8 NIL NIL) (-948 2244942 2245052 2245182 "QEQUAT" 2245372 T QEQUAT (NIL) -8 NIL NIL) (-947 2238090 2239161 2240345 "QCMPACK" 2243875 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-946 2237335 2237509 2237741 "QALGSET2" 2237910 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-945 2234917 2235336 2235762 "QALGSET" 2236992 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-944 2233608 2233831 2234148 "PWFFINTB" 2234690 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-943 2231807 2231975 2232329 "PUSHVAR" 2233422 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-942 2227725 2228779 2228820 "PTRANFN" 2230704 NIL PTRANFN (NIL T) -9 NIL NIL) (-941 2226127 2226418 2226740 "PTPACK" 2227436 NIL PTPACK (NIL T) -7 NIL NIL) (-940 2225759 2225816 2225925 "PTFUNC2" 2226064 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-939 2220225 2224570 2224611 "PTCAT" 2224984 NIL PTCAT (NIL T) -9 NIL 2225146) (-938 2219883 2219918 2220042 "PSQFR" 2220184 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-937 2218478 2218776 2219110 "PSEUDLIN" 2219581 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-936 2205247 2207612 2209936 "PSETPK" 2216238 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-935 2198291 2201005 2201101 "PSETCAT" 2204122 NIL PSETCAT (NIL T T T T) -9 NIL 2204936) (-934 2196127 2196761 2197582 "PSETCAT-" 2197587 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-933 2195476 2195641 2195669 "PSCURVE" 2195937 T PSCURVE (NIL) -9 NIL 2196104) (-932 2191957 2193439 2193504 "PSCAT" 2194348 NIL PSCAT (NIL T T T) -9 NIL 2194588) (-931 2191020 2191236 2191636 "PSCAT-" 2191641 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-930 2189672 2190305 2190519 "PRTITION" 2190826 T PRTITION (NIL) -8 NIL NIL) (-929 2189192 2189393 2189485 "PRTDAST" 2189600 T PRTDAST (NIL) -8 NIL NIL) (-928 2178290 2180496 2182684 "PRS" 2187054 NIL PRS (NIL T T) -7 NIL NIL) (-927 2176148 2177640 2177680 "PRQAGG" 2177863 NIL PRQAGG (NIL T) -9 NIL 2177965) (-926 2175719 2175821 2175849 "PROPLOG" 2176034 T PROPLOG (NIL) -9 NIL NIL) (-925 2172842 2173407 2173934 "PROPFRML" 2175224 NIL PROPFRML (NIL T) -8 NIL NIL) (-924 2172302 2172412 2172542 "PROPERTY" 2172732 T PROPERTY (NIL) -8 NIL NIL) (-923 2166387 2170468 2171288 "PRODUCT" 2171528 NIL PRODUCT (NIL T T) -8 NIL NIL) (-922 2166183 2166215 2166274 "PRINT" 2166348 T PRINT (NIL) -7 NIL NIL) (-921 2165523 2165640 2165792 "PRIMES" 2166063 NIL PRIMES (NIL T) -7 NIL NIL) (-920 2163588 2163989 2164455 "PRIMELT" 2165102 NIL PRIMELT (NIL T) -7 NIL NIL) (-919 2163317 2163366 2163394 "PRIMCAT" 2163518 T PRIMCAT (NIL) -9 NIL NIL) (-918 2162324 2162502 2162730 "PRIMARR2" 2163135 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-917 2158485 2162262 2162307 "PRIMARR" 2162312 NIL PRIMARR (NIL T) -8 NIL NIL) (-916 2158128 2158184 2158295 "PREASSOC" 2158423 NIL PREASSOC (NIL T T) -7 NIL NIL) (-915 2155453 2157586 2157820 "PR" 2157939 NIL PR (NIL T T) -8 NIL NIL) (-914 2154928 2155061 2155089 "PPCURVE" 2155294 T PPCURVE (NIL) -9 NIL 2155430) (-913 2154550 2154723 2154806 "PORTNUM" 2154865 T PORTNUM (NIL) -8 NIL NIL) (-912 2151909 2152308 2152900 "POLYROOT" 2154131 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-911 2151292 2151350 2151584 "POLYLIFT" 2151845 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-910 2147567 2148016 2148645 "POLYCATQ" 2150837 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-909 2134632 2139969 2140034 "POLYCAT" 2143548 NIL POLYCAT (NIL T T T) -9 NIL 2145475) (-908 2128139 2129981 2132346 "POLYCAT-" 2132351 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-907 2127726 2127794 2127914 "POLY2UP" 2128065 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-906 2127358 2127415 2127524 "POLY2" 2127663 NIL POLY2 (NIL T T) -7 NIL NIL) (-905 2121339 2126962 2127122 "POLY" 2127231 NIL POLY (NIL T) -8 NIL NIL) (-904 2120024 2120263 2120539 "POLUTIL" 2121113 NIL POLUTIL (NIL T T) -7 NIL NIL) (-903 2118379 2118656 2118987 "POLTOPOL" 2119746 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-902 2113897 2118315 2118361 "POINT" 2118366 NIL POINT (NIL T) -8 NIL NIL) (-901 2112084 2112441 2112816 "PNTHEORY" 2113542 T PNTHEORY (NIL) -7 NIL NIL) (-900 2110506 2110803 2111214 "PMTOOLS" 2111782 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-899 2110099 2110177 2110294 "PMSYM" 2110422 NIL PMSYM (NIL T) -7 NIL NIL) (-898 2109609 2109678 2109852 "PMQFCAT" 2110024 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-897 2109005 2109091 2109252 "PMPREDFS" 2109510 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-896 2108360 2108470 2108626 "PMPRED" 2108882 NIL PMPRED (NIL T) -7 NIL NIL) (-895 2107003 2107211 2107596 "PMPLCAT" 2108122 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-894 2106535 2106614 2106766 "PMLSAGG" 2106918 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-893 2106012 2106088 2106268 "PMKERNEL" 2106453 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-892 2105629 2105704 2105817 "PMINS" 2105931 NIL PMINS (NIL T) -7 NIL NIL) (-891 2105059 2105128 2105343 "PMFS" 2105554 NIL PMFS (NIL T T T) -7 NIL NIL) (-890 2104290 2104408 2104612 "PMDOWN" 2104936 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-889 2103564 2103675 2103838 "PMASSFS" 2104176 NIL PMASSFS (NIL T T) -7 NIL NIL) (-888 2102727 2102886 2103068 "PMASS" 2103402 T PMASS (NIL) -7 NIL NIL) (-887 2102382 2102450 2102544 "PLOTTOOL" 2102653 T PLOTTOOL (NIL) -7 NIL NIL) (-886 2098196 2099230 2100151 "PLOT3D" 2101481 T PLOT3D (NIL) -8 NIL NIL) (-885 2097108 2097285 2097520 "PLOT1" 2098000 NIL PLOT1 (NIL T) -7 NIL NIL) (-884 2091730 2092919 2094067 "PLOT" 2095980 T PLOT (NIL) -8 NIL NIL) (-883 2067124 2071796 2076647 "PLEQN" 2086996 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-882 2066817 2066864 2066967 "PINTERPA" 2067071 NIL PINTERPA (NIL T T) -7 NIL NIL) (-881 2066135 2066257 2066437 "PINTERP" 2066682 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-880 2064567 2065508 2065536 "PID" 2065718 T PID (NIL) -9 NIL 2065852) (-879 2064292 2064329 2064417 "PICOERCE" 2064524 NIL PICOERCE (NIL T) -7 NIL NIL) (-878 2063577 2064098 2064185 "PI" 2064225 T PI (NIL) -8 NIL NIL) (-877 2062897 2063036 2063212 "PGROEB" 2063433 NIL PGROEB (NIL T) -7 NIL NIL) (-876 2058484 2059298 2060203 "PGE" 2062012 T PGE (NIL) -7 NIL NIL) (-875 2056608 2056854 2057220 "PGCD" 2058201 NIL PGCD (NIL T T T T) -7 NIL NIL) (-874 2055946 2056049 2056210 "PFRPAC" 2056492 NIL PFRPAC (NIL T) -7 NIL NIL) (-873 2052628 2054494 2054847 "PFR" 2055625 NIL PFR (NIL T) -8 NIL NIL) (-872 2051017 2051261 2051586 "PFOTOOLS" 2052375 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-871 2049550 2049789 2050140 "PFOQ" 2050774 NIL PFOQ (NIL T T T) -7 NIL NIL) (-870 2048027 2048239 2048601 "PFO" 2049334 NIL PFO (NIL T T T T T) -7 NIL NIL) (-869 2045496 2046733 2046761 "PFECAT" 2047346 T PFECAT (NIL) -9 NIL 2047730) (-868 2044941 2045095 2045309 "PFECAT-" 2045314 NIL PFECAT- (NIL T) -8 NIL NIL) (-867 2043545 2043796 2044097 "PFBRU" 2044690 NIL PFBRU (NIL T T) -7 NIL NIL) (-866 2041412 2041763 2042195 "PFBR" 2043196 NIL PFBR (NIL T T T T) -7 NIL NIL) (-865 2038002 2041301 2041370 "PF" 2041375 NIL PF (NIL NIL) -8 NIL NIL) (-864 2033268 2034209 2035079 "PERMGRP" 2037165 NIL PERMGRP (NIL T) -8 NIL NIL) (-863 2031400 2032331 2032372 "PERMCAT" 2032818 NIL PERMCAT (NIL T) -9 NIL 2033123) (-862 2031053 2031094 2031218 "PERMAN" 2031353 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-861 2026969 2028429 2029105 "PERM" 2030410 NIL PERM (NIL T) -8 NIL NIL) (-860 2024411 2026538 2026669 "PENDTREE" 2026871 NIL PENDTREE (NIL T) -8 NIL NIL) (-859 2022524 2023258 2023299 "PDRING" 2023956 NIL PDRING (NIL T) -9 NIL 2024242) (-858 2021627 2021845 2022207 "PDRING-" 2022212 NIL PDRING- (NIL T T) -8 NIL NIL) (-857 2018768 2019519 2020210 "PDEPROB" 2020956 T PDEPROB (NIL) -8 NIL NIL) (-856 2016331 2016829 2017380 "PDEPACK" 2018237 T PDEPACK (NIL) -7 NIL NIL) (-855 2015243 2015433 2015684 "PDECOMP" 2016130 NIL PDECOMP (NIL T T) -7 NIL NIL) (-854 2012851 2013667 2013695 "PDECAT" 2014481 T PDECAT (NIL) -9 NIL 2015193) (-853 2012602 2012635 2012725 "PCOMP" 2012812 NIL PCOMP (NIL T T) -7 NIL NIL) (-852 2010809 2011405 2011701 "PBWLB" 2012332 NIL PBWLB (NIL T) -8 NIL NIL) (-851 2010441 2010498 2010607 "PATTERN2" 2010746 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-850 2008198 2008586 2009043 "PATTERN1" 2010030 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-849 2000708 2002275 2003611 "PATTERN" 2006883 NIL PATTERN (NIL T) -8 NIL NIL) (-848 2000272 2000339 2000471 "PATRES2" 2000635 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-847 1997667 1998221 1998702 "PATRES" 1999837 NIL PATRES (NIL T T) -8 NIL NIL) (-846 1995558 1995960 1996366 "PATMATCH" 1997335 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-845 1995094 1995277 1995318 "PATMAB" 1995425 NIL PATMAB (NIL T) -9 NIL 1995508) (-844 1993639 1993948 1994206 "PATLRES" 1994899 NIL PATLRES (NIL T T T) -8 NIL NIL) (-843 1993185 1993308 1993349 "PATAB" 1993354 NIL PATAB (NIL T) -9 NIL 1993526) (-842 1990666 1991198 1991771 "PARTPERM" 1992632 T PARTPERM (NIL) -7 NIL NIL) (-841 1990287 1990350 1990452 "PARSURF" 1990597 NIL PARSURF (NIL T) -8 NIL NIL) (-840 1989919 1989976 1990085 "PARSU2" 1990224 NIL PARSU2 (NIL T T) -7 NIL NIL) (-839 1989683 1989723 1989790 "PARSER" 1989872 T PARSER (NIL) -7 NIL NIL) (-838 1989304 1989367 1989469 "PARSCURV" 1989614 NIL PARSCURV (NIL T) -8 NIL NIL) (-837 1988936 1988993 1989102 "PARSC2" 1989241 NIL PARSC2 (NIL T T) -7 NIL NIL) (-836 1988575 1988633 1988730 "PARPCURV" 1988872 NIL PARPCURV (NIL T) -8 NIL NIL) (-835 1988207 1988264 1988373 "PARPC2" 1988512 NIL PARPC2 (NIL T T) -7 NIL NIL) (-834 1987727 1987813 1987932 "PAN2EXPR" 1988108 T PAN2EXPR (NIL) -7 NIL NIL) (-833 1986533 1986848 1987076 "PALETTE" 1987519 T PALETTE (NIL) -8 NIL NIL) (-832 1985001 1985538 1985898 "PAIR" 1986219 NIL PAIR (NIL T T) -8 NIL NIL) (-831 1978937 1984260 1984454 "PADICRC" 1984856 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-830 1972231 1978283 1978467 "PADICRAT" 1978785 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-829 1969478 1971006 1971046 "PADICCT" 1971627 NIL PADICCT (NIL NIL) -9 NIL 1971909) (-828 1967830 1969415 1969460 "PADIC" 1969465 NIL PADIC (NIL NIL) -8 NIL NIL) (-827 1966787 1966987 1967255 "PADEPAC" 1967617 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-826 1965999 1966132 1966338 "PADE" 1966649 NIL PADE (NIL T T T) -7 NIL NIL) (-825 1964049 1964835 1965152 "OWP" 1965766 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-824 1963158 1963654 1963826 "OVAR" 1963917 NIL OVAR (NIL NIL) -8 NIL NIL) (-823 1952212 1954383 1956553 "OUTFORM" 1961008 T OUTFORM (NIL) -8 NIL NIL) (-822 1951849 1951932 1951960 "OUTBCON" 1952111 T OUTBCON (NIL) -9 NIL 1952196) (-821 1951689 1951724 1951800 "OUTBCON-" 1951805 NIL OUTBCON- (NIL T) -8 NIL NIL) (-820 1950953 1951074 1951235 "OUT" 1951548 T OUT (NIL) -7 NIL NIL) (-819 1950361 1950682 1950771 "OSI" 1950884 T OSI (NIL) -8 NIL NIL) (-818 1949917 1950229 1950257 "OSGROUP" 1950262 T OSGROUP (NIL) -9 NIL 1950284) (-817 1948662 1948889 1949174 "ORTHPOL" 1949664 NIL ORTHPOL (NIL T) -7 NIL NIL) (-816 1946091 1948321 1948460 "OREUP" 1948605 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-815 1943548 1945782 1945909 "ORESUP" 1946033 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-814 1941076 1941576 1942137 "OREPCTO" 1943037 NIL OREPCTO (NIL T T) -7 NIL NIL) (-813 1935004 1937159 1937200 "OREPCAT" 1939548 NIL OREPCAT (NIL T) -9 NIL 1940652) (-812 1932172 1932947 1933998 "OREPCAT-" 1934003 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-811 1931349 1931621 1931649 "ORDSET" 1931958 T ORDSET (NIL) -9 NIL 1932122) (-810 1930868 1930990 1931183 "ORDSET-" 1931188 NIL ORDSET- (NIL T) -8 NIL NIL) (-809 1929522 1930279 1930307 "ORDRING" 1930509 T ORDRING (NIL) -9 NIL 1930634) (-808 1929167 1929261 1929405 "ORDRING-" 1929410 NIL ORDRING- (NIL T) -8 NIL NIL) (-807 1928573 1929010 1929038 "ORDMON" 1929043 T ORDMON (NIL) -9 NIL 1929064) (-806 1927735 1927882 1928077 "ORDFUNS" 1928422 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-805 1927246 1927605 1927633 "ORDFIN" 1927638 T ORDFIN (NIL) -9 NIL 1927659) (-804 1926512 1926639 1926825 "ORDCOMP2" 1927106 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-803 1923117 1925098 1925507 "ORDCOMP" 1926136 NIL ORDCOMP (NIL T) -8 NIL NIL) (-802 1919624 1920507 1921344 "OPTPROB" 1922300 T OPTPROB (NIL) -8 NIL NIL) (-801 1916458 1917089 1917785 "OPTPACK" 1918948 T OPTPACK (NIL) -7 NIL NIL) (-800 1914177 1914915 1914943 "OPTCAT" 1915760 T OPTCAT (NIL) -9 NIL 1916408) (-799 1913945 1913984 1914050 "OPQUERY" 1914131 T OPQUERY (NIL) -7 NIL NIL) (-798 1911117 1912260 1912762 "OP" 1913476 NIL OP (NIL T) -8 NIL NIL) (-797 1910422 1910537 1910711 "ONECOMP2" 1910989 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-796 1907280 1909219 1909588 "ONECOMP" 1910086 NIL ONECOMP (NIL T) -8 NIL NIL) (-795 1906699 1906805 1906935 "OMSERVER" 1907170 T OMSERVER (NIL) -7 NIL NIL) (-794 1903587 1906139 1906179 "OMSAGG" 1906240 NIL OMSAGG (NIL T) -9 NIL 1906304) (-793 1902210 1902473 1902755 "OMPKG" 1903325 T OMPKG (NIL) -7 NIL NIL) (-792 1900792 1901759 1901928 "OMLO" 1902091 NIL OMLO (NIL T T) -8 NIL NIL) (-791 1899717 1899864 1900091 "OMEXPR" 1900618 NIL OMEXPR (NIL T) -7 NIL NIL) (-790 1898895 1899138 1899298 "OMERRK" 1899577 T OMERRK (NIL) -8 NIL NIL) (-789 1898213 1898441 1898577 "OMERR" 1898779 T OMERR (NIL) -8 NIL NIL) (-788 1897691 1897890 1897998 "OMENC" 1898125 T OMENC (NIL) -8 NIL NIL) (-787 1891586 1892771 1893942 "OMDEV" 1896540 T OMDEV (NIL) -8 NIL NIL) (-786 1890655 1890826 1891020 "OMCONN" 1891412 T OMCONN (NIL) -8 NIL NIL) (-785 1890085 1890188 1890216 "OM" 1890515 T OM (NIL) -9 NIL NIL) (-784 1888741 1889683 1889711 "OINTDOM" 1889716 T OINTDOM (NIL) -9 NIL 1889737) (-783 1884549 1885733 1886448 "OFMONOID" 1888058 NIL OFMONOID (NIL T) -8 NIL NIL) (-782 1883987 1884486 1884531 "ODVAR" 1884536 NIL ODVAR (NIL T) -8 NIL NIL) (-781 1881199 1883484 1883669 "ODR" 1883862 NIL ODR (NIL T T NIL) -8 NIL NIL) (-780 1873591 1880977 1881102 "ODPOL" 1881107 NIL ODPOL (NIL T) -8 NIL NIL) (-779 1867480 1873463 1873568 "ODP" 1873573 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-778 1866246 1866461 1866736 "ODETOOLS" 1867254 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-777 1863215 1863871 1864587 "ODESYS" 1865579 NIL ODESYS (NIL T T) -7 NIL NIL) (-776 1858119 1859027 1860050 "ODERTRIC" 1862290 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-775 1857545 1857627 1857821 "ODERED" 1858031 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-774 1854455 1855001 1855674 "ODERAT" 1856970 NIL ODERAT (NIL T T) -7 NIL NIL) (-773 1851423 1851887 1852483 "ODEPRRIC" 1853984 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-772 1849292 1849861 1850370 "ODEPROB" 1850934 T ODEPROB (NIL) -8 NIL NIL) (-771 1845824 1846307 1846953 "ODEPRIM" 1848771 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-770 1845077 1845179 1845437 "ODEPAL" 1845716 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-769 1841271 1842054 1842910 "ODEPACK" 1844241 T ODEPACK (NIL) -7 NIL NIL) (-768 1840308 1840415 1840643 "ODEINT" 1841160 NIL ODEINT (NIL T T) -7 NIL NIL) (-767 1834409 1835834 1837281 "ODEIFTBL" 1838881 T ODEIFTBL (NIL) -8 NIL NIL) (-766 1829767 1830549 1831503 "ODEEF" 1833572 NIL ODEEF (NIL T T) -7 NIL NIL) (-765 1829104 1829193 1829422 "ODECONST" 1829672 NIL ODECONST (NIL T T T) -7 NIL NIL) (-764 1827258 1827892 1827920 "ODECAT" 1828524 T ODECAT (NIL) -9 NIL 1829054) (-763 1826896 1826939 1827066 "OCTCT2" 1827209 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-762 1823825 1826608 1826727 "OCT" 1826809 NIL OCT (NIL T) -8 NIL NIL) (-761 1823203 1823645 1823673 "OCAMON" 1823678 T OCAMON (NIL) -9 NIL 1823699) (-760 1818081 1820469 1820509 "OC" 1821606 NIL OC (NIL T) -9 NIL 1822464) (-759 1815329 1816070 1817053 "OC-" 1817147 NIL OC- (NIL T T) -8 NIL NIL) (-758 1814886 1815201 1815229 "OASGP" 1815234 T OASGP (NIL) -9 NIL 1815254) (-757 1814173 1814636 1814664 "OAMONS" 1814704 T OAMONS (NIL) -9 NIL 1814747) (-756 1813613 1814020 1814048 "OAMON" 1814053 T OAMON (NIL) -9 NIL 1814073) (-755 1812917 1813409 1813437 "OAGROUP" 1813442 T OAGROUP (NIL) -9 NIL 1813462) (-754 1812607 1812657 1812745 "NUMTUBE" 1812861 NIL NUMTUBE (NIL T) -7 NIL NIL) (-753 1806180 1807698 1809234 "NUMQUAD" 1811091 T NUMQUAD (NIL) -7 NIL NIL) (-752 1801936 1802924 1803949 "NUMODE" 1805175 T NUMODE (NIL) -7 NIL NIL) (-751 1799333 1800181 1800209 "NUMINT" 1801128 T NUMINT (NIL) -9 NIL 1801886) (-750 1798281 1798478 1798696 "NUMFMT" 1799135 T NUMFMT (NIL) -7 NIL NIL) (-749 1784640 1787585 1790117 "NUMERIC" 1795788 NIL NUMERIC (NIL T) -7 NIL NIL) (-748 1779064 1784089 1784184 "NTSCAT" 1784189 NIL NTSCAT (NIL T T T T) -9 NIL 1784228) (-747 1778258 1778423 1778616 "NTPOLFN" 1778903 NIL NTPOLFN (NIL T) -7 NIL NIL) (-746 1777890 1777947 1778056 "NSUP2" 1778195 NIL NSUP2 (NIL T T) -7 NIL NIL) (-745 1765782 1774717 1775528 "NSUP" 1777112 NIL NSUP (NIL T) -8 NIL NIL) (-744 1755835 1765558 1765690 "NSMP" 1765695 NIL NSMP (NIL T T) -8 NIL NIL) (-743 1754267 1754568 1754925 "NREP" 1755523 NIL NREP (NIL T) -7 NIL NIL) (-742 1752858 1753110 1753468 "NPCOEF" 1754010 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-741 1751924 1752039 1752255 "NORMRETR" 1752739 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-740 1749965 1750255 1750664 "NORMPK" 1751632 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-739 1749650 1749678 1749802 "NORMMA" 1749931 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-738 1749439 1749468 1749537 "NONE1" 1749614 NIL NONE1 (NIL T) -7 NIL NIL) (-737 1749266 1749396 1749425 "NONE" 1749430 T NONE (NIL) -8 NIL NIL) (-736 1748751 1748813 1748998 "NODE1" 1749198 NIL NODE1 (NIL T T) -7 NIL NIL) (-735 1747091 1747914 1748169 "NNI" 1748516 T NNI (NIL) -8 NIL NIL) (-734 1745511 1745824 1746188 "NLINSOL" 1746759 NIL NLINSOL (NIL T) -7 NIL NIL) (-733 1741678 1742646 1743568 "NIPROB" 1744609 T NIPROB (NIL) -8 NIL NIL) (-732 1740435 1740669 1740971 "NFINTBAS" 1741440 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-731 1739143 1739374 1739655 "NCODIV" 1740203 NIL NCODIV (NIL T T) -7 NIL NIL) (-730 1738905 1738942 1739017 "NCNTFRAC" 1739100 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-729 1737085 1737449 1737869 "NCEP" 1738530 NIL NCEP (NIL T) -7 NIL NIL) (-728 1736003 1736735 1736763 "NASRING" 1736873 T NASRING (NIL) -9 NIL 1736947) (-727 1735798 1735842 1735936 "NASRING-" 1735941 NIL NASRING- (NIL T) -8 NIL NIL) (-726 1734951 1735450 1735478 "NARNG" 1735595 T NARNG (NIL) -9 NIL 1735686) (-725 1734643 1734710 1734844 "NARNG-" 1734849 NIL NARNG- (NIL T) -8 NIL NIL) (-724 1733522 1733729 1733964 "NAGSP" 1734428 T NAGSP (NIL) -7 NIL NIL) (-723 1724946 1726592 1728227 "NAGS" 1731907 T NAGS (NIL) -7 NIL NIL) (-722 1723510 1723814 1724141 "NAGF07" 1724639 T NAGF07 (NIL) -7 NIL NIL) (-721 1718092 1719372 1720668 "NAGF04" 1722234 T NAGF04 (NIL) -7 NIL NIL) (-720 1711124 1712722 1714339 "NAGF02" 1716495 T NAGF02 (NIL) -7 NIL NIL) (-719 1706388 1707478 1708585 "NAGF01" 1710037 T NAGF01 (NIL) -7 NIL NIL) (-718 1700048 1701606 1703183 "NAGE04" 1704831 T NAGE04 (NIL) -7 NIL NIL) (-717 1691289 1693392 1695504 "NAGE02" 1697956 T NAGE02 (NIL) -7 NIL NIL) (-716 1687282 1688219 1689173 "NAGE01" 1690355 T NAGE01 (NIL) -7 NIL NIL) (-715 1685089 1685620 1686175 "NAGD03" 1686747 T NAGD03 (NIL) -7 NIL NIL) (-714 1676875 1678794 1680739 "NAGD02" 1683164 T NAGD02 (NIL) -7 NIL NIL) (-713 1670734 1672147 1673575 "NAGD01" 1675467 T NAGD01 (NIL) -7 NIL NIL) (-712 1666991 1667801 1668626 "NAGC06" 1669929 T NAGC06 (NIL) -7 NIL NIL) (-711 1665468 1665797 1666150 "NAGC05" 1666658 T NAGC05 (NIL) -7 NIL NIL) (-710 1664852 1664969 1665111 "NAGC02" 1665346 T NAGC02 (NIL) -7 NIL NIL) (-709 1663912 1664469 1664509 "NAALG" 1664588 NIL NAALG (NIL T) -9 NIL 1664649) (-708 1663747 1663776 1663866 "NAALG-" 1663871 NIL NAALG- (NIL T T) -8 NIL NIL) (-707 1657697 1658805 1659992 "MULTSQFR" 1662643 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-706 1657016 1657091 1657275 "MULTFACT" 1657609 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-705 1650239 1654104 1654157 "MTSCAT" 1655227 NIL MTSCAT (NIL T T) -9 NIL 1655741) (-704 1649951 1650005 1650097 "MTHING" 1650179 NIL MTHING (NIL T) -7 NIL NIL) (-703 1649743 1649776 1649836 "MSYSCMD" 1649911 T MSYSCMD (NIL) -7 NIL NIL) (-702 1646838 1649304 1649345 "MSETAGG" 1649350 NIL MSETAGG (NIL T) -9 NIL 1649384) (-701 1642950 1645593 1645913 "MSET" 1646551 NIL MSET (NIL T) -8 NIL NIL) (-700 1638839 1640333 1641076 "MRING" 1642252 NIL MRING (NIL T T) -8 NIL NIL) (-699 1638405 1638472 1638603 "MRF2" 1638766 NIL MRF2 (NIL T T T) -7 NIL NIL) (-698 1638023 1638058 1638202 "MRATFAC" 1638364 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-697 1635635 1635930 1636361 "MPRFF" 1637728 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-696 1629726 1635489 1635586 "MPOLY" 1635591 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-695 1629216 1629251 1629459 "MPCPF" 1629685 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-694 1628730 1628773 1628957 "MPC3" 1629167 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-693 1627925 1628006 1628227 "MPC2" 1628645 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-692 1626226 1626563 1626953 "MONOTOOL" 1627585 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-691 1625477 1625768 1625796 "MONOID" 1626015 T MONOID (NIL) -9 NIL 1626162) (-690 1625023 1625142 1625323 "MONOID-" 1625328 NIL MONOID- (NIL T) -8 NIL NIL) (-689 1616092 1621984 1622043 "MONOGEN" 1622717 NIL MONOGEN (NIL T T) -9 NIL 1623173) (-688 1613331 1614059 1615052 "MONOGEN-" 1615171 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-687 1612190 1612610 1612638 "MONADWU" 1613030 T MONADWU (NIL) -9 NIL 1613268) (-686 1611562 1611721 1611969 "MONADWU-" 1611974 NIL MONADWU- (NIL T) -8 NIL NIL) (-685 1610947 1611165 1611193 "MONAD" 1611400 T MONAD (NIL) -9 NIL 1611512) (-684 1610632 1610710 1610842 "MONAD-" 1610847 NIL MONAD- (NIL T) -8 NIL NIL) (-683 1608948 1609545 1609824 "MOEBIUS" 1610385 NIL MOEBIUS (NIL T) -8 NIL NIL) (-682 1608340 1608718 1608758 "MODULE" 1608763 NIL MODULE (NIL T) -9 NIL 1608789) (-681 1607908 1608004 1608194 "MODULE-" 1608199 NIL MODULE- (NIL T T) -8 NIL NIL) (-680 1605667 1606316 1606643 "MODRING" 1607732 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-679 1602659 1603776 1604295 "MODOP" 1605198 NIL MODOP (NIL T T) -8 NIL NIL) (-678 1600846 1601298 1601639 "MODMONOM" 1602458 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-677 1590599 1599038 1599461 "MODMON" 1600474 NIL MODMON (NIL T T) -8 NIL NIL) (-676 1587816 1589467 1589743 "MODFIELD" 1590474 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-675 1586820 1587097 1587287 "MMLFORM" 1587646 T MMLFORM (NIL) -8 NIL NIL) (-674 1586346 1586389 1586568 "MMAP" 1586771 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-673 1584615 1585348 1585389 "MLO" 1585812 NIL MLO (NIL T) -9 NIL 1586054) (-672 1581982 1582497 1583099 "MLIFT" 1584096 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-671 1581373 1581457 1581611 "MKUCFUNC" 1581893 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-670 1580972 1581042 1581165 "MKRECORD" 1581296 NIL MKRECORD (NIL T T) -7 NIL NIL) (-669 1580020 1580181 1580409 "MKFUNC" 1580783 NIL MKFUNC (NIL T) -7 NIL NIL) (-668 1579408 1579512 1579668 "MKFLCFN" 1579903 NIL MKFLCFN (NIL T) -7 NIL NIL) (-667 1578834 1579201 1579290 "MKCHSET" 1579352 NIL MKCHSET (NIL T) -8 NIL NIL) (-666 1578111 1578213 1578398 "MKBCFUNC" 1578727 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-665 1574843 1577665 1577801 "MINT" 1577995 T MINT (NIL) -8 NIL NIL) (-664 1573655 1573898 1574175 "MHROWRED" 1574598 NIL MHROWRED (NIL T) -7 NIL NIL) (-663 1569000 1572100 1572524 "MFLOAT" 1573251 T MFLOAT (NIL) -8 NIL NIL) (-662 1568357 1568433 1568604 "MFINFACT" 1568912 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-661 1564692 1565535 1566414 "MESH" 1567498 T MESH (NIL) -7 NIL NIL) (-660 1563082 1563394 1563747 "MDDFACT" 1564379 NIL MDDFACT (NIL T) -7 NIL NIL) (-659 1559924 1562241 1562282 "MDAGG" 1562537 NIL MDAGG (NIL T) -9 NIL 1562680) (-658 1549725 1559217 1559424 "MCMPLX" 1559737 T MCMPLX (NIL) -8 NIL NIL) (-657 1548866 1549012 1549212 "MCDEN" 1549574 NIL MCDEN (NIL T T) -7 NIL NIL) (-656 1546756 1547026 1547406 "MCALCFN" 1548596 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-655 1545667 1545840 1546081 "MAYBE" 1546554 NIL MAYBE (NIL T) -8 NIL NIL) (-654 1543279 1543802 1544364 "MATSTOR" 1545138 NIL MATSTOR (NIL T) -7 NIL NIL) (-653 1539284 1542651 1542899 "MATRIX" 1543064 NIL MATRIX (NIL T) -8 NIL NIL) (-652 1535053 1535757 1536493 "MATLIN" 1538641 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-651 1533647 1533800 1534133 "MATCAT2" 1534888 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-650 1523795 1526936 1527013 "MATCAT" 1531896 NIL MATCAT (NIL T T T) -9 NIL 1533313) (-649 1520159 1521172 1522528 "MATCAT-" 1522533 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-648 1518271 1518595 1518979 "MAPPKG3" 1519834 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-647 1517252 1517425 1517647 "MAPPKG2" 1518095 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-646 1515751 1516035 1516362 "MAPPKG1" 1516958 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-645 1514874 1515157 1515334 "MAPPAST" 1515594 T MAPPAST (NIL) -8 NIL NIL) (-644 1514485 1514543 1514666 "MAPHACK3" 1514810 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-643 1514077 1514138 1514252 "MAPHACK2" 1514417 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-642 1513515 1513618 1513760 "MAPHACK1" 1513968 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-641 1511623 1512217 1512520 "MAGMA" 1513244 NIL MAGMA (NIL T) -8 NIL NIL) (-640 1508090 1509862 1510323 "M3D" 1511195 NIL M3D (NIL T) -8 NIL NIL) (-639 1502247 1506460 1506501 "LZSTAGG" 1507283 NIL LZSTAGG (NIL T) -9 NIL 1507578) (-638 1498220 1499378 1500835 "LZSTAGG-" 1500840 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-637 1495336 1496113 1496599 "LWORD" 1497766 NIL LWORD (NIL T) -8 NIL NIL) (-636 1494956 1495140 1495215 "LSTAST" 1495281 T LSTAST (NIL) -8 NIL NIL) (-635 1488193 1494727 1494861 "LSQM" 1494866 NIL LSQM (NIL NIL T) -8 NIL NIL) (-634 1487417 1487556 1487784 "LSPP" 1488048 NIL LSPP (NIL T T T T) -7 NIL NIL) (-633 1484259 1484916 1485629 "LSMP1" 1486736 NIL LSMP1 (NIL T) -7 NIL NIL) (-632 1482094 1482388 1482837 "LSMP" 1483955 NIL LSMP (NIL T T T T) -7 NIL NIL) (-631 1476022 1481262 1481303 "LSAGG" 1481365 NIL LSAGG (NIL T) -9 NIL 1481443) (-630 1472717 1473641 1474854 "LSAGG-" 1474859 NIL LSAGG- (NIL T T) -8 NIL NIL) (-629 1470343 1471861 1472110 "LPOLY" 1472512 NIL LPOLY (NIL T T) -8 NIL NIL) (-628 1469925 1470010 1470133 "LPEFRAC" 1470252 NIL LPEFRAC (NIL T) -7 NIL NIL) (-627 1469577 1469689 1469717 "LOGIC" 1469828 T LOGIC (NIL) -9 NIL 1469909) (-626 1469439 1469462 1469533 "LOGIC-" 1469538 NIL LOGIC- (NIL T) -8 NIL NIL) (-625 1468632 1468772 1468965 "LODOOPS" 1469295 NIL LODOOPS (NIL T T) -7 NIL NIL) (-624 1467178 1467413 1467764 "LODOF" 1468379 NIL LODOF (NIL T T) -7 NIL NIL) (-623 1463645 1466023 1466064 "LODOCAT" 1466502 NIL LODOCAT (NIL T) -9 NIL 1466713) (-622 1463378 1463436 1463563 "LODOCAT-" 1463568 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-621 1460752 1463219 1463337 "LODO2" 1463342 NIL LODO2 (NIL T T) -8 NIL NIL) (-620 1458241 1460689 1460734 "LODO1" 1460739 NIL LODO1 (NIL T) -8 NIL NIL) (-619 1455718 1458157 1458223 "LODO" 1458228 NIL LODO (NIL T NIL) -8 NIL NIL) (-618 1454581 1454746 1455057 "LODEEF" 1455541 NIL LODEEF (NIL T T T) -7 NIL NIL) (-617 1452928 1453675 1453928 "LO" 1454413 NIL LO (NIL T T T) -8 NIL NIL) (-616 1448214 1451058 1451099 "LNAGG" 1452046 NIL LNAGG (NIL T) -9 NIL 1452490) (-615 1447361 1447575 1447917 "LNAGG-" 1447922 NIL LNAGG- (NIL T T) -8 NIL NIL) (-614 1443526 1444288 1444926 "LMOPS" 1446777 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-613 1442921 1443283 1443324 "LMODULE" 1443385 NIL LMODULE (NIL T) -9 NIL 1443427) (-612 1440167 1442566 1442689 "LMDICT" 1442831 NIL LMDICT (NIL T) -8 NIL NIL) (-611 1439911 1440075 1440135 "LITERAL" 1440140 NIL LITERAL (NIL T) -8 NIL NIL) (-610 1439436 1439510 1439649 "LIST3" 1439831 NIL LIST3 (NIL T T T) -7 NIL NIL) (-609 1437570 1437882 1438281 "LIST2MAP" 1439083 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-608 1436577 1436755 1436983 "LIST2" 1437388 NIL LIST2 (NIL T T) -7 NIL NIL) (-607 1429806 1435523 1435821 "LIST" 1436312 NIL LIST (NIL T) -8 NIL NIL) (-606 1428556 1429192 1429233 "LINEXP" 1429488 NIL LINEXP (NIL T) -9 NIL 1429637) (-605 1427203 1427463 1427760 "LINDEP" 1428308 NIL LINDEP (NIL T T) -7 NIL NIL) (-604 1424041 1424741 1425499 "LIMITRF" 1426477 NIL LIMITRF (NIL T) -7 NIL NIL) (-603 1422344 1422632 1423040 "LIMITPS" 1423743 NIL LIMITPS (NIL T T) -7 NIL NIL) (-602 1421393 1421836 1421876 "LIECAT" 1422016 NIL LIECAT (NIL T) -9 NIL 1422167) (-601 1421234 1421261 1421349 "LIECAT-" 1421354 NIL LIECAT- (NIL T T) -8 NIL NIL) (-600 1415721 1420745 1420973 "LIE" 1421055 NIL LIE (NIL T T) -8 NIL NIL) (-599 1408335 1415170 1415335 "LIB" 1415576 T LIB (NIL) -8 NIL NIL) (-598 1403972 1404853 1405788 "LGROBP" 1407452 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-597 1402812 1403504 1403532 "LFCAT" 1403739 T LFCAT (NIL) -9 NIL 1403878) (-596 1400678 1400952 1401314 "LF" 1402533 NIL LF (NIL T T) -7 NIL NIL) (-595 1397582 1398210 1398898 "LEXTRIPK" 1400042 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-594 1394353 1395152 1395655 "LEXP" 1397162 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-593 1393873 1394074 1394166 "LETAST" 1394281 T LETAST (NIL) -8 NIL NIL) (-592 1392271 1392584 1392985 "LEADCDET" 1393555 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-591 1391461 1391535 1391764 "LAZM3PK" 1392192 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-590 1386438 1389540 1390077 "LAUPOL" 1390974 NIL LAUPOL (NIL T T) -8 NIL NIL) (-589 1386005 1386049 1386216 "LAPLACE" 1386388 NIL LAPLACE (NIL T T) -7 NIL NIL) (-588 1385106 1385656 1385697 "LALG" 1385759 NIL LALG (NIL T) -9 NIL 1385818) (-587 1384820 1384879 1385015 "LALG-" 1385020 NIL LALG- (NIL T T) -8 NIL NIL) (-586 1382794 1383921 1384172 "LA" 1384653 NIL LA (NIL T T T) -8 NIL NIL) (-585 1381704 1381891 1382188 "KOVACIC" 1382594 NIL KOVACIC (NIL T T) -7 NIL NIL) (-584 1381539 1381563 1381604 "KONVERT" 1381666 NIL KONVERT (NIL T) -9 NIL NIL) (-583 1381374 1381398 1381439 "KOERCE" 1381501 NIL KOERCE (NIL T) -9 NIL NIL) (-582 1380876 1380957 1381087 "KERNEL2" 1381288 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-581 1378610 1379370 1379763 "KERNEL" 1380515 NIL KERNEL (NIL T) -8 NIL NIL) (-580 1372461 1377149 1377203 "KDAGG" 1377580 NIL KDAGG (NIL T T) -9 NIL 1377786) (-579 1371990 1372114 1372319 "KDAGG-" 1372324 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-578 1365167 1371651 1371806 "KAFILE" 1371868 NIL KAFILE (NIL T) -8 NIL NIL) (-577 1359654 1364678 1364906 "JORDAN" 1364988 NIL JORDAN (NIL T T) -8 NIL NIL) (-576 1359078 1359303 1359424 "JOINAST" 1359553 T JOINAST (NIL) -8 NIL NIL) (-575 1358807 1358866 1358953 "JAVACODE" 1359011 T JAVACODE (NIL) -8 NIL NIL) (-574 1355106 1357012 1357066 "IXAGG" 1357995 NIL IXAGG (NIL T T) -9 NIL 1358454) (-573 1354025 1354331 1354750 "IXAGG-" 1354755 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-572 1349605 1353947 1354006 "IVECTOR" 1354011 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-571 1348371 1348608 1348874 "ITUPLE" 1349372 NIL ITUPLE (NIL T) -8 NIL NIL) (-570 1346807 1346984 1347290 "ITRIGMNP" 1348193 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-569 1345552 1345756 1346039 "ITFUN3" 1346583 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-568 1345184 1345241 1345350 "ITFUN2" 1345489 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-567 1343021 1344046 1344345 "ITAYLOR" 1344918 NIL ITAYLOR (NIL T) -8 NIL NIL) (-566 1332015 1337167 1338327 "ISUPS" 1341894 NIL ISUPS (NIL T) -8 NIL NIL) (-565 1331119 1331259 1331495 "ISUMP" 1331862 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-564 1326383 1330920 1330999 "ISTRING" 1331072 NIL ISTRING (NIL NIL) -8 NIL NIL) (-563 1325593 1325674 1325890 "IRURPK" 1326297 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-562 1324529 1324730 1324970 "IRSN" 1325373 T IRSN (NIL) -7 NIL NIL) (-561 1322564 1322919 1323354 "IRRF2F" 1324167 NIL IRRF2F (NIL T) -7 NIL NIL) (-560 1322311 1322349 1322425 "IRREDFFX" 1322520 NIL IRREDFFX (NIL T) -7 NIL NIL) (-559 1320926 1321185 1321484 "IROOT" 1322044 NIL IROOT (NIL T) -7 NIL NIL) (-558 1320002 1320115 1320335 "IR2F" 1320809 NIL IR2F (NIL T T) -7 NIL NIL) (-557 1317615 1318110 1318676 "IR2" 1319480 NIL IR2 (NIL T T) -7 NIL NIL) (-556 1314253 1315304 1315994 "IR" 1316957 NIL IR (NIL T) -8 NIL NIL) (-555 1314044 1314078 1314138 "IPRNTPK" 1314213 T IPRNTPK (NIL) -7 NIL NIL) (-554 1310665 1313933 1314002 "IPF" 1314007 NIL IPF (NIL NIL) -8 NIL NIL) (-553 1309030 1310590 1310647 "IPADIC" 1310652 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-552 1308794 1308934 1308962 "IOBCON" 1308967 T IOBCON (NIL) -9 NIL 1308988) (-551 1308293 1308351 1308540 "INVLAPLA" 1308730 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-550 1297990 1300331 1302705 "INTTR" 1305969 NIL INTTR (NIL T T) -7 NIL NIL) (-549 1294338 1295079 1295942 "INTTOOLS" 1297176 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-548 1293924 1294015 1294132 "INTSLPE" 1294241 T INTSLPE (NIL) -7 NIL NIL) (-547 1291919 1293847 1293906 "INTRVL" 1293911 NIL INTRVL (NIL T) -8 NIL NIL) (-546 1289526 1290038 1290612 "INTRF" 1291404 NIL INTRF (NIL T) -7 NIL NIL) (-545 1288941 1289038 1289179 "INTRET" 1289424 NIL INTRET (NIL T) -7 NIL NIL) (-544 1286943 1287332 1287801 "INTRAT" 1288549 NIL INTRAT (NIL T T) -7 NIL NIL) (-543 1284176 1284759 1285384 "INTPM" 1286428 NIL INTPM (NIL T T) -7 NIL NIL) (-542 1280908 1281500 1282237 "INTPAF" 1283569 NIL INTPAF (NIL T T T) -7 NIL NIL) (-541 1276139 1277088 1278126 "INTPACK" 1279890 T INTPACK (NIL) -7 NIL NIL) (-540 1275391 1275543 1275751 "INTHERTR" 1275981 NIL INTHERTR (NIL T T) -7 NIL NIL) (-539 1274830 1274910 1275098 "INTHERAL" 1275305 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-538 1272676 1273119 1273576 "INTHEORY" 1274393 T INTHEORY (NIL) -7 NIL NIL) (-537 1264056 1265659 1267419 "INTG0" 1271046 NIL INTG0 (NIL T T T) -7 NIL NIL) (-536 1250329 1253694 1257079 "INTFTBL" 1260691 T INTFTBL (NIL) -8 NIL NIL) (-535 1249578 1249716 1249889 "INTFACT" 1250188 NIL INTFACT (NIL T) -7 NIL NIL) (-534 1246975 1247419 1247980 "INTEF" 1249134 NIL INTEF (NIL T T) -7 NIL NIL) (-533 1245477 1246182 1246210 "INTDOM" 1246511 T INTDOM (NIL) -9 NIL 1246718) (-532 1244846 1245020 1245262 "INTDOM-" 1245267 NIL INTDOM- (NIL T) -8 NIL NIL) (-531 1241381 1243267 1243321 "INTCAT" 1244120 NIL INTCAT (NIL T) -9 NIL 1244439) (-530 1240854 1240956 1241084 "INTBIT" 1241273 T INTBIT (NIL) -7 NIL NIL) (-529 1239529 1239683 1239996 "INTALG" 1240699 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-528 1238986 1239076 1239246 "INTAF" 1239433 NIL INTAF (NIL T T) -7 NIL NIL) (-527 1232442 1238796 1238936 "INTABL" 1238941 NIL INTABL (NIL T T T) -8 NIL NIL) (-526 1229344 1232171 1232298 "INT" 1232335 T INT (NIL) -8 NIL NIL) (-525 1224339 1227020 1227048 "INS" 1228016 T INS (NIL) -9 NIL 1228697) (-524 1221579 1222350 1223324 "INS-" 1223397 NIL INS- (NIL T) -8 NIL NIL) (-523 1220427 1220632 1220908 "INPSIGN" 1221354 NIL INPSIGN (NIL T T) -7 NIL NIL) (-522 1219545 1219662 1219859 "INPRODPF" 1220307 NIL INPRODPF (NIL T T) -7 NIL NIL) (-521 1218439 1218556 1218793 "INPRODFF" 1219425 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-520 1217439 1217591 1217851 "INNMFACT" 1218275 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-519 1216636 1216733 1216921 "INMODGCD" 1217338 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-518 1215145 1215389 1215713 "INFSP" 1216381 NIL INFSP (NIL T T T) -7 NIL NIL) (-517 1214329 1214446 1214629 "INFPROD0" 1215025 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-516 1213939 1213999 1214097 "INFORM1" 1214264 NIL INFORM1 (NIL T) -7 NIL NIL) (-515 1210950 1212108 1212599 "INFORM" 1213456 T INFORM (NIL) -8 NIL NIL) (-514 1210473 1210562 1210676 "INFINITY" 1210856 T INFINITY (NIL) -7 NIL NIL) (-513 1209090 1209339 1209660 "INEP" 1210221 NIL INEP (NIL T T T) -7 NIL NIL) (-512 1208366 1208987 1209052 "INDE" 1209057 NIL INDE (NIL T) -8 NIL NIL) (-511 1207930 1207998 1208115 "INCRMAPS" 1208293 NIL INCRMAPS (NIL T) -7 NIL NIL) (-510 1203241 1204166 1205110 "INBFF" 1207018 NIL INBFF (NIL T) -7 NIL NIL) (-509 1202910 1202986 1203014 "INBCON" 1203147 T INBCON (NIL) -9 NIL 1203225) (-508 1202750 1202785 1202861 "INBCON-" 1202866 NIL INBCON- (NIL T) -8 NIL NIL) (-507 1202269 1202471 1202563 "INAST" 1202678 T INAST (NIL) -8 NIL NIL) (-506 1201740 1201948 1202054 "IMPTAST" 1202183 T IMPTAST (NIL) -8 NIL NIL) (-505 1198233 1201584 1201688 "IMATRIX" 1201693 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-504 1196945 1197068 1197383 "IMATQF" 1198089 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-503 1195165 1195392 1195729 "IMATLIN" 1196701 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-502 1189793 1195089 1195147 "ILIST" 1195152 NIL ILIST (NIL T NIL) -8 NIL NIL) (-501 1187746 1189653 1189766 "IIARRAY2" 1189771 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-500 1183181 1187657 1187721 "IFF" 1187726 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-499 1182572 1182798 1182914 "IFAST" 1183085 T IFAST (NIL) -8 NIL NIL) (-498 1177615 1181864 1182052 "IFARRAY" 1182429 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-497 1176822 1177519 1177592 "IFAMON" 1177597 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-496 1176406 1176471 1176525 "IEVALAB" 1176732 NIL IEVALAB (NIL T T) -9 NIL NIL) (-495 1176081 1176149 1176309 "IEVALAB-" 1176314 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-494 1175358 1175970 1176045 "IDPOAMS" 1176050 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-493 1174692 1175247 1175322 "IDPOAM" 1175327 NIL IDPOAM (NIL T T) -8 NIL NIL) (-492 1174350 1174606 1174669 "IDPO" 1174674 NIL IDPO (NIL T T) -8 NIL NIL) (-491 1173435 1173685 1173738 "IDPC" 1174151 NIL IDPC (NIL T T) -9 NIL 1174300) (-490 1172931 1173327 1173400 "IDPAM" 1173405 NIL IDPAM (NIL T T) -8 NIL NIL) (-489 1172334 1172823 1172896 "IDPAG" 1172901 NIL IDPAG (NIL T T) -8 NIL NIL) (-488 1172082 1172249 1172299 "IDENT" 1172304 T IDENT (NIL) -8 NIL NIL) (-487 1168337 1169185 1170080 "IDECOMP" 1171239 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-486 1161210 1162260 1163307 "IDEAL" 1167373 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-485 1160374 1160486 1160685 "ICDEN" 1161094 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-484 1159473 1159854 1160001 "ICARD" 1160247 T ICARD (NIL) -8 NIL NIL) (-483 1157533 1157846 1158251 "IBPTOOLS" 1159150 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-482 1153167 1157153 1157266 "IBITS" 1157452 NIL IBITS (NIL NIL) -8 NIL NIL) (-481 1149890 1150466 1151161 "IBATOOL" 1152584 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-480 1147670 1148131 1148664 "IBACHIN" 1149425 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-479 1145547 1147516 1147619 "IARRAY2" 1147624 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-478 1141700 1145473 1145530 "IARRAY1" 1145535 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-477 1135710 1140118 1140596 "IAN" 1141242 T IAN (NIL) -8 NIL NIL) (-476 1135221 1135278 1135451 "IALGFACT" 1135647 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-475 1134749 1134862 1134890 "HYPCAT" 1135097 T HYPCAT (NIL) -9 NIL NIL) (-474 1134287 1134404 1134590 "HYPCAT-" 1134595 NIL HYPCAT- (NIL T) -8 NIL NIL) (-473 1133909 1134082 1134165 "HOSTNAME" 1134224 T HOSTNAME (NIL) -8 NIL NIL) (-472 1130588 1131919 1131960 "HOAGG" 1132941 NIL HOAGG (NIL T) -9 NIL 1133620) (-471 1129182 1129581 1130107 "HOAGG-" 1130112 NIL HOAGG- (NIL T T) -8 NIL NIL) (-470 1123098 1128623 1128789 "HEXADEC" 1129036 T HEXADEC (NIL) -8 NIL NIL) (-469 1121846 1122068 1122331 "HEUGCD" 1122875 NIL HEUGCD (NIL T) -7 NIL NIL) (-468 1120949 1121683 1121813 "HELLFDIV" 1121818 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-467 1119177 1120726 1120814 "HEAP" 1120893 NIL HEAP (NIL T) -8 NIL NIL) (-466 1118485 1118729 1118863 "HEADAST" 1119063 T HEADAST (NIL) -8 NIL NIL) (-465 1112418 1118400 1118462 "HDP" 1118467 NIL HDP (NIL NIL T) -8 NIL NIL) (-464 1106205 1112053 1112205 "HDMP" 1112319 NIL HDMP (NIL NIL T) -8 NIL NIL) (-463 1105530 1105669 1105833 "HB" 1106061 T HB (NIL) -7 NIL NIL) (-462 1099029 1105376 1105480 "HASHTBL" 1105485 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-461 1096851 1098657 1098836 "HACKPI" 1098870 T HACKPI (NIL) -8 NIL NIL) (-460 1092573 1096704 1096817 "GTSET" 1096822 NIL GTSET (NIL T T T T) -8 NIL NIL) (-459 1086101 1092451 1092549 "GSTBL" 1092554 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-458 1078416 1085132 1085397 "GSERIES" 1085892 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-457 1077583 1077974 1078002 "GROUP" 1078205 T GROUP (NIL) -9 NIL 1078339) (-456 1076949 1077108 1077359 "GROUP-" 1077364 NIL GROUP- (NIL T) -8 NIL NIL) (-455 1075318 1075637 1076024 "GROEBSOL" 1076626 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-454 1074258 1074520 1074571 "GRMOD" 1075100 NIL GRMOD (NIL T T) -9 NIL 1075268) (-453 1074026 1074062 1074190 "GRMOD-" 1074195 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-452 1069351 1070380 1071380 "GRIMAGE" 1073046 T GRIMAGE (NIL) -8 NIL NIL) (-451 1067818 1068078 1068402 "GRDEF" 1069047 T GRDEF (NIL) -7 NIL NIL) (-450 1067262 1067378 1067519 "GRAY" 1067697 T GRAY (NIL) -7 NIL NIL) (-449 1066495 1066875 1066926 "GRALG" 1067079 NIL GRALG (NIL T T) -9 NIL 1067171) (-448 1066156 1066229 1066392 "GRALG-" 1066397 NIL GRALG- (NIL T T T) -8 NIL NIL) (-447 1062960 1065741 1065919 "GPOLSET" 1066063 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-446 1062316 1062373 1062630 "GOSPER" 1062897 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-445 1058075 1058754 1059280 "GMODPOL" 1062015 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-444 1057080 1057264 1057502 "GHENSEL" 1057887 NIL GHENSEL (NIL T T) -7 NIL NIL) (-443 1051146 1051989 1053015 "GENUPS" 1056164 NIL GENUPS (NIL T T) -7 NIL NIL) (-442 1050843 1050894 1050983 "GENUFACT" 1051089 NIL GENUFACT (NIL T) -7 NIL NIL) (-441 1050255 1050332 1050497 "GENPGCD" 1050761 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-440 1049729 1049764 1049977 "GENMFACT" 1050214 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-439 1048297 1048552 1048859 "GENEEZ" 1049472 NIL GENEEZ (NIL T T) -7 NIL NIL) (-438 1042246 1047908 1048070 "GDMP" 1048220 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-437 1031645 1036017 1037123 "GCNAALG" 1041229 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-436 1030107 1030935 1030963 "GCDDOM" 1031218 T GCDDOM (NIL) -9 NIL 1031375) (-435 1029577 1029704 1029919 "GCDDOM-" 1029924 NIL GCDDOM- (NIL T) -8 NIL NIL) (-434 1018197 1020523 1022915 "GBINTERN" 1027268 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-433 1016034 1016326 1016747 "GBF" 1017872 NIL GBF (NIL T T T T) -7 NIL NIL) (-432 1014815 1014980 1015247 "GBEUCLID" 1015850 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-431 1013487 1013672 1013976 "GB" 1014594 NIL GB (NIL T T T T) -7 NIL NIL) (-430 1012836 1012961 1013110 "GAUSSFAC" 1013358 T GAUSSFAC (NIL) -7 NIL NIL) (-429 1011203 1011505 1011819 "GALUTIL" 1012555 NIL GALUTIL (NIL T) -7 NIL NIL) (-428 1009511 1009785 1010109 "GALPOLYU" 1010930 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-427 1006888 1007178 1007584 "GALFACTU" 1009208 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-426 998694 1000193 1001801 "GALFACT" 1005320 NIL GALFACT (NIL T) -7 NIL NIL) (-425 996082 996740 996768 "FVFUN" 997924 T FVFUN (NIL) -9 NIL 998644) (-424 995348 995530 995558 "FVC" 995849 T FVC (NIL) -9 NIL 996032) (-423 994990 995145 995226 "FUNCTION" 995300 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-422 993808 994291 994494 "FTEM" 994807 T FTEM (NIL) -8 NIL NIL) (-421 991490 992038 992524 "FT" 993342 T FT (NIL) -8 NIL NIL) (-420 989755 990043 990445 "FSUPFACT" 991182 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-419 988152 988441 988773 "FST" 989443 T FST (NIL) -8 NIL NIL) (-418 987327 987433 987627 "FSRED" 988034 NIL FSRED (NIL T T) -7 NIL NIL) (-417 986006 986261 986615 "FSPRMELT" 987042 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-416 983091 983529 984028 "FSPECF" 985569 NIL FSPECF (NIL T T) -7 NIL NIL) (-415 982607 982661 982837 "FSINT" 983032 NIL FSINT (NIL T T) -7 NIL NIL) (-414 980934 981600 981903 "FSERIES" 982386 NIL FSERIES (NIL T T) -8 NIL NIL) (-413 979952 980068 980298 "FSCINT" 980814 NIL FSCINT (NIL T T) -7 NIL NIL) (-412 978994 979137 979364 "FSAGG2" 979805 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-411 975228 977938 977979 "FSAGG" 978349 NIL FSAGG (NIL T) -9 NIL 978608) (-410 972990 973591 974387 "FSAGG-" 974482 NIL FSAGG- (NIL T T) -8 NIL NIL) (-409 970649 970928 971481 "FS2UPS" 972708 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-408 969509 969680 969988 "FS2EXPXP" 970474 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-407 969091 969134 969289 "FS2" 969460 NIL FS2 (NIL T T T T) -7 NIL NIL) (-406 951588 959990 960030 "FS" 963878 NIL FS (NIL T) -9 NIL 966162) (-405 940319 943282 947311 "FS-" 947608 NIL FS- (NIL T T) -8 NIL NIL) (-404 939745 939860 940012 "FRUTIL" 940199 NIL FRUTIL (NIL T) -7 NIL NIL) (-403 934852 937463 937503 "FRNAALG" 938899 NIL FRNAALG (NIL T) -9 NIL 939506) (-402 930581 931635 932893 "FRNAALG-" 933643 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-401 930219 930262 930389 "FRNAAF2" 930532 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-400 928630 929076 929370 "FRMOD" 930032 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-399 927829 927916 928203 "FRIDEAL2" 928537 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-398 925616 926220 926536 "FRIDEAL" 927620 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-397 924881 925282 925323 "FRETRCT" 925328 NIL FRETRCT (NIL T) -9 NIL 925499) (-396 924014 924238 924582 "FRETRCT-" 924587 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-395 921264 922440 922499 "FRAMALG" 923381 NIL FRAMALG (NIL T T) -9 NIL 923673) (-394 919398 919853 920483 "FRAMALG-" 920706 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-393 919034 919091 919198 "FRAC2" 919335 NIL FRAC2 (NIL T T) -7 NIL NIL) (-392 913022 918509 918785 "FRAC" 918790 NIL FRAC (NIL T) -8 NIL NIL) (-391 912658 912715 912822 "FR2" 912959 NIL FR2 (NIL T T) -7 NIL NIL) (-390 904239 908238 909567 "FR" 911361 NIL FR (NIL T) -8 NIL NIL) (-389 898975 901819 901847 "FPS" 902966 T FPS (NIL) -9 NIL 903523) (-388 898424 898533 898697 "FPS-" 898843 NIL FPS- (NIL T) -8 NIL NIL) (-387 895932 897565 897593 "FPC" 897818 T FPC (NIL) -9 NIL 897960) (-386 895725 895765 895862 "FPC-" 895867 NIL FPC- (NIL T) -8 NIL NIL) (-385 894603 895213 895254 "FPATMAB" 895259 NIL FPATMAB (NIL T) -9 NIL 895411) (-384 892303 892779 893205 "FPARFRAC" 894240 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-383 887735 888234 888916 "FORTRAN" 891735 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-382 885411 885973 886001 "FORTFN" 887061 T FORTFN (NIL) -9 NIL 887685) (-381 885175 885225 885253 "FORTCAT" 885312 T FORTCAT (NIL) -9 NIL 885374) (-380 882891 883391 883930 "FORT" 884656 T FORT (NIL) -7 NIL NIL) (-379 882679 882709 882778 "FORMULA1" 882855 NIL FORMULA1 (NIL T) -7 NIL NIL) (-378 880739 881222 881621 "FORMULA" 882300 T FORMULA (NIL) -8 NIL NIL) (-377 880262 880314 880487 "FORDER" 880681 NIL FORDER (NIL T T T T) -7 NIL NIL) (-376 879358 879522 879715 "FOP" 880089 T FOP (NIL) -7 NIL NIL) (-375 877966 878638 878812 "FNLA" 879240 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-374 876634 877023 877051 "FNCAT" 877623 T FNCAT (NIL) -9 NIL 877916) (-373 876200 876593 876621 "FNAME" 876626 T FNAME (NIL) -8 NIL NIL) (-372 874900 875829 875857 "FMTC" 875862 T FMTC (NIL) -9 NIL 875897) (-371 871264 872425 873053 "FMONOID" 874305 NIL FMONOID (NIL T) -8 NIL NIL) (-370 868688 869334 869362 "FMFUN" 870506 T FMFUN (NIL) -9 NIL 871214) (-369 865902 866736 866790 "FMCAT" 867985 NIL FMCAT (NIL T T) -9 NIL 868479) (-368 865171 865352 865380 "FMC" 865670 T FMC (NIL) -9 NIL 865852) (-367 864064 864937 865037 "FM1" 865116 NIL FM1 (NIL T T) -8 NIL NIL) (-366 863283 863806 863955 "FM" 863960 NIL FM (NIL T T) -8 NIL NIL) (-365 861057 861473 861967 "FLOATRP" 862834 NIL FLOATRP (NIL T) -7 NIL NIL) (-364 858495 858995 859573 "FLOATCP" 860524 NIL FLOATCP (NIL T) -7 NIL NIL) (-363 852050 856151 856781 "FLOAT" 857885 T FLOAT (NIL) -8 NIL NIL) (-362 850879 851683 851724 "FLINEXP" 851729 NIL FLINEXP (NIL T) -9 NIL 851822) (-361 850033 850268 850596 "FLINEXP-" 850601 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-360 849109 849253 849477 "FLASORT" 849885 NIL FLASORT (NIL T T) -7 NIL NIL) (-359 846326 847168 847220 "FLALG" 848447 NIL FLALG (NIL T T) -9 NIL 848914) (-358 845368 845511 845738 "FLAGG2" 846179 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-357 839152 842854 842895 "FLAGG" 844157 NIL FLAGG (NIL T) -9 NIL 844809) (-356 837878 838217 838707 "FLAGG-" 838712 NIL FLAGG- (NIL T T) -8 NIL NIL) (-355 834891 835865 835924 "FINRALG" 837052 NIL FINRALG (NIL T T) -9 NIL 837560) (-354 834051 834280 834619 "FINRALG-" 834624 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-353 833457 833670 833698 "FINITE" 833894 T FINITE (NIL) -9 NIL 834001) (-352 825915 828076 828116 "FINAALG" 831783 NIL FINAALG (NIL T) -9 NIL 833236) (-351 821256 822297 823441 "FINAALG-" 824820 NIL FINAALG- (NIL T T) -8 NIL NIL) (-350 819940 820252 820306 "FILECAT" 820990 NIL FILECAT (NIL T T) -9 NIL 821206) (-349 819335 819695 819798 "FILE" 819870 NIL FILE (NIL T) -8 NIL NIL) (-348 817257 818749 818777 "FIELD" 818817 T FIELD (NIL) -9 NIL 818897) (-347 815877 816262 816773 "FIELD-" 816778 NIL FIELD- (NIL T) -8 NIL NIL) (-346 813757 814514 814860 "FGROUP" 815564 NIL FGROUP (NIL T) -8 NIL NIL) (-345 812847 813011 813231 "FGLMICPK" 813589 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-344 808716 812772 812829 "FFX" 812834 NIL FFX (NIL T NIL) -8 NIL NIL) (-343 808317 808378 808513 "FFSLPE" 808649 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-342 807821 807857 808066 "FFPOLY2" 808275 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-341 803814 804593 805389 "FFPOLY" 807057 NIL FFPOLY (NIL T) -7 NIL NIL) (-340 799702 803733 803796 "FFP" 803801 NIL FFP (NIL T NIL) -8 NIL NIL) (-339 794865 799045 799235 "FFNBX" 799556 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-338 789841 794000 794258 "FFNBP" 794719 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-337 784511 789125 789336 "FFNB" 789674 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-336 783343 783541 783856 "FFINTBAS" 784308 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-335 779629 781802 781830 "FFIELDC" 782450 T FFIELDC (NIL) -9 NIL 782826) (-334 778292 778662 779159 "FFIELDC-" 779164 NIL FFIELDC- (NIL T) -8 NIL NIL) (-333 777862 777907 778031 "FFHOM" 778234 NIL FFHOM (NIL T T T) -7 NIL NIL) (-332 775560 776044 776561 "FFF" 777377 NIL FFF (NIL T) -7 NIL NIL) (-331 771215 775302 775403 "FFCGX" 775503 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-330 766884 770947 771054 "FFCGP" 771158 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-329 762104 766611 766719 "FFCG" 766820 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-328 761515 761558 761793 "FFCAT2" 762055 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-327 743592 752614 752700 "FFCAT" 757865 NIL FFCAT (NIL T T T) -9 NIL 759316) (-326 738790 739837 741151 "FFCAT-" 742381 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-325 734225 738701 738765 "FF" 738770 NIL FF (NIL NIL NIL) -8 NIL NIL) (-324 723471 727215 728432 "FEXPR" 733080 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-323 722471 722906 722947 "FEVALAB" 723031 NIL FEVALAB (NIL T) -9 NIL 723292) (-322 721630 721840 722178 "FEVALAB-" 722183 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-321 718696 719411 719526 "FDIVCAT" 721094 NIL FDIVCAT (NIL T T T T) -9 NIL 721531) (-320 718458 718485 718655 "FDIVCAT-" 718660 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-319 717678 717765 718042 "FDIV2" 718365 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-318 716271 717061 717264 "FDIV" 717577 NIL FDIV (NIL T T T T) -8 NIL NIL) (-317 714957 715216 715505 "FCPAK1" 716002 T FCPAK1 (NIL) -7 NIL NIL) (-316 714085 714457 714598 "FCOMP" 714848 NIL FCOMP (NIL T) -8 NIL NIL) (-315 697720 701134 704695 "FC" 710544 T FC (NIL) -8 NIL NIL) (-314 690377 694356 694396 "FAXF" 696198 NIL FAXF (NIL T) -9 NIL 696889) (-313 687656 688311 689136 "FAXF-" 689601 NIL FAXF- (NIL T T) -8 NIL NIL) (-312 682756 687032 687208 "FARRAY" 687513 NIL FARRAY (NIL T) -8 NIL NIL) (-311 678180 680200 680253 "FAMR" 681276 NIL FAMR (NIL T T) -9 NIL 681736) (-310 677070 677372 677807 "FAMR-" 677812 NIL FAMR- (NIL T T T) -8 NIL NIL) (-309 676266 676992 677045 "FAMONOID" 677050 NIL FAMONOID (NIL T) -8 NIL NIL) (-308 674098 674782 674835 "FAMONC" 675776 NIL FAMONC (NIL T T) -9 NIL 676161) (-307 672790 673852 673989 "FAGROUP" 673994 NIL FAGROUP (NIL T) -8 NIL NIL) (-306 670585 670904 671307 "FACUTIL" 672471 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-305 669684 669869 670091 "FACTFUNC" 670395 NIL FACTFUNC (NIL T) -7 NIL NIL) (-304 662091 668935 669147 "EXPUPXS" 669540 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-303 659574 660114 660700 "EXPRTUBE" 661525 T EXPRTUBE (NIL) -7 NIL NIL) (-302 655768 656360 657097 "EXPRODE" 658913 NIL EXPRODE (NIL T T) -7 NIL NIL) (-301 650196 650783 651595 "EXPR2UPS" 655066 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-300 649832 649889 649996 "EXPR2" 650133 NIL EXPR2 (NIL T T) -7 NIL NIL) (-299 635284 648491 648917 "EXPR" 649438 NIL EXPR (NIL T) -8 NIL NIL) (-298 626729 634421 634716 "EXPEXPAN" 635122 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-297 626378 626554 626622 "EXITAST" 626681 T EXITAST (NIL) -8 NIL NIL) (-296 626205 626335 626364 "EXIT" 626369 T EXIT (NIL) -8 NIL NIL) (-295 625832 625894 626007 "EVALCYC" 626137 NIL EVALCYC (NIL T) -7 NIL NIL) (-294 625373 625491 625532 "EVALAB" 625702 NIL EVALAB (NIL T) -9 NIL 625806) (-293 624854 624976 625197 "EVALAB-" 625202 NIL EVALAB- (NIL T T) -8 NIL NIL) (-292 622357 623625 623653 "EUCDOM" 624208 T EUCDOM (NIL) -9 NIL 624558) (-291 620762 621204 621794 "EUCDOM-" 621799 NIL EUCDOM- (NIL T) -8 NIL NIL) (-290 620394 620451 620560 "ESTOOLS2" 620699 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-289 620145 620187 620267 "ESTOOLS1" 620346 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-288 607723 610471 613211 "ESTOOLS" 617425 T ESTOOLS (NIL) -7 NIL NIL) (-287 607468 607500 607582 "ESCONT1" 607685 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-286 603843 604603 605383 "ESCONT" 606708 T ESCONT (NIL) -7 NIL NIL) (-285 603518 603568 603668 "ES2" 603787 NIL ES2 (NIL T T) -7 NIL NIL) (-284 603148 603206 603315 "ES1" 603454 NIL ES1 (NIL T T) -7 NIL NIL) (-283 597080 598806 598834 "ES" 601600 T ES (NIL) -9 NIL 603007) (-282 592027 593314 595131 "ES-" 595295 NIL ES- (NIL T) -8 NIL NIL) (-281 591243 591372 591548 "ERROR" 591871 T ERROR (NIL) -7 NIL NIL) (-280 584748 591102 591193 "EQTBL" 591198 NIL EQTBL (NIL T T) -8 NIL NIL) (-279 584380 584437 584546 "EQ2" 584685 NIL EQ2 (NIL T T) -7 NIL NIL) (-278 576937 579694 581143 "EQ" 582964 NIL -3849 (NIL T) -8 NIL NIL) (-277 572229 573275 574368 "EP" 575876 NIL EP (NIL T) -7 NIL NIL) (-276 570811 571112 571429 "ENV" 571932 T ENV (NIL) -8 NIL NIL) (-275 570010 570530 570558 "ENTIRER" 570563 T ENTIRER (NIL) -9 NIL 570609) (-274 566568 568019 568389 "EMR" 569809 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-273 565712 565897 565951 "ELTAGG" 566331 NIL ELTAGG (NIL T T) -9 NIL 566542) (-272 565431 565493 565634 "ELTAGG-" 565639 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-271 565220 565249 565303 "ELTAB" 565387 NIL ELTAB (NIL T T) -9 NIL NIL) (-270 564346 564492 564691 "ELFUTS" 565071 NIL ELFUTS (NIL T T) -7 NIL NIL) (-269 564088 564144 564172 "ELEMFUN" 564277 T ELEMFUN (NIL) -9 NIL NIL) (-268 563958 563979 564047 "ELEMFUN-" 564052 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-267 558849 562058 562099 "ELAGG" 563039 NIL ELAGG (NIL T) -9 NIL 563502) (-266 557134 557568 558231 "ELAGG-" 558236 NIL ELAGG- (NIL T T) -8 NIL NIL) (-265 555791 556071 556366 "ELABEXPR" 556859 T ELABEXPR (NIL) -8 NIL NIL) (-264 548784 550458 551285 "EFUPXS" 555067 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-263 542361 544035 544845 "EFULS" 548060 NIL EFULS (NIL T T T) -8 NIL NIL) (-262 539792 540150 540628 "EFSTRUC" 541993 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-261 528864 530429 531989 "EF" 538307 NIL EF (NIL T T) -7 NIL NIL) (-260 527965 528349 528498 "EAB" 528735 T EAB (NIL) -8 NIL NIL) (-259 527176 527924 527952 "E04UCFA" 527957 T E04UCFA (NIL) -8 NIL NIL) (-258 526387 527135 527163 "E04NAFA" 527168 T E04NAFA (NIL) -8 NIL NIL) (-257 525598 526346 526374 "E04MBFA" 526379 T E04MBFA (NIL) -8 NIL NIL) (-256 524809 525557 525585 "E04JAFA" 525590 T E04JAFA (NIL) -8 NIL NIL) (-255 524022 524768 524796 "E04GCFA" 524801 T E04GCFA (NIL) -8 NIL NIL) (-254 523235 523981 524009 "E04FDFA" 524014 T E04FDFA (NIL) -8 NIL NIL) (-253 522446 523194 523222 "E04DGFA" 523227 T E04DGFA (NIL) -8 NIL NIL) (-252 516631 517976 519338 "E04AGNT" 521104 T E04AGNT (NIL) -7 NIL NIL) (-251 515357 515837 515877 "DVARCAT" 516352 NIL DVARCAT (NIL T) -9 NIL 516550) (-250 514561 514773 515087 "DVARCAT-" 515092 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-249 507509 514362 514490 "DSMP" 514495 NIL DSMP (NIL T T T) -8 NIL NIL) (-248 507174 507233 507331 "DROPT1" 507444 NIL DROPT1 (NIL T) -7 NIL NIL) (-247 502289 503415 504552 "DROPT0" 506057 T DROPT0 (NIL) -7 NIL NIL) (-246 497099 498234 499302 "DROPT" 501241 T DROPT (NIL) -8 NIL NIL) (-245 495444 495769 496155 "DRAWPT" 496733 T DRAWPT (NIL) -7 NIL NIL) (-244 495077 495130 495248 "DRAWHACK" 495385 NIL DRAWHACK (NIL T) -7 NIL NIL) (-243 493808 494077 494368 "DRAWCX" 494806 T DRAWCX (NIL) -7 NIL NIL) (-242 493326 493394 493544 "DRAWCURV" 493734 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-241 483797 485756 487871 "DRAWCFUN" 491231 T DRAWCFUN (NIL) -7 NIL NIL) (-240 478384 479307 480386 "DRAW" 482771 NIL DRAW (NIL T) -7 NIL NIL) (-239 475197 477079 477120 "DQAGG" 477749 NIL DQAGG (NIL T) -9 NIL 478022) (-238 463765 470421 470504 "DPOLCAT" 472356 NIL DPOLCAT (NIL T T T T) -9 NIL 472900) (-237 458655 459984 461925 "DPOLCAT-" 461930 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-236 451823 458516 458614 "DPMO" 458619 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-235 444894 451603 451770 "DPMM" 451775 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-234 444314 444517 444631 "DOMAIN" 444800 T DOMAIN (NIL) -8 NIL NIL) (-233 438101 443949 444101 "DMP" 444215 NIL DMP (NIL NIL T) -8 NIL NIL) (-232 437701 437757 437901 "DLP" 438039 NIL DLP (NIL T) -7 NIL NIL) (-231 431347 436802 437029 "DLIST" 437506 NIL DLIST (NIL T) -8 NIL NIL) (-230 428194 430202 430243 "DLAGG" 430793 NIL DLAGG (NIL T) -9 NIL 431022) (-229 427044 427674 427702 "DIVRING" 427794 T DIVRING (NIL) -9 NIL 427877) (-228 426281 426471 426771 "DIVRING-" 426776 NIL DIVRING- (NIL T) -8 NIL NIL) (-227 424383 424740 425146 "DISPLAY" 425895 T DISPLAY (NIL) -7 NIL NIL) (-226 423231 423434 423699 "DIRPROD2" 424176 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-225 417186 423145 423208 "DIRPROD" 423213 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-224 406742 412681 412734 "DIRPCAT" 413144 NIL DIRPCAT (NIL NIL T) -9 NIL 413984) (-223 404068 404710 405591 "DIRPCAT-" 405928 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-222 403355 403515 403701 "DIOSP" 403902 T DIOSP (NIL) -7 NIL NIL) (-221 400057 402267 402308 "DIOPS" 402742 NIL DIOPS (NIL T) -9 NIL 402971) (-220 399606 399720 399911 "DIOPS-" 399916 NIL DIOPS- (NIL T T) -8 NIL NIL) (-219 398518 399112 399140 "DIFRING" 399327 T DIFRING (NIL) -9 NIL 399437) (-218 398164 398241 398393 "DIFRING-" 398398 NIL DIFRING- (NIL T) -8 NIL NIL) (-217 395989 397227 397268 "DIFEXT" 397631 NIL DIFEXT (NIL T) -9 NIL 397925) (-216 394274 394702 395368 "DIFEXT-" 395373 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-215 391596 393806 393847 "DIAGG" 393852 NIL DIAGG (NIL T) -9 NIL 393872) (-214 390980 391137 391389 "DIAGG-" 391394 NIL DIAGG- (NIL T T) -8 NIL NIL) (-213 386444 389939 390216 "DHMATRIX" 390749 NIL DHMATRIX (NIL T) -8 NIL NIL) (-212 382056 382965 383975 "DFSFUN" 385454 T DFSFUN (NIL) -7 NIL NIL) (-211 376911 380770 381135 "DFLOAT" 381711 T DFLOAT (NIL) -8 NIL NIL) (-210 375144 375425 375820 "DFINTTLS" 376619 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-209 372211 373167 373566 "DERHAM" 374811 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-208 370060 371986 372075 "DEQUEUE" 372155 NIL DEQUEUE (NIL T) -8 NIL NIL) (-207 369275 369408 369604 "DEGRED" 369922 NIL DEGRED (NIL T T) -7 NIL NIL) (-206 365855 366555 367362 "DEFINTRF" 368548 NIL DEFINTRF (NIL T) -7 NIL NIL) (-205 363498 363939 364509 "DEFINTEF" 365402 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-204 357414 362939 363105 "DECIMAL" 363352 T DECIMAL (NIL) -8 NIL NIL) (-203 354926 355384 355890 "DDFACT" 356958 NIL DDFACT (NIL T T) -7 NIL NIL) (-202 354522 354565 354716 "DBLRESP" 354877 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-201 352232 352566 352935 "DBASE" 354280 NIL DBASE (NIL T) -8 NIL NIL) (-200 351501 351712 351858 "DATABUF" 352131 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-199 350635 351460 351488 "D03FAFA" 351493 T D03FAFA (NIL) -8 NIL NIL) (-198 349770 350594 350622 "D03EEFA" 350627 T D03EEFA (NIL) -8 NIL NIL) (-197 347720 348186 348675 "D03AGNT" 349301 T D03AGNT (NIL) -7 NIL NIL) (-196 347037 347679 347707 "D02EJFA" 347712 T D02EJFA (NIL) -8 NIL NIL) (-195 346354 346996 347024 "D02CJFA" 347029 T D02CJFA (NIL) -8 NIL NIL) (-194 345671 346313 346341 "D02BHFA" 346346 T D02BHFA (NIL) -8 NIL NIL) (-193 344988 345630 345658 "D02BBFA" 345663 T D02BBFA (NIL) -8 NIL NIL) (-192 338186 339774 341380 "D02AGNT" 343402 T D02AGNT (NIL) -7 NIL NIL) (-191 335955 336477 337023 "D01WGTS" 337660 T D01WGTS (NIL) -7 NIL NIL) (-190 335056 335914 335942 "D01TRNS" 335947 T D01TRNS (NIL) -8 NIL NIL) (-189 334157 335015 335043 "D01GBFA" 335048 T D01GBFA (NIL) -8 NIL NIL) (-188 333258 334116 334144 "D01FCFA" 334149 T D01FCFA (NIL) -8 NIL NIL) (-187 332359 333217 333245 "D01ASFA" 333250 T D01ASFA (NIL) -8 NIL NIL) (-186 331460 332318 332346 "D01AQFA" 332351 T D01AQFA (NIL) -8 NIL NIL) (-185 330561 331419 331447 "D01APFA" 331452 T D01APFA (NIL) -8 NIL NIL) (-184 329662 330520 330548 "D01ANFA" 330553 T D01ANFA (NIL) -8 NIL NIL) (-183 328763 329621 329649 "D01AMFA" 329654 T D01AMFA (NIL) -8 NIL NIL) (-182 327864 328722 328750 "D01ALFA" 328755 T D01ALFA (NIL) -8 NIL NIL) (-181 326965 327823 327851 "D01AKFA" 327856 T D01AKFA (NIL) -8 NIL NIL) (-180 326066 326924 326952 "D01AJFA" 326957 T D01AJFA (NIL) -8 NIL NIL) (-179 319370 320919 322478 "D01AGNT" 324527 T D01AGNT (NIL) -7 NIL NIL) (-178 318707 318835 318987 "CYCLOTOM" 319238 T CYCLOTOM (NIL) -7 NIL NIL) (-177 315442 316155 316882 "CYCLES" 318000 T CYCLES (NIL) -7 NIL NIL) (-176 314754 314888 315059 "CVMP" 315303 NIL CVMP (NIL T) -7 NIL NIL) (-175 312535 312793 313168 "CTRIGMNP" 314482 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-174 312046 312235 312334 "CTORCALL" 312456 T CTORCALL (NIL) -8 NIL NIL) (-173 311420 311519 311672 "CSTTOOLS" 311943 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-172 307219 307876 308634 "CRFP" 310732 NIL CRFP (NIL T T) -7 NIL NIL) (-171 306739 306940 307032 "CRCAST" 307147 T CRCAST (NIL) -8 NIL NIL) (-170 305786 305971 306199 "CRAPACK" 306543 NIL CRAPACK (NIL T) -7 NIL NIL) (-169 305170 305271 305475 "CPMATCH" 305662 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-168 304895 304923 305029 "CPIMA" 305136 NIL CPIMA (NIL T T T) -7 NIL NIL) (-167 301259 301931 302649 "COORDSYS" 304230 NIL COORDSYS (NIL T) -7 NIL NIL) (-166 300643 300772 300922 "CONTOUR" 301129 T CONTOUR (NIL) -8 NIL NIL) (-165 296571 298646 299138 "CONTFRAC" 300183 NIL CONTFRAC (NIL T) -8 NIL NIL) (-164 296451 296472 296500 "CONDUIT" 296537 T CONDUIT (NIL) -9 NIL NIL) (-163 295644 296164 296192 "COMRING" 296197 T COMRING (NIL) -9 NIL 296249) (-162 294725 295002 295186 "COMPPROP" 295480 T COMPPROP (NIL) -8 NIL NIL) (-161 294386 294421 294549 "COMPLPAT" 294684 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-160 294022 294079 294186 "COMPLEX2" 294323 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-159 284104 293831 293940 "COMPLEX" 293945 NIL COMPLEX (NIL T) -8 NIL NIL) (-158 283822 283857 283955 "COMPFACT" 284063 NIL COMPFACT (NIL T T) -7 NIL NIL) (-157 268239 278441 278481 "COMPCAT" 279485 NIL COMPCAT (NIL T) -9 NIL 280880) (-156 257775 260692 264312 "COMPCAT-" 264668 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-155 257504 257532 257635 "COMMUPC" 257741 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-154 257299 257332 257391 "COMMONOP" 257465 T COMMONOP (NIL) -7 NIL NIL) (-153 256882 257050 257137 "COMM" 257232 T COMM (NIL) -8 NIL NIL) (-152 256131 256325 256353 "COMBOPC" 256691 T COMBOPC (NIL) -9 NIL 256866) (-151 255027 255237 255479 "COMBINAT" 255921 NIL COMBINAT (NIL T) -7 NIL NIL) (-150 251225 251798 252438 "COMBF" 254449 NIL COMBF (NIL T T) -7 NIL NIL) (-149 250011 250341 250576 "COLOR" 251010 T COLOR (NIL) -8 NIL NIL) (-148 249651 249698 249823 "CMPLXRT" 249958 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-147 245153 246181 247261 "CLIP" 248591 T CLIP (NIL) -7 NIL NIL) (-146 243535 244259 244498 "CLIF" 244980 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-145 239757 241681 241722 "CLAGG" 242651 NIL CLAGG (NIL T) -9 NIL 243187) (-144 238179 238636 239219 "CLAGG-" 239224 NIL CLAGG- (NIL T T) -8 NIL NIL) (-143 237723 237808 237948 "CINTSLPE" 238088 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-142 235224 235695 236243 "CHVAR" 237251 NIL CHVAR (NIL T T T) -7 NIL NIL) (-141 234487 235007 235035 "CHARZ" 235040 T CHARZ (NIL) -9 NIL 235055) (-140 234241 234281 234359 "CHARPOL" 234441 NIL CHARPOL (NIL T) -7 NIL NIL) (-139 233388 233941 233969 "CHARNZ" 234016 T CHARNZ (NIL) -9 NIL 234072) (-138 231413 232078 232413 "CHAR" 233073 T CHAR (NIL) -8 NIL NIL) (-137 231139 231200 231228 "CFCAT" 231339 T CFCAT (NIL) -9 NIL NIL) (-136 230384 230495 230677 "CDEN" 231023 NIL CDEN (NIL T T T) -7 NIL NIL) (-135 226376 229537 229817 "CCLASS" 230124 T CCLASS (NIL) -8 NIL NIL) (-134 226295 226321 226356 "CATEGORY" 226361 T -10 (NIL) -8 NIL NIL) (-133 225403 225551 225772 "CARTEN2" 226142 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-132 220455 221432 222185 "CARTEN" 224706 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-131 218799 219607 219863 "CARD" 220219 T CARD (NIL) -8 NIL NIL) (-130 218171 218499 218527 "CACHSET" 218659 T CACHSET (NIL) -9 NIL 218736) (-129 217667 217963 217991 "CABMON" 218041 T CABMON (NIL) -9 NIL 218097) (-128 213615 217614 217648 "BYTEARY" 217653 T BYTEARY (NIL) -8 NIL NIL) (-127 212783 213162 213305 "BYTE" 213492 T BYTE (NIL) -8 NIL NIL) (-126 210342 212475 212582 "BTREE" 212709 NIL BTREE (NIL T) -8 NIL NIL) (-125 207842 209990 210112 "BTOURN" 210252 NIL BTOURN (NIL T) -8 NIL NIL) (-124 205262 207313 207354 "BTCAT" 207422 NIL BTCAT (NIL T) -9 NIL 207499) (-123 204929 205009 205158 "BTCAT-" 205163 NIL BTCAT- (NIL T T) -8 NIL NIL) (-122 200221 204072 204100 "BTAGG" 204322 T BTAGG (NIL) -9 NIL 204483) (-121 199711 199836 200042 "BTAGG-" 200047 NIL BTAGG- (NIL T) -8 NIL NIL) (-120 196757 198989 199204 "BSTREE" 199528 NIL BSTREE (NIL T) -8 NIL NIL) (-119 195895 196021 196205 "BRILL" 196613 NIL BRILL (NIL T) -7 NIL NIL) (-118 192597 194623 194664 "BRAGG" 195313 NIL BRAGG (NIL T) -9 NIL 195570) (-117 191129 191534 192088 "BRAGG-" 192093 NIL BRAGG- (NIL T T) -8 NIL NIL) (-116 184423 190475 190659 "BPADICRT" 190977 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-115 182775 184360 184405 "BPADIC" 184410 NIL BPADIC (NIL NIL) -8 NIL NIL) (-114 182475 182505 182618 "BOUNDZRO" 182739 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-113 180096 180540 181060 "BOP1" 181988 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175611 176702 177569 "BOP" 179249 T BOP (NIL) -8 NIL NIL) (-111 174335 175021 175221 "BOOLEAN" 175431 T BOOLEAN (NIL) -8 NIL NIL) (-110 173697 174075 174129 "BMODULE" 174134 NIL BMODULE (NIL T T) -9 NIL 174199) (-109 169527 173495 173568 "BITS" 173644 T BITS (NIL) -8 NIL NIL) (-108 168624 169059 169211 "BINFILE" 169395 T BINFILE (NIL) -8 NIL NIL) (-107 168036 168158 168300 "BINDING" 168502 T BINDING (NIL) -8 NIL NIL) (-106 161956 167480 167645 "BINARY" 167891 T BINARY (NIL) -8 NIL NIL) (-105 159783 161211 161252 "BGAGG" 161512 NIL BGAGG (NIL T) -9 NIL 161649) (-104 159614 159646 159737 "BGAGG-" 159742 NIL BGAGG- (NIL T T) -8 NIL NIL) (-103 158712 158998 159203 "BFUNCT" 159429 T BFUNCT (NIL) -8 NIL NIL) (-102 157396 157577 157865 "BEZOUT" 158536 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-101 153915 156248 156578 "BBTREE" 157099 NIL BBTREE (NIL T) -8 NIL NIL) (-100 153649 153702 153730 "BASTYPE" 153849 T BASTYPE (NIL) -9 NIL NIL) (-99 153503 153532 153603 "BASTYPE-" 153608 NIL BASTYPE- (NIL T) -8 NIL NIL) (-98 152941 153017 153167 "BALFACT" 153414 NIL BALFACT (NIL T T) -7 NIL NIL) (-97 151824 152356 152542 "AUTOMOR" 152786 NIL AUTOMOR (NIL T) -8 NIL NIL) (-96 151550 151555 151581 "ATTREG" 151586 T ATTREG (NIL) -9 NIL NIL) (-95 149829 150247 150599 "ATTRBUT" 151216 T ATTRBUT (NIL) -8 NIL NIL) (-94 149481 149657 149723 "ATTRAST" 149781 T ATTRAST (NIL) -8 NIL NIL) (-93 149017 149130 149156 "ATRIG" 149357 T ATRIG (NIL) -9 NIL NIL) (-92 148826 148867 148954 "ATRIG-" 148959 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 148551 148694 148720 "ASTCAT" 148725 T ASTCAT (NIL) -9 NIL 148755) (-90 148348 148391 148483 "ASTCAT-" 148488 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 146545 148124 148212 "ASTACK" 148291 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145050 145347 145712 "ASSOCEQ" 146227 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144104 144709 144833 "ASP9" 144957 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 142995 143709 143851 "ASP80" 143993 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142759 142943 142982 "ASP8" 142987 NIL ASP8 (NIL NIL) -8 NIL NIL) (-84 141735 142436 142554 "ASP78" 142672 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140726 141415 141532 "ASP77" 141649 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139660 140364 140495 "ASP74" 140626 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138582 139295 139427 "ASP73" 139559 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137503 138217 138349 "ASP7" 138481 NIL ASP7 (NIL NIL) -8 NIL NIL) (-79 136480 137180 137298 "ASP6" 137416 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135450 136157 136275 "ASP55" 136393 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134422 135124 135243 "ASP50" 135362 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133532 134123 134233 "ASP49" 134343 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132339 133071 133239 "ASP42" 133421 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131138 131872 132042 "ASP41" 132226 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130248 130839 130949 "ASP4" 131059 NIL ASP4 (NIL NIL) -8 NIL NIL) (-72 129220 129925 130043 "ASP35" 130161 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 128985 129168 129207 "ASP34" 129212 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128722 128789 128865 "ASP33" 128940 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127639 128357 128489 "ASP31" 128621 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127404 127587 127626 "ASP30" 127631 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127139 127208 127284 "ASP29" 127359 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 126904 127087 127126 "ASP28" 127131 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126669 126852 126891 "ASP27" 126896 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125775 126367 126478 "ASP24" 126589 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124713 125416 125546 "ASP20" 125676 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123679 124387 124506 "ASP19" 124625 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123416 123483 123559 "ASP12" 123634 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122290 123015 123159 "ASP10" 123303 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 121400 121991 122101 "ASP1" 122211 NIL ASP1 (NIL NIL) -8 NIL NIL) (-58 119299 121244 121335 "ARRAY2" 121340 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 118331 118504 118725 "ARRAY12" 119122 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 114147 117979 118093 "ARRAY1" 118248 NIL ARRAY1 (NIL T) -8 NIL NIL) (-55 108506 110377 110452 "ARR2CAT" 113082 NIL ARR2CAT (NIL T T T) -9 NIL 113840) (-54 105940 106684 107638 "ARR2CAT-" 107643 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104688 104840 105146 "APPRULE" 105776 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104339 104387 104506 "APPLYORE" 104634 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103617 103740 103897 "ANY1" 104213 NIL ANY1 (NIL T) -7 NIL NIL) (-50 102591 102882 103077 "ANY" 103440 T ANY (NIL) -8 NIL NIL) (-49 100158 101030 101356 "ANTISYM" 102316 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99673 99862 99959 "ANON" 100079 T ANON (NIL) -8 NIL NIL) (-47 93822 98218 98669 "AN" 99240 T AN (NIL) -8 NIL NIL) (-46 90203 91557 91608 "AMR" 92356 NIL AMR (NIL T T) -9 NIL 92956) (-45 89315 89536 89899 "AMR-" 89904 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 73871 89232 89293 "ALIST" 89298 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70740 73465 73634 "ALGSC" 73789 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67296 67850 68457 "ALGPKG" 70180 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66573 66674 66858 "ALGMFACT" 67182 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62322 63003 63657 "ALGMANIP" 66097 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53744 61948 62098 "ALGFF" 62255 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 52940 53071 53250 "ALGFACT" 53602 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 51970 52536 52574 "ALGEBRA" 52634 NIL ALGEBRA (NIL T) -9 NIL 52693) (-36 51688 51747 51879 "ALGEBRA-" 51884 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 33954 49691 49743 "ALAGG" 49879 NIL ALAGG (NIL T T) -9 NIL 50040) (-34 33490 33603 33629 "AHYP" 33830 T AHYP (NIL) -9 NIL NIL) (-33 32421 32669 32695 "AGG" 33194 T AGG (NIL) -9 NIL 33473) (-32 31855 32017 32231 "AGG-" 32236 NIL AGG- (NIL T) -8 NIL NIL) (-31 29542 29960 30377 "AF" 31498 NIL AF (NIL T T) -7 NIL NIL) (-30 28811 29069 29225 "ACPLOT" 29404 T ACPLOT (NIL) -8 NIL NIL) (-29 18356 26213 26264 "ACFS" 26975 NIL ACFS (NIL T) -9 NIL 27214) (-28 16370 16860 17635 "ACFS-" 17640 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-1023) (-138)) (T -1023)) +NIL +(-13 (-21) (-1075)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1075) . T) ((-1063) . T)) +((-1665 (($ $) 16)) (-3849 (($ $) 22)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 49)) (-3910 (($ $) 24)) (-3862 (($ $) 11)) (-3887 (($ $) 38)) (-2591 (((-371) $) NIL) (((-218) $) NIL) (((-861 (-371)) $) 33)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 28) (($ (-548)) NIL) (($ (-399 (-548))) 28)) (-3835 (((-745)) 8)) (-3897 (($ $) 39))) +(((-1024 |#1|) (-10 -8 (-15 -3849 (|#1| |#1|)) (-15 -1665 (|#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -3743 ((-832) |#1|))) (-1025)) (T -1024)) +((-3835 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1024 *3)) (-4 *3 (-1025))))) +(-10 -8 (-15 -3849 (|#1| |#1|)) (-15 -1665 (|#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3875 (((-548) $) 86)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-1665 (($ $) 84)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-1926 (($ $) 94)) (-4087 (((-112) $ $) 57)) (-2672 (((-548) $) 111)) (-3030 (($) 17 T CONST)) (-3849 (($ $) 83)) (-2441 (((-3 (-548) "failed") $) 99) (((-3 (-399 (-548)) "failed") $) 96)) (-2375 (((-548) $) 98) (((-399 (-548)) $) 95)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-3298 (((-112) $) 109)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 90)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 93)) (-3910 (($ $) 89)) (-3312 (((-112) $) 110)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1795 (($ $ $) 108)) (-3091 (($ $ $) 107)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3862 (($ $) 85)) (-3887 (($ $) 87)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2591 (((-371) $) 102) (((-218) $) 101) (((-861 (-371)) $) 91)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ (-548)) 100) (($ (-399 (-548))) 97)) (-3835 (((-745)) 28)) (-3897 (($ $) 88)) (-3290 (((-112) $ $) 37)) (-1446 (($ $) 112)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 105)) (-2241 (((-112) $ $) 104)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 106)) (-2234 (((-112) $ $) 103)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66) (($ $ (-399 (-548))) 92)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) +(((-1025) (-138)) (T -1025)) +((-1446 (*1 *1 *1) (-4 *1 (-1025))) (-3910 (*1 *1 *1) (-4 *1 (-1025))) (-3897 (*1 *1 *1) (-4 *1 (-1025))) (-3887 (*1 *1 *1) (-4 *1 (-1025))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-548)))) (-3862 (*1 *1 *1) (-4 *1 (-1025))) (-1665 (*1 *1 *1) (-4 *1 (-1025))) (-3849 (*1 *1 *1) (-4 *1 (-1025)))) +(-13 (-355) (-819) (-991) (-1007 (-548)) (-1007 (-399 (-548))) (-971) (-593 (-861 (-371))) (-855 (-371)) (-145) (-10 -8 (-15 -3910 ($ $)) (-15 -3897 ($ $)) (-15 -3887 ($ $)) (-15 -3875 ((-548) $)) (-15 -3862 ($ $)) (-15 -1665 ($ $)) (-15 -3849 ($ $)) (-15 -1446 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-169) . T) ((-593 (-218)) . T) ((-593 (-371)) . T) ((-593 (-861 (-371))) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-855 (-371)) . T) ((-889) . T) ((-971) . T) ((-991) . T) ((-1007 (-399 (-548))) . T) ((-1007 (-548)) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) |#2| $) 23)) (-3423 ((|#1| $) 10)) (-2672 (((-548) |#2| $) 88)) (-3263 (((-3 $ "failed") |#2| (-890)) 57)) (-3676 ((|#1| $) 28)) (-3250 ((|#1| |#2| $ |#1|) 37)) (-3933 (($ $) 25)) (-3859 (((-3 |#2| "failed") |#2| $) 87)) (-3298 (((-112) |#2| $) NIL)) (-3312 (((-112) |#2| $) NIL)) (-3920 (((-112) |#2| $) 24)) (-3947 ((|#1| $) 89)) (-3663 ((|#1| $) 27)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3287 ((|#2| $) 79)) (-3743 (((-832) $) 70)) (-2439 ((|#1| |#2| $ |#1|) 38)) (-3274 (((-619 $) |#2|) 59)) (-2214 (((-112) $ $) 74))) +(((-1026 |#1| |#2|) (-13 (-1033 |#1| |#2|) (-10 -8 (-15 -3663 (|#1| $)) (-15 -3676 (|#1| $)) (-15 -3423 (|#1| $)) (-15 -3947 (|#1| $)) (-15 -3933 ($ $)) (-15 -3920 ((-112) |#2| $)) (-15 -3250 (|#1| |#2| $ |#1|)))) (-13 (-819) (-355)) (-1194 |#1|)) (T -1026)) +((-3250 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3663 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3676 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3423 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3933 (*1 *1 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3920 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-819) (-355))) (-5 *2 (-112)) (-5 *1 (-1026 *4 *3)) (-4 *3 (-1194 *4))))) +(-13 (-1033 |#1| |#2|) (-10 -8 (-15 -3663 (|#1| $)) (-15 -3676 (|#1| $)) (-15 -3423 (|#1| $)) (-15 -3947 (|#1| $)) (-15 -3933 ($ $)) (-15 -3920 ((-112) |#2| $)) (-15 -3250 (|#1| |#2| $ |#1|)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-3119 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3096 (($ $ $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-2970 (($ $ $) NIL)) (-3030 (($) NIL T CONST)) (-3962 (($ (-1135)) 10) (($ (-548)) 7)) (-2441 (((-3 (-548) "failed") $) NIL)) (-2375 (((-548) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL)) (-4172 (((-112) $) NIL)) (-4161 (((-399 (-548)) $) NIL)) (-2545 (($) NIL) (($ $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3071 (($ $ $ $) NIL)) (-3129 (($ $ $) NIL)) (-3298 (((-112) $) NIL)) (-4206 (($ $ $) NIL)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL)) (-2266 (((-112) $) NIL)) (-3705 (((-112) $) NIL)) (-3725 (((-3 $ "failed") $) NIL)) (-3312 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3082 (($ $ $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2742 (($ $) NIL)) (-3198 (($ $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3060 (($ $ $) NIL)) (-3410 (($) NIL T CONST)) (-3595 (($ $) NIL)) (-3932 (((-1082) $) NIL) (($ $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4185 (($ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2445 (($ $) NIL)) (-2113 (($ $) NIL)) (-2591 (((-548) $) 16) (((-524) $) NIL) (((-861 (-548)) $) NIL) (((-371) $) NIL) (((-218) $) NIL) (($ (-1135)) 9)) (-3743 (((-832) $) 20) (($ (-548)) 6) (($ $) NIL) (($ (-548)) 6)) (-3835 (((-745)) NIL)) (-3139 (((-112) $ $) NIL)) (-3612 (($ $ $) NIL)) (-3957 (($) NIL)) (-3290 (((-112) $ $) NIL)) (-3106 (($ $ $ $) NIL)) (-1446 (($ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2299 (($ $) 19) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL))) +(((-1027) (-13 (-533) (-10 -8 (-6 -4314) (-6 -4319) (-6 -4315) (-15 -2591 ($ (-1135))) (-15 -3962 ($ (-1135))) (-15 -3962 ($ (-548)))))) (T -1027)) +((-2591 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1027))))) +(-13 (-533) (-10 -8 (-6 -4314) (-6 -4319) (-6 -4315) (-15 -2591 ($ (-1135))) (-15 -3962 ($ (-1135))) (-15 -3962 ($ (-548))))) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-4149 (((-1223) $ (-1135) (-1135)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-3983 (($) 9)) (-2089 (((-52) $ (-1135) (-52)) NIL)) (-4069 (($ $) 30)) (-2808 (($ $) 28)) (-2817 (($ $) 27)) (-2799 (($ $) 29)) (-4059 (($ $) 32)) (-4049 (($ $) 33)) (-2825 (($ $) 26)) (-4080 (($ $) 31)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) 25 (|has| $ (-6 -4327)))) (-3255 (((-3 (-52) "failed") (-1135) $) 40)) (-3030 (($) NIL T CONST)) (-2834 (($) 7)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-1636 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) 50 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-3 (-52) "failed") (-1135) $) NIL)) (-3699 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3974 (((-3 (-1118) "failed") $ (-1118) (-548)) 59)) (-3971 (((-52) $ (-1135) (-52)) NIL (|has| $ (-6 -4328)))) (-3899 (((-52) $ (-1135)) NIL)) (-1934 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1135) $) NIL (|has| (-1135) (-821)))) (-2342 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) 35 (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4181 (((-1135) $) NIL (|has| (-1135) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-4043 (((-619 (-1135)) $) NIL)) (-4233 (((-112) (-1135) $) NIL)) (-1346 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) 43)) (-4201 (((-619 (-1135)) $) NIL)) (-4212 (((-112) (-1135) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-4016 (((-371) $ (-1135)) 49)) (-4005 (((-619 (-1118)) $ (-1118)) 60)) (-3453 (((-52) $) NIL (|has| (-1135) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) "failed") (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL)) (-4159 (($ $ (-52)) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-286 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-286 (-52)))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4223 (((-619 (-52)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-52) $ (-1135)) NIL) (((-52) $ (-1135) (-52)) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3993 (($ $ (-1135)) 51)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) 37)) (-1831 (($ $ $) 38)) (-3743 (((-832) $) NIL (-1524 (|has| (-52) (-592 (-832))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-592 (-832)))))) (-4037 (($ $ (-1135) (-371)) 47)) (-4027 (($ $ (-1135) (-371)) 48)) (-1368 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1028) (-13 (-1148 (-1135) (-52)) (-10 -8 (-15 -1831 ($ $ $)) (-15 -2834 ($)) (-15 -2825 ($ $)) (-15 -2817 ($ $)) (-15 -2808 ($ $)) (-15 -2799 ($ $)) (-15 -4080 ($ $)) (-15 -4069 ($ $)) (-15 -4059 ($ $)) (-15 -4049 ($ $)) (-15 -4037 ($ $ (-1135) (-371))) (-15 -4027 ($ $ (-1135) (-371))) (-15 -4016 ((-371) $ (-1135))) (-15 -4005 ((-619 (-1118)) $ (-1118))) (-15 -3993 ($ $ (-1135))) (-15 -3983 ($)) (-15 -3974 ((-3 (-1118) "failed") $ (-1118) (-548))) (-6 -4327)))) (T -1028)) +((-1831 (*1 *1 *1 *1) (-5 *1 (-1028))) (-2834 (*1 *1) (-5 *1 (-1028))) (-2825 (*1 *1 *1) (-5 *1 (-1028))) (-2817 (*1 *1 *1) (-5 *1 (-1028))) (-2808 (*1 *1 *1) (-5 *1 (-1028))) (-2799 (*1 *1 *1) (-5 *1 (-1028))) (-4080 (*1 *1 *1) (-5 *1 (-1028))) (-4069 (*1 *1 *1) (-5 *1 (-1028))) (-4059 (*1 *1 *1) (-5 *1 (-1028))) (-4049 (*1 *1 *1) (-5 *1 (-1028))) (-4037 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-371)) (-5 *1 (-1028)))) (-4027 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-371)) (-5 *1 (-1028)))) (-4016 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-371)) (-5 *1 (-1028)))) (-4005 (*1 *2 *1 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1028)) (-5 *3 (-1118)))) (-3993 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1028)))) (-3983 (*1 *1) (-5 *1 (-1028))) (-3974 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-1028))))) +(-13 (-1148 (-1135) (-52)) (-10 -8 (-15 -1831 ($ $ $)) (-15 -2834 ($)) (-15 -2825 ($ $)) (-15 -2817 ($ $)) (-15 -2808 ($ $)) (-15 -2799 ($ $)) (-15 -4080 ($ $)) (-15 -4069 ($ $)) (-15 -4059 ($ $)) (-15 -4049 ($ $)) (-15 -4037 ($ $ (-1135) (-371))) (-15 -4027 ($ $ (-1135) (-371))) (-15 -4016 ((-371) $ (-1135))) (-15 -4005 ((-619 (-1118)) $ (-1118))) (-15 -3993 ($ $ (-1135))) (-15 -3983 ($)) (-15 -3974 ((-3 (-1118) "failed") $ (-1118) (-548))) (-6 -4327))) +((-1272 (($ $) 45)) (-3090 (((-112) $ $) 74)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-921 (-399 (-548)))) 227) (((-3 $ "failed") (-921 (-548))) 226) (((-3 $ "failed") (-921 |#2|)) 229)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL) (((-548) $) NIL) ((|#4| $) NIL) (($ (-921 (-399 (-548)))) 215) (($ (-921 (-548))) 211) (($ (-921 |#2|)) 231)) (-1872 (($ $) NIL) (($ $ |#4|) 43)) (-2143 (((-112) $ $) 112) (((-112) $ (-619 $)) 113)) (-3155 (((-112) $) 56)) (-1519 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 107)) (-2873 (($ $) 138)) (-2982 (($ $) 134)) (-2992 (($ $) 133)) (-3077 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3067 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2157 (((-112) $ $) 121) (((-112) $ (-619 $)) 122)) (-3239 ((|#4| $) 33)) (-3013 (($ $ $) 110)) (-3166 (((-112) $) 55)) (-3229 (((-745) $) 35)) (-2844 (($ $) 152)) (-2853 (($ $) 149)) (-3114 (((-619 $) $) 68)) (-3145 (($ $) 57)) (-2862 (($ $) 145)) (-3125 (((-619 $) $) 65)) (-3135 (($ $) 59)) (-2197 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3003 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4023 (-745))) $ $) 111)) (-3023 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $) 108) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $ |#4|) 109)) (-3033 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $) 104) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $ |#4|) 105)) (-3056 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3044 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3190 (((-619 $) $) 51)) (-2109 (((-112) $ $) 118) (((-112) $ (-619 $)) 119)) (-2052 (($ $ $) 103)) (-3410 (($ $) 37)) (-2199 (((-112) $ $) 72)) (-2121 (((-112) $ $) 114) (((-112) $ (-619 $)) 116)) (-2063 (($ $ $) 101)) (-3218 (($ $) 40)) (-3587 ((|#2| |#2| $) 142) (($ (-619 $)) NIL) (($ $ $) NIL)) (-2960 (($ $ |#2|) NIL) (($ $ $) 131)) (-2971 (($ $ |#2|) 126) (($ $ $) 129)) (-3204 (($ $) 48)) (-3179 (($ $) 52)) (-2591 (((-861 (-371)) $) NIL) (((-861 (-548)) $) NIL) (((-524) $) NIL) (($ (-921 (-399 (-548)))) 217) (($ (-921 (-548))) 213) (($ (-921 |#2|)) 228) (((-1118) $) 250) (((-921 |#2|) $) 162)) (-3743 (((-832) $) 30) (($ (-548)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-921 |#2|) $) 163) (($ (-399 (-548))) NIL) (($ $) NIL)) (-3102 (((-3 (-112) "failed") $ $) 71))) +(((-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 ((-921 |#2|) |#1|)) (-15 -2591 ((-921 |#2|) |#1|)) (-15 -2591 ((-1118) |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3587 (|#2| |#2| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1| |#2|)) (-15 -2971 (|#1| |#1| |#2|)) (-15 -2982 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2591 (|#1| (-921 |#2|))) (-15 -2375 (|#1| (-921 |#2|))) (-15 -2441 ((-3 |#1| "failed") (-921 |#2|))) (-15 -2591 (|#1| (-921 (-548)))) (-15 -2375 (|#1| (-921 (-548)))) (-15 -2441 ((-3 |#1| "failed") (-921 (-548)))) (-15 -2591 (|#1| (-921 (-399 (-548))))) (-15 -2375 (|#1| (-921 (-399 (-548))))) (-15 -2441 ((-3 |#1| "failed") (-921 (-399 (-548))))) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2063 (|#1| |#1| |#1|)) (-15 -3003 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4023 (-745))) |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1|)) (-15 -1519 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3033 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3033 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1| |#4|)) (-15 -3056 (|#1| |#1| |#1| |#4|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1| |#1| |#4|)) (-15 -3077 (|#1| |#1| |#1| |#4|)) (-15 -3067 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2157 ((-112) |#1| (-619 |#1|))) (-15 -2157 ((-112) |#1| |#1|)) (-15 -2109 ((-112) |#1| (-619 |#1|))) (-15 -2109 ((-112) |#1| |#1|)) (-15 -2121 ((-112) |#1| (-619 |#1|))) (-15 -2121 ((-112) |#1| |#1|)) (-15 -2143 ((-112) |#1| (-619 |#1|))) (-15 -2143 ((-112) |#1| |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -2199 ((-112) |#1| |#1|)) (-15 -3102 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3114 ((-619 |#1|) |#1|)) (-15 -3125 ((-619 |#1|) |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3155 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -1872 (|#1| |#1| |#4|)) (-15 -2197 (|#1| |#1| |#4|)) (-15 -3179 (|#1| |#1|)) (-15 -3190 ((-619 |#1|) |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -3229 ((-745) |#1|)) (-15 -3239 (|#4| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2375 (|#4| |#1|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -3743 (|#1| |#4|)) (-15 -2197 (|#2| |#1|)) (-15 -1872 (|#1| |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-1030 |#2| |#3| |#4|) (-1016) (-767) (-821)) (T -1029)) +NIL +(-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 ((-921 |#2|) |#1|)) (-15 -2591 ((-921 |#2|) |#1|)) (-15 -2591 ((-1118) |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3587 (|#2| |#2| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1| |#2|)) (-15 -2971 (|#1| |#1| |#2|)) (-15 -2982 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2591 (|#1| (-921 |#2|))) (-15 -2375 (|#1| (-921 |#2|))) (-15 -2441 ((-3 |#1| "failed") (-921 |#2|))) (-15 -2591 (|#1| (-921 (-548)))) (-15 -2375 (|#1| (-921 (-548)))) (-15 -2441 ((-3 |#1| "failed") (-921 (-548)))) (-15 -2591 (|#1| (-921 (-399 (-548))))) (-15 -2375 (|#1| (-921 (-399 (-548))))) (-15 -2441 ((-3 |#1| "failed") (-921 (-399 (-548))))) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2063 (|#1| |#1| |#1|)) (-15 -3003 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4023 (-745))) |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1|)) (-15 -1519 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3033 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3033 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1| |#4|)) (-15 -3056 (|#1| |#1| |#1| |#4|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1| |#1| |#4|)) (-15 -3077 (|#1| |#1| |#1| |#4|)) (-15 -3067 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2157 ((-112) |#1| (-619 |#1|))) (-15 -2157 ((-112) |#1| |#1|)) (-15 -2109 ((-112) |#1| (-619 |#1|))) (-15 -2109 ((-112) |#1| |#1|)) (-15 -2121 ((-112) |#1| (-619 |#1|))) (-15 -2121 ((-112) |#1| |#1|)) (-15 -2143 ((-112) |#1| (-619 |#1|))) (-15 -2143 ((-112) |#1| |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -2199 ((-112) |#1| |#1|)) (-15 -3102 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3114 ((-619 |#1|) |#1|)) (-15 -3125 ((-619 |#1|) |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3155 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -1872 (|#1| |#1| |#4|)) (-15 -2197 (|#1| |#1| |#4|)) (-15 -3179 (|#1| |#1|)) (-15 -3190 ((-619 |#1|) |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -3229 ((-745) |#1|)) (-15 -3239 (|#4| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2375 (|#4| |#1|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -3743 (|#1| |#4|)) (-15 -2197 (|#2| |#1|)) (-15 -1872 (|#1| |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 |#3|) $) 108)) (-1884 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 85 (|has| |#1| (-540)))) (-3303 (($ $) 86 (|has| |#1| (-540)))) (-3279 (((-112) $) 88 (|has| |#1| (-540)))) (-3892 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-1272 (($ $) 269)) (-3090 (((-112) $ $) 255)) (-4104 (((-3 $ "failed") $ $) 19)) (-1548 (($ $ $) 214 (|has| |#1| (-540)))) (-2916 (((-619 $) $ $) 209 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-1688 (($ $) 96 (|has| |#1| (-443)))) (-2634 (((-410 $) $) 95 (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 162) (((-3 (-399 (-548)) "failed") $) 160 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 158 (|has| |#1| (-1007 (-548)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-921 (-399 (-548)))) 229 (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))) (((-3 $ "failed") (-921 (-548))) 226 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135)))))) (((-3 $ "failed") (-921 |#1|)) 223 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-38 (-548)))) (|has| |#3| (-593 (-1135)))) (-12 (-3958 (|has| |#1| (-533))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (-3958 (|has| |#1| (-961 (-548)))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))))) (-2375 ((|#1| $) 163) (((-399 (-548)) $) 159 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 157 (|has| |#1| (-1007 (-548)))) ((|#3| $) 133) (($ (-921 (-399 (-548)))) 228 (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))) (($ (-921 (-548))) 225 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135)))))) (($ (-921 |#1|)) 222 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-38 (-548)))) (|has| |#3| (-593 (-1135)))) (-12 (-3958 (|has| |#1| (-533))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (-3958 (|has| |#1| (-961 (-548)))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))))) (-1557 (($ $ $ |#3|) 106 (|has| |#1| (-169))) (($ $ $) 210 (|has| |#1| (-540)))) (-1872 (($ $) 152) (($ $ |#3|) 264)) (-1608 (((-663 (-548)) (-663 $)) 132 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-2143 (((-112) $ $) 254) (((-112) $ (-619 $)) 253)) (-3859 (((-3 $ "failed") $) 32)) (-3155 (((-112) $) 262)) (-1519 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 234)) (-2873 (($ $) 203 (|has| |#1| (-443)))) (-4065 (($ $) 174 (|has| |#1| (-443))) (($ $ |#3|) 103 (|has| |#1| (-443)))) (-1862 (((-619 $) $) 107)) (-1271 (((-112) $) 94 (|has| |#1| (-878)))) (-2982 (($ $) 219 (|has| |#1| (-540)))) (-2992 (($ $) 220 (|has| |#1| (-540)))) (-3077 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3067 (($ $ $) 245) (($ $ $ |#3|) 243)) (-4256 (($ $ |#1| |#2| $) 170)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 82 (-12 (|has| |#3| (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 81 (-12 (|has| |#3| (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 167)) (-2157 (((-112) $ $) 248) (((-112) $ (-619 $)) 247)) (-2883 (($ $ $ $ $) 205 (|has| |#1| (-540)))) (-3239 ((|#3| $) 273)) (-2036 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-3915 (((-619 $) $) 124)) (-2435 (((-112) $) 150)) (-2024 (($ |#1| |#2|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-3013 (($ $ $) 233)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) 118)) (-3166 (((-112) $) 263)) (-3904 ((|#2| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-1795 (($ $ $) 77 (|has| |#1| (-821)))) (-3229 (((-745) $) 272)) (-3091 (($ $ $) 76 (|has| |#1| (-821)))) (-4267 (($ (-1 |#2| |#2|) $) 169)) (-2540 (($ (-1 |#1| |#1|) $) 149)) (-3511 (((-3 |#3| "failed") $) 121)) (-2844 (($ $) 200 (|has| |#1| (-443)))) (-2853 (($ $) 201 (|has| |#1| (-443)))) (-3114 (((-619 $) $) 258)) (-3145 (($ $) 261)) (-2862 (($ $) 202 (|has| |#1| (-443)))) (-3125 (((-619 $) $) 259)) (-3135 (($ $) 260)) (-2185 (($ $) 147)) (-2197 ((|#1| $) 146) (($ $ |#3|) 265)) (-3553 (($ (-619 $)) 92 (|has| |#1| (-443))) (($ $ $) 91 (|has| |#1| (-443)))) (-3003 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4023 (-745))) $ $) 232)) (-3023 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $) 236) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) 235)) (-3033 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $) 238) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $ |#3|) 237)) (-3056 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3044 (($ $ $) 241) (($ $ $ |#3|) 239)) (-2546 (((-1118) $) 9)) (-3353 (($ $ $) 208 (|has| |#1| (-540)))) (-3190 (((-619 $) $) 267)) (-3939 (((-3 (-619 $) "failed") $) 112)) (-3927 (((-3 (-619 $) "failed") $) 113)) (-3954 (((-3 (-2 (|:| |var| |#3|) (|:| -3352 (-745))) "failed") $) 111)) (-2109 (((-112) $ $) 250) (((-112) $ (-619 $)) 249)) (-2052 (($ $ $) 230)) (-3410 (($ $) 271)) (-2199 (((-112) $ $) 256)) (-2121 (((-112) $ $) 252) (((-112) $ (-619 $)) 251)) (-2063 (($ $ $) 231)) (-3218 (($ $) 270)) (-3932 (((-1082) $) 10)) (-2927 (((-2 (|:| -3587 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-540)))) (-2938 (((-2 (|:| -3587 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-540)))) (-2164 (((-112) $) 164)) (-2175 ((|#1| $) 165)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-443)))) (-3587 ((|#1| |#1| $) 204 (|has| |#1| (-443))) (($ (-619 $)) 90 (|has| |#1| (-443))) (($ $ $) 89 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 97 (|has| |#1| (-878)))) (-2949 (((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-540)))) (-1900 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-2960 (($ $ |#1|) 217 (|has| |#1| (-540))) (($ $ $) 215 (|has| |#1| (-540)))) (-2971 (($ $ |#1|) 218 (|has| |#1| (-540))) (($ $ $) 216 (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136)) (-1566 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-4050 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37)) (-2512 ((|#2| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127)) (-3204 (($ $) 268)) (-3179 (($ $) 266)) (-2591 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) 79 (-12 (|has| |#3| (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) 78 (-12 (|has| |#3| (-593 (-524))) (|has| |#1| (-593 (-524))))) (($ (-921 (-399 (-548)))) 227 (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))) (($ (-921 (-548))) 224 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135)))))) (($ (-921 |#1|)) 221 (|has| |#3| (-593 (-1135)))) (((-1118) $) 199 (-12 (|has| |#1| (-1007 (-548))) (|has| |#3| (-593 (-1135))))) (((-921 |#1|) $) 198 (|has| |#3| (-593 (-1135))))) (-3881 ((|#1| $) 173 (|has| |#1| (-443))) (($ $ |#3|) 104 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-921 |#1|) $) 197 (|has| |#3| (-593 (-1135)))) (($ (-399 (-548))) 70 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548)))))) (($ $) 83 (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) 166)) (-1951 ((|#1| $ |#2|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-4017 (((-3 $ "failed") $) 71 (-1524 (-1723 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 87 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3102 (((-3 (-112) "failed") $ $) 257)) (-3118 (($) 29 T CONST)) (-2893 (($ $ $ $ (-745)) 206 (|has| |#1| (-540)))) (-2905 (($ $ $ (-745)) 207 (|has| |#1| (-540)))) (-3296 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33)) (-2262 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 154 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 156 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 155 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1030 |#1| |#2| |#3|) (-138) (-1016) (-767) (-821)) (T -1030)) +((-3239 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-745)))) (-3410 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3190 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2197 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-1872 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3135 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3125 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3102 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2199 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3090 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2143 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2143 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2121 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2109 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2109 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2157 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2157 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3067 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3077 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3067 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3056 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3056 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3044 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3033 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -2233 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3033 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -2233 *1))) (-4 *1 (-1030 *4 *5 *3)))) (-3023 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3023 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1030 *4 *5 *3)))) (-1519 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3013 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3003 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4023 (-745)))) (-4 *1 (-1030 *3 *4 *5)))) (-2063 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2052 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2441 (*1 *1 *2) (|partial| -1524 (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2375 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2591 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2441 (*1 *1 *2) (|partial| -1524 (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-3958 (-4 *3 (-38 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-533))) (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-961 (-548)))) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2375 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-3958 (-4 *3 (-38 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-533))) (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-961 (-548)))) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *5 (-593 (-1135))) (-4 *4 (-767)) (-4 *5 (-821)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2982 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2971 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2960 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2971 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2960 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-1548 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2949 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3587 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-2938 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3587 *1) (|:| |coef1| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-2927 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3587 *1) (|:| |coef2| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-1557 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2916 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3353 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2905 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-540)))) (-2893 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-540)))) (-2883 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-3587 (*1 *2 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2862 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2853 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2844 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443))))) +(-13 (-918 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3239 (|t#3| $)) (-15 -3229 ((-745) $)) (-15 -3410 ($ $)) (-15 -3218 ($ $)) (-15 -1272 ($ $)) (-15 -3204 ($ $)) (-15 -3190 ((-619 $) $)) (-15 -3179 ($ $)) (-15 -2197 ($ $ |t#3|)) (-15 -1872 ($ $ |t#3|)) (-15 -3166 ((-112) $)) (-15 -3155 ((-112) $)) (-15 -3145 ($ $)) (-15 -3135 ($ $)) (-15 -3125 ((-619 $) $)) (-15 -3114 ((-619 $) $)) (-15 -3102 ((-3 (-112) "failed") $ $)) (-15 -2199 ((-112) $ $)) (-15 -3090 ((-112) $ $)) (-15 -2143 ((-112) $ $)) (-15 -2143 ((-112) $ (-619 $))) (-15 -2121 ((-112) $ $)) (-15 -2121 ((-112) $ (-619 $))) (-15 -2109 ((-112) $ $)) (-15 -2109 ((-112) $ (-619 $))) (-15 -2157 ((-112) $ $)) (-15 -2157 ((-112) $ (-619 $))) (-15 -3077 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3077 ($ $ $ |t#3|)) (-15 -3067 ($ $ $ |t#3|)) (-15 -3056 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -3056 ($ $ $ |t#3|)) (-15 -3044 ($ $ $ |t#3|)) (-15 -3033 ((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $)) (-15 -3033 ((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $ |t#3|)) (-15 -3023 ((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -3023 ((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $ |t#3|)) (-15 -1519 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -3013 ($ $ $)) (-15 -3003 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4023 (-745))) $ $)) (-15 -2063 ($ $ $)) (-15 -2052 ($ $ $)) (IF (|has| |t#3| (-593 (-1135))) (PROGN (-6 (-592 (-921 |t#1|))) (-6 (-593 (-921 |t#1|))) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -2441 ((-3 $ "failed") (-921 (-399 (-548))))) (-15 -2375 ($ (-921 (-399 (-548))))) (-15 -2591 ($ (-921 (-399 (-548))))) (-15 -2441 ((-3 $ "failed") (-921 (-548)))) (-15 -2375 ($ (-921 (-548)))) (-15 -2591 ($ (-921 (-548)))) (IF (|has| |t#1| (-961 (-548))) |%noBranch| (PROGN (-15 -2441 ((-3 $ "failed") (-921 |t#1|))) (-15 -2375 ($ (-921 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-548))) (IF (|has| |t#1| (-38 (-399 (-548)))) |%noBranch| (PROGN (-15 -2441 ((-3 $ "failed") (-921 (-548)))) (-15 -2375 ($ (-921 (-548)))) (-15 -2591 ($ (-921 (-548)))) (IF (|has| |t#1| (-533)) |%noBranch| (PROGN (-15 -2441 ((-3 $ "failed") (-921 |t#1|))) (-15 -2375 ($ (-921 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-548))) |%noBranch| (IF (|has| |t#1| (-38 (-399 (-548)))) |%noBranch| (PROGN (-15 -2441 ((-3 $ "failed") (-921 |t#1|))) (-15 -2375 ($ (-921 |t#1|)))))) (-15 -2591 ($ (-921 |t#1|))) (IF (|has| |t#1| (-1007 (-548))) (-6 (-593 (-1118))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-15 -2992 ($ $)) (-15 -2982 ($ $)) (-15 -2971 ($ $ |t#1|)) (-15 -2960 ($ $ |t#1|)) (-15 -2971 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -1548 ($ $ $)) (-15 -2949 ((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2938 ((-2 (|:| -3587 $) (|:| |coef1| $)) $ $)) (-15 -2927 ((-2 (|:| -3587 $) (|:| |coef2| $)) $ $)) (-15 -1557 ($ $ $)) (-15 -2916 ((-619 $) $ $)) (-15 -3353 ($ $ $)) (-15 -2905 ($ $ $ (-745))) (-15 -2893 ($ $ $ $ (-745))) (-15 -2883 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-443)) (PROGN (-15 -3587 (|t#1| |t#1| $)) (-15 -2873 ($ $)) (-15 -2862 ($ $)) (-15 -2853 ($ $)) (-15 -2844 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-592 (-921 |#1|)) |has| |#3| (-593 (-1135))) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-593 (-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548))))) ((-593 (-921 |#1|)) |has| |#3| (-593 (-1135))) ((-593 (-1118)) -12 (|has| |#1| (-1007 (-548))) (|has| |#3| (-593 (-1135)))) ((-282) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-301 $) . T) ((-318 |#1| |#2|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-878)) (|has| |#1| (-443))) ((-504 |#3| |#1|) . T) ((-504 |#3| $) . T) ((-504 $ $) . T) ((-540) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 |#3|) . T) ((-855 (-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371)))) ((-855 (-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))) ((-918 |#1| |#2| |#3|) . T) ((-878) |has| |#1| (-878)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-2763 (((-619 (-1140)) $) 13)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 15)) (-2214 (((-112) $ $) NIL))) +(((-1031) (-13 (-1047) (-10 -8 (-15 -2763 ((-619 (-1140)) $)) (-15 -2286 ((-1140) $))))) (T -1031)) +((-2763 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1031)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1031))))) +(-13 (-1047) (-10 -8 (-15 -2763 ((-619 (-1140)) $)) (-15 -2286 ((-1140) $)))) +((-3324 (((-112) |#3| $) 13)) (-3263 (((-3 $ "failed") |#3| (-890)) 23)) (-3859 (((-3 |#3| "failed") |#3| $) 38)) (-3298 (((-112) |#3| $) 16)) (-3312 (((-112) |#3| $) 14))) +(((-1032 |#1| |#2| |#3|) (-10 -8 (-15 -3263 ((-3 |#1| "failed") |#3| (-890))) (-15 -3859 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3298 ((-112) |#3| |#1|)) (-15 -3312 ((-112) |#3| |#1|)) (-15 -3324 ((-112) |#3| |#1|))) (-1033 |#2| |#3|) (-13 (-819) (-355)) (-1194 |#2|)) (T -1032)) +NIL +(-10 -8 (-15 -3263 ((-3 |#1| "failed") |#3| (-890))) (-15 -3859 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3298 ((-112) |#3| |#1|)) (-15 -3312 ((-112) |#3| |#1|)) (-15 -3324 ((-112) |#3| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) |#2| $) 21)) (-2672 (((-548) |#2| $) 22)) (-3263 (((-3 $ "failed") |#2| (-890)) 15)) (-3250 ((|#1| |#2| $ |#1|) 13)) (-3859 (((-3 |#2| "failed") |#2| $) 18)) (-3298 (((-112) |#2| $) 19)) (-3312 (((-112) |#2| $) 20)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3287 ((|#2| $) 17)) (-3743 (((-832) $) 11)) (-2439 ((|#1| |#2| $ |#1|) 14)) (-3274 (((-619 $) |#2|) 16)) (-2214 (((-112) $ $) 6))) +(((-1033 |#1| |#2|) (-138) (-13 (-819) (-355)) (-1194 |t#1|)) (T -1033)) +((-2672 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-548)))) (-3324 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-3312 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-3298 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-3859 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-355))) (-4 *2 (-1194 *3)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-355))) (-4 *2 (-1194 *3)))) (-3274 (*1 *2 *3) (-12 (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-619 *1)) (-4 *1 (-1033 *4 *3)))) (-3263 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-819) (-355))) (-4 *1 (-1033 *4 *2)) (-4 *2 (-1194 *4)))) (-2439 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-355))) (-4 *3 (-1194 *2)))) (-3250 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-355))) (-4 *3 (-1194 *2))))) +(-13 (-1063) (-10 -8 (-15 -2672 ((-548) |t#2| $)) (-15 -3324 ((-112) |t#2| $)) (-15 -3312 ((-112) |t#2| $)) (-15 -3298 ((-112) |t#2| $)) (-15 -3859 ((-3 |t#2| "failed") |t#2| $)) (-15 -3287 (|t#2| $)) (-15 -3274 ((-619 $) |t#2|)) (-15 -3263 ((-3 $ "failed") |t#2| (-890))) (-15 -2439 (|t#1| |t#2| $ |t#1|)) (-15 -3250 (|t#1| |t#2| $ |t#1|)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3653 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745)) 96)) (-3619 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745)) 56)) (-1312 (((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)) 87)) (-3598 (((-745) (-619 |#4|) (-619 |#5|)) 27)) (-3630 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745)) 58) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112)) 60)) (-3642 (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112)) 79)) (-2591 (((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) 82)) (-3609 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-112)) 55)) (-3585 (((-745) (-619 |#4|) (-619 |#5|)) 19))) +(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3585 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3598 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3609 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-112))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3653 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745))) (-15 -2591 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1312 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1034)) +((-1312 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) (-5 *1 (-1034 *4 *5 *6 *7 *8)))) (-3653 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-619 *11)) (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1806 *11)))))) (-5 *6 (-745)) (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1806 *11)))) (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-443)) (-4 *8 (-767)) (-4 *9 (-821)) (-5 *1 (-1034 *7 *8 *9 *10 *11)))) (-3642 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-3642 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3630 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-443)) (-4 *8 (-767)) (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3609 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3585 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3598 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3609 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-112))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3653 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745))) (-15 -2591 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1312 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)))) +((-2258 (((-112) |#5| $) 21)) (-3425 (((-112) |#5| $) 24)) (-2267 (((-112) |#5| $) 16) (((-112) $) 45)) (-2520 (((-619 $) |#5| $) NIL) (((-619 $) (-619 |#5|) $) 77) (((-619 $) (-619 |#5|) (-619 $)) 75) (((-619 $) |#5| (-619 $)) 78)) (-1656 (($ $ |#5|) NIL) (((-619 $) |#5| $) NIL) (((-619 $) |#5| (-619 $)) 60) (((-619 $) (-619 |#5|) $) 62) (((-619 $) (-619 |#5|) (-619 $)) 64)) (-3338 (((-619 $) |#5| $) NIL) (((-619 $) |#5| (-619 $)) 54) (((-619 $) (-619 |#5|) $) 56) (((-619 $) (-619 |#5|) (-619 $)) 58)) (-2247 (((-112) |#5| $) 27))) +(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1656 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -1656 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -1656 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -1656 ((-619 |#1|) |#5| |#1|)) (-15 -3338 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3338 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3338 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3338 ((-619 |#1|) |#5| |#1|)) (-15 -2520 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -2520 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -2520 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -2520 ((-619 |#1|) |#5| |#1|)) (-15 -3425 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#1|)) (-15 -2247 ((-112) |#5| |#1|)) (-15 -2258 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#5| |#1|)) (-15 -1656 (|#1| |#1| |#5|))) (-1036 |#2| |#3| |#4| |#5|) (-443) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -1035)) +NIL +(-10 -8 (-15 -1656 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -1656 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -1656 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -1656 ((-619 |#1|) |#5| |#1|)) (-15 -3338 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3338 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3338 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3338 ((-619 |#1|) |#5| |#1|)) (-15 -2520 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -2520 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -2520 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -2520 ((-619 |#1|) |#5| |#1|)) (-15 -3425 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#1|)) (-15 -2247 ((-112) |#5| |#1|)) (-15 -2258 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#5| |#1|)) (-15 -1656 (|#1| |#1| |#5|))) +((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 126)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-2258 (((-112) |#4| $) 136)) (-3425 (((-112) |#4| $) 133)) (-2267 (((-112) |#4| $) 137) (((-112) $) 134)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 127)) (-3724 (((-3 |#4| "failed") $) 83)) (-3387 (((-619 $) |#4| $) 129)) (-3412 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2520 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3688 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3338 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2247 (((-112) |#4| $) 135)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) +(((-1036 |#1| |#2| |#3| |#4|) (-138) (-443) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1036)) +((-2267 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2258 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2247 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-3425 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-3412 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 (-112) (-619 *1))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3400 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3400 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-3387 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3369 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 *3 (-619 *1))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3353 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-1688 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-2520 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-2520 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-2520 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-2520 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-3338 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3338 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-3338 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-3338 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-3688 (*1 *1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3688 (*1 *1 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)))) (-1656 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-1656 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-1656 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-1656 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *5 *6 *7 *8))))) +(-13 (-1165 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2267 ((-112) |t#4| $)) (-15 -2258 ((-112) |t#4| $)) (-15 -2247 ((-112) |t#4| $)) (-15 -2267 ((-112) $)) (-15 -3425 ((-112) |t#4| $)) (-15 -3412 ((-3 (-112) (-619 $)) |t#4| $)) (-15 -3400 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |t#4| $)) (-15 -3400 ((-112) |t#4| $)) (-15 -3387 ((-619 $) |t#4| $)) (-15 -3369 ((-3 |t#4| (-619 $)) |t#4| |t#4| $)) (-15 -3353 ((-619 (-2 (|:| |val| |t#4|) (|:| -1806 $))) |t#4| |t#4| $)) (-15 -1688 ((-619 (-2 (|:| |val| |t#4|) (|:| -1806 $))) |t#4| $)) (-15 -2520 ((-619 $) |t#4| $)) (-15 -2520 ((-619 $) (-619 |t#4|) $)) (-15 -2520 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -2520 ((-619 $) |t#4| (-619 $))) (-15 -3338 ((-619 $) |t#4| $)) (-15 -3338 ((-619 $) |t#4| (-619 $))) (-15 -3338 ((-619 $) (-619 |t#4|) $)) (-15 -3338 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -3688 ($ |t#4| $)) (-15 -3688 ($ (-619 |t#4|) $)) (-15 -1656 ((-619 $) |t#4| $)) (-15 -1656 ((-619 $) |t#4| (-619 $))) (-15 -1656 ((-619 $) (-619 |t#4|) $)) (-15 -1656 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -2004 ((-619 $) (-619 |t#4|) (-112))))) +(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) +((-2334 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|) 81)) (-2304 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|) 113)) (-2324 (((-619 |#5|) |#4| |#5|) 70)) (-2314 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-1732 (((-1223)) 37)) (-1713 (((-1223)) 26)) (-1722 (((-1223) (-1118) (-1118) (-1118)) 33)) (-1705 (((-1223) (-1118) (-1118) (-1118)) 22)) (-2274 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|) 96)) (-2285 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112)) 107) (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2295 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|) 102))) +(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1705 ((-1223) (-1118) (-1118) (-1118))) (-15 -1713 ((-1223))) (-15 -1722 ((-1223) (-1118) (-1118) (-1118))) (-15 -1732 ((-1223))) (-15 -2274 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2285 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2285 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112))) (-15 -2295 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2304 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2314 ((-112) |#4| |#5|)) (-15 -2314 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -2324 ((-619 |#5|) |#4| |#5|)) (-15 -2334 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1037)) +((-2334 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2324 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2314 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2314 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2304 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2295 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *4 (-821)) (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1806 *9)))) (-5 *1 (-1037 *6 *7 *4 *8 *9)))) (-2285 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1037 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-2274 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1732 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1722 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-1713 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(-10 -7 (-15 -1705 ((-1223) (-1118) (-1118) (-1118))) (-15 -1713 ((-1223))) (-15 -1722 ((-1223) (-1118) (-1118) (-1118))) (-15 -1732 ((-1223))) (-15 -2274 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2285 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2285 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112))) (-15 -2295 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2304 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2314 ((-112) |#4| |#5|)) (-15 -2314 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -2324 ((-619 |#5|) |#4| |#5|)) (-15 -2334 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|))) +((-3730 (((-112) $ $) NIL)) (-2275 (((-1135) $) 8)) (-2546 (((-1118) $) 16)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 13))) +(((-1038 |#1|) (-13 (-1063) (-10 -8 (-15 -2275 ((-1135) $)))) (-1135)) (T -1038)) +((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1038 *3)) (-14 *3 *2)))) +(-13 (-1063) (-10 -8 (-15 -2275 ((-1135) $)))) +((-3730 (((-112) $ $) NIL)) (-2256 (($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|))) 33)) (-1630 (($ |#3| |#3|) 22) (($ |#3| |#3| (-619 (-1135))) 20)) (-1987 ((|#3| $) 13)) (-2441 (((-3 (-286 |#3|) "failed") $) 58)) (-2375 (((-286 |#3|) $) NIL)) (-2343 (((-619 (-1135)) $) 16)) (-3521 (((-861 |#1|) $) 11)) (-1974 ((|#3| $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3171 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-890)) 39)) (-3743 (((-832) $) 86) (($ (-286 |#3|)) 21)) (-2214 (((-112) $ $) 36))) +(((-1039 |#1| |#2| |#3|) (-13 (-1063) (-278 |#3| |#3|) (-1007 (-286 |#3|)) (-10 -8 (-15 -1630 ($ |#3| |#3|)) (-15 -1630 ($ |#3| |#3| (-619 (-1135)))) (-15 -2256 ($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|)))) (-15 -3521 ((-861 |#1|) $)) (-15 -1974 (|#3| $)) (-15 -1987 (|#3| $)) (-15 -3171 (|#3| $ |#3| (-890))) (-15 -2343 ((-619 (-1135)) $)))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-593 (-861 |#1|))) (-13 (-422 |#2|) (-855 |#1|) (-593 (-861 |#1|)))) (T -1039)) +((-1630 (*1 *1 *2 *2) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))))) (-1630 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) (-2256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1 (-112) (-619 *6))) (-4 *6 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-1039 *4 *5 *6)))) (-3521 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 *2))) (-5 *2 (-861 *3)) (-5 *1 (-1039 *3 *4 *5)) (-4 *5 (-13 (-422 *4) (-855 *3) (-593 *2))))) (-1974 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))))) (-1987 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))))) (-3171 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) (-2343 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) (-5 *2 (-619 (-1135))) (-5 *1 (-1039 *3 *4 *5)) (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3))))))) +(-13 (-1063) (-278 |#3| |#3|) (-1007 (-286 |#3|)) (-10 -8 (-15 -1630 ($ |#3| |#3|)) (-15 -1630 ($ |#3| |#3| (-619 (-1135)))) (-15 -2256 ($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|)))) (-15 -3521 ((-861 |#1|) $)) (-15 -1974 (|#3| $)) (-15 -1987 (|#3| $)) (-15 -3171 (|#3| $ |#3| (-890))) (-15 -2343 ((-619 (-1135)) $)))) +((-3730 (((-112) $ $) NIL)) (-2227 (($ (-619 (-1039 |#1| |#2| |#3|))) 13)) (-2800 (((-619 (-1039 |#1| |#2| |#3|)) $) 20)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3171 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-890)) 26)) (-3743 (((-832) $) 16)) (-2214 (((-112) $ $) 19))) +(((-1040 |#1| |#2| |#3|) (-13 (-1063) (-278 |#3| |#3|) (-10 -8 (-15 -2227 ($ (-619 (-1039 |#1| |#2| |#3|)))) (-15 -2800 ((-619 (-1039 |#1| |#2| |#3|)) $)) (-15 -3171 (|#3| $ |#3| (-890))))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-593 (-861 |#1|))) (-13 (-422 |#2|) (-855 |#1|) (-593 (-861 |#1|)))) (T -1040)) +((-2227 (*1 *1 *2) (-12 (-5 *2 (-619 (-1039 *3 *4 *5))) (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) (-5 *1 (-1040 *3 *4 *5)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) (-5 *2 (-619 (-1039 *3 *4 *5))) (-5 *1 (-1040 *3 *4 *5)) (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))))) (-3171 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-1040 *4 *5 *2)) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4))))))) +(-13 (-1063) (-278 |#3| |#3|) (-10 -8 (-15 -2227 ($ (-619 (-1039 |#1| |#2| |#3|)))) (-15 -2800 ((-619 (-1039 |#1| |#2| |#3|)) $)) (-15 -3171 (|#3| $ |#3| (-890))))) +((-2352 (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)) 75) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|))) 77) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112)) 76))) +(((-1041 |#1| |#2|) (-10 -7 (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)))) (-13 (-299) (-145)) (-619 (-1135))) (T -1041)) +((-2352 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))))) (-2352 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-619 (-921 *4))) (-14 *5 (-619 (-1135))))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135)))))) +(-10 -7 (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)))) +((-1915 (((-410 |#3|) |#3|) 18))) +(((-1042 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-410 |#3|) |#3|))) (-1194 (-399 (-548))) (-13 (-355) (-145) (-699 (-399 (-548)) |#1|)) (-1194 |#2|)) (T -1042)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-13 (-355) (-145) (-699 (-399 (-548)) *4))) (-5 *2 (-410 *3)) (-5 *1 (-1042 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -1915 ((-410 |#3|) |#3|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 126)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-355)))) (-3303 (($ $) NIL (|has| |#1| (-355)))) (-3279 (((-112) $) NIL (|has| |#1| (-355)))) (-2350 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) 115)) (-2707 ((|#1| $) 119)) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-3423 (((-745)) 40 (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) 43)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-341)))) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-2341 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 106) (((-663 |#1|) (-663 $)) 101)) (-2061 (($ |#2|) 61) (((-3 $ "failed") (-399 |#2|)) NIL (|has| |#1| (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-2103 (((-890)) 77)) (-2545 (($) 44 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-2771 (($) NIL (|has| |#1| (-341)))) (-3727 (((-112) $) NIL (|has| |#1| (-341)))) (-2208 (($ $ (-745)) NIL (|has| |#1| (-341))) (($ $) NIL (|has| |#1| (-341)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-1672 (((-890) $) NIL (|has| |#1| (-341))) (((-807 (-890)) $) NIL (|has| |#1| (-341)))) (-2266 (((-112) $) NIL)) (-3910 ((|#1| $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2898 ((|#2| $) 84 (|has| |#1| (-355)))) (-2855 (((-890) $) 131 (|has| |#1| (-360)))) (-2050 ((|#2| $) 58)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3410 (($) NIL (|has| |#1| (-341)) CONST)) (-3337 (($ (-890)) 125 (|has| |#1| (-360)))) (-3932 (((-1082) $) NIL)) (-4160 (($) 121)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-341)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-1566 ((|#1| (-1218 $)) NIL) ((|#1|) 109)) (-2217 (((-745) $) NIL (|has| |#1| (-341))) (((-3 (-745) "failed") $ $) NIL (|has| |#1| (-341)))) (-4050 (($ $) NIL (-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-1 |#1| |#1|) (-745)) NIL (|has| |#1| (-355))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-355)))) (-2257 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-355)))) (-3287 ((|#2|) 73)) (-3655 (($) NIL (|has| |#1| (-341)))) (-2447 (((-1218 |#1|) $ (-1218 $)) 89) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) 71) (((-663 |#1|) (-1218 $)) 85)) (-2591 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-341)))) (-3743 (((-832) $) 57) (($ (-548)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-355))) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3780 ((|#2| $) 82)) (-3835 (((-745)) 75)) (-2877 (((-1218 $)) 81)) (-3290 (((-112) $ $) NIL (|has| |#1| (-355)))) (-3107 (($) 30 T CONST)) (-3118 (($) 19 T CONST)) (-3296 (($ $) NIL (-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-1 |#1| |#1|) (-745)) NIL (|has| |#1| (-355))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-355)))) (-2214 (((-112) $ $) 63)) (-2309 (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) 67) (($ $ $) NIL)) (-2290 (($ $ $) 65)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-399 (-548)) $) NIL (|has| |#1| (-355))) (($ $ (-399 (-548))) NIL (|has| |#1| (-355))))) +(((-1043 |#1| |#2| |#3|) (-699 |#1| |#2|) (-169) (-1194 |#1|) |#2|) (T -1043)) +NIL +(-699 |#1| |#2|) +((-1915 (((-410 |#3|) |#3|) 19))) +(((-1044 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-410 |#3|) |#3|))) (-1194 (-399 (-921 (-548)))) (-13 (-355) (-145) (-699 (-399 (-921 (-548))) |#1|)) (-1194 |#2|)) (T -1044)) +((-1915 (*1 *2 *3) (-12 (-4 *4 (-1194 (-399 (-921 (-548))))) (-4 *5 (-13 (-355) (-145) (-699 (-399 (-921 (-548))) *4))) (-5 *2 (-410 *3)) (-5 *1 (-1044 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -1915 ((-410 |#3|) |#3|))) +((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) 14)) (-3091 (($ $ $) 15)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2363 (($) 6)) (-2591 (((-1135) $) 18)) (-3743 (((-832) $) 12)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 13)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 8))) +(((-1045) (-13 (-821) (-10 -8 (-15 -2363 ($)) (-15 -2591 ((-1135) $))))) (T -1045)) +((-2363 (*1 *1) (-5 *1 (-1045))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1045))))) +(-13 (-821) (-10 -8 (-15 -2363 ($)) (-15 -2591 ((-1135) $)))) +((-3743 (((-832) $) 37) (((-1140) $) NIL))) +(((-1046 |#1|) (-10 -8 (-15 -3743 ((-1140) |#1|)) (-15 -3743 ((-832) |#1|))) (-1047)) (T -1046)) +NIL +(-10 -8 (-15 -3743 ((-1140) |#1|)) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (((-1140) $) 14)) (-2214 (((-112) $ $) 6))) +(((-1047) (-138)) (T -1047)) +NIL +(-13 (-92)) +(((-92) . T) ((-101) . T) ((-592 (-832)) . T) ((-592 (-1140)) . T) ((-1063) . T)) +((-2372 ((|#1| |#1| (-1 (-548) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-2353 (((-1223)) 15)) (-4253 (((-619 |#1|)) 9))) +(((-1048 |#1|) (-10 -7 (-15 -2353 ((-1223))) (-15 -4253 ((-619 |#1|))) (-15 -2372 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2372 (|#1| |#1| (-1 (-548) |#1| |#1|)))) (-131)) (T -1048)) +((-2372 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-548) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) (-2372 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) (-4253 (*1 *2) (-12 (-5 *2 (-619 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-131)))) (-2353 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) +(-10 -7 (-15 -2353 ((-1223))) (-15 -4253 ((-619 |#1|))) (-15 -2372 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2372 (|#1| |#1| (-1 (-548) |#1| |#1|)))) +((-2404 (($ (-108) $) 16)) (-2415 (((-3 (-108) "failed") (-1135) $) 15)) (-3319 (($) 7)) (-2394 (($) 17)) (-2382 (($) 18)) (-2424 (((-619 (-172)) $) 10)) (-3743 (((-832) $) 21))) +(((-1049) (-13 (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -2424 ((-619 (-172)) $)) (-15 -2415 ((-3 (-108) "failed") (-1135) $)) (-15 -2404 ($ (-108) $)) (-15 -2394 ($)) (-15 -2382 ($))))) (T -1049)) +((-3319 (*1 *1) (-5 *1 (-1049))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-619 (-172))) (-5 *1 (-1049)))) (-2415 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-1049)))) (-2404 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049)))) (-2394 (*1 *1) (-5 *1 (-1049))) (-2382 (*1 *1) (-5 *1 (-1049)))) +(-13 (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -2424 ((-619 (-172)) $)) (-15 -2415 ((-3 (-108) "failed") (-1135) $)) (-15 -2404 ($ (-108) $)) (-15 -2394 ($)) (-15 -2382 ($)))) +((-2434 (((-1218 (-663 |#1|)) (-619 (-663 |#1|))) 42) (((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|))) 63) (((-1218 (-663 (-399 (-921 |#1|)))) (-619 (-1135)) (-663 (-399 (-921 |#1|)))) 79)) (-2447 (((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))) 36))) +(((-1050 |#1|) (-10 -7 (-15 -2434 ((-1218 (-663 (-399 (-921 |#1|)))) (-619 (-1135)) (-663 (-399 (-921 |#1|))))) (-15 -2434 ((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|)))) (-15 -2434 ((-1218 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -2447 ((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))))) (-355)) (T -1050)) +((-2447 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-663 *5))) (-5 *3 (-663 *5)) (-4 *5 (-355)) (-5 *2 (-1218 *5)) (-5 *1 (-1050 *5)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-355)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-1050 *4)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-355)) (-5 *2 (-1218 (-663 (-921 *5)))) (-5 *1 (-1050 *5)) (-5 *4 (-663 (-921 *5))))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-355)) (-5 *2 (-1218 (-663 (-399 (-921 *5))))) (-5 *1 (-1050 *5)) (-5 *4 (-663 (-399 (-921 *5))))))) +(-10 -7 (-15 -2434 ((-1218 (-663 (-399 (-921 |#1|)))) (-619 (-1135)) (-663 (-399 (-921 |#1|))))) (-15 -2434 ((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|)))) (-15 -2434 ((-1218 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -2447 ((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2919 (((-619 (-745)) $) NIL) (((-619 (-745)) $ (-1135)) NIL)) (-3266 (((-745) $) NIL) (((-745) $ (-1135)) NIL)) (-2049 (((-619 (-1052 (-1135))) $) NIL)) (-1884 (((-1131 $) $ (-1052 (-1135))) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1052 (-1135)))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2896 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1052 (-1135)) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL) (((-3 (-1087 |#1| (-1135)) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1052 (-1135)) $) NIL) (((-1135) $) NIL) (((-1087 |#1| (-1135)) $) NIL)) (-1557 (($ $ $ (-1052 (-1135))) NIL (|has| |#1| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-1052 (-1135))) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 (-1052 (-1135))) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1052 (-1135)) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1052 (-1135)) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ (-1135)) NIL) (((-745) $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#1|) (-1052 (-1135))) NIL) (($ (-1131 $) (-1052 (-1135))) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1052 (-1135))) NIL)) (-3904 (((-520 (-1052 (-1135))) $) NIL) (((-745) $ (-1052 (-1135))) NIL) (((-619 (-745)) $ (-619 (-1052 (-1135)))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 (-1052 (-1135))) (-520 (-1052 (-1135)))) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3278 (((-1 $ (-745)) (-1135)) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-226)))) (-3511 (((-3 (-1052 (-1135)) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-1956 (((-1052 (-1135)) $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-2909 (((-112) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1052 (-1135))) (|:| -3352 (-745))) "failed") $) NIL)) (-2045 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1052 (-1135)) |#1|) NIL) (($ $ (-619 (-1052 (-1135))) (-619 |#1|)) NIL) (($ $ (-1052 (-1135)) $) NIL) (($ $ (-619 (-1052 (-1135))) (-619 $)) NIL) (($ $ (-1135) $) NIL (|has| |#1| (-226))) (($ $ (-619 (-1135)) (-619 $)) NIL (|has| |#1| (-226))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-226))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-226)))) (-1566 (($ $ (-1052 (-1135))) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-1052 (-1135))) NIL) (($ $ (-619 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2930 (((-619 (-1135)) $) NIL)) (-2512 (((-520 (-1052 (-1135))) $) NIL) (((-745) $ (-1052 (-1135))) NIL) (((-619 (-745)) $ (-619 (-1052 (-1135)))) NIL) (((-745) $ (-1135)) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1052 (-1135)) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1052 (-1135)) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1052 (-1135)) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-1052 (-1135))) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-1052 (-1135))) NIL) (($ (-1135)) NIL) (($ (-1087 |#1| (-1135))) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1052 (-1135))) NIL) (($ $ (-619 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1051 |#1|) (-13 (-245 |#1| (-1135) (-1052 (-1135)) (-520 (-1052 (-1135)))) (-1007 (-1087 |#1| (-1135)))) (-1016)) (T -1051)) +NIL +(-13 (-245 |#1| (-1135) (-1052 (-1135)) (-520 (-1052 (-1135)))) (-1007 (-1087 |#1| (-1135)))) +((-3730 (((-112) $ $) NIL)) (-3266 (((-745) $) NIL)) (-2754 ((|#1| $) 10)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-1672 (((-745) $) 11)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3278 (($ |#1| (-745)) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4050 (($ $) NIL) (($ $ (-745)) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 15))) +(((-1052 |#1|) (-258 |#1|) (-821)) (T -1052)) +NIL +(-258 |#1|) +((-2540 (((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 24 (|has| |#1| (-819))) (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 14))) +(((-1053 |#1| |#2|) (-10 -7 (-15 -2540 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (IF (|has| |#1| (-819)) (-15 -2540 ((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) |%noBranch|)) (-1172) (-1172)) (T -1053)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-819)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-619 *6)) (-5 *1 (-1053 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1058 *6)) (-5 *1 (-1053 *5 *6))))) +(-10 -7 (-15 -2540 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (IF (|has| |#1| (-819)) (-15 -2540 ((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2457 (((-619 (-1140)) $) 9)) (-2214 (((-112) $ $) NIL))) +(((-1054) (-13 (-1047) (-10 -8 (-15 -2457 ((-619 (-1140)) $))))) (T -1054)) +((-2457 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1054))))) +(-13 (-1047) (-10 -8 (-15 -2457 ((-619 (-1140)) $)))) +((-2540 (((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)) 19))) +(((-1055 |#1| |#2|) (-10 -7 (-15 -2540 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)))) (-1172) (-1172)) (T -1055)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1056 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1056 *6)) (-5 *1 (-1055 *5 *6))))) +(-10 -7 (-15 -2540 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2754 (((-1135) $) 11)) (-4100 (((-1058 |#1|) $) 12)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2155 (($ (-1135) (-1058 |#1|)) 10)) (-3743 (((-832) $) 20 (|has| |#1| (-1063)))) (-2214 (((-112) $ $) 15 (|has| |#1| (-1063))))) +(((-1056 |#1|) (-13 (-1172) (-10 -8 (-15 -2155 ($ (-1135) (-1058 |#1|))) (-15 -2754 ((-1135) $)) (-15 -4100 ((-1058 |#1|) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -1056)) +((-2155 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1058 *4)) (-4 *4 (-1172)) (-5 *1 (-1056 *4)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1056 *3)) (-4 *3 (-1172)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1172))))) +(-13 (-1172) (-10 -8 (-15 -2155 ($ (-1135) (-1058 |#1|))) (-15 -2754 ((-1135) $)) (-15 -4100 ((-1058 |#1|) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) +((-4100 (($ |#1| |#1|) 7)) (-2479 ((|#1| $) 10)) (-4246 ((|#1| $) 12)) (-4259 (((-548) $) 8)) (-2469 ((|#1| $) 9)) (-4270 ((|#1| $) 11)) (-2591 (($ |#1|) 6)) (-1794 (($ |#1| |#1|) 14)) (-1984 (($ $ (-548)) 13))) +(((-1057 |#1|) (-138) (-1172)) (T -1057)) +((-1794 (*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1057 *3)) (-4 *3 (-1172)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1172)) (-5 *2 (-548)))) (-4100 (*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(-13 (-1172) (-10 -8 (-15 -1794 ($ |t#1| |t#1|)) (-15 -1984 ($ $ (-548))) (-15 -4246 (|t#1| $)) (-15 -4270 (|t#1| $)) (-15 -2479 (|t#1| $)) (-15 -2469 (|t#1| $)) (-15 -4259 ((-548) $)) (-15 -4100 ($ |t#1| |t#1|)) (-15 -2591 ($ |t#1|)))) +(((-1172) . T)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4100 (($ |#1| |#1|) 15)) (-2540 (((-619 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-819)))) (-2479 ((|#1| $) 10)) (-4246 ((|#1| $) 9)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-4259 (((-548) $) 14)) (-2469 ((|#1| $) 12)) (-4270 ((|#1| $) 11)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1384 (((-619 |#1|) $) 36 (|has| |#1| (-819))) (((-619 |#1|) (-619 $)) 35 (|has| |#1| (-819)))) (-2591 (($ |#1|) 26)) (-3743 (((-832) $) 25 (|has| |#1| (-1063)))) (-1794 (($ |#1| |#1|) 8)) (-1984 (($ $ (-548)) 16)) (-2214 (((-112) $ $) 19 (|has| |#1| (-1063))))) +(((-1058 |#1|) (-13 (-1057 |#1|) (-10 -7 (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-619 |#1|))) |%noBranch|))) (-1172)) (T -1058)) +NIL +(-13 (-1057 |#1|) (-10 -7 (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-619 |#1|))) |%noBranch|))) +((-4100 (($ |#1| |#1|) 7)) (-2540 ((|#2| (-1 |#1| |#1|) $) 16)) (-2479 ((|#1| $) 10)) (-4246 ((|#1| $) 12)) (-4259 (((-548) $) 8)) (-2469 ((|#1| $) 9)) (-4270 ((|#1| $) 11)) (-1384 ((|#2| (-619 $)) 18) ((|#2| $) 17)) (-2591 (($ |#1|) 6)) (-1794 (($ |#1| |#1|) 14)) (-1984 (($ $ (-548)) 13))) +(((-1059 |#1| |#2|) (-138) (-819) (-1109 |t#1|)) (T -1059)) +((-1384 (*1 *2 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1109 *4)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-819)) (-4 *2 (-1109 *3)))) (-2540 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1109 *4))))) +(-13 (-1057 |t#1|) (-10 -8 (-15 -1384 (|t#2| (-619 $))) (-15 -1384 (|t#2| $)) (-15 -2540 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1057 |#1|) . T) ((-1172) . T)) +((-1434 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2501 (($ $ $) 10)) (-2511 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1060 |#1| |#2|) (-10 -8 (-15 -1434 (|#1| |#2| |#1|)) (-15 -1434 (|#1| |#1| |#2|)) (-15 -1434 (|#1| |#1| |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#2|)) (-15 -2511 (|#1| |#1| |#1|))) (-1061 |#2|) (-1063)) (T -1060)) +NIL +(-10 -8 (-15 -1434 (|#1| |#2| |#1|)) (-15 -1434 (|#1| |#1| |#2|)) (-15 -1434 (|#1| |#1| |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#2|)) (-15 -2511 (|#1| |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-1434 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2501 (($ $ $) 20)) (-2491 (((-112) $ $) 19)) (-2028 (((-112) $ (-745)) 35)) (-2592 (($) 25) (($ (-619 |#1|)) 24)) (-1415 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4327)))) (-3030 (($) 36 T CONST)) (-3484 (($ $) 59 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 43 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 28)) (-4282 (((-112) $ (-745)) 34)) (-2342 (((-619 |#1|) $) 44 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 38)) (-4248 (((-112) $ (-745)) 33)) (-2546 (((-1118) $) 9)) (-2520 (($ $ $) 23)) (-3932 (((-1082) $) 10)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3537 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 50 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 48 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-286 |#1|))) 47 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 29)) (-1616 (((-112) $) 32)) (-3319 (($) 31)) (-2511 (($ $ $) 22) (($ $ |#1|) 21)) (-3945 (((-745) |#1| $) 45 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4327)))) (-2113 (($ $) 30)) (-2591 (((-524) $) 60 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 51)) (-3743 (((-832) $) 11)) (-4013 (($) 27) (($ (-619 |#1|)) 26)) (-3548 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 37 (|has| $ (-6 -4327))))) +(((-1061 |#1|) (-138) (-1063)) (T -1061)) +((-2531 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4013 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-4013 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) (-2592 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2511 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2511 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2501 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2491 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-1434 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1434 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1434 (*1 *1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(-13 (-1063) (-149 |t#1|) (-10 -8 (-6 -4317) (-15 -2531 ((-112) $ $)) (-15 -4013 ($)) (-15 -4013 ($ (-619 |t#1|))) (-15 -2592 ($)) (-15 -2592 ($ (-619 |t#1|))) (-15 -2520 ($ $ $)) (-15 -2511 ($ $ $)) (-15 -2511 ($ $ |t#1|)) (-15 -2501 ($ $ $)) (-15 -2491 ((-112) $ $)) (-15 -1434 ($ $ $)) (-15 -1434 ($ $ |t#1|)) (-15 -1434 ($ |t#1| $)))) +(((-34) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) . T) ((-1172) . T)) +((-2546 (((-1118) $) 10)) (-3932 (((-1082) $) 8))) +(((-1062 |#1|) (-10 -8 (-15 -2546 ((-1118) |#1|)) (-15 -3932 ((-1082) |#1|))) (-1063)) (T -1062)) +NIL +(-10 -8 (-15 -2546 ((-1118) |#1|)) (-15 -3932 ((-1082) |#1|))) +((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(((-1063) (-138)) (T -1063)) +((-3932 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1082)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1118))))) +(-13 (-101) (-592 (-832)) (-10 -8 (-15 -3932 ((-1082) $)) (-15 -2546 ((-1118) $)))) +(((-101) . T) ((-592 (-832)) . T)) +((-3730 (((-112) $ $) NIL)) (-3423 (((-745)) 30)) (-2575 (($ (-619 (-890))) 52)) (-2595 (((-3 $ "failed") $ (-890) (-890)) 58)) (-2545 (($) 32)) (-2556 (((-112) (-890) $) 35)) (-2855 (((-890) $) 50)) (-2546 (((-1118) $) NIL)) (-3337 (($ (-890)) 31)) (-2604 (((-3 $ "failed") $ (-890)) 55)) (-3932 (((-1082) $) NIL)) (-2566 (((-1218 $)) 40)) (-2584 (((-619 (-890)) $) 24)) (-1605 (((-745) $ (-890) (-890)) 56)) (-3743 (((-832) $) 29)) (-2214 (((-112) $ $) 21))) +(((-1064 |#1| |#2|) (-13 (-360) (-10 -8 (-15 -2604 ((-3 $ "failed") $ (-890))) (-15 -2595 ((-3 $ "failed") $ (-890) (-890))) (-15 -2584 ((-619 (-890)) $)) (-15 -2575 ($ (-619 (-890)))) (-15 -2566 ((-1218 $))) (-15 -2556 ((-112) (-890) $)) (-15 -1605 ((-745) $ (-890) (-890))))) (-890) (-890)) (T -1064)) +((-2604 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2595 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2584 (*1 *2 *1) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2566 (*1 *2) (-12 (-5 *2 (-1218 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2556 (*1 *2 *3 *1) (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1605 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-745)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-360) (-10 -8 (-15 -2604 ((-3 $ "failed") $ (-890))) (-15 -2595 ((-3 $ "failed") $ (-890) (-890))) (-15 -2584 ((-619 (-890)) $)) (-15 -2575 ($ (-619 (-890)))) (-15 -2566 ((-1218 $))) (-15 -2556 ((-112) (-890) $)) (-15 -1605 ((-745) $ (-890) (-890))))) +((-3730 (((-112) $ $) NIL)) (-2528 (($) NIL (|has| |#1| (-360)))) (-1434 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2501 (($ $ $) 72)) (-2491 (((-112) $ $) 73)) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-2592 (($ (-619 |#1|)) NIL) (($) 13)) (-2657 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) 67 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4327)))) (-2545 (($) NIL (|has| |#1| (-360)))) (-1934 (((-619 |#1|) $) 19 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-1795 ((|#1| $) 57 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3091 ((|#1| $) 55 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 34)) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2520 (($ $ $) 70)) (-1346 ((|#1| $) 25)) (-2539 (($ |#1| $) 65)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-3932 (((-1082) $) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1357 ((|#1| $) 27)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 21)) (-3319 (($) 11)) (-2511 (($ $ |#1|) NIL) (($ $ $) 71)) (-2801 (($) NIL) (($ (-619 |#1|)) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 16)) (-2591 (((-524) $) 52 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 61)) (-2543 (($ $) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) NIL)) (-2554 (((-745) $) NIL)) (-4013 (($ (-619 |#1|)) NIL) (($) 12)) (-1368 (($ (-619 |#1|)) NIL)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 54)) (-3643 (((-745) $) 10 (|has| $ (-6 -4327))))) +(((-1065 |#1|) (-417 |#1|) (-1063)) (T -1065)) +NIL +(-417 |#1|) +((-3730 (((-112) $ $) 7)) (-2633 (((-112) $) 32)) (-3803 ((|#2| $) 27)) (-2643 (((-112) $) 33)) (-1504 ((|#1| $) 28)) (-2666 (((-112) $) 35)) (-2684 (((-112) $) 37)) (-2654 (((-112) $) 34)) (-2546 (((-1118) $) 9)) (-2624 (((-112) $) 31)) (-3829 ((|#3| $) 26)) (-3932 (((-1082) $) 10)) (-2614 (((-112) $) 30)) (-1335 ((|#4| $) 25)) (-2720 ((|#5| $) 24)) (-2383 (((-112) $ $) 38)) (-3171 (($ $ (-548)) 14) (($ $ (-619 (-548))) 13)) (-1981 (((-619 $) $) 29)) (-2591 (($ (-619 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3743 (((-832) $) 11)) (-3336 (($ $) 16)) (-3322 (($ $) 17)) (-2675 (((-112) $) 36)) (-2214 (((-112) $ $) 6)) (-3643 (((-548) $) 15))) +(((-1066 |#1| |#2| |#3| |#4| |#5|) (-138) (-1063) (-1063) (-1063) (-1063) (-1063)) (T -1066)) +((-2383 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *2 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *2 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *2 (-1063)) (-4 *6 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3322 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-3336 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-548)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -2383 ((-112) $ $)) (-15 -2684 ((-112) $)) (-15 -2675 ((-112) $)) (-15 -2666 ((-112) $)) (-15 -2654 ((-112) $)) (-15 -2643 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -2624 ((-112) $)) (-15 -2614 ((-112) $)) (-15 -1981 ((-619 $) $)) (-15 -1504 (|t#1| $)) (-15 -3803 (|t#2| $)) (-15 -3829 (|t#3| $)) (-15 -1335 (|t#4| $)) (-15 -2720 (|t#5| $)) (-15 -2591 ($ (-619 $))) (-15 -2591 ($ |t#1|)) (-15 -2591 ($ |t#2|)) (-15 -2591 ($ |t#3|)) (-15 -2591 ($ |t#4|)) (-15 -2591 ($ |t#5|)) (-15 -3322 ($ $)) (-15 -3336 ($ $)) (-15 -3643 ((-548) $)) (-15 -3171 ($ $ (-548))) (-15 -3171 ($ $ (-619 (-548)))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL)) (-2633 (((-112) $) NIL)) (-3803 (((-1135) $) NIL)) (-2643 (((-112) $) NIL)) (-1504 (((-1118) $) NIL)) (-2666 (((-112) $) NIL)) (-2684 (((-112) $) NIL)) (-2654 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-2624 (((-112) $) NIL)) (-3829 (((-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-2614 (((-112) $) NIL)) (-1335 (((-218) $) NIL)) (-2720 (((-832) $) NIL)) (-2383 (((-112) $ $) NIL)) (-3171 (($ $ (-548)) NIL) (($ $ (-619 (-548))) NIL)) (-1981 (((-619 $) $) NIL)) (-2591 (($ (-619 $)) NIL) (($ (-1118)) NIL) (($ (-1135)) NIL) (($ (-548)) NIL) (($ (-218)) NIL) (($ (-832)) NIL)) (-3743 (((-832) $) NIL)) (-3336 (($ $) NIL)) (-3322 (($ $) NIL)) (-2675 (((-112) $) NIL)) (-2214 (((-112) $ $) NIL)) (-3643 (((-548) $) NIL))) +(((-1067) (-1066 (-1118) (-1135) (-548) (-218) (-832))) (T -1067)) +NIL +(-1066 (-1118) (-1135) (-548) (-218) (-832)) +((-3730 (((-112) $ $) NIL)) (-2633 (((-112) $) 38)) (-3803 ((|#2| $) 42)) (-2643 (((-112) $) 37)) (-1504 ((|#1| $) 41)) (-2666 (((-112) $) 35)) (-2684 (((-112) $) 14)) (-2654 (((-112) $) 36)) (-2546 (((-1118) $) NIL)) (-2624 (((-112) $) 39)) (-3829 ((|#3| $) 44)) (-3932 (((-1082) $) NIL)) (-2614 (((-112) $) 40)) (-1335 ((|#4| $) 43)) (-2720 ((|#5| $) 45)) (-2383 (((-112) $ $) 34)) (-3171 (($ $ (-548)) 56) (($ $ (-619 (-548))) 58)) (-1981 (((-619 $) $) 22)) (-2591 (($ (-619 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-3743 (((-832) $) 23)) (-3336 (($ $) 21)) (-3322 (($ $) 52)) (-2675 (((-112) $) 18)) (-2214 (((-112) $ $) 33)) (-3643 (((-548) $) 54))) +(((-1068 |#1| |#2| |#3| |#4| |#5|) (-1066 |#1| |#2| |#3| |#4| |#5|) (-1063) (-1063) (-1063) (-1063) (-1063)) (T -1068)) +NIL +(-1066 |#1| |#2| |#3| |#4| |#5|) +((-3898 (((-1223) $) 23)) (-4252 (($ (-1135) (-426) |#2|) 11)) (-3743 (((-832) $) 16))) +(((-1069 |#1| |#2|) (-13 (-387) (-10 -8 (-15 -4252 ($ (-1135) (-426) |#2|)))) (-821) (-422 |#1|)) (T -1069)) +((-4252 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-426)) (-4 *5 (-821)) (-5 *1 (-1069 *5 *4)) (-4 *4 (-422 *5))))) +(-13 (-387) (-10 -8 (-15 -4252 ($ (-1135) (-426) |#2|)))) +((-2710 (((-112) |#5| |#5|) 38)) (-2735 (((-112) |#5| |#5|) 52)) (-2776 (((-112) |#5| (-619 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-2744 (((-112) (-619 |#4|) (-619 |#4|)) 58)) (-1675 (((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) 63)) (-2702 (((-1223)) 33)) (-2694 (((-1223) (-1118) (-1118) (-1118)) 29)) (-2784 (((-619 |#5|) (-619 |#5|)) 82)) (-1683 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) 80)) (-1691 (((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112)) 102)) (-2727 (((-112) |#5| |#5|) 47)) (-2768 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2752 (((-112) (-619 |#4|) (-619 |#4|)) 57)) (-2761 (((-112) (-619 |#4|) (-619 |#4|)) 59)) (-2199 (((-112) (-619 |#4|) (-619 |#4|)) 60)) (-1697 (((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-2718 (((-619 |#5|) (-619 |#5|)) 43))) +(((-1070 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2694 ((-1223) (-1118) (-1118) (-1118))) (-15 -2702 ((-1223))) (-15 -2710 ((-112) |#5| |#5|)) (-15 -2718 ((-619 |#5|) (-619 |#5|))) (-15 -2727 ((-112) |#5| |#5|)) (-15 -2735 ((-112) |#5| |#5|)) (-15 -2744 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2752 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2761 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2199 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2768 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2776 ((-112) |#5| |#5|)) (-15 -2776 ((-112) |#5| (-619 |#5|))) (-15 -2784 ((-619 |#5|) (-619 |#5|))) (-15 -1675 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1683 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-15 -1691 ((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -1697 ((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1070)) +((-1697 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| -2383 (-619 *9)) (|:| -1806 *4) (|:| |ineq| (-619 *9)))) (-5 *1 (-1070 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) (-4 *4 (-1036 *6 *7 *8 *9)))) (-1691 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| -2383 (-619 *9)) (|:| -1806 *10) (|:| |ineq| (-619 *9))))) (-5 *1 (-1070 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1806 *7)))) (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-1675 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1070 *5 *6 *7 *8 *3)))) (-2776 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2768 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2199 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2761 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2752 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2735 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2727 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-2710 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2702 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-2694 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(-10 -7 (-15 -2694 ((-1223) (-1118) (-1118) (-1118))) (-15 -2702 ((-1223))) (-15 -2710 ((-112) |#5| |#5|)) (-15 -2718 ((-619 |#5|) (-619 |#5|))) (-15 -2727 ((-112) |#5| |#5|)) (-15 -2735 ((-112) |#5| |#5|)) (-15 -2744 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2752 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2761 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2199 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2768 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2776 ((-112) |#5| |#5|)) (-15 -2776 ((-112) |#5| (-619 |#5|))) (-15 -2784 ((-619 |#5|) (-619 |#5|))) (-15 -1675 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1683 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-15 -1691 ((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -1697 ((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1834 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|) 96)) (-1743 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|) 72)) (-1769 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|) 91)) (-1785 (((-619 |#5|) |#4| |#5|) 110)) (-1803 (((-619 |#5|) |#4| |#5|) 117)) (-1824 (((-619 |#5|) |#4| |#5|) 118)) (-1777 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 97)) (-1793 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 116)) (-1814 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-1751 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112)) 84) (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1760 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|) 79)) (-1732 (((-1223)) 37)) (-1713 (((-1223)) 26)) (-1722 (((-1223) (-1118) (-1118) (-1118)) 33)) (-1705 (((-1223) (-1118) (-1118) (-1118)) 22))) +(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1705 ((-1223) (-1118) (-1118) (-1118))) (-15 -1713 ((-1223))) (-15 -1722 ((-1223) (-1118) (-1118) (-1118))) (-15 -1732 ((-1223))) (-15 -1743 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1751 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1751 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112))) (-15 -1760 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1769 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1814 ((-112) |#4| |#5|)) (-15 -1777 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1785 ((-619 |#5|) |#4| |#5|)) (-15 -1793 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1803 ((-619 |#5|) |#4| |#5|)) (-15 -1814 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1824 ((-619 |#5|) |#4| |#5|)) (-15 -1834 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1071)) +((-1834 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1824 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1814 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1803 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1793 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1785 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1814 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1769 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1760 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *4 (-821)) (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1806 *9)))) (-5 *1 (-1071 *6 *7 *4 *8 *9)))) (-1751 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-1743 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1732 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1722 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-1713 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(-10 -7 (-15 -1705 ((-1223) (-1118) (-1118) (-1118))) (-15 -1713 ((-1223))) (-15 -1722 ((-1223) (-1118) (-1118) (-1118))) (-15 -1732 ((-1223))) (-15 -1743 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1751 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1751 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112))) (-15 -1760 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1769 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1814 ((-112) |#4| |#5|)) (-15 -1777 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1785 ((-619 |#5|) |#4| |#5|)) (-15 -1793 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1803 ((-619 |#5|) |#4| |#5|)) (-15 -1814 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1824 ((-619 |#5|) |#4| |#5|)) (-15 -1834 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|))) +((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 126)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-2258 (((-112) |#4| $) 136)) (-3425 (((-112) |#4| $) 133)) (-2267 (((-112) |#4| $) 137) (((-112) $) 134)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 127)) (-3724 (((-3 |#4| "failed") $) 83)) (-3387 (((-619 $) |#4| $) 129)) (-3412 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2520 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3688 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3338 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2247 (((-112) |#4| $) 135)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) +(((-1072 |#1| |#2| |#3| |#4|) (-138) (-443) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1072)) +NIL +(-13 (-1036 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) +((-1943 (((-619 (-548)) (-548) (-548) (-548)) 22)) (-1932 (((-619 (-548)) (-548) (-548) (-548)) 12)) (-1921 (((-619 (-548)) (-548) (-548) (-548)) 18)) (-1910 (((-548) (-548) (-548)) 9)) (-1898 (((-1218 (-548)) (-619 (-548)) (-1218 (-548)) (-548)) 46) (((-1218 (-548)) (-1218 (-548)) (-1218 (-548)) (-548)) 41)) (-1890 (((-619 (-548)) (-619 (-548)) (-619 (-548)) (-112)) 28)) (-1880 (((-663 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548))) 45)) (-1869 (((-663 (-548)) (-619 (-548)) (-619 (-548))) 33)) (-1860 (((-619 (-663 (-548))) (-619 (-548))) 35)) (-1851 (((-619 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548))) 49)) (-1843 (((-663 (-548)) (-619 (-548)) (-619 (-548)) (-619 (-548))) 57))) +(((-1073) (-10 -7 (-15 -1843 ((-663 (-548)) (-619 (-548)) (-619 (-548)) (-619 (-548)))) (-15 -1851 ((-619 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548)))) (-15 -1860 ((-619 (-663 (-548))) (-619 (-548)))) (-15 -1869 ((-663 (-548)) (-619 (-548)) (-619 (-548)))) (-15 -1880 ((-663 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548)))) (-15 -1890 ((-619 (-548)) (-619 (-548)) (-619 (-548)) (-112))) (-15 -1898 ((-1218 (-548)) (-1218 (-548)) (-1218 (-548)) (-548))) (-15 -1898 ((-1218 (-548)) (-619 (-548)) (-1218 (-548)) (-548))) (-15 -1910 ((-548) (-548) (-548))) (-15 -1921 ((-619 (-548)) (-548) (-548) (-548))) (-15 -1932 ((-619 (-548)) (-548) (-548) (-548))) (-15 -1943 ((-619 (-548)) (-548) (-548) (-548))))) (T -1073)) +((-1943 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548)))) (-1932 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548)))) (-1921 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548)))) (-1910 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1073)))) (-1898 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1218 (-548))) (-5 *3 (-619 (-548))) (-5 *4 (-548)) (-5 *1 (-1073)))) (-1898 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1218 (-548))) (-5 *3 (-548)) (-5 *1 (-1073)))) (-1890 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *3 (-112)) (-5 *1 (-1073)))) (-1880 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-663 (-548))) (-5 *3 (-619 (-548))) (-5 *1 (-1073)))) (-1869 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-1073)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-1073)))) (-1851 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *3 (-663 (-548))) (-5 *1 (-1073)))) (-1843 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-1073))))) +(-10 -7 (-15 -1843 ((-663 (-548)) (-619 (-548)) (-619 (-548)) (-619 (-548)))) (-15 -1851 ((-619 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548)))) (-15 -1860 ((-619 (-663 (-548))) (-619 (-548)))) (-15 -1869 ((-663 (-548)) (-619 (-548)) (-619 (-548)))) (-15 -1880 ((-663 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548)))) (-15 -1890 ((-619 (-548)) (-619 (-548)) (-619 (-548)) (-112))) (-15 -1898 ((-1218 (-548)) (-1218 (-548)) (-1218 (-548)) (-548))) (-15 -1898 ((-1218 (-548)) (-619 (-548)) (-1218 (-548)) (-548))) (-15 -1910 ((-548) (-548) (-548))) (-15 -1921 ((-619 (-548)) (-548) (-548) (-548))) (-15 -1932 ((-619 (-548)) (-548) (-548) (-548))) (-15 -1943 ((-619 (-548)) (-548) (-548) (-548)))) +((** (($ $ (-890)) 10))) +(((-1074 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890)))) (-1075)) (T -1074)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-890)))) +((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 14))) +(((-1075) (-138)) (T -1075)) +((* (*1 *1 *1 *1) (-4 *1 (-1075))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1075)) (-5 *2 (-890))))) +(-13 (-1063) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-890))))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3730 (((-112) $ $) NIL (|has| |#3| (-1063)))) (-3324 (((-112) $) NIL (|has| |#3| (-130)))) (-2264 (($ (-890)) NIL (|has| |#3| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#3| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#3| (-360)))) (-2672 (((-548) $) NIL (|has| |#3| (-819)))) (-2089 ((|#3| $ (-548) |#3|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1063)))) (-2375 (((-548) $) NIL (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) ((|#3| $) NIL (|has| |#3| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) (((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) NIL (|has| |#3| (-1016))) (((-663 |#3|) (-663 $)) NIL (|has| |#3| (-1016)))) (-3859 (((-3 $ "failed") $) NIL (|has| |#3| (-701)))) (-2545 (($) NIL (|has| |#3| (-360)))) (-3971 ((|#3| $ (-548) |#3|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#3| $ (-548)) 12)) (-3298 (((-112) $) NIL (|has| |#3| (-819)))) (-1934 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (|has| |#3| (-701)))) (-3312 (((-112) $) NIL (|has| |#3| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2342 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-3960 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#3| |#3|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#3| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#3| (-1063)))) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#3| (-360)))) (-3932 (((-1082) $) NIL (|has| |#3| (-1063)))) (-3453 ((|#3| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#3|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#3|))) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-4223 (((-619 |#3|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#3| $ (-548) |#3|) NIL) ((|#3| $ (-548)) NIL)) (-4029 ((|#3| $ $) NIL (|has| |#3| (-1016)))) (-1957 (($ (-1218 |#3|)) NIL)) (-3402 (((-133)) NIL (|has| |#3| (-355)))) (-4050 (($ $) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016)))) (-3945 (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327))) (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#3|) $) NIL) (($ (-548)) NIL (-1524 (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063))) (|has| |#3| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) (($ |#3|) NIL (|has| |#3| (-1063))) (((-832) $) NIL (|has| |#3| (-592 (-832))))) (-3835 (((-745)) NIL (|has| |#3| (-1016)))) (-3548 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#3| (-819)))) (-3107 (($) NIL (|has| |#3| (-130)) CONST)) (-3118 (($) NIL (|has| |#3| (-701)) CONST)) (-3296 (($ $) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016)))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2214 (((-112) $ $) NIL (|has| |#3| (-1063)))) (-2252 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2234 (((-112) $ $) 17 (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2309 (($ $ |#3|) NIL (|has| |#3| (-355)))) (-2299 (($ $ $) NIL (|has| |#3| (-1016))) (($ $) NIL (|has| |#3| (-1016)))) (-2290 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-745)) NIL (|has| |#3| (-701))) (($ $ (-890)) NIL (|has| |#3| (-701)))) (* (($ (-548) $) NIL (|has| |#3| (-1016))) (($ $ $) NIL (|has| |#3| (-701))) (($ $ |#3|) NIL (|has| |#3| (-701))) (($ |#3| $) NIL (|has| |#3| (-701))) (($ (-745) $) NIL (|has| |#3| (-130))) (($ (-890) $) NIL (|has| |#3| (-25)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1076 |#1| |#2| |#3|) (-231 |#1| |#3|) (-745) (-745) (-767)) (T -1076)) +NIL +(-231 |#1| |#3|) +((-1955 (((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 37)) (-2020 (((-548) (-1191 |#2| |#1|)) 69 (|has| |#1| (-443)))) (-1999 (((-548) (-1191 |#2| |#1|)) 54)) (-1966 (((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 45)) (-2010 (((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 68 (|has| |#1| (-443)))) (-1977 (((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 48)) (-1990 (((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 53))) +(((-1077 |#1| |#2|) (-10 -7 (-15 -1955 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1966 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1977 ((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1990 ((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1999 ((-548) (-1191 |#2| |#1|))) (IF (|has| |#1| (-443)) (PROGN (-15 -2010 ((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -2020 ((-548) (-1191 |#2| |#1|)))) |%noBranch|)) (-794) (-1135)) (T -1077)) +((-2020 (*1 *2 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-443)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5)))) (-2010 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-443)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5)))) (-1990 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5)))) (-1977 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 *4)) (-5 *1 (-1077 *4 *5)))) (-1966 (*1 *2 *3 *3) (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4)))) (-1955 (*1 *2 *3 *3) (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) +(-10 -7 (-15 -1955 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1966 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1977 ((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1990 ((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1999 ((-548) (-1191 |#2| |#1|))) (IF (|has| |#1| (-443)) (PROGN (-15 -2010 ((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -2020 ((-548) (-1191 |#2| |#1|)))) |%noBranch|)) +((-2672 (((-3 (-548) "failed") |#2| (-1135) |#2| (-1118)) 17) (((-3 (-548) "failed") |#2| (-1135) (-814 |#2|)) 15) (((-3 (-548) "failed") |#2|) 54))) +(((-1078 |#1| |#2|) (-10 -7 (-15 -2672 ((-3 (-548) "failed") |#2|)) (-15 -2672 ((-3 (-548) "failed") |#2| (-1135) (-814 |#2|))) (-15 -2672 ((-3 (-548) "failed") |#2| (-1135) |#2| (-1118)))) (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)) (-443)) (-13 (-27) (-1157) (-422 |#1|))) (T -1078)) +((-2672 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-1118)) (-4 *6 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) (-5 *2 (-548)) (-5 *1 (-1078 *6 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))))) (-2672 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) (-5 *2 (-548)) (-5 *1 (-1078 *6 *3)))) (-2672 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) (-5 *2 (-548)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4)))))) +(-10 -7 (-15 -2672 ((-3 (-548) "failed") |#2|)) (-15 -2672 ((-3 (-548) "failed") |#2| (-1135) (-814 |#2|))) (-15 -2672 ((-3 (-548) "failed") |#2| (-1135) |#2| (-1118)))) +((-2672 (((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)) (-1118)) 35) (((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-814 (-399 (-921 |#1|)))) 30) (((-3 (-548) "failed") (-399 (-921 |#1|))) 13))) +(((-1079 |#1|) (-10 -7 (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)))) (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-814 (-399 (-921 |#1|))))) (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)) (-1118)))) (-443)) (T -1079)) +((-2672 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-399 (-921 *6))) (-5 *4 (-1135)) (-5 *5 (-1118)) (-4 *6 (-443)) (-5 *2 (-548)) (-5 *1 (-1079 *6)))) (-2672 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 (-399 (-921 *6)))) (-5 *3 (-399 (-921 *6))) (-4 *6 (-443)) (-5 *2 (-548)) (-5 *1 (-1079 *6)))) (-2672 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-443)) (-5 *2 (-548)) (-5 *1 (-1079 *4))))) +(-10 -7 (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)))) (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-814 (-399 (-921 |#1|))))) (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)) (-1118)))) +((-3730 (((-112) $ $) NIL)) (-1949 (((-1140) $) 10)) (-3041 (((-619 (-1140)) $) 11)) (-3858 (($ (-619 (-1140)) (-1140)) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 20)) (-2214 (((-112) $ $) 14))) +(((-1080) (-13 (-1063) (-10 -8 (-15 -3858 ($ (-619 (-1140)) (-1140))) (-15 -1949 ((-1140) $)) (-15 -3041 ((-619 (-1140)) $))))) (T -1080)) +((-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1140))) (-5 *3 (-1140)) (-5 *1 (-1080)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1080)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1080))))) +(-13 (-1063) (-10 -8 (-15 -3858 ($ (-619 (-1140)) (-1140))) (-15 -1949 ((-1140) $)) (-15 -3041 ((-619 (-1140)) $)))) +((-2805 (((-308 (-548)) (-48)) 12))) +(((-1081) (-10 -7 (-15 -2805 ((-308 (-548)) (-48))))) (T -1081)) +((-2805 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-308 (-548))) (-5 *1 (-1081))))) +(-10 -7 (-15 -2805 ((-308 (-548)) (-48)))) +((-3730 (((-112) $ $) NIL)) (-1258 (($ $) 41)) (-3324 (((-112) $) 65)) (-2218 (($ $ $) 48)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 86)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-3119 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3096 (($ $ $ $) 75)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-2970 (($ $ $) 72)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL)) (-2375 (((-548) $) NIL)) (-1945 (($ $ $) 59)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 80) (((-663 (-548)) (-663 $)) 28)) (-3859 (((-3 $ "failed") $) NIL)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL)) (-4172 (((-112) $) NIL)) (-4161 (((-399 (-548)) $) NIL)) (-2545 (($) 83) (($ $) 84)) (-1922 (($ $ $) 58)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3071 (($ $ $ $) NIL)) (-3129 (($ $ $) 81)) (-3298 (((-112) $) NIL)) (-4206 (($ $ $) NIL)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL)) (-2266 (((-112) $) 66)) (-3705 (((-112) $) 64)) (-3958 (($ $) 42)) (-3725 (((-3 $ "failed") $) NIL)) (-3312 (((-112) $) 76)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3082 (($ $ $ $) 73)) (-1795 (($ $ $) 68) (($) 39)) (-3091 (($ $ $) 67) (($) 38)) (-2742 (($ $) NIL)) (-3198 (($ $) 71)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3060 (($ $ $) NIL)) (-3410 (($) NIL T CONST)) (-3595 (($ $) 50)) (-3932 (((-1082) $) 70)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) 62) (($ (-619 $)) NIL)) (-4185 (($ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 61)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2445 (($ $) 51)) (-2113 (($ $) NIL)) (-2591 (((-548) $) 32) (((-524) $) NIL) (((-861 (-548)) $) NIL) (((-371) $) NIL) (((-218) $) NIL)) (-3743 (((-832) $) 31) (($ (-548)) 82) (($ $) NIL) (($ (-548)) 82)) (-3835 (((-745)) NIL)) (-3139 (((-112) $ $) NIL)) (-3612 (($ $ $) NIL)) (-3957 (($) 37)) (-3290 (((-112) $ $) NIL)) (-3106 (($ $ $ $) 74)) (-1446 (($ $) 63)) (-2818 (($ $ $) 44)) (-3107 (($) 35 T CONST)) (-3363 (($ $ $) 47)) (-3118 (($) 36 T CONST)) (-2739 (((-1118) $) 21) (((-1118) $ (-112)) 23) (((-1223) (-796) $) 24) (((-1223) (-796) $ (-112)) 25)) (-3381 (($ $) 45)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-3348 (($ $ $) 46)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 40)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 49)) (-2809 (($ $ $) 43)) (-2299 (($ $) 52) (($ $ $) 54)) (-2290 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-745)) 57)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 34) (($ $ $) 55))) +(((-1082) (-13 (-533) (-635) (-802) (-10 -8 (-6 -4314) (-6 -4319) (-6 -4315) (-15 -3091 ($)) (-15 -1795 ($)) (-15 -3958 ($ $)) (-15 -1258 ($ $)) (-15 -2809 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2218 ($ $ $)) (-15 -3381 ($ $)) (-15 -3348 ($ $ $)) (-15 -3363 ($ $ $))))) (T -1082)) +((-2818 (*1 *1 *1 *1) (-5 *1 (-1082))) (-2809 (*1 *1 *1 *1) (-5 *1 (-1082))) (-1258 (*1 *1 *1) (-5 *1 (-1082))) (-3091 (*1 *1) (-5 *1 (-1082))) (-1795 (*1 *1) (-5 *1 (-1082))) (-3958 (*1 *1 *1) (-5 *1 (-1082))) (-2218 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3381 (*1 *1 *1) (-5 *1 (-1082))) (-3348 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3363 (*1 *1 *1 *1) (-5 *1 (-1082)))) +(-13 (-533) (-635) (-802) (-10 -8 (-6 -4314) (-6 -4319) (-6 -4315) (-15 -3091 ($)) (-15 -1795 ($)) (-15 -3958 ($ $)) (-15 -1258 ($ $)) (-15 -2809 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2218 ($ $ $)) (-15 -3381 ($ $)) (-15 -3348 ($ $ $)) (-15 -3363 ($ $ $)))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2088 ((|#1| $) 44)) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-2043 ((|#1| |#1| $) 46)) (-2032 ((|#1| $) 45)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3045 (((-745) $) 43)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-1083 |#1|) (-138) (-1172)) (T -1083)) +((-2043 (*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4327) (-15 -2043 (|t#1| |t#1| $)) (-15 -2032 (|t#1| $)) (-15 -2088 (|t#1| $)) (-15 -3045 ((-745) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-2707 ((|#3| $) 76)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#3| $) 37)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) 73) (((-663 |#3|) (-663 $)) 65)) (-4050 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-2077 ((|#3| $) 78)) (-2090 ((|#4| $) 32)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ |#3|) 16)) (** (($ $ (-890)) NIL) (($ $ (-745)) 15) (($ $ (-548)) 82))) +(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-548))) (-15 -2077 (|#3| |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -2090 (|#4| |#1|)) (-15 -1608 ((-663 |#3|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3743 (|#1| |#3|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3743 (|#1| (-548))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3743 ((-832) |#1|))) (-1085 |#2| |#3| |#4| |#5|) (-745) (-1016) (-231 |#2| |#3|) (-231 |#2| |#3|)) (T -1084)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-548))) (-15 -2077 (|#3| |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -2090 (|#4| |#1|)) (-15 -1608 ((-663 |#3|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3743 (|#1| |#3|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3743 (|#1| (-548))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2707 ((|#2| $) 70)) (-3785 (((-112) $) 110)) (-4104 (((-3 $ "failed") $ $) 19)) (-3808 (((-112) $) 108)) (-2028 (((-112) $ (-745)) 100)) (-2114 (($ |#2|) 73)) (-3030 (($) 17 T CONST)) (-3691 (($ $) 127 (|has| |#2| (-299)))) (-3717 ((|#3| $ (-548)) 122)) (-2441 (((-3 (-548) "failed") $) 84 (|has| |#2| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 82 (|has| |#2| (-1007 (-399 (-548))))) (((-3 |#2| "failed") $) 79)) (-2375 (((-548) $) 85 (|has| |#2| (-1007 (-548)))) (((-399 (-548)) $) 83 (|has| |#2| (-1007 (-399 (-548))))) ((|#2| $) 78)) (-1608 (((-663 (-548)) (-663 $)) 77 (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 76 (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 75) (((-663 |#2|) (-663 $)) 74)) (-3859 (((-3 $ "failed") $) 32)) (-2103 (((-745) $) 128 (|has| |#2| (-540)))) (-3899 ((|#2| $ (-548) (-548)) 120)) (-1934 (((-619 |#2|) $) 93 (|has| $ (-6 -4327)))) (-2266 (((-112) $) 30)) (-3681 (((-745) $) 129 (|has| |#2| (-540)))) (-3669 (((-619 |#4|) $) 130 (|has| |#2| (-540)))) (-4205 (((-745) $) 116)) (-4216 (((-745) $) 117)) (-4282 (((-112) $ (-745)) 101)) (-2057 ((|#2| $) 65 (|has| |#2| (-6 (-4329 "*"))))) (-3764 (((-548) $) 112)) (-3742 (((-548) $) 114)) (-2342 (((-619 |#2|) $) 92 (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-3753 (((-548) $) 113)) (-3729 (((-548) $) 115)) (-3817 (($ (-619 (-619 |#2|))) 107)) (-3960 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-2401 (((-619 (-619 |#2|)) $) 118)) (-4248 (((-112) $ (-745)) 102)) (-2546 (((-1118) $) 9)) (-2369 (((-3 $ "failed") $) 64 (|has| |#2| (-355)))) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-540)))) (-3537 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) 89 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 88 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) 106)) (-1616 (((-112) $) 103)) (-3319 (($) 104)) (-3171 ((|#2| $ (-548) (-548) |#2|) 121) ((|#2| $ (-548) (-548)) 119)) (-4050 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-745)) 49) (($ $ (-619 (-1135)) (-619 (-745))) 42 (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) 41 (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) 40 (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) 39 (|has| |#2| (-869 (-1135)))) (($ $ (-745)) 37 (|has| |#2| (-226))) (($ $) 35 (|has| |#2| (-226)))) (-2077 ((|#2| $) 69)) (-2102 (($ (-619 |#2|)) 72)) (-3797 (((-112) $) 109)) (-2090 ((|#3| $) 71)) (-2068 ((|#2| $) 66 (|has| |#2| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4327))) (((-745) |#2| $) 91 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 105)) (-3704 ((|#4| $ (-548)) 123)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 81 (|has| |#2| (-1007 (-399 (-548))))) (($ |#2|) 80)) (-3835 (((-745)) 28)) (-3548 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4327)))) (-3774 (((-112) $) 111)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-745)) 47) (($ $ (-619 (-1135)) (-619 (-745))) 46 (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) 45 (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) 44 (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) 43 (|has| |#2| (-869 (-1135)))) (($ $ (-745)) 38 (|has| |#2| (-226))) (($ $) 36 (|has| |#2| (-226)))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#2|) 126 (|has| |#2| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 63 (|has| |#2| (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-3643 (((-745) $) 99 (|has| $ (-6 -4327))))) +(((-1085 |#1| |#2| |#3| |#4|) (-138) (-745) (-1016) (-231 |t#1| |t#2|) (-231 |t#1| |t#2|)) (T -1085)) +((-2114 (*1 *1 *2) (-12 (-4 *2 (-1016)) (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-619 *4)) (-4 *4 (-1016)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *3 *4)))) (-2090 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) (-4 *2 (-231 *3 *4)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)) (-4 *2 (-1016)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)) (-4 *2 (-1016)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) (-4 *2 (-231 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *2 (-231 *3 *4)) (-4 *5 (-231 *3 *4)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) (-2369 (*1 *1 *1) (|partial| -12 (-4 *1 (-1085 *2 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-231 *2 *3)) (-4 *5 (-231 *2 *3)) (-4 *3 (-355)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *3 *4)) (-4 *4 (-355))))) +(-13 (-224 |t#2|) (-111 |t#2| |t#2|) (-1019 |t#1| |t#1| |t#2| |t#3| |t#4|) (-403 |t#2|) (-369 |t#2|) (-10 -8 (IF (|has| |t#2| (-169)) (-6 (-692 |t#2|)) |%noBranch|) (-15 -2114 ($ |t#2|)) (-15 -2102 ($ (-619 |t#2|))) (-15 -2090 (|t#3| $)) (-15 -2707 (|t#2| $)) (-15 -2077 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4329 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2068 (|t#2| $)) (-15 -2057 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-355)) (PROGN (-15 -2369 ((-3 $ "failed") $)) (-15 ** ($ $ (-548)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4329 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-592 (-832)) . T) ((-224 |#2|) . T) ((-226) |has| |#2| (-226)) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-369 |#2|) . T) ((-403 |#2|) . T) ((-480 |#2|) . T) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-622 |#2|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#2| (-615 (-548))) ((-615 |#2|) . T) ((-692 |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-6 (-4329 "*")))) ((-701) . T) ((-869 (-1135)) |has| |#2| (-869 (-1135))) ((-1019 |#1| |#1| |#2| |#3| |#4|) . T) ((-1007 (-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#2| (-1007 (-548))) ((-1007 |#2|) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1172) . T)) +((-2149 ((|#4| |#4|) 70)) (-2125 ((|#4| |#4|) 65)) (-2172 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|) 78)) (-2162 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2136 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2125 (|#4| |#4|)) (-15 -2136 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2149 (|#4| |#4|)) (-15 -2162 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2172 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|))) (-299) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|)) (T -1086)) +((-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-299)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-1086 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-2162 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2149 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2136 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(-10 -7 (-15 -2125 (|#4| |#4|)) (-15 -2136 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2149 (|#4| |#4|)) (-15 -2162 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2172 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 17)) (-2049 (((-619 |#2|) $) 159)) (-1884 (((-1131 $) $ |#2|) 54) (((-1131 |#1|) $) 43)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 108 (|has| |#1| (-540)))) (-3303 (($ $) 110 (|has| |#1| (-540)))) (-3279 (((-112) $) 112 (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 |#2|)) 192)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 156) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 |#2| "failed") $) NIL)) (-2375 ((|#1| $) 154) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) ((|#2| $) NIL)) (-1557 (($ $ $ |#2|) NIL (|has| |#1| (-169)))) (-1872 (($ $) 196)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) 82)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ |#2|) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 |#2|) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| |#1| (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| |#1| (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) 19)) (-2333 (((-745) $) 26)) (-2036 (($ (-1131 |#1|) |#2|) 48) (($ (-1131 $) |#2|) 64)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) 32)) (-2024 (($ |#1| (-520 |#2|)) 71) (($ $ |#2| (-745)) 52) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#2|) NIL)) (-3904 (((-520 |#2|) $) 186) (((-745) $ |#2|) 187) (((-619 (-745)) $ (-619 |#2|)) 188)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 |#2|) (-520 |#2|)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 120)) (-3511 (((-3 |#2| "failed") $) 161)) (-2185 (($ $) 195)) (-2197 ((|#1| $) 37)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 33)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 138 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) 143 (|has| |#1| (-443))) (($ $ $) 130 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-619 |#2|) (-619 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-619 |#2|) (-619 $)) 176)) (-1566 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-4050 (($ $ |#2|) 194) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2512 (((-520 |#2|) $) 182) (((-745) $ |#2|) 178) (((-619 (-745)) $ (-619 |#2|)) 180)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| |#1| (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#1| $) 126 (|has| |#1| (-443))) (($ $ |#2|) 129 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 149) (($ (-548)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-540))) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-3852 (((-619 |#1|) $) 152)) (-1951 ((|#1| $ (-520 |#2|)) 73) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 79)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) 115 (|has| |#1| (-540)))) (-3107 (($) 12 T CONST)) (-3118 (($) 14 T CONST)) (-3296 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 97)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 124 (|has| |#1| (-355)))) (-2299 (($ $) 85) (($ $ $) 95)) (-2290 (($ $ $) 49)) (** (($ $ (-890)) 102) (($ $ (-745)) 100)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 88) (($ $ $) 65) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1087 |#1| |#2|) (-918 |#1| (-520 |#2|) |#2|) (-1016) (-821)) (T -1087)) +NIL +(-918 |#1| (-520 |#2|) |#2|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-2074 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 113 (|has| |#1| (-38 (-399 (-548)))))) (-2098 (($ $) 145 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3520 (((-921 |#1|) $ (-745)) NIL) (((-921 |#1|) $ (-745) (-745)) NIL)) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $ |#2|) NIL) (((-745) $ |#2| (-745)) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2435 (((-112) $) NIL)) (-2024 (($ $ (-619 |#2|) (-619 (-520 |#2|))) NIL) (($ $ |#2| (-520 |#2|)) NIL) (($ |#1| (-520 |#2|)) NIL) (($ $ |#2| (-745)) 56) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) 111 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3810 (($ $ |#2|) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-1939 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-399 (-548)))))) (-1656 (($ $ (-745)) 13)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2458 (($ $) 109 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (($ $ |#2| $) 95) (($ $ (-619 |#2|) (-619 $)) 88) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL)) (-4050 (($ $ |#2|) 98) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2512 (((-520 |#2|) $) NIL)) (-2182 (((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|))) 77)) (-2110 (($ $) 147 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 15)) (-3743 (((-832) $) 180) (($ (-548)) NIL) (($ |#1|) 40 (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-540))) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#2|) 63) (($ |#3|) 61)) (-1951 ((|#1| $ (-520 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL) ((|#3| $ (-745)) 38)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2145 (($ $) 153 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 149 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 157 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-4026 (($ $) 159 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 155 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 151 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 47 T CONST)) (-3118 (($) 55 T CONST)) (-3296 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) 182 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 59)) (** (($ $ (-890)) NIL) (($ $ (-745)) 68) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 101 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 58) (($ $ (-399 (-548))) 106 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 104 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1088 |#1| |#2| |#3|) (-13 (-715 |#1| |#2|) (-10 -8 (-15 -1951 (|#3| $ (-745))) (-15 -3743 ($ |#2|)) (-15 -3743 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2182 ((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|)))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ |#2| |#1|)) (-15 -1939 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1016) (-821) (-918 |#1| (-520 |#2|) |#2|)) (T -1088)) +((-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *2 (-918 *4 (-520 *5) *5)) (-5 *1 (-1088 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-520 *2) *2)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-918 *3 (-520 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-918 *3 (-520 *4) *4)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1116 *7))) (-4 *6 (-821)) (-4 *7 (-918 *5 (-520 *6) *6)) (-4 *5 (-1016)) (-5 *2 (-1 (-1116 *7) *7)) (-5 *1 (-1088 *5 *6 *7)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-520 *2) *2)))) (-1939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1088 *4 *3 *5))) (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *1 (-1088 *4 *3 *5)) (-4 *5 (-918 *4 (-520 *3) *3))))) +(-13 (-715 |#1| |#2|) (-10 -8 (-15 -1951 (|#3| $ (-745))) (-15 -3743 ($ |#2|)) (-15 -3743 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2182 ((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|)))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ |#2| |#1|)) (-15 -1939 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 126)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-2258 (((-112) |#4| $) 136)) (-3425 (((-112) |#4| $) 133)) (-2267 (((-112) |#4| $) 137) (((-112) $) 134)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 127)) (-3724 (((-3 |#4| "failed") $) 83)) (-3387 (((-619 $) |#4| $) 129)) (-3412 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2520 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3688 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3338 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2247 (((-112) |#4| $) 135)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) +(((-1089 |#1| |#2| |#3| |#4|) (-138) (-443) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1089)) +NIL +(-13 (-1072 |t#1| |t#2| |t#3| |t#4|) (-758 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-758 |#1| |#2| |#3| |#4|) . T) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1072 |#1| |#2| |#3| |#4|) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) +((-3408 (((-619 |#2|) |#1|) 12)) (-2229 (((-619 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-619 |#2|) |#1|) 52)) (-2210 (((-619 |#2|) |#2| |#2| |#2|) 39) (((-619 |#2|) |#1|) 50)) (-2192 ((|#2| |#1|) 46)) (-2204 (((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3498 (((-619 |#2|) |#2| |#2|) 38) (((-619 |#2|) |#1|) 49)) (-2220 (((-619 |#2|) |#2| |#2| |#2| |#2|) 40) (((-619 |#2|) |#1|) 51)) (-4167 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-4147 ((|#2| |#2| |#2| |#2|) 43)) (-4137 ((|#2| |#2| |#2|) 42)) (-4157 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1090 |#1| |#2|) (-10 -7 (-15 -3408 ((-619 |#2|) |#1|)) (-15 -2192 (|#2| |#1|)) (-15 -2204 ((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3498 ((-619 |#2|) |#1|)) (-15 -2210 ((-619 |#2|) |#1|)) (-15 -2220 ((-619 |#2|) |#1|)) (-15 -2229 ((-619 |#2|) |#1|)) (-15 -3498 ((-619 |#2|) |#2| |#2|)) (-15 -2210 ((-619 |#2|) |#2| |#2| |#2|)) (-15 -2220 ((-619 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2229 ((-619 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4137 (|#2| |#2| |#2|)) (-15 -4147 (|#2| |#2| |#2| |#2|)) (-15 -4157 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4167 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1194 |#2|) (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (T -1090)) +((-4167 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-4157 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-4147 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-4137 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-2229 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-2220 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-2210 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-3498 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-2229 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-2210 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-2204 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-2 (|:| |solns| (-619 *5)) (|:| |maps| (-619 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1090 *3 *5)) (-4 *3 (-1194 *5)))) (-2192 (*1 *2 *3) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -3408 ((-619 |#2|) |#1|)) (-15 -2192 (|#2| |#1|)) (-15 -2204 ((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3498 ((-619 |#2|) |#1|)) (-15 -2210 ((-619 |#2|) |#1|)) (-15 -2220 ((-619 |#2|) |#1|)) (-15 -2229 ((-619 |#2|) |#1|)) (-15 -3498 ((-619 |#2|) |#2| |#2|)) (-15 -2210 ((-619 |#2|) |#2| |#2| |#2|)) (-15 -2220 ((-619 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2229 ((-619 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4137 (|#2| |#2| |#2|)) (-15 -4147 (|#2| |#2| |#2| |#2|)) (-15 -4157 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4167 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-4178 (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|))))) 95) (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135))) 94) (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|)))) 92) (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))) (-619 (-1135))) 90) (((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|)))) 75) (((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))) (-1135)) 76) (((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|))) 70) (((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)) (-1135)) 59)) (-4188 (((-619 (-619 (-308 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135))) 88) (((-619 (-308 |#1|)) (-399 (-921 |#1|)) (-1135)) 43)) (-4198 (((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-399 (-921 |#1|)) (-1135)) 98) (((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135)) 97))) +(((-1091 |#1|) (-10 -7 (-15 -4178 ((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135)))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -4188 ((-619 (-308 |#1|)) (-399 (-921 |#1|)) (-1135))) (-15 -4188 ((-619 (-619 (-308 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -4198 ((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -4198 ((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-399 (-921 |#1|)) (-1135)))) (-13 (-299) (-821) (-145))) (T -1091)) +((-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-1125 (-619 (-308 *5)) (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-399 (-921 *5)))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-1125 (-619 (-308 *5)) (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-308 *5)))) (-5 *1 (-1091 *5)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-308 *5))) (-5 *1 (-1091 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-619 (-286 (-399 (-921 *4))))) (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *4))))) (-5 *1 (-1091 *4)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-286 (-399 (-921 *5))))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-619 (-399 (-921 *4)))) (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *4))))) (-5 *1 (-1091 *4)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-286 (-399 (-921 *4)))) (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1091 *4)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-399 (-921 *5)))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1091 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1091 *4)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1091 *5))))) +(-10 -7 (-15 -4178 ((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135)))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -4188 ((-619 (-308 |#1|)) (-399 (-921 |#1|)) (-1135))) (-15 -4188 ((-619 (-619 (-308 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -4198 ((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -4198 ((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-399 (-921 |#1|)) (-1135)))) +((-4220 (((-399 (-1131 (-308 |#1|))) (-1218 (-308 |#1|)) (-399 (-1131 (-308 |#1|))) (-548)) 29)) (-4209 (((-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|)))) 40))) +(((-1092 |#1|) (-10 -7 (-15 -4209 ((-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))))) (-15 -4220 ((-399 (-1131 (-308 |#1|))) (-1218 (-308 |#1|)) (-399 (-1131 (-308 |#1|))) (-548)))) (-13 (-540) (-821))) (T -1092)) +((-4220 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-399 (-1131 (-308 *5)))) (-5 *3 (-1218 (-308 *5))) (-5 *4 (-548)) (-4 *5 (-13 (-540) (-821))) (-5 *1 (-1092 *5)))) (-4209 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-399 (-1131 (-308 *3)))) (-4 *3 (-13 (-540) (-821))) (-5 *1 (-1092 *3))))) +(-10 -7 (-15 -4209 ((-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))))) (-15 -4220 ((-399 (-1131 (-308 |#1|))) (-1218 (-308 |#1|)) (-399 (-1131 (-308 |#1|))) (-548)))) +((-3408 (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-308 |#1|))) (-619 (-1135))) 224) (((-619 (-286 (-308 |#1|))) (-308 |#1|) (-1135)) 20) (((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)) (-1135)) 26) (((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|))) 25) (((-619 (-286 (-308 |#1|))) (-308 |#1|)) 21))) +(((-1093 |#1|) (-10 -7 (-15 -3408 ((-619 (-286 (-308 |#1|))) (-308 |#1|))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)) (-1135))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-308 |#1|) (-1135))) (-15 -3408 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-308 |#1|))) (-619 (-1135))))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (T -1093)) +((-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-619 (-286 (-308 *5)))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1093 *5)) (-5 *3 (-308 *5)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1093 *5)) (-5 *3 (-286 (-308 *5))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1093 *4)) (-5 *3 (-286 (-308 *4))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1093 *4)) (-5 *3 (-308 *4))))) +(-10 -7 (-15 -3408 ((-619 (-286 (-308 |#1|))) (-308 |#1|))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)) (-1135))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-308 |#1|) (-1135))) (-15 -3408 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-308 |#1|))) (-619 (-1135))))) +((-4241 ((|#2| |#2|) 20 (|has| |#1| (-821))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-4230 ((|#2| |#2|) 19 (|has| |#1| (-821))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) +(((-1094 |#1| |#2|) (-10 -7 (-15 -4230 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4241 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-821)) (PROGN (-15 -4230 (|#2| |#2|)) (-15 -4241 (|#2| |#2|))) |%noBranch|)) (-1172) (-13 (-583 (-548) |#1|) (-10 -7 (-6 -4327) (-6 -4328)))) (T -1094)) +((-4241 (*1 *2 *2) (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-583 (-548) *3) (-10 -7 (-6 -4327) (-6 -4328)))))) (-4230 (*1 *2 *2) (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-583 (-548) *3) (-10 -7 (-6 -4327) (-6 -4328)))))) (-4241 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-583 (-548) *4) (-10 -7 (-6 -4327) (-6 -4328)))))) (-4230 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-583 (-548) *4) (-10 -7 (-6 -4327) (-6 -4328))))))) +(-10 -7 (-15 -4230 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4241 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-821)) (PROGN (-15 -4230 (|#2| |#2|)) (-15 -4241 (|#2| |#2|))) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-3127 (((-1124 3 |#1|) $) 107)) (-1277 (((-112) $) 72)) (-1288 (($ $ (-619 (-912 |#1|))) 20) (($ $ (-619 (-619 |#1|))) 75) (($ (-619 (-912 |#1|))) 74) (((-619 (-912 |#1|)) $) 73)) (-1345 (((-112) $) 41)) (-1733 (($ $ (-912 |#1|)) 46) (($ $ (-619 |#1|)) 51) (($ $ (-745)) 53) (($ (-912 |#1|)) 47) (((-912 |#1|) $) 45)) (-3942 (((-2 (|:| -4101 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $) 105)) (-1390 (((-745) $) 26)) (-1400 (((-745) $) 25)) (-3116 (($ $ (-745) (-912 |#1|)) 39)) (-1252 (((-112) $) 82)) (-1265 (($ $ (-619 (-619 (-912 |#1|))) (-619 (-168)) (-168)) 89) (($ $ (-619 (-619 (-619 |#1|))) (-619 (-168)) (-168)) 91) (($ $ (-619 (-619 (-912 |#1|))) (-112) (-112)) 85) (($ $ (-619 (-619 (-619 |#1|))) (-112) (-112)) 93) (($ (-619 (-619 (-912 |#1|)))) 86) (($ (-619 (-619 (-912 |#1|))) (-112) (-112)) 87) (((-619 (-619 (-912 |#1|))) $) 84)) (-2913 (($ (-619 $)) 28) (($ $ $) 29)) (-4265 (((-619 (-168)) $) 102)) (-3049 (((-619 (-912 |#1|)) $) 96)) (-4276 (((-619 (-619 (-168))) $) 101)) (-4286 (((-619 (-619 (-619 (-912 |#1|)))) $) NIL)) (-4297 (((-619 (-619 (-619 (-745)))) $) 99)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1356 (((-745) $ (-619 (-912 |#1|))) 37)) (-1323 (((-112) $) 54)) (-1334 (($ $ (-619 (-912 |#1|))) 56) (($ $ (-619 (-619 |#1|))) 62) (($ (-619 (-912 |#1|))) 57) (((-619 (-912 |#1|)) $) 55)) (-1411 (($) 23) (($ (-1124 3 |#1|)) 24)) (-2113 (($ $) 35)) (-1367 (((-619 $) $) 34)) (-1539 (($ (-619 $)) 31)) (-1379 (((-619 $) $) 33)) (-3743 (((-832) $) 111)) (-1300 (((-112) $) 64)) (-1311 (($ $ (-619 (-912 |#1|))) 66) (($ $ (-619 (-619 |#1|))) 69) (($ (-619 (-912 |#1|))) 67) (((-619 (-912 |#1|)) $) 65)) (-4254 (($ $) 106)) (-2214 (((-112) $ $) NIL))) +(((-1095 |#1|) (-1096 |#1|) (-1016)) (T -1095)) +NIL +(-1096 |#1|) +((-3730 (((-112) $ $) 7)) (-3127 (((-1124 3 |#1|) $) 13)) (-1277 (((-112) $) 29)) (-1288 (($ $ (-619 (-912 |#1|))) 33) (($ $ (-619 (-619 |#1|))) 32) (($ (-619 (-912 |#1|))) 31) (((-619 (-912 |#1|)) $) 30)) (-1345 (((-112) $) 44)) (-1733 (($ $ (-912 |#1|)) 49) (($ $ (-619 |#1|)) 48) (($ $ (-745)) 47) (($ (-912 |#1|)) 46) (((-912 |#1|) $) 45)) (-3942 (((-2 (|:| -4101 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $) 15)) (-1390 (((-745) $) 58)) (-1400 (((-745) $) 59)) (-3116 (($ $ (-745) (-912 |#1|)) 50)) (-1252 (((-112) $) 21)) (-1265 (($ $ (-619 (-619 (-912 |#1|))) (-619 (-168)) (-168)) 28) (($ $ (-619 (-619 (-619 |#1|))) (-619 (-168)) (-168)) 27) (($ $ (-619 (-619 (-912 |#1|))) (-112) (-112)) 26) (($ $ (-619 (-619 (-619 |#1|))) (-112) (-112)) 25) (($ (-619 (-619 (-912 |#1|)))) 24) (($ (-619 (-619 (-912 |#1|))) (-112) (-112)) 23) (((-619 (-619 (-912 |#1|))) $) 22)) (-2913 (($ (-619 $)) 57) (($ $ $) 56)) (-4265 (((-619 (-168)) $) 16)) (-3049 (((-619 (-912 |#1|)) $) 20)) (-4276 (((-619 (-619 (-168))) $) 17)) (-4286 (((-619 (-619 (-619 (-912 |#1|)))) $) 18)) (-4297 (((-619 (-619 (-619 (-745)))) $) 19)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1356 (((-745) $ (-619 (-912 |#1|))) 51)) (-1323 (((-112) $) 39)) (-1334 (($ $ (-619 (-912 |#1|))) 43) (($ $ (-619 (-619 |#1|))) 42) (($ (-619 (-912 |#1|))) 41) (((-619 (-912 |#1|)) $) 40)) (-1411 (($) 61) (($ (-1124 3 |#1|)) 60)) (-2113 (($ $) 52)) (-1367 (((-619 $) $) 53)) (-1539 (($ (-619 $)) 55)) (-1379 (((-619 $) $) 54)) (-3743 (((-832) $) 11)) (-1300 (((-112) $) 34)) (-1311 (($ $ (-619 (-912 |#1|))) 38) (($ $ (-619 (-619 |#1|))) 37) (($ (-619 (-912 |#1|))) 36) (((-619 (-912 |#1|)) $) 35)) (-4254 (($ $) 14)) (-2214 (((-112) $ $) 6))) +(((-1096 |#1|) (-138) (-1016)) (T -1096)) +((-3743 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-832)))) (-1411 (*1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-1124 3 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1379 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))) (-1367 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))) (-2113 (*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1356 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-912 *4))) (-4 *1 (-1096 *4)) (-4 *4 (-1016)) (-5 *2 (-745)))) (-3116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-912 *4)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-912 *3)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1334 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1334 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1311 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1311 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-1300 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1288 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1265 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) (-1265 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) (-1265 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-1265 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-112)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 *3)))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1265 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *4 (-1016)) (-4 *1 (-1096 *4)))) (-1265 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-912 *3)))))) (-1252 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-619 (-745))))))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-619 (-912 *3))))))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-168)))))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-168))))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -4101 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745)))))) (-4254 (*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-1124 3 *3))))) +(-13 (-1063) (-10 -8 (-15 -1411 ($)) (-15 -1411 ($ (-1124 3 |t#1|))) (-15 -1400 ((-745) $)) (-15 -1390 ((-745) $)) (-15 -2913 ($ (-619 $))) (-15 -2913 ($ $ $)) (-15 -1539 ($ (-619 $))) (-15 -1379 ((-619 $) $)) (-15 -1367 ((-619 $) $)) (-15 -2113 ($ $)) (-15 -1356 ((-745) $ (-619 (-912 |t#1|)))) (-15 -3116 ($ $ (-745) (-912 |t#1|))) (-15 -1733 ($ $ (-912 |t#1|))) (-15 -1733 ($ $ (-619 |t#1|))) (-15 -1733 ($ $ (-745))) (-15 -1733 ($ (-912 |t#1|))) (-15 -1733 ((-912 |t#1|) $)) (-15 -1345 ((-112) $)) (-15 -1334 ($ $ (-619 (-912 |t#1|)))) (-15 -1334 ($ $ (-619 (-619 |t#1|)))) (-15 -1334 ($ (-619 (-912 |t#1|)))) (-15 -1334 ((-619 (-912 |t#1|)) $)) (-15 -1323 ((-112) $)) (-15 -1311 ($ $ (-619 (-912 |t#1|)))) (-15 -1311 ($ $ (-619 (-619 |t#1|)))) (-15 -1311 ($ (-619 (-912 |t#1|)))) (-15 -1311 ((-619 (-912 |t#1|)) $)) (-15 -1300 ((-112) $)) (-15 -1288 ($ $ (-619 (-912 |t#1|)))) (-15 -1288 ($ $ (-619 (-619 |t#1|)))) (-15 -1288 ($ (-619 (-912 |t#1|)))) (-15 -1288 ((-619 (-912 |t#1|)) $)) (-15 -1277 ((-112) $)) (-15 -1265 ($ $ (-619 (-619 (-912 |t#1|))) (-619 (-168)) (-168))) (-15 -1265 ($ $ (-619 (-619 (-619 |t#1|))) (-619 (-168)) (-168))) (-15 -1265 ($ $ (-619 (-619 (-912 |t#1|))) (-112) (-112))) (-15 -1265 ($ $ (-619 (-619 (-619 |t#1|))) (-112) (-112))) (-15 -1265 ($ (-619 (-619 (-912 |t#1|))))) (-15 -1265 ($ (-619 (-619 (-912 |t#1|))) (-112) (-112))) (-15 -1265 ((-619 (-619 (-912 |t#1|))) $)) (-15 -1252 ((-112) $)) (-15 -3049 ((-619 (-912 |t#1|)) $)) (-15 -4297 ((-619 (-619 (-619 (-745)))) $)) (-15 -4286 ((-619 (-619 (-619 (-912 |t#1|)))) $)) (-15 -4276 ((-619 (-619 (-168))) $)) (-15 -4265 ((-619 (-168)) $)) (-15 -3942 ((-2 (|:| -4101 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $)) (-15 -4254 ($ $)) (-15 -3127 ((-1124 3 |t#1|) $)) (-15 -3743 ((-832) $)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3203 (((-619 (-1140)) (-1118)) 9))) +(((-1097) (-10 -7 (-15 -3203 ((-619 (-1140)) (-1118))))) (T -1097)) +((-3203 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-1097))))) +(-10 -7 (-15 -3203 ((-619 (-1140)) (-1118)))) +((-1435 (((-1223) (-619 (-832))) 23) (((-1223) (-832)) 22)) (-1422 (((-1223) (-619 (-832))) 21) (((-1223) (-832)) 20)) (-3898 (((-1223) (-619 (-832))) 19) (((-1223) (-832)) 11) (((-1223) (-1118) (-832)) 17))) +(((-1098) (-10 -7 (-15 -3898 ((-1223) (-1118) (-832))) (-15 -3898 ((-1223) (-832))) (-15 -1422 ((-1223) (-832))) (-15 -1435 ((-1223) (-832))) (-15 -3898 ((-1223) (-619 (-832)))) (-15 -1422 ((-1223) (-619 (-832)))) (-15 -1435 ((-1223) (-619 (-832)))))) (T -1098)) +((-1435 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098))))) +(-10 -7 (-15 -3898 ((-1223) (-1118) (-832))) (-15 -3898 ((-1223) (-832))) (-15 -1422 ((-1223) (-832))) (-15 -1435 ((-1223) (-832))) (-15 -3898 ((-1223) (-619 (-832)))) (-15 -1422 ((-1223) (-619 (-832)))) (-15 -1435 ((-1223) (-619 (-832))))) +((-1478 (($ $ $) 10)) (-1467 (($ $) 9)) (-1513 (($ $ $) 13)) (-1533 (($ $ $) 15)) (-1502 (($ $ $) 12)) (-1523 (($ $ $) 14)) (-1551 (($ $) 17)) (-1542 (($ $) 16)) (-1446 (($ $) 6)) (-1491 (($ $ $) 11) (($ $) 7)) (-1456 (($ $ $) 8))) +(((-1099) (-138)) (T -1099)) +((-1551 (*1 *1 *1) (-4 *1 (-1099))) (-1542 (*1 *1 *1) (-4 *1 (-1099))) (-1533 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1523 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1513 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1502 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1491 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1478 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1467 (*1 *1 *1) (-4 *1 (-1099))) (-1456 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1491 (*1 *1 *1) (-4 *1 (-1099))) (-1446 (*1 *1 *1) (-4 *1 (-1099)))) +(-13 (-10 -8 (-15 -1446 ($ $)) (-15 -1491 ($ $)) (-15 -1456 ($ $ $)) (-15 -1467 ($ $)) (-15 -1478 ($ $ $)) (-15 -1491 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -1513 ($ $ $)) (-15 -1523 ($ $ $)) (-15 -1533 ($ $ $)) (-15 -1542 ($ $)) (-15 -1551 ($ $)))) +((-3730 (((-112) $ $) 41)) (-4056 ((|#1| $) 15)) (-1561 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-1902 (((-112) $) 17)) (-1606 (($ $ |#1|) 28)) (-1589 (($ $ (-112)) 30)) (-1578 (($ $) 31)) (-1597 (($ $ |#2|) 29)) (-2546 (((-1118) $) NIL)) (-1569 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3932 (((-1082) $) NIL)) (-1616 (((-112) $) 14)) (-3319 (($) 10)) (-2113 (($ $) 27)) (-3754 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1806 |#2|))) 21) (((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|)))) 24) (((-619 $) |#1| (-619 |#2|)) 26)) (-2897 ((|#2| $) 16)) (-3743 (((-832) $) 50)) (-2214 (((-112) $ $) 39))) +(((-1100 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3319 ($)) (-15 -1616 ((-112) $)) (-15 -4056 (|#1| $)) (-15 -2897 (|#2| $)) (-15 -1902 ((-112) $)) (-15 -3754 ($ |#1| |#2| (-112))) (-15 -3754 ($ |#1| |#2|)) (-15 -3754 ($ (-2 (|:| |val| |#1|) (|:| -1806 |#2|)))) (-15 -3754 ((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))))) (-15 -3754 ((-619 $) |#1| (-619 |#2|))) (-15 -2113 ($ $)) (-15 -1606 ($ $ |#1|)) (-15 -1597 ($ $ |#2|)) (-15 -1589 ($ $ (-112))) (-15 -1578 ($ $)) (-15 -1569 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1561 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1063) (-34)) (-13 (-1063) (-34))) (T -1100)) +((-3319 (*1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-4056 (*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *2 *3)) (-4 *3 (-13 (-1063) (-34))))) (-2897 (*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2 *3) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1806 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *4)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |val| *4) (|:| -1806 *5)))) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1100 *4 *5))) (-5 *1 (-1100 *4 *5)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1100 *3 *5))) (-5 *1 (-1100 *3 *5)) (-4 *3 (-13 (-1063) (-34))))) (-2113 (*1 *1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1606 (*1 *1 *1 *2) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1597 (*1 *1 *1 *2) (-12 (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))) (-4 *2 (-13 (-1063) (-34))))) (-1589 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-1578 (*1 *1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1569 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6)))) (-1561 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34)))))) +(-13 (-1063) (-10 -8 (-15 -3319 ($)) (-15 -1616 ((-112) $)) (-15 -4056 (|#1| $)) (-15 -2897 (|#2| $)) (-15 -1902 ((-112) $)) (-15 -3754 ($ |#1| |#2| (-112))) (-15 -3754 ($ |#1| |#2|)) (-15 -3754 ($ (-2 (|:| |val| |#1|) (|:| -1806 |#2|)))) (-15 -3754 ((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))))) (-15 -3754 ((-619 $) |#1| (-619 |#2|))) (-15 -2113 ($ $)) (-15 -1606 ($ $ |#1|)) (-15 -1597 ($ $ |#2|)) (-15 -1589 ($ $ (-112))) (-15 -1578 ($ $)) (-15 -1569 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1561 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3730 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-4056 (((-1100 |#1| |#2|) $) 25)) (-1660 (($ $) 76)) (-1643 (((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-1626 (($ $ $ (-619 (-1100 |#1| |#2|))) 90) (($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-2028 (((-112) $ (-745)) NIL)) (-4192 (((-1100 |#1| |#2|) $ (-1100 |#1| |#2|)) 43 (|has| $ (-6 -4328)))) (-2089 (((-1100 |#1| |#2|) $ "value" (-1100 |#1| |#2|)) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3845 (((-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))) $) 80)) (-1636 (($ (-1100 |#1| |#2|) $) 39)) (-3699 (($ (-1100 |#1| |#2|) $) 31)) (-1934 (((-619 (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 51)) (-1651 (((-112) (-1100 |#1| |#2|) $) 82)) (-4213 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 (-1100 |#1| |#2|)) $) 55 (|has| $ (-6 -4327)))) (-2556 (((-112) (-1100 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-1100 |#1| |#2|) (-1063))))) (-3960 (($ (-1 (-1100 |#1| |#2|) (-1100 |#1| |#2|)) $) 47 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-1100 |#1| |#2|) (-1100 |#1| |#2|)) $) 46)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 (-1100 |#1| |#2|)) $) 53)) (-3010 (((-112) $) 42)) (-2546 (((-1118) $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-3932 (((-1082) $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-3483 (((-3 $ "failed") $) 75)) (-3537 (((-112) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-1100 |#1| |#2|)))) NIL (-12 (|has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-286 (-1100 |#1| |#2|))) NIL (-12 (|has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-1100 |#1| |#2|) (-1100 |#1| |#2|)) NIL (-12 (|has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-619 (-1100 |#1| |#2|)) (-619 (-1100 |#1| |#2|))) NIL (-12 (|has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063))))) (-2039 (((-112) $ $) 50)) (-1616 (((-112) $) 22)) (-3319 (($) 24)) (-3171 (((-1100 |#1| |#2|) $ "value") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) 44)) (-3945 (((-745) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4327))) (((-745) (-1100 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-1100 |#1| |#2|) (-1063))))) (-2113 (($ $) 49)) (-3754 (($ (-1100 |#1| |#2|)) 9) (($ |#1| |#2| (-619 $)) 12) (($ |#1| |#2| (-619 (-1100 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-619 |#2|)) 17)) (-3394 (((-619 |#2|) $) 81)) (-3743 (((-832) $) 73 (|has| (-1100 |#1| |#2|) (-592 (-832))))) (-2956 (((-619 $) $) 28)) (-4224 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-3548 (((-112) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 64 (|has| (-1100 |#1| |#2|) (-1063)))) (-3643 (((-745) $) 58 (|has| $ (-6 -4327))))) +(((-1101 |#1| |#2|) (-13 (-979 (-1100 |#1| |#2|)) (-10 -8 (-6 -4328) (-6 -4327) (-15 -3483 ((-3 $ "failed") $)) (-15 -1660 ($ $)) (-15 -3754 ($ (-1100 |#1| |#2|))) (-15 -3754 ($ |#1| |#2| (-619 $))) (-15 -3754 ($ |#1| |#2| (-619 (-1100 |#1| |#2|)))) (-15 -3754 ($ |#1| |#2| |#1| (-619 |#2|))) (-15 -3394 ((-619 |#2|) $)) (-15 -3845 ((-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))) $)) (-15 -1651 ((-112) (-1100 |#1| |#2|) $)) (-15 -1643 ((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3699 ($ (-1100 |#1| |#2|) $)) (-15 -1636 ($ (-1100 |#1| |#2|) $)) (-15 -1626 ($ $ $ (-619 (-1100 |#1| |#2|)))) (-15 -1626 ($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1063) (-34)) (-13 (-1063) (-34))) (T -1101)) +((-3483 (*1 *1 *1) (|partial| -12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-619 (-1101 *2 *3))) (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-619 (-1100 *2 *3))) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3)))) (-3754 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-619 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-1651 (*1 *2 *3 *1) (-12 (-5 *3 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5)))) (-1643 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1100 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-1636 (*1 *1 *2 *1) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-1626 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-619 (-1100 *3 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-1626 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1100 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *1 (-1101 *4 *5))))) +(-13 (-979 (-1100 |#1| |#2|)) (-10 -8 (-6 -4328) (-6 -4327) (-15 -3483 ((-3 $ "failed") $)) (-15 -1660 ($ $)) (-15 -3754 ($ (-1100 |#1| |#2|))) (-15 -3754 ($ |#1| |#2| (-619 $))) (-15 -3754 ($ |#1| |#2| (-619 (-1100 |#1| |#2|)))) (-15 -3754 ($ |#1| |#2| |#1| (-619 |#2|))) (-15 -3394 ((-619 |#2|) $)) (-15 -3845 ((-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))) $)) (-15 -1651 ((-112) (-1100 |#1| |#2|) $)) (-15 -1643 ((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3699 ($ (-1100 |#1| |#2|) $)) (-15 -1636 ($ (-1100 |#1| |#2|) $)) (-15 -1626 ($ $ $ (-619 (-1100 |#1| |#2|)))) (-15 -1626 ($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3508 (($ $) NIL)) (-2707 ((|#2| $) NIL)) (-3785 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3495 (($ (-663 |#2|)) 47)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-2114 (($ |#2|) 9)) (-3030 (($) NIL T CONST)) (-3691 (($ $) 60 (|has| |#2| (-299)))) (-3717 (((-233 |#1| |#2|) $ (-548)) 34)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 |#2| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) ((|#2| $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) 74)) (-2103 (((-745) $) 62 (|has| |#2| (-540)))) (-3899 ((|#2| $ (-548) (-548)) NIL)) (-1934 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL)) (-3681 (((-745) $) 64 (|has| |#2| (-540)))) (-3669 (((-619 (-233 |#1| |#2|)) $) 68 (|has| |#2| (-540)))) (-4205 (((-745) $) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#2| $) 58 (|has| |#2| (-6 (-4329 "*"))))) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#2|))) 29)) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2401 (((-619 (-619 |#2|)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2369 (((-3 $ "failed") $) 71 (|has| |#2| (-355)))) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540)))) (-3537 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) (-548) |#2|) NIL) ((|#2| $ (-548) (-548)) NIL)) (-4050 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2077 ((|#2| $) NIL)) (-2102 (($ (-619 |#2|)) 42)) (-3797 (((-112) $) NIL)) (-2090 (((-233 |#1| |#2|) $) NIL)) (-2068 ((|#2| $) 56 (|has| |#2| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 83 (|has| |#2| (-593 (-524))))) (-3704 (((-233 |#1| |#2|) $ (-548)) 36)) (-3743 (((-832) $) 39) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#2| (-1007 (-399 (-548))))) (($ |#2|) NIL) (((-663 |#2|) $) 44)) (-3835 (((-745)) 17)) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-3107 (($) 11 T CONST)) (-3118 (($) 14 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) 54) (($ $ (-548)) 73 (|has| |#2| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) 50) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) 52)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1102 |#1| |#2|) (-13 (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-592 (-663 |#2|)) (-10 -8 (-15 -3508 ($ $)) (-15 -3495 ($ (-663 |#2|))) (-15 -3743 ((-663 |#2|) $)) (IF (|has| |#2| (-6 (-4329 "*"))) (-6 -4316) |%noBranch|) (IF (|has| |#2| (-6 (-4329 "*"))) (IF (|has| |#2| (-6 -4324)) (-6 -4324) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) (-745) (-1016)) (T -1102)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-663 *4)) (-5 *1 (-1102 *3 *4)) (-14 *3 (-745)) (-4 *4 (-1016)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-1102 *2 *3)) (-14 *2 (-745)) (-4 *3 (-1016)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-1102 *3 *4)) (-14 *3 (-745))))) +(-13 (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-592 (-663 |#2|)) (-10 -8 (-15 -3508 ($ $)) (-15 -3495 ($ (-663 |#2|))) (-15 -3743 ((-663 |#2|) $)) (IF (|has| |#2| (-6 (-4329 "*"))) (-6 -4316) |%noBranch|) (IF (|has| |#2| (-6 (-4329 "*"))) (IF (|has| |#2| (-6 -4324)) (-6 -4324) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) +((-3552 (($ $) 19)) (-3517 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-2683 (((-112) $ $) 24)) (-3574 (($ $) 17)) (-3171 (((-142) $ (-548) (-142)) NIL) (((-142) $ (-548)) NIL) (($ $ (-1185 (-548))) NIL) (($ $ $) 29)) (-3743 (($ (-142)) 27) (((-832) $) NIL))) +(((-1103 |#1|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3517 (|#1| |#1| (-139))) (-15 -3517 (|#1| |#1| (-142))) (-15 -3743 (|#1| (-142))) (-15 -2683 ((-112) |#1| |#1|)) (-15 -3552 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -3171 ((-142) |#1| (-548))) (-15 -3171 ((-142) |#1| (-548) (-142)))) (-1104)) (T -1103)) +NIL +(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3517 (|#1| |#1| (-139))) (-15 -3517 (|#1| |#1| (-142))) (-15 -3743 (|#1| (-142))) (-15 -2683 ((-112) |#1| |#1|)) (-15 -3552 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -3171 ((-142) |#1| (-548))) (-15 -3171 ((-142) |#1| (-548) (-142)))) +((-3730 (((-112) $ $) 19 (|has| (-142) (-1063)))) (-3541 (($ $) 120)) (-3552 (($ $) 121)) (-3517 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2665 (((-112) $ $) 118)) (-2642 (((-112) $ $ (-548)) 117)) (-3530 (((-619 $) $ (-142)) 110) (((-619 $) $ (-139)) 109)) (-3001 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-821)))) (-2980 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| (-142) (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 (((-142) $ (-548) (-142)) 52 (|has| $ (-6 -4328))) (((-142) $ (-1185 (-548)) (-142)) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3377 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-2541 (($ $ (-1185 (-548)) $) 114)) (-3484 (($ $) 78 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-142) $) 77 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4327)))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4327)))) (-3971 (((-142) $ (-548) (-142)) 53 (|has| $ (-6 -4328)))) (-3899 (((-142) $ (-548)) 51)) (-2683 (((-112) $ $) 119)) (-2621 (((-548) (-1 (-112) (-142)) $) 97) (((-548) (-142) $) 96 (|has| (-142) (-1063))) (((-548) (-142) $ (-548)) 95 (|has| (-142) (-1063))) (((-548) $ $ (-548)) 113) (((-548) (-139) $ (-548)) 112)) (-1934 (((-619 (-142)) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-142)) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| (-142) (-821)))) (-2913 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| (-142) (-821)))) (-2141 (((-112) $ $ (-142)) 115)) (-3407 (((-745) $ $ (-142)) 116)) (-3960 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3563 (($ $) 122)) (-3574 (($ $) 123)) (-4248 (((-112) $ (-745)) 10)) (-3392 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2546 (((-1118) $) 22 (|has| (-142) (-1063)))) (-2387 (($ (-142) $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| (-142) (-1063)))) (-3453 (((-142) $) 42 (|has| (-548) (-821)))) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-4159 (($ $ (-142)) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-142)))) 26 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) 23 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4223 (((-619 (-142)) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 (((-142) $ (-548) (-142)) 50) (((-142) $ (-548)) 49) (($ $ (-1185 (-548))) 63) (($ $ $) 102)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4327))) (((-745) (-142) $) 28 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| (-142) (-593 (-524))))) (-3754 (($ (-619 (-142))) 70)) (-1831 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (($ (-142)) 111) (((-832) $) 18 (|has| (-142) (-592 (-832))))) (-3548 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| (-142) (-821)))) (-2241 (((-112) $ $) 83 (|has| (-142) (-821)))) (-2214 (((-112) $ $) 20 (|has| (-142) (-1063)))) (-2252 (((-112) $ $) 85 (|has| (-142) (-821)))) (-2234 (((-112) $ $) 82 (|has| (-142) (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-1104) (-138)) (T -1104)) +((-3574 (*1 *1 *1) (-4 *1 (-1104))) (-3563 (*1 *1 *1) (-4 *1 (-1104))) (-3552 (*1 *1 *1) (-4 *1 (-1104))) (-3541 (*1 *1 *1) (-4 *1 (-1104))) (-2683 (*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112)))) (-2665 (*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112)))) (-2642 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-548)) (-5 *2 (-112)))) (-3407 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-745)))) (-2141 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-112)))) (-2541 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1185 (-548))))) (-2621 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-548)))) (-2621 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-548)) (-5 *3 (-139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1104)))) (-3530 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) (-3530 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) (-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3392 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-3392 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3377 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-3377 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3171 (*1 *1 *1 *1) (-4 *1 (-1104)))) +(-13 (-19 (-142)) (-10 -8 (-15 -3574 ($ $)) (-15 -3563 ($ $)) (-15 -3552 ($ $)) (-15 -3541 ($ $)) (-15 -2683 ((-112) $ $)) (-15 -2665 ((-112) $ $)) (-15 -2642 ((-112) $ $ (-548))) (-15 -3407 ((-745) $ $ (-142))) (-15 -2141 ((-112) $ $ (-142))) (-15 -2541 ($ $ (-1185 (-548)) $)) (-15 -2621 ((-548) $ $ (-548))) (-15 -2621 ((-548) (-139) $ (-548))) (-15 -3743 ($ (-142))) (-15 -3530 ((-619 $) $ (-142))) (-15 -3530 ((-619 $) $ (-139))) (-15 -3517 ($ $ (-142))) (-15 -3517 ($ $ (-139))) (-15 -3392 ($ $ (-142))) (-15 -3392 ($ $ (-139))) (-15 -3377 ($ $ (-142))) (-15 -3377 ($ $ (-139))) (-15 -3171 ($ $ $)))) +(((-34) . T) ((-101) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821))) ((-592 (-832)) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821)) (|has| (-142) (-592 (-832)))) ((-149 #0=(-142)) . T) ((-593 (-524)) |has| (-142) (-593 (-524))) ((-278 #1=(-548) #0#) . T) ((-280 #1# #0#) . T) ((-301 #0#) -12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))) ((-365 #0#) . T) ((-480 #0#) . T) ((-583 #1# #0#) . T) ((-504 #0# #0#) -12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))) ((-625 #0#) . T) ((-19 #0#) . T) ((-821) |has| (-142) (-821)) ((-1063) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821))) ((-1172) . T)) +((-3653 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745)) 94)) (-3619 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745)) 54)) (-1312 (((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)) 85)) (-3598 (((-745) (-619 |#4|) (-619 |#5|)) 27)) (-3630 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745)) 56) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112)) 58)) (-3642 (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112)) 77)) (-2591 (((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) 80)) (-3609 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 53)) (-3585 (((-745) (-619 |#4|) (-619 |#5|)) 19))) +(((-1105 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3585 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3598 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3609 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3653 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745))) (-15 -2591 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1312 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -1105)) +((-1312 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) (-5 *1 (-1105 *4 *5 *6 *7 *8)))) (-3653 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-619 *11)) (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1806 *11)))))) (-5 *6 (-745)) (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1806 *11)))) (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-443)) (-4 *8 (-767)) (-4 *9 (-821)) (-5 *1 (-1105 *7 *8 *9 *10 *11)))) (-3642 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-3642 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3630 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-443)) (-4 *8 (-767)) (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3609 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3585 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3598 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3609 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3653 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745))) (-15 -2591 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1312 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)))) +((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2004 (((-619 $) (-619 |#4|)) 110) (((-619 $) (-619 |#4|) (-112)) 111) (((-619 $) (-619 |#4|) (-112) (-112)) 109) (((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2049 (((-619 |#3|) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2073 ((|#4| |#4| $) NIL)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 84)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 62)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) 26 (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2213 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2375 (($ (-619 |#4|)) NIL)) (-3465 (((-3 $ "failed") $) 39)) (-2038 ((|#4| |#4| $) 65)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) NIL)) (-2258 (((-112) |#4| $) NIL)) (-3425 (((-112) |#4| $) NIL)) (-2267 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3665 (((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)) 124)) (-1934 (((-619 |#4|) $) 16 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3239 ((|#3| $) 33)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 17 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3960 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 21)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) NIL)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 103)) (-3724 (((-3 |#4| "failed") $) 37)) (-3387 (((-619 $) |#4| $) 88)) (-3412 (((-3 (-112) (-619 $)) |#4| $) NIL)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-2520 (((-619 $) |#4| $) 107) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 108) (((-619 $) |#4| (-619 $)) NIL)) (-3678 (((-619 $) (-619 |#4|) (-112) (-112) (-112)) 119)) (-3688 (($ |#4| $) 75) (($ (-619 |#4|) $) 76) (((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2179 (((-619 |#4|) $) NIL)) (-2109 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2052 ((|#4| |#4| $) NIL)) (-2199 (((-112) $ $) NIL)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2063 ((|#4| |#4| $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 |#4| "failed") $) 35)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1971 (((-3 $ "failed") $ |#4|) 48)) (-1656 (($ $ |#4|) NIL) (((-619 $) |#4| $) 90) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 86)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 15)) (-3319 (($) 13)) (-2512 (((-745) $) NIL)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) 12)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 20)) (-2298 (($ $ |#3|) 42)) (-2319 (($ $ |#3|) 44)) (-2027 (($ $) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) 31) (((-619 |#4|) $) 40)) (-1962 (((-745) $) NIL (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-3338 (((-619 $) |#4| $) 54) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) NIL)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) NIL)) (-2247 (((-112) |#4| $) NIL)) (-2406 (((-112) |#3| $) 61)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1106 |#1| |#2| |#3| |#4|) (-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3688 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -3678 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -3665 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -1106)) +((-3688 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *3))) (-5 *1 (-1106 *5 *6 *7 *3)) (-4 *3 (-1030 *5 *6 *7)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-2004 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-3678 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-3665 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-1106 *5 *6 *7 *8))))) (-5 *1 (-1106 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3688 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -3678 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -3665 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2088 ((|#1| $) 34)) (-3641 (($ (-619 |#1|)) 39)) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-2043 ((|#1| |#1| $) 36)) (-2032 ((|#1| $) 32)) (-1934 (((-619 |#1|) $) 18 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 22)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) 35)) (-2539 (($ |#1| $) 37)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1357 ((|#1| $) 33)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 31)) (-3319 (($) 38)) (-3045 (((-745) $) 29)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 27)) (-3743 (((-832) $) 14 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) NIL)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 17 (|has| |#1| (-1063)))) (-3643 (((-745) $) 30 (|has| $ (-6 -4327))))) +(((-1107 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -3641 ($ (-619 |#1|))))) (-1172)) (T -1107)) +((-3641 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1107 *3))))) +(-13 (-1083 |#1|) (-10 -8 (-15 -3641 ($ (-619 |#1|))))) +((-2089 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1185 (-548)) |#2|) 44) ((|#2| $ (-548) |#2|) 41)) (-3700 (((-112) $) 12)) (-3960 (($ (-1 |#2| |#2|) $) 39)) (-3453 ((|#2| $) NIL) (($ $ (-745)) 17)) (-4159 (($ $ |#2|) 40)) (-3712 (((-112) $) 11)) (-3171 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1185 (-548))) 31) ((|#2| $ (-548)) 23) ((|#2| $ (-548) |#2|) NIL)) (-3659 (($ $ $) 47) (($ $ |#2|) NIL)) (-1831 (($ $ $) 33) (($ |#2| $) NIL) (($ (-619 $)) 36) (($ $ |#2|) NIL))) +(((-1108 |#1| |#2|) (-10 -8 (-15 -3700 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)) (-15 -2089 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -4159 (|#1| |#1| |#2|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -1831 (|#1| (-619 |#1|))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2089 (|#2| |#1| (-1185 (-548)) |#2|)) (-15 -2089 (|#2| |#1| "last" |#2|)) (-15 -2089 (|#1| |#1| "rest" |#1|)) (-15 -2089 (|#2| |#1| "first" |#2|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3171 (|#2| |#1| "last")) (-15 -3171 (|#1| |#1| "rest")) (-15 -3453 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "first")) (-15 -3453 (|#2| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -3171 (|#2| |#1| "value")) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|))) (-1109 |#2|) (-1172)) (T -1108)) +NIL +(-10 -8 (-15 -3700 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)) (-15 -2089 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -4159 (|#1| |#1| |#2|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -1831 (|#1| (-619 |#1|))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2089 (|#2| |#1| (-1185 (-548)) |#2|)) (-15 -2089 (|#2| |#1| "last" |#2|)) (-15 -2089 (|#1| |#1| "rest" |#1|)) (-15 -2089 (|#2| |#1| "first" |#2|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3171 (|#2| |#1| "last")) (-15 -3171 (|#1| |#1| "rest")) (-15 -3453 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "first")) (-15 -3453 (|#2| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -3171 (|#2| |#1| "value")) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1988 ((|#1| $) 65)) (-1272 (($ $) 67)) (-4149 (((-1223) $ (-548) (-548)) 97 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 52 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 56 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) 54 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 58 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4328))) (($ $ "rest" $) 55 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 117 (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) 86 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4327)))) (-1975 ((|#1| $) 66)) (-3030 (($) 7 T CONST)) (-3465 (($ $) 73) (($ $ (-745)) 71)) (-3484 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4327))) (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3971 ((|#1| $ (-548) |#1|) 85 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 87)) (-3700 (((-112) $) 83)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) 108)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 95 (|has| (-548) (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 94 (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 70) (($ $ (-745)) 68)) (-2387 (($ $ $ (-548)) 116) (($ |#1| $ (-548)) 115)) (-4201 (((-619 (-548)) $) 92)) (-4212 (((-112) (-548) $) 91)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 76) (($ $ (-745)) 74)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4159 (($ $ |#1|) 96 (|has| $ (-6 -4328)))) (-3712 (((-112) $) 84)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 90)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-548))) 112) ((|#1| $ (-548)) 89) ((|#1| $ (-548) |#1|) 88)) (-4234 (((-548) $ $) 44)) (-2008 (($ $ (-1185 (-548))) 114) (($ $ (-548)) 113)) (-2740 (((-112) $) 46)) (-3672 (($ $) 62)) (-3648 (($ $) 59 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 63)) (-3693 (($ $) 64)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 98 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 107)) (-3659 (($ $ $) 61 (|has| $ (-6 -4328))) (($ $ |#1|) 60 (|has| $ (-6 -4328)))) (-1831 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-1109 |#1|) (-138) (-1172)) (T -1109)) +((-3712 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(-13 (-1206 |t#1|) (-625 |t#1|) (-10 -8 (-15 -3712 ((-112) $)) (-15 -3700 ((-112) $)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T) ((-1206 |#1|) . T)) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) NIL)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1110 |#1| |#2| |#3|) (-1148 |#1| |#2|) (-1063) (-1063) |#2|) (T -1110)) +NIL +(-1148 |#1| |#2|) +((-3730 (((-112) $ $) 7)) (-3725 (((-3 $ "failed") $) 13)) (-2546 (((-1118) $) 9)) (-3410 (($) 14 T CONST)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(((-1111) (-138)) (T -1111)) +((-3410 (*1 *1) (-4 *1 (-1111))) (-3725 (*1 *1 *1) (|partial| -4 *1 (-1111)))) +(-13 (-1063) (-10 -8 (-15 -3410 ($) -2325) (-15 -3725 ((-3 $ "failed") $)))) +(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3761 (((-1116 |#1|) (-1116 |#1|)) 17)) (-3738 (((-1116 |#1|) (-1116 |#1|)) 13)) (-3771 (((-1116 |#1|) (-1116 |#1|) (-548) (-548)) 20)) (-3750 (((-1116 |#1|) (-1116 |#1|)) 15))) +(((-1112 |#1|) (-10 -7 (-15 -3738 ((-1116 |#1|) (-1116 |#1|))) (-15 -3750 ((-1116 |#1|) (-1116 |#1|))) (-15 -3761 ((-1116 |#1|) (-1116 |#1|))) (-15 -3771 ((-1116 |#1|) (-1116 |#1|) (-548) (-548)))) (-13 (-540) (-145))) (T -1112)) +((-3771 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-1112 *4)))) (-3761 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1112 *3)))) (-3750 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1112 *3)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1112 *3))))) +(-10 -7 (-15 -3738 ((-1116 |#1|) (-1116 |#1|))) (-15 -3750 ((-1116 |#1|) (-1116 |#1|))) (-15 -3761 ((-1116 |#1|) (-1116 |#1|))) (-15 -3771 ((-1116 |#1|) (-1116 |#1|) (-548) (-548)))) +((-1831 (((-1116 |#1|) (-1116 (-1116 |#1|))) 15))) +(((-1113 |#1|) (-10 -7 (-15 -1831 ((-1116 |#1|) (-1116 (-1116 |#1|))))) (-1172)) (T -1113)) +((-1831 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1113 *4)) (-4 *4 (-1172))))) +(-10 -7 (-15 -1831 ((-1116 |#1|) (-1116 (-1116 |#1|))))) +((-4040 (((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)) 25)) (-2061 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)) 26)) (-2540 (((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 16))) +(((-1114 |#1| |#2|) (-10 -7 (-15 -2540 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (-15 -4040 ((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|))) (-15 -2061 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)))) (-1172) (-1172)) (T -1114)) +((-2061 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-1114 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1116 *6)) (-4 *6 (-1172)) (-4 *3 (-1172)) (-5 *2 (-1116 *3)) (-5 *1 (-1114 *6 *3)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1116 *6)) (-5 *1 (-1114 *5 *6))))) +(-10 -7 (-15 -2540 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (-15 -4040 ((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|))) (-15 -2061 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)))) +((-2540 (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)) 21))) +(((-1115 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)))) (-1172) (-1172) (-1172)) (T -1115)) +((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-1116 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-1115 *6 *7 *8))))) +(-10 -7 (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-1988 ((|#1| $) NIL)) (-1272 (($ $) 52)) (-4149 (((-1223) $ (-548) (-548)) 77 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 111 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-3793 (((-832) $) 41 (|has| |#1| (-1063)))) (-3781 (((-112)) 40 (|has| |#1| (-1063)))) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) 99 (|has| $ (-6 -4328))) (($ $ (-548) $) 123)) (-3614 ((|#1| $ |#1|) 108 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 103 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4328))) (($ $ "rest" $) 107 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 90 (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) 56 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 59)) (-1975 ((|#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3703 (($ $) 14)) (-3465 (($ $) 29) (($ $ (-745)) 89)) (-3831 (((-112) (-619 |#1|) $) 117 (|has| |#1| (-1063)))) (-3844 (($ (-619 |#1|)) 113)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) 58)) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4106 (((-1223) (-548) $) 122 (|has| |#1| (-1063)))) (-3690 (((-745) $) 119)) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-3728 (($ $) 91)) (-3741 (((-112) $) 13)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3724 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) 75)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1350 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3716 ((|#1| $) 10)) (-3453 ((|#1| $) 28) (($ $ (-745)) 50)) (-3818 (((-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745))) (-745) $) 25)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1394 (($ (-1 (-112) |#1|) $) 127)) (-1404 (($ (-1 (-112) |#1|) $) 128)) (-4159 (($ $ |#1|) 69 (|has| $ (-6 -4328)))) (-1656 (($ $ (-548)) 32)) (-3712 (((-112) $) 73)) (-3752 (((-112) $) 12)) (-3763 (((-112) $) 118)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 20)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) 15)) (-3319 (($) 45)) (-3171 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-548))) NIL) ((|#1| $ (-548)) 55) ((|#1| $ (-548) |#1|) NIL)) (-4234 (((-548) $ $) 49)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-3805 (($ (-1 $)) 48)) (-2740 (((-112) $) 70)) (-3672 (($ $) 71)) (-3648 (($ $) 100 (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 44)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 54)) (-2979 (($ |#1| $) 98)) (-3659 (($ $ $) 101 (|has| $ (-6 -4328))) (($ $ |#1|) 102 (|has| $ (-6 -4328)))) (-1831 (($ $ $) 79) (($ |#1| $) 46) (($ (-619 $)) 84) (($ $ |#1|) 78)) (-3330 (($ $) 51)) (-3743 (($ (-619 |#1|)) 112) (((-832) $) 42 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 115 (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1116 |#1|) (-13 (-648 |#1|) (-10 -8 (-6 -4328) (-15 -3743 ($ (-619 |#1|))) (-15 -3844 ($ (-619 |#1|))) (IF (|has| |#1| (-1063)) (-15 -3831 ((-112) (-619 |#1|) $)) |%noBranch|) (-15 -3818 ((-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745))) (-745) $)) (-15 -3805 ($ (-1 $))) (-15 -2979 ($ |#1| $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -4106 ((-1223) (-548) $)) (-15 -3793 ((-832) $)) (-15 -3781 ((-112)))) |%noBranch|) (-15 -3624 ($ $ (-548) $)) (-15 -1350 ($ (-1 |#1|))) (-15 -1350 ($ (-1 |#1| |#1|) |#1|)) (-15 -1394 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)))) (-1172)) (T -1116)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-3831 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)) (-5 *1 (-1116 *4)))) (-3818 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745)))) (-5 *1 (-1116 *4)) (-4 *4 (-1172)) (-5 *3 (-745)))) (-3805 (*1 *1 *2) (-12 (-5 *2 (-1 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) (-2979 (*1 *1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1172)))) (-4106 (*1 *2 *3 *1) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1116 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)))) (-3781 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)))) (-3624 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) (-1350 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1394 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) +(-13 (-648 |#1|) (-10 -8 (-6 -4328) (-15 -3743 ($ (-619 |#1|))) (-15 -3844 ($ (-619 |#1|))) (IF (|has| |#1| (-1063)) (-15 -3831 ((-112) (-619 |#1|) $)) |%noBranch|) (-15 -3818 ((-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745))) (-745) $)) (-15 -3805 ($ (-1 $))) (-15 -2979 ($ |#1| $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -4106 ((-1223) (-548) $)) (-15 -3793 ((-832) $)) (-15 -3781 ((-112)))) |%noBranch|) (-15 -3624 ($ $ (-548) $)) (-15 -1350 ($ (-1 |#1|))) (-15 -1350 ($ (-1 |#1| |#1|) |#1|)) (-15 -1394 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)))) +((-3730 (((-112) $ $) 19)) (-3541 (($ $) 120)) (-3552 (($ $) 121)) (-3517 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2665 (((-112) $ $) 118)) (-2642 (((-112) $ $ (-548)) 117)) (-1504 (($ (-548)) 127)) (-3530 (((-619 $) $ (-142)) 110) (((-619 $) $ (-139)) 109)) (-3001 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-821)))) (-2980 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| (-142) (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 (((-142) $ (-548) (-142)) 52 (|has| $ (-6 -4328))) (((-142) $ (-1185 (-548)) (-142)) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3377 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-2541 (($ $ (-1185 (-548)) $) 114)) (-3484 (($ $) 78 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-142) $) 77 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4327)))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4327)))) (-3971 (((-142) $ (-548) (-142)) 53 (|has| $ (-6 -4328)))) (-3899 (((-142) $ (-548)) 51)) (-2683 (((-112) $ $) 119)) (-2621 (((-548) (-1 (-112) (-142)) $) 97) (((-548) (-142) $) 96 (|has| (-142) (-1063))) (((-548) (-142) $ (-548)) 95 (|has| (-142) (-1063))) (((-548) $ $ (-548)) 113) (((-548) (-139) $ (-548)) 112)) (-1934 (((-619 (-142)) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-142)) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| (-142) (-821)))) (-2913 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| (-142) (-821)))) (-2141 (((-112) $ $ (-142)) 115)) (-3407 (((-745) $ $ (-142)) 116)) (-3960 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3563 (($ $) 122)) (-3574 (($ $) 123)) (-4248 (((-112) $ (-745)) 10)) (-3392 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2546 (((-1118) $) 22)) (-2387 (($ (-142) $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21)) (-3453 (((-142) $) 42 (|has| (-548) (-821)))) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-4159 (($ $ (-142)) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-142)))) 26 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) 23 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4223 (((-619 (-142)) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 (((-142) $ (-548) (-142)) 50) (((-142) $ (-548)) 49) (($ $ (-1185 (-548))) 63) (($ $ $) 102)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4327))) (((-745) (-142) $) 28 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| (-142) (-593 (-524))))) (-3754 (($ (-619 (-142))) 70)) (-1831 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (($ (-142)) 111) (((-832) $) 18)) (-3548 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4327)))) (-2739 (((-1118) $) 131) (((-1118) $ (-112)) 130) (((-1223) (-796) $) 129) (((-1223) (-796) $ (-112)) 128)) (-2262 (((-112) $ $) 84 (|has| (-142) (-821)))) (-2241 (((-112) $ $) 83 (|has| (-142) (-821)))) (-2214 (((-112) $ $) 20)) (-2252 (((-112) $ $) 85 (|has| (-142) (-821)))) (-2234 (((-112) $ $) 82 (|has| (-142) (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-1117) (-138)) (T -1117)) +((-1504 (*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1117))))) +(-13 (-1104) (-1063) (-802) (-10 -8 (-15 -1504 ($ (-548))))) +(((-34) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 #0=(-142)) . T) ((-593 (-524)) |has| (-142) (-593 (-524))) ((-278 #1=(-548) #0#) . T) ((-280 #1# #0#) . T) ((-301 #0#) -12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))) ((-365 #0#) . T) ((-480 #0#) . T) ((-583 #1# #0#) . T) ((-504 #0# #0#) -12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))) ((-625 #0#) . T) ((-19 #0#) . T) ((-802) . T) ((-821) |has| (-142) (-821)) ((-1063) . T) ((-1104) . T) ((-1172) . T)) +((-3730 (((-112) $ $) NIL)) (-3541 (($ $) NIL)) (-3552 (($ $) NIL)) (-3517 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2665 (((-112) $ $) NIL)) (-2642 (((-112) $ $ (-548)) NIL)) (-1504 (($ (-548)) 7)) (-3530 (((-619 $) $ (-142)) NIL) (((-619 $) $ (-139)) NIL)) (-3001 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-821)))) (-2980 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-821))))) (-2490 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-142) $ (-548) (-142)) NIL (|has| $ (-6 -4328))) (((-142) $ (-1185 (-548)) (-142)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3377 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-2541 (($ $ (-1185 (-548)) $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-3699 (($ (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-142) $ (-548) (-142)) NIL (|has| $ (-6 -4328)))) (-3899 (((-142) $ (-548)) NIL)) (-2683 (((-112) $ $) NIL)) (-2621 (((-548) (-1 (-112) (-142)) $) NIL) (((-548) (-142) $) NIL (|has| (-142) (-1063))) (((-548) (-142) $ (-548)) NIL (|has| (-142) (-1063))) (((-548) $ $ (-548)) NIL) (((-548) (-139) $ (-548)) NIL)) (-1934 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-142)) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| (-142) (-821)))) (-2913 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-142) (-821)))) (-2141 (((-112) $ $ (-142)) NIL)) (-3407 (((-745) $ $ (-142)) NIL)) (-3960 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3563 (($ $) NIL)) (-3574 (($ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3392 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2546 (((-1118) $) NIL)) (-2387 (($ (-142) $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-142) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-4159 (($ $ (-142)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-142)))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4223 (((-619 (-142)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-142) $ (-548) (-142)) NIL) (((-142) $ (-548)) NIL) (($ $ (-1185 (-548))) NIL) (($ $ $) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327))) (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-142) (-593 (-524))))) (-3754 (($ (-619 (-142))) NIL)) (-1831 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (($ (-142)) NIL) (((-832) $) NIL)) (-3548 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2739 (((-1118) $) 18) (((-1118) $ (-112)) 20) (((-1223) (-796) $) 21) (((-1223) (-796) $ (-112)) 22)) (-2262 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-142) (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1118) (-1117)) (T -1118)) +NIL +(-1117) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-4149 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-1118) |#1|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#1| "failed") (-1118) $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#1| "failed") (-1118) $) NIL)) (-3699 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-1118) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-1118)) NIL)) (-1934 (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1118) $) NIL (|has| (-1118) (-821)))) (-2342 (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-4043 (((-619 (-1118)) $) NIL)) (-4233 (((-112) (-1118) $) NIL)) (-1346 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-4201 (((-619 (-1118)) $) NIL)) (-4212 (((-112) (-1118) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3453 ((|#1| $) NIL (|has| (-1118) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) "failed") (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-1118)) NIL) ((|#1| $ (-1118) |#1|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-592 (-832))) (|has| |#1| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1119 |#1|) (-13 (-1148 (-1118) |#1|) (-10 -7 (-6 -4327))) (-1063)) (T -1119)) +NIL +(-13 (-1148 (-1118) |#1|) (-10 -7 (-6 -4327))) +((-3732 (((-1116 |#1|) (-1116 |#1|)) 77)) (-3859 (((-3 (-1116 |#1|) "failed") (-1116 |#1|)) 37)) (-3990 (((-1116 |#1|) (-399 (-548)) (-1116 |#1|)) 121 (|has| |#1| (-38 (-399 (-548)))))) (-4023 (((-1116 |#1|) |#1| (-1116 |#1|)) 127 (|has| |#1| (-355)))) (-3766 (((-1116 |#1|) (-1116 |#1|)) 90)) (-3883 (((-1116 (-548)) (-548)) 57)) (-3980 (((-1116 |#1|) (-1116 (-1116 |#1|))) 109 (|has| |#1| (-38 (-399 (-548)))))) (-3719 (((-1116 |#1|) (-548) (-548) (-1116 |#1|)) 95)) (-3310 (((-1116 |#1|) |#1| (-548)) 45)) (-3906 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 60)) (-4001 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 124 (|has| |#1| (-355)))) (-3970 (((-1116 |#1|) |#1| (-1 (-1116 |#1|))) 108 (|has| |#1| (-38 (-399 (-548)))))) (-4012 (((-1116 |#1|) (-1 |#1| (-548)) |#1| (-1 (-1116 |#1|))) 125 (|has| |#1| (-355)))) (-3776 (((-1116 |#1|) (-1116 |#1|)) 89)) (-3787 (((-1116 |#1|) (-1116 |#1|)) 76)) (-3706 (((-1116 |#1|) (-548) (-548) (-1116 |#1|)) 96)) (-3810 (((-1116 |#1|) |#1| (-1116 |#1|)) 105 (|has| |#1| (-38 (-399 (-548)))))) (-3870 (((-1116 (-548)) (-548)) 56)) (-3894 (((-1116 |#1|) |#1|) 59)) (-3745 (((-1116 |#1|) (-1116 |#1|) (-548) (-548)) 92)) (-3929 (((-1116 |#1|) (-1 |#1| (-548)) (-1116 |#1|)) 66)) (-1900 (((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|)) 35)) (-3756 (((-1116 |#1|) (-1116 |#1|)) 91)) (-2460 (((-1116 |#1|) (-1116 |#1|) |#1|) 71)) (-3917 (((-1116 |#1|) (-1116 |#1|)) 62)) (-3941 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 72)) (-3743 (((-1116 |#1|) |#1|) 67)) (-3956 (((-1116 |#1|) (-1116 (-1116 |#1|))) 82)) (-2309 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 36)) (-2299 (((-1116 |#1|) (-1116 |#1|)) 21) (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 23)) (-2290 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 17)) (* (((-1116 |#1|) (-1116 |#1|) |#1|) 29) (((-1116 |#1|) |#1| (-1116 |#1|)) 26) (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 27))) +(((-1120 |#1|) (-10 -7 (-15 -2290 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2299 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2299 ((-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -1900 ((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|))) (-15 -2309 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3859 ((-3 (-1116 |#1|) "failed") (-1116 |#1|))) (-15 -3310 ((-1116 |#1|) |#1| (-548))) (-15 -3870 ((-1116 (-548)) (-548))) (-15 -3883 ((-1116 (-548)) (-548))) (-15 -3894 ((-1116 |#1|) |#1|)) (-15 -3906 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3917 ((-1116 |#1|) (-1116 |#1|))) (-15 -3929 ((-1116 |#1|) (-1 |#1| (-548)) (-1116 |#1|))) (-15 -3743 ((-1116 |#1|) |#1|)) (-15 -2460 ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -3941 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3787 ((-1116 |#1|) (-1116 |#1|))) (-15 -3732 ((-1116 |#1|) (-1116 |#1|))) (-15 -3956 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -3776 ((-1116 |#1|) (-1116 |#1|))) (-15 -3766 ((-1116 |#1|) (-1116 |#1|))) (-15 -3756 ((-1116 |#1|) (-1116 |#1|))) (-15 -3745 ((-1116 |#1|) (-1116 |#1|) (-548) (-548))) (-15 -3719 ((-1116 |#1|) (-548) (-548) (-1116 |#1|))) (-15 -3706 ((-1116 |#1|) (-548) (-548) (-1116 |#1|))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 -3970 ((-1116 |#1|) |#1| (-1 (-1116 |#1|)))) (-15 -3980 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -3990 ((-1116 |#1|) (-399 (-548)) (-1116 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -4001 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -4012 ((-1116 |#1|) (-1 |#1| (-548)) |#1| (-1 (-1116 |#1|)))) (-15 -4023 ((-1116 |#1|) |#1| (-1116 |#1|)))) |%noBranch|)) (-1016)) (T -1120)) +((-4023 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-4012 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-548))) (-5 *5 (-1 (-1116 *4))) (-4 *4 (-355)) (-4 *4 (-1016)) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)))) (-4001 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3990 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1016)) (-5 *3 (-399 (-548))) (-5 *1 (-1120 *4)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1116 *3))) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3706 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3719 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3745 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-1016)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3941 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-3929 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-1 *4 (-548))) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3906 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3894 (*1 *2 *3) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-3883 (*1 *2 *3) (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) (-5 *3 (-548)))) (-3870 (*1 *2 *3) (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) (-5 *3 (-548)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-3859 (*1 *2 *2) (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2309 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-1900 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2299 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2290 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(-10 -7 (-15 -2290 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2299 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2299 ((-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -1900 ((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|))) (-15 -2309 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3859 ((-3 (-1116 |#1|) "failed") (-1116 |#1|))) (-15 -3310 ((-1116 |#1|) |#1| (-548))) (-15 -3870 ((-1116 (-548)) (-548))) (-15 -3883 ((-1116 (-548)) (-548))) (-15 -3894 ((-1116 |#1|) |#1|)) (-15 -3906 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3917 ((-1116 |#1|) (-1116 |#1|))) (-15 -3929 ((-1116 |#1|) (-1 |#1| (-548)) (-1116 |#1|))) (-15 -3743 ((-1116 |#1|) |#1|)) (-15 -2460 ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -3941 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3787 ((-1116 |#1|) (-1116 |#1|))) (-15 -3732 ((-1116 |#1|) (-1116 |#1|))) (-15 -3956 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -3776 ((-1116 |#1|) (-1116 |#1|))) (-15 -3766 ((-1116 |#1|) (-1116 |#1|))) (-15 -3756 ((-1116 |#1|) (-1116 |#1|))) (-15 -3745 ((-1116 |#1|) (-1116 |#1|) (-548) (-548))) (-15 -3719 ((-1116 |#1|) (-548) (-548) (-1116 |#1|))) (-15 -3706 ((-1116 |#1|) (-548) (-548) (-1116 |#1|))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 -3970 ((-1116 |#1|) |#1| (-1 (-1116 |#1|)))) (-15 -3980 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -3990 ((-1116 |#1|) (-399 (-548)) (-1116 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -4001 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -4012 ((-1116 |#1|) (-1 |#1| (-548)) |#1| (-1 (-1116 |#1|)))) (-15 -4023 ((-1116 |#1|) |#1| (-1116 |#1|)))) |%noBranch|)) +((-2074 (((-1116 |#1|) (-1116 |#1|)) 57)) (-1940 (((-1116 |#1|) (-1116 |#1|)) 39)) (-2054 (((-1116 |#1|) (-1116 |#1|)) 53)) (-1918 (((-1116 |#1|) (-1116 |#1|)) 35)) (-2098 (((-1116 |#1|) (-1116 |#1|)) 60)) (-1963 (((-1116 |#1|) (-1116 |#1|)) 42)) (-3496 (((-1116 |#1|) (-1116 |#1|)) 31)) (-2458 (((-1116 |#1|) (-1116 |#1|)) 27)) (-2110 (((-1116 |#1|) (-1116 |#1|)) 61)) (-1973 (((-1116 |#1|) (-1116 |#1|)) 43)) (-2086 (((-1116 |#1|) (-1116 |#1|)) 58)) (-1952 (((-1116 |#1|) (-1116 |#1|)) 40)) (-2065 (((-1116 |#1|) (-1116 |#1|)) 55)) (-1929 (((-1116 |#1|) (-1116 |#1|)) 37)) (-2145 (((-1116 |#1|) (-1116 |#1|)) 65)) (-2006 (((-1116 |#1|) (-1116 |#1|)) 47)) (-2122 (((-1116 |#1|) (-1116 |#1|)) 63)) (-1986 (((-1116 |#1|) (-1116 |#1|)) 45)) (-2170 (((-1116 |#1|) (-1116 |#1|)) 68)) (-2029 (((-1116 |#1|) (-1116 |#1|)) 50)) (-4026 (((-1116 |#1|) (-1116 |#1|)) 69)) (-2040 (((-1116 |#1|) (-1116 |#1|)) 51)) (-2158 (((-1116 |#1|) (-1116 |#1|)) 67)) (-2017 (((-1116 |#1|) (-1116 |#1|)) 49)) (-2132 (((-1116 |#1|) (-1116 |#1|)) 66)) (-1996 (((-1116 |#1|) (-1116 |#1|)) 48)) (** (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 33))) +(((-1121 |#1|) (-10 -7 (-15 -2458 ((-1116 |#1|) (-1116 |#1|))) (-15 -3496 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|))) (-15 -1929 ((-1116 |#1|) (-1116 |#1|))) (-15 -1940 ((-1116 |#1|) (-1116 |#1|))) (-15 -1952 ((-1116 |#1|) (-1116 |#1|))) (-15 -1963 ((-1116 |#1|) (-1116 |#1|))) (-15 -1973 ((-1116 |#1|) (-1116 |#1|))) (-15 -1986 ((-1116 |#1|) (-1116 |#1|))) (-15 -1996 ((-1116 |#1|) (-1116 |#1|))) (-15 -2006 ((-1116 |#1|) (-1116 |#1|))) (-15 -2017 ((-1116 |#1|) (-1116 |#1|))) (-15 -2029 ((-1116 |#1|) (-1116 |#1|))) (-15 -2040 ((-1116 |#1|) (-1116 |#1|))) (-15 -2054 ((-1116 |#1|) (-1116 |#1|))) (-15 -2065 ((-1116 |#1|) (-1116 |#1|))) (-15 -2074 ((-1116 |#1|) (-1116 |#1|))) (-15 -2086 ((-1116 |#1|) (-1116 |#1|))) (-15 -2098 ((-1116 |#1|) (-1116 |#1|))) (-15 -2110 ((-1116 |#1|) (-1116 |#1|))) (-15 -2122 ((-1116 |#1|) (-1116 |#1|))) (-15 -2132 ((-1116 |#1|) (-1116 |#1|))) (-15 -2145 ((-1116 |#1|) (-1116 |#1|))) (-15 -2158 ((-1116 |#1|) (-1116 |#1|))) (-15 -2170 ((-1116 |#1|) (-1116 |#1|))) (-15 -4026 ((-1116 |#1|) (-1116 |#1|)))) (-38 (-399 (-548)))) (T -1121)) +((-4026 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2029 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1963 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1929 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3))))) +(-10 -7 (-15 -2458 ((-1116 |#1|) (-1116 |#1|))) (-15 -3496 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|))) (-15 -1929 ((-1116 |#1|) (-1116 |#1|))) (-15 -1940 ((-1116 |#1|) (-1116 |#1|))) (-15 -1952 ((-1116 |#1|) (-1116 |#1|))) (-15 -1963 ((-1116 |#1|) (-1116 |#1|))) (-15 -1973 ((-1116 |#1|) (-1116 |#1|))) (-15 -1986 ((-1116 |#1|) (-1116 |#1|))) (-15 -1996 ((-1116 |#1|) (-1116 |#1|))) (-15 -2006 ((-1116 |#1|) (-1116 |#1|))) (-15 -2017 ((-1116 |#1|) (-1116 |#1|))) (-15 -2029 ((-1116 |#1|) (-1116 |#1|))) (-15 -2040 ((-1116 |#1|) (-1116 |#1|))) (-15 -2054 ((-1116 |#1|) (-1116 |#1|))) (-15 -2065 ((-1116 |#1|) (-1116 |#1|))) (-15 -2074 ((-1116 |#1|) (-1116 |#1|))) (-15 -2086 ((-1116 |#1|) (-1116 |#1|))) (-15 -2098 ((-1116 |#1|) (-1116 |#1|))) (-15 -2110 ((-1116 |#1|) (-1116 |#1|))) (-15 -2122 ((-1116 |#1|) (-1116 |#1|))) (-15 -2132 ((-1116 |#1|) (-1116 |#1|))) (-15 -2145 ((-1116 |#1|) (-1116 |#1|))) (-15 -2158 ((-1116 |#1|) (-1116 |#1|))) (-15 -2170 ((-1116 |#1|) (-1116 |#1|))) (-15 -4026 ((-1116 |#1|) (-1116 |#1|)))) +((-2074 (((-1116 |#1|) (-1116 |#1|)) 100)) (-1940 (((-1116 |#1|) (-1116 |#1|)) 64)) (-4046 (((-2 (|:| -2054 (-1116 |#1|)) (|:| -2065 (-1116 |#1|))) (-1116 |#1|)) 96)) (-2054 (((-1116 |#1|) (-1116 |#1|)) 97)) (-4034 (((-2 (|:| -1918 (-1116 |#1|)) (|:| -1929 (-1116 |#1|))) (-1116 |#1|)) 53)) (-1918 (((-1116 |#1|) (-1116 |#1|)) 54)) (-2098 (((-1116 |#1|) (-1116 |#1|)) 102)) (-1963 (((-1116 |#1|) (-1116 |#1|)) 71)) (-3496 (((-1116 |#1|) (-1116 |#1|)) 39)) (-2458 (((-1116 |#1|) (-1116 |#1|)) 36)) (-2110 (((-1116 |#1|) (-1116 |#1|)) 103)) (-1973 (((-1116 |#1|) (-1116 |#1|)) 72)) (-2086 (((-1116 |#1|) (-1116 |#1|)) 101)) (-1952 (((-1116 |#1|) (-1116 |#1|)) 67)) (-2065 (((-1116 |#1|) (-1116 |#1|)) 98)) (-1929 (((-1116 |#1|) (-1116 |#1|)) 55)) (-2145 (((-1116 |#1|) (-1116 |#1|)) 111)) (-2006 (((-1116 |#1|) (-1116 |#1|)) 86)) (-2122 (((-1116 |#1|) (-1116 |#1|)) 105)) (-1986 (((-1116 |#1|) (-1116 |#1|)) 82)) (-2170 (((-1116 |#1|) (-1116 |#1|)) 115)) (-2029 (((-1116 |#1|) (-1116 |#1|)) 90)) (-4026 (((-1116 |#1|) (-1116 |#1|)) 117)) (-2040 (((-1116 |#1|) (-1116 |#1|)) 92)) (-2158 (((-1116 |#1|) (-1116 |#1|)) 113)) (-2017 (((-1116 |#1|) (-1116 |#1|)) 88)) (-2132 (((-1116 |#1|) (-1116 |#1|)) 107)) (-1996 (((-1116 |#1|) (-1116 |#1|)) 84)) (** (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 40))) +(((-1122 |#1|) (-10 -7 (-15 -2458 ((-1116 |#1|) (-1116 |#1|))) (-15 -3496 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -4034 ((-2 (|:| -1918 (-1116 |#1|)) (|:| -1929 (-1116 |#1|))) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|))) (-15 -1929 ((-1116 |#1|) (-1116 |#1|))) (-15 -1940 ((-1116 |#1|) (-1116 |#1|))) (-15 -1952 ((-1116 |#1|) (-1116 |#1|))) (-15 -1963 ((-1116 |#1|) (-1116 |#1|))) (-15 -1973 ((-1116 |#1|) (-1116 |#1|))) (-15 -1986 ((-1116 |#1|) (-1116 |#1|))) (-15 -1996 ((-1116 |#1|) (-1116 |#1|))) (-15 -2006 ((-1116 |#1|) (-1116 |#1|))) (-15 -2017 ((-1116 |#1|) (-1116 |#1|))) (-15 -2029 ((-1116 |#1|) (-1116 |#1|))) (-15 -2040 ((-1116 |#1|) (-1116 |#1|))) (-15 -4046 ((-2 (|:| -2054 (-1116 |#1|)) (|:| -2065 (-1116 |#1|))) (-1116 |#1|))) (-15 -2054 ((-1116 |#1|) (-1116 |#1|))) (-15 -2065 ((-1116 |#1|) (-1116 |#1|))) (-15 -2074 ((-1116 |#1|) (-1116 |#1|))) (-15 -2086 ((-1116 |#1|) (-1116 |#1|))) (-15 -2098 ((-1116 |#1|) (-1116 |#1|))) (-15 -2110 ((-1116 |#1|) (-1116 |#1|))) (-15 -2122 ((-1116 |#1|) (-1116 |#1|))) (-15 -2132 ((-1116 |#1|) (-1116 |#1|))) (-15 -2145 ((-1116 |#1|) (-1116 |#1|))) (-15 -2158 ((-1116 |#1|) (-1116 |#1|))) (-15 -2170 ((-1116 |#1|) (-1116 |#1|))) (-15 -4026 ((-1116 |#1|) (-1116 |#1|)))) (-38 (-399 (-548)))) (T -1122)) +((-4026 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-4046 (*1 *2 *3) (-12 (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-2 (|:| -2054 (-1116 *4)) (|:| -2065 (-1116 *4)))) (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2029 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1963 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1929 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-2 (|:| -1918 (-1116 *4)) (|:| -1929 (-1116 *4)))) (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3))))) +(-10 -7 (-15 -2458 ((-1116 |#1|) (-1116 |#1|))) (-15 -3496 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -4034 ((-2 (|:| -1918 (-1116 |#1|)) (|:| -1929 (-1116 |#1|))) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|))) (-15 -1929 ((-1116 |#1|) (-1116 |#1|))) (-15 -1940 ((-1116 |#1|) (-1116 |#1|))) (-15 -1952 ((-1116 |#1|) (-1116 |#1|))) (-15 -1963 ((-1116 |#1|) (-1116 |#1|))) (-15 -1973 ((-1116 |#1|) (-1116 |#1|))) (-15 -1986 ((-1116 |#1|) (-1116 |#1|))) (-15 -1996 ((-1116 |#1|) (-1116 |#1|))) (-15 -2006 ((-1116 |#1|) (-1116 |#1|))) (-15 -2017 ((-1116 |#1|) (-1116 |#1|))) (-15 -2029 ((-1116 |#1|) (-1116 |#1|))) (-15 -2040 ((-1116 |#1|) (-1116 |#1|))) (-15 -4046 ((-2 (|:| -2054 (-1116 |#1|)) (|:| -2065 (-1116 |#1|))) (-1116 |#1|))) (-15 -2054 ((-1116 |#1|) (-1116 |#1|))) (-15 -2065 ((-1116 |#1|) (-1116 |#1|))) (-15 -2074 ((-1116 |#1|) (-1116 |#1|))) (-15 -2086 ((-1116 |#1|) (-1116 |#1|))) (-15 -2098 ((-1116 |#1|) (-1116 |#1|))) (-15 -2110 ((-1116 |#1|) (-1116 |#1|))) (-15 -2122 ((-1116 |#1|) (-1116 |#1|))) (-15 -2132 ((-1116 |#1|) (-1116 |#1|))) (-15 -2145 ((-1116 |#1|) (-1116 |#1|))) (-15 -2158 ((-1116 |#1|) (-1116 |#1|))) (-15 -2170 ((-1116 |#1|) (-1116 |#1|))) (-15 -4026 ((-1116 |#1|) (-1116 |#1|)))) +((-4055 (((-927 |#2|) |#2| |#2|) 35)) (-4065 ((|#2| |#2| |#1|) 19 (|has| |#1| (-299))))) +(((-1123 |#1| |#2|) (-10 -7 (-15 -4055 ((-927 |#2|) |#2| |#2|)) (IF (|has| |#1| (-299)) (-15 -4065 (|#2| |#2| |#1|)) |%noBranch|)) (-540) (-1194 |#1|)) (T -1123)) +((-4065 (*1 *2 *2 *3) (-12 (-4 *3 (-299)) (-4 *3 (-540)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1194 *3)))) (-4055 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-927 *3)) (-5 *1 (-1123 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -4055 ((-927 |#2|) |#2| |#2|)) (IF (|has| |#1| (-299)) (-15 -4065 (|#2| |#2| |#1|)) |%noBranch|)) +((-3730 (((-112) $ $) NIL)) (-2840 (($ $ (-619 (-745))) 67)) (-3127 (($) 26)) (-2934 (($ $) 42)) (-1508 (((-619 $) $) 51)) (-2999 (((-112) $) 16)) (-4076 (((-619 (-912 |#2|)) $) 74)) (-4086 (($ $) 68)) (-2945 (((-745) $) 37)) (-3550 (($) 25)) (-2870 (($ $ (-619 (-745)) (-912 |#2|)) 60) (($ $ (-619 (-745)) (-745)) 61) (($ $ (-745) (-912 |#2|)) 63)) (-2913 (($ $ $) 48) (($ (-619 $)) 50)) (-1433 (((-745) $) 75)) (-3010 (((-112) $) 15)) (-2546 (((-1118) $) NIL)) (-2989 (((-112) $) 18)) (-3932 (((-1082) $) NIL)) (-4094 (((-168) $) 73)) (-2830 (((-912 |#2|) $) 69)) (-4118 (((-745) $) 70)) (-4107 (((-112) $) 72)) (-2850 (($ $ (-619 (-745)) (-168)) 66)) (-2923 (($ $) 43)) (-3743 (((-832) $) 86)) (-2858 (($ $ (-619 (-745)) (-112)) 65)) (-2956 (((-619 $) $) 11)) (-2967 (($ $ (-745)) 36)) (-2978 (($ $) 32)) (-2880 (($ $ $ (-912 |#2|) (-745)) 56)) (-2890 (($ $ (-912 |#2|)) 55)) (-2901 (($ $ (-619 (-745)) (-912 |#2|)) 54) (($ $ (-619 (-745)) (-745)) 58) (((-745) $ (-912 |#2|)) 59)) (-2214 (((-112) $ $) 80))) +(((-1124 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3010 ((-112) $)) (-15 -2999 ((-112) $)) (-15 -2989 ((-112) $)) (-15 -3550 ($)) (-15 -3127 ($)) (-15 -2978 ($ $)) (-15 -2967 ($ $ (-745))) (-15 -2956 ((-619 $) $)) (-15 -2945 ((-745) $)) (-15 -2934 ($ $)) (-15 -2923 ($ $)) (-15 -2913 ($ $ $)) (-15 -2913 ($ (-619 $))) (-15 -1508 ((-619 $) $)) (-15 -2901 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -2890 ($ $ (-912 |#2|))) (-15 -2880 ($ $ $ (-912 |#2|) (-745))) (-15 -2870 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -2901 ($ $ (-619 (-745)) (-745))) (-15 -2870 ($ $ (-619 (-745)) (-745))) (-15 -2901 ((-745) $ (-912 |#2|))) (-15 -2870 ($ $ (-745) (-912 |#2|))) (-15 -2858 ($ $ (-619 (-745)) (-112))) (-15 -2850 ($ $ (-619 (-745)) (-168))) (-15 -2840 ($ $ (-619 (-745)))) (-15 -2830 ((-912 |#2|) $)) (-15 -4118 ((-745) $)) (-15 -4107 ((-112) $)) (-15 -4094 ((-168) $)) (-15 -1433 ((-745) $)) (-15 -4086 ($ $)) (-15 -4076 ((-619 (-912 |#2|)) $)))) (-890) (-1016)) (T -1124)) +((-3010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3550 (*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-3127 (*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2978 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2967 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2913 (*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2901 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2890 (*1 *1 *1 *2) (-12 (-5 *2 (-912 *4)) (-4 *4 (-1016)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)))) (-2880 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-912 *5)) (-5 *3 (-745)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2901 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2901 (*1 *2 *1 *3) (-12 (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *2 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2858 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-112)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2850 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-168)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-912 *4)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-168)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-619 (-912 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016))))) +(-13 (-1063) (-10 -8 (-15 -3010 ((-112) $)) (-15 -2999 ((-112) $)) (-15 -2989 ((-112) $)) (-15 -3550 ($)) (-15 -3127 ($)) (-15 -2978 ($ $)) (-15 -2967 ($ $ (-745))) (-15 -2956 ((-619 $) $)) (-15 -2945 ((-745) $)) (-15 -2934 ($ $)) (-15 -2923 ($ $)) (-15 -2913 ($ $ $)) (-15 -2913 ($ (-619 $))) (-15 -1508 ((-619 $) $)) (-15 -2901 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -2890 ($ $ (-912 |#2|))) (-15 -2880 ($ $ $ (-912 |#2|) (-745))) (-15 -2870 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -2901 ($ $ (-619 (-745)) (-745))) (-15 -2870 ($ $ (-619 (-745)) (-745))) (-15 -2901 ((-745) $ (-912 |#2|))) (-15 -2870 ($ $ (-745) (-912 |#2|))) (-15 -2858 ($ $ (-619 (-745)) (-112))) (-15 -2850 ($ $ (-619 (-745)) (-168))) (-15 -2840 ($ $ (-619 (-745)))) (-15 -2830 ((-912 |#2|) $)) (-15 -4118 ((-745) $)) (-15 -4107 ((-112) $)) (-15 -4094 ((-168) $)) (-15 -1433 ((-745) $)) (-15 -4086 ($ $)) (-15 -4076 ((-619 (-912 |#2|)) $)))) +((-3730 (((-112) $ $) NIL)) (-1987 ((|#2| $) 11)) (-1974 ((|#1| $) 10)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3754 (($ |#1| |#2|) 9)) (-3743 (((-832) $) 16)) (-2214 (((-112) $ $) NIL))) +(((-1125 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3754 ($ |#1| |#2|)) (-15 -1974 (|#1| $)) (-15 -1987 (|#2| $)))) (-1063) (-1063)) (T -1125)) +((-3754 (*1 *1 *2 *3) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1974 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *2 *3)) (-4 *3 (-1063)))) (-1987 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3754 ($ |#1| |#2|)) (-15 -1974 (|#1| $)) (-15 -1987 (|#2| $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-299)) (|has| |#1| (-355))))) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 11)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3303 (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3279 (((-112) $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-1665 (($ $ (-548)) NIL) (($ $ (-548) (-548)) 66)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) NIL)) (-1318 (((-1133 |#1| |#2| |#3|) $) 36)) (-1295 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 29)) (-2107 (((-1133 |#1| |#2| |#3|) $) 30)) (-2074 (($ $) 107 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 83 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) 103 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 79 (|has| |#1| (-38 (-399 (-548)))))) (-2672 (((-548) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) 111 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 87 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1135) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-548) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))))) (-2375 (((-1133 |#1| |#2| |#3|) $) 131) (((-1135) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (((-399 (-548)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355)))) (((-548) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))))) (-1306 (($ $) 34) (($ (-548) $) 35)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-1133 |#1| |#2| |#3|)) (-663 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-1133 |#1| |#2| |#3|))) (|:| |vec| (-1218 (-1133 |#1| |#2| |#3|)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-615 (-548))) (|has| |#1| (-355)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-615 (-548))) (|has| |#1| (-355))))) (-3859 (((-3 $ "failed") $) 48)) (-1284 (((-399 (-921 |#1|)) $ (-548)) 65 (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) 67 (|has| |#1| (-540)))) (-2545 (($) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3298 (((-112) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3345 (((-112) $) 25)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-855 (-548))) (|has| |#1| (-355)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-855 (-371))) (|has| |#1| (-355))))) (-1672 (((-548) $) NIL) (((-548) $ (-548)) 24)) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL (|has| |#1| (-355)))) (-2470 (((-1133 |#1| |#2| |#3|) $) 38 (|has| |#1| (-355)))) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3725 (((-3 $ "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-355))))) (-3312 (((-112) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3535 (($ $ (-890)) NIL)) (-3823 (($ (-1 |#1| (-548)) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-548)) 18) (($ $ (-1045) (-548)) NIL) (($ $ (-619 (-1045)) (-619 (-548))) NIL)) (-1795 (($ $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-3091 (($ $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-355)))) (-3496 (($ $) 72 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2119 (($ (-548) (-1133 |#1| |#2| |#3|)) 33)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 70 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 71 (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-355))) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3862 (($ $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-299)) (|has| |#1| (-355))))) (-3887 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-548)) 145)) (-1900 (((-3 $ "failed") $ $) 49 (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) 73 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-548))))) (($ $ (-1135) (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-504 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-504 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-286 (-1133 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-286 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-1133 |#1| |#2| |#3|)) (-619 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) NIL) (($ $ $) 54 (|has| (-548) (-1075))) (($ $ (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-278 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) NIL (|has| |#1| (-355))) (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-355))) (($ $ (-1214 |#2|)) 51) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 50 (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-1993 (($ $) NIL (|has| |#1| (-355)))) (-2480 (((-1133 |#1| |#2| |#3|) $) 41 (|has| |#1| (-355)))) (-2512 (((-548) $) 37)) (-2110 (($ $) 113 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 89 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 109 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 85 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 105 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 81 (|has| |#1| (-38 (-399 (-548)))))) (-2591 (((-524) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-593 (-524))) (|has| |#1| (-355)))) (((-371) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-991)) (|has| |#1| (-355)))) (((-218) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-991)) (|has| |#1| (-355)))) (((-861 (-371)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-593 (-861 (-371)))) (|has| |#1| (-355)))) (((-861 (-548)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-593 (-861 (-548)))) (|has| |#1| (-355))))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) 149) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1133 |#1| |#2| |#3|)) 27) (($ (-1214 |#2|)) 23) (($ (-1135)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540)))) (($ (-399 (-548))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))) (|has| |#1| (-38 (-399 (-548))))))) (-1951 ((|#1| $ (-548)) 68)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 12)) (-3897 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-2145 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 95 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-2122 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 91 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 99 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 101 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 97 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 93 (|has| |#1| (-38 (-399 (-548)))))) (-1446 (($ $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3107 (($) 20 T CONST)) (-3118 (($) 16 T CONST)) (-3296 (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) NIL (|has| |#1| (-355))) (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-355))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2262 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2241 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2234 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) 44 (|has| |#1| (-355))) (($ (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) 45 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-745)) 53) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) 74 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 128 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1133 |#1| |#2| |#3|)) 43 (|has| |#1| (-355))) (($ (-1133 |#1| |#2| |#3|) $) 42 (|has| |#1| (-355))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1126 |#1| |#2| |#3|) (-13 (-1180 |#1| (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1126)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1180 |#1| (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3087 ((|#2| |#2| (-1056 |#2|)) 26) ((|#2| |#2| (-1135)) 28))) +(((-1127 |#1| |#2|) (-10 -7 (-15 -3087 (|#2| |#2| (-1135))) (-15 -3087 (|#2| |#2| (-1056 |#2|)))) (-13 (-540) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-422 |#1|) (-157) (-27) (-1157))) (T -1127)) +((-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-422 *4) (-157) (-27) (-1157))) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1127 *4 *2)))) (-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1127 *4 *2)) (-4 *2 (-13 (-422 *4) (-157) (-27) (-1157)))))) +(-10 -7 (-15 -3087 (|#2| |#2| (-1135))) (-15 -3087 (|#2| |#2| (-1056 |#2|)))) +((-3087 (((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1056 (-399 (-921 |#1|)))) 31) (((-399 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|))) 44) (((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1135)) 33) (((-399 (-921 |#1|)) (-921 |#1|) (-1135)) 36))) +(((-1128 |#1|) (-10 -7 (-15 -3087 ((-399 (-921 |#1|)) (-921 |#1|) (-1135))) (-15 -3087 ((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1135))) (-15 -3087 ((-399 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|)))) (-15 -3087 ((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1056 (-399 (-921 |#1|)))))) (-13 (-540) (-821) (-1007 (-548)))) (T -1128)) +((-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-3 *3 (-308 *5))) (-5 *1 (-1128 *5)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-921 *5))) (-5 *3 (-921 *5)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-399 *3)) (-5 *1 (-1128 *5)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-3 (-399 (-921 *5)) (-308 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-399 (-921 *5))))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-399 (-921 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-921 *5))))) +(-10 -7 (-15 -3087 ((-399 (-921 |#1|)) (-921 |#1|) (-1135))) (-15 -3087 ((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1135))) (-15 -3087 ((-399 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|)))) (-15 -3087 ((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1056 (-399 (-921 |#1|)))))) +((-2540 (((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)) 13))) +(((-1129 |#1| |#2|) (-10 -7 (-15 -2540 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)))) (-1016) (-1016)) (T -1129)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) (-5 *1 (-1129 *5 *6))))) +(-10 -7 (-15 -2540 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)))) +((-2634 (((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|))) 51)) (-1915 (((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|))) 52))) +(((-1130 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|)))) (-15 -2634 ((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|))))) (-767) (-821) (-443) (-918 |#3| |#1| |#2|)) (T -1130)) +((-2634 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-443)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 (-399 *7)))) (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-399 *7))))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-443)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 (-399 *7)))) (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-399 *7)))))) +(-10 -7 (-15 -1915 ((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|)))) (-15 -2634 ((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|))))) +((-3730 (((-112) $ $) 137)) (-3324 (((-112) $) 27)) (-1648 (((-1218 |#1|) $ (-745)) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-1632 (($ (-1131 |#1|)) NIL)) (-1884 (((-1131 $) $ (-1045)) 58) (((-1131 |#1|) $) 47)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) 132 (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1548 (($ $ $) 126 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) 71 (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 91 (|has| |#1| (-878)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-1594 (($ $ (-745)) 39)) (-1584 (($ $ (-745)) 40)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-443)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1045) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1045) $) NIL)) (-1557 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) 128 (|has| |#1| (-169)))) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) 56)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-1574 (($ $ $) 104)) (-1529 (($ $ $) NIL (|has| |#1| (-540)))) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-4065 (($ $) 133 (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-745) $) 45)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-3020 (((-832) $ (-832)) 117)) (-1672 (((-745) $ $) NIL (|has| |#1| (-540)))) (-2266 (((-112) $) 30)) (-2333 (((-745) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2036 (($ (-1131 |#1|) (-1045)) 49) (($ (-1131 $) (-1045)) 65)) (-3535 (($ $ (-745)) 32)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) 63) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) NIL) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 121)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-1639 (((-1131 |#1|) $) NIL)) (-3511 (((-3 (-1045) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) 52)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) 38)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 31)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 79 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) 135 (|has| |#1| (-443)))) (-1362 (($ $ (-745) |#1| $) 99)) (-4051 (((-410 (-1131 $)) (-1131 $)) 77 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 76 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 84 (|has| |#1| (-878)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-399 $) (-399 $) (-399 $)) NIL (|has| |#1| (-540))) ((|#1| (-399 $) |#1|) NIL (|has| |#1| (-355))) (((-399 $) $ (-399 $)) NIL (|has| |#1| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) 35)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 138 (|has| |#1| (-355)))) (-1566 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) 124 (|has| |#1| (-169)))) (-4050 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2512 (((-745) $) 54) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) 130 (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-1539 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540))) (((-3 (-399 $) "failed") (-399 $) $) NIL (|has| |#1| (-540)))) (-3743 (((-832) $) 118) (($ (-548)) NIL) (($ |#1|) 53) (($ (-1045)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) 25 (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 15 T CONST)) (-3118 (($) 16 T CONST)) (-3296 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 96)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 139 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 66)) (** (($ $ (-890)) 14) (($ $ (-745)) 12)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 24) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1131 |#1|) (-13 (-1194 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-832))) (-15 -1362 ($ $ (-745) |#1| $)))) (-1016)) (T -1131)) +((-3020 (*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1131 *3)) (-4 *3 (-1016)))) (-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1131 *3)) (-4 *3 (-1016))))) +(-13 (-1194 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-832))) (-15 -1362 ($ $ (-745) |#1| $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 11)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) NIL) (($ $ (-399 (-548)) (-399 (-548))) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1126 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 36)) (-2375 (((-1126 |#1| |#2| |#3|) $) NIL) (((-1133 |#1| |#2| |#3|) $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3569 (((-399 (-548)) $) 55)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-2129 (($ (-399 (-548)) (-1126 |#1| |#2| |#3|)) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) NIL) (((-399 (-548)) $ (-399 (-548))) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL) (($ $ (-399 (-548))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) 20) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3558 (((-1126 |#1| |#2| |#3|) $) 41)) (-3546 (((-3 (-1126 |#1| |#2| |#3|) "failed") $) NIL)) (-2119 (((-1126 |#1| |#2| |#3|) $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 39 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 40 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) NIL) (($ $ $) NIL (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $ (-1214 |#2|)) 38)) (-2512 (((-399 (-548)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) 58) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1126 |#1| |#2| |#3|)) 30) (($ (-1133 |#1| |#2| |#3|)) 31) (($ (-1214 |#2|)) 26) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 12)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 22 T CONST)) (-3118 (($) 16 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 24)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1132 |#1| |#2| |#3|) (-13 (-1201 |#1| (-1126 |#1| |#2| |#3|)) (-1007 (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1132)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1201 |#1| (-1126 |#1| |#2| |#3|)) (-1007 (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 125)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 116)) (-3799 (((-1191 |#2| |#1|) $ (-745)) 63)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-745)) 79) (($ $ (-745) (-745)) 76)) (-1680 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 102)) (-2074 (($ $) 169 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 145 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) 165 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 115) (($ (-1116 |#1|)) 110)) (-2098 (($ $) 173 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 149 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) 23)) (-3837 (($ $) 26)) (-3520 (((-921 |#1|) $ (-745)) 75) (((-921 |#1|) $ (-745) (-745)) 77)) (-3345 (((-112) $) 120)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $) 122) (((-745) $ (-745)) 124)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL)) (-3823 (($ (-1 |#1| (-548)) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) 13) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3810 (($ $) 129 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 130 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-1656 (($ $ (-745)) 15)) (-1900 (((-3 $ "failed") $ $) 24 (|has| |#1| (-540)))) (-2458 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3171 ((|#1| $ (-745)) 119) (($ $ $) 128 (|has| (-745) (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $ (-1214 |#2|)) 29)) (-2512 (((-745) $) NIL)) (-2110 (($ $) 175 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 151 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 171 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 147 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 167 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 143 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) 201) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) 126 (|has| |#1| (-169))) (($ (-1191 |#2| |#1|)) 51) (($ (-1214 |#2|)) 32)) (-3852 (((-1116 |#1|) $) 98)) (-1951 ((|#1| $ (-745)) 118)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 54)) (-2145 (($ $) 181 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 157 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 177 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 153 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 185 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 161 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-745)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 187 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 163 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 183 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 159 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 179 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 155 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 17 T CONST)) (-3118 (($) 19 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) 194)) (-2290 (($ $ $) 31)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#1|) 198 (|has| |#1| (-355))) (($ $ $) 134 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 137 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1133 |#1| |#2| |#3|) (-13 (-1209 |#1|) (-10 -8 (-15 -3743 ($ (-1191 |#2| |#1|))) (-15 -3799 ((-1191 |#2| |#1|) $ (-745))) (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1133)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1191 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-1133 *3 *4 *5)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1133 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1209 |#1|) (-10 -8 (-15 -3743 ($ (-1191 |#2| |#1|))) (-15 -3799 ((-1191 |#2| |#1|) $ (-745))) (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3743 (((-832) $) 27) (($ (-1135)) 29)) (-1524 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 40)) (-1514 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 33) (($ $) 34)) (-3211 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 35)) (-3197 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 37)) (-3184 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 36)) (-3172 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 38)) (-3846 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 39))) +(((-1134) (-13 (-592 (-832)) (-10 -8 (-15 -3743 ($ (-1135))) (-15 -3211 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3184 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3197 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3172 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1524 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3846 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1514 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1514 ($ $))))) (T -1134)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1134)))) (-3211 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3184 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3197 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3172 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1524 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3846 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1514 (*1 *1 *1) (-5 *1 (-1134)))) +(-13 (-592 (-832)) (-10 -8 (-15 -3743 ($ (-1135))) (-15 -3211 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3184 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3197 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3172 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1524 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3846 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1514 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1514 ($ $)))) +((-3730 (((-112) $ $) NIL)) (-3053 (($ $ (-619 (-832))) 59)) (-3063 (($ $ (-619 (-832))) 57)) (-1504 (((-1118) $) 84)) (-3212 (((-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))) $) 87)) (-3074 (((-112) $) 22)) (-3795 (($ $ (-619 (-619 (-832)))) 56) (($ $ (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832))))) 82)) (-3030 (($) 124 T CONST)) (-3085 (((-1223)) 106)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 66) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 73)) (-3550 (($) 95) (($ $) 101)) (-2275 (($ $) 83)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3309 (((-619 $) $) 107)) (-2546 (((-1118) $) 90)) (-3932 (((-1082) $) NIL)) (-3171 (($ $ (-619 (-832))) 58)) (-2591 (((-524) $) 46) (((-1135) $) 47) (((-861 (-548)) $) 77) (((-861 (-371)) $) 75)) (-3743 (((-832) $) 53) (($ (-1118)) 48)) (-3040 (($ $ (-619 (-832))) 60)) (-2739 (((-1118) $) 33) (((-1118) $ (-112)) 34) (((-1223) (-796) $) 35) (((-1223) (-796) $ (-112)) 36)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 49)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 50))) +(((-1135) (-13 (-821) (-593 (-524)) (-802) (-593 (-1135)) (-593 (-861 (-548))) (-593 (-861 (-371))) (-855 (-548)) (-855 (-371)) (-10 -8 (-15 -3550 ($)) (-15 -3550 ($ $)) (-15 -3085 ((-1223))) (-15 -3743 ($ (-1118))) (-15 -2275 ($ $)) (-15 -3074 ((-112) $)) (-15 -3212 ((-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))) $)) (-15 -3795 ($ $ (-619 (-619 (-832))))) (-15 -3795 ($ $ (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))))) (-15 -3063 ($ $ (-619 (-832)))) (-15 -3053 ($ $ (-619 (-832)))) (-15 -3040 ($ $ (-619 (-832)))) (-15 -3171 ($ $ (-619 (-832)))) (-15 -1504 ((-1118) $)) (-15 -3309 ((-619 $) $)) (-15 -3030 ($) -2325)))) (T -1135)) +((-3550 (*1 *1) (-5 *1 (-1135))) (-3550 (*1 *1 *1) (-5 *1 (-1135))) (-3085 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1135)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1135)))) (-2275 (*1 *1 *1) (-5 *1 (-1135))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832))))) (-5 *1 (-1135)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-1135)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832))))) (-5 *1 (-1135)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-3040 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1135)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1135)))) (-3030 (*1 *1) (-5 *1 (-1135)))) +(-13 (-821) (-593 (-524)) (-802) (-593 (-1135)) (-593 (-861 (-548))) (-593 (-861 (-371))) (-855 (-548)) (-855 (-371)) (-10 -8 (-15 -3550 ($)) (-15 -3550 ($ $)) (-15 -3085 ((-1223))) (-15 -3743 ($ (-1118))) (-15 -2275 ($ $)) (-15 -3074 ((-112) $)) (-15 -3212 ((-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))) $)) (-15 -3795 ($ $ (-619 (-619 (-832))))) (-15 -3795 ($ $ (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))))) (-15 -3063 ($ $ (-619 (-832)))) (-15 -3053 ($ $ (-619 (-832)))) (-15 -3040 ($ $ (-619 (-832)))) (-15 -3171 ($ $ (-619 (-832)))) (-15 -1504 ((-1118) $)) (-15 -3309 ((-619 $) $)) (-15 -3030 ($) -2325))) +((-3099 (((-1218 |#1|) |#1| (-890)) 16) (((-1218 |#1|) (-619 |#1|)) 20))) +(((-1136 |#1|) (-10 -7 (-15 -3099 ((-1218 |#1|) (-619 |#1|))) (-15 -3099 ((-1218 |#1|) |#1| (-890)))) (-1016)) (T -1136)) +((-3099 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1218 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1016)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)) (-5 *1 (-1136 *4))))) +(-10 -7 (-15 -3099 ((-1218 |#1|) (-619 |#1|))) (-15 -3099 ((-1218 |#1|) |#1| (-890)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-4256 (($ $ |#1| (-940) $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-940)) NIL)) (-3904 (((-940) $) NIL)) (-4267 (($ (-1 (-940) (-940)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-1362 (($ $ (-940) |#1| $) NIL (-12 (|has| (-940) (-130)) (|has| |#1| (-540))))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-2512 (((-940) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-940)) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 9 T CONST)) (-3118 (($) 14 T CONST)) (-2214 (((-112) $ $) 16)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1137 |#1|) (-13 (-318 |#1| (-940)) (-10 -8 (IF (|has| |#1| (-540)) (IF (|has| (-940) (-130)) (-15 -1362 ($ $ (-940) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) (-1016)) (T -1137)) +((-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-940)) (-4 *2 (-130)) (-5 *1 (-1137 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) +(-13 (-318 |#1| (-940)) (-10 -8 (IF (|has| |#1| (-540)) (IF (|has| (-940) (-130)) (-15 -1362 ($ $ (-940) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) +((-3111 (((-1139) (-1135) $) 25)) (-3225 (($) 29)) (-3132 (((-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-1135) $) 22)) (-3152 (((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")) $) 41) (((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) 42) (((-1223) (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) 43)) (-3236 (((-1223) (-1135)) 58)) (-3142 (((-1223) (-1135) $) 55) (((-1223) (-1135)) 56) (((-1223)) 57)) (-3200 (((-1223) (-1135)) 37)) (-3175 (((-1135)) 36)) (-3319 (($) 34)) (-3964 (((-429) (-1135) (-429) (-1135) $) 45) (((-429) (-619 (-1135)) (-429) (-1135) $) 49) (((-429) (-1135) (-429)) 46) (((-429) (-1135) (-429) (-1135)) 50)) (-3187 (((-1135)) 35)) (-3743 (((-832) $) 28)) (-3214 (((-1223)) 30) (((-1223) (-1135)) 33)) (-3122 (((-619 (-1135)) (-1135) $) 24)) (-3163 (((-1223) (-1135) (-619 (-1135)) $) 38) (((-1223) (-1135) (-619 (-1135))) 39) (((-1223) (-619 (-1135))) 40))) +(((-1138) (-13 (-592 (-832)) (-10 -8 (-15 -3225 ($)) (-15 -3214 ((-1223))) (-15 -3214 ((-1223) (-1135))) (-15 -3964 ((-429) (-1135) (-429) (-1135) $)) (-15 -3964 ((-429) (-619 (-1135)) (-429) (-1135) $)) (-15 -3964 ((-429) (-1135) (-429))) (-15 -3964 ((-429) (-1135) (-429) (-1135))) (-15 -3200 ((-1223) (-1135))) (-15 -3187 ((-1135))) (-15 -3175 ((-1135))) (-15 -3163 ((-1223) (-1135) (-619 (-1135)) $)) (-15 -3163 ((-1223) (-1135) (-619 (-1135)))) (-15 -3163 ((-1223) (-619 (-1135)))) (-15 -3152 ((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")) $)) (-15 -3152 ((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")))) (-15 -3152 ((-1223) (-3 (|:| |fst| (-426)) (|:| -2648 "void")))) (-15 -3142 ((-1223) (-1135) $)) (-15 -3142 ((-1223) (-1135))) (-15 -3142 ((-1223))) (-15 -3236 ((-1223) (-1135))) (-15 -3319 ($)) (-15 -3132 ((-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-1135) $)) (-15 -3122 ((-619 (-1135)) (-1135) $)) (-15 -3111 ((-1139) (-1135) $))))) (T -1138)) +((-3225 (*1 *1) (-5 *1 (-1138))) (-3214 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3964 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-3964 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-429)) (-5 *3 (-619 (-1135))) (-5 *4 (-1135)) (-5 *1 (-1138)))) (-3964 (*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-3964 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3187 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138)))) (-3175 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138)))) (-3163 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3152 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1135)) (-5 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3142 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3142 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3319 (*1 *1) (-5 *1 (-1138))) (-3132 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *1 (-1138)))) (-3122 (*1 *2 *3 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1138)) (-5 *3 (-1135)))) (-3111 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1139)) (-5 *1 (-1138))))) +(-13 (-592 (-832)) (-10 -8 (-15 -3225 ($)) (-15 -3214 ((-1223))) (-15 -3214 ((-1223) (-1135))) (-15 -3964 ((-429) (-1135) (-429) (-1135) $)) (-15 -3964 ((-429) (-619 (-1135)) (-429) (-1135) $)) (-15 -3964 ((-429) (-1135) (-429))) (-15 -3964 ((-429) (-1135) (-429) (-1135))) (-15 -3200 ((-1223) (-1135))) (-15 -3187 ((-1135))) (-15 -3175 ((-1135))) (-15 -3163 ((-1223) (-1135) (-619 (-1135)) $)) (-15 -3163 ((-1223) (-1135) (-619 (-1135)))) (-15 -3163 ((-1223) (-619 (-1135)))) (-15 -3152 ((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")) $)) (-15 -3152 ((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")))) (-15 -3152 ((-1223) (-3 (|:| |fst| (-426)) (|:| -2648 "void")))) (-15 -3142 ((-1223) (-1135) $)) (-15 -3142 ((-1223) (-1135))) (-15 -3142 ((-1223))) (-15 -3236 ((-1223) (-1135))) (-15 -3319 ($)) (-15 -3132 ((-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-1135) $)) (-15 -3122 ((-619 (-1135)) (-1135) $)) (-15 -3111 ((-1139) (-1135) $)))) +((-3258 (((-619 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) $) 59)) (-3282 (((-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))) (-426) $) 43)) (-3850 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429))))) 17)) (-3236 (((-1223) $) 67)) (-3293 (((-619 (-1135)) $) 22)) (-3246 (((-1067) $) 55)) (-3306 (((-429) (-1135) $) 27)) (-3270 (((-619 (-1135)) $) 30)) (-3319 (($) 19)) (-3964 (((-429) (-619 (-1135)) (-429) $) 25) (((-429) (-1135) (-429) $) 24)) (-3743 (((-832) $) 9) (((-1145 (-1135) (-429)) $) 13))) +(((-1139) (-13 (-592 (-832)) (-10 -8 (-15 -3743 ((-1145 (-1135) (-429)) $)) (-15 -3319 ($)) (-15 -3964 ((-429) (-619 (-1135)) (-429) $)) (-15 -3964 ((-429) (-1135) (-429) $)) (-15 -3306 ((-429) (-1135) $)) (-15 -3293 ((-619 (-1135)) $)) (-15 -3282 ((-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))) (-426) $)) (-15 -3270 ((-619 (-1135)) $)) (-15 -3258 ((-619 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) $)) (-15 -3246 ((-1067) $)) (-15 -3236 ((-1223) $)) (-15 -3850 ($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429))))))))) (T -1139)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-1145 (-1135) (-429))) (-5 *1 (-1139)))) (-3319 (*1 *1) (-5 *1 (-1139))) (-3964 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-619 (-1135))) (-5 *1 (-1139)))) (-3964 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1139)))) (-3306 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-429)) (-5 *1 (-1139)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139)))) (-3282 (*1 *2 *3 *1) (-12 (-5 *3 (-426)) (-5 *2 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) (-5 *1 (-1139)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))))) (-5 *1 (-1139)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1139)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1139)))) (-3850 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429))))) (-5 *1 (-1139))))) +(-13 (-592 (-832)) (-10 -8 (-15 -3743 ((-1145 (-1135) (-429)) $)) (-15 -3319 ($)) (-15 -3964 ((-429) (-619 (-1135)) (-429) $)) (-15 -3964 ((-429) (-1135) (-429) $)) (-15 -3306 ((-429) (-1135) $)) (-15 -3293 ((-619 (-1135)) $)) (-15 -3282 ((-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))) (-426) $)) (-15 -3270 ((-619 (-1135)) $)) (-15 -3258 ((-619 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) $)) (-15 -3246 ((-1067) $)) (-15 -3236 ((-1223) $)) (-15 -3850 ($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429)))))))) +((-3730 (((-112) $ $) NIL)) (-3379 (((-112) $) 42)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3362 (((-3 (-548) (-218) (-1135) (-1118) $) $) 50)) (-3347 (((-619 $) $) 55)) (-2591 (((-1067) $) 24) (($ (-1067)) 25)) (-3332 (((-112) $) 52)) (-3743 (((-832) $) NIL) (($ (-548)) 26) (((-548) $) 28) (($ (-218)) 29) (((-218) $) 31) (($ (-1135)) 32) (((-1135) $) 34) (($ (-1118)) 35) (((-1118) $) 37)) (-3095 (((-112) $ (|[\|\|]| (-548))) 11) (((-112) $ (|[\|\|]| (-218))) 15) (((-112) $ (|[\|\|]| (-1135))) 23) (((-112) $ (|[\|\|]| (-1118))) 19)) (-3395 (($ (-1135) (-619 $)) 39) (($ $ (-619 $)) 40)) (-2148 (((-548) $) 27) (((-218) $) 30) (((-1135) $) 33) (((-1118) $) 36)) (-2214 (((-112) $ $) 7))) +(((-1140) (-13 (-1213) (-1063) (-10 -8 (-15 -2591 ((-1067) $)) (-15 -2591 ($ (-1067))) (-15 -3743 ($ (-548))) (-15 -3743 ((-548) $)) (-15 -2148 ((-548) $)) (-15 -3743 ($ (-218))) (-15 -3743 ((-218) $)) (-15 -2148 ((-218) $)) (-15 -3743 ($ (-1135))) (-15 -3743 ((-1135) $)) (-15 -2148 ((-1135) $)) (-15 -3743 ($ (-1118))) (-15 -3743 ((-1118) $)) (-15 -2148 ((-1118) $)) (-15 -3395 ($ (-1135) (-619 $))) (-15 -3395 ($ $ (-619 $))) (-15 -3379 ((-112) $)) (-15 -3362 ((-3 (-548) (-218) (-1135) (-1118) $) $)) (-15 -3347 ((-619 $) $)) (-15 -3332 ((-112) $)) (-15 -3095 ((-112) $ (|[\|\|]| (-548)))) (-15 -3095 ((-112) $ (|[\|\|]| (-218)))) (-15 -3095 ((-112) $ (|[\|\|]| (-1135)))) (-15 -3095 ((-112) $ (|[\|\|]| (-1118))))))) (T -1140)) +((-2591 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-3395 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-1140))) (-5 *1 (-1140)))) (-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-3 (-548) (-218) (-1135) (-1118) (-1140))) (-5 *1 (-1140)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-548))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)) (-5 *1 (-1140))))) +(-13 (-1213) (-1063) (-10 -8 (-15 -2591 ((-1067) $)) (-15 -2591 ($ (-1067))) (-15 -3743 ($ (-548))) (-15 -3743 ((-548) $)) (-15 -2148 ((-548) $)) (-15 -3743 ($ (-218))) (-15 -3743 ((-218) $)) (-15 -2148 ((-218) $)) (-15 -3743 ($ (-1135))) (-15 -3743 ((-1135) $)) (-15 -2148 ((-1135) $)) (-15 -3743 ($ (-1118))) (-15 -3743 ((-1118) $)) (-15 -2148 ((-1118) $)) (-15 -3395 ($ (-1135) (-619 $))) (-15 -3395 ($ $ (-619 $))) (-15 -3379 ((-112) $)) (-15 -3362 ((-3 (-548) (-218) (-1135) (-1118) $) $)) (-15 -3347 ((-619 $) $)) (-15 -3332 ((-112) $)) (-15 -3095 ((-112) $ (|[\|\|]| (-548)))) (-15 -3095 ((-112) $ (|[\|\|]| (-218)))) (-15 -3095 ((-112) $ (|[\|\|]| (-1135)))) (-15 -3095 ((-112) $ (|[\|\|]| (-1118)))))) +((-3420 (((-619 (-619 (-921 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135))) 57)) (-3408 (((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|)))) 69) (((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|))) 65) (((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135)) 70) (((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135)) 64) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|))))) 93) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|)))) 92) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135))) 94) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))) (-619 (-1135))) 91))) +(((-1141 |#1|) (-10 -7 (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))))) (-15 -3420 ((-619 (-619 (-921 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135))))) (-540)) (T -1141)) +((-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-921 *5)))) (-5 *1 (-1141 *5)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *4))))) (-5 *1 (-1141 *4)) (-5 *3 (-286 (-399 (-921 *4)))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *4))))) (-5 *1 (-1141 *4)) (-5 *3 (-399 (-921 *4))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *5))))) (-5 *1 (-1141 *5)) (-5 *3 (-286 (-399 (-921 *5)))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *5))))) (-5 *1 (-1141 *5)) (-5 *3 (-399 (-921 *5))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-1141 *4)) (-5 *3 (-619 (-286 (-399 (-921 *4))))))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-619 (-399 (-921 *4)))) (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-1141 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-1141 *5)) (-5 *3 (-619 (-286 (-399 (-921 *5))))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-1141 *5))))) +(-10 -7 (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))))) (-15 -3420 ((-619 (-619 (-921 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135))))) +((-3432 (((-1118)) 7)) (-3450 (((-1118)) 9)) (-2819 (((-1223) (-1118)) 11)) (-3440 (((-1118)) 8))) +(((-1142) (-10 -7 (-15 -3432 ((-1118))) (-15 -3440 ((-1118))) (-15 -3450 ((-1118))) (-15 -2819 ((-1223) (-1118))))) (T -1142)) +((-2819 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1142)))) (-3450 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142)))) (-3440 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142)))) (-3432 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) +(-10 -7 (-15 -3432 ((-1118))) (-15 -3440 ((-1118))) (-15 -3450 ((-1118))) (-15 -2819 ((-1223) (-1118)))) +((-2301 (((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|)))) 38)) (-2331 (((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|))) 24)) (-2340 (((-1144 (-619 |#1|)) (-619 |#1|)) 34)) (-2360 (((-619 (-619 |#1|)) (-619 |#1|)) 30)) (-3000 (((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))) 37)) (-2379 (((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|)))) 36)) (-2349 (((-619 (-619 |#1|)) (-619 (-619 |#1|))) 28)) (-2369 (((-619 |#1|) (-619 |#1|)) 31)) (-2292 (((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|)))) 18)) (-2282 (((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|)))) 16)) (-3461 (((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|))) 14)) (-2311 (((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|)))) 39)) (-2321 (((-619 (-619 |#1|)) (-1144 (-619 |#1|))) 41))) +(((-1143 |#1|) (-10 -7 (-15 -3461 ((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|)))) (-15 -2282 ((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2292 ((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2301 ((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -2311 ((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -2321 ((-619 (-619 |#1|)) (-1144 (-619 |#1|)))) (-15 -2331 ((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)))) (-15 -2340 ((-1144 (-619 |#1|)) (-619 |#1|))) (-15 -2349 ((-619 (-619 |#1|)) (-619 (-619 |#1|)))) (-15 -2360 ((-619 (-619 |#1|)) (-619 |#1|))) (-15 -2369 ((-619 |#1|) (-619 |#1|))) (-15 -2379 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))))) (-15 -3000 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))))) (-821)) (T -1143)) +((-3000 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-2 (|:| |f1| (-619 *4)) (|:| |f2| (-619 (-619 (-619 *4)))) (|:| |f3| (-619 (-619 *4))) (|:| |f4| (-619 (-619 (-619 *4)))))) (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 (-619 *4)))))) (-2379 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-821)) (-5 *3 (-619 *6)) (-5 *5 (-619 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-619 *5)) (|:| |f3| *5) (|:| |f4| (-619 *5)))) (-5 *1 (-1143 *6)) (-5 *4 (-619 *5)))) (-2369 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-1143 *3)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) (-5 *3 (-619 *4)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-821)) (-5 *1 (-1143 *3)))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-1144 (-619 *4))) (-5 *1 (-1143 *4)) (-5 *3 (-619 *4)))) (-2331 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 (-619 *4)))) (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 *4))))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-1144 (-619 *4))) (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) (-4 *4 (-821)))) (-2301 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) (-4 *4 (-821)) (-5 *1 (-1143 *4)))) (-2292 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *1 (-1143 *4)))) (-2282 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-619 *5)) (-4 *5 (-821)) (-5 *1 (-1143 *5)))) (-3461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-821)) (-5 *4 (-619 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-619 *4)))) (-5 *1 (-1143 *6)) (-5 *5 (-619 *4))))) +(-10 -7 (-15 -3461 ((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|)))) (-15 -2282 ((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2292 ((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2301 ((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -2311 ((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -2321 ((-619 (-619 |#1|)) (-1144 (-619 |#1|)))) (-15 -2331 ((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)))) (-15 -2340 ((-1144 (-619 |#1|)) (-619 |#1|))) (-15 -2349 ((-619 (-619 |#1|)) (-619 (-619 |#1|)))) (-15 -2360 ((-619 (-619 |#1|)) (-619 |#1|))) (-15 -2369 ((-619 |#1|) (-619 |#1|))) (-15 -2379 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))))) (-15 -3000 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))))) +((-2390 (($ (-619 (-619 |#1|))) 10)) (-2401 (((-619 (-619 |#1|)) $) 11)) (-3743 (((-832) $) 26))) +(((-1144 |#1|) (-10 -8 (-15 -2390 ($ (-619 (-619 |#1|)))) (-15 -2401 ((-619 (-619 |#1|)) $)) (-15 -3743 ((-832) $))) (-1063)) (T -1144)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1144 *3)) (-4 *3 (-1063)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1063)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-1144 *3))))) +(-10 -8 (-15 -2390 ($ (-619 (-619 |#1|)))) (-15 -2401 ((-619 (-619 |#1|)) $)) (-15 -3743 ((-832) $))) +((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) NIL)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1145 |#1| |#2|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) (-1063) (-1063)) (T -1145)) +NIL +(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) +((-2412 ((|#1| (-619 |#1|)) 32)) (-2431 ((|#1| |#1| (-548)) 18)) (-2421 (((-1131 |#1|) |#1| (-890)) 15))) +(((-1146 |#1|) (-10 -7 (-15 -2412 (|#1| (-619 |#1|))) (-15 -2421 ((-1131 |#1|) |#1| (-890))) (-15 -2431 (|#1| |#1| (-548)))) (-355)) (T -1146)) +((-2431 (*1 *2 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-1146 *2)) (-4 *2 (-355)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1131 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-355)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-1146 *2)) (-4 *2 (-355))))) +(-10 -7 (-15 -2412 (|#1| (-619 |#1|))) (-15 -2421 ((-1131 |#1|) |#1| (-890))) (-15 -2431 (|#1| |#1| (-548)))) +((-3539 (($) 10) (($ (-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)))) 14)) (-1636 (($ (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) 39) (((-619 |#3|) $) 41)) (-3960 (($ (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2540 (($ (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1346 (((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 54)) (-2539 (($ (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 16)) (-4201 (((-619 |#2|) $) 19)) (-4212 (((-112) |#2| $) 59)) (-4030 (((-3 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) "failed") (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) 58)) (-1357 (((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 63)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-4223 (((-619 |#3|) $) 43)) (-3171 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) NIL) (((-745) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) NIL) (((-745) |#3| $) NIL) (((-745) (-1 (-112) |#3|) $) 68)) (-3743 (((-832) $) 27)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2214 (((-112) $ $) 49))) +(((-1147 |#1| |#2| |#3|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3539 (|#1| (-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))))) (-15 -3539 (|#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#3|) |#1|)) (-15 -1934 ((-619 |#3|) |#1|)) (-15 -3945 ((-745) |#3| |#1|)) (-15 -3171 (|#3| |#1| |#2| |#3|)) (-15 -3171 (|#3| |#1| |#2|)) (-15 -4223 ((-619 |#3|) |#1|)) (-15 -4212 ((-112) |#2| |#1|)) (-15 -4201 ((-619 |#2|) |#1|)) (-15 -1636 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1636 (|#1| (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -1636 (|#1| (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -4030 ((-3 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) "failed") (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -1346 ((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -2539 (|#1| (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -1357 ((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -3945 ((-745) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -1934 ((-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3945 ((-745) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3537 ((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3548 ((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -2540 (|#1| (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|))) (-1148 |#2| |#3|) (-1063) (-1063)) (T -1147)) +NIL +(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3539 (|#1| (-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))))) (-15 -3539 (|#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#3|) |#1|)) (-15 -1934 ((-619 |#3|) |#1|)) (-15 -3945 ((-745) |#3| |#1|)) (-15 -3171 (|#3| |#1| |#2| |#3|)) (-15 -3171 (|#3| |#1| |#2|)) (-15 -4223 ((-619 |#3|) |#1|)) (-15 -4212 ((-112) |#2| |#1|)) (-15 -4201 ((-619 |#2|) |#1|)) (-15 -1636 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1636 (|#1| (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -1636 (|#1| (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -4030 ((-3 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) "failed") (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -1346 ((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -2539 (|#1| (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -1357 ((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -3945 ((-745) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -1934 ((-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3945 ((-745) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3537 ((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3548 ((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -2540 (|#1| (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|))) +((-3730 (((-112) $ $) 19 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3539 (($) 72) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 71)) (-4149 (((-1223) $ |#1| |#1|) 99 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#2| $ |#1| |#2|) 73)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 55 (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) 61)) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 46 (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 62)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 54 (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 56 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 53 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 52 (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) 88)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 30 (|has| $ (-6 -4327))) (((-619 |#2|) $) 79 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-4171 ((|#1| $) 96 (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 29 (|has| $ (-6 -4327))) (((-619 |#2|) $) 80 (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-4181 ((|#1| $) 95 (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 34 (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4043 (((-619 |#1|) $) 63)) (-4233 (((-112) |#1| $) 64)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 39)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 40)) (-4201 (((-619 |#1|) $) 93)) (-4212 (((-112) |#1| $) 92)) (-3932 (((-1082) $) 21 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3453 ((|#2| $) 97 (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 51)) (-4159 (($ $ |#2|) 98 (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 41)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 32 (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) 26 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 25 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 24 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 23 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) 83 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) 91)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2801 (($) 49) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 48)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 31 (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-745) |#2| $) 81 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4327)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 50)) (-3743 (((-832) $) 18 (-1524 (|has| |#2| (-592 (-832))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 42)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 33 (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-1148 |#1| |#2|) (-138) (-1063) (-1063)) (T -1148)) +((-2089 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3539 (*1 *1) (-12 (-4 *1 (-1148 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 *3) (|:| -1657 *4)))) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *1 (-1148 *3 *4)))) (-2540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1148 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))))) +(-13 (-589 |t#1| |t#2|) (-583 |t#1| |t#2|) (-10 -8 (-15 -2089 (|t#2| $ |t#1| |t#2|)) (-15 -3539 ($)) (-15 -3539 ($ (-619 (-2 (|:| -3156 |t#1|) (|:| -1657 |t#2|))))) (-15 -2540 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((-101) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-592 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-592 (-832))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))) ((-149 #0#) . T) ((-593 (-524)) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))) ((-222 #0#) . T) ((-228 #0#) . T) ((-278 |#1| |#2|) . T) ((-280 |#1| |#2|) . T) ((-301 #0#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-480 #0#) . T) ((-480 |#2|) . T) ((-583 |#1| |#2|) . T) ((-504 #0# #0#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-589 |#1| |#2|) . T) ((-1063) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-1172) . T)) +((-2498 (((-112)) 24)) (-2465 (((-1223) (-1118)) 26)) (-2508 (((-112)) 36)) (-2476 (((-1223)) 34)) (-2453 (((-1223) (-1118) (-1118)) 25)) (-2517 (((-112)) 37)) (-2539 (((-1223) |#1| |#2|) 44)) (-2442 (((-1223)) 20)) (-2527 (((-3 |#2| "failed") |#1|) 42)) (-2486 (((-1223)) 35))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -2442 ((-1223))) (-15 -2453 ((-1223) (-1118) (-1118))) (-15 -2465 ((-1223) (-1118))) (-15 -2476 ((-1223))) (-15 -2486 ((-1223))) (-15 -2498 ((-112))) (-15 -2508 ((-112))) (-15 -2517 ((-112))) (-15 -2527 ((-3 |#2| "failed") |#1|)) (-15 -2539 ((-1223) |#1| |#2|))) (-1063) (-1063)) (T -1149)) +((-2539 (*1 *2 *3 *4) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2527 (*1 *2 *3) (|partial| -12 (-4 *2 (-1063)) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1063)))) (-2517 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2508 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2498 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2486 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2476 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)))) (-2453 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)))) (-2442 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))))) +(-10 -7 (-15 -2442 ((-1223))) (-15 -2453 ((-1223) (-1118) (-1118))) (-15 -2465 ((-1223) (-1118))) (-15 -2476 ((-1223))) (-15 -2486 ((-1223))) (-15 -2498 ((-112))) (-15 -2508 ((-112))) (-15 -2517 ((-112))) (-15 -2527 ((-3 |#2| "failed") |#1|)) (-15 -2539 ((-1223) |#1| |#2|))) +((-2563 (((-1118) (-1118)) 18)) (-2552 (((-52) (-1118)) 21))) +(((-1150) (-10 -7 (-15 -2552 ((-52) (-1118))) (-15 -2563 ((-1118) (-1118))))) (T -1150)) +((-2563 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1150)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-1150))))) +(-10 -7 (-15 -2552 ((-52) (-1118))) (-15 -2563 ((-1118) (-1118)))) +((-3743 (((-1152) |#1|) 11))) +(((-1151 |#1|) (-10 -7 (-15 -3743 ((-1152) |#1|))) (-1063)) (T -1151)) +((-3743 (*1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *1 (-1151 *3)) (-4 *3 (-1063))))) +(-10 -7 (-15 -3743 ((-1152) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3833 (((-619 (-1118)) $) 34)) (-2581 (((-619 (-1118)) $ (-619 (-1118))) 37)) (-2572 (((-619 (-1118)) $ (-619 (-1118))) 36)) (-2590 (((-619 (-1118)) $ (-619 (-1118))) 38)) (-2601 (((-619 (-1118)) $) 33)) (-3550 (($) 22)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2611 (((-619 (-1118)) $) 35)) (-2487 (((-1223) $ (-548)) 29) (((-1223) $) 30)) (-2591 (($ (-832) (-548)) 26) (($ (-832) (-548) (-832)) NIL)) (-3743 (((-832) $) 40) (($ (-832)) 24)) (-2214 (((-112) $ $) NIL))) +(((-1152) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-832))) (-15 -2591 ($ (-832) (-548))) (-15 -2591 ($ (-832) (-548) (-832))) (-15 -2487 ((-1223) $ (-548))) (-15 -2487 ((-1223) $)) (-15 -2611 ((-619 (-1118)) $)) (-15 -3833 ((-619 (-1118)) $)) (-15 -3550 ($)) (-15 -2601 ((-619 (-1118)) $)) (-15 -2590 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2581 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2572 ((-619 (-1118)) $ (-619 (-1118))))))) (T -1152)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1152)))) (-2591 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-1152)))) (-2591 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-1152)))) (-2487 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1152)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1152)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-3550 (*1 *1) (-5 *1 (-1152))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-2590 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-2581 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-2572 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(-13 (-1063) (-10 -8 (-15 -3743 ($ (-832))) (-15 -2591 ($ (-832) (-548))) (-15 -2591 ($ (-832) (-548) (-832))) (-15 -2487 ((-1223) $ (-548))) (-15 -2487 ((-1223) $)) (-15 -2611 ((-619 (-1118)) $)) (-15 -3833 ((-619 (-1118)) $)) (-15 -3550 ($)) (-15 -2601 ((-619 (-1118)) $)) (-15 -2590 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2581 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2572 ((-619 (-1118)) $ (-619 (-1118)))))) +((-3730 (((-112) $ $) NIL)) (-2661 (((-1118) $ (-1118)) 17) (((-1118) $) 16)) (-3930 (((-1118) $ (-1118)) 15)) (-3981 (($ $ (-1118)) NIL)) (-2639 (((-3 (-1118) "failed") $) 11)) (-2651 (((-1118) $) 8)) (-2630 (((-3 (-1118) "failed") $) 12)) (-3943 (((-1118) $) 9)) (-1280 (($ (-380)) NIL) (($ (-380) (-1118)) NIL)) (-2275 (((-380) $) NIL)) (-2546 (((-1118) $) NIL)) (-3959 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2620 (((-112) $) 18)) (-3743 (((-832) $) NIL)) (-3972 (($ $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-1153) (-13 (-356 (-380) (-1118)) (-10 -8 (-15 -2661 ((-1118) $ (-1118))) (-15 -2661 ((-1118) $)) (-15 -2651 ((-1118) $)) (-15 -2639 ((-3 (-1118) "failed") $)) (-15 -2630 ((-3 (-1118) "failed") $)) (-15 -2620 ((-112) $))))) (T -1153)) +((-2661 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2639 (*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2630 (*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153))))) +(-13 (-356 (-380) (-1118)) (-10 -8 (-15 -2661 ((-1118) $ (-1118))) (-15 -2661 ((-1118) $)) (-15 -2651 ((-1118) $)) (-15 -2639 ((-3 (-1118) "failed") $)) (-15 -2630 ((-3 (-1118) "failed") $)) (-15 -2620 ((-112) $)))) +((-2672 (((-3 (-548) "failed") |#1|) 19)) (-2680 (((-3 (-548) "failed") |#1|) 14)) (-2690 (((-548) (-1118)) 28))) +(((-1154 |#1|) (-10 -7 (-15 -2672 ((-3 (-548) "failed") |#1|)) (-15 -2680 ((-3 (-548) "failed") |#1|)) (-15 -2690 ((-548) (-1118)))) (-1016)) (T -1154)) +((-2690 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-548)) (-5 *1 (-1154 *4)) (-4 *4 (-1016)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *2 (-548)) (-5 *1 (-1154 *3)) (-4 *3 (-1016)))) (-2672 (*1 *2 *3) (|partial| -12 (-5 *2 (-548)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) +(-10 -7 (-15 -2672 ((-3 (-548) "failed") |#1|)) (-15 -2680 ((-3 (-548) "failed") |#1|)) (-15 -2690 ((-548) (-1118)))) +((-2699 (((-1095 (-218))) 9))) +(((-1155) (-10 -7 (-15 -2699 ((-1095 (-218)))))) (T -1155)) +((-2699 (*1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1155))))) +(-10 -7 (-15 -2699 ((-1095 (-218))))) +((-1365 (($) 11)) (-2145 (($ $) 35)) (-2122 (($ $) 33)) (-1986 (($ $) 25)) (-2170 (($ $) 17)) (-4026 (($ $) 15)) (-2158 (($ $) 19)) (-2017 (($ $) 30)) (-2132 (($ $) 34)) (-1996 (($ $) 29))) +(((-1156 |#1|) (-10 -8 (-15 -1365 (|#1|)) (-15 -2145 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -1996 (|#1| |#1|))) (-1157)) (T -1156)) +NIL +(-10 -8 (-15 -1365 (|#1|)) (-15 -2145 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -1996 (|#1| |#1|))) +((-2074 (($ $) 26)) (-1940 (($ $) 11)) (-2054 (($ $) 27)) (-1918 (($ $) 10)) (-2098 (($ $) 28)) (-1963 (($ $) 9)) (-1365 (($) 16)) (-3496 (($ $) 19)) (-2458 (($ $) 18)) (-2110 (($ $) 29)) (-1973 (($ $) 8)) (-2086 (($ $) 30)) (-1952 (($ $) 7)) (-2065 (($ $) 31)) (-1929 (($ $) 6)) (-2145 (($ $) 20)) (-2006 (($ $) 32)) (-2122 (($ $) 21)) (-1986 (($ $) 33)) (-2170 (($ $) 22)) (-2029 (($ $) 34)) (-4026 (($ $) 23)) (-2040 (($ $) 35)) (-2158 (($ $) 24)) (-2017 (($ $) 36)) (-2132 (($ $) 25)) (-1996 (($ $) 37)) (** (($ $ $) 17))) +(((-1157) (-138)) (T -1157)) +((-1365 (*1 *1) (-4 *1 (-1157)))) +(-13 (-1160) (-94) (-483) (-35) (-276) (-10 -8 (-15 -1365 ($)))) +(((-35) . T) ((-94) . T) ((-276) . T) ((-483) . T) ((-1160) . T)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 17)) (-2686 (($ |#1| (-619 $)) 23) (($ (-619 |#1|)) 27) (($ |#1|) 25)) (-2028 (((-112) $ (-745)) 48)) (-4192 ((|#1| $ |#1|) 14 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 13 (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-1934 (((-619 |#1|) $) 52 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 43)) (-4213 (((-112) $ $) 33 (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) 41)) (-2342 (((-619 |#1|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 22)) (-4248 (((-112) $ (-745)) 40)) (-2869 (((-619 |#1|) $) 37)) (-3010 (((-112) $) 36)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 74)) (-1616 (((-112) $) 9)) (-3319 (($) 10)) (-3171 ((|#1| $ "value") NIL)) (-4234 (((-548) $ $) 32)) (-2706 (((-619 $) $) 59)) (-2715 (((-112) $ $) 77)) (-2724 (((-619 $) $) 72)) (-2732 (($ $) 73)) (-2740 (((-112) $) 56)) (-3945 (((-745) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4327))) (((-745) |#1| $) 16 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 58)) (-3743 (((-832) $) 61 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 12)) (-4224 (((-112) $ $) 29 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 28 (|has| |#1| (-1063)))) (-3643 (((-745) $) 39 (|has| $ (-6 -4327))))) +(((-1158 |#1|) (-13 (-979 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2686 ($ |#1| (-619 $))) (-15 -2686 ($ (-619 |#1|))) (-15 -2686 ($ |#1|)) (-15 -2740 ((-112) $)) (-15 -2732 ($ $)) (-15 -2724 ((-619 $) $)) (-15 -2715 ((-112) $ $)) (-15 -2706 ((-619 $) $)))) (-1063)) (T -1158)) +((-2740 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-2686 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-1158 *2))) (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-1158 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-2732 (*1 *1 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-2715 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) +(-13 (-979 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2686 ($ |#1| (-619 $))) (-15 -2686 ($ (-619 |#1|))) (-15 -2686 ($ |#1|)) (-15 -2740 ((-112) $)) (-15 -2732 ($ $)) (-15 -2724 ((-619 $) $)) (-15 -2715 ((-112) $ $)) (-15 -2706 ((-619 $) $)))) +((-1940 (($ $) 15)) (-1963 (($ $) 12)) (-1973 (($ $) 10)) (-1952 (($ $) 17))) +(((-1159 |#1|) (-10 -8 (-15 -1952 (|#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -1940 (|#1| |#1|))) (-1160)) (T -1159)) +NIL +(-10 -8 (-15 -1952 (|#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -1940 (|#1| |#1|))) +((-1940 (($ $) 11)) (-1918 (($ $) 10)) (-1963 (($ $) 9)) (-1973 (($ $) 8)) (-1952 (($ $) 7)) (-1929 (($ $) 6))) +(((-1160) (-138)) (T -1160)) +((-1940 (*1 *1 *1) (-4 *1 (-1160))) (-1918 (*1 *1 *1) (-4 *1 (-1160))) (-1963 (*1 *1 *1) (-4 *1 (-1160))) (-1973 (*1 *1 *1) (-4 *1 (-1160))) (-1952 (*1 *1 *1) (-4 *1 (-1160))) (-1929 (*1 *1 *1) (-4 *1 (-1160)))) +(-13 (-10 -8 (-15 -1929 ($ $)) (-15 -1952 ($ $)) (-15 -1973 ($ $)) (-15 -1963 ($ $)) (-15 -1918 ($ $)) (-15 -1940 ($ $)))) +((-2765 ((|#2| |#2|) 88)) (-2773 (((-112) |#2|) 26)) (-1937 ((|#2| |#2|) 30)) (-1948 ((|#2| |#2|) 32)) (-2749 ((|#2| |#2| (-1135)) 83) ((|#2| |#2|) 84)) (-2781 (((-166 |#2|) |#2|) 28)) (-2758 ((|#2| |#2| (-1135)) 85) ((|#2| |#2|) 86))) +(((-1161 |#1| |#2|) (-10 -7 (-15 -2749 (|#2| |#2|)) (-15 -2749 (|#2| |#2| (-1135))) (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1135))) (-15 -2765 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2773 ((-112) |#2|)) (-15 -2781 ((-166 |#2|) |#2|))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -1161)) +((-2781 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-166 *3)) (-5 *1 (-1161 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-2758 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-2749 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) +(-10 -7 (-15 -2749 (|#2| |#2|)) (-15 -2749 (|#2| |#2| (-1135))) (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1135))) (-15 -2765 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2773 ((-112) |#2|)) (-15 -2781 ((-166 |#2|) |#2|))) +((-2789 ((|#4| |#4| |#1|) 27)) (-2795 ((|#4| |#4| |#1|) 28))) +(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2789 (|#4| |#4| |#1|)) (-15 -2795 (|#4| |#4| |#1|))) (-540) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|)) (T -1162)) +((-2795 (*1 *2 *2 *3) (-12 (-4 *3 (-540)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2789 (*1 *2 *2 *3) (-12 (-4 *3 (-540)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(-10 -7 (-15 -2789 (|#4| |#4| |#1|)) (-15 -2795 (|#4| |#4| |#1|))) +((-1839 ((|#2| |#2|) 133)) (-1857 ((|#2| |#2|) 130)) (-1830 ((|#2| |#2|) 121)) (-1848 ((|#2| |#2|) 118)) (-1821 ((|#2| |#2|) 126)) (-1810 ((|#2| |#2|) 114)) (-1710 ((|#2| |#2|) 43)) (-1702 ((|#2| |#2|) 94)) (-2805 ((|#2| |#2|) 74)) (-1800 ((|#2| |#2|) 128)) (-1790 ((|#2| |#2|) 116)) (-1917 ((|#2| |#2|) 138)) (-1895 ((|#2| |#2|) 136)) (-1906 ((|#2| |#2|) 137)) (-1886 ((|#2| |#2|) 135)) (-2814 ((|#2| |#2|) 148)) (-1928 ((|#2| |#2|) 30 (-12 (|has| |#2| (-593 (-861 |#1|))) (|has| |#2| (-855 |#1|)) (|has| |#1| (-593 (-861 |#1|))) (|has| |#1| (-855 |#1|))))) (-1719 ((|#2| |#2|) 75)) (-1728 ((|#2| |#2|) 139)) (-1384 ((|#2| |#2|) 140)) (-1782 ((|#2| |#2|) 127)) (-1774 ((|#2| |#2|) 115)) (-1766 ((|#2| |#2|) 134)) (-1876 ((|#2| |#2|) 132)) (-1757 ((|#2| |#2|) 122)) (-1866 ((|#2| |#2|) 120)) (-1748 ((|#2| |#2|) 124)) (-1738 ((|#2| |#2|) 112))) +(((-1163 |#1| |#2|) (-10 -7 (-15 -1384 (|#2| |#2|)) (-15 -2805 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1766 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1848 (|#2| |#2|)) (-15 -1857 (|#2| |#2|)) (-15 -1866 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1886 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (IF (|has| |#1| (-855 |#1|)) (IF (|has| |#1| (-593 (-861 |#1|))) (IF (|has| |#2| (-593 (-861 |#1|))) (IF (|has| |#2| (-855 |#1|)) (-15 -1928 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-821) (-443)) (-13 (-422 |#1|) (-1157))) (T -1163)) +((-1928 (*1 *2 *2) (-12 (-4 *3 (-593 (-861 *3))) (-4 *3 (-855 *3)) (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-593 (-861 *3))) (-4 *2 (-855 *3)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1917 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1906 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1895 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1886 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1857 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1848 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1790 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1774 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1766 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1728 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-2805 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1384 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157)))))) +(-10 -7 (-15 -1384 (|#2| |#2|)) (-15 -2805 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1766 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1848 (|#2| |#2|)) (-15 -1857 (|#2| |#2|)) (-15 -1866 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1886 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (IF (|has| |#1| (-855 |#1|)) (IF (|has| |#1| (-593 (-861 |#1|))) (IF (|has| |#2| (-593 (-861 |#1|))) (IF (|has| |#2| (-855 |#1|)) (-15 -1928 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2131 (((-112) |#5| $) 60) (((-112) $) 102)) (-2073 ((|#5| |#5| $) 75)) (-1415 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2082 (((-619 |#5|) (-619 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2441 (((-3 $ "failed") (-619 |#5|)) 126)) (-3465 (((-3 $ "failed") $) 112)) (-2038 ((|#5| |#5| $) 94)) (-2143 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-2015 ((|#5| |#5| $) 98)) (-2061 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-2169 (((-2 (|:| -2466 (-619 |#5|)) (|:| -1280 (-619 |#5|))) $) 55)) (-2157 (((-112) |#5| $) 58) (((-112) $) 103)) (-3239 ((|#4| $) 108)) (-3724 (((-3 |#5| "failed") $) 110)) (-2179 (((-619 |#5|) $) 49)) (-2109 (((-112) |#5| $) 67) (((-112) $) 107)) (-2052 ((|#5| |#5| $) 81)) (-2199 (((-112) $ $) 27)) (-2121 (((-112) |#5| $) 63) (((-112) $) 105)) (-2063 ((|#5| |#5| $) 78)) (-3453 (((-3 |#5| "failed") $) 109)) (-1656 (($ $ |#5|) 127)) (-2512 (((-745) $) 52)) (-3754 (($ (-619 |#5|)) 124)) (-2298 (($ $ |#4|) 122)) (-2319 (($ $ |#4|) 121)) (-2027 (($ $) 120)) (-3743 (((-832) $) NIL) (((-619 |#5|) $) 113)) (-1962 (((-745) $) 130)) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-2096 (((-112) $ (-1 (-112) |#5| (-619 |#5|))) 100)) (-1983 (((-619 |#4|) $) 115)) (-2406 (((-112) |#4| $) 118)) (-2214 (((-112) $ $) 19))) +(((-1164 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1962 ((-745) |#1|)) (-15 -1656 (|#1| |#1| |#5|)) (-15 -1415 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2406 ((-112) |#4| |#1|)) (-15 -1983 ((-619 |#4|) |#1|)) (-15 -3465 ((-3 |#1| "failed") |#1|)) (-15 -3724 ((-3 |#5| "failed") |#1|)) (-15 -3453 ((-3 |#5| "failed") |#1|)) (-15 -2015 (|#5| |#5| |#1|)) (-15 -2027 (|#1| |#1|)) (-15 -2038 (|#5| |#5| |#1|)) (-15 -2052 (|#5| |#5| |#1|)) (-15 -2063 (|#5| |#5| |#1|)) (-15 -2073 (|#5| |#5| |#1|)) (-15 -2082 ((-619 |#5|) (-619 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2061 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2109 ((-112) |#1|)) (-15 -2121 ((-112) |#1|)) (-15 -2131 ((-112) |#1|)) (-15 -2096 ((-112) |#1| (-1 (-112) |#5| (-619 |#5|)))) (-15 -2109 ((-112) |#5| |#1|)) (-15 -2121 ((-112) |#5| |#1|)) (-15 -2131 ((-112) |#5| |#1|)) (-15 -2143 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2157 ((-112) |#1|)) (-15 -2157 ((-112) |#5| |#1|)) (-15 -2169 ((-2 (|:| -2466 (-619 |#5|)) (|:| -1280 (-619 |#5|))) |#1|)) (-15 -2512 ((-745) |#1|)) (-15 -2179 ((-619 |#5|) |#1|)) (-15 -2188 ((-3 (-2 (|:| |bas| |#1|) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2188 ((-3 (-2 (|:| |bas| |#1|) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2199 ((-112) |#1| |#1|)) (-15 -2298 (|#1| |#1| |#4|)) (-15 -2319 (|#1| |#1| |#4|)) (-15 -3239 (|#4| |#1|)) (-15 -2441 ((-3 |#1| "failed") (-619 |#5|))) (-15 -3743 ((-619 |#5|) |#1|)) (-15 -3754 (|#1| (-619 |#5|))) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1415 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-1165 |#2| |#3| |#4| |#5|) (-540) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -1164)) +NIL +(-10 -8 (-15 -1962 ((-745) |#1|)) (-15 -1656 (|#1| |#1| |#5|)) (-15 -1415 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2406 ((-112) |#4| |#1|)) (-15 -1983 ((-619 |#4|) |#1|)) (-15 -3465 ((-3 |#1| "failed") |#1|)) (-15 -3724 ((-3 |#5| "failed") |#1|)) (-15 -3453 ((-3 |#5| "failed") |#1|)) (-15 -2015 (|#5| |#5| |#1|)) (-15 -2027 (|#1| |#1|)) (-15 -2038 (|#5| |#5| |#1|)) (-15 -2052 (|#5| |#5| |#1|)) (-15 -2063 (|#5| |#5| |#1|)) (-15 -2073 (|#5| |#5| |#1|)) (-15 -2082 ((-619 |#5|) (-619 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2061 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2109 ((-112) |#1|)) (-15 -2121 ((-112) |#1|)) (-15 -2131 ((-112) |#1|)) (-15 -2096 ((-112) |#1| (-1 (-112) |#5| (-619 |#5|)))) (-15 -2109 ((-112) |#5| |#1|)) (-15 -2121 ((-112) |#5| |#1|)) (-15 -2131 ((-112) |#5| |#1|)) (-15 -2143 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2157 ((-112) |#1|)) (-15 -2157 ((-112) |#5| |#1|)) (-15 -2169 ((-2 (|:| -2466 (-619 |#5|)) (|:| -1280 (-619 |#5|))) |#1|)) (-15 -2512 ((-745) |#1|)) (-15 -2179 ((-619 |#5|) |#1|)) (-15 -2188 ((-3 (-2 (|:| |bas| |#1|) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2188 ((-3 (-2 (|:| |bas| |#1|) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2199 ((-112) |#1| |#1|)) (-15 -2298 (|#1| |#1| |#4|)) (-15 -2319 (|#1| |#1| |#4|)) (-15 -3239 (|#4| |#1|)) (-15 -2441 ((-3 |#1| "failed") (-619 |#5|))) (-15 -3743 ((-619 |#5|) |#1|)) (-15 -3754 (|#1| (-619 |#5|))) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1415 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) +((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3724 (((-3 |#4| "failed") $) 83)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) +(((-1165 |#1| |#2| |#3| |#4|) (-138) (-540) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1165)) +((-2199 (*1 *2 *1 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2188 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2088 (-619 *8)))) (-5 *3 (-619 *8)) (-4 *1 (-1165 *5 *6 *7 *8)))) (-2188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2088 (-619 *9)))) (-5 *3 (-619 *9)) (-4 *1 (-1165 *6 *7 *8 *9)))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *6)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-745)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-2 (|:| -2466 (-619 *6)) (|:| -1280 (-619 *6)))))) (-2157 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2143 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1165 *5 *6 *7 *3)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)))) (-2131 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2121 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2109 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2096 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-619 *7))) (-4 *1 (-1165 *4 *5 *6 *7)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2061 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1165 *5 *6 *7 *2)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *2 (-1030 *5 *6 *7)))) (-2082 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1165 *5 *6 *7 *8)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)))) (-2073 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2063 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2052 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2038 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2027 (*1 *1 *1) (-12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-540)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) (-2015 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1165 *4 *5 *6 *7)))) (-1995 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| -2466 *1) (|:| -1280 (-619 *7))))) (-5 *3 (-619 *7)) (-4 *1 (-1165 *4 *5 *6 *7)))) (-3453 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3724 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3465 (*1 *1 *1) (|partial| -12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-540)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-2406 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *3 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) (-1415 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1165 *4 *5 *3 *2)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *2 (-1030 *4 *5 *3)))) (-1971 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-1656 (*1 *1 *1 *2) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *5 (-360)) (-5 *2 (-745))))) +(-13 (-945 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2199 ((-112) $ $)) (-15 -2188 ((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |t#4|))) "failed") (-619 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2188 ((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |t#4|))) "failed") (-619 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2179 ((-619 |t#4|) $)) (-15 -2512 ((-745) $)) (-15 -2169 ((-2 (|:| -2466 (-619 |t#4|)) (|:| -1280 (-619 |t#4|))) $)) (-15 -2157 ((-112) |t#4| $)) (-15 -2157 ((-112) $)) (-15 -2143 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2131 ((-112) |t#4| $)) (-15 -2121 ((-112) |t#4| $)) (-15 -2109 ((-112) |t#4| $)) (-15 -2096 ((-112) $ (-1 (-112) |t#4| (-619 |t#4|)))) (-15 -2131 ((-112) $)) (-15 -2121 ((-112) $)) (-15 -2109 ((-112) $)) (-15 -2061 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2082 ((-619 |t#4|) (-619 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2073 (|t#4| |t#4| $)) (-15 -2063 (|t#4| |t#4| $)) (-15 -2052 (|t#4| |t#4| $)) (-15 -2038 (|t#4| |t#4| $)) (-15 -2027 ($ $)) (-15 -2015 (|t#4| |t#4| $)) (-15 -2004 ((-619 $) (-619 |t#4|))) (-15 -1995 ((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |t#4|)))) (-619 |t#4|))) (-15 -3453 ((-3 |t#4| "failed") $)) (-15 -3724 ((-3 |t#4| "failed") $)) (-15 -3465 ((-3 $ "failed") $)) (-15 -1983 ((-619 |t#3|) $)) (-15 -2406 ((-112) |t#3| $)) (-15 -1415 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1971 ((-3 $ "failed") $ |t#4|)) (-15 -1656 ($ $ |t#4|)) (IF (|has| |t#3| (-360)) (-15 -1962 ((-745) $)) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1172) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1135)) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3520 (((-921 |#1|) $ (-745)) 17) (((-921 |#1|) $ (-745) (-745)) NIL)) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $ (-1135)) NIL) (((-745) $ (-1135) (-745)) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2435 (((-112) $) NIL)) (-2024 (($ $ (-619 (-1135)) (-619 (-520 (-1135)))) NIL) (($ $ (-1135) (-520 (-1135))) NIL) (($ |#1| (-520 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3810 (($ $ (-1135)) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-1939 (($ (-1 $) (-1135) |#1|) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1656 (($ $ (-745)) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (($ $ (-1135) $) NIL) (($ $ (-619 (-1135)) (-619 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL)) (-4050 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2512 (((-520 (-1135)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-540))) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-1135)) NIL) (($ (-921 |#1|)) NIL)) (-1951 ((|#1| $ (-520 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (((-921 |#1|) $ (-745)) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1166 |#1|) (-13 (-715 |#1| (-1135)) (-10 -8 (-15 -1951 ((-921 |#1|) $ (-745))) (-15 -3743 ($ (-1135))) (-15 -3743 ($ (-921 |#1|))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ (-1135) |#1|)) (-15 -1939 ($ (-1 $) (-1135) |#1|))) |%noBranch|))) (-1016)) (T -1166)) +((-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-921 *4)) (-5 *1 (-1166 *4)) (-4 *4 (-1016)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-1016)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-1166 *3)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)))) (-1939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1166 *4))) (-5 *3 (-1135)) (-5 *1 (-1166 *4)) (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016))))) +(-13 (-715 |#1| (-1135)) (-10 -8 (-15 -1951 ((-921 |#1|) $ (-745))) (-15 -3743 ($ (-1135))) (-15 -3743 ($ (-921 |#1|))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ (-1135) |#1|)) (-15 -1939 ($ (-1 $) (-1135) |#1|))) |%noBranch|))) +((-2254 (($ |#1| (-619 (-619 (-912 (-218)))) (-112)) 19)) (-2243 (((-112) $ (-112)) 18)) (-2236 (((-112) $) 17)) (-2216 (((-619 (-619 (-912 (-218)))) $) 13)) (-2207 ((|#1| $) 8)) (-2225 (((-112) $) 15))) +(((-1167 |#1|) (-10 -8 (-15 -2207 (|#1| $)) (-15 -2216 ((-619 (-619 (-912 (-218)))) $)) (-15 -2225 ((-112) $)) (-15 -2236 ((-112) $)) (-15 -2243 ((-112) $ (-112))) (-15 -2254 ($ |#1| (-619 (-619 (-912 (-218)))) (-112)))) (-943)) (T -1167)) +((-2254 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-112)) (-5 *1 (-1167 *2)) (-4 *2 (-943)))) (-2243 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-2207 (*1 *2 *1) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-943))))) +(-10 -8 (-15 -2207 (|#1| $)) (-15 -2216 ((-619 (-619 (-912 (-218)))) $)) (-15 -2225 ((-112) $)) (-15 -2236 ((-112) $)) (-15 -2243 ((-112) $ (-112))) (-15 -2254 ($ |#1| (-619 (-619 (-912 (-218)))) (-112)))) +((-2264 (((-912 (-218)) (-912 (-218))) 25)) (-1733 (((-912 (-218)) (-218) (-218) (-218) (-218)) 10)) (-4184 (((-619 (-912 (-218))) (-912 (-218)) (-912 (-218)) (-912 (-218)) (-218) (-619 (-619 (-218)))) 37)) (-4029 (((-218) (-912 (-218)) (-912 (-218))) 21)) (-4018 (((-912 (-218)) (-912 (-218)) (-912 (-218))) 22)) (-4174 (((-619 (-619 (-218))) (-548)) 31)) (-2299 (((-912 (-218)) (-912 (-218)) (-912 (-218))) 20)) (-2290 (((-912 (-218)) (-912 (-218)) (-912 (-218))) 19)) (* (((-912 (-218)) (-218) (-912 (-218))) 18))) +(((-1168) (-10 -7 (-15 -1733 ((-912 (-218)) (-218) (-218) (-218) (-218))) (-15 * ((-912 (-218)) (-218) (-912 (-218)))) (-15 -2290 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -2299 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -4029 ((-218) (-912 (-218)) (-912 (-218)))) (-15 -4018 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -2264 ((-912 (-218)) (-912 (-218)))) (-15 -4174 ((-619 (-619 (-218))) (-548))) (-15 -4184 ((-619 (-912 (-218))) (-912 (-218)) (-912 (-218)) (-912 (-218)) (-218) (-619 (-619 (-218))))))) (T -1168)) +((-4184 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-619 (-619 (-218)))) (-5 *4 (-218)) (-5 *2 (-619 (-912 *4))) (-5 *1 (-1168)) (-5 *3 (-912 *4)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *2 (-619 (-619 (-218)))) (-5 *1 (-1168)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) (-4018 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) (-4029 (*1 *2 *3 *3) (-12 (-5 *3 (-912 (-218))) (-5 *2 (-218)) (-5 *1 (-1168)))) (-2299 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) (-2290 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-912 (-218))) (-5 *3 (-218)) (-5 *1 (-1168)))) (-1733 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)) (-5 *3 (-218))))) +(-10 -7 (-15 -1733 ((-912 (-218)) (-218) (-218) (-218) (-218))) (-15 * ((-912 (-218)) (-218) (-912 (-218)))) (-15 -2290 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -2299 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -4029 ((-218) (-912 (-218)) (-912 (-218)))) (-15 -4018 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -2264 ((-912 (-218)) (-912 (-218)))) (-15 -4174 ((-619 (-619 (-218))) (-548))) (-15 -4184 ((-619 (-912 (-218))) (-912 (-218)) (-912 (-218)) (-912 (-218)) (-218) (-619 (-619 (-218)))))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1415 ((|#1| $ (-745)) 13)) (-3198 (((-745) $) 12)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3743 (((-927 |#1|) $) 10) (($ (-927 |#1|)) 9) (((-832) $) 23 (|has| |#1| (-592 (-832))))) (-2214 (((-112) $ $) 16 (|has| |#1| (-1063))))) +(((-1169 |#1|) (-13 (-592 (-927 |#1|)) (-10 -8 (-15 -3743 ($ (-927 |#1|))) (-15 -1415 (|#1| $ (-745))) (-15 -3198 ((-745) $)) (IF (|has| |#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -1169)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-927 *3)) (-4 *3 (-1172)) (-5 *1 (-1169 *3)))) (-1415 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-1169 *2)) (-4 *2 (-1172)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1169 *3)) (-4 *3 (-1172))))) +(-13 (-592 (-927 |#1|)) (-10 -8 (-15 -3743 ($ (-927 |#1|))) (-15 -1415 (|#1| $ (-745))) (-15 -3198 ((-745) $)) (IF (|has| |#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) +((-4215 (((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-548)) 80)) (-4194 (((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|))) 74)) (-4204 (((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|))) 59))) +(((-1170 |#1|) (-10 -7 (-15 -4194 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -4204 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -4215 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-548)))) (-341)) (T -1170)) +((-4215 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-4 *5 (-341)) (-5 *2 (-410 (-1131 (-1131 *5)))) (-5 *1 (-1170 *5)) (-5 *3 (-1131 (-1131 *5))))) (-4204 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-410 (-1131 (-1131 *4)))) (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4))))) (-4194 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-410 (-1131 (-1131 *4)))) (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) +(-10 -7 (-15 -4194 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -4204 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -4215 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-548)))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL) (($ (-1140)) 8)) (-2214 (((-112) $ $) NIL))) +(((-1171) (-13 (-1047) (-10 -8 (-15 -3743 ($ (-1140)))))) (T -1171)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1171))))) +(-13 (-1047) (-10 -8 (-15 -3743 ($ (-1140))))) +NIL +(((-1172) (-138)) (T -1172)) +NIL +(-13 (-10 -7 (-6 -2409))) +((-4261 (((-112)) 15)) (-4226 (((-1223) (-619 |#1|) (-619 |#1|)) 19) (((-1223) (-619 |#1|)) 20)) (-4282 (((-112) |#1| |#1|) 32 (|has| |#1| (-821)))) (-4248 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4272 ((|#1| (-619 |#1|)) 33 (|has| |#1| (-821))) ((|#1| (-619 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-4236 (((-2 (|:| -2479 (-619 |#1|)) (|:| -2469 (-619 |#1|)))) 17))) +(((-1173 |#1|) (-10 -7 (-15 -4226 ((-1223) (-619 |#1|))) (-15 -4226 ((-1223) (-619 |#1|) (-619 |#1|))) (-15 -4236 ((-2 (|:| -2479 (-619 |#1|)) (|:| -2469 (-619 |#1|))))) (-15 -4248 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4248 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4272 (|#1| (-619 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4261 ((-112))) (IF (|has| |#1| (-821)) (PROGN (-15 -4272 (|#1| (-619 |#1|))) (-15 -4282 ((-112) |#1| |#1|))) |%noBranch|)) (-1063)) (T -1173)) +((-4282 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-821)) (-5 *1 (-1173 *2)))) (-4261 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1173 *2)) (-4 *2 (-1063)))) (-4248 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1063)) (-5 *2 (-112)) (-5 *1 (-1173 *3)))) (-4248 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-4236 (*1 *2) (-12 (-5 *2 (-2 (|:| -2479 (-619 *3)) (|:| -2469 (-619 *3)))) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-4226 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) (-5 *1 (-1173 *4)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) (-5 *1 (-1173 *4))))) +(-10 -7 (-15 -4226 ((-1223) (-619 |#1|))) (-15 -4226 ((-1223) (-619 |#1|) (-619 |#1|))) (-15 -4236 ((-2 (|:| -2479 (-619 |#1|)) (|:| -2469 (-619 |#1|))))) (-15 -4248 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4248 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4272 (|#1| (-619 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4261 ((-112))) (IF (|has| |#1| (-821)) (PROGN (-15 -4272 (|#1| (-619 |#1|))) (-15 -4282 ((-112) |#1| |#1|))) |%noBranch|)) +((-4292 (((-1223) (-619 (-1135)) (-619 (-1135))) 13) (((-1223) (-619 (-1135))) 11)) (-1260 (((-1223)) 14)) (-4304 (((-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135))))) 18))) +(((-1174) (-10 -7 (-15 -4292 ((-1223) (-619 (-1135)))) (-15 -4292 ((-1223) (-619 (-1135)) (-619 (-1135)))) (-15 -4304 ((-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135)))))) (-15 -1260 ((-1223))))) (T -1174)) +((-1260 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1174)))) (-4304 (*1 *2) (-12 (-5 *2 (-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135))))) (-5 *1 (-1174)))) (-4292 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174))))) +(-10 -7 (-15 -4292 ((-1223) (-619 (-1135)))) (-15 -4292 ((-1223) (-619 (-1135)) (-619 (-1135)))) (-15 -4304 ((-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135)))))) (-15 -1260 ((-1223)))) +((-1688 (($ $) 17)) (-1271 (((-112) $) 24))) +(((-1175 |#1|) (-10 -8 (-15 -1688 (|#1| |#1|)) (-15 -1271 ((-112) |#1|))) (-1176)) (T -1175)) +NIL +(-10 -8 (-15 -1688 (|#1| |#1|)) (-15 -1271 ((-112) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 49)) (-2634 (((-410 $) $) 50)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-1271 (((-112) $) 51)) (-2266 (((-112) $) 30)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 48)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-1176) (-138)) (T -1176)) +((-1271 (*1 *2 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-112)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1176)))) (-1688 (*1 *1 *1) (-4 *1 (-1176))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1176))))) +(-13 (-443) (-10 -8 (-15 -1271 ((-112) $)) (-15 -2634 ((-410 $) $)) (-15 -1688 ($ $)) (-15 -1915 ((-410 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2540 (((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)) 23))) +(((-1177 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2540 ((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)))) (-1016) (-1016) (-1135) (-1135) |#1| |#2|) (T -1177)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5 *7 *9)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-14 *7 (-1135)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1182 *6 *8 *10)) (-5 *1 (-1177 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1135))))) +(-10 -7 (-15 -2540 ((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-548)) 96) (($ $ (-548) (-548)) 95)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 103)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 160 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-355)))) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) 151 (|has| |#1| (-355)))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 171)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 155 (|has| |#1| (-355)))) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-1284 (((-399 (-921 |#1|)) $ (-548)) 169 (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) 168 (|has| |#1| (-540)))) (-1922 (($ $ $) 154 (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-355)))) (-1271 (((-112) $) 162 (|has| |#1| (-355)))) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-548) $) 98) (((-548) $ (-548)) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 99)) (-3823 (($ (-1 |#1| (-548)) $) 170)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-355)))) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-548)) 59) (($ $ (-1045) (-548)) 74) (($ $ (-619 (-1045)) (-619 (-548))) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-355))) (($ $ $) 146 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 163 (|has| |#1| (-355)))) (-3810 (($ $) 167 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-355))) (($ $ $) 144 (|has| |#1| (-355)))) (-1915 (((-410 $) $) 159 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-355)))) (-1656 (($ $ (-548)) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-355)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-548)))))) (-4077 (((-745) $) 152 (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) 102) (($ $ $) 79 (|has| (-548) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-548) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (-2512 (((-548) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540)))) (-1951 ((|#1| $ (-548)) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-548) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355))) (($ $ $) 165 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 164 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-1178 |#1|) (-138) (-1016)) (T -1178)) +((-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) (-4 *3 (-1016)) (-4 *1 (-1178 *3)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-548))) (-4 *1 (-1178 *3)) (-4 *3 (-1016)))) (-1284 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-540)) (-5 *2 (-399 (-921 *4))))) (-1284 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-540)) (-5 *2 (-399 (-921 *4))))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) (-3810 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-399 (-548)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548))))))))) +(-13 (-1196 |t#1| (-548)) (-10 -8 (-15 -1761 ($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |t#1|))))) (-15 -3823 ($ (-1 |t#1| (-548)) $)) (IF (|has| |t#1| (-540)) (PROGN (-15 -1284 ((-399 (-921 |t#1|)) $ (-548))) (-15 -1284 ((-399 (-921 |t#1|)) $ (-548) (-548)))) |%noBranch|) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2049 ((-619 (-1135)) |t#1|))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-548))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|) (IF (|has| |t#1| (-355)) (-6 (-355)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-548)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| (-548) |#1|))) ((-236) |has| |#1| (-355)) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 $ $) |has| (-548) (-1075)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-355) |has| |#1| (-355)) ((-443) |has| |#1| (-355)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-622 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-355)) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1022 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1176) |has| |#1| (-355)) ((-1196 |#1| #0#) . T)) +((-3324 (((-112) $) 12)) (-2441 (((-3 |#3| "failed") $) 17) (((-3 (-1135) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL)) (-2375 ((|#3| $) 14) (((-1135) $) NIL) (((-399 (-548)) $) NIL) (((-548) $) NIL))) +(((-1179 |#1| |#2| |#3|) (-10 -8 (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3324 ((-112) |#1|))) (-1180 |#2| |#3|) (-1016) (-1209 |#2|)) (T -1179)) +NIL +(-10 -8 (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3324 ((-112) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3875 ((|#2| $) 228 (-1723 (|has| |#2| (-299)) (|has| |#1| (-355))))) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-548)) 96) (($ $ (-548) (-548)) 95)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 103)) (-1318 ((|#2| $) 264)) (-1295 (((-3 |#2| "failed") $) 260)) (-2107 ((|#2| $) 261)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 237 (-1723 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-1688 (($ $) 160 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-355)))) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 234 (-1723 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-4087 (((-112) $ $) 151 (|has| |#1| (-355)))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-2672 (((-548) $) 246 (-1723 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 171)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#2| "failed") $) 267) (((-3 (-548) "failed") $) 256 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-399 (-548)) "failed") $) 254 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-1135) "failed") $) 239 (-1723 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355))))) (-2375 ((|#2| $) 266) (((-548) $) 257 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-399 (-548)) $) 255 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-1135) $) 240 (-1723 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355))))) (-1306 (($ $) 263) (($ (-548) $) 262)) (-1945 (($ $ $) 155 (|has| |#1| (-355)))) (-1872 (($ $) 58)) (-1608 (((-663 |#2|) (-663 $)) 218 (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 217 (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 216 (-1723 (|has| |#2| (-615 (-548))) (|has| |#1| (-355)))) (((-663 (-548)) (-663 $)) 215 (-1723 (|has| |#2| (-615 (-548))) (|has| |#1| (-355))))) (-3859 (((-3 $ "failed") $) 32)) (-1284 (((-399 (-921 |#1|)) $ (-548)) 169 (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) 168 (|has| |#1| (-540)))) (-2545 (($) 230 (-1723 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-1922 (($ $ $) 154 (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-355)))) (-1271 (((-112) $) 162 (|has| |#1| (-355)))) (-3298 (((-112) $) 244 (-1723 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 222 (-1723 (|has| |#2| (-855 (-371))) (|has| |#1| (-355)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 221 (-1723 (|has| |#2| (-855 (-548))) (|has| |#1| (-355))))) (-1672 (((-548) $) 98) (((-548) $ (-548)) 97)) (-2266 (((-112) $) 30)) (-2002 (($ $) 226 (|has| |#1| (-355)))) (-2470 ((|#2| $) 224 (|has| |#1| (-355)))) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3725 (((-3 $ "failed") $) 258 (-1723 (|has| |#2| (-1111)) (|has| |#1| (-355))))) (-3312 (((-112) $) 245 (-1723 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3535 (($ $ (-890)) 99)) (-3823 (($ (-1 |#1| (-548)) $) 170)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-355)))) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-548)) 59) (($ $ (-1045) (-548)) 74) (($ $ (-619 (-1045)) (-619 (-548))) 73)) (-1795 (($ $ $) 248 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-3091 (($ $ $) 249 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2540 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-355)))) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-355))) (($ $ $) 146 (|has| |#1| (-355)))) (-2119 (($ (-548) |#2|) 265)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 163 (|has| |#1| (-355)))) (-3810 (($ $) 167 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3410 (($) 259 (-1723 (|has| |#2| (-1111)) (|has| |#1| (-355))) CONST)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-355))) (($ $ $) 144 (|has| |#1| (-355)))) (-3862 (($ $) 229 (-1723 (|has| |#2| (-299)) (|has| |#1| (-355))))) (-3887 ((|#2| $) 232 (-1723 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-4051 (((-410 (-1131 $)) (-1131 $)) 235 (-1723 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-4060 (((-410 (-1131 $)) (-1131 $)) 236 (-1723 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-1915 (((-410 $) $) 159 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-355)))) (-1656 (($ $ (-548)) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-355)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-548))))) (($ $ (-1135) |#2|) 209 (-1723 (|has| |#2| (-504 (-1135) |#2|)) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 |#2|)) 208 (-1723 (|has| |#2| (-504 (-1135) |#2|)) (|has| |#1| (-355)))) (($ $ (-619 (-286 |#2|))) 207 (-1723 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ (-286 |#2|)) 206 (-1723 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ |#2| |#2|) 205 (-1723 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ (-619 |#2|) (-619 |#2|)) 204 (-1723 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355))))) (-4077 (((-745) $) 152 (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) 102) (($ $ $) 79 (|has| (-548) (-1075))) (($ $ |#2|) 203 (-1723 (|has| |#2| (-278 |#2| |#2|)) (|has| |#1| (-355))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-355)))) (-4050 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-355))) (($ $ (-1 |#2| |#2|) (-745)) 213 (|has| |#1| (-355))) (($ $ (-745)) 82 (-1524 (-1723 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 80 (-1524 (-1723 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) 87 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-1135) (-745)) 86 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-619 (-1135))) 85 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-1135)) 84 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))))) (-1993 (($ $) 227 (|has| |#1| (-355)))) (-2480 ((|#2| $) 225 (|has| |#1| (-355)))) (-2512 (((-548) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-2591 (((-218) $) 243 (-1723 (|has| |#2| (-991)) (|has| |#1| (-355)))) (((-371) $) 242 (-1723 (|has| |#2| (-991)) (|has| |#1| (-355)))) (((-524) $) 241 (-1723 (|has| |#2| (-593 (-524))) (|has| |#1| (-355)))) (((-861 (-371)) $) 220 (-1723 (|has| |#2| (-593 (-861 (-371)))) (|has| |#1| (-355)))) (((-861 (-548)) $) 219 (-1723 (|has| |#2| (-593 (-861 (-548)))) (|has| |#1| (-355))))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 233 (-1723 (-1723 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#1| (-355))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 268) (($ (-1135)) 238 (-1723 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355)))) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540)))) (-1951 ((|#1| $ (-548)) 57)) (-4017 (((-3 $ "failed") $) 46 (-1524 (-1723 (-1524 (|has| |#2| (-143)) (-1723 (|has| $ (-143)) (|has| |#2| (-878)))) (|has| |#1| (-355))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-3897 ((|#2| $) 231 (-1723 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-1446 (($ $) 247 (-1723 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-355))) (($ $ (-1 |#2| |#2|) (-745)) 211 (|has| |#1| (-355))) (($ $ (-745)) 83 (-1524 (-1723 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 81 (-1524 (-1723 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) 91 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-1135) (-745)) 90 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-619 (-1135))) 89 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-1135)) 88 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))))) (-2262 (((-112) $ $) 251 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2241 (((-112) $ $) 252 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 250 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2234 (((-112) $ $) 253 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355))) (($ $ $) 165 (|has| |#1| (-355))) (($ |#2| |#2|) 223 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 164 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-355))) (($ |#2| $) 201 (|has| |#1| (-355))) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-1180 |#1| |#2|) (-138) (-1016) (-1209 |t#1|)) (T -1180)) +((-2512 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)) (-5 *2 (-548)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-1180 *3 *2)) (-4 *2 (-1209 *3)))) (-2119 (*1 *1 *2 *3) (-12 (-5 *2 (-548)) (-4 *4 (-1016)) (-4 *1 (-1180 *4 *3)) (-4 *3 (-1209 *4)))) (-1318 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3)))) (-1306 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1209 *2)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3)))) (-1295 (*1 *2 *1) (|partial| -12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3))))) +(-13 (-1178 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2119 ($ (-548) |t#2|)) (-15 -2512 ((-548) $)) (-15 -1318 (|t#2| $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)) (-15 -3743 ($ |t#2|)) (-15 -2107 (|t#2| $)) (-15 -1295 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-355)) (-6 (-961 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-548)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 |#2|) |has| |#1| (-355)) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-355)) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-593 (-218)) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) ((-593 (-371)) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) ((-593 (-524)) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-861 (-548))))) ((-224 |#2|) |has| |#1| (-355)) ((-226) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-226))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))) ((-236) |has| |#1| (-355)) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 |#2| $) -12 (|has| |#1| (-355)) (|has| |#2| (-278 |#2| |#2|))) ((-278 $ $) |has| (-548) (-1075)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-301 |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-301 |#2|))) ((-355) |has| |#1| (-355)) ((-330 |#2|) |has| |#1| (-355)) ((-369 |#2|) |has| |#1| (-355)) ((-392 |#2|) |has| |#1| (-355)) ((-443) |has| |#1| (-355)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-504 (-1135) |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-504 (-1135) |#2|))) ((-504 |#2| |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-301 |#2|))) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-622 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-622 |#1|) . T) ((-622 |#2|) |has| |#1| (-355)) ((-622 $) . T) ((-615 (-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-615 (-548)))) ((-615 |#2|) |has| |#1| (-355)) ((-692 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 |#2|) |has| |#1| (-355)) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-701) . T) ((-765) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-766) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-768) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-769) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-794) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-819) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-821) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-821))) (-12 (|has| |#1| (-355)) (|has| |#2| (-794)))) ((-869 (-1135)) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-869 (-1135)))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) ((-855 (-371)) -12 (|has| |#1| (-355)) (|has| |#2| (-855 (-371)))) ((-855 (-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-855 (-548)))) ((-853 |#2|) |has| |#1| (-355)) ((-878) -12 (|has| |#1| (-355)) (|has| |#2| (-878))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-355)) ((-961 |#2|) |has| |#1| (-355)) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-991) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) ((-1007 (-399 (-548))) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-548)))) ((-1007 (-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-548)))) ((-1007 (-1135)) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-1135)))) ((-1007 |#2|) . T) ((-1022 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-1022 |#1|) . T) ((-1022 |#2|) |has| |#1| (-355)) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) -12 (|has| |#1| (-355)) (|has| |#2| (-1111))) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1172) |has| |#1| (-355)) ((-1176) |has| |#1| (-355)) ((-1178 |#1|) . T) ((-1196 |#1| #0#) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 70)) (-3875 ((|#2| $) NIL (-12 (|has| |#2| (-299)) (|has| |#1| (-355))))) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 88)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-548)) 97) (($ $ (-548) (-548)) 99)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 47)) (-1318 ((|#2| $) 11)) (-1295 (((-3 |#2| "failed") $) 30)) (-2107 ((|#2| $) 31)) (-2074 (($ $) 192 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 168 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) 188 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 164 (|has| |#1| (-38 (-399 (-548)))))) (-2672 (((-548) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 57)) (-2098 (($ $) 196 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 172 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) 144) (((-3 (-548) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-1135) "failed") $) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355))))) (-2375 ((|#2| $) 143) (((-548) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-399 (-548)) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-1135) $) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355))))) (-1306 (($ $) 61) (($ (-548) $) 24)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 |#2|) (-663 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#1| (-355)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#1| (-355))))) (-3859 (((-3 $ "failed") $) 77)) (-1284 (((-399 (-921 |#1|)) $ (-548)) 112 (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) 114 (|has| |#1| (-540)))) (-2545 (($) NIL (-12 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3298 (((-112) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3345 (((-112) $) 64)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| |#2| (-855 (-371))) (|has| |#1| (-355)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| |#2| (-855 (-548))) (|has| |#1| (-355))))) (-1672 (((-548) $) 93) (((-548) $ (-548)) 95)) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL (|has| |#1| (-355)))) (-2470 ((|#2| $) 151 (|has| |#1| (-355)))) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3725 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1111)) (|has| |#1| (-355))))) (-3312 (((-112) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3535 (($ $ (-890)) 136)) (-3823 (($ (-1 |#1| (-548)) $) 132)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-548)) 19) (($ $ (-1045) (-548)) NIL) (($ $ (-619 (-1045)) (-619 (-548))) NIL)) (-1795 (($ $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-3091 (($ $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2540 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-355)))) (-3496 (($ $) 162 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2119 (($ (-548) |#2|) 10)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 145 (|has| |#1| (-355)))) (-3810 (($ $) 214 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 219 (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3410 (($) NIL (-12 (|has| |#2| (-1111)) (|has| |#1| (-355))) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3862 (($ $) NIL (-12 (|has| |#2| (-299)) (|has| |#1| (-355))))) (-3887 ((|#2| $) NIL (-12 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-548)) 126)) (-1900 (((-3 $ "failed") $ $) 116 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) 160 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-548))))) (($ $ (-1135) |#2|) NIL (-12 (|has| |#2| (-504 (-1135) |#2|)) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 |#2|)) NIL (-12 (|has| |#2| (-504 (-1135) |#2|)) (|has| |#1| (-355)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) 91) (($ $ $) 79 (|has| (-548) (-1075))) (($ $ |#2|) NIL (-12 (|has| |#2| (-278 |#2| |#2|)) (|has| |#1| (-355))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-355))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#1| (-355))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 137 (-1524 (-12 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) 140 (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-1993 (($ $) NIL (|has| |#1| (-355)))) (-2480 ((|#2| $) 152 (|has| |#1| (-355)))) (-2512 (((-548) $) 12)) (-2110 (($ $) 198 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 174 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 194 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 170 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 190 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 166 (|has| |#1| (-38 (-399 (-548)))))) (-2591 (((-218) $) NIL (-12 (|has| |#2| (-991)) (|has| |#1| (-355)))) (((-371) $) NIL (-12 (|has| |#2| (-991)) (|has| |#1| (-355)))) (((-524) $) NIL (-12 (|has| |#2| (-593 (-524))) (|has| |#1| (-355)))) (((-861 (-371)) $) NIL (-12 (|has| |#2| (-593 (-861 (-371)))) (|has| |#1| (-355)))) (((-861 (-548)) $) NIL (-12 (|has| |#2| (-593 (-861 (-548)))) (|has| |#1| (-355))))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878)) (|has| |#1| (-355))))) (-3330 (($ $) 124)) (-3743 (((-832) $) 245) (($ (-548)) 23) (($ |#1|) 21 (|has| |#1| (-169))) (($ |#2|) 20) (($ (-1135)) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355)))) (($ (-399 (-548))) 155 (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-548)) 74)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878)) (|has| |#1| (-355))) (-12 (|has| |#2| (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))))) (-3835 (((-745)) 142)) (-2278 ((|#1| $) 90)) (-3897 ((|#2| $) NIL (-12 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-2145 (($ $) 204 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 180 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 200 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 176 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 208 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 184 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 210 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 186 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 206 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 182 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 202 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 178 (|has| |#1| (-38 (-399 (-548)))))) (-1446 (($ $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3107 (($) 13 T CONST)) (-3118 (($) 17 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-355))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#1| (-355))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) NIL (-1524 (-12 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2262 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2241 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2214 (((-112) $ $) 63)) (-2252 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2234 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) 149 (|has| |#1| (-355))) (($ |#2| |#2|) 150 (|has| |#1| (-355)))) (-2299 (($ $) 213) (($ $ $) 68)) (-2290 (($ $ $) 66)) (** (($ $ (-890)) NIL) (($ $ (-745)) 73) (($ $ (-548)) 146 (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 158 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-355))) (($ |#2| $) 147 (|has| |#1| (-355))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1181 |#1| |#2|) (-1180 |#1| |#2|) (-1016) (-1209 |#1|)) (T -1181)) +NIL +(-1180 |#1| |#2|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-299)) (|has| |#1| (-355))))) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 10)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3303 (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3279 (((-112) $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-1665 (($ $ (-548)) NIL) (($ $ (-548) (-548)) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) NIL)) (-1318 (((-1210 |#1| |#2| |#3|) $) NIL)) (-1295 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) NIL)) (-2107 (((-1210 |#1| |#2| |#3|) $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2672 (((-548) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-548) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))))) (-2375 (((-1210 |#1| |#2| |#3|) $) NIL) (((-1135) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (((-399 (-548)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355)))) (((-548) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))))) (-1306 (($ $) NIL) (($ (-548) $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-1210 |#1| |#2| |#3|)) (-663 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-1210 |#1| |#2| |#3|))) (|:| |vec| (-1218 (-1210 |#1| |#2| |#3|)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-615 (-548))) (|has| |#1| (-355)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-615 (-548))) (|has| |#1| (-355))))) (-3859 (((-3 $ "failed") $) NIL)) (-1284 (((-399 (-921 |#1|)) $ (-548)) NIL (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) NIL (|has| |#1| (-540)))) (-2545 (($) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3298 (((-112) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-855 (-548))) (|has| |#1| (-355)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-855 (-371))) (|has| |#1| (-355))))) (-1672 (((-548) $) NIL) (((-548) $ (-548)) NIL)) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL (|has| |#1| (-355)))) (-2470 (((-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-355)))) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3725 (((-3 $ "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-355))))) (-3312 (((-112) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3535 (($ $ (-890)) NIL)) (-3823 (($ (-1 |#1| (-548)) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-548)) 17) (($ $ (-1045) (-548)) NIL) (($ $ (-619 (-1045)) (-619 (-548))) NIL)) (-1795 (($ $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-3091 (($ $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-355)))) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2119 (($ (-548) (-1210 |#1| |#2| |#3|)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 25 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 26 (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-355))) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3862 (($ $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-299)) (|has| |#1| (-355))))) (-3887 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-548)) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-548))))) (($ $ (-1135) (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-504 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-504 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-286 (-1210 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-286 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-1210 |#1| |#2| |#3|)) (-619 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) NIL) (($ $ $) NIL (|has| (-548) (-1075))) (($ $ (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-278 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) NIL (|has| |#1| (-355))) (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-355))) (($ $ (-1214 |#2|)) 24) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 23 (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-1993 (($ $) NIL (|has| |#1| (-355)))) (-2480 (((-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-355)))) (-2512 (((-548) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2591 (((-524) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-593 (-524))) (|has| |#1| (-355)))) (((-371) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-991)) (|has| |#1| (-355)))) (((-218) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-991)) (|has| |#1| (-355)))) (((-861 (-371)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-593 (-861 (-371)))) (|has| |#1| (-355)))) (((-861 (-548)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-593 (-861 (-548)))) (|has| |#1| (-355))))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1210 |#1| |#2| |#3|)) NIL) (($ (-1214 |#2|)) 22) (($ (-1135)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540)))) (($ (-399 (-548))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))) (|has| |#1| (-38 (-399 (-548))))))) (-1951 ((|#1| $ (-548)) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 11)) (-3897 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1446 (($ $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3107 (($) 19 T CONST)) (-3118 (($) 15 T CONST)) (-3296 (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) NIL (|has| |#1| (-355))) (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-355))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2262 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2241 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2234 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355))) (($ (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1210 |#1| |#2| |#3|)) NIL (|has| |#1| (-355))) (($ (-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-355))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1182 |#1| |#2| |#3|) (-13 (-1180 |#1| (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1182)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1180 |#1| (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) +((-1341 (((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112)) 12)) (-1329 (((-410 |#1|) |#1|) 22)) (-1915 (((-410 |#1|) |#1|) 21))) +(((-1183 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1|)) (-15 -1341 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112)))) (-1194 (-548))) (T -1183)) +((-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548)))))) +(-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1|)) (-15 -1341 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112)))) +((-2540 (((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 23 (|has| |#1| (-819))) (((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 17))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -2540 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (IF (|has| |#1| (-819)) (-15 -2540 ((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) |%noBranch|)) (-1172) (-1172)) (T -1184)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-819)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1116 *6)) (-5 *1 (-1184 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1185 *6)) (-5 *1 (-1184 *5 *6))))) +(-10 -7 (-15 -2540 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (IF (|has| |#1| (-819)) (-15 -2540 ((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) |%noBranch|)) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4100 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2540 (((-1116 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-819)))) (-2479 ((|#1| $) 14)) (-4246 ((|#1| $) 10)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-4259 (((-548) $) 18)) (-2469 ((|#1| $) 17)) (-4270 ((|#1| $) 11)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1352 (((-112) $) 16)) (-1384 (((-1116 |#1|) $) 38 (|has| |#1| (-819))) (((-1116 |#1|) (-619 $)) 37 (|has| |#1| (-819)))) (-2591 (($ |#1|) 25)) (-3743 (($ (-1058 |#1|)) 24) (((-832) $) 34 (|has| |#1| (-1063)))) (-1794 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1984 (($ $ (-548)) 13)) (-2214 (((-112) $ $) 27 (|has| |#1| (-1063))))) +(((-1185 |#1|) (-13 (-1057 |#1|) (-10 -8 (-15 -1794 ($ |#1|)) (-15 -4100 ($ |#1|)) (-15 -3743 ($ (-1058 |#1|))) (-15 -1352 ((-112) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-1116 |#1|))) |%noBranch|))) (-1172)) (T -1185)) +((-1794 (*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172)))) (-4100 (*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-1172)) (-5 *1 (-1185 *3)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1172))))) +(-13 (-1057 |#1|) (-10 -8 (-15 -1794 ($ |#1|)) (-15 -4100 ($ |#1|)) (-15 -3743 ($ (-1058 |#1|))) (-15 -1352 ((-112) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-1116 |#1|))) |%noBranch|))) +((-2540 (((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)) 15))) +(((-1186 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 ((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)))) (-1135) (-1016) (-1135) (-1016)) (T -1186)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1191 *5 *6)) (-14 *5 (-1135)) (-4 *6 (-1016)) (-4 *8 (-1016)) (-5 *2 (-1191 *7 *8)) (-5 *1 (-1186 *5 *6 *7 *8)) (-14 *7 (-1135))))) +(-10 -7 (-15 -2540 ((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)))) +((-1396 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1374 ((|#1| |#3|) 13)) (-1386 ((|#3| |#3|) 19))) +(((-1187 |#1| |#2| |#3|) (-10 -7 (-15 -1374 (|#1| |#3|)) (-15 -1386 (|#3| |#3|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-540) (-961 |#1|) (-1194 |#2|)) (T -1187)) +((-1396 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1187 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-1386 (*1 *2 *2) (-12 (-4 *3 (-540)) (-4 *4 (-961 *3)) (-5 *1 (-1187 *3 *4 *2)) (-4 *2 (-1194 *4)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-1187 *2 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -1374 (|#1| |#3|)) (-15 -1386 (|#3| |#3|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1417 (((-3 |#2| "failed") |#2| (-745) |#1|) 29)) (-1406 (((-3 |#2| "failed") |#2| (-745)) 30)) (-1440 (((-3 (-2 (|:| -3663 |#2|) (|:| -3676 |#2|)) "failed") |#2|) 43)) (-1451 (((-619 |#2|) |#2|) 45)) (-1428 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1188 |#1| |#2|) (-10 -7 (-15 -1406 ((-3 |#2| "failed") |#2| (-745))) (-15 -1417 ((-3 |#2| "failed") |#2| (-745) |#1|)) (-15 -1428 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1440 ((-3 (-2 (|:| -3663 |#2|) (|:| -3676 |#2|)) "failed") |#2|)) (-15 -1451 ((-619 |#2|) |#2|))) (-13 (-540) (-145)) (-1194 |#1|)) (T -1188)) +((-1451 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-145))) (-5 *2 (-619 *3)) (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4)))) (-1440 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-540) (-145))) (-5 *2 (-2 (|:| -3663 *3) (|:| -3676 *3))) (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4)))) (-1428 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1188 *3 *2)) (-4 *2 (-1194 *3)))) (-1417 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4)))) (-1406 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) +(-10 -7 (-15 -1406 ((-3 |#2| "failed") |#2| (-745))) (-15 -1417 ((-3 |#2| "failed") |#2| (-745) |#1|)) (-15 -1428 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1440 ((-3 (-2 (|:| -3663 |#2|) (|:| -3676 |#2|)) "failed") |#2|)) (-15 -1451 ((-619 |#2|) |#2|))) +((-1461 (((-3 (-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) "failed") |#2| |#2|) 32))) +(((-1189 |#1| |#2|) (-10 -7 (-15 -1461 ((-3 (-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) "failed") |#2| |#2|))) (-540) (-1194 |#1|)) (T -1189)) +((-1461 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-540)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-1189 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -1461 ((-3 (-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) "failed") |#2| |#2|))) +((-1473 ((|#2| |#2| |#2|) 19)) (-1484 ((|#2| |#2| |#2|) 30)) (-1496 ((|#2| |#2| |#2| (-745) (-745)) 36))) +(((-1190 |#1| |#2|) (-10 -7 (-15 -1473 (|#2| |#2| |#2|)) (-15 -1484 (|#2| |#2| |#2|)) (-15 -1496 (|#2| |#2| |#2| (-745) (-745)))) (-1016) (-1194 |#1|)) (T -1190)) +((-1496 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-1190 *4 *2)) (-4 *2 (-1194 *4)))) (-1484 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3)))) (-1473 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) +(-10 -7 (-15 -1473 (|#2| |#2| |#2|)) (-15 -1484 (|#2| |#2| |#2|)) (-15 -1496 (|#2| |#2| |#2| (-745) (-745)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-1648 (((-1218 |#2|) $ (-745)) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-1632 (($ (-1131 |#2|)) NIL)) (-1884 (((-1131 $) $ (-1045)) NIL) (((-1131 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1548 (($ $ $) NIL (|has| |#2| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4087 (((-112) $ $) NIL (|has| |#2| (-355)))) (-1594 (($ $ (-745)) NIL)) (-1584 (($ $ (-745)) NIL)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-443)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-1045) "failed") $) NIL)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-1045) $) NIL)) (-1557 (($ $ $ (-1045)) NIL (|has| |#2| (-169))) ((|#2| $ $) NIL (|has| |#2| (-169)))) (-1945 (($ $ $) NIL (|has| |#2| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#2| (-355)))) (-1574 (($ $ $) NIL)) (-1529 (($ $ $) NIL (|has| |#2| (-540)))) (-1519 (((-2 (|:| -1489 |#2|) (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#2| (-355)))) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-1045)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| (-745) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1045) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1045) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-1672 (((-745) $ $) NIL (|has| |#2| (-540)))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#2| (-1111)))) (-2036 (($ (-1131 |#2|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-3535 (($ $ (-745)) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-355)))) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#2| (-745)) 17) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) NIL) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-1639 (((-1131 |#2|) $) NIL)) (-3511 (((-3 (-1045) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $) NIL (|has| |#2| (-38 (-399 (-548)))))) (-3410 (($) NIL (|has| |#2| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#2| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-1362 (($ $ (-745) |#2| $) NIL)) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#2| (-355)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-355)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#2|) NIL) (($ $ (-619 (-1045)) (-619 |#2|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-4077 (((-745) $) NIL (|has| |#2| (-355)))) (-3171 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-399 $) (-399 $) (-399 $)) NIL (|has| |#2| (-540))) ((|#2| (-399 $) |#2|) NIL (|has| |#2| (-355))) (((-399 $) $ (-399 $)) NIL (|has| |#2| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-355)))) (-1566 (($ $ (-1045)) NIL (|has| |#2| (-169))) ((|#2| $) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2512 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1045) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) NIL (|has| |#2| (-443))) (($ $ (-1045)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-1539 (((-3 $ "failed") $ $) NIL (|has| |#2| (-540))) (((-3 (-399 $) "failed") (-399 $) $) NIL (|has| |#2| (-540)))) (-3743 (((-832) $) 13) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-1045)) NIL) (($ (-1214 |#1|)) 19) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#2| (-540)))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) 14 T CONST)) (-3296 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1191 |#1| |#2|) (-13 (-1194 |#2|) (-10 -8 (-15 -3743 ($ (-1214 |#1|))) (-15 -1362 ($ $ (-745) |#2| $)))) (-1135) (-1016)) (T -1191)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-1016)))) (-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1191 *4 *3)) (-14 *4 (-1135)) (-4 *3 (-1016))))) +(-13 (-1194 |#2|) (-10 -8 (-15 -3743 ($ (-1214 |#1|))) (-15 -1362 ($ $ (-745) |#2| $)))) +((-2540 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|))) (-1016) (-1194 |#1|) (-1016) (-1194 |#3|)) (T -1192)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1194 *6)) (-5 *1 (-1192 *5 *4 *6 *2)) (-4 *4 (-1194 *5))))) +(-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|))) +((-1648 (((-1218 |#2|) $ (-745)) 114)) (-2049 (((-619 (-1045)) $) 15)) (-1632 (($ (-1131 |#2|)) 67)) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) 18)) (-4070 (((-410 (-1131 $)) (-1131 $)) 185)) (-1688 (($ $) 175)) (-2634 (((-410 $) $) 173)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 82)) (-1594 (($ $ (-745)) 71)) (-1584 (($ $ (-745)) 73)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2441 (((-3 |#2| "failed") $) 117) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 (-1045) "failed") $) NIL)) (-2375 ((|#2| $) 115) (((-399 (-548)) $) NIL) (((-548) $) NIL) (((-1045) $) NIL)) (-1529 (($ $ $) 151)) (-1519 (((-2 (|:| -1489 |#2|) (|:| -3826 $) (|:| -2233 $)) $ $) 153)) (-1672 (((-745) $ $) 170)) (-3725 (((-3 $ "failed") $) 123)) (-2024 (($ |#2| (-745)) NIL) (($ $ (-1045) (-745)) 47) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) 42) (((-619 (-745)) $ (-619 (-1045))) 43)) (-1639 (((-1131 |#2|) $) 59)) (-3511 (((-3 (-1045) "failed") $) 40)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) 70)) (-3810 (($ $) 197)) (-3410 (($) 119)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 182)) (-4051 (((-410 (-1131 $)) (-1131 $)) 88)) (-4060 (((-410 (-1131 $)) (-1131 $)) 86)) (-1915 (((-410 $) $) 107)) (-2460 (($ $ (-619 (-286 $))) 39) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#2|) 31) (($ $ (-619 (-1045)) (-619 |#2|)) 28) (($ $ (-1045) $) 25) (($ $ (-619 (-1045)) (-619 $)) 23)) (-4077 (((-745) $) 188)) (-3171 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-399 $) (-399 $) (-399 $)) 147) ((|#2| (-399 $) |#2|) 187) (((-399 $) $ (-399 $)) 169)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 191)) (-4050 (($ $ (-1045)) 140) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) 138) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2512 (((-745) $) NIL) (((-745) $ (-1045)) 16) (((-619 (-745)) $ (-619 (-1045))) 20)) (-3881 ((|#2| $) NIL) (($ $ (-1045)) 125)) (-1539 (((-3 $ "failed") $ $) 161) (((-3 (-399 $) "failed") (-399 $) $) 157)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-1045)) 51) (($ (-399 (-548))) NIL) (($ $) NIL))) +(((-1193 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1688 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -3171 ((-399 |#1|) |#1| (-399 |#1|))) (-15 -4077 ((-745) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3171 (|#2| (-399 |#1|) |#2|)) (-15 -1508 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1519 ((-2 (|:| -1489 |#2|) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -1539 ((-3 (-399 |#1|) "failed") (-399 |#1|) |#1|)) (-15 -1539 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1672 ((-745) |#1| |#1|)) (-15 -3171 ((-399 |#1|) (-399 |#1|) (-399 |#1|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1584 (|#1| |#1| (-745))) (-15 -1594 (|#1| |#1| (-745))) (-15 -1602 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| (-745))) (-15 -1632 (|#1| (-1131 |#2|))) (-15 -1639 ((-1131 |#2|) |#1|)) (-15 -1648 ((-1218 |#2|) |#1| (-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3171 (|#2| |#1| |#2|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -4070 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -3881 (|#1| |#1| (-1045))) (-15 -2049 ((-619 (-1045)) |#1|)) (-15 -3892 ((-745) |#1| (-619 (-1045)))) (-15 -3892 ((-745) |#1|)) (-15 -2024 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -2024 (|#1| |#1| (-1045) (-745))) (-15 -3904 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -3904 ((-745) |#1| (-1045))) (-15 -3511 ((-3 (-1045) "failed") |#1|)) (-15 -2512 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -2512 ((-745) |#1| (-1045))) (-15 -2375 ((-1045) |#1|)) (-15 -2441 ((-3 (-1045) "failed") |#1|)) (-15 -3743 (|#1| (-1045))) (-15 -2460 (|#1| |#1| (-619 (-1045)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-1045) |#1|)) (-15 -2460 (|#1| |#1| (-619 (-1045)) (-619 |#2|))) (-15 -2460 (|#1| |#1| (-1045) |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2512 ((-745) |#1|)) (-15 -2024 (|#1| |#2| (-745))) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3904 ((-745) |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -4050 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1045) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1045)))) (-15 -4050 (|#1| |#1| (-1045))) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-1194 |#2|) (-1016)) (T -1193)) +NIL +(-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1688 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -3171 ((-399 |#1|) |#1| (-399 |#1|))) (-15 -4077 ((-745) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3171 (|#2| (-399 |#1|) |#2|)) (-15 -1508 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1519 ((-2 (|:| -1489 |#2|) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -1539 ((-3 (-399 |#1|) "failed") (-399 |#1|) |#1|)) (-15 -1539 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1672 ((-745) |#1| |#1|)) (-15 -3171 ((-399 |#1|) (-399 |#1|) (-399 |#1|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1584 (|#1| |#1| (-745))) (-15 -1594 (|#1| |#1| (-745))) (-15 -1602 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| (-745))) (-15 -1632 (|#1| (-1131 |#2|))) (-15 -1639 ((-1131 |#2|) |#1|)) (-15 -1648 ((-1218 |#2|) |#1| (-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3171 (|#2| |#1| |#2|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -4070 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -3881 (|#1| |#1| (-1045))) (-15 -2049 ((-619 (-1045)) |#1|)) (-15 -3892 ((-745) |#1| (-619 (-1045)))) (-15 -3892 ((-745) |#1|)) (-15 -2024 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -2024 (|#1| |#1| (-1045) (-745))) (-15 -3904 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -3904 ((-745) |#1| (-1045))) (-15 -3511 ((-3 (-1045) "failed") |#1|)) (-15 -2512 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -2512 ((-745) |#1| (-1045))) (-15 -2375 ((-1045) |#1|)) (-15 -2441 ((-3 (-1045) "failed") |#1|)) (-15 -3743 (|#1| (-1045))) (-15 -2460 (|#1| |#1| (-619 (-1045)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-1045) |#1|)) (-15 -2460 (|#1| |#1| (-619 (-1045)) (-619 |#2|))) (-15 -2460 (|#1| |#1| (-1045) |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2512 ((-745) |#1|)) (-15 -2024 (|#1| |#2| (-745))) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3904 ((-745) |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -4050 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1045) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1045)))) (-15 -4050 (|#1| |#1| (-1045))) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-1648 (((-1218 |#1|) $ (-745)) 236)) (-2049 (((-619 (-1045)) $) 108)) (-1632 (($ (-1131 |#1|)) 234)) (-1884 (((-1131 $) $ (-1045)) 123) (((-1131 |#1|) $) 122)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 85 (|has| |#1| (-540)))) (-3303 (($ $) 86 (|has| |#1| (-540)))) (-3279 (((-112) $) 88 (|has| |#1| (-540)))) (-3892 (((-745) $) 110) (((-745) $ (-619 (-1045))) 109)) (-4104 (((-3 $ "failed") $ $) 19)) (-1548 (($ $ $) 221 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-1688 (($ $) 96 (|has| |#1| (-443)))) (-2634 (((-410 $) $) 95 (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-4087 (((-112) $ $) 206 (|has| |#1| (-355)))) (-1594 (($ $ (-745)) 229)) (-1584 (($ $ (-745)) 228)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-443)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 162) (((-3 (-399 (-548)) "failed") $) 160 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 158 (|has| |#1| (-1007 (-548)))) (((-3 (-1045) "failed") $) 134)) (-2375 ((|#1| $) 163) (((-399 (-548)) $) 159 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 157 (|has| |#1| (-1007 (-548)))) (((-1045) $) 133)) (-1557 (($ $ $ (-1045)) 106 (|has| |#1| (-169))) ((|#1| $ $) 224 (|has| |#1| (-169)))) (-1945 (($ $ $) 210 (|has| |#1| (-355)))) (-1872 (($ $) 152)) (-1608 (((-663 (-548)) (-663 $)) 132 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 209 (|has| |#1| (-355)))) (-1574 (($ $ $) 227)) (-1529 (($ $ $) 218 (|has| |#1| (-540)))) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 $) (|:| -2233 $)) $ $) 217 (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 204 (|has| |#1| (-355)))) (-4065 (($ $) 174 (|has| |#1| (-443))) (($ $ (-1045)) 103 (|has| |#1| (-443)))) (-1862 (((-619 $) $) 107)) (-1271 (((-112) $) 94 (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-745) $) 170)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 82 (-12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 81 (-12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ $) 222 (|has| |#1| (-540)))) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 167)) (-3725 (((-3 $ "failed") $) 202 (|has| |#1| (-1111)))) (-2036 (($ (-1131 |#1|) (-1045)) 115) (($ (-1131 $) (-1045)) 114)) (-3535 (($ $ (-745)) 233)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 213 (|has| |#1| (-355)))) (-3915 (((-619 $) $) 124)) (-2435 (((-112) $) 150)) (-2024 (($ |#1| (-745)) 151) (($ $ (-1045) (-745)) 117) (($ $ (-619 (-1045)) (-619 (-745))) 116)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) 118) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 231)) (-3904 (((-745) $) 168) (((-745) $ (-1045)) 120) (((-619 (-745)) $ (-619 (-1045))) 119)) (-1795 (($ $ $) 77 (|has| |#1| (-821)))) (-3091 (($ $ $) 76 (|has| |#1| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) 169)) (-2540 (($ (-1 |#1| |#1|) $) 149)) (-1639 (((-1131 |#1|) $) 235)) (-3511 (((-3 (-1045) "failed") $) 121)) (-2185 (($ $) 147)) (-2197 ((|#1| $) 146)) (-3553 (($ (-619 $)) 92 (|has| |#1| (-443))) (($ $ $) 91 (|has| |#1| (-443)))) (-2546 (((-1118) $) 9)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) 230)) (-3939 (((-3 (-619 $) "failed") $) 112)) (-3927 (((-3 (-619 $) "failed") $) 113)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) 111)) (-3810 (($ $) 214 (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) 201 (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 164)) (-2175 ((|#1| $) 165)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) 90 (|has| |#1| (-443))) (($ $ $) 89 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 97 (|has| |#1| (-878)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 211 (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 205 (|has| |#1| (-355)))) (-2460 (($ $ (-619 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ (-1045) |#1|) 139) (($ $ (-619 (-1045)) (-619 |#1|)) 138) (($ $ (-1045) $) 137) (($ $ (-619 (-1045)) (-619 $)) 136)) (-4077 (((-745) $) 207 (|has| |#1| (-355)))) (-3171 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-399 $) (-399 $) (-399 $)) 223 (|has| |#1| (-540))) ((|#1| (-399 $) |#1|) 215 (|has| |#1| (-355))) (((-399 $) $ (-399 $)) 203 (|has| |#1| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) 232)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 208 (|has| |#1| (-355)))) (-1566 (($ $ (-1045)) 105 (|has| |#1| (-169))) ((|#1| $) 225 (|has| |#1| (-169)))) (-4050 (($ $ (-1045)) 40) (($ $ (-619 (-1045))) 39) (($ $ (-1045) (-745)) 38) (($ $ (-619 (-1045)) (-619 (-745))) 37) (($ $ (-745)) 251) (($ $) 249) (($ $ (-1135)) 248 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 247 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 246 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 245 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-2512 (((-745) $) 148) (((-745) $ (-1045)) 128) (((-619 (-745)) $ (-619 (-1045))) 127)) (-2591 (((-861 (-371)) $) 80 (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) 79 (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) 78 (-12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) 173 (|has| |#1| (-443))) (($ $ (-1045)) 104 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-1539 (((-3 $ "failed") $ $) 220 (|has| |#1| (-540))) (((-3 (-399 $) "failed") (-399 $) $) 219 (|has| |#1| (-540)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 161) (($ (-1045)) 135) (($ (-399 (-548))) 70 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548)))))) (($ $) 83 (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) 166)) (-1951 ((|#1| $ (-745)) 153) (($ $ (-1045) (-745)) 126) (($ $ (-619 (-1045)) (-619 (-745))) 125)) (-4017 (((-3 $ "failed") $) 71 (-1524 (-1723 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 87 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1045)) 36) (($ $ (-619 (-1045))) 35) (($ $ (-1045) (-745)) 34) (($ $ (-619 (-1045)) (-619 (-745))) 33) (($ $ (-745)) 252) (($ $) 250) (($ $ (-1135)) 244 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 243 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 242 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 241 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2262 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 154 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 156 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 155 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1194 |#1|) (-138) (-1016)) (T -1194)) +((-1648 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1194 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-5 *2 (-1131 *3)))) (-1632 (*1 *1 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-1016)) (-4 *1 (-1194 *3)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1623 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1611 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1194 *3)))) (-1602 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1194 *4)))) (-1594 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1584 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1574 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)))) (-4050 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))) (-1557 (*1 *2 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))) (-3171 (*1 *2 *2 *2) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-540)))) (-1672 (*1 *2 *1 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-540)) (-5 *2 (-745)))) (-1548 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) (-1539 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) (-1539 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-399 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-540)))) (-1529 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) (-1519 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -1489 *3) (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1194 *3)))) (-1508 (*1 *2 *1 *1) (-12 (-4 *3 (-443)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1194 *3)))) (-3171 (*1 *2 *3 *2) (-12 (-5 *3 (-399 *1)) (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548))))))) +(-13 (-918 |t#1| (-745) (-1045)) (-278 |t#1| |t#1|) (-278 $ $) (-226) (-224 |t#1|) (-10 -8 (-15 -1648 ((-1218 |t#1|) $ (-745))) (-15 -1639 ((-1131 |t#1|) $)) (-15 -1632 ($ (-1131 |t#1|))) (-15 -3535 ($ $ (-745))) (-15 -1623 ((-3 $ "failed") $ (-745))) (-15 -1611 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1602 ((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745))) (-15 -1594 ($ $ (-745))) (-15 -1584 ($ $ (-745))) (-15 -1574 ($ $ $)) (-15 -4050 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -1566 (|t#1| $)) (-15 -1557 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-6 (-278 (-399 $) (-399 $))) (-15 -3171 ((-399 $) (-399 $) (-399 $))) (-15 -1672 ((-745) $ $)) (-15 -1548 ($ $ $)) (-15 -1539 ((-3 $ "failed") $ $)) (-15 -1539 ((-3 (-399 $) "failed") (-399 $) $)) (-15 -1529 ($ $ $)) (-15 -1519 ((-2 (|:| -1489 |t#1|) (|:| -3826 $) (|:| -2233 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-443)) (-15 -1508 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-355)) (PROGN (-6 (-299)) (-6 -4323) (-15 -3171 (|t#1| (-399 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-399 (-548)))) (-15 -3810 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-745)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-593 (-524)) -12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548))))) ((-224 |#1|) . T) ((-226) . T) ((-278 (-399 $) (-399 $)) |has| |#1| (-540)) ((-278 |#1| |#1|) . T) ((-278 $ $) . T) ((-282) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-301 $) . T) ((-318 |#1| #0#) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-878)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-504 #2=(-1045) |#1|) . T) ((-504 #2# $) . T) ((-504 $ $) . T) ((-540) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-622 #1#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #1#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 #2#) . T) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-371)) -12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371)))) ((-855 (-548)) -12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))) ((-918 |#1| #0# #2#) . T) ((-878) |has| |#1| (-878)) ((-889) |has| |#1| (-355)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 #2#) . T) ((-1007 |#1|) . T) ((-1022 #1#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-1111)) ((-1176) |has| |#1| (-878))) +((-2049 (((-619 (-1045)) $) 28)) (-1872 (($ $) 25)) (-2024 (($ |#2| |#3|) NIL) (($ $ (-1045) |#3|) 22) (($ $ (-619 (-1045)) (-619 |#3|)) 21)) (-2185 (($ $) 14)) (-2197 ((|#2| $) 12)) (-2512 ((|#3| $) 10))) +(((-1195 |#1| |#2| |#3|) (-10 -8 (-15 -2049 ((-619 (-1045)) |#1|)) (-15 -2024 (|#1| |#1| (-619 (-1045)) (-619 |#3|))) (-15 -2024 (|#1| |#1| (-1045) |#3|)) (-15 -1872 (|#1| |#1|)) (-15 -2024 (|#1| |#2| |#3|)) (-15 -2512 (|#3| |#1|)) (-15 -2185 (|#1| |#1|)) (-15 -2197 (|#2| |#1|))) (-1196 |#2| |#3|) (-1016) (-766)) (T -1195)) +NIL +(-10 -8 (-15 -2049 ((-619 (-1045)) |#1|)) (-15 -2024 (|#1| |#1| (-619 (-1045)) (-619 |#3|))) (-15 -2024 (|#1| |#1| (-1045) |#3|)) (-15 -1872 (|#1| |#1|)) (-15 -2024 (|#1| |#2| |#3|)) (-15 -2512 (|#3| |#1|)) (-15 -2185 (|#1| |#1|)) (-15 -2197 (|#2| |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-1680 (((-1116 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-3345 (((-112) $) 71)) (-1672 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2266 (((-112) $) 30)) (-3535 (($ $ (-890)) 99)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| |#2|) 59) (($ $ (-1045) |#2|) 74) (($ $ (-619 (-1045)) (-619 |#2|)) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1656 (($ $ |#2|) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3171 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2512 ((|#2| $) 62)) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1951 ((|#1| $ |#2|) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2439 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-1196 |#1| |#2|) (-138) (-1016) (-766)) (T -1196)) +((-1680 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1116 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3171 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1135)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-1672 (*1 *2 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-1665 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-1665 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2439 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3743 (*2 (-1135)))) (-4 *2 (-1016)))) (-1656 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2460 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1116 *3))))) +(-13 (-942 |t#1| |t#2| (-1045)) (-10 -8 (-15 -1680 ((-1116 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3171 (|t#1| $ |t#2|)) (-15 -2754 ((-1135) $)) (-15 -2278 (|t#1| $)) (-15 -3535 ($ $ (-890))) (-15 -1672 (|t#2| $)) (-15 -1672 (|t#2| $ |t#2|)) (-15 -1665 ($ $ |t#2|)) (-15 -1665 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3743 (|t#1| (-1135)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2439 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1656 ($ $ |t#2|)) (IF (|has| |t#2| (-1075)) (-6 (-278 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-226)) (IF (|has| |t#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2460 ((-1116 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-278 $ $) |has| |#2| (-1075)) ((-282) |has| |#1| (-540)) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| |#2| (-1045)) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-1688 ((|#2| |#2|) 12)) (-2634 (((-410 |#2|) |#2|) 14)) (-3524 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548)))) 30))) +(((-1197 |#1| |#2|) (-10 -7 (-15 -2634 ((-410 |#2|) |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -3524 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548)))))) (-540) (-13 (-1194 |#1|) (-540) (-10 -8 (-15 -3587 ($ $ $))))) (T -1197)) +((-3524 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-548)))) (-4 *4 (-13 (-1194 *3) (-540) (-10 -8 (-15 -3587 ($ $ $))))) (-4 *3 (-540)) (-5 *1 (-1197 *3 *4)))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-1194 *3) (-540) (-10 -8 (-15 -3587 ($ $ $))))))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-410 *3)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-1194 *4) (-540) (-10 -8 (-15 -3587 ($ $ $)))))))) +(-10 -7 (-15 -2634 ((-410 |#2|) |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -3524 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548)))))) +((-2540 (((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)) 24))) +(((-1198 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2540 ((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)))) (-1016) (-1016) (-1135) (-1135) |#1| |#2|) (T -1198)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1203 *5 *7 *9)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-14 *7 (-1135)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1203 *6 *8 *10)) (-5 *1 (-1198 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1135))))) +(-10 -7 (-15 -2540 ((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) 96) (($ $ (-399 (-548)) (-399 (-548))) 95)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) 103)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 160 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-355)))) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) 151 (|has| |#1| (-355)))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) 169)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 155 (|has| |#1| (-355)))) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 154 (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-355)))) (-1271 (((-112) $) 162 (|has| |#1| (-355)))) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) 98) (((-399 (-548)) $ (-399 (-548))) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 99) (($ $ (-399 (-548))) 168)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-355)))) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-399 (-548))) 59) (($ $ (-1045) (-399 (-548))) 74) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-355))) (($ $ $) 146 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 163 (|has| |#1| (-355)))) (-3810 (($ $) 167 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-355))) (($ $ $) 144 (|has| |#1| (-355)))) (-1915 (((-410 $) $) 159 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-355)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) 152 (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) 102) (($ $ $) 79 (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2512 (((-399 (-548)) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355))) (($ $ $) 165 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 164 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-1199 |#1|) (-138) (-1016)) (T -1199)) +((-1761 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| *4)))) (-4 *4 (-1016)) (-4 *1 (-1199 *4)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-4 *1 (-1199 *3)) (-4 *3 (-1016)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) (-3810 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-399 (-548)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548))))))))) +(-13 (-1196 |t#1| (-399 (-548))) (-10 -8 (-15 -1761 ($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |t#1|))))) (-15 -3535 ($ $ (-399 (-548)))) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2049 ((-619 (-1135)) |t#1|))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-548))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|) (IF (|has| |t#1| (-355)) (-6 (-355)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-399 (-548))) . T) ((-25) . T) ((-38 #1=(-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) ((-236) |has| |#1| (-355)) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 $ $) |has| (-399 (-548)) (-1075)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-355) |has| |#1| (-355)) ((-443) |has| |#1| (-355)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-622 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-355)) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1022 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1176) |has| |#1| (-355)) ((-1196 |#1| #0#) . T)) +((-3324 (((-112) $) 12)) (-2441 (((-3 |#3| "failed") $) 17)) (-2375 ((|#3| $) 14))) +(((-1200 |#1| |#2| |#3|) (-10 -8 (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3324 ((-112) |#1|))) (-1201 |#2| |#3|) (-1016) (-1178 |#2|)) (T -1200)) +NIL +(-10 -8 (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3324 ((-112) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) 96) (($ $ (-399 (-548)) (-399 (-548))) 95)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) 103)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 160 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-355)))) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) 151 (|has| |#1| (-355)))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) 169)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#2| "failed") $) 180)) (-2375 ((|#2| $) 179)) (-1945 (($ $ $) 155 (|has| |#1| (-355)))) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-3569 (((-399 (-548)) $) 177)) (-1922 (($ $ $) 154 (|has| |#1| (-355)))) (-2129 (($ (-399 (-548)) |#2|) 178)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-355)))) (-1271 (((-112) $) 162 (|has| |#1| (-355)))) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) 98) (((-399 (-548)) $ (-399 (-548))) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 99) (($ $ (-399 (-548))) 168)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-355)))) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-399 (-548))) 59) (($ $ (-1045) (-399 (-548))) 74) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-355))) (($ $ $) 146 (|has| |#1| (-355)))) (-3558 ((|#2| $) 176)) (-3546 (((-3 |#2| "failed") $) 174)) (-2119 ((|#2| $) 175)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 163 (|has| |#1| (-355)))) (-3810 (($ $) 167 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-355))) (($ $ $) 144 (|has| |#1| (-355)))) (-1915 (((-410 $) $) 159 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-355)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) 152 (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) 102) (($ $ $) 79 (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2512 (((-399 (-548)) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 181) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355))) (($ $ $) 165 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 164 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-1201 |#1| |#2|) (-138) (-1016) (-1178 |t#1|)) (T -1201)) +((-2512 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) (-5 *2 (-399 (-548))))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-1201 *3 *2)) (-4 *2 (-1178 *3)))) (-2129 (*1 *1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-4 *4 (-1016)) (-4 *1 (-1201 *4 *3)) (-4 *3 (-1178 *4)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) (-5 *2 (-399 (-548))))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3)))) (-3546 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3))))) +(-13 (-1199 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2129 ($ (-399 (-548)) |t#2|)) (-15 -3569 ((-399 (-548)) $)) (-15 -3558 (|t#2| $)) (-15 -2512 ((-399 (-548)) $)) (-15 -3743 ($ |t#2|)) (-15 -2119 (|t#2| $)) (-15 -3546 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-399 (-548))) . T) ((-25) . T) ((-38 #1=(-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) ((-236) |has| |#1| (-355)) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 $ $) |has| (-399 (-548)) (-1075)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-355) |has| |#1| (-355)) ((-443) |has| |#1| (-355)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-622 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-355)) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1007 |#2|) . T) ((-1022 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1176) |has| |#1| (-355)) ((-1196 |#1| #0#) . T) ((-1199 |#1|) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 96)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) 106) (($ $ (-399 (-548)) (-399 (-548))) 108)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) 51)) (-2074 (($ $) 180 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 156 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) 176 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 152 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) 61)) (-2098 (($ $) 184 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 160 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL)) (-2375 ((|#2| $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) 79)) (-3569 (((-399 (-548)) $) 13)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-2129 (($ (-399 (-548)) |#2|) 11)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) 68)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) 103) (((-399 (-548)) $ (-399 (-548))) 104)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 120) (($ $ (-399 (-548))) 118)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) 31) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 115)) (-3496 (($ $) 150 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3558 ((|#2| $) 12)) (-3546 (((-3 |#2| "failed") $) 41)) (-2119 ((|#2| $) 42)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 93 (|has| |#1| (-355)))) (-3810 (($ $) 135 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 140 (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) 112)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) 148 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) 100) (($ $ $) 86 (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 127 (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2512 (((-399 (-548)) $) 16)) (-2110 (($ $) 186 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 162 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 182 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 158 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 178 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 154 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 110)) (-3743 (((-832) $) NIL) (($ (-548)) 35) (($ |#1|) 27 (|has| |#1| (-169))) (($ |#2|) 32) (($ (-399 (-548))) 128 (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) 99)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 117)) (-2278 ((|#1| $) 98)) (-2145 (($ $) 192 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 168 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 188 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 164 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 196 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 172 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 198 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 174 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 194 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 170 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 190 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 166 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 21 T CONST)) (-3118 (($) 17 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) 66)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) 92 (|has| |#1| (-355)))) (-2299 (($ $) 131) (($ $ $) 72)) (-2290 (($ $ $) 70)) (** (($ $ (-890)) NIL) (($ $ (-745)) 76) (($ $ (-548)) 145 (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 146 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1202 |#1| |#2|) (-1201 |#1| |#2|) (-1016) (-1178 |#1|)) (T -1202)) +NIL +(-1201 |#1| |#2|) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 11)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) NIL) (($ $ (-399 (-548)) (-399 (-548))) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1182 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1210 |#1| |#2| |#3|) "failed") $) 22)) (-2375 (((-1182 |#1| |#2| |#3|) $) NIL) (((-1210 |#1| |#2| |#3|) $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3569 (((-399 (-548)) $) 57)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-2129 (($ (-399 (-548)) (-1182 |#1| |#2| |#3|)) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) NIL) (((-399 (-548)) $ (-399 (-548))) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL) (($ $ (-399 (-548))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) 30) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3558 (((-1182 |#1| |#2| |#3|) $) 60)) (-3546 (((-3 (-1182 |#1| |#2| |#3|) "failed") $) NIL)) (-2119 (((-1182 |#1| |#2| |#3|) $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 39 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 40 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) NIL) (($ $ $) NIL (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $ (-1214 |#2|)) 38)) (-2512 (((-399 (-548)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) 89) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1182 |#1| |#2| |#3|)) 16) (($ (-1210 |#1| |#2| |#3|)) 17) (($ (-1214 |#2|)) 36) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 12)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 32 T CONST)) (-3118 (($) 26 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1203 |#1| |#2| |#3|) (-13 (-1201 |#1| (-1182 |#1| |#2| |#3|)) (-1007 (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1203)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1201 |#1| (-1182 |#1| |#2| |#3|)) (-1007 (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 34)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-399 (-548))))) (((-3 (-1203 |#2| |#3| |#4|) "failed") $) 20)) (-2375 (((-548) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-399 (-548))))) (((-1203 |#2| |#3| |#4|) $) NIL)) (-1872 (($ $) 35)) (-3859 (((-3 $ "failed") $) 25)) (-4065 (($ $) NIL (|has| (-1203 |#2| |#3| |#4|) (-443)))) (-4256 (($ $ (-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|) $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) 11)) (-2435 (((-112) $) NIL)) (-2024 (($ (-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) 23)) (-3904 (((-311 |#2| |#3| |#4|) $) NIL)) (-4267 (($ (-1 (-311 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) $) NIL)) (-2540 (($ (-1 (-1203 |#2| |#3| |#4|) (-1203 |#2| |#3| |#4|)) $) NIL)) (-3592 (((-3 (-814 |#2|) "failed") $) 75)) (-2185 (($ $) NIL)) (-2197 (((-1203 |#2| |#3| |#4|) $) 18)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 (((-1203 |#2| |#3| |#4|) $) NIL)) (-1900 (((-3 $ "failed") $ (-1203 |#2| |#3| |#4|)) NIL (|has| (-1203 |#2| |#3| |#4|) (-540))) (((-3 $ "failed") $ $) NIL)) (-3580 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-311 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $) 58)) (-2512 (((-311 |#2| |#3| |#4|) $) 14)) (-3881 (((-1203 |#2| |#3| |#4|) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-1203 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL (-1524 (|has| (-1203 |#2| |#3| |#4|) (-38 (-399 (-548)))) (|has| (-1203 |#2| |#3| |#4|) (-1007 (-399 (-548))))))) (-3852 (((-619 (-1203 |#2| |#3| |#4|)) $) NIL)) (-1951 (((-1203 |#2| |#3| |#4|) $ (-311 |#2| |#3| |#4|)) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-143)))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| (-1203 |#2| |#3| |#4|) (-169)))) (-3290 (((-112) $ $) NIL)) (-3107 (($) 63 T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ (-1203 |#2| |#3| |#4|)) NIL (|has| (-1203 |#2| |#3| |#4|) (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-1203 |#2| |#3| |#4|)) NIL) (($ (-1203 |#2| |#3| |#4|) $) NIL) (($ (-399 (-548)) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| (-1203 |#2| |#3| |#4|) (-38 (-399 (-548))))))) +(((-1204 |#1| |#2| |#3| |#4|) (-13 (-318 (-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) (-540) (-10 -8 (-15 -3592 ((-3 (-814 |#2|) "failed") $)) (-15 -3580 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-311 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $)))) (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443)) (-13 (-27) (-1157) (-422 |#1|)) (-1135) |#2|) (T -1204)) +((-3592 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) (-5 *2 (-814 *4)) (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) (-14 *6 *4))) (-3580 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 *4 *5 *6)) (|:| |%expon| (-311 *4 *5 *6)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| *4)))))) (|:| |%type| (-1118)))) (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) (-14 *6 *4)))) +(-13 (-318 (-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) (-540) (-10 -8 (-15 -3592 ((-3 (-814 |#2|) "failed") $)) (-15 -3580 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-311 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $)))) +((-4056 ((|#2| $) 29)) (-1988 ((|#2| $) 18)) (-1272 (($ $) 36)) (-3604 (($ $ (-548)) 64)) (-2028 (((-112) $ (-745)) 33)) (-4192 ((|#2| $ |#2|) 61)) (-3614 ((|#2| $ |#2|) 59)) (-2089 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4202 (($ $ (-619 $)) 60)) (-1975 ((|#2| $) 17)) (-3465 (($ $) NIL) (($ $ (-745)) 42)) (-4245 (((-619 $) $) 26)) (-4213 (((-112) $ $) 50)) (-4282 (((-112) $ (-745)) 32)) (-4248 (((-112) $ (-745)) 31)) (-3010 (((-112) $) 28)) (-3724 ((|#2| $) 24) (($ $ (-745)) 46)) (-3171 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2740 (((-112) $) 22)) (-3672 (($ $) 39)) (-3648 (($ $) 65)) (-3683 (((-745) $) 41)) (-3693 (($ $) 40)) (-1831 (($ $ $) 58) (($ |#2| $) NIL)) (-2956 (((-619 $) $) 27)) (-2214 (((-112) $ $) 48)) (-3643 (((-745) $) 35))) +(((-1205 |#1| |#2|) (-10 -8 (-15 -3604 (|#1| |#1| (-548))) (-15 -2089 (|#2| |#1| "last" |#2|)) (-15 -3614 (|#2| |#1| |#2|)) (-15 -2089 (|#1| |#1| "rest" |#1|)) (-15 -2089 (|#2| |#1| "first" |#2|)) (-15 -3648 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3683 ((-745) |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -1988 (|#2| |#1|)) (-15 -1975 (|#2| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3724 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "last")) (-15 -3724 (|#2| |#1|)) (-15 -3465 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| "rest")) (-15 -3465 (|#1| |#1|)) (-15 -3171 (|#2| |#1| "first")) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -4192 (|#2| |#1| |#2|)) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4202 (|#1| |#1| (-619 |#1|))) (-15 -4213 ((-112) |#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -4056 (|#2| |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745)))) (-1206 |#2|) (-1172)) (T -1205)) +NIL +(-10 -8 (-15 -3604 (|#1| |#1| (-548))) (-15 -2089 (|#2| |#1| "last" |#2|)) (-15 -3614 (|#2| |#1| |#2|)) (-15 -2089 (|#1| |#1| "rest" |#1|)) (-15 -2089 (|#2| |#1| "first" |#2|)) (-15 -3648 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3683 ((-745) |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -1988 (|#2| |#1|)) (-15 -1975 (|#2| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3724 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "last")) (-15 -3724 (|#2| |#1|)) (-15 -3465 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| "rest")) (-15 -3465 (|#1| |#1|)) (-15 -3171 (|#2| |#1| "first")) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -4192 (|#2| |#1| |#2|)) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4202 (|#1| |#1| (-619 |#1|))) (-15 -4213 ((-112) |#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -4056 (|#2| |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745)))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1988 ((|#1| $) 65)) (-1272 (($ $) 67)) (-3604 (($ $ (-548)) 52 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 56 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) 54 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 58 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4328))) (($ $ "rest" $) 55 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-1975 ((|#1| $) 66)) (-3030 (($) 7 T CONST)) (-3465 (($ $) 73) (($ $ (-745)) 71)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 70) (($ $ (-745)) 68)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 76) (($ $ (-745)) 74)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3672 (($ $) 62)) (-3648 (($ $) 59 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 63)) (-3693 (($ $) 64)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3659 (($ $ $) 61 (|has| $ (-6 -4328))) (($ $ |#1|) 60 (|has| $ (-6 -4328)))) (-1831 (($ $ $) 78) (($ |#1| $) 77)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-1206 |#1|) (-138) (-1172)) (T -1206)) +((-1831 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-1831 (*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3453 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3465 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3724 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3693 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-3672 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3659 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3659 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3648 (*1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3635 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3624 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2089 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3614 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3604 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (|has| *1 (-6 -4328)) (-4 *1 (-1206 *3)) (-4 *3 (-1172))))) +(-13 (-979 |t#1|) (-10 -8 (-15 -1831 ($ $ $)) (-15 -1831 ($ |t#1| $)) (-15 -3453 (|t#1| $)) (-15 -3171 (|t#1| $ "first")) (-15 -3453 ($ $ (-745))) (-15 -3465 ($ $)) (-15 -3171 ($ $ "rest")) (-15 -3465 ($ $ (-745))) (-15 -3724 (|t#1| $)) (-15 -3171 (|t#1| $ "last")) (-15 -3724 ($ $ (-745))) (-15 -1272 ($ $)) (-15 -1975 (|t#1| $)) (-15 -1988 (|t#1| $)) (-15 -3693 ($ $)) (-15 -3683 ((-745) $)) (-15 -3672 ($ $)) (IF (|has| $ (-6 -4328)) (PROGN (-15 -3659 ($ $ $)) (-15 -3659 ($ $ |t#1|)) (-15 -3648 ($ $)) (-15 -3635 (|t#1| $ |t#1|)) (-15 -2089 (|t#1| $ "first" |t#1|)) (-15 -3624 ($ $ $)) (-15 -2089 ($ $ "rest" $)) (-15 -3614 (|t#1| $ |t#1|)) (-15 -2089 (|t#1| $ "last" |t#1|)) (-15 -3604 ($ $ (-548)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-2540 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1207 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#2| |#1|) |#3|))) (-1016) (-1016) (-1209 |#1|) (-1209 |#2|)) (T -1207)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1209 *6)) (-5 *1 (-1207 *5 *6 *4 *2)) (-4 *4 (-1209 *5))))) +(-10 -7 (-15 -2540 (|#4| (-1 |#2| |#1|) |#3|))) +((-3324 (((-112) $) 15)) (-2074 (($ $) 92)) (-1940 (($ $) 68)) (-2054 (($ $) 88)) (-1918 (($ $) 64)) (-2098 (($ $) 96)) (-1963 (($ $) 72)) (-3496 (($ $) 62)) (-2458 (($ $) 60)) (-2110 (($ $) 98)) (-1973 (($ $) 74)) (-2086 (($ $) 94)) (-1952 (($ $) 70)) (-2065 (($ $) 90)) (-1929 (($ $) 66)) (-3743 (((-832) $) 48) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2145 (($ $) 104)) (-2006 (($ $) 80)) (-2122 (($ $) 100)) (-1986 (($ $) 76)) (-2170 (($ $) 108)) (-2029 (($ $) 84)) (-4026 (($ $) 110)) (-2040 (($ $) 86)) (-2158 (($ $) 106)) (-2017 (($ $) 82)) (-2132 (($ $) 102)) (-1996 (($ $) 78)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-399 (-548))) 58))) +(((-1208 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -1940 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -1952 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2029 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3324 ((-112) |#1|)) (-15 -3743 ((-832) |#1|))) (-1209 |#2|) (-1016)) (T -1208)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -1940 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -1952 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2029 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3324 ((-112) |#1|)) (-15 -3743 ((-832) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-745)) 96) (($ $ (-745) (-745)) 95)) (-1680 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 103)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 153) (($ (-1116 |#1|)) 151)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-3837 (($ $) 150)) (-3520 (((-921 |#1|) $ (-745)) 148) (((-921 |#1|) $ (-745) (-745)) 147)) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $) 98) (((-745) $ (-745)) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 99)) (-3823 (($ (-1 |#1| (-548)) $) 149)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-745)) 59) (($ $ (-1045) (-745)) 74) (($ $ (-619 (-1045)) (-619 (-745))) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3810 (($ $) 145 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 144 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3932 (((-1082) $) 10)) (-1656 (($ $ (-745)) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3171 ((|#1| $ (-745)) 102) (($ $ $) 79 (|has| (-745) (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2512 (((-745) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45 (|has| |#1| (-169)))) (-3852 (((-1116 |#1|) $) 152)) (-1951 ((|#1| $ (-745)) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-745)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ |#1|) 146 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(((-1209 |#1|) (-138) (-1016)) (T -1209)) +((-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-745)) (|:| |c| *3)))) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-5 *2 (-1116 *3)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-548))) (-4 *1 (-1209 *3)) (-4 *3 (-1016)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) (-5 *2 (-921 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) (-5 *2 (-921 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) (-3810 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-399 (-548)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548))))))))) +(-13 (-1196 |t#1| (-745)) (-10 -8 (-15 -1761 ($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |t#1|))))) (-15 -3852 ((-1116 |t#1|) $)) (-15 -1761 ($ (-1116 |t#1|))) (-15 -3837 ($ $)) (-15 -3823 ($ (-1 |t#1| (-548)) $)) (-15 -3520 ((-921 |t#1|) $ (-745))) (-15 -3520 ((-921 |t#1|) $ (-745) (-745))) (IF (|has| |t#1| (-355)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2049 ((-619 (-1135)) |t#1|))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-548))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-745)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| (-745) |#1|))) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 $ $) |has| (-745) (-1075)) ((-282) |has| |#1| (-540)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-540) |has| |#1| (-540)) ((-622 #1#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1022 #1#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1196 |#1| #0#) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 87)) (-3799 (((-1191 |#2| |#1|) $ (-745)) 73)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) 137 (|has| |#1| (-540)))) (-1665 (($ $ (-745)) 122) (($ $ (-745) (-745)) 124)) (-1680 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 42)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 53) (($ (-1116 |#1|)) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-3732 (($ $) 128)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3837 (($ $) 135)) (-3520 (((-921 |#1|) $ (-745)) 63) (((-921 |#1|) $ (-745) (-745)) 65)) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $) NIL) (((-745) $ (-745)) NIL)) (-2266 (((-112) $) NIL)) (-3766 (($ $) 112)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3719 (($ (-548) (-548) $) 130)) (-3535 (($ $ (-890)) 134)) (-3823 (($ (-1 |#1| (-548)) $) 106)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) 15) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 94)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3776 (($ $) 110)) (-3787 (($ $) 108)) (-3706 (($ (-548) (-548) $) 132)) (-3810 (($ $) 145 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 151 (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 146 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-3745 (($ $ (-548) (-548)) 116)) (-1656 (($ $ (-745)) 118)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3756 (($ $) 114)) (-2460 (((-1116 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3171 ((|#1| $ (-745)) 91) (($ $ $) 126 (|has| (-745) (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 103 (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $ (-1214 |#2|)) 99)) (-2512 (((-745) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 120)) (-3743 (((-832) $) NIL) (($ (-548)) 24) (($ (-399 (-548))) 143 (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) 23 (|has| |#1| (-169))) (($ (-1191 |#2| |#1|)) 80) (($ (-1214 |#2|)) 20)) (-3852 (((-1116 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) 90)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 88)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-745)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 17 T CONST)) (-3118 (($) 13 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) 102)) (-2290 (($ $ $) 18)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#1|) 140 (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +(((-1210 |#1| |#2| |#3|) (-13 (-1209 |#1|) (-10 -8 (-15 -3743 ($ (-1191 |#2| |#1|))) (-15 -3799 ((-1191 |#2| |#1|) $ (-745))) (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (-15 -3787 ($ $)) (-15 -3776 ($ $)) (-15 -3766 ($ $)) (-15 -3756 ($ $)) (-15 -3745 ($ $ (-548) (-548))) (-15 -3732 ($ $)) (-15 -3719 ($ (-548) (-548) $)) (-15 -3706 ($ (-548) (-548) $)) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1210)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-1191 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-1210 *3 *4 *5)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1210 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3787 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3776 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3745 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3719 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-3706 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1209 |#1|) (-10 -8 (-15 -3743 ($ (-1191 |#2| |#1|))) (-15 -3799 ((-1191 |#2| |#1|) $ (-745))) (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (-15 -3787 ($ $)) (-15 -3776 ($ $)) (-15 -3766 ($ $)) (-15 -3756 ($ $)) (-15 -3745 ($ $ (-548) (-548))) (-15 -3732 ($ $)) (-15 -3719 ($ (-548) (-548) $)) (-15 -3706 ($ (-548) (-548) $)) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3889 (((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|))) 24)) (-3878 (((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3864 (((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|)) 13)) (-3923 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3912 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3936 ((|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|)) 54)) (-3950 (((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))) 61)) (-3901 ((|#2| |#2| |#2|) 43))) +(((-1211 |#1| |#2|) (-10 -7 (-15 -3864 ((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|))) (-15 -3878 ((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3889 ((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|)))) (-15 -3901 (|#2| |#2| |#2|)) (-15 -3912 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3923 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3936 (|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|))) (-15 -3950 ((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))))) (-38 (-399 (-548))) (-1209 |#1|)) (T -1211)) +((-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 (-1 *6 (-619 *6)))) (-4 *5 (-38 (-399 (-548)))) (-4 *6 (-1209 *5)) (-5 *2 (-619 *6)) (-5 *1 (-1211 *5 *6)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-619 *2))) (-5 *4 (-619 *5)) (-4 *5 (-38 (-399 (-548)))) (-4 *2 (-1209 *5)) (-5 *1 (-1211 *5 *2)))) (-3923 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) (-4 *4 (-38 (-399 (-548)))))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) (-4 *4 (-38 (-399 (-548)))))) (-3901 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1211 *3 *2)) (-4 *2 (-1209 *3)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-619 *5))) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-1 (-1116 *4) (-619 (-1116 *4)))) (-5 *1 (-1211 *4 *5)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-1 (-1116 *4) (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5))))) +(-10 -7 (-15 -3864 ((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|))) (-15 -3878 ((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3889 ((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|)))) (-15 -3901 (|#2| |#2| |#2|)) (-15 -3912 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3923 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3936 (|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|))) (-15 -3950 ((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))))) +((-3976 ((|#2| |#4| (-745)) 30)) (-3965 ((|#4| |#2|) 25)) (-3995 ((|#4| (-399 |#2|)) 52 (|has| |#1| (-540)))) (-3985 (((-1 |#4| (-619 |#4|)) |#3|) 46))) +(((-1212 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3965 (|#4| |#2|)) (-15 -3976 (|#2| |#4| (-745))) (-15 -3985 ((-1 |#4| (-619 |#4|)) |#3|)) (IF (|has| |#1| (-540)) (-15 -3995 (|#4| (-399 |#2|))) |%noBranch|)) (-1016) (-1194 |#1|) (-630 |#2|) (-1209 |#1|)) (T -1212)) +((-3995 (*1 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-540)) (-4 *4 (-1016)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *5 *6 *2)) (-4 *6 (-630 *5)))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-1194 *4)) (-5 *2 (-1 *6 (-619 *6))) (-5 *1 (-1212 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-1209 *4)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-1212 *5 *2 *6 *3)) (-4 *6 (-630 *2)) (-4 *3 (-1209 *5)))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-1194 *4)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *3 *5 *2)) (-4 *5 (-630 *3))))) +(-10 -7 (-15 -3965 (|#4| |#2|)) (-15 -3976 (|#2| |#4| (-745))) (-15 -3985 ((-1 |#4| (-619 |#4|)) |#3|)) (IF (|has| |#1| (-540)) (-15 -3995 (|#4| (-399 |#2|))) |%noBranch|)) +NIL +(((-1213) (-138)) (T -1213)) +NIL +(-13 (-10 -7 (-6 -2409))) +((-3730 (((-112) $ $) NIL)) (-2754 (((-1135)) 12)) (-2546 (((-1118) $) 17)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11) (((-1135) $) 8)) (-2214 (((-112) $ $) 14))) +(((-1214 |#1|) (-13 (-1063) (-592 (-1135)) (-10 -8 (-15 -3743 ((-1135) $)) (-15 -2754 ((-1135))))) (-1135)) (T -1214)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2))) (-2754 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2)))) +(-13 (-1063) (-592 (-1135)) (-10 -8 (-15 -3743 ((-1135) $)) (-15 -2754 ((-1135))))) +((-3320 (($ (-745)) 18)) (-3953 (((-663 |#2|) $ $) 40)) (-4007 ((|#2| $) 48)) (-3198 ((|#2| $) 47)) (-4029 ((|#2| $ $) 35)) (-4018 (($ $ $) 44)) (-2299 (($ $) 22) (($ $ $) 28)) (-2290 (($ $ $) 15)) (* (($ (-548) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1215 |#1| |#2|) (-10 -8 (-15 -4007 (|#2| |#1|)) (-15 -3198 (|#2| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -3953 ((-663 |#2|) |#1| |#1|)) (-15 -4029 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -3320 (|#1| (-745))) (-15 -2290 (|#1| |#1| |#1|))) (-1216 |#2|) (-1172)) (T -1215)) +NIL +(-10 -8 (-15 -4007 (|#2| |#1|)) (-15 -3198 (|#2| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -3953 ((-663 |#2|) |#1| |#1|)) (-15 -4029 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -3320 (|#1| (-745))) (-15 -2290 (|#1| |#1| |#1|))) +((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3320 (($ (-745)) 112 (|has| |#1| (-23)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-2621 (((-548) (-1 (-112) |#1|) $) 97) (((-548) |#1| $) 96 (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) 95 (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) 105 (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4007 ((|#1| $) 102 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-4248 (((-112) $ (-745)) 10)) (-3198 ((|#1| $) 103 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-4029 ((|#1| $ $) 106 (|has| |#1| (-1016)))) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-4018 (($ $ $) 104 (|has| |#1| (-1016)))) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 82 (|has| |#1| (-821)))) (-2299 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2290 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-548) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-701))) (($ $ |#1|) 107 (|has| |#1| (-701)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-1216 |#1|) (-138) (-1172)) (T -1216)) +((-2290 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-25)))) (-3320 (*1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1216 *3)) (-4 *3 (-23)) (-4 *3 (-1172)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (-4029 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (-3953 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-1016)) (-5 *2 (-663 *3)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) (-4 *2 (-1016)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) (-4 *2 (-1016))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2290 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3320 ($ (-745))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2299 ($ $)) (-15 -2299 ($ $ $)) (-15 * ($ (-548) $))) |%noBranch|) (IF (|has| |t#1| (-701)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-15 -4029 (|t#1| $ $)) (-15 -3953 ((-663 |t#1|) $ $)) (-15 -4018 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-971)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3198 (|t#1| $)) (-15 -4007 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-365 |#1|) . T) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-19 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) +((-4040 (((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|) 13)) (-2061 ((|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|) 15)) (-2540 (((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)) 28) (((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|)) 18))) +(((-1217 |#1| |#2|) (-10 -7 (-15 -4040 ((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2540 ((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|))) (-15 -2540 ((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)))) (-1172) (-1172)) (T -1217)) +((-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1218 *6)) (-5 *1 (-1217 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1218 *6)) (-5 *1 (-1217 *5 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-1217 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1218 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-1218 *5)) (-5 *1 (-1217 *6 *5))))) +(-10 -7 (-15 -4040 ((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2540 ((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|))) (-15 -2540 ((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)))) +((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745)) NIL (|has| |#1| (-23)))) (-4038 (($ (-619 |#1|)) 9)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) 15 (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4007 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-4248 (((-112) $ (-745)) NIL)) (-3198 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4029 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4018 (($ $ $) NIL (|has| |#1| (-1016)))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 19 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 8)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2290 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-548) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1218 |#1|) (-13 (-1216 |#1|) (-10 -8 (-15 -4038 ($ (-619 |#1|))))) (-1172)) (T -1218)) +((-4038 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1218 *3))))) +(-13 (-1216 |#1|) (-10 -8 (-15 -4038 ($ (-619 |#1|))))) +((-3730 (((-112) $ $) NIL)) (-2269 (((-1118) $ (-1118)) 90) (((-1118) $ (-1118) (-1118)) 88) (((-1118) $ (-1118) (-619 (-1118))) 87)) (-2875 (($) 59)) (-3782 (((-1223) $ (-459) (-890)) 45)) (-1841 (((-1223) $ (-890) (-1118)) 73) (((-1223) $ (-890) (-843)) 74)) (-2534 (((-1223) $ (-890) (-371) (-371)) 48)) (-1560 (((-1223) $ (-1118)) 69)) (-2691 (((-1223) $ (-890) (-1118)) 78)) (-4071 (((-1223) $ (-890) (-371) (-371)) 49)) (-3092 (((-1223) $ (-890) (-890)) 46)) (-2250 (((-1223) $) 70)) (-4090 (((-1223) $ (-890) (-1118)) 77)) (-4125 (((-1223) $ (-459) (-890)) 31)) (-4101 (((-1223) $ (-890) (-1118)) 76)) (-1469 (((-619 (-255)) $) 23) (($ $ (-619 (-255))) 24)) (-3104 (((-1223) $ (-745) (-745)) 43)) (-2864 (($ $) 60) (($ (-459) (-619 (-255))) 61)) (-2546 (((-1118) $) NIL)) (-3156 (((-548) $) 38)) (-3932 (((-1082) $) NIL)) (-4133 (((-1218 (-3 (-459) "undefined")) $) 37)) (-4143 (((-1218 (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) (|:| |axesColor| (-843)) (|:| -1841 (-548)) (|:| |unitsColor| (-843)) (|:| |showing| (-548)))) $) 36)) (-4153 (((-1223) $ (-890) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-843) (-548) (-843) (-548)) 68)) (-2885 (((-619 (-912 (-218))) $) NIL)) (-4113 (((-459) $ (-890)) 33)) (-3079 (((-1223) $ (-745) (-745) (-890) (-890)) 40)) (-3058 (((-1223) $ (-1118)) 79)) (-4082 (((-1223) $ (-890) (-1118)) 75)) (-3743 (((-832) $) 85)) (-2466 (((-1223) $) 80)) (-3047 (((-1223) $ (-890) (-1118)) 71) (((-1223) $ (-890) (-843)) 72)) (-2214 (((-112) $ $) NIL))) +(((-1219) (-13 (-1063) (-10 -8 (-15 -2885 ((-619 (-912 (-218))) $)) (-15 -2875 ($)) (-15 -2864 ($ $)) (-15 -1469 ((-619 (-255)) $)) (-15 -1469 ($ $ (-619 (-255)))) (-15 -2864 ($ (-459) (-619 (-255)))) (-15 -4153 ((-1223) $ (-890) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-843) (-548) (-843) (-548))) (-15 -4143 ((-1218 (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) (|:| |axesColor| (-843)) (|:| -1841 (-548)) (|:| |unitsColor| (-843)) (|:| |showing| (-548)))) $)) (-15 -4133 ((-1218 (-3 (-459) "undefined")) $)) (-15 -1560 ((-1223) $ (-1118))) (-15 -4125 ((-1223) $ (-459) (-890))) (-15 -4113 ((-459) $ (-890))) (-15 -3047 ((-1223) $ (-890) (-1118))) (-15 -3047 ((-1223) $ (-890) (-843))) (-15 -1841 ((-1223) $ (-890) (-1118))) (-15 -1841 ((-1223) $ (-890) (-843))) (-15 -4101 ((-1223) $ (-890) (-1118))) (-15 -4090 ((-1223) $ (-890) (-1118))) (-15 -4082 ((-1223) $ (-890) (-1118))) (-15 -3058 ((-1223) $ (-1118))) (-15 -2466 ((-1223) $)) (-15 -3079 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -4071 ((-1223) $ (-890) (-371) (-371))) (-15 -2534 ((-1223) $ (-890) (-371) (-371))) (-15 -2691 ((-1223) $ (-890) (-1118))) (-15 -3104 ((-1223) $ (-745) (-745))) (-15 -3782 ((-1223) $ (-459) (-890))) (-15 -3092 ((-1223) $ (-890) (-890))) (-15 -2269 ((-1118) $ (-1118))) (-15 -2269 ((-1118) $ (-1118) (-1118))) (-15 -2269 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2250 ((-1223) $)) (-15 -3156 ((-548) $)) (-15 -3743 ((-832) $))))) (T -1219)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1219)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-619 (-912 (-218)))) (-5 *1 (-1219)))) (-2875 (*1 *1) (-5 *1 (-1219))) (-2864 (*1 *1 *1) (-5 *1 (-1219))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1219)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1219)))) (-2864 (*1 *1 *2 *3) (-12 (-5 *2 (-459)) (-5 *3 (-619 (-255))) (-5 *1 (-1219)))) (-4153 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-890)) (-5 *4 (-218)) (-5 *5 (-548)) (-5 *6 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-1218 (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) (|:| |axesColor| (-843)) (|:| -1841 (-548)) (|:| |unitsColor| (-843)) (|:| |showing| (-548))))) (-5 *1 (-1219)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1218 (-3 (-459) "undefined"))) (-5 *1 (-1219)))) (-1560 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4125 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-459)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4113 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-459)) (-5 *1 (-1219)))) (-3047 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3047 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-1841 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-1841 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4101 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4090 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4082 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3079 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4071 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2534 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2691 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3104 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3782 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-459)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3092 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2269 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2269 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2269 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1219))))) +(-13 (-1063) (-10 -8 (-15 -2885 ((-619 (-912 (-218))) $)) (-15 -2875 ($)) (-15 -2864 ($ $)) (-15 -1469 ((-619 (-255)) $)) (-15 -1469 ($ $ (-619 (-255)))) (-15 -2864 ($ (-459) (-619 (-255)))) (-15 -4153 ((-1223) $ (-890) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-843) (-548) (-843) (-548))) (-15 -4143 ((-1218 (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) (|:| |axesColor| (-843)) (|:| -1841 (-548)) (|:| |unitsColor| (-843)) (|:| |showing| (-548)))) $)) (-15 -4133 ((-1218 (-3 (-459) "undefined")) $)) (-15 -1560 ((-1223) $ (-1118))) (-15 -4125 ((-1223) $ (-459) (-890))) (-15 -4113 ((-459) $ (-890))) (-15 -3047 ((-1223) $ (-890) (-1118))) (-15 -3047 ((-1223) $ (-890) (-843))) (-15 -1841 ((-1223) $ (-890) (-1118))) (-15 -1841 ((-1223) $ (-890) (-843))) (-15 -4101 ((-1223) $ (-890) (-1118))) (-15 -4090 ((-1223) $ (-890) (-1118))) (-15 -4082 ((-1223) $ (-890) (-1118))) (-15 -3058 ((-1223) $ (-1118))) (-15 -2466 ((-1223) $)) (-15 -3079 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -4071 ((-1223) $ (-890) (-371) (-371))) (-15 -2534 ((-1223) $ (-890) (-371) (-371))) (-15 -2691 ((-1223) $ (-890) (-1118))) (-15 -3104 ((-1223) $ (-745) (-745))) (-15 -3782 ((-1223) $ (-459) (-890))) (-15 -3092 ((-1223) $ (-890) (-890))) (-15 -2269 ((-1118) $ (-1118))) (-15 -2269 ((-1118) $ (-1118) (-1118))) (-15 -2269 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2250 ((-1223) $)) (-15 -3156 ((-548) $)) (-15 -3743 ((-832) $)))) +((-3730 (((-112) $ $) NIL)) (-2994 (((-1223) $ (-371)) 140) (((-1223) $ (-371) (-371) (-371)) 141)) (-2269 (((-1118) $ (-1118)) 148) (((-1118) $ (-1118) (-1118)) 146) (((-1118) $ (-1118) (-619 (-1118))) 145)) (-3147 (($) 50)) (-3069 (((-1223) $ (-371) (-371) (-371) (-371) (-371)) 116) (((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) $) 114) (((-1223) $ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) 115) (((-1223) $ (-548) (-548) (-371) (-371) (-371)) 117) (((-1223) $ (-371) (-371)) 118) (((-1223) $ (-371) (-371) (-371)) 125)) (-3181 (((-371)) 97) (((-371) (-371)) 98)) (-3206 (((-371)) 92) (((-371) (-371)) 94)) (-3193 (((-371)) 95) (((-371) (-371)) 96)) (-3158 (((-371)) 101) (((-371) (-371)) 102)) (-3168 (((-371)) 99) (((-371) (-371)) 100)) (-2534 (((-1223) $ (-371) (-371)) 142)) (-1560 (((-1223) $ (-1118)) 126)) (-3127 (((-1095 (-218)) $) 51) (($ $ (-1095 (-218))) 52)) (-2951 (((-1223) $ (-1118)) 154)) (-2940 (((-1223) $ (-1118)) 155)) (-3005 (((-1223) $ (-371) (-371)) 124) (((-1223) $ (-548) (-548)) 139)) (-3092 (((-1223) $ (-890) (-890)) 132)) (-2250 (((-1223) $) 112)) (-2984 (((-1223) $ (-1118)) 153)) (-3025 (((-1223) $ (-1118)) 109)) (-1469 (((-619 (-255)) $) 53) (($ $ (-619 (-255))) 54)) (-3104 (((-1223) $ (-745) (-745)) 131)) (-3116 (((-1223) $ (-745) (-912 (-218))) 160)) (-3137 (($ $) 56) (($ (-1095 (-218)) (-1118)) 57) (($ (-1095 (-218)) (-619 (-255))) 58)) (-2918 (((-1223) $ (-371) (-371) (-371)) 106)) (-2546 (((-1118) $) NIL)) (-3156 (((-548) $) 103)) (-2907 (((-1223) $ (-371)) 143)) (-2962 (((-1223) $ (-371)) 158)) (-3932 (((-1082) $) NIL)) (-2973 (((-1223) $ (-371)) 157)) (-3015 (((-1223) $ (-1118)) 111)) (-3079 (((-1223) $ (-745) (-745) (-890) (-890)) 130)) (-3035 (((-1223) $ (-1118)) 108)) (-3058 (((-1223) $ (-1118)) 110)) (-2895 (((-1223) $ (-154) (-154)) 129)) (-3743 (((-832) $) 137)) (-2466 (((-1223) $) 113)) (-2929 (((-1223) $ (-1118)) 156)) (-3047 (((-1223) $ (-1118)) 107)) (-2214 (((-112) $ $) NIL))) +(((-1220) (-13 (-1063) (-10 -8 (-15 -3206 ((-371))) (-15 -3206 ((-371) (-371))) (-15 -3193 ((-371))) (-15 -3193 ((-371) (-371))) (-15 -3181 ((-371))) (-15 -3181 ((-371) (-371))) (-15 -3168 ((-371))) (-15 -3168 ((-371) (-371))) (-15 -3158 ((-371))) (-15 -3158 ((-371) (-371))) (-15 -3147 ($)) (-15 -3137 ($ $)) (-15 -3137 ($ (-1095 (-218)) (-1118))) (-15 -3137 ($ (-1095 (-218)) (-619 (-255)))) (-15 -3127 ((-1095 (-218)) $)) (-15 -3127 ($ $ (-1095 (-218)))) (-15 -3116 ((-1223) $ (-745) (-912 (-218)))) (-15 -1469 ((-619 (-255)) $)) (-15 -1469 ($ $ (-619 (-255)))) (-15 -3104 ((-1223) $ (-745) (-745))) (-15 -3092 ((-1223) $ (-890) (-890))) (-15 -1560 ((-1223) $ (-1118))) (-15 -3079 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -3069 ((-1223) $ (-371) (-371) (-371) (-371) (-371))) (-15 -3069 ((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) $)) (-15 -3069 ((-1223) $ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -3069 ((-1223) $ (-548) (-548) (-371) (-371) (-371))) (-15 -3069 ((-1223) $ (-371) (-371))) (-15 -3069 ((-1223) $ (-371) (-371) (-371))) (-15 -3058 ((-1223) $ (-1118))) (-15 -3047 ((-1223) $ (-1118))) (-15 -3035 ((-1223) $ (-1118))) (-15 -3025 ((-1223) $ (-1118))) (-15 -3015 ((-1223) $ (-1118))) (-15 -3005 ((-1223) $ (-371) (-371))) (-15 -3005 ((-1223) $ (-548) (-548))) (-15 -2994 ((-1223) $ (-371))) (-15 -2994 ((-1223) $ (-371) (-371) (-371))) (-15 -2534 ((-1223) $ (-371) (-371))) (-15 -2984 ((-1223) $ (-1118))) (-15 -2973 ((-1223) $ (-371))) (-15 -2962 ((-1223) $ (-371))) (-15 -2951 ((-1223) $ (-1118))) (-15 -2940 ((-1223) $ (-1118))) (-15 -2929 ((-1223) $ (-1118))) (-15 -2918 ((-1223) $ (-371) (-371) (-371))) (-15 -2907 ((-1223) $ (-371))) (-15 -2250 ((-1223) $)) (-15 -2895 ((-1223) $ (-154) (-154))) (-15 -2269 ((-1118) $ (-1118))) (-15 -2269 ((-1118) $ (-1118) (-1118))) (-15 -2269 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2466 ((-1223) $)) (-15 -3156 ((-548) $))))) (T -1220)) +((-3206 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3206 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3193 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3181 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3168 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3158 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3158 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3147 (*1 *1) (-5 *1 (-1220))) (-3137 (*1 *1 *1) (-5 *1 (-1220))) (-3137 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-1118)) (-5 *1 (-1220)))) (-3137 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-619 (-255))) (-5 *1 (-1220)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1220)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1220)))) (-3116 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1220)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1220)))) (-3104 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3092 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-1560 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3079 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-548)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3047 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3035 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3015 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3005 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3005 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2994 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2994 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2534 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2984 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2973 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2962 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2940 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2929 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2918 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2907 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2895 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-154)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2269 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2269 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2269 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1220))))) +(-13 (-1063) (-10 -8 (-15 -3206 ((-371))) (-15 -3206 ((-371) (-371))) (-15 -3193 ((-371))) (-15 -3193 ((-371) (-371))) (-15 -3181 ((-371))) (-15 -3181 ((-371) (-371))) (-15 -3168 ((-371))) (-15 -3168 ((-371) (-371))) (-15 -3158 ((-371))) (-15 -3158 ((-371) (-371))) (-15 -3147 ($)) (-15 -3137 ($ $)) (-15 -3137 ($ (-1095 (-218)) (-1118))) (-15 -3137 ($ (-1095 (-218)) (-619 (-255)))) (-15 -3127 ((-1095 (-218)) $)) (-15 -3127 ($ $ (-1095 (-218)))) (-15 -3116 ((-1223) $ (-745) (-912 (-218)))) (-15 -1469 ((-619 (-255)) $)) (-15 -1469 ($ $ (-619 (-255)))) (-15 -3104 ((-1223) $ (-745) (-745))) (-15 -3092 ((-1223) $ (-890) (-890))) (-15 -1560 ((-1223) $ (-1118))) (-15 -3079 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -3069 ((-1223) $ (-371) (-371) (-371) (-371) (-371))) (-15 -3069 ((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) $)) (-15 -3069 ((-1223) $ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -3069 ((-1223) $ (-548) (-548) (-371) (-371) (-371))) (-15 -3069 ((-1223) $ (-371) (-371))) (-15 -3069 ((-1223) $ (-371) (-371) (-371))) (-15 -3058 ((-1223) $ (-1118))) (-15 -3047 ((-1223) $ (-1118))) (-15 -3035 ((-1223) $ (-1118))) (-15 -3025 ((-1223) $ (-1118))) (-15 -3015 ((-1223) $ (-1118))) (-15 -3005 ((-1223) $ (-371) (-371))) (-15 -3005 ((-1223) $ (-548) (-548))) (-15 -2994 ((-1223) $ (-371))) (-15 -2994 ((-1223) $ (-371) (-371) (-371))) (-15 -2534 ((-1223) $ (-371) (-371))) (-15 -2984 ((-1223) $ (-1118))) (-15 -2973 ((-1223) $ (-371))) (-15 -2962 ((-1223) $ (-371))) (-15 -2951 ((-1223) $ (-1118))) (-15 -2940 ((-1223) $ (-1118))) (-15 -2929 ((-1223) $ (-1118))) (-15 -2918 ((-1223) $ (-371) (-371) (-371))) (-15 -2907 ((-1223) $ (-371))) (-15 -2250 ((-1223) $)) (-15 -2895 ((-1223) $ (-154) (-154))) (-15 -2269 ((-1118) $ (-1118))) (-15 -2269 ((-1118) $ (-1118) (-1118))) (-15 -2269 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2466 ((-1223) $)) (-15 -3156 ((-548) $)))) +((-3314 (((-619 (-1118)) (-619 (-1118))) 94) (((-619 (-1118))) 90)) (-3326 (((-619 (-1118))) 88)) (-3289 (((-619 (-890)) (-619 (-890))) 63) (((-619 (-890))) 60)) (-3276 (((-619 (-745)) (-619 (-745))) 57) (((-619 (-745))) 53)) (-3300 (((-1223)) 65)) (-3355 (((-890) (-890)) 81) (((-890)) 80)) (-3340 (((-890) (-890)) 79) (((-890)) 78)) (-3252 (((-843) (-843)) 75) (((-843)) 74)) (-3389 (((-218)) 85) (((-218) (-371)) 87)) (-3371 (((-890)) 82) (((-890) (-890)) 83)) (-3265 (((-890) (-890)) 77) (((-890)) 76)) (-3220 (((-843) (-843)) 69) (((-843)) 67)) (-3231 (((-843) (-843)) 71) (((-843)) 70)) (-3241 (((-843) (-843)) 73) (((-843)) 72))) +(((-1221) (-10 -7 (-15 -3220 ((-843))) (-15 -3220 ((-843) (-843))) (-15 -3231 ((-843))) (-15 -3231 ((-843) (-843))) (-15 -3241 ((-843))) (-15 -3241 ((-843) (-843))) (-15 -3252 ((-843))) (-15 -3252 ((-843) (-843))) (-15 -3265 ((-890))) (-15 -3265 ((-890) (-890))) (-15 -3276 ((-619 (-745)))) (-15 -3276 ((-619 (-745)) (-619 (-745)))) (-15 -3289 ((-619 (-890)))) (-15 -3289 ((-619 (-890)) (-619 (-890)))) (-15 -3300 ((-1223))) (-15 -3314 ((-619 (-1118)))) (-15 -3314 ((-619 (-1118)) (-619 (-1118)))) (-15 -3326 ((-619 (-1118)))) (-15 -3340 ((-890))) (-15 -3355 ((-890))) (-15 -3340 ((-890) (-890))) (-15 -3355 ((-890) (-890))) (-15 -3371 ((-890) (-890))) (-15 -3371 ((-890))) (-15 -3389 ((-218) (-371))) (-15 -3389 ((-218))))) (T -1221)) +((-3389 (*1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-1221)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-218)) (-5 *1 (-1221)))) (-3371 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3355 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3355 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3340 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3326 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3314 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3300 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1221)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) (-3289 (*1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) (-3276 (*1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3265 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3252 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3241 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3231 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3231 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3220 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3220 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(-10 -7 (-15 -3220 ((-843))) (-15 -3220 ((-843) (-843))) (-15 -3231 ((-843))) (-15 -3231 ((-843) (-843))) (-15 -3241 ((-843))) (-15 -3241 ((-843) (-843))) (-15 -3252 ((-843))) (-15 -3252 ((-843) (-843))) (-15 -3265 ((-890))) (-15 -3265 ((-890) (-890))) (-15 -3276 ((-619 (-745)))) (-15 -3276 ((-619 (-745)) (-619 (-745)))) (-15 -3289 ((-619 (-890)))) (-15 -3289 ((-619 (-890)) (-619 (-890)))) (-15 -3300 ((-1223))) (-15 -3314 ((-619 (-1118)))) (-15 -3314 ((-619 (-1118)) (-619 (-1118)))) (-15 -3326 ((-619 (-1118)))) (-15 -3340 ((-890))) (-15 -3355 ((-890))) (-15 -3340 ((-890) (-890))) (-15 -3355 ((-890) (-890))) (-15 -3371 ((-890) (-890))) (-15 -3371 ((-890))) (-15 -3389 ((-218) (-371))) (-15 -3389 ((-218)))) +((-4052 (((-459) (-619 (-619 (-912 (-218)))) (-619 (-255))) 21) (((-459) (-619 (-619 (-912 (-218))))) 20) (((-459) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255))) 19)) (-4061 (((-1219) (-619 (-619 (-912 (-218)))) (-619 (-255))) 27) (((-1219) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255))) 26)) (-3743 (((-1219) (-459)) 38))) +(((-1222) (-10 -7 (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255)))) (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))))) (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))) (-619 (-255)))) (-15 -4061 ((-1219) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255)))) (-15 -4061 ((-1219) (-619 (-619 (-912 (-218)))) (-619 (-255)))) (-15 -3743 ((-1219) (-459))))) (T -1222)) +((-3743 (*1 *2 *3) (-12 (-5 *3 (-459)) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-4061 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *6 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-619 (-255))) (-5 *2 (-459)) (-5 *1 (-1222)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-459)) (-5 *1 (-1222)))) (-4052 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *6 (-619 (-255))) (-5 *2 (-459)) (-5 *1 (-1222))))) +(-10 -7 (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255)))) (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))))) (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))) (-619 (-255)))) (-15 -4061 ((-1219) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255)))) (-15 -4061 ((-1219) (-619 (-619 (-912 (-218)))) (-619 (-255)))) (-15 -3743 ((-1219) (-459)))) +((-2648 (($) 7)) (-3743 (((-832) $) 10))) +(((-1223) (-10 -8 (-15 -2648 ($)) (-15 -3743 ((-832) $)))) (T -1223)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1223)))) (-2648 (*1 *1) (-5 *1 (-1223)))) +(-10 -8 (-15 -2648 ($)) (-15 -3743 ((-832) $))) +((-2309 (($ $ |#2|) 10))) +(((-1224 |#1| |#2|) (-10 -8 (-15 -2309 (|#1| |#1| |#2|))) (-1225 |#2|) (-355)) (T -1224)) +NIL +(-10 -8 (-15 -2309 (|#1| |#1| |#2|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3402 (((-133)) 28)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 29)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1225 |#1|) (-138) (-355)) (T -1225)) +((-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-355)))) (-3402 (*1 *2) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-355)) (-5 *2 (-133))))) +(-13 (-692 |t#1|) (-10 -8 (-15 -2309 ($ $ |t#1|)) (-15 -3402 ((-133))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3456 (((-619 (-1166 |#1|)) (-1135) (-1166 |#1|)) 74)) (-3435 (((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|))) 53)) (-3468 (((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))) 64)) (-3414 (((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745)) 55)) (-3445 (((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135)) 29)) (-3427 (((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745)) 54))) +(((-1226 |#1|) (-10 -7 (-15 -3414 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3427 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3435 ((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|)))) (-15 -3445 ((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135))) (-15 -3456 ((-619 (-1166 |#1|)) (-1135) (-1166 |#1|))) (-15 -3468 ((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))))) (-355)) (T -1226)) +((-3468 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-745)) (-4 *6 (-355)) (-5 *4 (-1166 *6)) (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1226 *6)) (-5 *5 (-1116 *4)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-4 *5 (-355)) (-5 *2 (-619 (-1166 *5))) (-5 *1 (-1226 *5)) (-5 *4 (-1166 *5)))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 (-1131 (-921 *4)) (-921 *4))) (-5 *1 (-1226 *4)) (-4 *4 (-355)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-4 *5 (-355)) (-5 *2 (-1116 (-1116 (-921 *5)))) (-5 *1 (-1226 *5)) (-5 *4 (-1116 (-921 *5))))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) (-5 *1 (-1226 *4)) (-4 *4 (-355)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) (-5 *1 (-1226 *4)) (-4 *4 (-355))))) +(-10 -7 (-15 -3414 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3427 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3435 ((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|)))) (-15 -3445 ((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135))) (-15 -3456 ((-619 (-1166 |#1|)) (-1135) (-1166 |#1|))) (-15 -3468 ((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))))) +((-3490 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|) 75)) (-3478 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) 74))) +(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|))) (-341) (-1194 |#1|) (-1194 |#2|) (-401 |#2| |#3|)) (T -1227)) +((-3490 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-1227 *4 *3 *5 *6)) (-4 *6 (-401 *3 *5)))) (-3478 (*1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -2877 (-663 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-663 *4)))) (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *6 (-401 *4 *5))))) +(-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|))) +((-3730 (((-112) $ $) NIL)) (-1604 (((-1140) $) 11)) (-1615 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-1228) (-13 (-1047) (-10 -8 (-15 -1615 ((-1140) $)) (-15 -1604 ((-1140) $))))) (T -1228)) +((-1615 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) +(-13 (-1047) (-10 -8 (-15 -1615 ((-1140) $)) (-15 -1604 ((-1140) $)))) +((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2897 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) +(((-1229) (-13 (-1047) (-10 -8 (-15 -2897 ((-1140) $))))) (T -1229)) +((-2897 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1229))))) +(-13 (-1047) (-10 -8 (-15 -2897 ((-1140) $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 43)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 64) (($ (-548)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-169)))) (-3835 (((-745)) NIL)) (-3503 (((-1223) (-745)) 16)) (-3107 (($) 27 T CONST)) (-3118 (($) 67 T CONST)) (-2214 (((-112) $ $) 69)) (-2309 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) 71) (($ $ $) NIL)) (-2290 (($ $ $) 47)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-1230 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3743 (|#4| $)) (IF (|has| |#1| (-355)) (-15 -2309 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3743 ($ |#4|)) (-15 -3503 ((-1223) (-745))))) (-1016) (-821) (-767) (-918 |#1| |#3| |#2|) (-619 |#2|) (-619 (-745)) (-745)) (T -1230)) +((-3743 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-1230 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-2309 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-355)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-767)) (-14 *6 (-619 *3)) (-5 *1 (-1230 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-918 *2 *4 *3)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) (-5 *1 (-1230 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-918 *3 *5 *4)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-14 *8 (-619 *5)) (-5 *2 (-1223)) (-5 *1 (-1230 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-918 *4 *6 *5)) (-14 *9 (-619 *3)) (-14 *10 *3)))) +(-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3743 (|#4| $)) (IF (|has| |#1| (-355)) (-15 -2309 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3743 ($ |#4|)) (-15 -3503 ((-1223) (-745))))) +((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2004 (((-619 $) (-619 |#4|)) 88)) (-2049 (((-619 |#3|) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2073 ((|#4| |#4| $) NIL)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) NIL (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-2213 (((-619 |#4|) (-619 |#4|) $) 25 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2375 (($ (-619 |#4|)) NIL)) (-3465 (((-3 $ "failed") $) 70)) (-2038 ((|#4| |#4| $) 75)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) NIL)) (-1934 (((-619 |#4|) $) NIL (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3239 ((|#3| $) 76)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-2335 (((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-619 |#4|)) 35)) (-3960 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) NIL)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3724 (((-3 |#4| "failed") $) NIL)) (-2179 (((-619 |#4|) $) 50)) (-2109 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2052 ((|#4| |#4| $) 74)) (-2199 (((-112) $ $) 85)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2063 ((|#4| |#4| $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 |#4| "failed") $) 69)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1971 (((-3 $ "failed") $ |#4|) NIL)) (-1656 (($ $ |#4|) NIL)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 67)) (-3319 (($) 42)) (-2512 (((-745) $) NIL)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) NIL)) (-2298 (($ $ |#3|) NIL)) (-2319 (($ $ |#3|) NIL)) (-2027 (($ $) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) NIL) (((-619 |#4|) $) 57)) (-1962 (((-745) $) NIL (|has| |#3| (-360)))) (-2326 (((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-619 |#4|)) 41)) (-2315 (((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-619 $) (-619 |#4|)) 66)) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) NIL)) (-2406 (((-112) |#3| $) NIL)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +(((-1231 |#1| |#2| |#3| |#4|) (-13 (-1165 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2335 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2335 ((-3 $ "failed") (-619 |#4|))) (-15 -2326 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2326 ((-3 $ "failed") (-619 |#4|))) (-15 -2315 ((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2315 ((-619 $) (-619 |#4|))))) (-540) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -1231)) +((-2335 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8)))) (-2335 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1231 *3 *4 *5 *6)))) (-2326 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8)))) (-2326 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1231 *3 *4 *5 *6)))) (-2315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-619 (-1231 *6 *7 *8 *9))) (-5 *1 (-1231 *6 *7 *8 *9)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-1231 *4 *5 *6 *7))) (-5 *1 (-1231 *4 *5 *6 *7))))) +(-13 (-1165 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2335 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2335 ((-3 $ "failed") (-619 |#4|))) (-15 -2326 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2326 ((-3 $ "failed") (-619 |#4|))) (-15 -2315 ((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2315 ((-619 $) (-619 |#4|))))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 36)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-1232 |#1|) (-138) (-1016)) (T -1232)) +((-3743 (*1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (-15 -3743 ($ |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3730 (((-112) $ $) 60)) (-3324 (((-112) $) NIL)) (-3065 (((-619 |#1|) $) 45)) (-2502 (($ $ (-745)) 39)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2416 (($ $ (-745)) 18 (|has| |#2| (-169))) (($ $ $) 19 (|has| |#2| (-169)))) (-3030 (($) NIL T CONST)) (-2448 (($ $ $) 63) (($ $ (-793 |#1|)) 49) (($ $ |#1|) 53)) (-2441 (((-3 (-793 |#1|) "failed") $) NIL)) (-2375 (((-793 |#1|) $) NIL)) (-1872 (($ $) 32)) (-3859 (((-3 $ "failed") $) NIL)) (-2532 (((-112) $) NIL)) (-2521 (($ $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-793 |#1|) |#2|) 31)) (-2425 (($ $) 33)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 12)) (-2557 (((-793 |#1|) $) NIL)) (-2567 (((-793 |#1|) $) 34)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2459 (($ $ $) 62) (($ $ (-793 |#1|)) 51) (($ $ |#1|) 55)) (-3176 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2185 (((-793 |#1|) $) 28)) (-2197 ((|#2| $) 30)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2512 (((-745) $) 36)) (-2547 (((-112) $) 40)) (-2325 ((|#2| $) NIL)) (-3743 (((-832) $) NIL) (($ (-793 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-548)) NIL)) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-793 |#1|)) NIL)) (-1489 ((|#2| $ $) 65) ((|#2| $ (-793 |#1|)) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) 13 T CONST)) (-3118 (($) 15 T CONST)) (-3623 (((-619 (-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2214 (((-112) $ $) 38)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 22)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-793 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1233 |#1| |#2|) (-13 (-374 |#2| (-793 |#1|)) (-1239 |#1| |#2|)) (-821) (-1016)) (T -1233)) +NIL +(-13 (-374 |#2| (-793 |#1|)) (-1239 |#1| |#2|)) +((-3496 ((|#3| |#3| (-745)) 23)) (-2458 ((|#3| |#3| (-745)) 27)) (-2344 ((|#3| |#3| |#3| (-745)) 28))) +(((-1234 |#1| |#2| |#3|) (-10 -7 (-15 -2458 (|#3| |#3| (-745))) (-15 -3496 (|#3| |#3| (-745))) (-15 -2344 (|#3| |#3| |#3| (-745)))) (-13 (-1016) (-692 (-399 (-548)))) (-821) (-1239 |#2| |#1|)) (T -1234)) +((-2344 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) (-3496 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) (-2458 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4))))) +(-10 -7 (-15 -2458 (|#3| |#3| (-745))) (-15 -3496 (|#3| |#3| (-745))) (-15 -2344 (|#3| |#3| |#3| (-745)))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3065 (((-619 |#1|) $) 38)) (-4104 (((-3 $ "failed") $ $) 19)) (-2416 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-745)) 40 (|has| |#2| (-169)))) (-3030 (($) 17 T CONST)) (-2448 (($ $ |#1|) 52) (($ $ (-793 |#1|)) 51) (($ $ $) 50)) (-2441 (((-3 (-793 |#1|) "failed") $) 62)) (-2375 (((-793 |#1|) $) 61)) (-3859 (((-3 $ "failed") $) 32)) (-2532 (((-112) $) 43)) (-2521 (($ $) 42)) (-2266 (((-112) $) 30)) (-2435 (((-112) $) 48)) (-3310 (($ (-793 |#1|) |#2|) 49)) (-2425 (($ $) 47)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 58)) (-2557 (((-793 |#1|) $) 59)) (-2540 (($ (-1 |#2| |#2|) $) 39)) (-2459 (($ $ |#1|) 55) (($ $ (-793 |#1|)) 54) (($ $ $) 53)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2547 (((-112) $) 45)) (-2325 ((|#2| $) 44)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#2|) 66) (($ (-793 |#1|)) 63) (($ |#1|) 46)) (-1489 ((|#2| $ (-793 |#1|)) 57) ((|#2| $ $) 56)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1235 |#1| |#2|) (-138) (-821) (-1016)) (T -1235)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-793 *3)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| |k| (-793 *3)) (|:| |c| *4))))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-793 *4)) (-4 *1 (-1235 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1016)))) (-1489 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (-2459 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2459 (*1 *1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2459 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2448 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2448 (*1 *1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2448 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3310 (*1 *1 *2 *3) (-12 (-5 *2 (-793 *4)) (-4 *4 (-821)) (-4 *1 (-1235 *4 *3)) (-4 *3 (-1016)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3743 (*1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2547 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2416 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)) (-4 *3 (-169)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-4 *4 (-169)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-619 *3))))) +(-13 (-1016) (-1232 |t#2|) (-1007 (-793 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2557 ((-793 |t#1|) $)) (-15 -2471 ((-2 (|:| |k| (-793 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1489 (|t#2| $ (-793 |t#1|))) (-15 -1489 (|t#2| $ $)) (-15 -2459 ($ $ |t#1|)) (-15 -2459 ($ $ (-793 |t#1|))) (-15 -2459 ($ $ $)) (-15 -2448 ($ $ |t#1|)) (-15 -2448 ($ $ (-793 |t#1|))) (-15 -2448 ($ $ $)) (-15 -3310 ($ (-793 |t#1|) |t#2|)) (-15 -2435 ((-112) $)) (-15 -2425 ($ $)) (-15 -3743 ($ |t#1|)) (-15 -2547 ((-112) $)) (-15 -2325 (|t#2| $)) (-15 -2532 ((-112) $)) (-15 -2521 ($ $)) (IF (|has| |t#2| (-169)) (PROGN (-15 -2416 ($ $ $)) (-15 -2416 ($ $ (-745)))) |%noBranch|) (-15 -2540 ($ (-1 |t#2| |t#2|) $)) (-15 -3065 ((-619 |t#1|) $)) (IF (|has| |t#2| (-6 -4320)) (-6 -4320) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#2|) . T) ((-622 $) . T) ((-692 |#2|) |has| |#2| (-169)) ((-701) . T) ((-1007 (-793 |#1|)) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1232 |#2|) . T)) +((-2395 (((-112) $) 15)) (-2406 (((-112) $) 14)) (-2354 (($ $) 19) (($ $ (-745)) 20))) +(((-1236 |#1| |#2|) (-10 -8 (-15 -2354 (|#1| |#1| (-745))) (-15 -2354 (|#1| |#1|)) (-15 -2395 ((-112) |#1|)) (-15 -2406 ((-112) |#1|))) (-1237 |#2|) (-355)) (T -1236)) +NIL +(-10 -8 (-15 -2354 (|#1| |#1| (-745))) (-15 -2354 (|#1| |#1|)) (-15 -2395 ((-112) |#1|)) (-15 -2406 ((-112) |#1|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-2395 (((-112) $) 91)) (-2364 (((-745)) 87)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 98)) (-2375 ((|#1| $) 97)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2208 (($ $ (-745)) 84 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) 83 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) 68)) (-1672 (((-807 (-890)) $) 81 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-2384 (((-112) $) 90)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 71)) (-2373 (((-807 (-890))) 88)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2217 (((-3 (-745) "failed") $ $) 82 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) 96)) (-2512 (((-807 (-890)) $) 89)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ |#1|) 99)) (-4017 (((-3 $ "failed") $) 80 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-2406 (((-112) $) 92)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2354 (($ $) 86 (|has| |#1| (-360))) (($ $ (-745)) 85 (|has| |#1| (-360)))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62) (($ $ |#1|) 95)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1237 |#1|) (-138) (-355)) (T -1237)) +((-2406 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112)))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-807 (-890))))) (-2373 (*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-807 (-890))))) (-2364 (*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-745)))) (-2354 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-355)) (-4 *2 (-360)))) (-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-4 *3 (-360))))) +(-13 (-355) (-1007 |t#1|) (-1225 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-394)) |%noBranch|) (-15 -2406 ((-112) $)) (-15 -2395 ((-112) $)) (-15 -2384 ((-112) $)) (-15 -2512 ((-807 (-890)) $)) (-15 -2373 ((-807 (-890)))) (-15 -2364 ((-745))) (IF (|has| |t#1| (-360)) (PROGN (-6 (-394)) (-15 -2354 ($ $)) (-15 -2354 ($ $ (-745)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-360)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-394) -1524 (|has| |#1| (-360)) (|has| |#1| (-143))) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T) ((-1225 |#1|) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3065 (((-619 |#1|) $) 86)) (-2502 (($ $ (-745)) 89)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2416 (($ $ $) NIL (|has| |#2| (-169))) (($ $ (-745)) NIL (|has| |#2| (-169)))) (-3030 (($) NIL T CONST)) (-2448 (($ $ |#1|) NIL) (($ $ (-793 |#1|)) NIL) (($ $ $) NIL)) (-2441 (((-3 (-793 |#1|) "failed") $) NIL) (((-3 (-862 |#1|) "failed") $) NIL)) (-2375 (((-793 |#1|) $) NIL) (((-862 |#1|) $) NIL)) (-1872 (($ $) 88)) (-3859 (((-3 $ "failed") $) NIL)) (-2532 (((-112) $) 77)) (-2521 (($ $) 81)) (-2481 (($ $ $ (-745)) 90)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-793 |#1|) |#2|) NIL) (($ (-862 |#1|) |#2|) 26)) (-2425 (($ $) 103)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2557 (((-793 |#1|) $) NIL)) (-2567 (((-793 |#1|) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2459 (($ $ |#1|) NIL) (($ $ (-793 |#1|)) NIL) (($ $ $) NIL)) (-3496 (($ $ (-745)) 97 (|has| |#2| (-692 (-399 (-548)))))) (-3176 (((-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2185 (((-862 |#1|) $) 70)) (-2197 ((|#2| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2458 (($ $ (-745)) 94 (|has| |#2| (-692 (-399 (-548)))))) (-2512 (((-745) $) 87)) (-2547 (((-112) $) 71)) (-2325 ((|#2| $) 75)) (-3743 (((-832) $) 57) (($ (-548)) NIL) (($ |#2|) 51) (($ (-793 |#1|)) NIL) (($ |#1|) 59) (($ (-862 |#1|)) NIL) (($ (-638 |#1| |#2|)) 43) (((-1233 |#1| |#2|) $) 64) (((-1242 |#1| |#2|) $) 69)) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-862 |#1|)) NIL)) (-1489 ((|#2| $ (-793 |#1|)) NIL) ((|#2| $ $) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) 21 T CONST)) (-3118 (($) 25 T CONST)) (-3623 (((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2493 (((-3 (-638 |#1| |#2|) "failed") $) 102)) (-2214 (((-112) $ $) 65)) (-2299 (($ $) 96) (($ $ $) 95)) (-2290 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-862 |#1|)) NIL))) +(((-1238 |#1| |#2|) (-13 (-1239 |#1| |#2|) (-374 |#2| (-862 |#1|)) (-10 -8 (-15 -3743 ($ (-638 |#1| |#2|))) (-15 -3743 ((-1233 |#1| |#2|) $)) (-15 -3743 ((-1242 |#1| |#2|) $)) (-15 -2493 ((-3 (-638 |#1| |#2|) "failed") $)) (-15 -2481 ($ $ $ (-745))) (IF (|has| |#2| (-692 (-399 (-548)))) (PROGN (-15 -2458 ($ $ (-745))) (-15 -3496 ($ $ (-745)))) |%noBranch|))) (-821) (-169)) (T -1238)) +((-3743 (*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *1 (-1238 *3 *4)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2493 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2481 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *4 (-692 (-399 (-548)))) (-4 *3 (-821)) (-4 *4 (-169)))) (-3496 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *4 (-692 (-399 (-548)))) (-4 *3 (-821)) (-4 *4 (-169))))) +(-13 (-1239 |#1| |#2|) (-374 |#2| (-862 |#1|)) (-10 -8 (-15 -3743 ($ (-638 |#1| |#2|))) (-15 -3743 ((-1233 |#1| |#2|) $)) (-15 -3743 ((-1242 |#1| |#2|) $)) (-15 -2493 ((-3 (-638 |#1| |#2|) "failed") $)) (-15 -2481 ($ $ $ (-745))) (IF (|has| |#2| (-692 (-399 (-548)))) (PROGN (-15 -2458 ($ $ (-745))) (-15 -3496 ($ $ (-745)))) |%noBranch|))) +((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3065 (((-619 |#1|) $) 38)) (-2502 (($ $ (-745)) 71)) (-4104 (((-3 $ "failed") $ $) 19)) (-2416 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-745)) 40 (|has| |#2| (-169)))) (-3030 (($) 17 T CONST)) (-2448 (($ $ |#1|) 52) (($ $ (-793 |#1|)) 51) (($ $ $) 50)) (-2441 (((-3 (-793 |#1|) "failed") $) 62)) (-2375 (((-793 |#1|) $) 61)) (-3859 (((-3 $ "failed") $) 32)) (-2532 (((-112) $) 43)) (-2521 (($ $) 42)) (-2266 (((-112) $) 30)) (-2435 (((-112) $) 48)) (-3310 (($ (-793 |#1|) |#2|) 49)) (-2425 (($ $) 47)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 58)) (-2557 (((-793 |#1|) $) 59)) (-2567 (((-793 |#1|) $) 73)) (-2540 (($ (-1 |#2| |#2|) $) 39)) (-2459 (($ $ |#1|) 55) (($ $ (-793 |#1|)) 54) (($ $ $) 53)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2512 (((-745) $) 72)) (-2547 (((-112) $) 45)) (-2325 ((|#2| $) 44)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#2|) 66) (($ (-793 |#1|)) 63) (($ |#1|) 46)) (-1489 ((|#2| $ (-793 |#1|)) 57) ((|#2| $ $) 56)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1239 |#1| |#2|) (-138) (-821) (-1016)) (T -1239)) +((-2567 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-793 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-745)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) +(-13 (-1235 |t#1| |t#2|) (-10 -8 (-15 -2567 ((-793 |t#1|) $)) (-15 -2512 ((-745) $)) (-15 -2502 ($ $ (-745))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#2|) . T) ((-622 $) . T) ((-692 |#2|) |has| |#2| (-169)) ((-701) . T) ((-1007 (-793 |#1|)) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1232 |#2|) . T) ((-1235 |#1| |#2|) . T)) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3065 (((-619 (-1135)) $) NIL)) (-2585 (($ (-1233 (-1135) |#1|)) NIL)) (-2502 (($ $ (-745)) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2416 (($ $ $) NIL (|has| |#1| (-169))) (($ $ (-745)) NIL (|has| |#1| (-169)))) (-3030 (($) NIL T CONST)) (-2448 (($ $ (-1135)) NIL) (($ $ (-793 (-1135))) NIL) (($ $ $) NIL)) (-2441 (((-3 (-793 (-1135)) "failed") $) NIL)) (-2375 (((-793 (-1135)) $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2532 (((-112) $) NIL)) (-2521 (($ $) NIL)) (-2266 (((-112) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-793 (-1135)) |#1|) NIL)) (-2425 (($ $) NIL)) (-2471 (((-2 (|:| |k| (-793 (-1135))) (|:| |c| |#1|)) $) NIL)) (-2557 (((-793 (-1135)) $) NIL)) (-2567 (((-793 (-1135)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2459 (($ $ (-1135)) NIL) (($ $ (-793 (-1135))) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1384 (((-1233 (-1135) |#1|) $) NIL)) (-2512 (((-745) $) NIL)) (-2547 (((-112) $) NIL)) (-2325 ((|#1| $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-793 (-1135))) NIL) (($ (-1135)) NIL)) (-1489 ((|#1| $ (-793 (-1135))) NIL) ((|#1| $ $) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) NIL T CONST)) (-2576 (((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $) NIL)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1135) $) NIL))) +(((-1240 |#1|) (-13 (-1239 (-1135) |#1|) (-10 -8 (-15 -1384 ((-1233 (-1135) |#1|) $)) (-15 -2585 ($ (-1233 (-1135) |#1|))) (-15 -2576 ((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $)))) (-1016)) (T -1240)) +((-1384 (*1 *2 *1) (-12 (-5 *2 (-1233 (-1135) *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1016)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1233 (-1135) *3)) (-4 *3 (-1016)) (-5 *1 (-1240 *3)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-1135)) (|:| |c| (-1240 *3))))) (-5 *1 (-1240 *3)) (-4 *3 (-1016))))) +(-13 (-1239 (-1135) |#1|) (-10 -8 (-15 -1384 ((-1233 (-1135) |#1|) $)) (-15 -2585 ($ (-1233 (-1135) |#1|))) (-15 -2576 ((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $)))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL)) (-2375 ((|#2| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) 36)) (-2532 (((-112) $) 30)) (-2521 (($ $) 32)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ |#2| |#1|) NIL)) (-2557 ((|#2| $) 19)) (-2567 ((|#2| $) 16)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2185 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2547 (((-112) $) 27)) (-2325 ((|#1| $) 28)) (-3743 (((-832) $) 55) (($ (-548)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ |#2|) NIL)) (-1489 ((|#1| $ |#2|) 24)) (-3835 (((-745)) 14)) (-3107 (($) 25 T CONST)) (-3118 (($) 11 T CONST)) (-3623 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2214 (((-112) $ $) 26)) (-2309 (($ $ |#1|) 57 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 44)) (** (($ $ (-890)) NIL) (($ $ (-745)) 46)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3643 (((-745) $) 15))) +(((-1241 |#1| |#2|) (-13 (-1016) (-1232 |#1|) (-374 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3643 ((-745) $)) (-15 -3743 ($ |#2|)) (-15 -2567 (|#2| $)) (-15 -2557 (|#2| $)) (-15 -1872 ($ $)) (-15 -1489 (|#1| $ |#2|)) (-15 -2547 ((-112) $)) (-15 -2325 (|#1| $)) (-15 -2532 ((-112) $)) (-15 -2521 ($ $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-355)) (-15 -2309 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4320)) (-6 -4320) |%noBranch|) (IF (|has| |#1| (-6 -4324)) (-6 -4324) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) (-1016) (-817)) (T -1241)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-1241 *3 *4)) (-4 *4 (-817)))) (-3743 (*1 *1 *2) (-12 (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-817)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2567 (*1 *2 *1) (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)))) (-2557 (*1 *2 *1) (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)))) (-1489 (*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2325 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2521 (*1 *1 *1) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-355)) (-4 *2 (-1016)) (-4 *3 (-817))))) +(-13 (-1016) (-1232 |#1|) (-374 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3643 ((-745) $)) (-15 -3743 ($ |#2|)) (-15 -2567 (|#2| $)) (-15 -2557 (|#2| $)) (-15 -1872 ($ $)) (-15 -1489 (|#1| $ |#2|)) (-15 -2547 ((-112) $)) (-15 -2325 (|#1| $)) (-15 -2532 ((-112) $)) (-15 -2521 ($ $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-355)) (-15 -2309 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4320)) (-6 -4320) |%noBranch|) (IF (|has| |#1| (-6 -4324)) (-6 -4324) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) +((-3730 (((-112) $ $) 26)) (-3324 (((-112) $) NIL)) (-3065 (((-619 |#1|) $) 120)) (-2585 (($ (-1233 |#1| |#2|)) 44)) (-2502 (($ $ (-745)) 32)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2416 (($ $ $) 48 (|has| |#2| (-169))) (($ $ (-745)) 46 (|has| |#2| (-169)))) (-3030 (($) NIL T CONST)) (-2448 (($ $ |#1|) 102) (($ $ (-793 |#1|)) 103) (($ $ $) 25)) (-2441 (((-3 (-793 |#1|) "failed") $) NIL)) (-2375 (((-793 |#1|) $) NIL)) (-3859 (((-3 $ "failed") $) 110)) (-2532 (((-112) $) 105)) (-2521 (($ $) 106)) (-2266 (((-112) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-793 |#1|) |#2|) 19)) (-2425 (($ $) NIL)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2557 (((-793 |#1|) $) 111)) (-2567 (((-793 |#1|) $) 114)) (-2540 (($ (-1 |#2| |#2|) $) 119)) (-2459 (($ $ |#1|) 100) (($ $ (-793 |#1|)) 101) (($ $ $) 56)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1384 (((-1233 |#1| |#2|) $) 84)) (-2512 (((-745) $) 117)) (-2547 (((-112) $) 70)) (-2325 ((|#2| $) 28)) (-3743 (((-832) $) 63) (($ (-548)) 77) (($ |#2|) 74) (($ (-793 |#1|)) 17) (($ |#1|) 73)) (-1489 ((|#2| $ (-793 |#1|)) 104) ((|#2| $ $) 27)) (-3835 (((-745)) 108)) (-3107 (($) 14 T CONST)) (-2576 (((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 13)) (-2299 (($ $) 88) (($ $ $) 91)) (-2290 (($ $ $) 55)) (** (($ $ (-890)) NIL) (($ $ (-745)) 49)) (* (($ (-890) $) NIL) (($ (-745) $) 47) (($ (-548) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1242 |#1| |#2|) (-13 (-1239 |#1| |#2|) (-10 -8 (-15 -1384 ((-1233 |#1| |#2|) $)) (-15 -2585 ($ (-1233 |#1| |#2|))) (-15 -2576 ((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-821) (-1016)) (T -1242)) +((-1384 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *1 (-1242 *3 *4)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| *3) (|:| |c| (-1242 *3 *4))))) (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) +(-13 (-1239 |#1| |#2|) (-10 -8 (-15 -1384 ((-1233 |#1| |#2|) $)) (-15 -2585 ($ (-1233 |#1| |#2|))) (-15 -2576 ((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2428 (((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-548)) 15) (((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|))) 11))) +(((-1243 |#1|) (-10 -7 (-15 -2428 ((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|)))) (-15 -2428 ((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-548)))) (-1172)) (T -1243)) +((-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-619 (-1116 *5)) (-619 (-1116 *5)))) (-5 *4 (-548)) (-5 *2 (-619 (-1116 *5))) (-5 *1 (-1243 *5)) (-4 *5 (-1172)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-1 (-1116 *4) (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1243 *4)) (-4 *4 (-1172))))) +(-10 -7 (-15 -2428 ((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|)))) (-15 -2428 ((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-548)))) +((-2605 (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|))) 148) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112)) 147) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)) 146) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112)) 145) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-1013 |#1| |#2|)) 130)) (-2596 (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|))) 72) (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112)) 71) (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112)) 70)) (-2634 (((-619 (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|)) 61)) (-2615 (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|))) 115) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112)) 114) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112)) 113) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112)) 112) (((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|)) 107)) (-2625 (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|))) 120) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112)) 119) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112)) 118) (((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|)) 117)) (-2591 (((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) 98) (((-1131 (-993 (-399 |#1|))) (-1131 |#1|)) 89) (((-921 (-993 (-399 |#1|))) (-754 |#1| (-834 |#3|))) 96) (((-921 (-993 (-399 |#1|))) (-921 |#1|)) 94) (((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|))) 33))) +(((-1244 |#1| |#2| |#3|) (-10 -7 (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112))) (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-1013 |#1| |#2|))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)))) (-15 -2634 ((-619 (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|))) (-15 -2591 ((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|)))) (-15 -2591 ((-921 (-993 (-399 |#1|))) (-921 |#1|))) (-15 -2591 ((-921 (-993 (-399 |#1|))) (-754 |#1| (-834 |#3|)))) (-15 -2591 ((-1131 (-993 (-399 |#1|))) (-1131 |#1|))) (-15 -2591 ((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))))) (-13 (-819) (-299) (-145) (-991)) (-619 (-1135)) (-619 (-1135))) (T -1244)) +((-2591 (*1 *2 *3) (-12 (-5 *3 (-1106 *4 (-520 (-834 *6)) (-834 *6) (-754 *4 (-834 *6)))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-754 *4 (-834 *6)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-1131 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *6))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *6 (-619 (-1135))) (-5 *2 (-921 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-921 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *5))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-754 *4 (-834 *6))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-1106 *4 (-520 (-834 *6)) (-834 *6) (-754 *4 (-834 *6))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2625 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2625 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2625 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2615 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2615 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2605 (*1 *2 *3) (-12 (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) (-5 *1 (-1244 *4 *5 *6)) (-5 *3 (-619 (-921 *4))) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2605 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2605 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2605 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-1013 *4 *5))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2596 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2596 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135)))))) +(-10 -7 (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112))) (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-1013 |#1| |#2|))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)))) (-15 -2634 ((-619 (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|))) (-15 -2591 ((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|)))) (-15 -2591 ((-921 (-993 (-399 |#1|))) (-921 |#1|))) (-15 -2591 ((-921 (-993 (-399 |#1|))) (-754 |#1| (-834 |#3|)))) (-15 -2591 ((-1131 (-993 (-399 |#1|))) (-1131 |#1|))) (-15 -2591 ((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))))) +((-2667 (((-3 (-1218 (-399 (-548))) "failed") (-1218 |#1|) |#1|) 21)) (-2644 (((-112) (-1218 |#1|)) 12)) (-2655 (((-3 (-1218 (-548)) "failed") (-1218 |#1|)) 16))) +(((-1245 |#1|) (-10 -7 (-15 -2644 ((-112) (-1218 |#1|))) (-15 -2655 ((-3 (-1218 (-548)) "failed") (-1218 |#1|))) (-15 -2667 ((-3 (-1218 (-399 (-548))) "failed") (-1218 |#1|) |#1|))) (-615 (-548))) (T -1245)) +((-2667 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) (-5 *2 (-1218 (-399 (-548)))) (-5 *1 (-1245 *4)))) (-2655 (*1 *2 *3) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) (-5 *2 (-1218 (-548))) (-5 *1 (-1245 *4)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) (-5 *2 (-112)) (-5 *1 (-1245 *4))))) +(-10 -7 (-15 -2644 ((-112) (-1218 |#1|))) (-15 -2655 ((-3 (-1218 (-548)) "failed") (-1218 |#1|))) (-15 -2667 ((-3 (-1218 (-399 (-548))) "failed") (-1218 |#1|) |#1|))) +((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 11)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745)) 8)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) 43)) (-2545 (($) 36)) (-2266 (((-112) $) NIL)) (-3725 (((-3 $ "failed") $) 29)) (-2855 (((-890) $) 15)) (-2546 (((-1118) $) NIL)) (-3410 (($) 25 T CONST)) (-3337 (($ (-890)) 37)) (-3932 (((-1082) $) NIL)) (-2591 (((-548) $) 13)) (-3743 (((-832) $) 22) (($ (-548)) 19)) (-3835 (((-745)) 9)) (-3107 (($) 23 T CONST)) (-3118 (($) 24 T CONST)) (-2214 (((-112) $ $) 27)) (-2299 (($ $) 38) (($ $ $) 35)) (-2290 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-745)) 40)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 32) (($ $ $) 31))) +(((-1246 |#1|) (-13 (-169) (-360) (-593 (-548)) (-1111)) (-890)) (T -1246)) +NIL +(-13 (-169) (-360) (-593 (-548)) (-1111)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3159659 3159664 3159669 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3159644 3159649 3159654 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3159629 3159634 3159639 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3159614 3159619 3159624 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1246 3158790 3159489 3159566 "ZMOD" 3159571 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1245 3157900 3158064 3158273 "ZLINDEP" 3158622 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1244 3147276 3149028 3150987 "ZDSOLVE" 3156042 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1243 3146522 3146663 3146852 "YSTREAM" 3147122 NIL YSTREAM (NIL T) -7 NIL NIL) (-1242 3144333 3145823 3146027 "XRPOLY" 3146365 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1241 3140825 3142108 3142692 "XPR" 3143796 NIL XPR (NIL T T) -8 NIL NIL) (-1240 3138581 3140156 3140360 "XPOLY" 3140656 NIL XPOLY (NIL T) -8 NIL NIL) (-1239 3136430 3137764 3137819 "XPOLYC" 3138107 NIL XPOLYC (NIL T T) -9 NIL 3138220) (-1238 3132848 3134947 3135335 "XPBWPOLY" 3136088 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1237 3128833 3131081 3131123 "XF" 3131744 NIL XF (NIL T) -9 NIL 3132144) (-1236 3128454 3128542 3128711 "XF-" 3128716 NIL XF- (NIL T T) -8 NIL NIL) (-1235 3123846 3125101 3125156 "XFALG" 3127328 NIL XFALG (NIL T T) -9 NIL 3128117) (-1234 3122979 3123083 3123288 "XEXPPKG" 3123738 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1233 3121123 3122829 3122925 "XDPOLY" 3122930 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1232 3120039 3120605 3120648 "XALG" 3120711 NIL XALG (NIL T) -9 NIL 3120831) (-1231 3113508 3118016 3118510 "WUTSET" 3119631 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1230 3111359 3112120 3112473 "WP" 3113289 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1229 3111005 3111181 3111251 "WHILEAST" 3111311 T WHILEAST (NIL) -8 NIL NIL) (-1228 3110521 3110722 3110816 "WHEREAST" 3110933 T WHEREAST (NIL) -8 NIL NIL) (-1227 3109407 3109605 3109900 "WFFINTBS" 3110318 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1226 3107311 3107738 3108200 "WEIER" 3108979 NIL WEIER (NIL T) -7 NIL NIL) (-1225 3106458 3106882 3106924 "VSPACE" 3107060 NIL VSPACE (NIL T) -9 NIL 3107134) (-1224 3106296 3106323 3106414 "VSPACE-" 3106419 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1223 3106042 3106085 3106156 "VOID" 3106247 T VOID (NIL) -8 NIL NIL) (-1222 3104178 3104537 3104943 "VIEW" 3105658 T VIEW (NIL) -7 NIL NIL) (-1221 3100603 3101241 3101978 "VIEWDEF" 3103463 T VIEWDEF (NIL) -7 NIL NIL) (-1220 3089941 3092151 3094324 "VIEW3D" 3098452 T VIEW3D (NIL) -8 NIL NIL) (-1219 3082223 3083852 3085431 "VIEW2D" 3088384 T VIEW2D (NIL) -8 NIL NIL) (-1218 3077627 3081993 3082085 "VECTOR" 3082166 NIL VECTOR (NIL T) -8 NIL NIL) (-1217 3076204 3076463 3076781 "VECTOR2" 3077357 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1216 3069731 3073988 3074031 "VECTCAT" 3075024 NIL VECTCAT (NIL T) -9 NIL 3075610) (-1215 3068745 3068999 3069389 "VECTCAT-" 3069394 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1214 3068226 3068396 3068516 "VARIABLE" 3068660 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1213 3068159 3068164 3068194 "UTYPE" 3068199 T UTYPE (NIL) -9 NIL NIL) (-1212 3066989 3067143 3067405 "UTSODETL" 3067985 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1211 3064429 3064889 3065413 "UTSODE" 3066530 NIL UTSODE (NIL T T) -7 NIL NIL) (-1210 3056305 3062055 3062544 "UTS" 3063998 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1209 3047678 3052997 3053040 "UTSCAT" 3054152 NIL UTSCAT (NIL T) -9 NIL 3054909) (-1208 3045032 3045748 3046737 "UTSCAT-" 3046742 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1207 3044659 3044702 3044835 "UTS2" 3044983 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1206 3038934 3041499 3041542 "URAGG" 3043612 NIL URAGG (NIL T) -9 NIL 3044334) (-1205 3035873 3036736 3037859 "URAGG-" 3037864 NIL URAGG- (NIL T T) -8 NIL NIL) (-1204 3031597 3034487 3034959 "UPXSSING" 3035537 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1203 3023567 3030712 3030994 "UPXS" 3031373 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1202 3016680 3023471 3023543 "UPXSCONS" 3023548 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1201 3007038 3013783 3013845 "UPXSCCA" 3014501 NIL UPXSCCA (NIL T T) -9 NIL 3014743) (-1200 3006676 3006761 3006935 "UPXSCCA-" 3006940 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1199 2996960 3003478 3003521 "UPXSCAT" 3004169 NIL UPXSCAT (NIL T) -9 NIL 3004777) (-1198 2996390 2996469 2996648 "UPXS2" 2996875 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1197 2995044 2995297 2995648 "UPSQFREE" 2996133 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1196 2988962 2991971 2992026 "UPSCAT" 2993187 NIL UPSCAT (NIL T T) -9 NIL 2993961) (-1195 2988166 2988373 2988700 "UPSCAT-" 2988705 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1194 2974257 2982253 2982296 "UPOLYC" 2984397 NIL UPOLYC (NIL T) -9 NIL 2985618) (-1193 2965586 2968011 2971158 "UPOLYC-" 2971163 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1192 2965213 2965256 2965389 "UPOLYC2" 2965537 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1191 2956670 2964779 2964917 "UP" 2965123 NIL UP (NIL NIL T) -8 NIL NIL) (-1190 2956009 2956116 2956280 "UPMP" 2956559 NIL UPMP (NIL T T) -7 NIL NIL) (-1189 2955562 2955643 2955782 "UPDIVP" 2955922 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1188 2954130 2954379 2954695 "UPDECOMP" 2955311 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1187 2953365 2953477 2953662 "UPCDEN" 2954014 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1186 2952884 2952953 2953102 "UP2" 2953290 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1185 2951401 2952088 2952365 "UNISEG" 2952642 NIL UNISEG (NIL T) -8 NIL NIL) (-1184 2950616 2950743 2950948 "UNISEG2" 2951244 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1183 2949676 2949856 2950082 "UNIFACT" 2950432 NIL UNIFACT (NIL T) -7 NIL NIL) (-1182 2933645 2948853 2949104 "ULS" 2949483 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1181 2921687 2933549 2933621 "ULSCONS" 2933626 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1180 2904491 2916426 2916488 "ULSCCAT" 2917208 NIL ULSCCAT (NIL T T) -9 NIL 2917505) (-1179 2903541 2903786 2904174 "ULSCCAT-" 2904179 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1178 2893602 2900034 2900077 "ULSCAT" 2900940 NIL ULSCAT (NIL T) -9 NIL 2901670) (-1177 2893032 2893111 2893290 "ULS2" 2893517 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1176 2891470 2892393 2892423 "UFD" 2892635 T UFD (NIL) -9 NIL 2892749) (-1175 2891264 2891310 2891405 "UFD-" 2891410 NIL UFD- (NIL T) -8 NIL NIL) (-1174 2890346 2890529 2890745 "UDVO" 2891070 T UDVO (NIL) -7 NIL NIL) (-1173 2888162 2888571 2889042 "UDPO" 2889910 NIL UDPO (NIL T) -7 NIL NIL) (-1172 2888095 2888100 2888130 "TYPE" 2888135 T TYPE (NIL) -9 NIL NIL) (-1171 2887749 2887917 2887987 "TYPEAST" 2888047 T TYPEAST (NIL) -8 NIL NIL) (-1170 2886720 2886922 2887162 "TWOFACT" 2887543 NIL TWOFACT (NIL T) -7 NIL NIL) (-1169 2885658 2885995 2886258 "TUPLE" 2886492 NIL TUPLE (NIL T) -8 NIL NIL) (-1168 2883349 2883868 2884407 "TUBETOOL" 2885141 T TUBETOOL (NIL) -7 NIL NIL) (-1167 2882198 2882403 2882644 "TUBE" 2883142 NIL TUBE (NIL T) -8 NIL NIL) (-1166 2876962 2881170 2881453 "TS" 2881950 NIL TS (NIL T) -8 NIL NIL) (-1165 2865629 2869721 2869818 "TSETCAT" 2875087 NIL TSETCAT (NIL T T T T) -9 NIL 2876618) (-1164 2860363 2861961 2863852 "TSETCAT-" 2863857 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1163 2854626 2855472 2856414 "TRMANIP" 2859499 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1162 2854067 2854130 2854293 "TRIMAT" 2854558 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1161 2851863 2852100 2852464 "TRIGMNIP" 2853816 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1160 2851383 2851496 2851526 "TRIGCAT" 2851739 T TRIGCAT (NIL) -9 NIL NIL) (-1159 2851052 2851131 2851272 "TRIGCAT-" 2851277 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1158 2847951 2849912 2850192 "TREE" 2850807 NIL TREE (NIL T) -8 NIL NIL) (-1157 2847225 2847753 2847783 "TRANFUN" 2847818 T TRANFUN (NIL) -9 NIL 2847884) (-1156 2846504 2846695 2846975 "TRANFUN-" 2846980 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1155 2846308 2846340 2846401 "TOPSP" 2846465 T TOPSP (NIL) -7 NIL NIL) (-1154 2845656 2845771 2845925 "TOOLSIGN" 2846189 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1153 2844317 2844833 2845072 "TEXTFILE" 2845439 T TEXTFILE (NIL) -8 NIL NIL) (-1152 2842182 2842696 2843134 "TEX" 2843901 T TEX (NIL) -8 NIL NIL) (-1151 2841963 2841994 2842066 "TEX1" 2842145 NIL TEX1 (NIL T) -7 NIL NIL) (-1150 2841611 2841674 2841764 "TEMUTL" 2841895 T TEMUTL (NIL) -7 NIL NIL) (-1149 2839765 2840045 2840370 "TBCMPPK" 2841334 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1148 2831653 2837925 2837981 "TBAGG" 2838381 NIL TBAGG (NIL T T) -9 NIL 2838592) (-1147 2826723 2828211 2829965 "TBAGG-" 2829970 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1146 2826107 2826214 2826359 "TANEXP" 2826612 NIL TANEXP (NIL T) -7 NIL NIL) (-1145 2819608 2825964 2826057 "TABLE" 2826062 NIL TABLE (NIL T T) -8 NIL NIL) (-1144 2819020 2819119 2819257 "TABLEAU" 2819505 NIL TABLEAU (NIL T) -8 NIL NIL) (-1143 2813628 2814848 2816096 "TABLBUMP" 2817806 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1142 2813056 2813156 2813284 "SYSTEM" 2813522 T SYSTEM (NIL) -7 NIL NIL) (-1141 2809519 2810214 2810997 "SYSSOLP" 2812307 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1140 2805810 2806518 2807252 "SYNTAX" 2808807 T SYNTAX (NIL) -8 NIL NIL) (-1139 2802968 2803570 2804202 "SYMTAB" 2805200 T SYMTAB (NIL) -8 NIL NIL) (-1138 2798217 2799119 2800102 "SYMS" 2802007 T SYMS (NIL) -8 NIL NIL) (-1137 2795489 2797675 2797905 "SYMPOLY" 2798022 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1136 2795006 2795081 2795204 "SYMFUNC" 2795401 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1135 2790983 2792243 2793065 "SYMBOL" 2794206 T SYMBOL (NIL) -8 NIL NIL) (-1134 2784522 2786211 2787931 "SWITCH" 2789285 T SWITCH (NIL) -8 NIL NIL) (-1133 2777792 2783343 2783646 "SUTS" 2784277 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1132 2769761 2776907 2777189 "SUPXS" 2777568 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1131 2761290 2769379 2769505 "SUP" 2769670 NIL SUP (NIL T) -8 NIL NIL) (-1130 2760449 2760576 2760793 "SUPFRACF" 2761158 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1129 2760070 2760129 2760242 "SUP2" 2760384 NIL SUP2 (NIL T T) -7 NIL NIL) (-1128 2758483 2758757 2759120 "SUMRF" 2759769 NIL SUMRF (NIL T) -7 NIL NIL) (-1127 2757797 2757863 2758062 "SUMFS" 2758404 NIL SUMFS (NIL T T) -7 NIL NIL) (-1126 2741806 2756974 2757225 "SULS" 2757604 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1125 2741128 2741331 2741471 "SUCH" 2741714 NIL SUCH (NIL T T) -8 NIL NIL) (-1124 2735022 2736034 2736993 "SUBSPACE" 2740216 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1123 2734452 2734542 2734706 "SUBRESP" 2734910 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1122 2727821 2729117 2730428 "STTF" 2733188 NIL STTF (NIL T) -7 NIL NIL) (-1121 2721994 2723114 2724261 "STTFNC" 2726721 NIL STTFNC (NIL T) -7 NIL NIL) (-1120 2713309 2715176 2716970 "STTAYLOR" 2720235 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1119 2706553 2713173 2713256 "STRTBL" 2713261 NIL STRTBL (NIL T) -8 NIL NIL) (-1118 2701944 2706508 2706539 "STRING" 2706544 T STRING (NIL) -8 NIL NIL) (-1117 2696832 2701317 2701347 "STRICAT" 2701406 T STRICAT (NIL) -9 NIL 2701468) (-1116 2689545 2694355 2694975 "STREAM" 2696247 NIL STREAM (NIL T) -8 NIL NIL) (-1115 2689055 2689132 2689276 "STREAM3" 2689462 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1114 2688037 2688220 2688455 "STREAM2" 2688868 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1113 2687725 2687777 2687870 "STREAM1" 2687979 NIL STREAM1 (NIL T) -7 NIL NIL) (-1112 2686741 2686922 2687153 "STINPROD" 2687541 NIL STINPROD (NIL T) -7 NIL NIL) (-1111 2686319 2686503 2686533 "STEP" 2686613 T STEP (NIL) -9 NIL 2686691) (-1110 2679862 2686218 2686295 "STBL" 2686300 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1109 2675037 2679084 2679127 "STAGG" 2679280 NIL STAGG (NIL T) -9 NIL 2679369) (-1108 2672739 2673341 2674213 "STAGG-" 2674218 NIL STAGG- (NIL T T) -8 NIL NIL) (-1107 2670934 2672509 2672601 "STACK" 2672682 NIL STACK (NIL T) -8 NIL NIL) (-1106 2663659 2669075 2669531 "SREGSET" 2670564 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1105 2656085 2657453 2658966 "SRDCMPK" 2662265 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1104 2649052 2653525 2653555 "SRAGG" 2654858 T SRAGG (NIL) -9 NIL 2655466) (-1103 2648069 2648324 2648703 "SRAGG-" 2648708 NIL SRAGG- (NIL T) -8 NIL NIL) (-1102 2642555 2646984 2647412 "SQMATRIX" 2647688 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1101 2636307 2639275 2640001 "SPLTREE" 2641901 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1100 2632297 2632963 2633609 "SPLNODE" 2635733 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1099 2631344 2631577 2631607 "SPFCAT" 2632051 T SPFCAT (NIL) -9 NIL NIL) (-1098 2630081 2630291 2630555 "SPECOUT" 2631102 T SPECOUT (NIL) -7 NIL NIL) (-1097 2629842 2629882 2629951 "SPADPRSR" 2630034 T SPADPRSR (NIL) -7 NIL NIL) (-1096 2621813 2623560 2623603 "SPACEC" 2627976 NIL SPACEC (NIL T) -9 NIL 2629792) (-1095 2619984 2621745 2621794 "SPACE3" 2621799 NIL SPACE3 (NIL T) -8 NIL NIL) (-1094 2618736 2618907 2619198 "SORTPAK" 2619789 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1093 2616786 2617089 2617508 "SOLVETRA" 2618400 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1092 2615797 2616019 2616293 "SOLVESER" 2616559 NIL SOLVESER (NIL T) -7 NIL NIL) (-1091 2611017 2611898 2612900 "SOLVERAD" 2614849 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1090 2606832 2607441 2608170 "SOLVEFOR" 2610384 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1089 2601129 2606181 2606278 "SNTSCAT" 2606283 NIL SNTSCAT (NIL T T T T) -9 NIL 2606353) (-1088 2595272 2599452 2599843 "SMTS" 2600819 NIL SMTS (NIL T T T) -8 NIL NIL) (-1087 2589722 2595160 2595237 "SMP" 2595242 NIL SMP (NIL T T) -8 NIL NIL) (-1086 2587881 2588182 2588580 "SMITH" 2589419 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1085 2580864 2585019 2585122 "SMATCAT" 2586473 NIL SMATCAT (NIL NIL T T T) -9 NIL 2587023) (-1084 2577804 2578627 2579805 "SMATCAT-" 2579810 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1083 2575517 2577040 2577083 "SKAGG" 2577344 NIL SKAGG (NIL T) -9 NIL 2577479) (-1082 2571633 2574621 2574899 "SINT" 2575261 T SINT (NIL) -8 NIL NIL) (-1081 2571405 2571443 2571509 "SIMPAN" 2571589 T SIMPAN (NIL) -7 NIL NIL) (-1080 2570712 2570940 2571080 "SIG" 2571287 T SIG (NIL) -8 NIL NIL) (-1079 2569550 2569771 2570046 "SIGNRF" 2570471 NIL SIGNRF (NIL T) -7 NIL NIL) (-1078 2568355 2568506 2568797 "SIGNEF" 2569379 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1077 2566045 2566499 2567005 "SHP" 2567896 NIL SHP (NIL T NIL) -7 NIL NIL) (-1076 2559951 2565946 2566022 "SHDP" 2566027 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1075 2559550 2559716 2559746 "SGROUP" 2559839 T SGROUP (NIL) -9 NIL 2559901) (-1074 2559408 2559434 2559507 "SGROUP-" 2559512 NIL SGROUP- (NIL T) -8 NIL NIL) (-1073 2556244 2556941 2557664 "SGCF" 2558707 T SGCF (NIL) -7 NIL NIL) (-1072 2550639 2555691 2555788 "SFRTCAT" 2555793 NIL SFRTCAT (NIL T T T T) -9 NIL 2555832) (-1071 2544063 2545078 2546214 "SFRGCD" 2549622 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1070 2537191 2538262 2539448 "SFQCMPK" 2542996 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1069 2536813 2536902 2537012 "SFORT" 2537132 NIL SFORT (NIL T T) -8 NIL NIL) (-1068 2535958 2536653 2536774 "SEXOF" 2536779 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1067 2535092 2535839 2535907 "SEX" 2535912 T SEX (NIL) -8 NIL NIL) (-1066 2529868 2530557 2530652 "SEXCAT" 2534423 NIL SEXCAT (NIL T T T T T) -9 NIL 2535042) (-1065 2527048 2529802 2529850 "SET" 2529855 NIL SET (NIL T) -8 NIL NIL) (-1064 2525299 2525761 2526066 "SETMN" 2526789 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1063 2524905 2525031 2525061 "SETCAT" 2525178 T SETCAT (NIL) -9 NIL 2525263) (-1062 2524685 2524737 2524836 "SETCAT-" 2524841 NIL SETCAT- (NIL T) -8 NIL NIL) (-1061 2521072 2523146 2523189 "SETAGG" 2524059 NIL SETAGG (NIL T) -9 NIL 2524399) (-1060 2520530 2520646 2520883 "SETAGG-" 2520888 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1059 2519734 2520027 2520088 "SEGXCAT" 2520374 NIL SEGXCAT (NIL T T) -9 NIL 2520494) (-1058 2518790 2519400 2519582 "SEG" 2519587 NIL SEG (NIL T) -8 NIL NIL) (-1057 2517697 2517910 2517953 "SEGCAT" 2518535 NIL SEGCAT (NIL T) -9 NIL 2518773) (-1056 2516746 2517076 2517276 "SEGBIND" 2517532 NIL SEGBIND (NIL T) -8 NIL NIL) (-1055 2516367 2516426 2516539 "SEGBIND2" 2516681 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1054 2515985 2516168 2516245 "SEGAST" 2516312 T SEGAST (NIL) -8 NIL NIL) (-1053 2515204 2515330 2515534 "SEG2" 2515829 NIL SEG2 (NIL T T) -7 NIL NIL) (-1052 2514641 2515139 2515186 "SDVAR" 2515191 NIL SDVAR (NIL T) -8 NIL NIL) (-1051 2506931 2514411 2514541 "SDPOL" 2514546 NIL SDPOL (NIL T) -8 NIL NIL) (-1050 2505524 2505790 2506109 "SCPKG" 2506646 NIL SCPKG (NIL T) -7 NIL NIL) (-1049 2504660 2504840 2505040 "SCOPE" 2505346 T SCOPE (NIL) -8 NIL NIL) (-1048 2503881 2504014 2504193 "SCACHE" 2504515 NIL SCACHE (NIL T) -7 NIL NIL) (-1047 2503607 2503750 2503780 "SASTCAT" 2503785 T SASTCAT (NIL) -9 NIL 2503798) (-1046 2503396 2503441 2503539 "SASTCAT-" 2503544 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1045 2502835 2503156 2503241 "SAOS" 2503333 T SAOS (NIL) -8 NIL NIL) (-1044 2502400 2502435 2502608 "SAERFFC" 2502794 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1043 2496374 2502297 2502377 "SAE" 2502382 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1042 2495967 2496002 2496161 "SAEFACT" 2496333 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1041 2494288 2494602 2495003 "RURPK" 2495633 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1040 2492924 2493203 2493515 "RULESET" 2494122 NIL RULESET (NIL T T T) -8 NIL NIL) (-1039 2490111 2490614 2491079 "RULE" 2492605 NIL RULE (NIL T T T) -8 NIL NIL) (-1038 2489750 2489905 2489988 "RULECOLD" 2490063 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1037 2484599 2485393 2486313 "RSETGCD" 2488949 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1036 2473856 2478908 2479005 "RSETCAT" 2483124 NIL RSETCAT (NIL T T T T) -9 NIL 2484221) (-1035 2471783 2472322 2473146 "RSETCAT-" 2473151 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1034 2464170 2465545 2467065 "RSDCMPK" 2470382 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1033 2462175 2462616 2462690 "RRCC" 2463776 NIL RRCC (NIL T T) -9 NIL 2464120) (-1032 2461526 2461700 2461979 "RRCC-" 2461984 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1031 2461013 2461222 2461323 "RPTAST" 2461447 T RPTAST (NIL) -8 NIL NIL) (-1030 2435241 2444826 2444893 "RPOLCAT" 2455557 NIL RPOLCAT (NIL T T T) -9 NIL 2458716) (-1029 2426741 2429079 2432201 "RPOLCAT-" 2432206 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1028 2417788 2424952 2425434 "ROUTINE" 2426281 T ROUTINE (NIL) -8 NIL NIL) (-1027 2414534 2417339 2417488 "ROMAN" 2417661 T ROMAN (NIL) -8 NIL NIL) (-1026 2412809 2413394 2413654 "ROIRC" 2414339 NIL ROIRC (NIL T T) -8 NIL NIL) (-1025 2409260 2411499 2411529 "RNS" 2411833 T RNS (NIL) -9 NIL 2412105) (-1024 2407769 2408152 2408686 "RNS-" 2408761 NIL RNS- (NIL T) -8 NIL NIL) (-1023 2407218 2407600 2407630 "RNG" 2407635 T RNG (NIL) -9 NIL 2407656) (-1022 2406610 2406972 2407015 "RMODULE" 2407077 NIL RMODULE (NIL T) -9 NIL 2407119) (-1021 2405446 2405540 2405876 "RMCAT2" 2406511 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1020 2402151 2404620 2404945 "RMATRIX" 2405180 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1019 2395093 2397327 2397442 "RMATCAT" 2400801 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2401783) (-1018 2394468 2394615 2394922 "RMATCAT-" 2394927 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1017 2394035 2394110 2394238 "RINTERP" 2394387 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1016 2393123 2393643 2393673 "RING" 2393785 T RING (NIL) -9 NIL 2393880) (-1015 2392915 2392959 2393056 "RING-" 2393061 NIL RING- (NIL T) -8 NIL NIL) (-1014 2391756 2391993 2392251 "RIDIST" 2392679 T RIDIST (NIL) -7 NIL NIL) (-1013 2383072 2391224 2391430 "RGCHAIN" 2391604 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1012 2380066 2380680 2381350 "RF" 2382436 NIL RF (NIL T) -7 NIL NIL) (-1011 2379712 2379775 2379878 "RFFACTOR" 2379997 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1010 2379437 2379472 2379569 "RFFACT" 2379671 NIL RFFACT (NIL T) -7 NIL NIL) (-1009 2377554 2377918 2378300 "RFDIST" 2379077 T RFDIST (NIL) -7 NIL NIL) (-1008 2377007 2377099 2377262 "RETSOL" 2377456 NIL RETSOL (NIL T T) -7 NIL NIL) (-1007 2376595 2376675 2376718 "RETRACT" 2376911 NIL RETRACT (NIL T) -9 NIL NIL) (-1006 2376444 2376469 2376556 "RETRACT-" 2376561 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1005 2376090 2376266 2376336 "RETAST" 2376396 T RETAST (NIL) -8 NIL NIL) (-1004 2368944 2375743 2375870 "RESULT" 2375985 T RESULT (NIL) -8 NIL NIL) (-1003 2367570 2368213 2368412 "RESRING" 2368847 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1002 2367206 2367255 2367353 "RESLATC" 2367507 NIL RESLATC (NIL T) -7 NIL NIL) (-1001 2366912 2366946 2367053 "REPSQ" 2367165 NIL REPSQ (NIL T) -7 NIL NIL) (-1000 2364334 2364914 2365516 "REP" 2366332 T REP (NIL) -7 NIL NIL) (-999 2364035 2364069 2364178 "REPDB" 2364293 NIL REPDB (NIL T) -7 NIL NIL) (-998 2357963 2359342 2360563 "REP2" 2362847 NIL REP2 (NIL T) -7 NIL NIL) (-997 2354355 2355036 2355842 "REP1" 2357190 NIL REP1 (NIL T) -7 NIL NIL) (-996 2347093 2352508 2352962 "REGSET" 2353985 NIL REGSET (NIL T T T T) -8 NIL NIL) (-995 2345914 2346249 2346497 "REF" 2346878 NIL REF (NIL T) -8 NIL NIL) (-994 2345295 2345398 2345563 "REDORDER" 2345798 NIL REDORDER (NIL T T) -7 NIL NIL) (-993 2341315 2344523 2344746 "RECLOS" 2345124 NIL RECLOS (NIL T) -8 NIL NIL) (-992 2340372 2340553 2340766 "REALSOLV" 2341122 T REALSOLV (NIL) -7 NIL NIL) (-991 2340220 2340261 2340289 "REAL" 2340294 T REAL (NIL) -9 NIL 2340329) (-990 2336711 2337513 2338395 "REAL0Q" 2339385 NIL REAL0Q (NIL T) -7 NIL NIL) (-989 2332322 2333310 2334369 "REAL0" 2335692 NIL REAL0 (NIL T) -7 NIL NIL) (-988 2331842 2332043 2332135 "RDUCEAST" 2332250 T RDUCEAST (NIL) -8 NIL NIL) (-987 2331250 2331322 2331527 "RDIV" 2331764 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-986 2330323 2330497 2330708 "RDIST" 2331072 NIL RDIST (NIL T) -7 NIL NIL) (-985 2328924 2329211 2329581 "RDETRS" 2330031 NIL RDETRS (NIL T T) -7 NIL NIL) (-984 2326741 2327195 2327731 "RDETR" 2328466 NIL RDETR (NIL T T) -7 NIL NIL) (-983 2325355 2325633 2326035 "RDEEFS" 2326457 NIL RDEEFS (NIL T T) -7 NIL NIL) (-982 2323853 2324159 2324589 "RDEEF" 2325043 NIL RDEEF (NIL T T) -7 NIL NIL) (-981 2318190 2321061 2321089 "RCFIELD" 2322366 T RCFIELD (NIL) -9 NIL 2323096) (-980 2316259 2316763 2317456 "RCFIELD-" 2317529 NIL RCFIELD- (NIL T) -8 NIL NIL) (-979 2312590 2314375 2314416 "RCAGG" 2315487 NIL RCAGG (NIL T) -9 NIL 2315952) (-978 2312221 2312315 2312475 "RCAGG-" 2312480 NIL RCAGG- (NIL T T) -8 NIL NIL) (-977 2311561 2311673 2311836 "RATRET" 2312105 NIL RATRET (NIL T) -7 NIL NIL) (-976 2311118 2311185 2311304 "RATFACT" 2311489 NIL RATFACT (NIL T) -7 NIL NIL) (-975 2310433 2310553 2310703 "RANDSRC" 2310988 T RANDSRC (NIL) -7 NIL NIL) (-974 2310170 2310214 2310285 "RADUTIL" 2310382 T RADUTIL (NIL) -7 NIL NIL) (-973 2303235 2308913 2309230 "RADIX" 2309885 NIL RADIX (NIL NIL) -8 NIL NIL) (-972 2294891 2303079 2303207 "RADFF" 2303212 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-971 2294543 2294618 2294646 "RADCAT" 2294803 T RADCAT (NIL) -9 NIL NIL) (-970 2294328 2294376 2294473 "RADCAT-" 2294478 NIL RADCAT- (NIL T) -8 NIL NIL) (-969 2292479 2294103 2294192 "QUEUE" 2294272 NIL QUEUE (NIL T) -8 NIL NIL) (-968 2289055 2292416 2292461 "QUAT" 2292466 NIL QUAT (NIL T) -8 NIL NIL) (-967 2288693 2288736 2288863 "QUATCT2" 2289006 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-966 2282553 2285854 2285894 "QUATCAT" 2286674 NIL QUATCAT (NIL T) -9 NIL 2287440) (-965 2278697 2279734 2281121 "QUATCAT-" 2281215 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-964 2276217 2277781 2277822 "QUAGG" 2278197 NIL QUAGG (NIL T) -9 NIL 2278372) (-963 2275866 2276042 2276110 "QQUTAST" 2276169 T QQUTAST (NIL) -8 NIL NIL) (-962 2274791 2275264 2275436 "QFORM" 2275738 NIL QFORM (NIL NIL T) -8 NIL NIL) (-961 2266124 2271327 2271367 "QFCAT" 2272025 NIL QFCAT (NIL T) -9 NIL 2273024) (-960 2261696 2262897 2264488 "QFCAT-" 2264582 NIL QFCAT- (NIL T T) -8 NIL NIL) (-959 2261334 2261377 2261504 "QFCAT2" 2261647 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-958 2260794 2260904 2261034 "QEQUAT" 2261224 T QEQUAT (NIL) -8 NIL NIL) (-957 2253942 2255013 2256197 "QCMPACK" 2259727 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-956 2251518 2251939 2252367 "QALGSET" 2253597 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-955 2250763 2250937 2251169 "QALGSET2" 2251338 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-954 2249454 2249677 2249994 "PWFFINTB" 2250536 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-953 2247636 2247804 2248158 "PUSHVAR" 2249268 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-952 2243554 2244608 2244649 "PTRANFN" 2246533 NIL PTRANFN (NIL T) -9 NIL NIL) (-951 2241956 2242247 2242569 "PTPACK" 2243265 NIL PTPACK (NIL T) -7 NIL NIL) (-950 2241588 2241645 2241754 "PTFUNC2" 2241893 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-949 2236054 2240399 2240440 "PTCAT" 2240813 NIL PTCAT (NIL T) -9 NIL 2240975) (-948 2235712 2235747 2235871 "PSQFR" 2236013 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-947 2234307 2234605 2234939 "PSEUDLIN" 2235410 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-946 2221076 2223441 2225765 "PSETPK" 2232067 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-945 2214120 2216834 2216930 "PSETCAT" 2219951 NIL PSETCAT (NIL T T T T) -9 NIL 2220765) (-944 2211956 2212590 2213411 "PSETCAT-" 2213416 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-943 2211305 2211470 2211498 "PSCURVE" 2211766 T PSCURVE (NIL) -9 NIL 2211933) (-942 2207786 2209268 2209333 "PSCAT" 2210177 NIL PSCAT (NIL T T T) -9 NIL 2210417) (-941 2206849 2207065 2207465 "PSCAT-" 2207470 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-940 2205501 2206134 2206348 "PRTITION" 2206655 T PRTITION (NIL) -8 NIL NIL) (-939 2205021 2205222 2205314 "PRTDAST" 2205429 T PRTDAST (NIL) -8 NIL NIL) (-938 2194119 2196325 2198513 "PRS" 2202883 NIL PRS (NIL T T) -7 NIL NIL) (-937 2191977 2193469 2193509 "PRQAGG" 2193692 NIL PRQAGG (NIL T) -9 NIL 2193794) (-936 2191548 2191650 2191678 "PROPLOG" 2191863 T PROPLOG (NIL) -9 NIL NIL) (-935 2188671 2189236 2189763 "PROPFRML" 2191053 NIL PROPFRML (NIL T) -8 NIL NIL) (-934 2188131 2188241 2188371 "PROPERTY" 2188561 T PROPERTY (NIL) -8 NIL NIL) (-933 2182216 2186297 2187117 "PRODUCT" 2187357 NIL PRODUCT (NIL T T) -8 NIL NIL) (-932 2179529 2181674 2181908 "PR" 2182027 NIL PR (NIL T T) -8 NIL NIL) (-931 2179325 2179357 2179416 "PRINT" 2179490 T PRINT (NIL) -7 NIL NIL) (-930 2178665 2178782 2178934 "PRIMES" 2179205 NIL PRIMES (NIL T) -7 NIL NIL) (-929 2176730 2177131 2177597 "PRIMELT" 2178244 NIL PRIMELT (NIL T) -7 NIL NIL) (-928 2176459 2176508 2176536 "PRIMCAT" 2176660 T PRIMCAT (NIL) -9 NIL NIL) (-927 2172620 2176397 2176442 "PRIMARR" 2176447 NIL PRIMARR (NIL T) -8 NIL NIL) (-926 2171627 2171805 2172033 "PRIMARR2" 2172438 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-925 2171270 2171326 2171437 "PREASSOC" 2171565 NIL PREASSOC (NIL T T) -7 NIL NIL) (-924 2170745 2170878 2170906 "PPCURVE" 2171111 T PPCURVE (NIL) -9 NIL 2171247) (-923 2170367 2170540 2170623 "PORTNUM" 2170682 T PORTNUM (NIL) -8 NIL NIL) (-922 2167726 2168125 2168717 "POLYROOT" 2169948 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-921 2161671 2167330 2167490 "POLY" 2167599 NIL POLY (NIL T) -8 NIL NIL) (-920 2161054 2161112 2161346 "POLYLIFT" 2161607 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-919 2157329 2157778 2158407 "POLYCATQ" 2160599 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-918 2144368 2149724 2149789 "POLYCAT" 2153303 NIL POLYCAT (NIL T T T) -9 NIL 2155231) (-917 2137818 2139679 2142063 "POLYCAT-" 2142068 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-916 2137405 2137473 2137593 "POLY2UP" 2137744 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-915 2137037 2137094 2137203 "POLY2" 2137342 NIL POLY2 (NIL T T) -7 NIL NIL) (-914 2135722 2135961 2136237 "POLUTIL" 2136811 NIL POLUTIL (NIL T T) -7 NIL NIL) (-913 2134077 2134354 2134685 "POLTOPOL" 2135444 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-912 2129595 2134013 2134059 "POINT" 2134064 NIL POINT (NIL T) -8 NIL NIL) (-911 2127782 2128139 2128514 "PNTHEORY" 2129240 T PNTHEORY (NIL) -7 NIL NIL) (-910 2126201 2126498 2126910 "PMTOOLS" 2127480 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-909 2125794 2125872 2125989 "PMSYM" 2126117 NIL PMSYM (NIL T) -7 NIL NIL) (-908 2125304 2125373 2125547 "PMQFCAT" 2125719 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-907 2124659 2124769 2124925 "PMPRED" 2125181 NIL PMPRED (NIL T) -7 NIL NIL) (-906 2124055 2124141 2124302 "PMPREDFS" 2124560 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-905 2122698 2122906 2123291 "PMPLCAT" 2123817 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-904 2122230 2122309 2122461 "PMLSAGG" 2122613 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-903 2121705 2121781 2121962 "PMKERNEL" 2122148 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-902 2121322 2121397 2121510 "PMINS" 2121624 NIL PMINS (NIL T) -7 NIL NIL) (-901 2120750 2120819 2121035 "PMFS" 2121247 NIL PMFS (NIL T T T) -7 NIL NIL) (-900 2119978 2120096 2120301 "PMDOWN" 2120627 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-899 2119141 2119300 2119482 "PMASS" 2119816 T PMASS (NIL) -7 NIL NIL) (-898 2118415 2118526 2118689 "PMASSFS" 2119027 NIL PMASSFS (NIL T T) -7 NIL NIL) (-897 2118070 2118138 2118232 "PLOTTOOL" 2118341 T PLOTTOOL (NIL) -7 NIL NIL) (-896 2112692 2113881 2115029 "PLOT" 2116942 T PLOT (NIL) -8 NIL NIL) (-895 2108506 2109540 2110461 "PLOT3D" 2111791 T PLOT3D (NIL) -8 NIL NIL) (-894 2107418 2107595 2107830 "PLOT1" 2108310 NIL PLOT1 (NIL T) -7 NIL NIL) (-893 2082812 2087484 2092335 "PLEQN" 2102684 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-892 2082130 2082252 2082432 "PINTERP" 2082677 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-891 2081823 2081870 2081973 "PINTERPA" 2082077 NIL PINTERPA (NIL T T) -7 NIL NIL) (-890 2081108 2081629 2081716 "PI" 2081756 T PI (NIL) -8 NIL NIL) (-889 2079540 2080481 2080509 "PID" 2080691 T PID (NIL) -9 NIL 2080825) (-888 2079265 2079302 2079390 "PICOERCE" 2079497 NIL PICOERCE (NIL T) -7 NIL NIL) (-887 2078585 2078724 2078900 "PGROEB" 2079121 NIL PGROEB (NIL T) -7 NIL NIL) (-886 2074172 2074986 2075891 "PGE" 2077700 T PGE (NIL) -7 NIL NIL) (-885 2072296 2072542 2072908 "PGCD" 2073889 NIL PGCD (NIL T T T T) -7 NIL NIL) (-884 2071634 2071737 2071898 "PFRPAC" 2072180 NIL PFRPAC (NIL T) -7 NIL NIL) (-883 2068314 2070182 2070535 "PFR" 2071313 NIL PFR (NIL T) -8 NIL NIL) (-882 2066703 2066947 2067272 "PFOTOOLS" 2068061 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-881 2065236 2065475 2065826 "PFOQ" 2066460 NIL PFOQ (NIL T T T) -7 NIL NIL) (-880 2063709 2063921 2064284 "PFO" 2065020 NIL PFO (NIL T T T T T) -7 NIL NIL) (-879 2060297 2063598 2063667 "PF" 2063672 NIL PF (NIL NIL) -8 NIL NIL) (-878 2057766 2059003 2059031 "PFECAT" 2059616 T PFECAT (NIL) -9 NIL 2060000) (-877 2057211 2057365 2057579 "PFECAT-" 2057584 NIL PFECAT- (NIL T) -8 NIL NIL) (-876 2055815 2056066 2056367 "PFBRU" 2056960 NIL PFBRU (NIL T T) -7 NIL NIL) (-875 2053682 2054033 2054465 "PFBR" 2055466 NIL PFBR (NIL T T T T) -7 NIL NIL) (-874 2049598 2051058 2051734 "PERM" 2053039 NIL PERM (NIL T) -8 NIL NIL) (-873 2044864 2045805 2046675 "PERMGRP" 2048761 NIL PERMGRP (NIL T) -8 NIL NIL) (-872 2042996 2043927 2043968 "PERMCAT" 2044414 NIL PERMCAT (NIL T) -9 NIL 2044719) (-871 2042649 2042690 2042814 "PERMAN" 2042949 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-870 2040089 2042218 2042349 "PENDTREE" 2042551 NIL PENDTREE (NIL T) -8 NIL NIL) (-869 2038202 2038936 2038977 "PDRING" 2039634 NIL PDRING (NIL T) -9 NIL 2039920) (-868 2037305 2037523 2037885 "PDRING-" 2037890 NIL PDRING- (NIL T T) -8 NIL NIL) (-867 2034446 2035197 2035888 "PDEPROB" 2036634 T PDEPROB (NIL) -8 NIL NIL) (-866 2031993 2032495 2033050 "PDEPACK" 2033911 T PDEPACK (NIL) -7 NIL NIL) (-865 2030905 2031095 2031346 "PDECOMP" 2031792 NIL PDECOMP (NIL T T) -7 NIL NIL) (-864 2028510 2029327 2029355 "PDECAT" 2030142 T PDECAT (NIL) -9 NIL 2030855) (-863 2028261 2028294 2028384 "PCOMP" 2028471 NIL PCOMP (NIL T T) -7 NIL NIL) (-862 2026466 2027062 2027359 "PBWLB" 2027990 NIL PBWLB (NIL T) -8 NIL NIL) (-861 2018970 2020539 2021877 "PATTERN" 2025149 NIL PATTERN (NIL T) -8 NIL NIL) (-860 2018602 2018659 2018768 "PATTERN2" 2018907 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-859 2016359 2016747 2017204 "PATTERN1" 2018191 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-858 2013754 2014308 2014789 "PATRES" 2015924 NIL PATRES (NIL T T) -8 NIL NIL) (-857 2013318 2013385 2013517 "PATRES2" 2013681 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-856 2011201 2011606 2012013 "PATMATCH" 2012985 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-855 2010737 2010920 2010961 "PATMAB" 2011068 NIL PATMAB (NIL T) -9 NIL 2011151) (-854 2009282 2009591 2009849 "PATLRES" 2010542 NIL PATLRES (NIL T T T) -8 NIL NIL) (-853 2008828 2008951 2008992 "PATAB" 2008997 NIL PATAB (NIL T) -9 NIL 2009169) (-852 2006309 2006841 2007414 "PARTPERM" 2008275 T PARTPERM (NIL) -7 NIL NIL) (-851 2005930 2005993 2006095 "PARSURF" 2006240 NIL PARSURF (NIL T) -8 NIL NIL) (-850 2005562 2005619 2005728 "PARSU2" 2005867 NIL PARSU2 (NIL T T) -7 NIL NIL) (-849 2005326 2005366 2005433 "PARSER" 2005515 T PARSER (NIL) -7 NIL NIL) (-848 2004947 2005010 2005112 "PARSCURV" 2005257 NIL PARSCURV (NIL T) -8 NIL NIL) (-847 2004579 2004636 2004745 "PARSC2" 2004884 NIL PARSC2 (NIL T T) -7 NIL NIL) (-846 2004218 2004276 2004373 "PARPCURV" 2004515 NIL PARPCURV (NIL T) -8 NIL NIL) (-845 2003850 2003907 2004016 "PARPC2" 2004155 NIL PARPC2 (NIL T T) -7 NIL NIL) (-844 2003370 2003456 2003575 "PAN2EXPR" 2003751 T PAN2EXPR (NIL) -7 NIL NIL) (-843 2002176 2002491 2002719 "PALETTE" 2003162 T PALETTE (NIL) -8 NIL NIL) (-842 2000644 2001181 2001541 "PAIR" 2001862 NIL PAIR (NIL T T) -8 NIL NIL) (-841 1994552 1999903 2000097 "PADICRC" 2000499 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-840 1987818 1993898 1994082 "PADICRAT" 1994400 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-839 1986168 1987755 1987800 "PADIC" 1987805 NIL PADIC (NIL NIL) -8 NIL NIL) (-838 1983413 1984943 1984983 "PADICCT" 1985564 NIL PADICCT (NIL NIL) -9 NIL 1985846) (-837 1982370 1982570 1982838 "PADEPAC" 1983200 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-836 1981582 1981715 1981921 "PADE" 1982232 NIL PADE (NIL T T T) -7 NIL NIL) (-835 1979632 1980418 1980735 "OWP" 1981349 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-834 1978741 1979237 1979409 "OVAR" 1979500 NIL OVAR (NIL NIL) -8 NIL NIL) (-833 1978005 1978126 1978287 "OUT" 1978600 T OUT (NIL) -7 NIL NIL) (-832 1967059 1969230 1971400 "OUTFORM" 1975855 T OUTFORM (NIL) -8 NIL NIL) (-831 1966696 1966779 1966807 "OUTBCON" 1966958 T OUTBCON (NIL) -9 NIL 1967043) (-830 1966536 1966571 1966647 "OUTBCON-" 1966652 NIL OUTBCON- (NIL T) -8 NIL NIL) (-829 1965944 1966265 1966354 "OSI" 1966467 T OSI (NIL) -8 NIL NIL) (-828 1965500 1965812 1965840 "OSGROUP" 1965845 T OSGROUP (NIL) -9 NIL 1965867) (-827 1964245 1964472 1964757 "ORTHPOL" 1965247 NIL ORTHPOL (NIL T) -7 NIL NIL) (-826 1961655 1963904 1964043 "OREUP" 1964188 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-825 1959093 1961346 1961473 "ORESUP" 1961597 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-824 1956621 1957121 1957682 "OREPCTO" 1958582 NIL OREPCTO (NIL T T) -7 NIL NIL) (-823 1950532 1952699 1952740 "OREPCAT" 1955088 NIL OREPCAT (NIL T) -9 NIL 1956192) (-822 1947679 1948461 1949519 "OREPCAT-" 1949524 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-821 1946856 1947128 1947156 "ORDSET" 1947465 T ORDSET (NIL) -9 NIL 1947629) (-820 1946375 1946497 1946690 "ORDSET-" 1946695 NIL ORDSET- (NIL T) -8 NIL NIL) (-819 1945029 1945786 1945814 "ORDRING" 1946016 T ORDRING (NIL) -9 NIL 1946141) (-818 1944674 1944768 1944912 "ORDRING-" 1944917 NIL ORDRING- (NIL T) -8 NIL NIL) (-817 1944080 1944517 1944545 "ORDMON" 1944550 T ORDMON (NIL) -9 NIL 1944571) (-816 1943242 1943389 1943584 "ORDFUNS" 1943929 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-815 1942753 1943112 1943140 "ORDFIN" 1943145 T ORDFIN (NIL) -9 NIL 1943166) (-814 1939345 1941339 1941748 "ORDCOMP" 1942377 NIL ORDCOMP (NIL T) -8 NIL NIL) (-813 1938611 1938738 1938924 "ORDCOMP2" 1939205 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-812 1935118 1936001 1936838 "OPTPROB" 1937794 T OPTPROB (NIL) -8 NIL NIL) (-811 1931920 1932559 1933263 "OPTPACK" 1934434 T OPTPACK (NIL) -7 NIL NIL) (-810 1929633 1930373 1930401 "OPTCAT" 1931220 T OPTCAT (NIL) -9 NIL 1931870) (-809 1929401 1929440 1929506 "OPQUERY" 1929587 T OPQUERY (NIL) -7 NIL NIL) (-808 1926567 1927712 1928216 "OP" 1928930 NIL OP (NIL T) -8 NIL NIL) (-807 1923412 1925364 1925733 "ONECOMP" 1926231 NIL ONECOMP (NIL T) -8 NIL NIL) (-806 1922717 1922832 1923006 "ONECOMP2" 1923284 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-805 1922136 1922242 1922372 "OMSERVER" 1922607 T OMSERVER (NIL) -7 NIL NIL) (-804 1919024 1921576 1921616 "OMSAGG" 1921677 NIL OMSAGG (NIL T) -9 NIL 1921741) (-803 1917647 1917910 1918192 "OMPKG" 1918762 T OMPKG (NIL) -7 NIL NIL) (-802 1917077 1917180 1917208 "OM" 1917507 T OM (NIL) -9 NIL NIL) (-801 1915659 1916626 1916795 "OMLO" 1916958 NIL OMLO (NIL T T) -8 NIL NIL) (-800 1914584 1914731 1914958 "OMEXPR" 1915485 NIL OMEXPR (NIL T) -7 NIL NIL) (-799 1913902 1914130 1914266 "OMERR" 1914468 T OMERR (NIL) -8 NIL NIL) (-798 1913080 1913323 1913483 "OMERRK" 1913762 T OMERRK (NIL) -8 NIL NIL) (-797 1912558 1912757 1912865 "OMENC" 1912992 T OMENC (NIL) -8 NIL NIL) (-796 1906453 1907638 1908809 "OMDEV" 1911407 T OMDEV (NIL) -8 NIL NIL) (-795 1905522 1905693 1905887 "OMCONN" 1906279 T OMCONN (NIL) -8 NIL NIL) (-794 1904178 1905120 1905148 "OINTDOM" 1905153 T OINTDOM (NIL) -9 NIL 1905174) (-793 1899984 1901168 1901884 "OFMONOID" 1903494 NIL OFMONOID (NIL T) -8 NIL NIL) (-792 1899422 1899921 1899966 "ODVAR" 1899971 NIL ODVAR (NIL T) -8 NIL NIL) (-791 1896632 1898919 1899104 "ODR" 1899297 NIL ODR (NIL T T NIL) -8 NIL NIL) (-790 1888976 1896408 1896534 "ODPOL" 1896539 NIL ODPOL (NIL T) -8 NIL NIL) (-789 1882852 1888848 1888953 "ODP" 1888958 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-788 1881618 1881833 1882108 "ODETOOLS" 1882626 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-787 1878587 1879243 1879959 "ODESYS" 1880951 NIL ODESYS (NIL T T) -7 NIL NIL) (-786 1873469 1874377 1875402 "ODERTRIC" 1877662 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-785 1872895 1872977 1873171 "ODERED" 1873381 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-784 1869783 1870331 1871008 "ODERAT" 1872318 NIL ODERAT (NIL T T) -7 NIL NIL) (-783 1866743 1867207 1867804 "ODEPRRIC" 1869312 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-782 1864612 1865181 1865690 "ODEPROB" 1866254 T ODEPROB (NIL) -8 NIL NIL) (-781 1861134 1861617 1862264 "ODEPRIM" 1864091 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-780 1860383 1860485 1860745 "ODEPAL" 1861026 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-779 1856545 1857336 1858200 "ODEPACK" 1859539 T ODEPACK (NIL) -7 NIL NIL) (-778 1855578 1855685 1855914 "ODEINT" 1856434 NIL ODEINT (NIL T T) -7 NIL NIL) (-777 1849679 1851104 1852551 "ODEIFTBL" 1854151 T ODEIFTBL (NIL) -8 NIL NIL) (-776 1845014 1845800 1846759 "ODEEF" 1848838 NIL ODEEF (NIL T T) -7 NIL NIL) (-775 1844349 1844438 1844668 "ODECONST" 1844919 NIL ODECONST (NIL T T T) -7 NIL NIL) (-774 1842500 1843135 1843163 "ODECAT" 1843768 T ODECAT (NIL) -9 NIL 1844299) (-773 1839407 1842212 1842331 "OCT" 1842413 NIL OCT (NIL T) -8 NIL NIL) (-772 1839045 1839088 1839215 "OCTCT2" 1839358 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-771 1833906 1836306 1836346 "OC" 1837443 NIL OC (NIL T) -9 NIL 1838301) (-770 1831133 1831881 1832871 "OC-" 1832965 NIL OC- (NIL T T) -8 NIL NIL) (-769 1830511 1830953 1830981 "OCAMON" 1830986 T OCAMON (NIL) -9 NIL 1831007) (-768 1830068 1830383 1830411 "OASGP" 1830416 T OASGP (NIL) -9 NIL 1830436) (-767 1829355 1829818 1829846 "OAMONS" 1829886 T OAMONS (NIL) -9 NIL 1829929) (-766 1828795 1829202 1829230 "OAMON" 1829235 T OAMON (NIL) -9 NIL 1829255) (-765 1828099 1828591 1828619 "OAGROUP" 1828624 T OAGROUP (NIL) -9 NIL 1828644) (-764 1827789 1827839 1827927 "NUMTUBE" 1828043 NIL NUMTUBE (NIL T) -7 NIL NIL) (-763 1821362 1822880 1824416 "NUMQUAD" 1826273 T NUMQUAD (NIL) -7 NIL NIL) (-762 1817118 1818106 1819131 "NUMODE" 1820357 T NUMODE (NIL) -7 NIL NIL) (-761 1814499 1815353 1815381 "NUMINT" 1816304 T NUMINT (NIL) -9 NIL 1817068) (-760 1813447 1813644 1813862 "NUMFMT" 1814301 T NUMFMT (NIL) -7 NIL NIL) (-759 1799806 1802751 1805283 "NUMERIC" 1810954 NIL NUMERIC (NIL T) -7 NIL NIL) (-758 1794203 1799255 1799350 "NTSCAT" 1799355 NIL NTSCAT (NIL T T T T) -9 NIL 1799394) (-757 1793397 1793562 1793755 "NTPOLFN" 1794042 NIL NTPOLFN (NIL T) -7 NIL NIL) (-756 1781237 1790222 1791034 "NSUP" 1792618 NIL NSUP (NIL T) -8 NIL NIL) (-755 1780869 1780926 1781035 "NSUP2" 1781174 NIL NSUP2 (NIL T T) -7 NIL NIL) (-754 1770866 1780643 1780776 "NSMP" 1780781 NIL NSMP (NIL T T) -8 NIL NIL) (-753 1769298 1769599 1769956 "NREP" 1770554 NIL NREP (NIL T) -7 NIL NIL) (-752 1767889 1768141 1768499 "NPCOEF" 1769041 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-751 1766955 1767070 1767286 "NORMRETR" 1767770 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-750 1764996 1765286 1765695 "NORMPK" 1766663 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-749 1764681 1764709 1764833 "NORMMA" 1764962 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-748 1764508 1764638 1764667 "NONE" 1764672 T NONE (NIL) -8 NIL NIL) (-747 1764297 1764326 1764395 "NONE1" 1764472 NIL NONE1 (NIL T) -7 NIL NIL) (-746 1763780 1763842 1764028 "NODE1" 1764229 NIL NODE1 (NIL T T) -7 NIL NIL) (-745 1762120 1762943 1763198 "NNI" 1763545 T NNI (NIL) -8 NIL NIL) (-744 1760540 1760853 1761217 "NLINSOL" 1761788 NIL NLINSOL (NIL T) -7 NIL NIL) (-743 1756707 1757675 1758597 "NIPROB" 1759638 T NIPROB (NIL) -8 NIL NIL) (-742 1755464 1755698 1756000 "NFINTBAS" 1756469 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-741 1754172 1754403 1754684 "NCODIV" 1755232 NIL NCODIV (NIL T T) -7 NIL NIL) (-740 1753934 1753971 1754046 "NCNTFRAC" 1754129 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-739 1752114 1752478 1752898 "NCEP" 1753559 NIL NCEP (NIL T) -7 NIL NIL) (-738 1751025 1751764 1751792 "NASRING" 1751902 T NASRING (NIL) -9 NIL 1751976) (-737 1750820 1750864 1750958 "NASRING-" 1750963 NIL NASRING- (NIL T) -8 NIL NIL) (-736 1749973 1750472 1750500 "NARNG" 1750617 T NARNG (NIL) -9 NIL 1750708) (-735 1749665 1749732 1749866 "NARNG-" 1749871 NIL NARNG- (NIL T) -8 NIL NIL) (-734 1748544 1748751 1748986 "NAGSP" 1749450 T NAGSP (NIL) -7 NIL NIL) (-733 1739816 1741500 1743173 "NAGS" 1746891 T NAGS (NIL) -7 NIL NIL) (-732 1738364 1738672 1739003 "NAGF07" 1739505 T NAGF07 (NIL) -7 NIL NIL) (-731 1732902 1734193 1735500 "NAGF04" 1737077 T NAGF04 (NIL) -7 NIL NIL) (-730 1725870 1727484 1729117 "NAGF02" 1731289 T NAGF02 (NIL) -7 NIL NIL) (-729 1721094 1722194 1723311 "NAGF01" 1724773 T NAGF01 (NIL) -7 NIL NIL) (-728 1714722 1716288 1717873 "NAGE04" 1719529 T NAGE04 (NIL) -7 NIL NIL) (-727 1705891 1708012 1710142 "NAGE02" 1712612 T NAGE02 (NIL) -7 NIL NIL) (-726 1701844 1702791 1703755 "NAGE01" 1704947 T NAGE01 (NIL) -7 NIL NIL) (-725 1699639 1700173 1700731 "NAGD03" 1701306 T NAGD03 (NIL) -7 NIL NIL) (-724 1691389 1693317 1695271 "NAGD02" 1697705 T NAGD02 (NIL) -7 NIL NIL) (-723 1685200 1686625 1688065 "NAGD01" 1689969 T NAGD01 (NIL) -7 NIL NIL) (-722 1681409 1682231 1683068 "NAGC06" 1684383 T NAGC06 (NIL) -7 NIL NIL) (-721 1679874 1680206 1680562 "NAGC05" 1681073 T NAGC05 (NIL) -7 NIL NIL) (-720 1679250 1679369 1679513 "NAGC02" 1679750 T NAGC02 (NIL) -7 NIL NIL) (-719 1678310 1678867 1678907 "NAALG" 1678986 NIL NAALG (NIL T) -9 NIL 1679047) (-718 1678145 1678174 1678264 "NAALG-" 1678269 NIL NAALG- (NIL T T) -8 NIL NIL) (-717 1672095 1673203 1674390 "MULTSQFR" 1677041 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-716 1671414 1671489 1671673 "MULTFACT" 1672007 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-715 1664637 1668502 1668555 "MTSCAT" 1669625 NIL MTSCAT (NIL T T) -9 NIL 1670139) (-714 1664349 1664403 1664495 "MTHING" 1664577 NIL MTHING (NIL T) -7 NIL NIL) (-713 1664141 1664174 1664234 "MSYSCMD" 1664309 T MSYSCMD (NIL) -7 NIL NIL) (-712 1660253 1662896 1663216 "MSET" 1663854 NIL MSET (NIL T) -8 NIL NIL) (-711 1657348 1659814 1659855 "MSETAGG" 1659860 NIL MSETAGG (NIL T) -9 NIL 1659894) (-710 1653231 1654727 1655472 "MRING" 1656648 NIL MRING (NIL T T) -8 NIL NIL) (-709 1652797 1652864 1652995 "MRF2" 1653158 NIL MRF2 (NIL T T T) -7 NIL NIL) (-708 1652415 1652450 1652594 "MRATFAC" 1652756 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-707 1650027 1650322 1650753 "MPRFF" 1652120 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-706 1644087 1649881 1649978 "MPOLY" 1649983 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-705 1643577 1643612 1643820 "MPCPF" 1644046 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-704 1643091 1643134 1643318 "MPC3" 1643528 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-703 1642286 1642367 1642588 "MPC2" 1643006 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-702 1640587 1640924 1641314 "MONOTOOL" 1641946 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-701 1639838 1640129 1640157 "MONOID" 1640376 T MONOID (NIL) -9 NIL 1640523) (-700 1639384 1639503 1639684 "MONOID-" 1639689 NIL MONOID- (NIL T) -8 NIL NIL) (-699 1630434 1636340 1636399 "MONOGEN" 1637073 NIL MONOGEN (NIL T T) -9 NIL 1637529) (-698 1627652 1628387 1629387 "MONOGEN-" 1629506 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-697 1626511 1626931 1626959 "MONADWU" 1627351 T MONADWU (NIL) -9 NIL 1627589) (-696 1625883 1626042 1626290 "MONADWU-" 1626295 NIL MONADWU- (NIL T) -8 NIL NIL) (-695 1625268 1625486 1625514 "MONAD" 1625721 T MONAD (NIL) -9 NIL 1625833) (-694 1624953 1625031 1625163 "MONAD-" 1625168 NIL MONAD- (NIL T) -8 NIL NIL) (-693 1623269 1623866 1624145 "MOEBIUS" 1624706 NIL MOEBIUS (NIL T) -8 NIL NIL) (-692 1622661 1623039 1623079 "MODULE" 1623084 NIL MODULE (NIL T) -9 NIL 1623110) (-691 1622229 1622325 1622515 "MODULE-" 1622520 NIL MODULE- (NIL T T) -8 NIL NIL) (-690 1619944 1620593 1620920 "MODRING" 1622053 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-689 1616930 1618049 1618570 "MODOP" 1619473 NIL MODOP (NIL T T) -8 NIL NIL) (-688 1615117 1615569 1615910 "MODMONOM" 1616729 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-687 1604825 1613309 1613732 "MODMON" 1614745 NIL MODMON (NIL T T) -8 NIL NIL) (-686 1602016 1603669 1603945 "MODFIELD" 1604700 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-685 1601020 1601297 1601487 "MMLFORM" 1601846 T MMLFORM (NIL) -8 NIL NIL) (-684 1600546 1600589 1600768 "MMAP" 1600971 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-683 1598815 1599548 1599589 "MLO" 1600012 NIL MLO (NIL T) -9 NIL 1600254) (-682 1596182 1596697 1597299 "MLIFT" 1598296 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-681 1595573 1595657 1595811 "MKUCFUNC" 1596093 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-680 1595172 1595242 1595365 "MKRECORD" 1595496 NIL MKRECORD (NIL T T) -7 NIL NIL) (-679 1594220 1594381 1594609 "MKFUNC" 1594983 NIL MKFUNC (NIL T) -7 NIL NIL) (-678 1593608 1593712 1593868 "MKFLCFN" 1594103 NIL MKFLCFN (NIL T) -7 NIL NIL) (-677 1593034 1593401 1593490 "MKCHSET" 1593552 NIL MKCHSET (NIL T) -8 NIL NIL) (-676 1592311 1592413 1592598 "MKBCFUNC" 1592927 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-675 1589041 1591865 1592001 "MINT" 1592195 T MINT (NIL) -8 NIL NIL) (-674 1587853 1588096 1588373 "MHROWRED" 1588796 NIL MHROWRED (NIL T) -7 NIL NIL) (-673 1583185 1586294 1586720 "MFLOAT" 1587447 T MFLOAT (NIL) -8 NIL NIL) (-672 1582542 1582618 1582789 "MFINFACT" 1583097 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-671 1578857 1579705 1580589 "MESH" 1581678 T MESH (NIL) -7 NIL NIL) (-670 1577247 1577559 1577912 "MDDFACT" 1578544 NIL MDDFACT (NIL T) -7 NIL NIL) (-669 1574089 1576406 1576447 "MDAGG" 1576702 NIL MDAGG (NIL T) -9 NIL 1576845) (-668 1563869 1573382 1573589 "MCMPLX" 1573902 T MCMPLX (NIL) -8 NIL NIL) (-667 1563010 1563156 1563356 "MCDEN" 1563718 NIL MCDEN (NIL T T) -7 NIL NIL) (-666 1560900 1561170 1561550 "MCALCFN" 1562740 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-665 1559811 1559984 1560225 "MAYBE" 1560698 NIL MAYBE (NIL T) -8 NIL NIL) (-664 1557423 1557946 1558508 "MATSTOR" 1559282 NIL MATSTOR (NIL T) -7 NIL NIL) (-663 1553429 1556795 1557043 "MATRIX" 1557208 NIL MATRIX (NIL T) -8 NIL NIL) (-662 1549198 1549902 1550638 "MATLIN" 1552786 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-661 1539352 1542490 1542567 "MATCAT" 1547447 NIL MATCAT (NIL T T T) -9 NIL 1548864) (-660 1535716 1536729 1538085 "MATCAT-" 1538090 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-659 1534310 1534463 1534796 "MATCAT2" 1535551 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-658 1532422 1532746 1533130 "MAPPKG3" 1533985 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-657 1531403 1531576 1531798 "MAPPKG2" 1532246 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-656 1529902 1530186 1530513 "MAPPKG1" 1531109 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-655 1529025 1529308 1529485 "MAPPAST" 1529745 T MAPPAST (NIL) -8 NIL NIL) (-654 1528636 1528694 1528817 "MAPHACK3" 1528961 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-653 1528228 1528289 1528403 "MAPHACK2" 1528568 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-652 1527666 1527769 1527911 "MAPHACK1" 1528119 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-651 1525772 1526366 1526670 "MAGMA" 1527394 NIL MAGMA (NIL T) -8 NIL NIL) (-650 1525267 1525475 1525573 "MACROAST" 1525694 T MACROAST (NIL) -8 NIL NIL) (-649 1521734 1523506 1523967 "M3D" 1524839 NIL M3D (NIL T) -8 NIL NIL) (-648 1515889 1520104 1520145 "LZSTAGG" 1520927 NIL LZSTAGG (NIL T) -9 NIL 1521222) (-647 1511862 1513020 1514477 "LZSTAGG-" 1514482 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-646 1508976 1509753 1510240 "LWORD" 1511407 NIL LWORD (NIL T) -8 NIL NIL) (-645 1508596 1508780 1508855 "LSTAST" 1508921 T LSTAST (NIL) -8 NIL NIL) (-644 1501797 1508367 1508501 "LSQM" 1508506 NIL LSQM (NIL NIL T) -8 NIL NIL) (-643 1501021 1501160 1501388 "LSPP" 1501652 NIL LSPP (NIL T T T T) -7 NIL NIL) (-642 1498833 1499134 1499590 "LSMP" 1500710 NIL LSMP (NIL T T T T) -7 NIL NIL) (-641 1495612 1496286 1497016 "LSMP1" 1498135 NIL LSMP1 (NIL T) -7 NIL NIL) (-640 1489538 1494780 1494821 "LSAGG" 1494883 NIL LSAGG (NIL T) -9 NIL 1494961) (-639 1486233 1487157 1488370 "LSAGG-" 1488375 NIL LSAGG- (NIL T T) -8 NIL NIL) (-638 1483859 1485377 1485626 "LPOLY" 1486028 NIL LPOLY (NIL T T) -8 NIL NIL) (-637 1483441 1483526 1483649 "LPEFRAC" 1483768 NIL LPEFRAC (NIL T) -7 NIL NIL) (-636 1481788 1482535 1482788 "LO" 1483273 NIL LO (NIL T T T) -8 NIL NIL) (-635 1481440 1481552 1481580 "LOGIC" 1481691 T LOGIC (NIL) -9 NIL 1481772) (-634 1481302 1481325 1481396 "LOGIC-" 1481401 NIL LOGIC- (NIL T) -8 NIL NIL) (-633 1480495 1480635 1480828 "LODOOPS" 1481158 NIL LODOOPS (NIL T T) -7 NIL NIL) (-632 1477953 1480411 1480477 "LODO" 1480482 NIL LODO (NIL T NIL) -8 NIL NIL) (-631 1476491 1476726 1477079 "LODOF" 1477700 NIL LODOF (NIL T T) -7 NIL NIL) (-630 1472934 1475331 1475372 "LODOCAT" 1475810 NIL LODOCAT (NIL T) -9 NIL 1476021) (-629 1472667 1472725 1472852 "LODOCAT-" 1472857 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-628 1470022 1472508 1472626 "LODO2" 1472631 NIL LODO2 (NIL T T) -8 NIL NIL) (-627 1467492 1469959 1470004 "LODO1" 1470009 NIL LODO1 (NIL T) -8 NIL NIL) (-626 1466352 1466517 1466829 "LODEEF" 1467315 NIL LODEEF (NIL T T T) -7 NIL NIL) (-625 1461638 1464482 1464523 "LNAGG" 1465470 NIL LNAGG (NIL T) -9 NIL 1465914) (-624 1460785 1460999 1461341 "LNAGG-" 1461346 NIL LNAGG- (NIL T T) -8 NIL NIL) (-623 1456948 1457710 1458349 "LMOPS" 1460200 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-622 1456343 1456705 1456746 "LMODULE" 1456807 NIL LMODULE (NIL T) -9 NIL 1456849) (-621 1453589 1455988 1456111 "LMDICT" 1456253 NIL LMDICT (NIL T) -8 NIL NIL) (-620 1453333 1453497 1453557 "LITERAL" 1453562 NIL LITERAL (NIL T) -8 NIL NIL) (-619 1446560 1452279 1452577 "LIST" 1453068 NIL LIST (NIL T) -8 NIL NIL) (-618 1446085 1446159 1446298 "LIST3" 1446480 NIL LIST3 (NIL T T T) -7 NIL NIL) (-617 1445092 1445270 1445498 "LIST2" 1445903 NIL LIST2 (NIL T T) -7 NIL NIL) (-616 1443226 1443538 1443937 "LIST2MAP" 1444739 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-615 1441976 1442612 1442653 "LINEXP" 1442908 NIL LINEXP (NIL T) -9 NIL 1443057) (-614 1440623 1440883 1441180 "LINDEP" 1441728 NIL LINDEP (NIL T T) -7 NIL NIL) (-613 1437390 1438109 1438886 "LIMITRF" 1439878 NIL LIMITRF (NIL T) -7 NIL NIL) (-612 1435666 1435961 1436377 "LIMITPS" 1437085 NIL LIMITPS (NIL T T) -7 NIL NIL) (-611 1430121 1435177 1435405 "LIE" 1435487 NIL LIE (NIL T T) -8 NIL NIL) (-610 1429170 1429613 1429653 "LIECAT" 1429793 NIL LIECAT (NIL T) -9 NIL 1429944) (-609 1429011 1429038 1429126 "LIECAT-" 1429131 NIL LIECAT- (NIL T T) -8 NIL NIL) (-608 1421623 1428460 1428625 "LIB" 1428866 T LIB (NIL) -8 NIL NIL) (-607 1417260 1418141 1419076 "LGROBP" 1420740 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-606 1415126 1415400 1415762 "LF" 1416981 NIL LF (NIL T T) -7 NIL NIL) (-605 1413966 1414658 1414686 "LFCAT" 1414893 T LFCAT (NIL) -9 NIL 1415032) (-604 1410870 1411498 1412186 "LEXTRIPK" 1413330 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-603 1407641 1408440 1408943 "LEXP" 1410450 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-602 1407161 1407362 1407454 "LETAST" 1407569 T LETAST (NIL) -8 NIL NIL) (-601 1405559 1405872 1406273 "LEADCDET" 1406843 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-600 1404749 1404823 1405052 "LAZM3PK" 1405480 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-599 1399705 1402826 1403364 "LAUPOL" 1404261 NIL LAUPOL (NIL T T) -8 NIL NIL) (-598 1399270 1399314 1399482 "LAPLACE" 1399655 NIL LAPLACE (NIL T T) -7 NIL NIL) (-597 1397244 1398371 1398622 "LA" 1399103 NIL LA (NIL T T T) -8 NIL NIL) (-596 1396345 1396895 1396936 "LALG" 1396998 NIL LALG (NIL T) -9 NIL 1397057) (-595 1396059 1396118 1396254 "LALG-" 1396259 NIL LALG- (NIL T T) -8 NIL NIL) (-594 1394963 1395150 1395449 "KOVACIC" 1395859 NIL KOVACIC (NIL T T) -7 NIL NIL) (-593 1394798 1394822 1394863 "KONVERT" 1394925 NIL KONVERT (NIL T) -9 NIL NIL) (-592 1394633 1394657 1394698 "KOERCE" 1394760 NIL KOERCE (NIL T) -9 NIL NIL) (-591 1392367 1393127 1393520 "KERNEL" 1394272 NIL KERNEL (NIL T) -8 NIL NIL) (-590 1391869 1391950 1392080 "KERNEL2" 1392281 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-589 1385720 1390408 1390462 "KDAGG" 1390839 NIL KDAGG (NIL T T) -9 NIL 1391045) (-588 1385249 1385373 1385578 "KDAGG-" 1385583 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-587 1378424 1384910 1385065 "KAFILE" 1385127 NIL KAFILE (NIL T) -8 NIL NIL) (-586 1372879 1377935 1378163 "JORDAN" 1378245 NIL JORDAN (NIL T T) -8 NIL NIL) (-585 1372303 1372528 1372649 "JOINAST" 1372778 T JOINAST (NIL) -8 NIL NIL) (-584 1372032 1372091 1372178 "JAVACODE" 1372236 T JAVACODE (NIL) -8 NIL NIL) (-583 1368331 1370237 1370291 "IXAGG" 1371220 NIL IXAGG (NIL T T) -9 NIL 1371679) (-582 1367250 1367556 1367975 "IXAGG-" 1367980 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-581 1362830 1367172 1367231 "IVECTOR" 1367236 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-580 1361596 1361833 1362099 "ITUPLE" 1362597 NIL ITUPLE (NIL T) -8 NIL NIL) (-579 1360032 1360209 1360515 "ITRIGMNP" 1361418 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-578 1358777 1358981 1359264 "ITFUN3" 1359808 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-577 1358409 1358466 1358575 "ITFUN2" 1358714 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-576 1356246 1357271 1357570 "ITAYLOR" 1358143 NIL ITAYLOR (NIL T) -8 NIL NIL) (-575 1345240 1350392 1351552 "ISUPS" 1355119 NIL ISUPS (NIL T) -8 NIL NIL) (-574 1344344 1344484 1344720 "ISUMP" 1345087 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-573 1339608 1344145 1344224 "ISTRING" 1344297 NIL ISTRING (NIL NIL) -8 NIL NIL) (-572 1339128 1339329 1339421 "ISAST" 1339536 T ISAST (NIL) -8 NIL NIL) (-571 1338338 1338419 1338635 "IRURPK" 1339042 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-570 1337274 1337475 1337715 "IRSN" 1338118 T IRSN (NIL) -7 NIL NIL) (-569 1335303 1335658 1336094 "IRRF2F" 1336912 NIL IRRF2F (NIL T) -7 NIL NIL) (-568 1335050 1335088 1335164 "IRREDFFX" 1335259 NIL IRREDFFX (NIL T) -7 NIL NIL) (-567 1333665 1333924 1334223 "IROOT" 1334783 NIL IROOT (NIL T) -7 NIL NIL) (-566 1330297 1331349 1332041 "IR" 1333005 NIL IR (NIL T) -8 NIL NIL) (-565 1327910 1328405 1328971 "IR2" 1329775 NIL IR2 (NIL T T) -7 NIL NIL) (-564 1326982 1327095 1327316 "IR2F" 1327793 NIL IR2F (NIL T T) -7 NIL NIL) (-563 1326773 1326807 1326867 "IPRNTPK" 1326942 T IPRNTPK (NIL) -7 NIL NIL) (-562 1323392 1326662 1326731 "IPF" 1326736 NIL IPF (NIL NIL) -8 NIL NIL) (-561 1321755 1323317 1323374 "IPADIC" 1323379 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-560 1321519 1321659 1321687 "IOBCON" 1321692 T IOBCON (NIL) -9 NIL 1321713) (-559 1321016 1321074 1321264 "INVLAPLA" 1321455 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-558 1310665 1313018 1315404 "INTTR" 1318680 NIL INTTR (NIL T T) -7 NIL NIL) (-557 1307009 1307751 1308615 "INTTOOLS" 1309850 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-556 1306595 1306686 1306803 "INTSLPE" 1306912 T INTSLPE (NIL) -7 NIL NIL) (-555 1304590 1306518 1306577 "INTRVL" 1306582 NIL INTRVL (NIL T) -8 NIL NIL) (-554 1302192 1302704 1303279 "INTRF" 1304075 NIL INTRF (NIL T) -7 NIL NIL) (-553 1301603 1301700 1301842 "INTRET" 1302090 NIL INTRET (NIL T) -7 NIL NIL) (-552 1299600 1299989 1300459 "INTRAT" 1301211 NIL INTRAT (NIL T T) -7 NIL NIL) (-551 1296828 1297411 1298037 "INTPM" 1299085 NIL INTPM (NIL T T) -7 NIL NIL) (-550 1293531 1294130 1294875 "INTPAF" 1296214 NIL INTPAF (NIL T T T) -7 NIL NIL) (-549 1288710 1289672 1290723 "INTPACK" 1292500 T INTPACK (NIL) -7 NIL NIL) (-548 1285622 1288439 1288566 "INT" 1288603 T INT (NIL) -8 NIL NIL) (-547 1284874 1285026 1285234 "INTHERTR" 1285464 NIL INTHERTR (NIL T T) -7 NIL NIL) (-546 1284313 1284393 1284581 "INTHERAL" 1284788 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-545 1282159 1282602 1283059 "INTHEORY" 1283876 T INTHEORY (NIL) -7 NIL NIL) (-544 1273467 1275088 1276867 "INTG0" 1280511 NIL INTG0 (NIL T T T) -7 NIL NIL) (-543 1254040 1258830 1263640 "INTFTBL" 1268677 T INTFTBL (NIL) -8 NIL NIL) (-542 1253289 1253427 1253600 "INTFACT" 1253899 NIL INTFACT (NIL T) -7 NIL NIL) (-541 1250674 1251120 1251684 "INTEF" 1252843 NIL INTEF (NIL T T) -7 NIL NIL) (-540 1249176 1249881 1249909 "INTDOM" 1250210 T INTDOM (NIL) -9 NIL 1250417) (-539 1248545 1248719 1248961 "INTDOM-" 1248966 NIL INTDOM- (NIL T) -8 NIL NIL) (-538 1245078 1246964 1247018 "INTCAT" 1247817 NIL INTCAT (NIL T) -9 NIL 1248137) (-537 1244551 1244653 1244781 "INTBIT" 1244970 T INTBIT (NIL) -7 NIL NIL) (-536 1243222 1243376 1243690 "INTALG" 1244396 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-535 1242679 1242769 1242939 "INTAF" 1243126 NIL INTAF (NIL T T) -7 NIL NIL) (-534 1236133 1242489 1242629 "INTABL" 1242634 NIL INTABL (NIL T T T) -8 NIL NIL) (-533 1231188 1233859 1233887 "INS" 1234821 T INS (NIL) -9 NIL 1235485) (-532 1228428 1229199 1230173 "INS-" 1230246 NIL INS- (NIL T) -8 NIL NIL) (-531 1227203 1227430 1227728 "INPSIGN" 1228181 NIL INPSIGN (NIL T T) -7 NIL NIL) (-530 1226321 1226438 1226635 "INPRODPF" 1227083 NIL INPRODPF (NIL T T) -7 NIL NIL) (-529 1225215 1225332 1225569 "INPRODFF" 1226201 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-528 1224215 1224367 1224627 "INNMFACT" 1225051 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-527 1223412 1223509 1223697 "INMODGCD" 1224114 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-526 1221921 1222165 1222489 "INFSP" 1223157 NIL INFSP (NIL T T T) -7 NIL NIL) (-525 1221105 1221222 1221405 "INFPROD0" 1221801 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-524 1217987 1219170 1219685 "INFORM" 1220598 T INFORM (NIL) -8 NIL NIL) (-523 1217597 1217657 1217755 "INFORM1" 1217922 NIL INFORM1 (NIL T) -7 NIL NIL) (-522 1217120 1217209 1217323 "INFINITY" 1217503 T INFINITY (NIL) -7 NIL NIL) (-521 1215737 1215986 1216307 "INEP" 1216868 NIL INEP (NIL T T T) -7 NIL NIL) (-520 1215013 1215634 1215699 "INDE" 1215704 NIL INDE (NIL T) -8 NIL NIL) (-519 1214577 1214645 1214762 "INCRMAPS" 1214940 NIL INCRMAPS (NIL T) -7 NIL NIL) (-518 1209888 1210813 1211757 "INBFF" 1213665 NIL INBFF (NIL T) -7 NIL NIL) (-517 1209557 1209633 1209661 "INBCON" 1209794 T INBCON (NIL) -9 NIL 1209872) (-516 1209397 1209432 1209508 "INBCON-" 1209513 NIL INBCON- (NIL T) -8 NIL NIL) (-515 1208916 1209118 1209210 "INAST" 1209325 T INAST (NIL) -8 NIL NIL) (-514 1208387 1208595 1208701 "IMPTAST" 1208830 T IMPTAST (NIL) -8 NIL NIL) (-513 1204881 1208231 1208335 "IMATRIX" 1208340 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-512 1203593 1203716 1204031 "IMATQF" 1204737 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-511 1201813 1202040 1202377 "IMATLIN" 1203349 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-510 1196439 1201737 1201795 "ILIST" 1201800 NIL ILIST (NIL T NIL) -8 NIL NIL) (-509 1194392 1196299 1196412 "IIARRAY2" 1196417 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-508 1189825 1194303 1194367 "IFF" 1194372 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-507 1189216 1189442 1189558 "IFAST" 1189729 T IFAST (NIL) -8 NIL NIL) (-506 1184259 1188508 1188696 "IFARRAY" 1189073 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-505 1183466 1184163 1184236 "IFAMON" 1184241 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-504 1183050 1183115 1183169 "IEVALAB" 1183376 NIL IEVALAB (NIL T T) -9 NIL NIL) (-503 1182725 1182793 1182953 "IEVALAB-" 1182958 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-502 1182383 1182639 1182702 "IDPO" 1182707 NIL IDPO (NIL T T) -8 NIL NIL) (-501 1181660 1182272 1182347 "IDPOAMS" 1182352 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-500 1180994 1181549 1181624 "IDPOAM" 1181629 NIL IDPOAM (NIL T T) -8 NIL NIL) (-499 1180079 1180329 1180382 "IDPC" 1180795 NIL IDPC (NIL T T) -9 NIL 1180944) (-498 1179575 1179971 1180044 "IDPAM" 1180049 NIL IDPAM (NIL T T) -8 NIL NIL) (-497 1178978 1179467 1179540 "IDPAG" 1179545 NIL IDPAG (NIL T T) -8 NIL NIL) (-496 1178726 1178893 1178943 "IDENT" 1178948 T IDENT (NIL) -8 NIL NIL) (-495 1174981 1175829 1176724 "IDECOMP" 1177883 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-494 1167854 1168904 1169951 "IDEAL" 1174017 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-493 1167018 1167130 1167329 "ICDEN" 1167738 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-492 1166117 1166498 1166645 "ICARD" 1166891 T ICARD (NIL) -8 NIL NIL) (-491 1164177 1164490 1164895 "IBPTOOLS" 1165794 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-490 1159811 1163797 1163910 "IBITS" 1164096 NIL IBITS (NIL NIL) -8 NIL NIL) (-489 1156534 1157110 1157805 "IBATOOL" 1159228 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-488 1154314 1154775 1155308 "IBACHIN" 1156069 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-487 1152191 1154160 1154263 "IARRAY2" 1154268 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-486 1148344 1152117 1152174 "IARRAY1" 1152179 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-485 1142339 1146758 1147238 "IAN" 1147884 T IAN (NIL) -8 NIL NIL) (-484 1141850 1141907 1142080 "IALGFACT" 1142276 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-483 1141378 1141491 1141519 "HYPCAT" 1141726 T HYPCAT (NIL) -9 NIL NIL) (-482 1140916 1141033 1141219 "HYPCAT-" 1141224 NIL HYPCAT- (NIL T) -8 NIL NIL) (-481 1140538 1140711 1140794 "HOSTNAME" 1140853 T HOSTNAME (NIL) -8 NIL NIL) (-480 1137217 1138548 1138589 "HOAGG" 1139570 NIL HOAGG (NIL T) -9 NIL 1140249) (-479 1135811 1136210 1136736 "HOAGG-" 1136741 NIL HOAGG- (NIL T T) -8 NIL NIL) (-478 1129699 1135252 1135418 "HEXADEC" 1135665 T HEXADEC (NIL) -8 NIL NIL) (-477 1128447 1128669 1128932 "HEUGCD" 1129476 NIL HEUGCD (NIL T) -7 NIL NIL) (-476 1127550 1128284 1128414 "HELLFDIV" 1128419 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-475 1125778 1127327 1127415 "HEAP" 1127494 NIL HEAP (NIL T) -8 NIL NIL) (-474 1125086 1125330 1125464 "HEADAST" 1125664 T HEADAST (NIL) -8 NIL NIL) (-473 1119006 1125001 1125063 "HDP" 1125068 NIL HDP (NIL NIL T) -8 NIL NIL) (-472 1112757 1118641 1118793 "HDMP" 1118907 NIL HDMP (NIL NIL T) -8 NIL NIL) (-471 1112082 1112221 1112385 "HB" 1112613 T HB (NIL) -7 NIL NIL) (-470 1105579 1111928 1112032 "HASHTBL" 1112037 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-469 1105099 1105300 1105392 "HASAST" 1105507 T HASAST (NIL) -8 NIL NIL) (-468 1102913 1104723 1104904 "HACKPI" 1104938 T HACKPI (NIL) -8 NIL NIL) (-467 1098608 1102766 1102879 "GTSET" 1102884 NIL GTSET (NIL T T T T) -8 NIL NIL) (-466 1092134 1098486 1098584 "GSTBL" 1098589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-465 1084447 1091165 1091430 "GSERIES" 1091925 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-464 1083614 1084005 1084033 "GROUP" 1084236 T GROUP (NIL) -9 NIL 1084370) (-463 1082980 1083139 1083390 "GROUP-" 1083395 NIL GROUP- (NIL T) -8 NIL NIL) (-462 1081349 1081668 1082055 "GROEBSOL" 1082657 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-461 1080289 1080551 1080602 "GRMOD" 1081131 NIL GRMOD (NIL T T) -9 NIL 1081299) (-460 1080057 1080093 1080221 "GRMOD-" 1080226 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-459 1075382 1076411 1077411 "GRIMAGE" 1079077 T GRIMAGE (NIL) -8 NIL NIL) (-458 1073849 1074109 1074433 "GRDEF" 1075078 T GRDEF (NIL) -7 NIL NIL) (-457 1073293 1073409 1073550 "GRAY" 1073728 T GRAY (NIL) -7 NIL NIL) (-456 1072524 1072904 1072955 "GRALG" 1073108 NIL GRALG (NIL T T) -9 NIL 1073201) (-455 1072185 1072258 1072421 "GRALG-" 1072426 NIL GRALG- (NIL T T T) -8 NIL NIL) (-454 1068989 1071770 1071948 "GPOLSET" 1072092 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-453 1068343 1068400 1068658 "GOSPER" 1068926 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-452 1064102 1064781 1065307 "GMODPOL" 1068042 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-451 1063107 1063291 1063529 "GHENSEL" 1063914 NIL GHENSEL (NIL T T) -7 NIL NIL) (-450 1057158 1058001 1059028 "GENUPS" 1062191 NIL GENUPS (NIL T T) -7 NIL NIL) (-449 1056855 1056906 1056995 "GENUFACT" 1057101 NIL GENUFACT (NIL T) -7 NIL NIL) (-448 1056267 1056344 1056509 "GENPGCD" 1056773 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-447 1055741 1055776 1055989 "GENMFACT" 1056226 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-446 1054309 1054564 1054871 "GENEEZ" 1055484 NIL GENEEZ (NIL T T) -7 NIL NIL) (-445 1048222 1053920 1054082 "GDMP" 1054232 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-444 1037599 1041993 1043099 "GCNAALG" 1047205 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-443 1036061 1036889 1036917 "GCDDOM" 1037172 T GCDDOM (NIL) -9 NIL 1037329) (-442 1035531 1035658 1035873 "GCDDOM-" 1035878 NIL GCDDOM- (NIL T) -8 NIL NIL) (-441 1034203 1034388 1034692 "GB" 1035310 NIL GB (NIL T T T T) -7 NIL NIL) (-440 1022823 1025149 1027541 "GBINTERN" 1031894 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-439 1020660 1020952 1021373 "GBF" 1022498 NIL GBF (NIL T T T T) -7 NIL NIL) (-438 1019441 1019606 1019873 "GBEUCLID" 1020476 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-437 1018790 1018915 1019064 "GAUSSFAC" 1019312 T GAUSSFAC (NIL) -7 NIL NIL) (-436 1017157 1017459 1017773 "GALUTIL" 1018509 NIL GALUTIL (NIL T) -7 NIL NIL) (-435 1015465 1015739 1016063 "GALPOLYU" 1016884 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-434 1012830 1013120 1013527 "GALFACTU" 1015162 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-433 1004636 1006135 1007743 "GALFACT" 1011262 NIL GALFACT (NIL T) -7 NIL NIL) (-432 1002024 1002682 1002710 "FVFUN" 1003866 T FVFUN (NIL) -9 NIL 1004586) (-431 1001290 1001472 1001500 "FVC" 1001791 T FVC (NIL) -9 NIL 1001974) (-430 1000932 1001087 1001168 "FUNCTION" 1001242 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-429 998602 999153 999642 "FT" 1000463 T FT (NIL) -8 NIL NIL) (-428 997420 997903 998106 "FTEM" 998419 T FTEM (NIL) -8 NIL NIL) (-427 995676 995965 996369 "FSUPFACT" 997111 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-426 994073 994362 994694 "FST" 995364 T FST (NIL) -8 NIL NIL) (-425 993244 993350 993545 "FSRED" 993955 NIL FSRED (NIL T T) -7 NIL NIL) (-424 991923 992178 992532 "FSPRMELT" 992959 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-423 989008 989446 989945 "FSPECF" 991486 NIL FSPECF (NIL T T) -7 NIL NIL) (-422 971450 979892 979932 "FS" 983780 NIL FS (NIL T) -9 NIL 986069) (-421 960100 963090 967146 "FS-" 967443 NIL FS- (NIL T T) -8 NIL NIL) (-420 959614 959668 959845 "FSINT" 960041 NIL FSINT (NIL T T) -7 NIL NIL) (-419 957941 958607 958910 "FSERIES" 959393 NIL FSERIES (NIL T T) -8 NIL NIL) (-418 956955 957071 957302 "FSCINT" 957821 NIL FSCINT (NIL T T) -7 NIL NIL) (-417 953189 955899 955940 "FSAGG" 956310 NIL FSAGG (NIL T) -9 NIL 956569) (-416 950951 951552 952348 "FSAGG-" 952443 NIL FSAGG- (NIL T T) -8 NIL NIL) (-415 949993 950136 950363 "FSAGG2" 950804 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-414 947648 947927 948481 "FS2UPS" 949711 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-413 947230 947273 947428 "FS2" 947599 NIL FS2 (NIL T T T T) -7 NIL NIL) (-412 946087 946258 946567 "FS2EXPXP" 947055 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-411 945513 945628 945780 "FRUTIL" 945967 NIL FRUTIL (NIL T) -7 NIL NIL) (-410 936974 941012 942368 "FR" 944189 NIL FR (NIL T) -8 NIL NIL) (-409 932049 934692 934732 "FRNAALG" 936128 NIL FRNAALG (NIL T) -9 NIL 936735) (-408 927727 928798 930073 "FRNAALG-" 930823 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-407 927365 927408 927535 "FRNAAF2" 927678 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-406 925772 926219 926514 "FRMOD" 927177 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-405 923551 924155 924472 "FRIDEAL" 925563 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-404 922746 922833 923122 "FRIDEAL2" 923458 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-403 921988 922402 922443 "FRETRCT" 922448 NIL FRETRCT (NIL T) -9 NIL 922624) (-402 921100 921331 921682 "FRETRCT-" 921687 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-401 918350 919526 919585 "FRAMALG" 920467 NIL FRAMALG (NIL T T) -9 NIL 920759) (-400 916484 916939 917569 "FRAMALG-" 917792 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-399 910444 915959 916235 "FRAC" 916240 NIL FRAC (NIL T) -8 NIL NIL) (-398 910080 910137 910244 "FRAC2" 910381 NIL FRAC2 (NIL T T) -7 NIL NIL) (-397 909716 909773 909880 "FR2" 910017 NIL FR2 (NIL T T) -7 NIL NIL) (-396 904446 907294 907322 "FPS" 908441 T FPS (NIL) -9 NIL 908998) (-395 903895 904004 904168 "FPS-" 904314 NIL FPS- (NIL T) -8 NIL NIL) (-394 901401 903036 903064 "FPC" 903289 T FPC (NIL) -9 NIL 903431) (-393 901194 901234 901331 "FPC-" 901336 NIL FPC- (NIL T) -8 NIL NIL) (-392 900072 900682 900723 "FPATMAB" 900728 NIL FPATMAB (NIL T) -9 NIL 900880) (-391 897772 898248 898674 "FPARFRAC" 899709 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-390 893165 893664 894346 "FORTRAN" 897204 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-389 890881 891381 891920 "FORT" 892646 T FORT (NIL) -7 NIL NIL) (-388 888557 889119 889147 "FORTFN" 890207 T FORTFN (NIL) -9 NIL 890831) (-387 888321 888371 888399 "FORTCAT" 888458 T FORTCAT (NIL) -9 NIL 888520) (-386 886381 886864 887263 "FORMULA" 887942 T FORMULA (NIL) -8 NIL NIL) (-385 886169 886199 886268 "FORMULA1" 886345 NIL FORMULA1 (NIL T) -7 NIL NIL) (-384 885692 885744 885917 "FORDER" 886111 NIL FORDER (NIL T T T T) -7 NIL NIL) (-383 884788 884952 885145 "FOP" 885519 T FOP (NIL) -7 NIL NIL) (-382 883396 884068 884242 "FNLA" 884670 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-381 882064 882453 882481 "FNCAT" 883053 T FNCAT (NIL) -9 NIL 883346) (-380 881630 882023 882051 "FNAME" 882056 T FNAME (NIL) -8 NIL NIL) (-379 880328 881257 881285 "FMTC" 881290 T FMTC (NIL) -9 NIL 881326) (-378 876690 877851 878480 "FMONOID" 879732 NIL FMONOID (NIL T) -8 NIL NIL) (-377 875909 876432 876581 "FM" 876586 NIL FM (NIL T T) -8 NIL NIL) (-376 873333 873979 874007 "FMFUN" 875151 T FMFUN (NIL) -9 NIL 875859) (-375 872602 872783 872811 "FMC" 873101 T FMC (NIL) -9 NIL 873283) (-374 869814 870648 870702 "FMCAT" 871897 NIL FMCAT (NIL T T) -9 NIL 872392) (-373 868707 869580 869680 "FM1" 869759 NIL FM1 (NIL T T) -8 NIL NIL) (-372 866481 866897 867391 "FLOATRP" 868258 NIL FLOATRP (NIL T) -7 NIL NIL) (-371 860032 864137 864767 "FLOAT" 865871 T FLOAT (NIL) -8 NIL NIL) (-370 857470 857970 858548 "FLOATCP" 859499 NIL FLOATCP (NIL T) -7 NIL NIL) (-369 856299 857103 857144 "FLINEXP" 857149 NIL FLINEXP (NIL T) -9 NIL 857242) (-368 855453 855688 856016 "FLINEXP-" 856021 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-367 854529 854673 854897 "FLASORT" 855305 NIL FLASORT (NIL T T) -7 NIL NIL) (-366 851746 852588 852640 "FLALG" 853867 NIL FLALG (NIL T T) -9 NIL 854334) (-365 845530 849232 849273 "FLAGG" 850535 NIL FLAGG (NIL T) -9 NIL 851187) (-364 844256 844595 845085 "FLAGG-" 845090 NIL FLAGG- (NIL T T) -8 NIL NIL) (-363 843298 843441 843668 "FLAGG2" 844109 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-362 840311 841285 841344 "FINRALG" 842472 NIL FINRALG (NIL T T) -9 NIL 842980) (-361 839471 839700 840039 "FINRALG-" 840044 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-360 838877 839090 839118 "FINITE" 839314 T FINITE (NIL) -9 NIL 839421) (-359 831335 833496 833536 "FINAALG" 837203 NIL FINAALG (NIL T) -9 NIL 838656) (-358 826676 827717 828861 "FINAALG-" 830240 NIL FINAALG- (NIL T T) -8 NIL NIL) (-357 826071 826431 826534 "FILE" 826606 NIL FILE (NIL T) -8 NIL NIL) (-356 824755 825067 825121 "FILECAT" 825805 NIL FILECAT (NIL T T) -9 NIL 826021) (-355 822675 824169 824197 "FIELD" 824237 T FIELD (NIL) -9 NIL 824317) (-354 821295 821680 822191 "FIELD-" 822196 NIL FIELD- (NIL T) -8 NIL NIL) (-353 819173 819930 820277 "FGROUP" 820981 NIL FGROUP (NIL T) -8 NIL NIL) (-352 818263 818427 818647 "FGLMICPK" 819005 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-351 814130 818188 818245 "FFX" 818250 NIL FFX (NIL T NIL) -8 NIL NIL) (-350 813731 813792 813927 "FFSLPE" 814063 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-349 809724 810503 811299 "FFPOLY" 812967 NIL FFPOLY (NIL T) -7 NIL NIL) (-348 809228 809264 809473 "FFPOLY2" 809682 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-347 805114 809147 809210 "FFP" 809215 NIL FFP (NIL T NIL) -8 NIL NIL) (-346 800547 805025 805089 "FF" 805094 NIL FF (NIL NIL NIL) -8 NIL NIL) (-345 795708 799890 800080 "FFNBX" 800401 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-344 790682 794843 795101 "FFNBP" 795562 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-343 785350 789966 790177 "FFNB" 790515 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-342 784182 784380 784695 "FFINTBAS" 785147 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-341 780466 782641 782669 "FFIELDC" 783289 T FFIELDC (NIL) -9 NIL 783665) (-340 779129 779499 779996 "FFIELDC-" 780001 NIL FFIELDC- (NIL T) -8 NIL NIL) (-339 778699 778744 778868 "FFHOM" 779071 NIL FFHOM (NIL T T T) -7 NIL NIL) (-338 776397 776881 777398 "FFF" 778214 NIL FFF (NIL T) -7 NIL NIL) (-337 772050 776139 776240 "FFCGX" 776340 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-336 767717 771782 771889 "FFCGP" 771993 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-335 762935 767444 767552 "FFCG" 767653 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-334 744993 754029 754115 "FFCAT" 759280 NIL FFCAT (NIL T T T) -9 NIL 760731) (-333 740191 741238 742552 "FFCAT-" 743782 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-332 739602 739645 739880 "FFCAT2" 740142 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-331 728814 732574 733794 "FEXPR" 738454 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-330 727814 728249 728290 "FEVALAB" 728374 NIL FEVALAB (NIL T) -9 NIL 728635) (-329 726973 727183 727521 "FEVALAB-" 727526 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-328 725566 726356 726559 "FDIV" 726872 NIL FDIV (NIL T T T T) -8 NIL NIL) (-327 722632 723347 723462 "FDIVCAT" 725030 NIL FDIVCAT (NIL T T T T) -9 NIL 725467) (-326 722394 722421 722591 "FDIVCAT-" 722596 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-325 721614 721701 721978 "FDIV2" 722301 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-324 720300 720559 720848 "FCPAK1" 721345 T FCPAK1 (NIL) -7 NIL NIL) (-323 719428 719800 719941 "FCOMP" 720191 NIL FCOMP (NIL T) -8 NIL NIL) (-322 703063 706477 710038 "FC" 715887 T FC (NIL) -8 NIL NIL) (-321 695716 699697 699737 "FAXF" 701539 NIL FAXF (NIL T) -9 NIL 702231) (-320 692995 693650 694475 "FAXF-" 694940 NIL FAXF- (NIL T T) -8 NIL NIL) (-319 688095 692371 692547 "FARRAY" 692852 NIL FARRAY (NIL T) -8 NIL NIL) (-318 683502 685534 685587 "FAMR" 686610 NIL FAMR (NIL T T) -9 NIL 687070) (-317 682392 682694 683129 "FAMR-" 683134 NIL FAMR- (NIL T T T) -8 NIL NIL) (-316 681588 682314 682367 "FAMONOID" 682372 NIL FAMONOID (NIL T) -8 NIL NIL) (-315 679418 680102 680155 "FAMONC" 681096 NIL FAMONC (NIL T T) -9 NIL 681482) (-314 678110 679172 679309 "FAGROUP" 679314 NIL FAGROUP (NIL T) -8 NIL NIL) (-313 675905 676224 676627 "FACUTIL" 677791 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-312 675004 675189 675411 "FACTFUNC" 675715 NIL FACTFUNC (NIL T) -7 NIL NIL) (-311 667409 674255 674467 "EXPUPXS" 674860 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-310 664892 665432 666018 "EXPRTUBE" 666843 T EXPRTUBE (NIL) -7 NIL NIL) (-309 661086 661678 662415 "EXPRODE" 664231 NIL EXPRODE (NIL T T) -7 NIL NIL) (-308 646460 659741 660169 "EXPR" 660690 NIL EXPR (NIL T) -8 NIL NIL) (-307 640867 641454 642267 "EXPR2UPS" 645758 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-306 640503 640560 640667 "EXPR2" 640804 NIL EXPR2 (NIL T T) -7 NIL NIL) (-305 631910 639635 639932 "EXPEXPAN" 640340 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-304 631737 631867 631896 "EXIT" 631901 T EXIT (NIL) -8 NIL NIL) (-303 631261 631461 631552 "EXITAST" 631666 T EXITAST (NIL) -8 NIL NIL) (-302 630888 630950 631063 "EVALCYC" 631193 NIL EVALCYC (NIL T) -7 NIL NIL) (-301 630429 630547 630588 "EVALAB" 630758 NIL EVALAB (NIL T) -9 NIL 630862) (-300 629910 630032 630253 "EVALAB-" 630258 NIL EVALAB- (NIL T T) -8 NIL NIL) (-299 627413 628681 628709 "EUCDOM" 629264 T EUCDOM (NIL) -9 NIL 629614) (-298 625818 626260 626850 "EUCDOM-" 626855 NIL EUCDOM- (NIL T) -8 NIL NIL) (-297 613358 616116 618866 "ESTOOLS" 623088 T ESTOOLS (NIL) -7 NIL NIL) (-296 612990 613047 613156 "ESTOOLS2" 613295 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-295 612741 612783 612863 "ESTOOLS1" 612942 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-294 606666 608394 608422 "ES" 611190 T ES (NIL) -9 NIL 612599) (-293 601613 602900 604717 "ES-" 604881 NIL ES- (NIL T) -8 NIL NIL) (-292 597988 598748 599528 "ESCONT" 600853 T ESCONT (NIL) -7 NIL NIL) (-291 597733 597765 597847 "ESCONT1" 597950 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-290 597408 597458 597558 "ES2" 597677 NIL ES2 (NIL T T) -7 NIL NIL) (-289 597038 597096 597205 "ES1" 597344 NIL ES1 (NIL T T) -7 NIL NIL) (-288 596254 596383 596559 "ERROR" 596882 T ERROR (NIL) -7 NIL NIL) (-287 589757 596113 596204 "EQTBL" 596209 NIL EQTBL (NIL T T) -8 NIL NIL) (-286 582314 585071 586520 "EQ" 588341 NIL -3846 (NIL T) -8 NIL NIL) (-285 581946 582003 582112 "EQ2" 582251 NIL EQ2 (NIL T T) -7 NIL NIL) (-284 577238 578284 579377 "EP" 580885 NIL EP (NIL T) -7 NIL NIL) (-283 575820 576121 576438 "ENV" 576941 T ENV (NIL) -8 NIL NIL) (-282 575019 575539 575567 "ENTIRER" 575572 T ENTIRER (NIL) -9 NIL 575618) (-281 571521 572974 573344 "EMR" 574818 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-280 570665 570850 570904 "ELTAGG" 571284 NIL ELTAGG (NIL T T) -9 NIL 571495) (-279 570384 570446 570587 "ELTAGG-" 570592 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-278 570173 570202 570256 "ELTAB" 570340 NIL ELTAB (NIL T T) -9 NIL NIL) (-277 569299 569445 569644 "ELFUTS" 570024 NIL ELFUTS (NIL T T) -7 NIL NIL) (-276 569041 569097 569125 "ELEMFUN" 569230 T ELEMFUN (NIL) -9 NIL NIL) (-275 568911 568932 569000 "ELEMFUN-" 569005 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-274 563802 567011 567052 "ELAGG" 567992 NIL ELAGG (NIL T) -9 NIL 568455) (-273 562087 562521 563184 "ELAGG-" 563189 NIL ELAGG- (NIL T T) -8 NIL NIL) (-272 560744 561024 561319 "ELABEXPR" 561812 T ELABEXPR (NIL) -8 NIL NIL) (-271 553610 555411 556238 "EFUPXS" 560020 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-270 547060 548861 549671 "EFULS" 552886 NIL EFULS (NIL T T T) -8 NIL NIL) (-269 544482 544840 545319 "EFSTRUC" 546692 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-268 533554 535119 536679 "EF" 542997 NIL EF (NIL T T) -7 NIL NIL) (-267 532655 533039 533188 "EAB" 533425 T EAB (NIL) -8 NIL NIL) (-266 531864 532614 532642 "E04UCFA" 532647 T E04UCFA (NIL) -8 NIL NIL) (-265 531073 531823 531851 "E04NAFA" 531856 T E04NAFA (NIL) -8 NIL NIL) (-264 530282 531032 531060 "E04MBFA" 531065 T E04MBFA (NIL) -8 NIL NIL) (-263 529491 530241 530269 "E04JAFA" 530274 T E04JAFA (NIL) -8 NIL NIL) (-262 528702 529450 529478 "E04GCFA" 529483 T E04GCFA (NIL) -8 NIL NIL) (-261 527913 528661 528689 "E04FDFA" 528694 T E04FDFA (NIL) -8 NIL NIL) (-260 527122 527872 527900 "E04DGFA" 527905 T E04DGFA (NIL) -8 NIL NIL) (-259 521300 522647 524011 "E04AGNT" 525778 T E04AGNT (NIL) -7 NIL NIL) (-258 520024 520504 520544 "DVARCAT" 521019 NIL DVARCAT (NIL T) -9 NIL 521218) (-257 519228 519440 519754 "DVARCAT-" 519759 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-256 512128 519027 519156 "DSMP" 519161 NIL DSMP (NIL T T T) -8 NIL NIL) (-255 506938 508073 509141 "DROPT" 511080 T DROPT (NIL) -8 NIL NIL) (-254 506603 506662 506760 "DROPT1" 506873 NIL DROPT1 (NIL T) -7 NIL NIL) (-253 501718 502844 503981 "DROPT0" 505486 T DROPT0 (NIL) -7 NIL NIL) (-252 500063 500388 500774 "DRAWPT" 501352 T DRAWPT (NIL) -7 NIL NIL) (-251 494650 495573 496652 "DRAW" 499037 NIL DRAW (NIL T) -7 NIL NIL) (-250 494283 494336 494454 "DRAWHACK" 494591 NIL DRAWHACK (NIL T) -7 NIL NIL) (-249 493014 493283 493574 "DRAWCX" 494012 T DRAWCX (NIL) -7 NIL NIL) (-248 492530 492598 492749 "DRAWCURV" 492940 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-247 483001 484960 487075 "DRAWCFUN" 490435 T DRAWCFUN (NIL) -7 NIL NIL) (-246 479814 481696 481737 "DQAGG" 482366 NIL DQAGG (NIL T) -9 NIL 482639) (-245 468333 475030 475113 "DPOLCAT" 476965 NIL DPOLCAT (NIL T T T T) -9 NIL 477510) (-244 463172 464518 466476 "DPOLCAT-" 466481 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-243 456327 463033 463131 "DPMO" 463136 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-242 449385 456107 456274 "DPMM" 456279 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-241 448805 449008 449122 "DOMAIN" 449291 T DOMAIN (NIL) -8 NIL NIL) (-240 442556 448440 448592 "DMP" 448706 NIL DMP (NIL NIL T) -8 NIL NIL) (-239 442156 442212 442356 "DLP" 442494 NIL DLP (NIL T) -7 NIL NIL) (-238 435800 441257 441484 "DLIST" 441961 NIL DLIST (NIL T) -8 NIL NIL) (-237 432646 434655 434696 "DLAGG" 435246 NIL DLAGG (NIL T) -9 NIL 435475) (-236 431496 432126 432154 "DIVRING" 432246 T DIVRING (NIL) -9 NIL 432329) (-235 430733 430923 431223 "DIVRING-" 431228 NIL DIVRING- (NIL T) -8 NIL NIL) (-234 428835 429192 429598 "DISPLAY" 430347 T DISPLAY (NIL) -7 NIL NIL) (-233 422777 428749 428812 "DIRPROD" 428817 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-232 421625 421828 422093 "DIRPROD2" 422570 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-231 411163 417115 417168 "DIRPCAT" 417578 NIL DIRPCAT (NIL NIL T) -9 NIL 418418) (-230 408489 409131 410012 "DIRPCAT-" 410349 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-229 407776 407936 408122 "DIOSP" 408323 T DIOSP (NIL) -7 NIL NIL) (-228 404478 406688 406729 "DIOPS" 407163 NIL DIOPS (NIL T) -9 NIL 407392) (-227 404027 404141 404332 "DIOPS-" 404337 NIL DIOPS- (NIL T T) -8 NIL NIL) (-226 402939 403533 403561 "DIFRING" 403748 T DIFRING (NIL) -9 NIL 403858) (-225 402585 402662 402814 "DIFRING-" 402819 NIL DIFRING- (NIL T) -8 NIL NIL) (-224 400410 401648 401689 "DIFEXT" 402052 NIL DIFEXT (NIL T) -9 NIL 402346) (-223 398695 399123 399789 "DIFEXT-" 399794 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-222 396017 398227 398268 "DIAGG" 398273 NIL DIAGG (NIL T) -9 NIL 398293) (-221 395401 395558 395810 "DIAGG-" 395815 NIL DIAGG- (NIL T T) -8 NIL NIL) (-220 390866 394360 394637 "DHMATRIX" 395170 NIL DHMATRIX (NIL T) -8 NIL NIL) (-219 386478 387387 388397 "DFSFUN" 389876 T DFSFUN (NIL) -7 NIL NIL) (-218 381446 385293 385635 "DFLOAT" 386156 T DFLOAT (NIL) -8 NIL NIL) (-217 379674 379955 380351 "DFINTTLS" 381154 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-216 376739 377695 378095 "DERHAM" 379340 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-215 374588 376514 376603 "DEQUEUE" 376683 NIL DEQUEUE (NIL T) -8 NIL NIL) (-214 373803 373936 374132 "DEGRED" 374450 NIL DEGRED (NIL T T) -7 NIL NIL) (-213 370198 370943 371796 "DEFINTRF" 373031 NIL DEFINTRF (NIL T) -7 NIL NIL) (-212 367725 368194 368793 "DEFINTEF" 369717 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-211 367091 367324 367446 "DEFAST" 367623 T DEFAST (NIL) -8 NIL NIL) (-210 360979 366532 366698 "DECIMAL" 366945 T DECIMAL (NIL) -8 NIL NIL) (-209 358491 358949 359455 "DDFACT" 360523 NIL DDFACT (NIL T T) -7 NIL NIL) (-208 358087 358130 358281 "DBLRESP" 358442 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-207 355797 356131 356500 "DBASE" 357845 NIL DBASE (NIL T) -8 NIL NIL) (-206 355066 355277 355423 "DATABUF" 355696 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-205 354199 355025 355053 "D03FAFA" 355058 T D03FAFA (NIL) -8 NIL NIL) (-204 353333 354158 354186 "D03EEFA" 354191 T D03EEFA (NIL) -8 NIL NIL) (-203 351283 351749 352238 "D03AGNT" 352864 T D03AGNT (NIL) -7 NIL NIL) (-202 350599 351242 351270 "D02EJFA" 351275 T D02EJFA (NIL) -8 NIL NIL) (-201 349915 350558 350586 "D02CJFA" 350591 T D02CJFA (NIL) -8 NIL NIL) (-200 349231 349874 349902 "D02BHFA" 349907 T D02BHFA (NIL) -8 NIL NIL) (-199 348547 349190 349218 "D02BBFA" 349223 T D02BBFA (NIL) -8 NIL NIL) (-198 341745 343333 344939 "D02AGNT" 346961 T D02AGNT (NIL) -7 NIL NIL) (-197 339514 340036 340582 "D01WGTS" 341219 T D01WGTS (NIL) -7 NIL NIL) (-196 338609 339473 339501 "D01TRNS" 339506 T D01TRNS (NIL) -8 NIL NIL) (-195 337704 338568 338596 "D01GBFA" 338601 T D01GBFA (NIL) -8 NIL NIL) (-194 336799 337663 337691 "D01FCFA" 337696 T D01FCFA (NIL) -8 NIL NIL) (-193 335894 336758 336786 "D01ASFA" 336791 T D01ASFA (NIL) -8 NIL NIL) (-192 334989 335853 335881 "D01AQFA" 335886 T D01AQFA (NIL) -8 NIL NIL) (-191 334084 334948 334976 "D01APFA" 334981 T D01APFA (NIL) -8 NIL NIL) (-190 333179 334043 334071 "D01ANFA" 334076 T D01ANFA (NIL) -8 NIL NIL) (-189 332274 333138 333166 "D01AMFA" 333171 T D01AMFA (NIL) -8 NIL NIL) (-188 331369 332233 332261 "D01ALFA" 332266 T D01ALFA (NIL) -8 NIL NIL) (-187 330464 331328 331356 "D01AKFA" 331361 T D01AKFA (NIL) -8 NIL NIL) (-186 329559 330423 330451 "D01AJFA" 330456 T D01AJFA (NIL) -8 NIL NIL) (-185 322856 324407 325968 "D01AGNT" 328018 T D01AGNT (NIL) -7 NIL NIL) (-184 322193 322321 322473 "CYCLOTOM" 322724 T CYCLOTOM (NIL) -7 NIL NIL) (-183 318928 319641 320368 "CYCLES" 321486 T CYCLES (NIL) -7 NIL NIL) (-182 318240 318374 318545 "CVMP" 318789 NIL CVMP (NIL T) -7 NIL NIL) (-181 316011 316269 316645 "CTRIGMNP" 317968 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-180 315522 315711 315810 "CTORCALL" 315932 T CTORCALL (NIL) -8 NIL NIL) (-179 314896 314995 315148 "CSTTOOLS" 315419 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-178 310695 311352 312110 "CRFP" 314208 NIL CRFP (NIL T T) -7 NIL NIL) (-177 310215 310416 310508 "CRCAST" 310623 T CRCAST (NIL) -8 NIL NIL) (-176 309262 309447 309675 "CRAPACK" 310019 NIL CRAPACK (NIL T) -7 NIL NIL) (-175 308646 308747 308951 "CPMATCH" 309138 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-174 308371 308399 308505 "CPIMA" 308612 NIL CPIMA (NIL T T T) -7 NIL NIL) (-173 304735 305407 306125 "COORDSYS" 307706 NIL COORDSYS (NIL T) -7 NIL NIL) (-172 304119 304248 304398 "CONTOUR" 304605 T CONTOUR (NIL) -8 NIL NIL) (-171 300045 302122 302614 "CONTFRAC" 303659 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 299925 299946 299974 "CONDUIT" 300011 T CONDUIT (NIL) -9 NIL NIL) (-169 299118 299638 299666 "COMRING" 299671 T COMRING (NIL) -9 NIL 299723) (-168 298199 298476 298660 "COMPPROP" 298954 T COMPPROP (NIL) -8 NIL NIL) (-167 297860 297895 298023 "COMPLPAT" 298158 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-166 287919 297669 297778 "COMPLEX" 297783 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287555 287612 287719 "COMPLEX2" 287856 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-164 287273 287308 287406 "COMPFACT" 287514 NIL COMPFACT (NIL T T) -7 NIL NIL) (-163 271671 281887 281927 "COMPCAT" 282931 NIL COMPCAT (NIL T) -9 NIL 284326) (-162 261186 264110 267737 "COMPCAT-" 268093 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-161 260915 260943 261046 "COMMUPC" 261152 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-160 260710 260743 260802 "COMMONOP" 260876 T COMMONOP (NIL) -7 NIL NIL) (-159 260293 260461 260548 "COMM" 260643 T COMM (NIL) -8 NIL NIL) (-158 259914 260097 260172 "COMMAAST" 260238 T COMMAAST (NIL) -8 NIL NIL) (-157 259163 259357 259385 "COMBOPC" 259723 T COMBOPC (NIL) -9 NIL 259898) (-156 258059 258269 258511 "COMBINAT" 258953 NIL COMBINAT (NIL T) -7 NIL NIL) (-155 254257 254830 255470 "COMBF" 257481 NIL COMBF (NIL T T) -7 NIL NIL) (-154 253043 253373 253608 "COLOR" 254042 T COLOR (NIL) -8 NIL NIL) (-153 252563 252764 252856 "COLONAST" 252971 T COLONAST (NIL) -8 NIL NIL) (-152 252203 252250 252375 "CMPLXRT" 252510 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-151 247705 248733 249813 "CLIP" 251143 T CLIP (NIL) -7 NIL NIL) (-150 246087 246811 247050 "CLIF" 247532 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242309 244233 244274 "CLAGG" 245203 NIL CLAGG (NIL T) -9 NIL 245739) (-148 240731 241188 241771 "CLAGG-" 241776 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240275 240360 240500 "CINTSLPE" 240640 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237776 238247 238795 "CHVAR" 239803 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237039 237559 237587 "CHARZ" 237592 T CHARZ (NIL) -9 NIL 237607) (-144 236793 236833 236911 "CHARPOL" 236993 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235940 236493 236521 "CHARNZ" 236568 T CHARNZ (NIL) -9 NIL 236624) (-142 233965 234630 234965 "CHAR" 235625 T CHAR (NIL) -8 NIL NIL) (-141 233691 233752 233780 "CFCAT" 233891 T CFCAT (NIL) -9 NIL NIL) (-140 232936 233047 233229 "CDEN" 233575 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228928 232089 232369 "CCLASS" 232676 T CCLASS (NIL) -8 NIL NIL) (-138 228847 228873 228908 "CATEGORY" 228913 T -10 (NIL) -8 NIL NIL) (-137 228338 228547 228646 "CATAST" 228768 T CATAST (NIL) -8 NIL NIL) (-136 227858 228059 228151 "CASEAST" 228266 T CASEAST (NIL) -8 NIL NIL) (-135 222910 223887 224640 "CARTEN" 227161 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222018 222166 222387 "CARTEN2" 222757 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220360 221168 221425 "CARD" 221781 T CARD (NIL) -8 NIL NIL) (-132 219980 220164 220239 "CAPSLAST" 220305 T CAPSLAST (NIL) -8 NIL NIL) (-131 219352 219680 219708 "CACHSET" 219840 T CACHSET (NIL) -9 NIL 219917) (-130 218848 219144 219172 "CABMON" 219222 T CABMON (NIL) -9 NIL 219278) (-129 218016 218395 218538 "BYTE" 218725 T BYTE (NIL) -8 NIL NIL) (-128 213964 217963 217997 "BYTEARY" 218002 T BYTEARY (NIL) -8 NIL NIL) (-127 211521 213656 213763 "BTREE" 213890 NIL BTREE (NIL T) -8 NIL NIL) (-126 209019 211169 211291 "BTOURN" 211431 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206437 208490 208531 "BTCAT" 208599 NIL BTCAT (NIL T) -9 NIL 208676) (-124 206104 206184 206333 "BTCAT-" 206338 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201396 205247 205275 "BTAGG" 205497 T BTAGG (NIL) -9 NIL 205658) (-122 200886 201011 201217 "BTAGG-" 201222 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197930 200164 200379 "BSTREE" 200703 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197068 197194 197378 "BRILL" 197786 NIL BRILL (NIL T) -7 NIL NIL) (-119 193769 195796 195837 "BRAGG" 196486 NIL BRAGG (NIL T) -9 NIL 196743) (-118 192298 192704 193259 "BRAGG-" 193264 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185564 191644 191828 "BPADICRT" 192146 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183914 185501 185546 "BPADIC" 185551 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183612 183642 183756 "BOUNDZRO" 183878 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179127 180218 181085 "BOP" 182765 T BOP (NIL) -8 NIL NIL) (-113 176748 177192 177712 "BOP1" 178640 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175472 176158 176358 "BOOLEAN" 176568 T BOOLEAN (NIL) -8 NIL NIL) (-111 174834 175212 175266 "BMODULE" 175271 NIL BMODULE (NIL T T) -9 NIL 175336) (-110 170664 174632 174705 "BITS" 174781 T BITS (NIL) -8 NIL NIL) (-109 169761 170196 170348 "BINFILE" 170532 T BINFILE (NIL) -8 NIL NIL) (-108 169173 169295 169437 "BINDING" 169639 T BINDING (NIL) -8 NIL NIL) (-107 163065 168617 168782 "BINARY" 169028 T BINARY (NIL) -8 NIL NIL) (-106 160892 162320 162361 "BGAGG" 162621 NIL BGAGG (NIL T) -9 NIL 162758) (-105 160723 160755 160846 "BGAGG-" 160851 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159821 160107 160312 "BFUNCT" 160538 T BFUNCT (NIL) -8 NIL NIL) (-103 158511 158689 158977 "BEZOUT" 159645 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155028 157363 157693 "BBTREE" 158214 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154762 154815 154843 "BASTYPE" 154962 T BASTYPE (NIL) -9 NIL NIL) (-100 154614 154643 154716 "BASTYPE-" 154721 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154052 154128 154278 "BALFACT" 154525 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152935 153467 153653 "AUTOMOR" 153897 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152661 152666 152692 "ATTREG" 152697 T ATTREG (NIL) -9 NIL NIL) (-96 150940 151358 151710 "ATTRBUT" 152327 T ATTRBUT (NIL) -8 NIL NIL) (-95 150592 150768 150834 "ATTRAST" 150892 T ATTRAST (NIL) -8 NIL NIL) (-94 150128 150241 150267 "ATRIG" 150468 T ATRIG (NIL) -9 NIL NIL) (-93 149937 149978 150065 "ATRIG-" 150070 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149662 149805 149831 "ASTCAT" 149836 T ASTCAT (NIL) -9 NIL 149866) (-91 149459 149502 149594 "ASTCAT-" 149599 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147656 149235 149323 "ASTACK" 149402 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146161 146458 146823 "ASSOCEQ" 147338 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145193 145820 145944 "ASP9" 146068 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144957 145141 145180 "ASP8" 145185 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143826 144562 144704 "ASP80" 144846 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142725 143461 143593 "ASP7" 143725 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141679 142402 142520 "ASP78" 142638 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140648 141359 141476 "ASP77" 141593 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139560 140286 140417 "ASP74" 140548 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138460 139195 139327 "ASP73" 139459 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137415 138137 138255 "ASP6" 138373 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136363 137092 137210 "ASP55" 137328 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135313 136037 136156 "ASP50" 136275 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134401 135014 135124 "ASP4" 135234 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133489 134102 134212 "ASP49" 134322 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132274 133028 133196 "ASP42" 133378 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131051 131807 131977 "ASP41" 132161 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130001 130728 130846 "ASP35" 130964 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129766 129949 129988 "ASP34" 129993 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129503 129570 129646 "ASP33" 129721 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128398 129138 129270 "ASP31" 129402 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128163 128346 128385 "ASP30" 128390 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127898 127967 128043 "ASP29" 128118 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127663 127846 127885 "ASP28" 127890 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127428 127611 127650 "ASP27" 127655 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126512 127126 127237 "ASP24" 127348 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125428 126153 126283 "ASP20" 126413 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124516 125129 125239 "ASP1" 125349 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123460 124190 124309 "ASP19" 124428 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123197 123264 123340 "ASP12" 123415 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122049 122796 122940 "ASP10" 123084 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119948 121893 121984 "ARRAY2" 121989 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115764 119596 119710 "ARRAY1" 119865 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114796 114969 115190 "ARRAY12" 115587 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109155 111026 111101 "ARR2CAT" 113731 NIL ARR2CAT (NIL T T T) -9 NIL 114489) (-55 106589 107333 108287 "ARR2CAT-" 108292 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105337 105489 105795 "APPRULE" 106425 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104988 105036 105155 "APPLYORE" 105283 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103962 104253 104448 "ANY" 104811 T ANY (NIL) -8 NIL NIL) (-51 103240 103363 103520 "ANY1" 103836 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100805 101677 102004 "ANTISYM" 102964 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100320 100509 100606 "ANON" 100726 T ANON (NIL) -8 NIL NIL) (-48 94454 98861 99314 "AN" 99885 T AN (NIL) -8 NIL NIL) (-47 90835 92189 92240 "AMR" 92988 NIL AMR (NIL T T) -9 NIL 93588) (-46 89947 90168 90531 "AMR-" 90536 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74497 89864 89925 "ALIST" 89930 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71334 74091 74260 "ALGSC" 74415 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67890 68444 69051 "ALGPKG" 70774 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67167 67268 67452 "ALGMFACT" 67776 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62906 63591 64246 "ALGMANIP" 66690 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54312 62532 62682 "ALGFF" 62839 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53508 53639 53818 "ALGFACT" 54170 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52538 53104 53142 "ALGEBRA" 53202 NIL ALGEBRA (NIL T) -9 NIL 53261) (-37 52256 52315 52447 "ALGEBRA-" 52452 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34516 50259 50311 "ALAGG" 50447 NIL ALAGG (NIL T T) -9 NIL 50608) (-35 34052 34165 34191 "AHYP" 34392 T AHYP (NIL) -9 NIL NIL) (-34 32983 33231 33257 "AGG" 33756 T AGG (NIL) -9 NIL 34035) (-33 32417 32579 32793 "AGG-" 32798 NIL AGG- (NIL T) -8 NIL NIL) (-32 30094 30516 30934 "AF" 32059 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29819 29909 "ADDAST" 30022 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index fe9c2a1c..5dbe2ccb 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,12394 +1,15342 @@ -(722866 . 3430368525) +(732728 . 3430739786) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-408 *3 *4)) + (-4 *3 (-409 *4)))) + ((*1 *2) + (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-4 *3 (-355)) + (-5 *2 (-1131 (-921 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-126 *3))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135))))) + (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-981)) (-5 *2 (-832))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-598 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-29 *4)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1131 *3)) (-4 *3 (-360)) (-4 *1 (-321 *3)) + (-4 *3 (-355))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) + (-5 *2 (-619 (-619 (-619 (-745)))))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) + (-5 *1 (-731))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *5 (-1194 *4)) (-5 *2 (-1131 (-399 *5))) (-5 *1 (-594 *4 *5)) + (-5 *3 (-399 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 (-1131 (-399 *6))) (-5 *1 (-594 *5 *6)) (-5 *3 (-399 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) + (-5 *2 (-1131 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-619 *2) *2 *2 *2)) (-4 *2 (-1063)) + (-5 *1 (-102 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) + (-5 *2 (-619 (-619 (-619 (-912 *3)))))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-731))))) +(((*1 *2 *1) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-821)) + (-4 *3 (-1063))))) +(((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-591 *4)) (-4 *4 (-821)) (-4 *2 (-821)) + (-5 *1 (-590 *2 *4))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) + (-5 *2 (-1131 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) + (-5 *2 (-1131 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-443) (-145))) (-5 *2 (-410 *3)) + (-5 *1 (-99 *4 *3)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-13 (-443) (-145))) + (-5 *2 (-410 *3)) (-5 *1 (-99 *5 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-168))))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-731))))) +(((*1 *2 *1) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1025)) (-4 *3 (-1157)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) - (-5 *2 (-1205 (-392 (-526)))) (-5 *1 (-1232 *4))))) + (-12 (-5 *3 (-619 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1173 *2)) + (-4 *2 (-1063)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-821)) + (-5 *1 (-1173 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832))))) +(((*1 *2 *3) + (-12 (-5 *2 (-591 *4)) (-5 *1 (-590 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-821))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-766))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-548))) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-168)))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-166 (-218)))) (-5 *2 (-1004)) + (-5 *1 (-731))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-159))) + ((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-159))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1172)) (-5 *2 (-548))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-591 *3)) (-4 *3 (-821))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-2 (|:| -1915 (-1131 *6)) (|:| -3352 (-548))))) + (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-619 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-426)) (-4 *5 (-821)) + (-5 *1 (-1069 *5 *4)) (-4 *4 (-422 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-112)) (-5 *5 (-663 (-166 (-218)))) + (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *2) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-422 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) + ((*1 *1 *1) (-4 *1 (-157)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1063)) (-5 *2 (-112)) + (-5 *1 (-1173 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-766)) (-4 *3 (-169))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) + (-4 *2 (-13 (-583 (-548) *4) (-10 -7 (-6 -4327) (-6 -4328)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) + (-4 *2 (-13 (-583 (-548) *3) (-10 -7 (-6 -4327) (-6 -4328))))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-112)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-748)) (-5 *1 (-52))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-422 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1056 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) + (-5 *1 (-155 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -2479 (-619 *3)) (|:| -2469 (-619 *3)))) + (-5 *1 (-1173 *3)) (-4 *3 (-1063))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-548))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-589 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-315 *4 *2)) (-4 *4 (-1063)) + (-4 *2 (-130))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) + (-4 *2 (-13 (-583 (-548) *4) (-10 -7 (-6 -4327) (-6 -4328)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) + (-4 *2 (-13 (-583 (-548) *3) (-10 -7 (-6 -4327) (-6 -4328))))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-730)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-380)) + (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *2) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) - (-5 *2 (-1205 (-526))) (-5 *1 (-1232 *4))))) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) + (-5 *1 (-1173 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) + (-5 *1 (-1173 *4))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-619 + (-2 + (|:| -3156 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (|:| -1657 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-218))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3094 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-543)))) + ((*1 *2 *1) + (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) + (-5 *2 (-619 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-130))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-96))))) (((*1 *2 *3) - (-12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) (-5 *2 (-111)) - (-5 *1 (-1232 *4))))) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-1016)) (-4 *2 (-1194 *4)) + (-5 *1 (-435 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-399 (-1131 (-308 *5)))) (-5 *3 (-1218 (-308 *5))) + (-5 *4 (-548)) (-4 *5 (-13 (-540) (-821))) (-5 *1 (-1092 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-112)) (-5 *6 (-663 (-218))) + (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-584 *2) (-163))) (-5 *2 (-849 *4)) (-5 *1 (-161 *4 *5 *3)) - (-4 *4 (-1052)) (-4 *3 (-157 *5)))) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) + (-5 *2 (-619 (-921 *4))))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))) (-5 *1 (-408 *3 *4)) + (-4 *3 (-409 *4)))) + ((*1 *2) + (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-619 (-921 *3))))) + ((*1 *2) + (-12 (-5 *2 (-619 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-607 (-1041 (-803 (-363))))) - (-5 *2 (-607 (-1041 (-803 (-211))))) (-5 *1 (-288)))) - ((*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-363)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-378)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-395 *3 *4)) - (-4 *4 (-1181 *3)))) + (-12 (-5 *3 (-1218 (-444 *4 *5 *6 *7))) (-5 *2 (-619 (-921 *4))) + (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-540)) (-4 *4 (-169)) + (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-745)))) ((*1 *2 *1) - (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) - (-5 *2 (-1205 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-403 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-390 *1)) (-4 *1 (-406 *3)) (-4 *3 (-533)) (-4 *3 (-811)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-447 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-515)))) - ((*1 *2 *1) (-12 (-4 *1 (-584 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-689 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-939 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1015)))) - ((*1 *1 *2) - (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) - (-4 *5 (-584 (-1123))) (-4 *4 (-757)) (-4 *5 (-811)))) - ((*1 *1 *2) - (-3850 - (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) - (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) - (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) - (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811))))) - ((*1 *1 *2) - (-12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) - (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1106)) - (-5 *1 (-1022 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1033)))) - ((*1 *1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *2)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *2 (-1052)) (-4 *6 (-1052)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *2 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1055 *3 *2 *4 *5 *6)) (-4 *3 (-1052)) (-4 *2 (-1052)) - (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) - (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 *1)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) - (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) - (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1060 *4 *5 *6 *7)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1106)) - (-5 *1 (-1093 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-1128)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-1139)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-1139)))) - ((*1 *2 *3) - (-12 (-5 *3 (-744 *4 (-824 *5))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-14 *5 (-607 (-1123))) (-5 *2 (-744 *4 (-824 *6))) (-5 *1 (-1231 *4 *5 *6)) - (-14 *6 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-905 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) - (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-5 *3 (-744 *4 (-824 *6))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-14 *6 (-607 (-1123))) (-5 *2 (-905 (-981 (-392 *4)))) - (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1117 *4)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-1117 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) - (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1094 *4 (-512 (-824 *6)) (-824 *6) (-744 *4 (-824 *6)))) - (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *6 (-607 (-1123))) - (-5 *2 (-607 (-744 *4 (-824 *6)))) (-5 *1 (-1231 *4 *5 *6)) - (-14 *5 (-607 (-1123)))))) -(((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) - (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-909 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-4 *7 (-909 *6 *4 *5)) - (-5 *2 (-390 (-1117 *7))) (-5 *1 (-707 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-548)) (-4 *5 (-341)) (-5 *2 (-410 (-1131 (-1131 *5)))) + (-5 *1 (-1170 *5)) (-5 *3 (-1131 (-1131 *5)))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) + (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-315 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)) + (-4 *3 (-766))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-399 (-1131 (-308 *3)))) (-4 *3 (-13 (-540) (-821))) + (-5 *1 (-1092 *3))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *2 *3) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)) + (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-745))))) +(((*1 *2 *3) + (-12 (-4 *4 (-341)) (-5 *2 (-410 (-1131 (-1131 *4)))) + (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *1)) (|has| *1 (-6 -4328)) (-4 *1 (-979 *3)) + (-4 *3 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) + (-5 *2 (-619 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-548)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1016)) + (-5 *1 (-313 *4 *5 *2 *6)) (-4 *6 (-918 *2 *4 *5))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1118)) (-5 *1 (-96)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1118)) (-5 *1 (-96))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-286 (-399 (-921 *5)))) (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-821) (-145))) + (-5 *2 (-1125 (-619 (-308 *5)) (-619 (-286 (-308 *5))))) + (-5 *1 (-1091 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-821) (-145))) + (-5 *2 (-1125 (-619 (-308 *5)) (-619 (-286 (-308 *5))))) + (-5 *1 (-1091 *5))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-745)) (|:| -2802 *4))) (-5 *5 (-745)) + (-4 *4 (-918 *6 *7 *8)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-440 *6 *7 *8 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-533)) (-5 *1 (-156 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-341)) (-5 *2 (-410 (-1131 (-1131 *4)))) + (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-979 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4327)) (-4 *1 (-583 *4 *3)) (-4 *4 (-1063)) + (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 *7)) (-5 *3 (-548)) (-4 *7 (-918 *6 *4 *5)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-5 *1 (-313 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-90 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-308 *5))) + (-5 *1 (-1091 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-308 *5)))) + (-5 *1 (-1091 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) + (-5 *2 (-112)) (-5 *1 (-440 *4 *5 *6 *7))))) +(((*1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-619 (-619 (-218)))) (-5 *4 (-218)) + (-5 *2 (-619 (-912 *4))) (-5 *1 (-1168)) (-5 *3 (-912 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) + (-5 *2 (-399 (-548))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-410 *3)) (-4 *3 (-533)) + (-4 *3 (-540)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-533)) (-5 *2 (-399 (-548))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) + (-5 *2 (-399 (-548))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-807 *3)) (-4 *3 (-533)) + (-4 *3 (-1063)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-814 *3)) (-4 *3 (-533)) + (-4 *3 (-1063)))) ((*1 *2 *1) - (-12 (-4 *3 (-436)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-390 *1)) (-4 *1 (-909 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) + (-5 *2 (-399 (-548))))) ((*1 *2 *3) - (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-436)) (-5 *2 (-390 *3)) - (-5 *1 (-938 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) + (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-977 *3)) + (-4 *3 (-1007 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-583 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) + (-4 *2 (-821))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131 *6)) (-4 *6 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-1131 *7)) (-5 *1 (-313 *4 *5 *6 *7)) + (-4 *7 (-918 *6 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-355)) (-4 *5 (-540)) + (-5 *2 + (-2 (|:| |minor| (-619 (-890))) (|:| -2383 *3) + (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 *3)))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) + (-5 *1 (-1091 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-13 (-299) (-821) (-145))) + (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1091 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-286 (-399 (-921 *5)))) (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) + (-5 *1 (-1091 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-436)) (-4 *7 (-909 *6 *4 *5)) - (-5 *2 (-390 (-1117 (-392 *7)))) (-5 *1 (-1119 *4 *5 *6 *7)) - (-5 *3 (-1117 (-392 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1164)))) + (-12 (-5 *3 (-286 (-399 (-921 *4)))) + (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) + (-5 *1 (-1091 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-299) (-821) (-145))) + (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-1185 *4 *3)) - (-4 *3 (-13 (-1181 *4) (-533) (-10 -8 (-15 -3457 ($ $ $))))))) + (-12 (-5 *3 (-619 (-399 (-921 *4)))) + (-4 *4 (-13 (-299) (-821) (-145))) + (-5 *2 (-619 (-619 (-286 (-308 *4))))) (-5 *1 (-1091 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-286 (-399 (-921 *5))))) (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-299) (-821) (-145))) + (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-14 *5 (-607 (-1123))) - (-5 *2 (-607 (-1094 *4 (-512 (-824 *6)) (-824 *6) (-744 *4 (-824 *6))))) - (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123)))))) + (-12 (-5 *3 (-619 (-286 (-399 (-921 *4))))) + (-4 *4 (-13 (-299) (-821) (-145))) + (-5 *2 (-619 (-619 (-286 (-308 *4))))) (-5 *1 (-1091 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-730))))) (((*1 *2 *3) - (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) - (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) - (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) - (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) - (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123)))))) + (-12 (-5 *3 (-548)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *2 (-1223)) (-5 *1 (-440 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-540)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-548)) (-5 *2 (-619 (-619 (-218)))) (-5 *1 (-1168))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) + (-5 *4 (-308 (-166 (-371)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) + (-5 *4 (-308 (-371))) (-5 *1 (-322)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) + (-5 *4 (-308 (-548))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-166 (-371))))) + (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-371)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-548)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-166 (-371))))) + (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-371)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-548)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-166 (-371)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-371))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-548))) (-5 *1 (-322)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) + (-5 *4 (-308 (-668))) (-5 *1 (-322)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) + (-5 *4 (-308 (-673))) (-5 *1 (-322)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) + (-5 *4 (-308 (-675))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-668)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-673)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-675)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-668)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-673)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-675)))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-668))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-673))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-675))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-668))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-673))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-675))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-668))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-673))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-675))) (-5 *1 (-322)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-322)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-410 *3)) (-4 *3 (-533)) (-4 *3 (-540)))) + ((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-1007 (-399 (-548))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-583 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) + (-4 *2 (-821))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) + (-5 *1 (-313 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-89 *4 *5)) + (-5 *3 (-663 *4)) (-4 *5 (-630 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *1) (-4 *1 (-936)))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) + (-5 *1 (-440 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-540)))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-540)) + (-5 *2 (-2 (|:| -4035 (-663 *5)) (|:| |vec| (-1218 (-619 (-890)))))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) + (-5 *2 (-399 (-548))))) + ((*1 *2 *1) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-410 *3)) (-4 *3 (-533)) + (-4 *3 (-540)))) + ((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-399 (-548))))) + ((*1 *2 *1) + (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) + (-5 *2 (-399 (-548))))) + ((*1 *2 *1) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-807 *3)) (-4 *3 (-533)) + (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-814 *3)) (-4 *3 (-533)) + (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) + (-5 *2 (-399 (-548))))) + ((*1 *2 *3) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) + (-14 *4 (-619 (-1135))))) + ((*1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) + (-14 *4 (-619 (-1135))))) + ((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-327 *3 *4 *5 *2)) (-4 *3 (-355)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) + (-4 *2 (-334 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-169)))) + ((*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-699 *2 *3)) (-4 *3 (-1194 *2))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1172)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-583 *3 *2)) (-4 *3 (-1063)) + (-4 *2 (-1172))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-607 (-1123))) - (-5 *2 (-607 (-607 (-363)))) (-5 *1 (-980)) (-5 *5 (-363)))) + (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 *8)) + (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *9 (-918 *8 *6 *7)) + (-4 *6 (-767)) (-5 *2 (-1131 *8)) (-5 *1 (-313 *6 *7 *8 *9))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-548)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-821)) + (-5 *1 (-440 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-540)))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-890)) (-5 *4 (-218)) (-5 *5 (-548)) (-5 *6 (-843)) + (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1194 (-399 (-548)))) (-5 *1 (-882 *3 *2)) + (-4 *2 (-1194 (-399 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-58 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-58 *3))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1172)) (-5 *2 (-1223))))) +(((*1 *2 *1) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-311 *3 *4 *5)) + (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3)))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-548)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-821)) + (-5 *1 (-440 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-540)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1218 + (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) + (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) + (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) + (|:| |axesColor| (-843)) (|:| -1841 (-548)) + (|:| |unitsColor| (-843)) (|:| |showing| (-548))))) + (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1194 (-399 *4)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-548)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1172)) + (-4 *3 (-365 *4)) (-4 *5 (-365 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-975))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-619 (-591 *2))) (-5 *4 (-619 (-1135))) + (-4 *2 (-13 (-422 (-166 *5)) (-971) (-1157))) + (-4 *5 (-13 (-540) (-821))) (-5 *1 (-579 *5 *6 *2)) + (-4 *6 (-13 (-422 *5) (-971) (-1157)))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) + (-5 *5 (-1058 (-218))) (-5 *6 (-548)) (-5 *2 (-1167 (-895))) + (-5 *1 (-310)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) + (-5 *5 (-1058 (-218))) (-5 *6 (-548)) (-5 *7 (-1118)) + (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) + (-5 *5 (-1058 (-218))) (-5 *6 (-218)) (-5 *7 (-548)) + (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) + (-5 *5 (-1058 (-218))) (-5 *6 (-218)) (-5 *7 (-548)) (-5 *8 (-1118)) + (-5 *2 (-1167 (-895))) (-5 *1 (-310))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) + (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-540)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1218 (-3 (-459) "undefined"))) (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))))) + (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *5)) + (-4 *5 (-1194 (-399 *4)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-548)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1172)) + (-4 *5 (-365 *4)) (-4 *3 (-365 *4))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) + ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-540) (-821))) (-5 *2 (-166 *5)) + (-5 *1 (-579 *4 *5 *3)) (-4 *5 (-13 (-422 *4) (-971) (-1157))) + (-4 *3 (-13 (-422 (-166 *4)) (-971) (-1157)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-310)) (-5 *3 (-218))))) +(((*1 *2 *3) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-548)) + (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-540)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-459)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1194 (-399 (-548)))) + (-5 *2 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548)))) + (-5 *1 (-882 *3 *4)) (-4 *4 (-1194 (-399 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) - (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) - (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) - (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) - (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) - (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-14 *5 (-607 (-1123))) - (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) - (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) - (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) - (-14 *7 (-607 (-1123))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) - (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) - (-14 *7 (-607 (-1123))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) - (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) - (-14 *7 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) - (-5 *1 (-1231 *4 *5 *6)) (-5 *3 (-607 (-905 *4))) (-14 *5 (-607 (-1123))) - (-14 *6 (-607 (-1123)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *5 *6))) - (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) + (-12 (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1194 (-399 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-548))) (-5 *4 (-548)) (-5 *2 (-52)) + (-5 *1 (-974))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-540) (-821))) + (-4 *2 (-13 (-422 (-166 *4)) (-971) (-1157))) + (-5 *1 (-579 *4 *3 *2)) (-4 *3 (-13 (-422 *4) (-971) (-1157)))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-286 *6)) (-5 *4 (-114)) (-4 *6 (-422 *5)) + (-4 *5 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) + (-5 *1 (-309 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-286 *7)) (-5 *4 (-114)) (-5 *5 (-619 *7)) + (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) + (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-619 (-286 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-286 *7)) + (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) + (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-619 (-286 *8))) (-5 *4 (-619 (-114))) (-5 *5 (-286 *8)) + (-5 *6 (-619 *8)) (-4 *8 (-422 *7)) + (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) + (-5 *1 (-309 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-286 *7)) + (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) + (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-114))) (-5 *6 (-619 (-286 *8))) + (-4 *8 (-422 *7)) (-5 *5 (-286 *8)) + (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) + (-5 *1 (-309 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-286 *5)) (-5 *4 (-114)) (-4 *5 (-422 *6)) + (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) + (-5 *1 (-309 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-4 *3 (-422 *6)) + (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) + (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-4 *3 (-422 *6)) + (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) + (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-5 *6 (-619 *3)) + (-4 *3 (-422 *7)) (-4 *7 (-13 (-821) (-540) (-593 (-524)))) + (-5 *2 (-52)) (-5 *1 (-309 *7 *3))))) +(((*1 *1) + (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) + (-4 *4 (-640 *3)))) + ((*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-745)) (-5 *2 (-1223))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-422 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-459)) (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-548)) (-4 *4 (-1194 (-399 *3))) (-5 *2 (-890)) + (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-399 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-619 (-1039 *4 *5 *2))) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) + (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-619 (-1039 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1063)) + (-4 *6 (-13 (-1016) (-855 *5) (-821) (-593 (-861 *5)))) + (-4 *2 (-13 (-422 *6) (-855 *5) (-593 (-861 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-540) (-821))) + (-4 *2 (-13 (-422 *4) (-971) (-1157))) (-5 *1 (-579 *4 *2 *3)) + (-4 *3 (-13 (-422 (-166 *4)) (-971) (-1157)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-308 *3)) (-4 *3 (-540)) (-4 *3 (-821))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-833)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *5 *6))) - (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) + (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1116 *4)) + (-4 *4 (-1063)) (-4 *4 (-1172))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-619 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *5 (-821)) + (-5 *1 (-440 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-154)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) + (-4 *8 (-334 *5 *6 *7)) + (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) + (-5 *2 (-2 (|:| -1672 (-745)) (|:| -3418 *8))) + (-5 *1 (-880 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) - (-5 *2 (-607 (-1001 *4 *5))) (-5 *1 (-1231 *4 *5 *6)) - (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123)))))) + (|partial| -12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) + (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) + (-4 *6 (-334 (-399 (-548)) *4 *5)) + (-5 *2 (-2 (|:| -1672 (-745)) (|:| -3418 *6))) + (-5 *1 (-881 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1101 *4) (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1230 *4)) - (-4 *4 (-1159)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-607 (-1101 *5)) (-607 (-1101 *5)))) (-5 *4 (-526)) - (-5 *2 (-607 (-1101 *5))) (-5 *1 (-1230 *5)) (-4 *5 (-1159))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-878)) (-4 *6 (-13 (-533) (-811))) (-5 *2 (-607 (-299 *6))) - (-5 *1 (-207 *5 *6)) (-5 *3 (-299 *6)) (-4 *5 (-1004)))) - ((*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533)))) + (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-422 *4) (-971) (-1157))) + (-4 *4 (-13 (-540) (-821))) + (-4 *2 (-13 (-422 (-166 *4)) (-971) (-1157))) + (-5 *1 (-579 *4 *5 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-548)) (-5 *1 (-308 *3)) (-4 *3 (-540)) (-4 *3 (-821))))) +(((*1 *2 *1) + (-12 (-5 *2 (-168)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-767)) (-4 *2 (-918 *4 *5 *6)) (-5 *1 (-440 *4 *5 *6 *2)) + (-4 *4 (-443)) (-4 *6 (-821))))) +(((*1 *1) (-5 *1 (-154)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) (-4 *6 (-1194 *5)) + (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) + (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-112)) + (-5 *1 (-880 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-556 *5)) (-4 *5 (-13 (-29 *4) (-1145))) - (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-607 *5)) - (-5 *1 (-558 *4 *5)))) + (-12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) + (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) + (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-881 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 *3)))) + (-5 *4 (-745)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *1 (-440 *5 *6 *7 *3))))) +(((*1 *1) (-5 *1 (-154)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-443)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *5 (-878)) (-5 *1 (-448 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-878))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-548)) (-4 *3 (-169)) (-4 *5 (-365 *3)) + (-4 *6 (-365 *3)) (-5 *1 (-662 *3 *5 *6 *2)) + (-4 *2 (-661 *3 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-745))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-912 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-440 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-154)))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) + ((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *2 (-410 (-1131 *1))) (-5 *1 (-308 *4)) (-5 *3 (-1131 *1)) + (-4 *4 (-443)) (-4 *4 (-540)) (-4 *4 (-821)))) ((*1 *2 *3) - (-12 (-5 *3 (-556 (-392 (-905 *4)))) - (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) - (-5 *2 (-607 (-299 *4))) (-5 *1 (-561 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1047 *3 *2)) (-4 *3 (-809)) (-4 *2 (-1097 *3)))) + (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-548)) (-4 *3 (-169)) (-4 *5 (-365 *3)) + (-4 *6 (-365 *3)) (-5 *1 (-662 *3 *5 *6 *2)) + (-4 *2 (-661 *3 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-121 *3))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-299)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) + (-4 *1 (-299))))) +(((*1 *1 *1) + (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *2 (-443)))) + ((*1 *1 *1) + (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) + (-4 *4 (-1194 (-399 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-443)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *3 (-443)))) + ((*1 *1 *1) + (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-443)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-299)) (-4 *3 (-540)) (-5 *1 (-1123 *3 *2)) + (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-443)) + (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-440 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-154))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-843)) + (-5 *5 (-890)) (-5 *6 (-619 (-255))) (-5 *2 (-1219)) + (-5 *1 (-1222)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-619 (-255))) + (-5 *2 (-1219)) (-5 *1 (-1222))))) +(((*1 *2 *3) + (-12 (-5 *2 (-410 (-1131 *1))) (-5 *1 (-308 *4)) (-5 *3 (-1131 *1)) + (-4 *4 (-443)) (-4 *4 (-540)) (-4 *4 (-821)))) ((*1 *2 *3) - (-12 (-5 *3 (-607 *1)) (-4 *1 (-1047 *4 *2)) (-4 *4 (-809)) - (-4 *2 (-1097 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145))))) + (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-548)) (-4 *4 (-169)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4)) (-5 *1 (-662 *4 *5 *6 *2)) + (-4 *2 (-661 *4 *5 *6))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-829)))) + ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-934)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-958)))) + ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *2 *3)) + (-4 *3 (-13 (-1063) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-927 *3)) (-5 *1 (-1123 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) + (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) + (-5 *1 (-762))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-218)) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 *4)))) + (|:| |xValues| (-1058 *4)) (|:| |yValues| (-1058 *4)))) + (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 *4))))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-843)) + (-5 *5 (-890)) (-5 *6 (-619 (-255))) (-5 *2 (-459)) (-5 *1 (-1222)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-459)) + (-5 *1 (-1222)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-619 (-255))) + (-5 *2 (-459)) (-5 *1 (-1222))))) +(((*1 *2 *3) + (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-224 *4)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-745)))) + ((*1 *1 *1) (-4 *1 (-226))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-258 *3)) (-4 *3 (-821)))) + ((*1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-355) (-145))) (-5 *1 (-391 *2 *3)) + (-4 *3 (-1194 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-355)) (-4 *2 (-869 *3)) (-5 *1 (-566 *2)) + (-5 *3 (-1135)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-566 *2)) (-4 *2 (-355)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) + (-4 *4 (-1063)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3)))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-819)) (-5 *1 (-295 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-399 (-548)))) + (-5 *2 (-2 (|:| -2054 (-1116 *4)) (|:| -2065 (-1116 *4)))) + (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-548)) + (-5 *6 + (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371)))) + (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) + (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) + (-5 *1 (-762)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-548)) + (-5 *6 + (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371)))) + (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) + (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) + (-5 *1 (-762))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *1 (-566 *2)) (-4 *2 (-1007 *3)) + (-4 *2 (-355)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-355)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-606 *4 *2)) + (-4 *2 (-13 (-422 *4) (-971) (-1157))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-422 *4) (-971) (-1157))) + (-4 *4 (-13 (-821) (-540))) (-5 *1 (-606 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-1135)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-928))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-619 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218))))) + (-5 *1 (-543)))) ((*1 *2 *1) - (-12 (-5 *2 (-1220 (-1123) *3)) (-5 *1 (-1226 *3)) (-4 *3 (-1004)))) + (-12 (-4 *1 (-589 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-5 *2 (-619 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-1229 *3 *4)) (-4 *3 (-811)) - (-4 *4 (-1004))))) + (-12 + (-5 *2 + (-619 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218))))) + (-5 *1 (-777))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-515))))) +(((*1 *2 *3) + (-12 (-5 *3 (-896)) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) + (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-896)) (-5 *4 (-399 (-548))) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) + (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) + (-5 *1 (-151))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1172)) + (-4 *5 (-1172)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-745)) + (-4 *7 (-1172)) (-4 *5 (-1172)) (-5 *2 (-233 *6 *5)) + (-5 *1 (-232 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1172)) (-4 *5 (-1172)) + (-4 *2 (-365 *5)) (-5 *1 (-363 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1063)) (-4 *5 (-1063)) + (-4 *2 (-417 *5)) (-5 *1 (-415 *6 *4 *5 *2)) (-4 *4 (-417 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-619 *6)) (-4 *6 (-1172)) + (-4 *5 (-1172)) (-5 *2 (-619 *5)) (-5 *1 (-617 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-927 *6)) (-4 *6 (-1172)) + (-4 *5 (-1172)) (-5 *2 (-927 *5)) (-5 *1 (-926 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1116 *6)) (-4 *6 (-1172)) + (-4 *3 (-1172)) (-5 *2 (-1116 *3)) (-5 *1 (-1114 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1218 *6)) (-4 *6 (-1172)) + (-4 *5 (-1172)) (-5 *2 (-1218 *5)) (-5 *1 (-1217 *6 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) + (-4 *5 (-163 *4)) (-4 *4 (-533)) (-5 *1 (-147 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 *3)) (-4 *3 (-1194 *5)) + (-4 *5 (-1194 *4)) (-4 *4 (-341)) (-5 *1 (-350 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 (-548)))) (-5 *3 (-1131 (-548))) + (-5 *1 (-556)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 *1))) (-5 *3 (-1131 *1)) + (-4 *1 (-878))))) (((*1 *1 *2) - (-12 (-5 *2 (-1220 (-1123) *3)) (-4 *3 (-1004)) (-5 *1 (-1226 *3)))) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1218 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-371)) (-5 *1 (-1028))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-218))) (-5 *4 (-745)) (-5 *2 (-663 (-218))) + (-5 *1 (-297))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-399 (-548)))) + (-5 *2 (-2 (|:| -1918 (-1116 *4)) (|:| -1929 (-1116 *4)))) + (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) + (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) + (-5 *1 (-762))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-890)) (-4 *5 (-540)) (-5 *2 (-663 *5)) + (-5 *1 (-925 *5 *3)) (-4 *3 (-630 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-514))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) + (-4 *2 (-1172))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-912 (-218))) (-5 *2 (-218)) (-5 *1 (-1168)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-341)) (-5 *2 (-1218 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-143)) (-4 *1 (-878)) + (-5 *2 (-1218 *1))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-371)) (-5 *1 (-1028))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-399 (-548))) (-5 *2 (-218)) (-5 *1 (-297))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-355)) (-4 *3 (-1016)) + (-5 *1 (-1120 *3))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) + (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) + (-5 *1 (-762)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) + (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) + (-5 *1 (-762))))) +(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-923))))) +(((*1 *2 *2) + (-12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-399 *5)) + (|:| |c2| (-399 *5)) (|:| |deg| (-745)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1016)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016))))) +(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-341))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-878))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-371)) (-5 *1 (-1028))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *2) - (-12 (-5 *2 (-1220 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) - (-5 *1 (-1229 *3 *4))))) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) + ((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-548))) (-5 *5 (-1 (-1116 *4))) (-4 *4 (-355)) + (-4 *4 (-1016)) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) + (-4 *3 (-918 *7 *5 *6)) + (-5 *2 + (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| (-619 *3)))) + (-5 *1 (-922 *5 *6 *7 *3 *8)) (-5 *4 (-745)) + (-4 *8 + (-13 (-355) + (-10 -8 (-15 -2470 (*3 $)) (-15 -2480 (*3 $)) (-15 -3743 ($ *3)))))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-761)) (-5 *2 (-1004)) + (-5 *3 + (-2 (|:| |fn| (-308 (-218))) + (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-761)) (-5 *2 (-1004)) + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1194 *2)) (-4 *2 (-1176)) (-5 *1 (-146 *2 *4 *3)) + (-4 *3 (-1194 (-399 *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |k| (-1123)) (|:| |c| (-1226 *3))))) - (-5 *1 (-1226 *3)) (-4 *3 (-1004)))) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) + (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-821)) (-4 *5 (-878)) (-4 *6 (-767)) + (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-410 (-1131 *8))) + (-5 *1 (-875 *5 *6 *7 *8)) (-5 *4 (-1131 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) + (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1028)) (-5 *3 (-1118))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-355)) (-4 *3 (-1016)) + (-5 *1 (-1120 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) + (-4 *8 (-918 *7 *5 *6)) + (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| *3))) + (-5 *1 (-922 *5 *6 *7 *8 *3)) (-5 *4 (-745)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -2470 (*8 $)) (-15 -2480 (*8 $)) (-15 -3743 ($ *8)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-399 *6)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) + (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| *6))) + (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-745)) (-4 *7 (-1194 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-399 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-540)) + (-4 *4 (-1016)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *5 *6 *2)) + (-4 *6 (-630 *5))))) +(((*1 *2) + (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) + (-5 *1 (-448 *3 *4 *2 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) + (-5 *1 (-875 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-878)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1194 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1028))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1016)) + (-5 *3 (-399 (-548))) (-5 *1 (-1120 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-548))) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-540)) (-4 *8 (-918 *7 *5 *6)) + (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *9) (|:| |radicand| *9))) + (-5 *1 (-922 *5 *6 *7 *8 *9)) (-5 *4 (-745)) + (-4 *9 + (-13 (-355) + (-10 -8 (-15 -2470 (*8 $)) (-15 -2480 (*8 $)) (-15 -3743 ($ *8)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-319 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-506 *3 *4)) + (-14 *4 (-548))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| |radicand| (-399 *5)) (|:| |deg| (-745)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-1194 *4)) (-5 *2 (-1 *6 (-619 *6))) + (-5 *1 (-1212 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-1209 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-410 (-1131 *7))) + (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) + (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5))))) +(((*1 *1) (-5 *1 (-1028)))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1118)) (-4 *1 (-356 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) + (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-540)) + (-4 *7 (-918 *3 *5 *6)) + (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *8) (|:| |radicand| *8))) + (-5 *1 (-922 *5 *6 *3 *7 *8)) (-5 *4 (-745)) + (-4 *8 + (-13 (-355) + (-10 -8 (-15 -2470 (*7 $)) (-15 -2480 (*7 $)) (-15 -3743 ($ *7)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) ((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |k| *3) (|:| |c| (-1229 *3 *4))))) - (-5 *1 (-1229 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-526)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-735)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-878)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-149)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-149)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145))) (-5 *1 (-213 *3)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1063)) (-4 *2 (-1159)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1063)) (-4 *2 (-1159)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-308 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-129)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-346 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-367 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-811)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *6 (-224 (-4273 *3) (-735))) - (-14 *7 - (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) - (-2 (|:| -2461 *5) (|:| -2462 *6)))) - (-5 *1 (-445 *3 *4 *5 *6 *7 *2)) (-4 *5 (-811)) - (-4 *2 (-909 *4 *6 (-824 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-515))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1004)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1004)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1011)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-4 *7 (-1052)) (-5 *2 (-1 *7 *5)) (-5 *1 (-648 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-650 *3 *2 *4)) (-4 *3 (-1004)) (-4 *2 (-357 *3)) - (-4 *4 (-357 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-650 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *2 (-357 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-685))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-533)) - (-5 *1 (-928 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1011)))) - ((*1 *1 *1 *1) (-4 *1 (-1063))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *2 *5)) (-4 *4 (-1004)) (-4 *2 (-224 *3 *4)) - (-4 *5 (-224 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) - (-4 *2 (-224 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-5 *1 (-1076 *3 *4 *2)) - (-4 *2 (-909 *3 (-512 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-902 (-211))) (-5 *3 (-211)) (-5 *1 (-1156)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-526)) (-4 *1 (-1204 *3)) (-4 *3 (-1159)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) - ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))))) - ((*1 *1 *1) - (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) - (-14 *3 (-607 (-1123))))) - ((*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1052)))) - ((*1 *1 *1) - (-12 (-14 *2 (-607 (-1123))) (-4 *3 (-163)) (-4 *5 (-224 (-4273 *2) (-735))) - (-14 *6 - (-1 (-111) (-2 (|:| -2461 *4) (|:| -2462 *5)) - (-2 (|:| -2461 *4) (|:| -2462 *5)))) - (-5 *1 (-445 *2 *3 *4 *5 *6 *7)) (-4 *4 (-811)) - (-4 *7 (-909 *3 *5 (-824 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-811)))) - ((*1 *1 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1004)))) + (-12 (-5 *2 (-745)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) + (-14 *4 (-548))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-4 *2 (-1194 *5)) + (-5 *1 (-1212 *5 *2 *6 *3)) (-4 *6 (-630 *2)) (-4 *3 (-1209 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-410 (-1131 *7))) + (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) + (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-1028))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-658 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-170))) ((*1 *1 *1) - (-12 (-5 *1 (-700 *2 *3)) (-4 *3 (-811)) (-4 *2 (-1004)) (-4 *3 (-691)))) - ((*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) + (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) + (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) + (-4 *2 (-1172))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1116 *3))) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) + (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-821)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3352 (-548)))) (-4 *1 (-422 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3352 (-861 *3)))) + (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-4 *7 (-918 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3352 (-548)))) + (-5 *1 (-919 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) + (-15 -2480 (*7 $)))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) - ((*1 *1 *1) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807))))) + (-12 (-5 *2 (-548)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) + (-14 *4 (-619 (-1135)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-4 *3 (-1194 *4)) (-4 *2 (-1209 *4)) + (-5 *1 (-1212 *4 *3 *5 *2)) (-4 *5 (-630 *3))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-429)) (-5 *3 (-619 (-1135))) (-5 *4 (-1135)) + (-5 *1 (-1138)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1139)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-429)) (-5 *3 (-619 (-1135))) (-5 *1 (-1139))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) + (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-878)) (-4 *5 (-767)) + (-4 *6 (-821)) (-5 *1 (-875 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) + (-4 *5 (-1194 *4)) (-4 *4 (-878)) (-5 *1 (-876 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1027)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *4 (-1063))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-49 *3 *4)) - (-14 *4 (-607 (-1123))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4328)) (-4 *1 (-480 *3)) + (-4 *3 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-5 *2 (-1118))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1) (-4 *1 (-936))) ((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) ((*1 *1) (-4 *1 (-533))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) + ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) + (-4 *4 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-1016)) (-4 *4 (-821)) + (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) + (-4 *1 (-422 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1016)) (-4 *4 (-821)) + (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) + (-4 *1 (-422 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) + (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) + (-4 *1 (-422 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3352 (-745)))) + (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-2 (|:| |var| *5) (|:| -3352 (-745)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-4 *7 (-918 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3352 (-548)))) + (-5 *1 (-919 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) + (-15 -2480 (*7 $)))))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-1016)) + (-5 *2 (-663 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) + (-14 *4 (-548))))) +(((*1 *1 *2) + (-12 (-5 *2 (-308 *3)) (-4 *3 (-13 (-1016) (-821))) + (-5 *1 (-216 *3 *4)) (-14 *4 (-619 (-1135)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 (-1 *6 (-619 *6)))) + (-4 *5 (-38 (-399 (-548)))) (-4 *6 (-1209 *5)) (-5 *2 (-619 *6)) + (-5 *1 (-1211 *5 *6))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) + (-4 *7 (-918 *5 *6 *4)) (-4 *5 (-878)) (-4 *6 (-767)) + (-4 *4 (-821)) (-5 *1 (-875 *5 *6 *4 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1063)) (-4 *6 (-1063)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *5 (-1063))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) + (-4 *3 (-1063)) (-5 *2 (-745)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) + (-4 *4 (-1172)) (-5 *2 (-745))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371))))) +(((*1 *2 *1) + (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) + (-5 *2 + (-2 (|:| -4101 (-745)) (|:| |curves| (-745)) + (|:| |polygons| (-745)) (|:| |constructs| (-745))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-863 *2 *3)) (-4 *2 (-1194 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-422 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) + (-4 *3 (-1063)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) + (-5 *1 (-919 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) + (-15 -2480 (*7 $)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-499 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-821))))) +(((*1 *1 *1) + (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) + (-14 *3 (-619 (-1135)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-619 *2))) (-5 *4 (-619 *5)) + (-4 *5 (-38 (-399 (-548)))) (-4 *2 (-1209 *5)) + (-5 *1 (-1211 *5 *2))))) +(((*1 *2 *1) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *6)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-218))))) + ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-410 *4) *4)) (-4 *4 (-540)) (-5 *2 (-410 *4)) + (-5 *1 (-411 *4)))) + ((*1 *1 *1) (-5 *1 (-895))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) + ((*1 *1 *1) (-5 *1 (-896))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) + (-5 *4 (-399 (-548))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) + (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) + (-5 *4 (-399 (-548))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) + (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-573 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1082))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *4 *5 *6))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-1 *4 (-548))) (-4 *4 (-1016)) + (-5 *1 (-1120 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) + (|partial| -12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-526)) - (-14 *6 (-735)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-132 *5 *6 *8)) - (-5 *1 (-133 *5 *6 *7 *8)))) + (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-163)) (-4 *6 (-163)) - (-5 *2 (-159 *6)) (-5 *1 (-160 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-299 *3) (-299 *3))) (-4 *3 (-13 (-1004) (-811))) - (-5 *1 (-209 *3 *4)) (-14 *4 (-607 (-1123))))) + (|partial| -12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-399 (-921 (-166 *4)))) (-4 *4 (-540)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-225 *5 *6)) (-14 *5 (-735)) (-4 *6 (-1159)) - (-4 *7 (-1159)) (-5 *2 (-225 *5 *7)) (-5 *1 (-226 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-278 *3)))) + (|partial| -12 (-5 *3 (-399 (-921 (-166 *5)))) (-5 *4 (-890)) + (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) + (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-278 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-278 *6)) (-5 *1 (-279 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-581 *1)) (-4 *1 (-283)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1106)) (-5 *5 (-581 *6)) (-4 *6 (-283)) - (-4 *2 (-1159)) (-5 *1 (-284 *6 *2)))) + (|partial| -12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) + (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-308 (-166 *4))) (-4 *4 (-540)) (-4 *4 (-821)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-581 *5)) (-4 *5 (-283)) (-4 *2 (-283)) - (-5 *1 (-285 *5 *2)))) + (|partial| -12 (-5 *3 (-308 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) + (-5 *1 (-759 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-422 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) + (-4 *3 (-1063)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) + (-5 *1 (-919 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) + (-15 -2480 (*7 $)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-745)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) + (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) + ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-745)) (-4 *5 (-169)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-745)) (-4 *5 (-169)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) + (-240 *4 (-399 (-548))))) + (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) + (-5 *1 (-495 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1135)) (-5 *6 (-112)) + (-4 *7 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-4 *3 (-13 (-1157) (-928) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-212 *7 *3)) (-5 *5 (-814 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) + (-4 *4 (-38 (-399 (-548))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-218))))) + ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-819) (-355))) (-5 *2 (-112)) (-5 *1 (-1026 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1063)) (-4 *4 (-1063)) + (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *5 *4 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) + (-4 *2 + (-13 (-394) + (-10 -7 (-15 -3743 (*2 *4)) (-15 -2855 ((-890) *2)) + (-15 -2877 ((-1218 *2) (-890))) (-15 -2354 (*2 *2))))) + (-5 *1 (-348 *2 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 *2)) + (-5 *2 (-371)) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-653 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) - (-5 *2 (-653 *6)) (-5 *1 (-290 *5 *6)))) + (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) + (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-299 *5)) (-4 *5 (-811)) (-4 *6 (-811)) - (-5 *2 (-299 *6)) (-5 *1 (-300 *5 *6)))) + (|partial| -12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) + (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-318 *5 *6 *7 *8)) (-4 *5 (-348)) - (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) - (-4 *9 (-348)) (-4 *10 (-1181 *9)) (-4 *11 (-1181 (-392 *10))) - (-5 *2 (-318 *9 *10 *11 *12)) (-5 *1 (-319 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-327 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1052)))) + (|partial| -12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-821)) (-4 *5 (-593 *2)) (-5 *2 (-371)) + (-5 *1 (-759 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *1)) + (-4 *1 (-374 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-701)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-918 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-14 *4 (-619 (-1135))) (-14 *5 (-745)) + (-5 *2 + (-619 + (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) + (-240 *4 (-399 (-548)))))) + (-5 *1 (-495 *4 *5)) + (-5 *3 + (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) + (-240 *4 (-399 (-548)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) + (-4 *4 (-38 (-399 (-548))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-619 (-745)))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-591 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-619 (-591 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-591 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1194 (-166 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-890)) (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) + ((*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-355)))) + ((*1 *2 *1) + (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-405 *3 *2 *4 *5)) + (-4 *3 (-299)) (-4 *5 (-13 (-401 *2 *4) (-1007 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) + (-5 *1 (-406 *3 *2 *4 *5 *6)) (-4 *3 (-299)) (-4 *5 (-401 *2 *4)) + (-14 *6 (-1218 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *2 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))) + (-5 *1 (-434 *5 *3 *2)) (-4 *3 (-1194 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-591 (-485)))) (-5 *1 (-485)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-485))) (-5 *1 (-485)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 (-485))) (-5 *3 (-619 (-591 (-485)))) + (-5 *1 (-485)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 (-485))) (-5 *3 (-591 (-485))) (-5 *1 (-485)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-341)) + (-5 *1 (-518 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-443)) (-4 *5 (-699 *4 *2)) (-4 *2 (-1194 *4)) + (-5 *1 (-749 *4 *2 *5 *3)) (-4 *3 (-1194 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) + ((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-341)) (-5 *2 (-927 (-1131 *4))) (-5 *1 (-349 *4)) + (-5 *3 (-1131 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-713))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-399 (-548)))) + (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 (-821)) (-5 *2 (-745))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) + (-240 *4 (-399 (-548))))) + (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) + (-5 *1 (-495 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-209 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1211 *3 *2)) + (-4 *2 (-1209 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) + (-4 *5 (-365 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) + (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)) (-4 *2 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-61 *3)) (-14 *3 (-1135)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-68 *3)) (-14 *3 (-1135)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-71 *3)) (-14 *3 (-1135)))) + ((*1 *2 *1) (-12 (-4 *1 (-387)) (-5 *2 (-1223)))) + ((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1223)) (-5 *1 (-389)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) +(((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-533)))) + ((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) + (-5 *2 (-1 *5)) (-5 *1 (-657 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *3) + (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-399 (-548)))) + (-4 *2 (-169))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-745))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) + (-240 *4 (-399 (-548))))) + (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) + (-5 *1 (-495 *4 *5))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-619 *5))) (-4 *5 (-1209 *4)) + (-4 *4 (-38 (-399 (-548)))) + (-5 *2 (-1 (-1116 *4) (-619 (-1116 *4)))) (-5 *1 (-1211 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-1065 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-619 *4))) (-5 *1 (-873 *4)) + (-5 *3 (-619 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-1065 *4))) (-5 *1 (-873 *4)) + (-5 *3 (-1065 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-533)))) + ((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-657 *4 *3)) (-4 *4 (-1063)) + (-4 *3 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-383))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) + (-5 *3 (-548))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)) + (-4 *2 (-443)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1194 (-548))) (-5 *2 (-619 (-548))) + (-5 *1 (-477 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-443)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *3 (-443))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-494 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1209 *4)) + (-4 *4 (-38 (-399 (-548)))) + (-5 *2 (-1 (-1116 *4) (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-890)) (-5 *1 (-999 *2)) + (-4 *2 (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1065 (-1065 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299)))) + ((*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299)))) + ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-299)))) + ((*1 *2 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-548))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-745) *2)) (-5 *4 (-745)) (-4 *2 (-1063)) + (-5 *1 (-652 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-745) *3)) (-4 *3 (-1063)) (-5 *1 (-656 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1223)) (-5 *1 (-383)))) + ((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-383))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) + (-5 *3 (-548))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-548)) (-4 *5 (-819)) (-4 *5 (-355)) + (-5 *2 (-745)) (-5 *1 (-914 *5 *6)) (-4 *6 (-1194 *5))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-308 (-218))) (-5 *1 (-297)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) + (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-218)) (-5 *2 (-112)) (-5 *1 (-291 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1164)) (-4 *8 (-1164)) (-4 *6 (-1181 *5)) - (-4 *7 (-1181 (-392 *6))) (-4 *9 (-1181 *8)) (-4 *2 (-327 *8 *9 *10)) - (-5 *1 (-328 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-327 *5 *6 *7)) - (-4 *10 (-1181 (-392 *9))))) + (-12 (-5 *4 (-1058 (-814 (-218)))) (-5 *3 (-218)) (-5 *2 (-112)) + (-5 *1 (-297)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-341)) + (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2168 *3)))) + (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1209 *4)) + (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-1 (-1116 *4) (-1116 *4))) + (-5 *1 (-1211 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) + (-5 *1 (-873 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210)))) + ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478)))) + ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-299)))) + ((*1 *2 *1) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) + ((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-656 *2)) (-4 *2 (-1063)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *2 (-357 *6)) - (-5 *1 (-358 *5 *4 *6 *2)) (-4 *4 (-357 *5)))) + (-12 (-5 *3 (-1 (-619 *5) (-619 *5))) (-5 *4 (-548)) + (-5 *2 (-619 *5)) (-5 *1 (-656 *5)) (-4 *5 (-1063))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-355)) + (-14 *4 (-962 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) + ((*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) + ((*1 *1 *1) (|partial| -4 *1 (-697))) + ((*1 *1 *1) (|partial| -4 *1 (-701))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-355))) + (-4 *2 (-1194 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-211)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1140))) (-5 *3 (-1140)) (-5 *1 (-1080))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-819)) (-4 *4 (-355)) (-5 *2 (-745)) + (-5 *1 (-914 *4 *5)) (-4 *5 (-1194 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-619 (-756 *3))) (-5 *1 (-756 *3)) (-4 *3 (-540)) + (-4 *3 (-1016))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-494 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-294)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-591 *1))) (-5 *3 (-619 *1)) (-4 *1 (-294)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-286 *1))) (-4 *1 (-294)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-294))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-341)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) + (-5 *1 (-209 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1116 *3)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 *3)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-701)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-5 *2 (-1116 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) + (-5 *1 (-873 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429))))) + (-5 *1 (-1139))))) +(((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) + (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1557 *3) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *2 (-355)) (-4 *2 (-819)) (-5 *1 (-914 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *1) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) + (-5 *2 (-112)) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-355)) (-4 *6 (-1194 (-399 *2))) + (-4 *2 (-1194 *5)) (-5 *1 (-208 *5 *2 *6 *3)) + (-4 *3 (-334 *5 *2 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-409 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) + (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-821)) (-5 *2 (-745)) (-5 *1 (-421 *3 *4)) + (-4 *3 (-422 *4)))) + ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-532 *3)) (-4 *3 (-533)))) + ((*1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-745)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-770 *3 *4)) + (-4 *3 (-771 *4)))) + ((*1 *2) + (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-960 *3 *4)) + (-4 *3 (-961 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-965 *3 *4)) + (-4 *3 (-966 *4)))) + ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-980 *3)) (-4 *3 (-981)))) + ((*1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-745)))) + ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1024 *3)) (-4 *3 (-1025))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1171))) (-5 *3 (-1171)) (-5 *1 (-655))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)) + (-5 *1 (-1116 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef1| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *2 (-548)) (-5 *1 (-553 *3)) (-4 *3 (-1007 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *1 *1) (-5 *1 (-524)))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-619 (-308 (-218)))) + (|:| |constraints| + (-619 + (-2 (|:| |start| (-218)) (|:| |finish| (-218)) + (|:| |grid| (-745)) (|:| |boundaryType| (-548)) + (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) + (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) + (|:| |tol| (-218)))) + (-5 *2 (-112)) (-5 *1 (-203))))) +(((*1 *2) + (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-548))) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) - (-4 *4 (-1052)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-533)) (-5 *1 (-390 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-390 *5)) (-4 *5 (-533)) (-4 *6 (-533)) - (-5 *2 (-390 *6)) (-5 *1 (-391 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-392 *5)) (-4 *5 (-533)) (-4 *6 (-533)) - (-5 *2 (-392 *6)) (-5 *1 (-393 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-398 *5 *6 *7 *8)) (-4 *5 (-292)) - (-4 *6 (-950 *5)) (-4 *7 (-1181 *6)) (-4 *8 (-13 (-395 *6 *7) (-995 *6))) - (-4 *9 (-292)) (-4 *10 (-950 *9)) (-4 *11 (-1181 *10)) - (-5 *2 (-398 *9 *10 *11 *12)) (-5 *1 (-399 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-395 *10 *11) (-995 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-403 *6)) - (-5 *1 (-401 *4 *5 *2 *6)) (-4 *4 (-403 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1004) (-811))) - (-4 *6 (-13 (-1004) (-811))) (-4 *2 (-406 *6)) (-5 *1 (-407 *5 *4 *6 *2)) - (-4 *4 (-406 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-411 *6)) - (-5 *1 (-412 *5 *4 *6 *2)) (-4 *4 (-411 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-472 *3)) (-4 *3 (-1159)))) + (-12 (-5 *2 (-1 *3 (-548))) (-4 *1 (-1178 *3)) (-4 *3 (-1016)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-811)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-556 *5)) (-4 *5 (-348)) (-4 *6 (-348)) - (-5 *2 (-556 *6)) (-5 *1 (-557 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2222 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-348)) - (-4 *6 (-348)) (-5 *2 (-2 (|:| -2222 *6) (|:| |coeff| *6))) - (-5 *1 (-557 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-348)) - (-4 *2 (-348)) (-5 *1 (-557 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-348)) (-4 *6 (-348)) + (-12 (-5 *2 (-1 *3 (-548))) (-4 *1 (-1209 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-873 *4)) + (-4 *4 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *1 *2) + (-12 (-5 *2 (-663 *5)) (-4 *5 (-1016)) (-5 *1 (-1020 *3 *4 *5)) + (-14 *3 (-745)) (-14 *4 (-745))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) + (-5 *1 (-324)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-1056 (-921 (-548)))) (-5 *2 (-322)) + (-5 *1 (-324)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) + (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) + (-4 *4 (-341))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-557 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-571 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-571 *6)) (-5 *1 (-568 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-571 *6)) (-5 *5 (-571 *7)) - (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-571 *8)) - (-5 *1 (-569 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1101 *6)) (-5 *5 (-571 *7)) - (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) - (-5 *1 (-569 *6 *7 *8)))) + (-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745)))) + (-5 *1 (-1116 *4)) (-4 *4 (-1172)) (-5 *3 (-745))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-832)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1102 *3 *4)) (-5 *1 (-962 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-355)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *5))) (-4 *5 (-1016)) + (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *6 (-231 *4 *5)) + (-4 *7 (-231 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-303)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-939)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-963)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1005))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef2| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) + (-5 *2 + (-2 (|:| |mval| (-663 *4)) (|:| |invmval| (-663 *4)) + (|:| |genIdeal| (-494 *4 *5 *6 *7)))) + (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-399 (-548))) (-4 *4 (-1007 (-548))) + (-4 *4 (-13 (-821) (-540))) (-5 *1 (-32 *4 *2)) (-4 *2 (-422 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-133))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-218))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-236)) (-5 *2 (-548)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-399 (-548))) (-4 *4 (-355)) (-4 *4 (-38 *3)) + (-4 *5 (-1209 *4)) (-5 *1 (-270 *4 *5 *2)) (-4 *2 (-1180 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-399 (-548))) (-4 *4 (-355)) (-4 *4 (-38 *3)) + (-4 *5 (-1178 *4)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *2 (-1201 *4 *5)) + (-4 *6 (-952 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-276))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-353 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-5 *1 (-371))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-422 *3)) (-4 *3 (-821)) (-4 *3 (-1075)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-464)) (-5 *2 (-548)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-548)) (-4 *4 (-341)) + (-5 *1 (-518 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-524)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-524)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *4 (-1063)) + (-5 *1 (-656 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-355)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) + (-5 *1 (-664 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-548)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)) + (-4 *4 (-622 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-548)) (-4 *4 (-1016)) + (-5 *1 (-689 *4 *5)) (-4 *5 (-622 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-745)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-808 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-548)) (-5 *1 (-808 *4)) (-4 *4 (-1016)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-399 (-548))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1075)) (-5 *2 (-890)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *3 *4)) (-4 *4 (-355)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-619 (-308 (-218)))) (-5 *3 (-218)) (-5 *2 (-112)) + (-5 *1 (-203))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1056 (-814 *3))) (-4 *3 (-13 (-1157) (-928) (-29 *5))) + (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-212 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-571 *6)) (-5 *5 (-1101 *7)) - (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) - (-5 *1 (-569 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) + (-12 (-5 *4 (-1056 (-814 *3))) (-5 *5 (-1118)) + (-4 *3 (-13 (-1157) (-928) (-29 *6))) + (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-212 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-607 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-607 *6)) (-5 *1 (-608 *5 *6)))) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1056 (-814 (-308 *5)))) + (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-3 (|:| |f1| (-814 (-308 *5))) (|:| |f2| (-619 (-814 (-308 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-213 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-607 *7)) - (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-607 *8)) - (-5 *1 (-610 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-357 *5)) - (-4 *7 (-357 *5)) (-4 *2 (-650 *8 *9 *10)) - (-5 *1 (-651 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-650 *5 *6 *7)) - (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1004)) - (-4 *8 (-1004)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-650 *8 *9 *10)) - (-5 *1 (-651 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-650 *5 *6 *7)) - (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-533)) (-4 *7 (-533)) (-4 *6 (-1181 *5)) - (-4 *2 (-1181 (-392 *8))) (-5 *1 (-674 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1181 (-392 *6))) (-4 *8 (-1181 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1004)) (-4 *9 (-1004)) (-4 *5 (-811)) - (-4 *6 (-757)) (-4 *2 (-909 *9 *7 *5)) (-5 *1 (-693 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-757)) (-4 *4 (-909 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-811)) (-4 *6 (-811)) (-4 *7 (-757)) - (-4 *9 (-1004)) (-4 *2 (-909 *9 *8 *6)) (-5 *1 (-694 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-757)) (-4 *4 (-909 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-700 *5 *7)) (-4 *5 (-1004)) (-4 *6 (-1004)) - (-4 *7 (-691)) (-5 *2 (-700 *6 *7)) (-5 *1 (-699 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-700 *3 *4)) (-4 *4 (-691)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) - (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-760 *6)) - (-5 *1 (-763 *4 *5 *2 *6)) (-4 *4 (-760 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-796 *6)) (-5 *1 (-797 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-796 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1052)) - (-4 *6 (-1052)) (-5 *1 (-797 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-803 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1052)) - (-4 *6 (-1052)) (-5 *1 (-804 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-836 *6)) (-5 *1 (-835 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-847 *5 *6)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-4 *7 (-1052)) (-5 *2 (-847 *5 *7)) (-5 *1 (-848 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-849 *6)) (-5 *1 (-851 *5 *6)))) + (-12 (-5 *3 (-399 (-921 *6))) (-5 *4 (-1056 (-814 (-308 *6)))) + (-5 *5 (-1118)) + (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-3 (|:| |f1| (-814 (-308 *6))) (|:| |f2| (-619 (-814 (-308 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-213 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) - (-5 *2 (-905 *6)) (-5 *1 (-906 *5 *6)))) + (-12 (-5 *4 (-1056 (-814 (-399 (-921 *5))))) (-5 *3 (-399 (-921 *5))) + (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-3 (|:| |f1| (-814 (-308 *5))) (|:| |f2| (-619 (-814 (-308 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-213 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-811)) (-4 *8 (-1004)) - (-4 *6 (-757)) - (-4 *2 - (-13 (-1052) - (-10 -8 (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735)))))) - (-5 *1 (-911 *6 *7 *8 *5 *2)) (-4 *5 (-909 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-917 *6)) (-5 *1 (-918 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) - (-5 *2 (-902 *6)) (-5 *1 (-940 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-905 *4))) (-4 *4 (-1004)) (-4 *2 (-909 (-905 *4) *5 *6)) - (-4 *5 (-757)) - (-4 *6 - (-13 (-811) - (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) - (-5 *1 (-943 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-533)) (-4 *6 (-533)) (-4 *2 (-950 *6)) - (-5 *1 (-951 *5 *6 *4 *2)) (-4 *4 (-950 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-956 *6)) - (-5 *1 (-957 *4 *5 *2 *6)) (-4 *4 (-956 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) - (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) - (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1004)) (-4 *10 (-1004)) (-14 *5 (-735)) - (-14 *6 (-735)) (-4 *8 (-224 *6 *7)) (-4 *9 (-224 *5 *7)) - (-4 *2 (-1007 *5 *6 *10 *11 *12)) - (-5 *1 (-1009 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1007 *5 *6 *7 *8 *9)) (-4 *11 (-224 *6 *10)) - (-4 *12 (-224 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1041 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-1041 *6)) (-5 *1 (-1042 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1041 *5)) (-4 *5 (-809)) (-4 *5 (-1159)) - (-4 *6 (-1159)) (-5 *2 (-607 *6)) (-5 *1 (-1042 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1044 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-1044 *6)) (-5 *1 (-1045 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1047 *4 *2)) (-4 *4 (-809)) - (-4 *2 (-1097 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1101 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-1101 *6)) (-5 *1 (-1103 *5 *6)))) + (-12 (-5 *4 (-1056 (-814 (-399 (-921 *6))))) (-5 *5 (-1118)) + (-5 *3 (-399 (-921 *6))) + (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-3 (|:| |f1| (-814 (-308 *6))) (|:| |f2| (-619 (-814 (-308 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-213 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-3 *3 (-619 *3))) (-5 *1 (-420 *5 *3)) + (-4 *3 (-13 (-1157) (-928) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) + (-5 *5 (-371)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-549)))) + ((*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-1004)) (-5 *1 (-549)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) + (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1101 *6)) (-5 *5 (-1101 *7)) - (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) - (-5 *1 (-1104 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) - (-5 *2 (-1117 *6)) (-5 *1 (-1118 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-1052)) - (-4 *4 (-1052)))) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) + (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5 *7 *9)) (-4 *5 (-1004)) - (-4 *6 (-1004)) (-14 *7 (-1123)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1165 *6 *8 *10)) (-5 *1 (-1166 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1123)))) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) + (-5 *2 (-1004)) (-5 *1 (-549)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-1172 *6)) (-5 *1 (-1173 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-809)) (-4 *5 (-1159)) - (-4 *6 (-1159)) (-5 *2 (-1101 *6)) (-5 *1 (-1173 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1174 *5 *6)) (-14 *5 (-1123)) - (-4 *6 (-1004)) (-4 *8 (-1004)) (-5 *2 (-1174 *7 *8)) - (-5 *1 (-1175 *5 *6 *7 *8)) (-14 *7 (-1123)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1181 *6)) - (-5 *1 (-1182 *5 *4 *6 *2)) (-4 *4 (-1181 *5)))) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) + (-5 *2 (-1004)) (-5 *1 (-549)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) + (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) + (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) + (-5 *5 (-371)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-549)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-308 (-371))) (-5 *4 (-1056 (-814 (-371)))) + (-5 *5 (-1118)) (-5 *2 (-1004)) (-5 *1 (-549)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-308 (-371))) (-5 *4 (-1056 (-814 (-371)))) + (-5 *5 (-1135)) (-5 *2 (-1004)) (-5 *1 (-549)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) + (-5 *2 (-566 (-399 *5))) (-5 *1 (-552 *4 *5)) (-5 *3 (-399 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5 *7 *9)) (-4 *5 (-1004)) - (-4 *6 (-1004)) (-14 *7 (-1123)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1186 *6 *8 *10)) (-5 *1 (-1187 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1123)))) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) + (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) + (-5 *2 (-3 (-308 *5) (-619 (-308 *5)))) (-5 *1 (-569 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)) + (-4 *3 (-38 (-399 (-548)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-921 *3)) (-4 *3 (-38 (-399 (-548)))) + (-4 *3 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-4 *2 (-821)) + (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-520 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) + (-5 *1 (-1120 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-38 (-399 (-548)))) + (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-1524 + (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) + (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) + (-4 *3 (-38 (-399 (-548)))))) + (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) + (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) + (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) + ((*1 *1 *1 *2) + (-1524 + (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) + (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) + (-4 *3 (-38 (-399 (-548)))))) + (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) + (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) + (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1199 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-1524 + (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) + (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) + (-4 *3 (-38 (-399 (-548)))))) + (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) + (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) + (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-872 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) + (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) + (-4 *4 (-341))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-399 (-548)))) + (-5 *2 + (-619 + (-2 (|:| |outval| *4) (|:| |outmult| (-548)) + (|:| |outvect| (-619 (-663 *4)))))) + (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-240 *4 *5)) + (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135)))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-663 *3)) (|:| |invmval| (-663 *3)) + (|:| |genIdeal| (-494 *3 *4 *5 *6)))) + (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-308 (-218))) (-5 *1 (-203))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1133 *4 *5 *6)) + (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1210 *4 *5 *6)) + (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4)))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-4 *1 (-872 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) + (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) + (|:| |args| (-619 (-832))))) + (-5 *1 (-1135)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-1135))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) + (-4 *4 (-341))))) +(((*1 *2 *1) + (-12 (-5 *2 (-832)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) + (-4 *3 (-1172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-619 *4)) (-5 *1 (-753 *4)) + (-4 *4 (-13 (-355) (-819)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) + (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *2 (-371)) (-5 *1 (-198))))) +(((*1 *2 *3) (-12 (-5 *3 (-619 (-52))) (-5 *2 (-1223)) (-5 *1 (-833))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1102 *4 *2)) (-14 *4 (-890)) + (-4 *2 (-13 (-1016) (-10 -7 (-6 (-4329 "*"))))) + (-5 *1 (-871 *4 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1135)) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) + (-4 *4 (-341))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-459)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) + (-4 *3 (-1172))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-663 *2)) (-4 *2 (-169)) (-5 *1 (-144 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-169)) (-4 *2 (-1194 *4)) (-5 *1 (-174 *4 *2 *3)) + (-4 *3 (-699 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1198 *6)) - (-5 *1 (-1196 *5 *6 *4 *2)) (-4 *4 (-1198 *5)))) + (-12 (-5 *3 (-663 (-399 (-921 *5)))) (-5 *4 (-1135)) + (-5 *2 (-921 *5)) (-5 *1 (-284 *5)) (-4 *5 (-443)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 (-399 (-921 *4)))) (-5 *2 (-921 *4)) + (-5 *1 (-284 *4)) (-4 *4 (-443)))) + ((*1 *2 *1) + (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 (-166 (-399 (-548))))) + (-5 *2 (-921 (-166 (-399 (-548))))) (-5 *1 (-739 *4)) + (-4 *4 (-13 (-355) (-819))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) - (-5 *2 (-1205 *6)) (-5 *1 (-1206 *5 *6)))) + (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *4 (-1135)) + (-5 *2 (-921 (-166 (-399 (-548))))) (-5 *1 (-739 *5)) + (-4 *5 (-13 (-355) (-819))))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-921 (-399 (-548)))) + (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1205 *5)) - (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1205 *6)) (-5 *1 (-1206 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) - (-4 *4 (-1004)))) + (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *4 (-1135)) + (-5 *2 (-921 (-399 (-548)))) (-5 *1 (-753 *5)) + (-4 *5 (-13 (-355) (-819)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-472 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) + (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) + (-5 *2 (-405 *4 (-399 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *6)) (-4 *6 (-13 (-401 *4 *5) (-1007 *4))) + (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-299)) + (-5 *1 (-405 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *2 (-371)) (-5 *1 (-198))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-619 *3)) (|:| |image| (-619 *3)))) + (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1218 (-745))) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) + (-4 *4 (-341))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-548)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-525 *4 *2)) + (-4 *2 (-1209 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-548)) (-4 *4 (-13 (-355) (-360) (-593 *3))) + (-4 *5 (-1194 *4)) (-4 *6 (-699 *4 *5)) (-5 *1 (-529 *4 *5 *6 *2)) + (-4 *2 (-1209 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-548)) (-4 *4 (-13 (-355) (-360) (-593 *3))) + (-5 *1 (-530 *4 *2)) (-4 *2 (-1209 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-13 (-540) (-145))) + (-5 *1 (-1112 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) + (-5 *2 (-619 (-745))) (-5 *1 (-752 *3 *4 *5 *6 *7)) + (-4 *3 (-1194 *6)) (-4 *7 (-918 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-472 *4 *5)) + (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *2 (-371)) (-5 *1 (-198))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-548)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) + (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) + (-5 *1 (-1112 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1194 *9)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-299)) + (-4 *10 (-918 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-619 (-1131 *10))) + (|:| |dterm| + (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-619 *6)) (|:| |nlead| (-619 *10)))) + (-5 *1 (-752 *6 *7 *8 *9 *10)) (-5 *3 (-1131 *10)) (-5 *4 (-619 *6)) + (-5 *5 (-619 *10))))) +(((*1 *2 *3) + (-12 (-5 *3 (-472 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) + (-5 *2 (-240 *4 *5)) (-5 *1 (-913 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *2 (-371)) (-5 *1 (-198))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-149 *3)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-619 (-2 (|:| -3352 (-745)) (|:| -2278 *4) (|:| |num| *4)))) + (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-112)) (-5 *1 (-429)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-5 *3 (-619 (-1135))) (-5 *4 (-112)) (-5 *1 (-429)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1116 *3)) (-5 *1 (-580 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) + (-4 *4 (-169)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-1228 *3 *4)) - (-4 *4 (-807))))) -(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-163)))) + (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) + (-4 *4 (-169)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) + (-4 *4 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 *3)) (-4 *3 (-348)) (-14 *6 (-1205 (-653 *3))) - (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))))) - ((*1 *1 *2) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1159)))) + (-12 (-5 *2 (-619 (-619 (-619 *3)))) (-4 *3 (-1063)) + (-5 *1 (-649 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-688 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-1063)) + (-14 *4 + (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *3)) + (-2 (|:| -3337 *2) (|:| -3352 *3)))))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-3844 'X) (-3844) (-663))) (-5 *1 (-59 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 *4)))) + (-4 *4 (-1063)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *5)) (-4 *5 (-13 (-1063) (-34))) + (-5 *2 (-619 (-1100 *3 *5))) (-5 *1 (-1100 *3 *5)) + (-4 *3 (-13 (-1063) (-34))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-2 (|:| |val| *4) (|:| -1806 *5)))) + (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) + (-5 *2 (-619 (-1100 *4 *5))) (-5 *1 (-1100 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844 'JINT 'X 'ELAM) (-3844) (-663)))) - (-5 *1 (-60 *3)) (-14 *3 (-1123)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1806 *4))) + (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) + (-5 *1 (-1100 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-13 (-1063) (-34))) + (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-619 (-1100 *2 *3))) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-619 (-1101 *2 *3))) (-5 *1 (-1101 *2 *3)) + (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-548)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) + (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) + (-5 *1 (-1112 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-341)) (-4 *5 (-321 *4)) (-4 *6 (-1194 *5)) + (-5 *2 (-619 *3)) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) + (-14 *7 (-890))))) +(((*1 *2 *3) + (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) + (-5 *2 (-472 *4 *5)) (-5 *1 (-913 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) + (-5 *1 (-494 *4 *5 *6 *2)) (-4 *2 (-918 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) + (-5 *1 (-198))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) + (-5 *1 (-1120 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) + (-14 *4 (-1135)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'XC) (-663)))) (-5 *1 (-62 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-355)) (-14 *6 (-1218 (-663 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))))) + ((*1 *1 *2) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-324 (-3844) (-3844 'X 'HESS) (-663)))) (-5 *1 (-63 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754 'JINT 'X 'ELAM) (-3754) (-673)))) + (-5 *1 (-60 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-3844) (-3844 'XC) (-663))) (-5 *1 (-64 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'XC) (-673)))) + (-5 *1 (-62 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844 'X) (-3844 '-4281) (-663)))) (-5 *1 (-69 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-331 (-3754 'X) (-3754) (-673))) (-5 *1 (-63 *3)) + (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'X) (-663)))) (-5 *1 (-72 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-663 (-331 (-3754) (-3754 'X 'HESS) (-673)))) + (-5 *1 (-64 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-3844) (-3844 'X) (-663))) (-5 *1 (-73 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-331 (-3754) (-3754 'XC) (-673))) (-5 *1 (-65 *3)) + (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844 'X 'EPS) (-3844 '-4281) (-663)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1123)) (-14 *4 (-1123)) (-14 *5 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754 'X) (-3754 '-2428) (-673)))) + (-5 *1 (-70 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844 'EPS) (-3844 'YA 'YB) (-663)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1123)) (-14 *4 (-1123)) (-14 *5 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'X) (-673)))) + (-5 *1 (-73 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-3844) (-3844 'X) (-663))) (-5 *1 (-76 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754 'X 'EPS) (-3754 '-2428) (-673)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) + (-14 *5 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'XC) (-663)))) (-5 *1 (-77 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754 'EPS) (-3754 'YA 'YB) (-673)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) + (-14 *5 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'X) (-663)))) (-5 *1 (-78 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-331 (-3754) (-3754 'X) (-673))) (-5 *1 (-76 *3)) + (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'X) (-663)))) (-5 *1 (-79 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-331 (-3754) (-3754 'X) (-673))) (-5 *1 (-77 *3)) + (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844 'X) (-3844 '-4281) (-663)))) (-5 *1 (-80 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'XC) (-673)))) + (-5 *1 (-78 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844 'X '-4281) (-3844) (-663)))) (-5 *1 (-81 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'X) (-673)))) + (-5 *1 (-79 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-324 (-3844 'X '-4281) (-3844) (-663)))) (-5 *1 (-82 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'X) (-673)))) + (-5 *1 (-80 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-324 (-3844 'X) (-3844) (-663)))) (-5 *1 (-83 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-1218 (-331 (-3754 'X '-2428) (-3754) (-673)))) + (-5 *1 (-81 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-324 (-3844 'X) (-3844) (-663)))) (-5 *1 (-84 *3)) - (-14 *3 (-1123)))) + (-12 (-5 *2 (-663 (-331 (-3754 'X '-2428) (-3754) (-673)))) + (-5 *1 (-82 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-324 (-3844 'XL 'XR 'ELAM) (-3844) (-663)))) - (-5 *1 (-86 *3)) (-14 *3 (-1123)))) + (-12 (-5 *2 (-663 (-331 (-3754 'X) (-3754) (-673)))) (-5 *1 (-83 *3)) + (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-3844 'X) (-3844 '-4281) (-663))) (-5 *1 (-87 *3)) - (-14 *3 (-1123)))) - ((*1 *2 *1) (-12 (-5 *2 (-962 2)) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) - ((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-127)))) + (-12 (-5 *2 (-1218 (-331 (-3754 'X) (-3754) (-673)))) + (-5 *1 (-84 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) - (-14 *4 (-735)) (-4 *5 (-163)))) + (-12 (-5 *2 (-1218 (-331 (-3754 'X) (-3754 '-2428) (-673)))) + (-5 *1 (-85 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 *5)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) - (-14 *4 (-735)))) + (-12 (-5 *2 (-663 (-331 (-3754 'XL 'XR 'ELAM) (-3754) (-673)))) + (-5 *1 (-86 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1090 *4 *5)) (-14 *4 (-735)) (-4 *5 (-163)) - (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)))) + (-12 (-5 *2 (-331 (-3754 'X) (-3754 '-2428) (-673))) (-5 *1 (-88 *3)) + (-14 *3 (-1135)))) + ((*1 *2 *1) (-12 (-5 *2 (-973 2)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) + ((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) ((*1 *1 *2) - (-12 (-5 *2 (-225 *4 *5)) (-14 *4 (-735)) (-4 *5 (-163)) - (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)))) + (-12 (-5 *2 (-619 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-548)) (-14 *4 (-745)) (-4 *5 (-169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-548)) (-14 *4 (-745)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1102 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)))) + ((*1 *1 *2) + (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)))) ((*1 *2 *3) - (-12 (-5 *3 (-1205 (-653 *4))) (-4 *4 (-163)) - (-5 *2 (-1205 (-653 (-392 (-905 *4))))) (-5 *1 (-176 *4)))) + (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) + (-5 *2 (-1218 (-663 (-399 (-921 *4))))) (-5 *1 (-182 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 *3)) + (-12 (-5 *2 (-619 *3)) (-4 *3 - (-13 (-811) - (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) - (-15 -2063 ((-1211) $))))) - (-5 *1 (-201 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-962 10)) (-5 *1 (-204)))) - ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-231 *3)) (-4 *3 (-811)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-231 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1044 (-299 *4))) (-4 *4 (-13 (-811) (-533) (-584 (-363)))) - (-5 *2 (-1044 (-363))) (-5 *1 (-244 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-260)))) + (-13 (-821) + (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) + (-15 -3721 ((-1223) $))))) + (-5 *1 (-207 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-973 10)) (-5 *1 (-210)))) + ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-238 *3)) (-4 *3 (-821)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-238 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1056 (-308 *4))) + (-4 *4 (-13 (-821) (-540) (-593 (-371)))) (-5 *2 (-1056 (-371))) + (-5 *1 (-250 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-267)))) ((*1 *2 *1) - (-12 (-4 *2 (-1181 *3)) (-5 *1 (-274 *3 *2 *4 *5 *6 *7)) (-4 *3 (-163)) - (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-12 (-4 *2 (-1194 *3)) (-5 *1 (-281 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1186 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) - (-14 *5 (-1123)) (-14 *6 *4) - (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) - (-5 *1 (-298 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-315)))) + (-12 (-5 *2 (-1203 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) + (-14 *5 (-1135)) (-14 *6 *4) + (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) + (-5 *1 (-305 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-322)))) ((*1 *2 *1) - (-12 (-5 *2 (-299 *5)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) - (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + (-12 (-5 *2 (-308 *5)) (-5 *1 (-331 *3 *4 *5)) + (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *2 *3) - (-12 (-4 *4 (-335)) (-4 *2 (-314 *4)) (-5 *1 (-333 *3 *4 *2)) - (-4 *3 (-314 *4)))) + (-12 (-4 *4 (-341)) (-4 *2 (-321 *4)) (-5 *1 (-339 *3 *4 *2)) + (-4 *3 (-321 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-335)) (-4 *2 (-314 *4)) (-5 *1 (-333 *2 *4 *3)) - (-4 *3 (-314 *4)))) + (-12 (-4 *4 (-341)) (-4 *2 (-321 *4)) (-5 *1 (-339 *2 *4 *3)) + (-4 *3 (-321 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) - (-5 *2 (-1229 *3 *4)))) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *2 (-1242 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) - (-5 *2 (-1220 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *2 (-1233 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) - (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-663))) (-4 *1 (-368)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) + (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-673))) (-4 *1 (-375)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) - (-4 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-370)))) - ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-378)))) - ((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-379 *3)) (-4 *3 (-1052)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) + (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-376)))) + ((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381)))) + ((*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-385 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-386)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) - (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-382)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) + (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-388)))) ((*1 *1 *2) - (-12 (-5 *2 (-278 (-299 (-159 (-363))))) (-5 *1 (-383 *3 *4 *5 *6)) - (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) - (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) + (-12 (-5 *2 (-286 (-308 (-166 (-371))))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-278 (-299 (-363)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-286 (-308 (-371)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-278 (-299 (-526)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-286 (-308 (-548)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 (-159 (-363)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-308 (-166 (-371)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 (-363))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-308 (-371))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 (-526))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-308 (-548))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-278 (-299 (-658)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-286 (-308 (-668)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-278 (-299 (-663)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-286 (-308 (-673)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-278 (-299 (-665)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-286 (-308 (-675)))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 (-658))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-308 (-668))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 (-663))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-308 (-673))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 (-665))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-308 (-675))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) - (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) + (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) + (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 (-315))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-619 (-322))) (-5 *1 (-390 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-315)) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) - (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) - (-14 *6 (-1127)))) + (-12 (-5 *2 (-322)) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) + (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-392 (-905 (-392 *3)))) (-4 *3 (-533)) (-4 *3 (-811)) - (-4 *1 (-406 *3)))) + (-12 (-5 *2 (-323 *4)) (-4 *4 (-13 (-821) (-21))) + (-5 *1 (-419 *3 *4)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))))) ((*1 *1 *2) - (-12 (-5 *2 (-905 (-392 *3))) (-4 *3 (-533)) (-4 *3 (-811)) - (-4 *1 (-406 *3)))) + (-12 (-5 *1 (-419 *2 *3)) (-4 *2 (-13 (-169) (-38 (-399 (-548))))) + (-4 *3 (-13 (-821) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-392 *3)) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) + (-12 (-5 *2 (-399 (-921 (-399 *3)))) (-4 *3 (-540)) (-4 *3 (-821)) + (-4 *1 (-422 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1075 *3 (-581 *1))) (-4 *3 (-1004)) (-4 *3 (-811)) - (-4 *1 (-406 *3)))) + (-12 (-5 *2 (-921 (-399 *3))) (-4 *3 (-540)) (-4 *3 (-821)) + (-4 *1 (-422 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 *4)) (-4 *4 (-13 (-811) (-21))) (-5 *1 (-414 *3 *4)) - (-4 *3 (-13 (-163) (-37 (-392 (-526))))))) + (-12 (-5 *2 (-399 *3)) (-4 *3 (-540)) (-4 *3 (-821)) + (-4 *1 (-422 *3)))) ((*1 *1 *2) - (-12 (-5 *1 (-414 *2 *3)) (-4 *2 (-13 (-163) (-37 (-392 (-526))))) - (-4 *3 (-13 (-811) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-419)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-419)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-419)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-419)))) - ((*1 *1 *2) (-12 (-5 *2 (-419)) (-5 *1 (-421)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-421)))) + (-12 (-5 *2 (-1087 *3 (-591 *1))) (-4 *3 (-1016)) (-4 *3 (-821)) + (-4 *1 (-422 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-426)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-426)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-426)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-426)))) + ((*1 *1 *2) (-12 (-5 *2 (-426)) (-5 *1 (-429)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-429)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) - (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 (-663))) (-4 *1 (-424)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) + (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-673))) (-4 *1 (-431)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) - (-4 *1 (-425)))) - ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-425)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-425)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) + (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-432)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-392 (-905 *3)))) (-4 *3 (-163)) - (-14 *6 (-1205 (-653 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-14 *4 (-878)) - (-14 *5 (-607 (-1123))))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-452)))) + (-12 (-5 *2 (-1218 (-399 (-921 *3)))) (-4 *3 (-169)) + (-14 *6 (-1218 (-663 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-14 *4 (-890)) (-14 *5 (-619 (-1135))))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-459)))) ((*1 *1 *2) - (-12 (-5 *2 (-1186 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) - (-5 *1 (-458 *3 *4 *5)))) + (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) + (-14 *5 *3) (-5 *1 (-465 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-962 16)) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-484)))) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-973 16)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-492)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-506)))) - ((*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-575)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-576)))) - ((*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-577 *3 *2)) (-4 *2 (-709 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1004)))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-514)))) + ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-584)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-585)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-5 *1 (-586 *3 *2)) (-4 *2 (-719 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1016)))) ((*1 *2 *1) - (-12 (-5 *2 (-1225 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) - (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) + (-12 (-5 *2 (-1238 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) ((*1 *2 *1) - (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) - (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) - ((*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-600 *3 *2)) (-4 *2 (-709 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) + (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-5 *1 (-611 *3 *2)) (-4 *2 (-719 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-651 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) ((*1 *2 *1) - (-12 (-5 *2 (-917 (-917 (-917 *3)))) (-5 *1 (-640 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-5 *1 (-649 *3)) + (-4 *3 (-1063)))) ((*1 *1 *2) - (-12 (-5 *2 (-917 (-917 (-917 *3)))) (-4 *3 (-1052)) (-5 *1 (-640 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) - ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-645)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-4 *3 (-1063)) + (-5 *1 (-649 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-655)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063)))) ((*1 *1 *2) - (-12 (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *2)) (-4 *4 (-357 *3)) - (-4 *2 (-357 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) - ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) - ((*1 *2 *1) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-658)))) - ((*1 *1 *2) (-12 (-5 *2 (-159 (-665))) (-5 *1 (-658)))) - ((*1 *1 *2) (-12 (-5 *2 (-159 (-663))) (-5 *1 (-658)))) - ((*1 *1 *2) (-12 (-5 *2 (-159 (-526))) (-5 *1 (-658)))) - ((*1 *1 *2) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-658)))) - ((*1 *1 *2) (-12 (-5 *2 (-665)) (-5 *1 (-663)))) - ((*1 *2 *1) (-12 (-5 *2 (-363)) (-5 *1 (-663)))) - ((*1 *2 *3) (-12 (-5 *3 (-299 (-526))) (-5 *2 (-299 (-665))) (-5 *1 (-665)))) - ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1052)))) - ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) + (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *2)) (-4 *4 (-365 *3)) + (-4 *2 (-365 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) + ((*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) + ((*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-668)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-668)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-673))) (-5 *1 (-668)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-548))) (-5 *1 (-668)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-668)))) + ((*1 *1 *2) (-12 (-5 *2 (-675)) (-5 *1 (-673)))) + ((*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-673)))) + ((*1 *2 *3) + (-12 (-5 *3 (-308 (-548))) (-5 *2 (-308 (-675))) (-5 *1 (-675)))) + ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1063)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) ((*1 *2 *1) - (-12 (-4 *2 (-163)) (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-169)) (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2461 *3) (|:| -2462 *4))) (-5 *1 (-678 *3 *4 *5)) - (-4 *3 (-811)) (-4 *4 (-1052)) (-14 *5 (-1 (-111) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *4))) + (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-1063)) + (-14 *5 (-1 (-112) *2 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -2461 *3) (|:| -2462 *4))) (-4 *3 (-811)) - (-4 *4 (-1052)) (-5 *1 (-678 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *4))) (-4 *3 (-821)) + (-4 *4 (-1063)) (-5 *1 (-688 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-163)) (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-169)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 (-2 (|:| -4270 *3) (|:| -4255 *4)))) (-4 *3 (-1004)) - (-4 *4 (-691)) (-5 *1 (-700 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-728)))) + (-12 (-5 *2 (-619 (-2 (|:| -1489 *3) (|:| -3310 *4)))) + (-4 *3 (-1016)) (-4 *4 (-701)) (-5 *1 (-710 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-738)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) (|:| |mdnia| - (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) - (-5 *1 (-733)))) + (-2 (|:| |fn| (-308 (-218))) + (|:| -3094 (-619 (-1058 (-814 (-218))))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) + (-5 *1 (-743)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *1 (-733)))) + (-2 (|:| |fn| (-308 (-218))) + (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *1 (-743)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (-5 *1 (-733)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-733)))) - ((*1 *2 *3) (-12 (-5 *2 (-737)) (-5 *1 (-738 *3)) (-4 *3 (-1159)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *1 (-743)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-743)))) + ((*1 *2 *3) (-12 (-5 *2 (-748)) (-5 *1 (-747 *3)) (-4 *3 (-1172)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *1 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-772)))) + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *1 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-782)))) ((*1 *2 *1) - (-12 (-4 *2 (-859 *3)) (-5 *1 (-781 *3 *2 *4)) (-4 *3 (-1052)) (-14 *4 *3))) + (-12 (-4 *2 (-869 *3)) (-5 *1 (-791 *3 *2 *4)) (-4 *3 (-1063)) + (-14 *4 *3))) ((*1 *1 *2) - (-12 (-4 *3 (-1052)) (-14 *4 *3) (-5 *1 (-781 *3 *2 *4)) (-4 *2 (-859 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-790)))) + (-12 (-4 *3 (-1063)) (-14 *4 *3) (-5 *1 (-791 *3 *2 *4)) + (-4 *2 (-869 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-798)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) - (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) - (|:| |ub| (-607 (-803 (-211)))))) + (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) + (|:| |lb| (-619 (-814 (-218)))) + (|:| |cf| (-619 (-308 (-218)))) + (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| - (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) - (-5 *1 (-802)))) + (-2 (|:| |lfn| (-619 (-308 (-218)))) + (|:| -3410 (-619 (-218))))))) + (-5 *1 (-812)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) - (-5 *1 (-802)))) + (-12 + (-5 *2 + (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) + (-5 *1 (-812)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) - (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) - (|:| |ub| (-607 (-803 (-211)))))) - (-5 *1 (-802)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-802)))) + (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) + (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) + (|:| |ub| (-619 (-814 (-218)))))) + (-5 *1 (-812)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-812)))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *3)) (-14 *3 (-1123)) (-5 *1 (-816 *3 *4 *5 *6)) - (-4 *4 (-1004)) (-14 *5 (-97 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-819)))) + (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-826 *3 *4 *5 *6)) + (-4 *4 (-1016)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-829)))) ((*1 *1 *2) - (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-5 *1 (-825 *3 *4 *5 *6)) - (-14 *4 (-607 (-1123))) (-14 *5 (-607 (-735))) (-14 *6 (-735)))) + (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-835 *3 *4 *5 *6)) + (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) ((*1 *2 *1) - (-12 (-5 *2 (-905 *3)) (-5 *1 (-825 *3 *4 *5 *6)) (-4 *3 (-1004)) - (-14 *4 (-607 (-1123))) (-14 *5 (-607 (-735))) (-14 *6 (-735)))) - ((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) - ((*1 *2 *3) (-12 (-5 *3 (-905 (-47))) (-5 *2 (-299 (-526))) (-5 *1 (-834)))) - ((*1 *2 *3) - (-12 (-5 *3 (-392 (-905 (-47)))) (-5 *2 (-299 (-526))) (-5 *1 (-834)))) - ((*1 *1 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) + (-12 (-5 *2 (-921 *3)) (-5 *1 (-835 *3 *4 *5 *6)) (-4 *3 (-1016)) + (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) + ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921 (-48))) (-5 *2 (-308 (-548))) (-5 *1 (-844)))) + ((*1 *2 *3) + (-12 (-5 *3 (-399 (-921 (-48)))) (-5 *2 (-308 (-548))) + (-5 *1 (-844)))) + ((*1 *1 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-607 (-299 (-211)))) + (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| - (-607 - (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) - (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) - (|:| |dFinish| (-653 (-211)))))) - (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) - (|:| |tol| (-211)))) - (-5 *1 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-860 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-861 *3))) (-4 *3 (-1052)) (-5 *1 (-864 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2) (-12 (-5 *2 (-392 (-390 *3))) (-4 *3 (-292)) (-5 *1 (-873 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-392 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) - ((*1 *2 *3) - (-12 (-5 *3 (-461)) (-5 *2 (-299 *4)) (-5 *1 (-879 *4)) - (-4 *4 (-13 (-811) (-533))))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) - ((*1 *1 *2) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-930)))) - ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) - ((*1 *2 *3) (-12 (-5 *2 (-1211)) (-5 *1 (-990 *3)) (-4 *3 (-1159)))) - ((*1 *2 *3) (-12 (-5 *3 (-296)) (-5 *1 (-990 *2)) (-4 *2 (-1159)))) + (-619 + (-2 (|:| |start| (-218)) (|:| |finish| (-218)) + (|:| |grid| (-745)) (|:| |boundaryType| (-548)) + (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) + (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) + (|:| |tol| (-218)))) + (-5 *1 (-867)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-867)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1158 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *2 (-909 *3 *4 *5)) (-14 *6 (-607 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) - ((*1 *2 *3) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-997 *3)) (-4 *3 (-533)))) - ((*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1004)))) + (-12 (-5 *2 (-399 (-410 *3))) (-4 *3 (-299)) (-5 *1 (-883 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) + ((*1 *2 *3) + (-12 (-5 *3 (-468)) (-5 *2 (-308 *4)) (-5 *1 (-888 *4)) + (-4 *4 (-13 (-821) (-540))))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) + ((*1 *1 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-940)))) ((*1 *2 *1) - (-12 (-5 *2 (-653 *5)) (-5 *1 (-1008 *3 *4 *5)) (-14 *3 (-735)) - (-14 *4 (-735)) (-4 *5 (-1004)))) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) + ((*1 *2 *3) (-12 (-5 *2 (-1223)) (-5 *1 (-1002 *3)) (-4 *3 (-1172)))) + ((*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1002 *2)) (-4 *2 (-1172)))) ((*1 *1 *2) - (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-5 *1 (-1076 *3 *4 *2)) - (-4 *2 (-909 *3 (-512 *4) *4)))) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) + (-14 *6 (-619 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-1012 *3)) (-4 *3 (-540)))) + ((*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-663 *5)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) + (-14 *4 (-745)) (-4 *5 (-1016)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) + (-4 *2 (-918 *3 (-520 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1004)) (-4 *2 (-811)) (-5 *1 (-1076 *3 *2 *4)) - (-4 *4 (-909 *3 (-512 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-823)))) + (-12 (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) + (-4 *4 (-918 *3 (-520 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-832)))) ((*1 *2 *1) - (-12 (-5 *2 (-653 *4)) (-5 *1 (-1090 *3 *4)) (-14 *3 (-735)) - (-4 *4 (-1004)))) - ((*1 *1 *2) (-12 (-5 *2 (-138)) (-4 *1 (-1092)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) + (-12 (-5 *2 (-663 *4)) (-5 *1 (-1102 *3 *4)) (-14 *3 (-745)) + (-4 *4 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1104)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 *4 *3)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) - (-5 *1 (-1121 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1123)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132 (-1123) (-421))) (-5 *1 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) - ((*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) - ((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1133 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1139)))) - ((*1 *2 *3) (-12 (-5 *2 (-1139)) (-5 *1 (-1140 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-5 *1 (-1152 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1152 *3)) (-4 *3 (-1004)))) - ((*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1159)) (-5 *1 (-1157 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-1160)))) + (-12 (-5 *2 (-1191 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1135)) + (-14 *5 *3) (-5 *1 (-1133 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1134)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145 (-1135) (-429))) (-5 *1 (-1139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) + ((*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) + ((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1144 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *1 (-1151 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-1169 *3 *2)) (-4 *2 (-1198 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1041 *3)) (-4 *3 (-1159)) (-5 *1 (-1172 *3)))) + (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-1166 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-1016)))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *3)) (-14 *3 (-1123)) (-5 *1 (-1174 *3 *4)) - (-4 *4 (-1004)))) + (-12 (-5 *2 (-927 *3)) (-4 *3 (-1172)) (-5 *1 (-1169 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1171)))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-1190 *3 *2)) (-4 *2 (-1167 *3)))) + (-12 (-4 *3 (-1016)) (-4 *1 (-1180 *3 *2)) (-4 *2 (-1209 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 *4 *3)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) - (-5 *1 (-1195 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1202 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-452)) (-5 *2 (-1208)) (-5 *1 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1211)))) + (-12 (-5 *2 (-1058 *3)) (-4 *3 (-1172)) (-5 *1 (-1185 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-14 *6 (-607 *4)) - (-5 *1 (-1217 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-909 *3 *5 *4)) - (-14 *7 (-607 (-735))) (-14 *8 (-735)))) - ((*1 *2 *1) - (-12 (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-1217 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-14 *6 (-607 *4)) - (-14 *7 (-607 (-735))) (-14 *8 (-735)))) - ((*1 *1 *2) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1004)))) - ((*1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1229 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) - (-4 *4 (-163)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) - (-4 *4 (-163)))) + (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-1191 *3 *4)) + (-4 *4 (-1016)))) ((*1 *1 *2) - (-12 (-5 *2 (-629 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) - (-5 *1 (-1225 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-807))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-33)) (-5 *2 (-735)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-526)))) + (-12 (-4 *3 (-1016)) (-4 *1 (-1201 *3 *2)) (-4 *2 (-1178 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1191 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1135)) + (-14 *5 *3) (-5 *1 (-1210 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1219)))) + ((*1 *2 *3) (-12 (-5 *3 (-459)) (-5 *2 (-1219)) (-5 *1 (-1222)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1223)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) + (-5 *1 (-1230 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-918 *3 *5 *4)) + (-14 *7 (-619 (-745))) (-14 *8 (-745)))) ((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-783 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-783 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1229 *4 *2)) (-4 *1 (-359 *4 *2)) (-4 *4 (-811)) - (-4 *2 (-163)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783 *4)) (-4 *1 (-1224 *4 *2)) (-4 *4 (-811)) (-4 *2 (-1004)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1004)) (-5 *1 (-1228 *2 *3)) (-4 *3 (-807))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-1230 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) + (-14 *7 (-619 (-745))) (-14 *8 (-745)))) + ((*1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) + (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1052)) (-5 *2 (-1 *5 *4)) (-5 *1 (-647 *4 *5)) - (-4 *4 (-1052)))) - ((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) - ((*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) - ((*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-1228 *2 *3)) (-4 *3 (-807))))) + (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *1 (-1238 *3 *4)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-817))))) (((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807))))) -(((*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) - ((*1 *1 *1) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-348)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-211)))) - ((*1 *1 *1 *1) - (-3850 (-12 (-5 *1 (-278 *2)) (-4 *2 (-348)) (-4 *2 (-1159))) - (-12 (-5 *1 (-278 *2)) (-4 *2 (-457)) (-4 *2 (-1159))))) - ((*1 *1 *1 *1) (-4 *1 (-348))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1075 *3 (-581 *1))) (-4 *3 (-533)) (-4 *3 (-811)) - (-4 *1 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-457))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-515))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-163)) (-5 *1 (-586 *2 *4 *3)) (-4 *2 (-37 *4)) - (-4 *3 (|SubsetCategory| (-691) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-163)) (-5 *1 (-586 *3 *4 *2)) (-4 *3 (-37 *4)) - (-4 *2 (|SubsetCategory| (-691) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-163)) (-4 *2 (-348)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-163)) (-5 *1 (-617 *2 *4 *3)) (-4 *2 (-682 *4)) - (-4 *3 (|SubsetCategory| (-691) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-163)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-682 *4)) - (-4 *2 (|SubsetCategory| (-691) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)) (-4 *2 (-348)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-825 *2 *3 *4 *5)) (-4 *2 (-348)) (-4 *2 (-1004)) - (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-735))) (-14 *5 (-735)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *2 (-1004)) (-4 *5 (-224 *4 *2)) - (-4 *6 (-224 *3 *2)) (-4 *2 (-348)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-348)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-348)) (-4 *2 (-1004)) (-4 *3 (-811)) (-4 *4 (-757)) - (-14 *6 (-607 *3)) (-5 *1 (-1217 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-909 *2 *4 *3)) (-14 *7 (-607 (-735))) (-14 *8 (-735)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-348)) (-4 *2 (-1004)) (-4 *3 (-807))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) - ((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *1) - (-12 (-5 *2 (-526)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) - (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-260)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117 *8)) (-5 *4 (-607 *6)) (-4 *6 (-811)) - (-4 *8 (-909 *7 *5 *6)) (-4 *5 (-757)) (-4 *7 (-1004)) (-5 *2 (-607 (-735))) - (-5 *1 (-306 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-878)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-548)))) ((*1 *2 *1) - (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-454 *3 *2)) (-4 *3 (-163)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-533)) (-5 *2 (-526)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-607 (-735))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) - (-5 *2 (-735)))) - ((*1 *2 *1) - (-12 (-4 *1 (-932 *3 *2 *4)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *2 (-756)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-735)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1198 *3)) - (-5 *2 (-526)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1167 *3)) - (-5 *2 (-392 (-526))))) - ((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-796 (-878))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-735))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1220 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) - (-5 *1 (-629 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-629 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) - (-4 *4 (-163))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) - (-4 *2 (-406 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1044 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) - (-5 *1 (-150 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-152)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163))))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 (-526))) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) (-4 *1 (-269))) - ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *1 *2) - (-12 (-5 *2 (-629 *3 *4)) (-4 *3 (-811)) - (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-5 *1 (-594 *3 *4 *5)) - (-14 *5 (-878)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) - (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *4 (-682 (-392 (-526)))) - (-4 *3 (-811)) (-4 *4 (-163))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-524))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) + (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) + (-4 *2 (-1209 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) + (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) + (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) (-4 *1 (-269))) + (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) + (-5 *1 (-1112 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) + (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) ((*1 *2 *3) - (-12 (-5 *3 (-390 *4)) (-4 *4 (-533)) - (-5 *2 (-607 (-2 (|:| -4270 (-735)) (|:| |logand| *4)))) (-5 *1 (-305 *4)))) + (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *6 (-593 (-1135))) + (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *2 (-1125 (-619 (-921 *4)) (-619 (-286 (-921 *4))))) + (-5 *1 (-494 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 (-308 (-218)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) + (-5 *1 (-198))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-5 *2 (-2 (|:| -3156 *3) (|:| -1657 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *2 *1) - (-12 (-5 *2 (-629 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) - (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) - (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *4 (-682 (-392 (-526)))) - (-4 *3 (-811)) (-4 *4 (-163))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) - (-5 *2 (-2 (|:| |k| (-783 *3)) (|:| |c| *4)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1229 *3 *4)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) - (-4 *4 (-163)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783 *3)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1229 *3 *4)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) - (-4 *4 (-163)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783 *3)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1052)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-526)) (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-783 *4)) (-4 *4 (-811)) (-4 *1 (-1224 *4 *3)) (-4 *3 (-1004))))) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) (((*1 *2 *1) - (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-111)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-548)))) ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) - ((*1 *2 *1) - (-12 (-4 *3 (-533)) (-5 *2 (-111)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111))))) -(((*1 *1 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) - ((*1 *1 *1) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-811)) - (-4 *3 (-13 (-163) (-682 (-392 (-526))))) (-14 *4 (-878)))) - ((*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) - (-4 *4 (-163)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)) (-4 *3 (-163))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548))))) +(((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-112)) + (-5 *1 (-349 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-735)) (-5 *2 (-607 (-1123))) (-5 *1 (-197)) (-5 *3 (-1123)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-299 (-211))) (-5 *4 (-735)) (-5 *2 (-607 (-1123))) - (-5 *1 (-252)))) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-548)) + (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *9)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) + (-4 *8 (-1016)) (-4 *2 (-918 *9 *7 *5)) + (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) + (-4 *4 (-918 *8 *6 *5))))) +(((*1 *1 *1) (|partial| -4 *1 (-1111)))) +(((*1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) ((*1 *2 *1) - (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-607 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-607 *3)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) - (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) + (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1118)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *4 (-1030 *6 *7 *8)) (-5 *2 (-1223)) + (-5 *1 (-750 *6 *7 *8 *4 *5)) (-4 *5 (-1036 *6 *7 *8 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-207 *4)) + (-4 *4 + (-13 (-821) + (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) + (-15 -3721 (*2 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-607 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1154 *4 *5 *3 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *3 (-811)) - (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111))))) + (-12 (-5 *2 (-1223)) (-5 *1 (-207 *3)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) + (-15 -3721 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-492))))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 (-308 (-218)))) (-5 *2 (-371)) (-5 *1 (-198))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) + (-5 *1 (-1120 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) + (-14 *4 (-1135)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1007 (-548))) (-4 *1 (-294)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1172)) + (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *6 *2 *7)) (-4 *6 (-1016)) + (-4 *7 (-231 *4 *6)) (-4 *2 (-231 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-494 (-399 (-548)) (-233 *4 (-745)) (-834 *3) + (-240 *3 (-399 (-548))))) + (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-495 *3 *4))))) (((*1 *2) - (-12 (-4 *4 (-348)) (-5 *2 (-878)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) + (-12 + (-5 *2 + (-1218 (-619 (-2 (|:| -4056 (-879 *3)) (|:| -3337 (-1082)))))) + (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) ((*1 *2) - (-12 (-4 *4 (-348)) (-5 *2 (-796 (-878))) (-5 *1 (-313 *3 *4)) - (-4 *3 (-314 *4)))) - ((*1 *2) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-878)))) - ((*1 *2) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-796 (-878)))))) -(((*1 *2) - (-12 (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) - ((*1 *2) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-735))))) + (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))) + (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) (-14 *4 (-3 (-1131 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))) + (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) + (-14 *4 (-745)) (-4 *5 (-169))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-335)) (-4 *4 (-314 *3)) (-4 *5 (-1181 *4)) - (-5 *1 (-741 *3 *4 *5 *2 *6)) (-4 *2 (-1181 *5)) (-14 *6 (-878)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) - ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-348)) (-4 *2 (-353))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) - (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1218 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) - (-4 *7 (-811)) (-5 *1 (-1218 *5 *6 *7 *8))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1218 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) - (-4 *7 (-811)) (-5 *1 (-1218 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-607 (-1218 *4 *5 *6 *7))) - (-5 *1 (-1218 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) - (-5 *2 (-607 (-1218 *6 *7 *8 *9))) (-5 *1 (-1218 *6 *7 *8 *9))))) + (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) + ((*1 *1 *1) (-5 *1 (-371))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-825 *4 *5 *6 *7)) - (-4 *4 (-1004)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 *3)) (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) - (-14 *8 (-607 *5)) (-5 *2 (-1211)) (-5 *1 (-1217 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-909 *4 *6 *5)) (-14 *9 (-607 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1052) (-33))) (-5 *1 (-1088 *3 *2)) - (-4 *3 (-13 (-1052) (-33))))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1216))))) + (-12 (-5 *3 (-1131 (-548))) (-5 *2 (-548)) (-5 *1 (-911))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) + (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *7))) + (-5 *1 (-491 *5 *6 *4 *7)) (-4 *4 (-1194 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-198)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-371))) (-5 *2 (-371)) (-5 *1 (-198))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) - (-4 *4 (-1181 *3)) - (-5 *2 - (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) - (-5 *1 (-336 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) + (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-409 *4))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) + (-5 *1 (-1120 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) + (-14 *4 (-1135)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1007 (-548))) (-4 *1 (-294)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1172)) + (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *6 *7 *2)) (-4 *6 (-1016)) + (-4 *7 (-231 *5 *6)) (-4 *2 (-231 *4 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-759 *3)) (-4 *3 (-593 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-5 *2 (-371)) (-5 *1 (-759 *3)) + (-4 *3 (-593 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-526)) (-4 *4 (-1181 *3)) - (-5 *2 - (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) - (-5 *1 (-732 *4 *5)) (-4 *5 (-395 *3 *4)))) + (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 *2)) + (-5 *2 (-371)) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-335)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 *3)) - (-5 *2 - (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) - (-5 *1 (-944 *4 *3 *5 *6)) (-4 *6 (-689 *3 *5)))) + (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 *2)) + (-5 *2 (-371)) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-335)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 *3)) - (-5 *2 - (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) - (-5 *1 (-1215 *4 *3 *5 *6)) (-4 *6 (-395 *3 *5))))) + (-12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) + (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) + (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5))))) (((*1 *2) - (-12 (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) - (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)))) + (-12 (-5 *2 (-663 (-879 *3))) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890)))) ((*1 *2) - (-12 (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) - (-4 *4 (-1181 *3)) - (-5 *2 - (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) - (-5 *1 (-336 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) + (-12 (-5 *2 (-663 *3)) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) + (-14 *4 + (-3 (-1131 *3) + (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082))))))))) ((*1 *2) - (-12 (-4 *3 (-1181 (-526))) - (-5 *2 - (-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) - (|:| |basisInv| (-653 (-526))))) - (-5 *1 (-732 *3 *4)) (-4 *4 (-395 (-526) *3)))) + (-12 (-5 *2 (-663 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) + (-14 *4 (-890))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) + (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *3)) + (-4 *3 (-1172)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-548)) (-4 *4 (-1063)) + (-5 *1 (-712 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *2 (-1030 *4 *5 *6)) (-5 *1 (-750 *4 *5 *6 *2 *3)) + (-4 *3 (-1036 *4 *5 *6 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-663 (-1131 *8))) (-4 *5 (-1016)) (-4 *8 (-1016)) + (-4 *6 (-1194 *5)) (-5 *2 (-663 *6)) (-5 *1 (-491 *5 *6 *7 *8)) + (-4 *7 (-1194 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 (-548)) (-5 *1 (-197))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-409 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-360)) + (-4 *3 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) + (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) + (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)) (-4 *2 (-299)))) + ((*1 *2 *2) + (-12 (-4 *3 (-299)) (-4 *3 (-169)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) + (-4 *2 (-661 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *2 *4)) (-4 *4 (-299))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) + (-4 *4 (-341)) (-5 *2 (-745)) (-5 *1 (-338 *4)))) ((*1 *2) - (-12 (-4 *3 (-335)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 *4)) - (-5 *2 - (-2 (|:| -2104 (-653 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-653 *4)))) - (-5 *1 (-944 *3 *4 *5 *6)) (-4 *6 (-689 *4 *5)))) + (-12 (-5 *2 (-745)) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890)))) ((*1 *2) - (-12 (-4 *3 (-335)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 *4)) - (-5 *2 - (-2 (|:| -2104 (-653 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-653 *4)))) - (-5 *1 (-1215 *3 *4 *5 *6)) (-4 *6 (-395 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-735)) (-4 *6 (-348)) (-5 *4 (-1152 *6)) - (-5 *2 (-1 (-1101 *4) (-1101 *4))) (-5 *1 (-1214 *6)) (-5 *5 (-1101 *4))))) + (-12 (-5 *2 (-745)) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) + (-14 *4 + (-3 (-1131 *3) + (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082))))))))) + ((*1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) + (-14 *4 (-890))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-996 *5 *6 *7 *3))) (-5 *1 (-996 *5 *6 *7 *3)) + (-4 *3 (-1030 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-619 *6)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *3 (-443)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-1106 *5 *6 *7 *3))) (-5 *1 (-1106 *5 *6 *7 *3)) + (-4 *3 (-1030 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-4 *5 (-348)) (-5 *2 (-607 (-1152 *5))) - (-5 *1 (-1214 *5)) (-5 *4 (-1152 *5))))) + (-12 (-5 *3 (-663 (-166 (-399 (-548))))) + (-5 *2 + (-619 + (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-548)) + (|:| |outvect| (-619 (-663 (-166 *4))))))) + (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-5 *2 (-1 (-1117 (-905 *4)) (-905 *4))) - (-5 *1 (-1214 *4)) (-4 *4 (-348))))) + (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-184)) (-5 *3 (-548)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-4 *5 (-348)) (-5 *2 (-1101 (-1101 (-905 *5)))) - (-5 *1 (-1214 *5)) (-5 *4 (-1101 (-905 *5)))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1131 *7)) + (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) + (-5 *1 (-491 *5 *2 *6 *7)) (-4 *6 (-1194 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-1 (-1101 (-905 *4)) (-1101 (-905 *4)))) - (-5 *1 (-1214 *4)) (-4 *4 (-348))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 (-619 (-218))) (-5 *1 (-197))))) +(((*1 *2 *1) (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-745)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-745)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) + (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) + (-5 *2 (-745))))) (((*1 *2 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-1 (-1101 (-905 *4)) (-1101 (-905 *4)))) - (-5 *1 (-1214 *4)) (-4 *4 (-348))))) + (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-112)) + (-5 *1 (-646 *4))))) (((*1 *2) - (-12 (-14 *4 (-735)) (-4 *5 (-1159)) (-5 *2 (-131)) (-5 *1 (-223 *3 *4 *5)) - (-4 *3 (-224 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-348)) (-5 *2 (-131)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) - ((*1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-163)))) + (-12 (-4 *1 (-341)) + (-5 *2 (-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548)))))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *2 (-619 (-166 *4))) + (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819)))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) ((*1 *2 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-526)) - (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) - (-5 *2 (-526)) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-939 *3)) (-4 *3 (-1004)) (-5 *2 (-878)))) - ((*1 *2) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-348)) (-5 *2 (-131))))) -(((*1 *1) (-5 *1 (-1211)))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-211)) (-5 *1 (-1210)))) - ((*1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-1210))))) -(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) - ((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) -(((*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) - ((*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) -(((*1 *1) (-5 *1 (-1209)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-607 (-246))) (-5 *1 (-1209)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-1106)) (-5 *1 (-1209)))) - ((*1 *1 *1) (-5 *1 (-1209)))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-1112 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1209))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-735)) (-5 *3 (-902 *4)) (-4 *1 (-1084 *4)) (-4 *4 (-1004)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-735)) (-5 *4 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1208)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1209))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-246)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-735)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-735)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *1 *2) - (-12 + (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) + (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-491 *5 *2 *6 *7)) + (-4 *6 (-1194 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) + (-4 *4 (-1194 *5)) (-5 *2 (-1131 *7)) (-5 *1 (-491 *5 *4 *6 *7)) + (-4 *6 (-1194 *4))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 (-2 (|:| -2503 (-114)) (|:| |w| (-218)))) (-5 *1 (-197))))) +(((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-743)) (-5 *2 - (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) - (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) - (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) - (-5 *1 (-246)))) - ((*1 *2 *3 *2) + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) + (-5 *1 (-549)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-743)) (-5 *4 (-1028)) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) + (-5 *1 (-549)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-761)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |fn| (-308 (-218))) + (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) + (|:| |extra| (-1004)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-761)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) + (|:| |extra| (-1004)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-774)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-782)) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-779)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-782)) (-5 *4 (-1028)) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-779)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-810)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) + (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-810)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) + (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) + (|:| |ub| (-619 (-814 (-218)))))) + (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-812)) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-811)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-812)) (-5 *4 (-1028)) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-811)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-864)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |pde| (-619 (-308 (-218)))) + (|:| |constraints| + (-619 + (-2 (|:| |start| (-218)) (|:| |finish| (-218)) + (|:| |grid| (-745)) (|:| |boundaryType| (-548)) + (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) + (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) + (|:| |tol| (-218)))) + (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-867)) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-866)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-867)) (-5 *4 (-1028)) + (-5 *2 + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-866))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4328)) (-4 *4 (-355)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4)) (-5 *2 (-619 *6)) (-5 *1 (-511 *4 *5 *6 *3)) + (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4328)) (-4 *4 (-540)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4)) (-4 *7 (-961 *4)) (-4 *8 (-365 *7)) + (-4 *9 (-365 *7)) (-5 *2 (-619 *6)) + (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-661 *4 *5 *6)) + (-4 *10 (-661 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-619 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4)) (-5 *2 (-619 *6)) (-5 *1 (-662 *4 *5 *6 *3)) + (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) + (-5 *2 (-619 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-341)) (-5 *3 (-548)) (-5 *2 (-1145 (-890) (-745)))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *8 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-996 *5 *6 *7 *8))))) + (-5 *1 (-996 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *8 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-619 *8)) + (|:| |towers| (-619 (-1106 *5 *6 *7 *8))))) + (-5 *1 (-1106 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-736)))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) - (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) - (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) - (-5 *3 (-607 (-246))) (-5 *1 (-247)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-526)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) - ((*1 *2 *1 *3) + (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-185))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-355)) (-5 *1 (-865 *2 *4)) + (-4 *2 (-1194 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1191 *4 *5)) (-5 *3 (-619 *5)) (-14 *4 (-1135)) + (-4 *5 (-355)) (-5 *1 (-892 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *5)) (-4 *5 (-355)) (-5 *2 (-1131 *5)) + (-5 *1 (-892 *4 *5)) (-14 *4 (-1135)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-745)) (-4 *6 (-355)) + (-5 *2 (-399 (-921 *6))) (-5 *1 (-1017 *5 *6)) (-14 *5 (-1135))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3))))) +(((*1 *1) (-4 *1 (-341)))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-619 *11)) + (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1806 *11)))))) + (-5 *6 (-745)) + (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1806 *11)))) + (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) + (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-443)) (-4 *8 (-767)) + (-4 *9 (-821)) (-5 *1 (-1034 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-619 *11)) + (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1806 *11)))))) + (-5 *6 (-745)) + (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1806 *11)))) + (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) + (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-443)) (-4 *8 (-767)) + (-4 *9 (-821)) (-5 *1 (-1105 *7 *8 *9 *10 *11))))) +(((*1 *1 *1 *1) (-4 *1 (-464))) ((*1 *1 *1 *1) (-4 *1 (-736)))) +(((*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-545)) (-5 *3 (-548)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) + (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) - (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) - (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) - (-5 *2 (-1211)) (-5 *1 (-1209)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 (-371)) (-5 *1 (-185))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-355)) (-5 *1 (-865 *2 *3)) + (-4 *2 (-1194 *3))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1014))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) + (-5 *2 (-58 (-619 (-646 *5)))) (-5 *1 (-646 *5))))) +(((*1 *2) + (-12 (-4 *1 (-341)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-34)) (-5 *2 (-745)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) - (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) - (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) - (-5 *1 (-1209)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1209)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-149)) (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-1208)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1208)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1208)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-1209)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1209)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1209))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-452)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-902 (-211)))) (-5 *1 (-1208))))) -(((*1 *1) (-5 *1 (-1208)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-452)) (-5 *3 (-607 (-246))) (-5 *1 (-1208)))) - ((*1 *1 *1) (-5 *1 (-1208)))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-878)) (-5 *4 (-211)) (-5 *5 (-526)) (-5 *6 (-833)) - (-5 *2 (-1211)) (-5 *1 (-1208))))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-548)))) + ((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-817))))) (((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3514 (-405 *4 (-399 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3944 (-399 *6)) + (|:| |special| (-399 *6)))) + (-5 *1 (-702 *5 *6)) (-5 *3 (-399 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-865 *3 *4)) + (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-745)) (-4 *5 (-355)) + (-5 *2 (-2 (|:| -3663 *3) (|:| -3676 *3))) (-5 *1 (-865 *3 *5)) + (-4 *3 (-1194 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1107 *3))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-861 *6))) + (-5 *5 (-1 (-858 *6 *8) *8 (-861 *6) (-858 *6 *8))) (-4 *6 (-1063)) + (-4 *8 (-13 (-1016) (-593 (-861 *6)) (-1007 *7))) + (-5 *2 (-858 *6 *8)) (-4 *7 (-13 (-1016) (-821))) + (-5 *1 (-910 *6 *7 *8))))) +(((*1 *1 *1 *1) (-4 *1 (-736)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) + (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-663 *3)) + (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) (-5 *2 - (-1205 - (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) - (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) - (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) - (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526))))) - (-5 *1 (-1208))))) -(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205 (-3 (-452) "undefined"))) (-5 *1 (-1208))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-452)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-878)) (-5 *2 (-452)) (-5 *1 (-1208))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-185))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-607 (-363))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-452)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-452)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) - ((*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1208))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-452)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-833)) (-5 *5 (-878)) - (-5 *6 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-1207)))) + (-12 (-5 *3 (-1131 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) + (-12 (-4 *1 (-864)) + (-5 *3 + (-2 (|:| |pde| (-619 (-308 (-218)))) + (|:| |constraints| + (-619 + (-2 (|:| |start| (-218)) (|:| |finish| (-218)) + (|:| |grid| (-745)) (|:| |boundaryType| (-548)) + (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) + (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) + (|:| |tol| (-218)))) + (-5 *2 (-1004))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) + (-5 *2 (-619 (-646 *5))) (-5 *1 (-646 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) + (-5 *2 + (-3 (-1131 *4) + (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082))))))) + (-5 *1 (-338 *4)) (-4 *4 (-341))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-443)) (-4 *8 (-767)) + (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1034 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-607 (-246))) - (-5 *2 (-1208)) (-5 *1 (-1207))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-833)) (-5 *5 (-878)) - (-5 *6 (-607 (-246))) (-5 *2 (-452)) (-5 *1 (-1207)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-452)) (-5 *1 (-1207)))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-443)) (-4 *8 (-767)) + (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1105 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-607 (-246))) (-5 *2 (-452)) - (-5 *1 (-1207))))) -(((*1 *1 *1) (-5 *1 (-47))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) - (-5 *1 (-57 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1052)) (|has| *1 (-6 -4310)) - (-4 *1 (-145 *2)) (-4 *2 (-1159)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) - (-4 *2 (-1159)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) - (-4 *2 (-1159)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-5 *2 (-2 (|:| -2096 (-1117 *4)) (|:| |deg| (-878)))) - (-5 *1 (-207 *4 *5)) (-5 *3 (-1117 *4)) (-4 *5 (-13 (-533) (-811))))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-734))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *3 (-163 *6)) (-4 (-921 *6) (-855 *5)) + (-4 *6 (-13 (-855 *5) (-169))) (-5 *1 (-175 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-858 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-855 *4)) + (-4 *4 (-1063)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-225 *5 *6)) (-14 *5 (-735)) - (-4 *6 (-1159)) (-4 *2 (-1159)) (-5 *1 (-226 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-163)) (-5 *1 (-274 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1181 *4)) - (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-299 *2)) (-4 *2 (-533)) (-4 *2 (-811)))) - ((*1 *1 *1) - (-12 (-4 *1 (-321 *2 *3 *4 *5)) (-4 *2 (-348)) (-4 *3 (-1181 *2)) - (-4 *4 (-1181 (-392 *3))) (-4 *5 (-327 *2 *3 *4)))) + (-12 (-5 *2 (-858 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *6 (-13 (-1063) (-1007 *3))) (-4 *3 (-855 *5)) + (-5 *1 (-900 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1159)) (-4 *2 (-1159)) - (-5 *1 (-358 *5 *4 *2 *6)) (-4 *4 (-357 *5)) (-4 *6 (-357 *2)))) + (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) + (-4 *3 (-13 (-422 *6) (-593 *4) (-855 *5) (-1007 (-591 $)))) + (-5 *4 (-861 *5)) (-4 *6 (-13 (-540) (-821) (-855 *5))) + (-5 *1 (-901 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1052)) (-4 *2 (-1052)) - (-5 *1 (-412 *5 *4 *2 *6)) (-4 *4 (-411 *5)) (-4 *6 (-411 *2)))) - ((*1 *1 *1) (-5 *1 (-477))) + (-12 (-5 *2 (-858 (-548) *3)) (-5 *4 (-861 (-548))) (-4 *3 (-533)) + (-5 *1 (-902 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-607 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) - (-5 *1 (-608 *5 *2)))) + (-12 (-5 *2 (-858 *5 *6)) (-5 *3 (-591 *6)) (-4 *5 (-1063)) + (-4 *6 (-13 (-821) (-1007 (-591 $)) (-593 *4) (-855 *5))) + (-5 *4 (-861 *5)) (-5 *1 (-903 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1004)) (-4 *2 (-1004)) (-4 *6 (-357 *5)) - (-4 *7 (-357 *5)) (-4 *8 (-357 *2)) (-4 *9 (-357 *2)) - (-5 *1 (-651 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-650 *5 *6 *7)) - (-4 *10 (-650 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-348)) - (-4 *3 (-163)) (-4 *1 (-689 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-689 *3 *2)) (-4 *2 (-1181 *3)))) + (-12 (-5 *2 (-854 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *6 (-855 *5)) (-4 *3 (-640 *6)) (-5 *1 (-904 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-858 *6 *3) *8 (-861 *6) (-858 *6 *3))) + (-4 *8 (-821)) (-5 *2 (-858 *6 *3)) (-5 *4 (-861 *6)) + (-4 *6 (-1063)) (-4 *3 (-13 (-918 *9 *7 *8) (-593 *4))) + (-4 *7 (-767)) (-4 *9 (-13 (-1016) (-821) (-855 *6))) + (-5 *1 (-905 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-917 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) - (-5 *1 (-918 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *2 (-909 *3 *4 *5)) (-14 *6 (-607 *2)))) + (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) + (-4 *3 (-13 (-918 *8 *6 *7) (-593 *4))) (-5 *4 (-861 *5)) + (-4 *7 (-855 *5)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *8 (-13 (-1016) (-821) (-855 *5))) + (-5 *1 (-905 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1004)) (-4 *2 (-1004)) (-14 *5 (-735)) - (-14 *6 (-735)) (-4 *8 (-224 *6 *7)) (-4 *9 (-224 *5 *7)) - (-4 *10 (-224 *6 *2)) (-4 *11 (-224 *5 *2)) - (-5 *1 (-1009 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1007 *5 *6 *7 *8 *9)) (-4 *12 (-1007 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1101 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) - (-5 *1 (-1103 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) - (-4 *1 (-1154 *5 *6 *7 *2)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *2 (-1018 *5 *6 *7)))) + (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-961 *6)) + (-4 *6 (-13 (-540) (-855 *5) (-593 *4))) (-5 *4 (-861 *5)) + (-5 *1 (-908 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) - (-5 *1 (-1206 *5 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) - (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-225 *6 *7)) (-14 *6 (-735)) - (-4 *7 (-1159)) (-4 *5 (-1159)) (-5 *2 (-225 *6 *5)) - (-5 *1 (-226 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-4 *2 (-357 *5)) - (-5 *1 (-358 *6 *4 *5 *2)) (-4 *4 (-357 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1052)) (-4 *5 (-1052)) (-4 *2 (-411 *5)) - (-5 *1 (-412 *6 *4 *5 *2)) (-4 *4 (-411 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-607 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) - (-5 *2 (-607 *5)) (-5 *1 (-608 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-917 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) - (-5 *2 (-917 *5)) (-5 *1 (-918 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1101 *6)) (-4 *6 (-1159)) (-4 *3 (-1159)) - (-5 *2 (-1101 *3)) (-5 *1 (-1103 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1205 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) - (-5 *2 (-1205 *5)) (-5 *1 (-1206 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1205 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-149))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-201 *2)) - (-4 *2 - (-13 (-811) - (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) - (-15 -2063 ((-1211) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1159)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1159)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-308 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-129)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-515))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-25))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-735)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-1204 *3)) (-4 *3 (-23)) (-4 *3 (-1159))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-131))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-201 *2)) - (-4 *2 - (-13 (-811) - (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) - (-15 -2063 ((-1211) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-1004)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) - ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-211)) (-5 *1 (-1156)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-1004))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1204 *3)) (-4 *3 (-1159)) (-4 *3 (-1004)) (-5 *2 (-653 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-1004)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-1004))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) - (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) - ((*1 *1 *1) (-4 *1 (-525))) - ((*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-4 *1 (-953 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1157 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-960)) (-4 *2 (-1004))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-960)) (-4 *2 (-1004))))) -(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-824 *3)) (-14 *3 (-607 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-948)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1044 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-1123)))) - ((*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1202 *3)) (-14 *3 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-392 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-533)) (-4 *4 (-1004)) - (-4 *2 (-1198 *4)) (-5 *1 (-1200 *4 *5 *6 *2)) (-4 *6 (-623 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *5 (-1181 *4)) (-5 *2 (-1 *6 (-607 *6))) - (-5 *1 (-1200 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-1198 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-735)) (-4 *5 (-1004)) (-4 *2 (-1181 *5)) - (-5 *1 (-1200 *5 *2 *6 *3)) (-4 *6 (-623 *2)) (-4 *3 (-1198 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *3 (-1181 *4)) (-4 *2 (-1198 *4)) - (-5 *1 (-1200 *4 *3 *5 *2)) (-4 *5 (-623 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 (-1 *6 (-607 *6)))) - (-4 *5 (-37 (-392 (-526)))) (-4 *6 (-1198 *5)) (-5 *2 (-607 *6)) - (-5 *1 (-1199 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-607 *2))) (-5 *4 (-607 *5)) (-4 *5 (-37 (-392 (-526)))) - (-4 *2 (-1198 *5)) (-5 *1 (-1199 *5 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1198 *4)) (-5 *1 (-1199 *4 *2)) - (-4 *4 (-37 (-392 (-526))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1198 *4)) (-5 *1 (-1199 *4 *2)) - (-4 *4 (-37 (-392 (-526))))))) + (-12 (-5 *2 (-858 *5 (-1135))) (-5 *3 (-1135)) (-5 *4 (-861 *5)) + (-4 *5 (-1063)) (-5 *1 (-909 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-619 (-861 *7))) (-5 *5 (-1 *9 (-619 *9))) + (-5 *6 (-1 (-858 *7 *9) *9 (-861 *7) (-858 *7 *9))) (-4 *7 (-1063)) + (-4 *9 (-13 (-1016) (-593 (-861 *7)) (-1007 *8))) + (-5 *2 (-858 *7 *9)) (-5 *3 (-619 *9)) (-4 *8 (-13 (-1016) (-821))) + (-5 *1 (-910 *7 *8 *9))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-1198 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-607 *5))) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) - (-5 *2 (-1 (-1101 *4) (-607 (-1101 *4)))) (-5 *1 (-1199 *4 *5))))) + (-12 (-5 *2 (-745)) + (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) - (-5 *2 (-1 (-1101 *4) (-1101 *4) (-1101 *4))) (-5 *1 (-1199 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) - (-5 *2 (-1 (-1101 *4) (-1101 *4))) (-5 *1 (-1199 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-392 (-526))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-278 *3)) (-5 *5 (-392 (-526))) - (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-526))) (-5 *4 (-278 *6)) - (-4 *6 (-13 (-27) (-1145) (-406 *5))) - (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-526))) - (-4 *7 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-526))) - (-4 *3 (-13 (-27) (-1145) (-406 *7))) - (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-392 (-526)))) (-5 *4 (-278 *8)) - (-5 *5 (-1172 (-392 (-526)))) (-5 *6 (-392 (-526))) - (-4 *8 (-13 (-27) (-1145) (-406 *7))) - (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-392 (-526)))) - (-5 *7 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *8))) - (-4 *8 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-4 *3 (-1004)) - (-5 *1 (-566 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-567 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-4 *3 (-1004)) - (-4 *1 (-1167 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-735)) (-5 *3 (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| *4)))) - (-4 *4 (-1004)) (-4 *1 (-1188 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-4 *1 (-1198 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1101 (-2 (|:| |k| (-735)) (|:| |c| *3)))) (-4 *3 (-1004)) - (-4 *1 (-1198 *3))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-185))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-921 (-548))) (-5 *3 (-1135)) + (-5 *4 (-1058 (-399 (-548)))) (-5 *1 (-30))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-548)) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) (((*1 *2 *1) - (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-607 *3)))) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-619 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) + (-12 (-5 *2 (-619 (-2 (|:| |k| (-862 *3)) (|:| |c| *4)))) + (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) ((*1 *2 *1) - (-12 (-5 *2 (-607 *3)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-607 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-1004)) (-5 *2 (-1101 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-526))) (-4 *3 (-1004)) (-5 *1 (-566 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-526))) (-4 *1 (-1167 *3)) (-4 *3 (-1004)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-526))) (-4 *1 (-1198 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)) - (-5 *2 (-905 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)) - (-5 *2 (-905 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-1198 *4)) (-4 *4 (-1004)) (-5 *2 (-905 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-1198 *4)) (-4 *4 (-1004)) (-5 *2 (-905 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-392 (-526))) (-4 *4 (-995 (-526))) (-4 *4 (-13 (-811) (-533))) - (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-131))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-211))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-526)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-392 (-526))) (-4 *4 (-348)) (-4 *4 (-37 *3)) (-4 *5 (-1198 *4)) - (-5 *1 (-263 *4 *5 *2)) (-4 *2 (-1169 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-392 (-526))) (-4 *4 (-348)) (-4 *4 (-37 *3)) (-4 *5 (-1167 *4)) - (-5 *1 (-264 *4 *5 *2 *6)) (-4 *2 (-1190 *4 *5)) (-4 *6 (-942 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-269))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-346 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-5 *1 (-363))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-371 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-1063)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-457)) (-5 *2 (-526)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1205 *4)) (-5 *3 (-526)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-515)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-515)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *4 (-1052)) (-5 *1 (-646 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-4 *3 (-348)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *4)) (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-654 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-526)) (-4 *3 (-1004)) (-5 *1 (-679 *3 *4)) (-4 *4 (-613 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-679 *4 *5)) - (-4 *5 (-613 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-691)) (-5 *2 (-735)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-798 *3)) (-4 *3 (-1004)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-526)) (-5 *1 (-798 *4)) (-4 *4 (-1004)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-392 (-526))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1063)) (-5 *2 (-878)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-526)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *4 (-1004)) - (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *3 *4)) (-4 *4 (-348)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) + (-12 (-5 *2 (-619 (-646 *3))) (-5 *1 (-862 *3)) (-4 *3 (-821))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1044 (-803 *3))) (-4 *3 (-13 (-1145) (-919) (-29 *5))) - (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *7)) (-4 *7 (-821)) + (-4 *8 (-918 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-5 *2 - (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) - (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-205 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1044 (-803 *3))) (-5 *5 (-1106)) - (-4 *3 (-13 (-1145) (-919) (-29 *6))) - (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-2 (|:| |particular| (-3 (-1218 (-399 *8)) "failed")) + (|:| -2877 (-619 (-1218 (-399 *8)))))) + (-5 *1 (-643 *5 *6 *7 *8))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-890)) + (-5 *2 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) + (-5 *1 (-338 *4)) (-4 *4 (-341))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) (-5 *2 - (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| #1#) - (|:| |pole| #2#))) - (-5 *1 (-205 *6 *3)))) + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1044 (-803 (-299 *5)))) - (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 - (-3 (|:| |f1| (-803 (-299 *5))) (|:| |f2| (-607 (-803 (-299 *5)))) - (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-206 *5)))) + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-392 (-905 *6))) (-5 *4 (-1044 (-803 (-299 *6)))) - (-5 *5 (-1106)) - (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) (-5 *2 - (-3 (|:| |f1| (-803 (-299 *6))) (|:| |f2| (-607 (-803 (-299 *6)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-206 *6)))) + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1044 (-803 (-392 (-905 *5))))) (-5 *3 (-392 (-905 *5))) - (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *2 - (-3 (|:| |f1| (-803 (-299 *5))) (|:| |f2| (-607 (-803 (-299 *5)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-206 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1044 (-803 (-392 (-905 *6))))) (-5 *5 (-1106)) - (-5 *3 (-392 (-905 *6))) - (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 - (-3 (|:| |f1| (-803 (-299 *6))) (|:| |f2| (-607 (-803 (-299 *6)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-206 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) - (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-3 *3 (-607 *3))) (-5 *1 (-415 *5 *3)) - (-4 *3 (-13 (-1145) (-919) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) - (-5 *6 (-1016)) (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3) (-12 (-5 *3 (-733)) (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) - (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) - (-5 *2 (-992)) (-5 *1 (-541)))) + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-921 (-548)))) (-5 *1 (-429)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *2 (-992)) - (-5 *1 (-541)))) + (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-218))) (-5 *2 (-1067)) + (-5 *1 (-734)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) - (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) - (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) - (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) - (-5 *5 (-363)) (-5 *6 (-1016)) (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-299 (-363))) (-5 *4 (-1044 (-803 (-363)))) - (-5 *5 (-1106)) (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-299 (-363))) (-5 *4 (-1044 (-803 (-363)))) - (-5 *5 (-1123)) (-5 *2 (-992)) (-5 *1 (-541)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) - (-5 *2 (-556 (-392 *5))) (-5 *1 (-544 *4 *5)) (-5 *3 (-392 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-141)) - (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) - (-5 *2 (-3 (-299 *5) (-607 (-299 *5)))) (-5 *1 (-561 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-811)) - (-4 *3 (-37 (-392 (-526)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1123)) (-5 *1 (-905 *3)) (-4 *3 (-37 (-392 (-526)))) - (-4 *3 (-1004)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-4 *2 (-811)) - (-5 *1 (-1076 *3 *2 *4)) (-4 *4 (-909 *3 (-512 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) - (-5 *1 (-1108 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *1 (-1152 *3)) (-4 *3 (-37 (-392 (-526)))) - (-4 *3 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3850 - (-12 (-5 *2 (-1123)) (-4 *1 (-1167 *3)) (-4 *3 (-1004)) - (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) - (-4 *3 (-37 (-392 (-526)))))) - (-12 (-5 *2 (-1123)) (-4 *1 (-1167 *3)) (-4 *3 (-1004)) - (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) - (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3850 - (-12 (-5 *2 (-1123)) (-4 *1 (-1188 *3)) (-4 *3 (-1004)) - (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) - (-4 *3 (-37 (-392 (-526)))))) - (-12 (-5 *2 (-1123)) (-4 *1 (-1188 *3)) (-4 *3 (-1004)) - (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) - (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3850 - (-12 (-5 *2 (-1123)) (-4 *1 (-1198 *3)) (-4 *3 (-1004)) - (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) - (-4 *3 (-37 (-392 (-526)))))) - (-12 (-5 *2 (-1123)) (-4 *1 (-1198 *3)) (-4 *3 (-1004)) - (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) - (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-1174 *5 *4)) (-5 *1 (-1121 *4 *5 *6)) - (-4 *4 (-1004)) (-14 *5 (-1123)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-1174 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) - (-4 *4 (-1004)) (-14 *5 (-1123)) (-14 *6 *4)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *1 (-217 *4)) (-4 *4 (-1004)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-217 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-735)))) - ((*1 *1 *1) (-4 *1 (-219))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-251 *3)) (-4 *3 (-811)))) - ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) - (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)) - (-4 *4 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-348) (-141))) (-5 *1 (-384 *2 *3)) (-4 *3 (-1181 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-348)) (-4 *2 (-859 *3)) (-5 *1 (-556 *2)) (-5 *3 (-1123)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-556 *2)) (-4 *2 (-348)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 (-735))) (-4 *1 (-859 *4)) - (-4 *4 (-1052)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-859 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-859 *3)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-859 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) - (-4 *3 (-1004)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) - (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) - (-14 *5 *3)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) - (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-992)) (-5 *1 (-288)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-992))) (-5 *2 (-992)) (-5 *1 (-288)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *1) (-5 *1 (-1016))) - ((*1 *2 *3) - (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1102 *4)) - (-4 *4 (-1159)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) + (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-548))) (-5 *2 (-1067)) + (-5 *1 (-734))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1063) (-1007 *5))) + (-4 *5 (-855 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-900 *4 *5 *6))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-663 *2)) (-5 *4 (-548)) + (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *5 (-1194 *2)) (-5 *1 (-489 *2 *5 *6)) (-4 *6 (-401 *2 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-410 (-1131 (-548)))) (-5 *1 (-184)) (-5 *3 (-548))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) (((*1 *2 *1) - (-12 (-4 *1 (-574 *3 *2)) (-4 *3 (-1052)) (-4 *3 (-811)) (-4 *2 (-1159)))) - ((*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) - ((*1 *2 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *2 *1) (-12 (-4 *2 (-1159)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) - (-4 *5 (-357 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) - (-4 *5 (-357 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-607 (-526))) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) - (-14 *4 (-526)) (-14 *5 (-735)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-735)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-735)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-735)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-735)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1172)))) ((*1 *2 *1) - (-12 (-4 *2 (-163)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-526)) (-14 *4 (-735)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-4 *2 (-1052)) (-5 *1 (-200 *4 *2)) (-14 *4 (-878)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1123)) (-5 *2 (-231 (-1106))) (-5 *1 (-201 *4)) - (-4 *4 - (-13 (-811) - (-10 -8 (-15 -4118 ((-1106) $ *3)) (-15 -3939 ((-1211) $)) - (-15 -2063 ((-1211) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-948)) (-5 *1 (-201 *3)) - (-4 *3 - (-13 (-811) - (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) - (-15 -2063 ((-1211) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-735)) (-5 *1 (-231 *4)) (-4 *4 (-811)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-231 *3)) (-4 *3 (-811)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-231 *3)) (-4 *3 (-811)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-271 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-163)) (-5 *1 (-274 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1181 *3)) - (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 *1)) (-4 *1 (-283)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-327 *2 *3 *4)) (-4 *2 (-1164)) (-4 *3 (-1181 *2)) - (-4 *4 (-1181 (-392 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-403 *2)) (-4 *2 (-163)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1106)) (-5 *1 (-484)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-50)) (-5 *1 (-599)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-735)) (-5 *1 (-640 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-607 (-526))) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-607 (-849 *4))) (-5 *1 (-849 *4)) - (-4 *4 (-1052)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-861 *4)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-225 *4 *2)) (-14 *4 (-878)) (-4 *2 (-348)) - (-5 *1 (-952 *4 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-968 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *2 (-1004)) - (-4 *6 (-224 *5 *2)) (-4 *7 (-224 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *6 (-224 *5 *2)) - (-4 *7 (-224 *4 *2)) (-4 *2 (-1004)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-878)) (-4 *4 (-1052)) - (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) - (-5 *1 (-1026 *4 *5 *2)) - (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-878)) (-4 *4 (-1052)) - (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) - (-5 *1 (-1028 *4 *5 *2)) - (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-526))) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) - (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-526)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) - (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) - ((*1 *1 *1 *1) (-4 *1 (-1092))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-392 *1)) (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) + (-12 (-5 *2 (-112)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3)) (-4 *3 (-821))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-392 *1)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *2 (-533)) (-4 *3 (-757)) - (-4 *4 (-811)) (-4 *5 (-1018 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) - ((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *2 (-1159)) (-5 *1 (-832 *3 *2)) (-4 *3 (-1159)))) - ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1159)) (-5 *2 (-735))))) -(((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) - (-4 *5 (-357 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4311)) (-4 *1 (-118 *3)) - (-4 *3 (-1159)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4311)) (-4 *1 (-118 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-735)) (-5 *1 (-200 *4 *2)) (-14 *4 (-878)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4311)) (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) - (-4 *2 (-1159)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1123)) (-5 *1 (-599)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1172 (-526))) (|has| *1 (-6 -4311)) (-4 *1 (-616 *2)) - (-4 *2 (-1159)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-607 (-526))) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4311)) (-4 *1 (-968 *2)) - (-4 *2 (-1159)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) - (-4 *2 (-1159)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *3)) - (-4 *3 (-1159)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) - (-4 *2 (-1159))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1101 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-526)) (|has| *1 (-6 -4311)) (-4 *1 (-1194 *3)) - (-4 *3 (-1159))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) - (-5 *2 (-803 *4)) (-5 *1 (-298 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) - (-5 *2 (-803 *4)) (-5 *1 (-1192 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1186 *4 *5 *6)) (|:| |%expon| (-304 *4 *5 *6)) - (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| *4)))))) - (|:| |%type| (-1106)))) - (-5 *1 (-1192 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) - (-14 *5 (-1123)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-392 (-526))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-278 *3)) (-5 *5 (-392 (-526))) - (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-392 (-526)))) (-5 *4 (-278 *8)) - (-5 *5 (-1172 (-392 (-526)))) (-5 *6 (-392 (-526))) - (-4 *8 (-13 (-27) (-1145) (-406 *7))) - (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-392 (-526)))) - (-5 *7 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *8))) - (-4 *8 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-392 (-526))) (-4 *4 (-1004)) (-4 *1 (-1190 *4 *3)) - (-4 *3 (-1167 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1167 *3)) - (-5 *2 (-392 (-526)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-526)) (-4 *5 (-13 (-436) (-811) (-995 *4) (-606 *4))) - (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014)) + (-5 *3 (-548))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-355)) + (-5 *2 (-112)) (-5 *1 (-641 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-436) (-811) (-995 *5) (-606 *5))) (-5 *5 (-526)) (-5 *2 (-50)) - (-5 *1 (-301 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-526))) - (-4 *7 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-526))) - (-4 *3 (-13 (-27) (-1145) (-406 *7))) - (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-526)) (-4 *4 (-1004)) (-4 *1 (-1169 *4 *3)) - (-4 *3 (-1198 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-878)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-1188 *3)) (-4 *3 (-1004))))) -(((*1 *2 *2) - (-12 + (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-112)) + (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) + (-4 *4 (-341)) (-5 *2 (-663 *4)) (-5 *1 (-338 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-526)))) - (-4 *4 (-13 (-1181 *3) (-533) (-10 -8 (-15 -3457 ($ $ $))))) (-4 *3 (-533)) - (-5 *1 (-1185 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-909 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-436)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *1)))) - (-4 *1 (-1024 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1164))) - ((*1 *2 *2) - (-12 (-4 *3 (-533)) (-5 *1 (-1185 *3 *2)) - (-4 *2 (-13 (-1181 *3) (-533) (-10 -8 (-15 -3457 ($ $ $)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)) - (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| -4270 *3) (|:| -4255 *4)))) (-5 *1 (-700 *3 *4)) - (-4 *3 (-1004)) (-4 *4 (-691)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) - (-5 *2 (-1101 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-227)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-607 (-1106))) (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *1 (-227)))) - ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) - ((*1 *2 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004))))) -(((*1 *2 *1) - (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) - (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-735)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) - (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-251 *3)) (-4 *3 (-811)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-878)))) - ((*1 *2 *3) - (-12 (-5 *3 (-318 *4 *5 *6 *7)) (-4 *4 (-13 (-353) (-348))) - (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-4 *7 (-327 *4 *5 *6)) - (-5 *2 (-735)) (-5 *1 (-377 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-387)) (-5 *2 (-796 (-878))))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) - ((*1 *2 *1) - (-12 (-4 *3 (-533)) (-5 *2 (-526)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-705 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-811)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-705 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-811)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) - (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) - (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-735)) - (-5 *1 (-870 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) - (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) - (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-735)) (-5 *1 (-871 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-318 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-348)) - (-4 *7 (-1181 *6)) (-4 *4 (-1181 (-392 *7))) (-4 *8 (-327 *6 *7 *4)) - (-4 *9 (-13 (-353) (-348))) (-5 *2 (-735)) (-5 *1 (-976 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)) (-5 *2 (-735)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) - ((*1 *2 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756))))) -(((*1 *1 *1) (-4 *1 (-1013))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-392 (-526))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-526)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-392 (-526))) (-5 *1 (-830 *4)) (-14 *4 *3) (-5 *3 (-526)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-392 (-526))) (-5 *1 (-831 *4 *5)) (-5 *3 (-526)) - (-4 *5 (-829 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-392 (-526))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1021 *2 *3)) (-4 *2 (-13 (-809) (-348))) (-4 *3 (-1181 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4274 (*2 (-1123)))) (-4 *2 (-1004))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-705 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-811)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-939 *3)) (-4 *3 (-1004)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) - (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *2 (-1018 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-392 *5)) (-4 *4 (-1164)) (-4 *5 (-1181 *4)) - (-5 *1 (-142 *4 *5 *2)) (-4 *2 (-1181 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1125 (-392 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-177)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-653 (-299 (-211)))) (-5 *3 (-607 (-1123))) - (-5 *4 (-1205 (-299 (-211)))) (-5 *1 (-192)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-278 *3))) (-4 *3 (-294 *3)) (-4 *3 (-1052)) - (-4 *3 (-1159)) (-5 *1 (-278 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-294 *2)) (-4 *2 (-1052)) (-4 *2 (-1159)) (-5 *1 (-278 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-607 *1))) (-4 *1 (-283)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-283)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 (-1 *1 *1))) (-4 *1 (-283)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1 *1 (-607 *1))) (-4 *1 (-283)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-283)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-1 *1 *1))) (-4 *1 (-283)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-278 *3))) (-4 *1 (-294 *3)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-278 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1052)))) + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-526))) (-5 *4 (-1125 (-392 (-526)))) (-5 *1 (-295 *2)) - (-4 *2 (-37 (-392 (-526)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 *1)) (-4 *1 (-359 *4 *5)) (-4 *4 (-811)) - (-4 *5 (-163)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *4 (-1 *1 *1)) (-4 *1 (-406 *5)) - (-4 *5 (-811)) (-4 *5 (-1004)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *4 (-1 *1 (-607 *1))) - (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-735))) - (-5 *4 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-406 *5)) (-4 *5 (-811)) - (-4 *5 (-1004)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-735))) (-5 *4 (-607 (-1 *1 *1))) - (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 *1)) (-5 *4 (-1123)) - (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-584 (-515))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1123)) (-4 *1 (-406 *4)) (-4 *4 (-811)) - (-4 *4 (-584 (-515))))) - ((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-584 (-515))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-1123))) (-4 *1 (-406 *3)) (-4 *3 (-811)) - (-4 *3 (-584 (-515))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-584 (-515))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-496 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1159)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 *5)) (-4 *1 (-496 *4 *5)) (-4 *4 (-1052)) - (-4 *5 (-1159)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-796 *3)) (-4 *3 (-348)) (-5 *1 (-683 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1052)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-392 (-905 *4))) (-5 *3 (-1123)) (-4 *4 (-533)) - (-5 *1 (-997 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-607 (-1123))) (-5 *4 (-607 (-392 (-905 *5)))) - (-5 *2 (-392 (-905 *5))) (-4 *5 (-533)) (-5 *1 (-997 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-278 (-392 (-905 *4)))) (-5 *2 (-392 (-905 *4))) (-4 *4 (-533)) - (-5 *1 (-997 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-607 (-278 (-392 (-905 *4))))) (-5 *2 (-392 (-905 *4))) - (-4 *4 (-533)) (-5 *1 (-997 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1101 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-1181 *4)) (-4 *4 (-1004)) (-5 *2 (-1205 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-5 *2 (-1117 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1004)) (-4 *1 (-1181 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) - (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-909 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) - (-4 *1 (-1181 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-1004)) - (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1181 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004))))) -(((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-156 *3 *2)) (-4 *3 (-157 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *2 *4)) (-4 *4 (-1181 *2)) - (-4 *2 (-163)))) - ((*1 *2) - (-12 (-4 *4 (-1181 *2)) (-4 *2 (-163)) (-5 *1 (-394 *3 *2 *4)) - (-4 *3 (-395 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-395 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) - ((*1 *2) - (-12 (-4 *3 (-1181 *2)) (-5 *2 (-526)) (-5 *1 (-732 *3 *4)) - (-4 *4 (-395 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) - (-4 *3 (-163)))) - ((*1 *2 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-163))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) - (-4 *3 (-163)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-163))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-392 *1)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)) - (-4 *3 (-533)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -4270 *4) (|:| -2072 *3) (|:| -3202 *3))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1018 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-533)) (-4 *3 (-1004)) - (-5 *2 (-2 (|:| -4270 *3) (|:| -2072 *1) (|:| -3202 *1))) - (-4 *1 (-1181 *3))))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) + (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) (((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *4 (-533)) (-4 *5 (-1181 *4)) - (-5 *2 (-2 (|:| -1860 (-590 *4 *5)) (|:| -1859 (-392 *5)))) - (-5 *1 (-590 *4 *5)) (-5 *3 (-392 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) - (-4 *4 (-1004)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-436)) (-4 *3 (-1004)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1181 *3))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-1179 *4 *2)) - (-4 *2 (-1181 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1181 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1181 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) - (-5 *1 (-1178 *4 *3)) (-4 *3 (-1181 *4))))) + (-12 (-5 *3 (-619 (-619 (-912 (-218))))) + (-5 *2 (-619 (-1058 (-218)))) (-5 *1 (-897))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-663 *2)) (-5 *4 (-745)) + (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *5 (-1194 *2)) (-5 *1 (-489 *2 *5 *6)) (-4 *6 (-401 *2 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-141))) (-5 *2 (-607 *3)) (-5 *1 (-1177 *4 *3)) - (-4 *3 (-1181 *4))))) + (-12 (-5 *2 (-619 (-1131 (-548)))) (-5 *1 (-184)) (-5 *3 (-548))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-548)) (|has| *1 (-6 -4328)) (-4 *1 (-1206 *3)) + (-4 *3 (-1172))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-533) (-141))) - (-5 *2 (-2 (|:| -3435 *3) (|:| -3434 *3))) (-5 *1 (-1177 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-1181 *3))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-735)) (-4 *4 (-13 (-533) (-141))) - (-5 *1 (-1177 *4 *2)) (-4 *2 (-1181 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-735)) (-4 *4 (-13 (-533) (-141))) - (-5 *1 (-1177 *4 *2)) (-4 *2 (-1181 *4))))) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-619 *5)) + (-5 *1 (-859 *4 *5)) (-4 *5 (-1172))))) (((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-136 *4 *5 *3)) - (-4 *3 (-357 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-485 *4 *5 *6 *3)) - (-4 *6 (-357 *4)) (-4 *3 (-357 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 *5)) (-4 *5 (-950 *4)) (-4 *4 (-533)) - (-5 *2 (-2 (|:| |num| (-653 *4)) (|:| |den| *4))) (-5 *1 (-657 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) - (-5 *2 (-2 (|:| -3578 *7) (|:| |rh| (-607 (-392 *6))))) - (-5 *1 (-771 *5 *6 *7 *3)) (-5 *4 (-607 (-392 *6))) (-4 *7 (-623 *6)) - (-4 *3 (-623 (-392 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1176 *4 *5 *3)) - (-4 *3 (-1181 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-533)) (-4 *4 (-950 *3)) (-5 *1 (-136 *3 *4 *2)) - (-4 *2 (-357 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-4 *2 (-357 *4)) - (-5 *1 (-485 *4 *5 *2 *3)) (-4 *3 (-357 *5)))) + (-12 (-5 *3 (-1065 *4)) (-4 *4 (-1063)) (-5 *2 (-1 *4)) + (-5 *1 (-986 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 *5)) (-4 *5 (-950 *4)) (-4 *4 (-533)) (-5 *2 (-653 *4)) - (-5 *1 (-657 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-533)) (-4 *4 (-950 *3)) (-5 *1 (-1176 *3 *4 *2)) - (-4 *2 (-1181 *4))))) + (-12 (-5 *3 (-1058 (-548))) (-5 *2 (-1 (-548))) (-5 *1 (-1014))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 *4))) (-5 *3 (-1131 *4)) + (-4 *4 (-878)) (-5 *1 (-637 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-136 *2 *4 *3)) - (-4 *3 (-357 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-485 *2 *4 *5 *3)) - (-4 *5 (-357 *2)) (-4 *3 (-357 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-950 *2)) (-4 *2 (-533)) - (-5 *1 (-657 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-1176 *2 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-745 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-915 *3 *2)) (-4 *2 (-129)) (-4 *3 (-533)) (-4 *3 (-1004)) - (-4 *2 (-756)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1117 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-930)) (-4 *2 (-129)) (-5 *1 (-1125 *3)) (-4 *3 (-533)) - (-4 *3 (-1004)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-1174 *4 *3)) (-14 *4 (-1123)) (-4 *3 (-1004))))) -(((*1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-5 *2 (-1041 *3)) (-5 *1 (-1044 *3)) (-4 *3 (-1159)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1172 *3)) (-4 *3 (-1159))))) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) + (-5 *2 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) + (-5 *1 (-338 *4))))) +(((*1 *1) (-5 *1 (-112)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) - (-5 *2 - (-2 (|:| |contp| (-526)) - (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) - (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-895)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-895)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896))))) +(((*1 *1 *1) (-4 *1 (-533)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-341)) (-4 *6 (-1194 *5)) (-5 *2 - (-2 (|:| |contp| (-526)) - (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) - (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526)))))) + (-619 + (-2 (|:| -2877 (-663 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-663 *6))))) + (-5 *1 (-488 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2877 (-663 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-663 *6)))) + (-4 *7 (-1194 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-1137 (-399 (-548)))) + (-5 *1 (-183))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) + (-5 *2 (-814 *4)) (-5 *1 (-305 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) + (-5 *2 (-814 *4)) (-5 *1 (-1204 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) + (-14 *6 *4)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-859 *4 *3)) + (-4 *3 (-1172)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 (-4 *4 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-203 *4 *3)) - (-4 *3 (-1181 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-735))) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526))))) - ((*1 *2 *3) - (-12 (-5 *2 (-390 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1181 (-392 (-526)))))) - ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-47))) (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) - (-4 *3 (-1181 (-47))))) - ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-47))) (-4 *5 (-811)) (-4 *6 (-757)) (-5 *2 (-390 *3)) - (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-909 (-47) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-47))) (-4 *5 (-811)) (-4 *6 (-757)) - (-4 *7 (-909 (-47) *6 *5)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-41 *5 *6 *7)) - (-5 *3 (-1117 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-158 *4 *3)) - (-4 *3 (-1181 (-159 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) - (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) - (-4 *3 (-1181 (-159 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) - (-4 *3 (-1181 (-159 *4))))) + (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-299)) + (-5 *2 (-399 (-410 (-921 *4)))) (-5 *1 (-1011 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-355)) (-5 *1 (-633 *4 *2)) + (-4 *2 (-630 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-927 (-1082))) + (-5 *1 (-338 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-443)))) + ((*1 *1 *1 *1) (-4 *1 (-443))) ((*1 *2 *3) - (-12 (-4 *4 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-203 *4 *3)) - (-4 *3 (-1181 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-735))) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526))))) + (-12 (-5 *3 (-619 *2)) (-5 *1 (-477 *2)) (-4 *2 (-1194 (-548))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-745))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) + (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-390 (-159 (-526)))) (-5 *1 (-430)) (-5 *3 (-159 (-526))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) + (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-299)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *6)))) ((*1 *2 *3) + (-12 (-5 *3 (-619 (-1131 *7))) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-299)) (-5 *2 (-1131 *7)) (-5 *1 (-885 *4 *5 *6 *7)) + (-4 *7 (-918 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-890))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-443)) (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) + (-4 *2 (-1194 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-443))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-4 *2 (-1063)) (-5 *1 (-654 *5 *6 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) + (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) + (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-895)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-895)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-619 (-1 (-218) (-218)))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1 (-218) (-218)))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896))))) +(((*1 *2 *1) (-12 - (-4 *4 - (-13 (-811) - (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) - (-4 *5 (-757)) (-4 *7 (-533)) (-5 *2 (-390 *3)) - (-5 *1 (-440 *4 *5 *6 *7 *3)) (-4 *6 (-533)) (-4 *3 (-909 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-292)) (-5 *2 (-390 (-1117 *4))) (-5 *1 (-442 *4)) - (-5 *3 (-1117 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) - (-4 *7 (-13 (-348) (-141) (-689 *5 *6))) (-5 *2 (-390 *3)) - (-5 *1 (-476 *5 *6 *7 *3)) (-4 *3 (-1181 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-390 (-1117 *7)) (-1117 *7))) (-4 *7 (-13 (-292) (-141))) - (-4 *5 (-811)) (-4 *6 (-757)) (-5 *2 (-390 *3)) (-5 *1 (-520 *5 *6 *7 *3)) - (-4 *3 (-909 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-390 (-1117 *7)) (-1117 *7))) (-4 *7 (-13 (-292) (-141))) - (-4 *5 (-811)) (-4 *6 (-757)) (-4 *8 (-909 *7 *6 *5)) - (-5 *2 (-390 (-1117 *8))) (-5 *1 (-520 *5 *6 *7 *8)) (-5 *3 (-1117 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-607 *5) *6)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *6 (-1181 *5)) (-5 *2 (-607 (-620 (-392 *6)))) (-5 *1 (-624 *5 *6)) - (-5 *3 (-620 (-392 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *5 (-1181 *4)) (-5 *2 (-607 (-620 (-392 *5)))) (-5 *1 (-624 *4 *5)) - (-5 *3 (-620 (-392 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-783 *4)) (-4 *4 (-811)) (-5 *2 (-607 (-637 *4))) - (-5 *1 (-637 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-526)) (-5 *2 (-607 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1181 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-335)) (-5 *2 (-390 *3)) - (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-335)) (-4 *7 (-909 *6 *5 *4)) - (-5 *2 (-390 (-1117 *7))) (-5 *1 (-662 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) - (-4 *5 - (-13 (-811) - (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) - (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-695 *4 *5 *6 *3)) - (-4 *3 (-909 (-905 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) - (-4 *6 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-697 *4 *5 *6 *3)) - (-4 *3 (-909 (-392 (-905 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-13 (-292) (-141))) - (-5 *2 (-390 *3)) (-5 *1 (-698 *4 *5 *6 *3)) - (-4 *3 (-909 (-392 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-13 (-292) (-141))) - (-5 *2 (-390 *3)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-13 (-292) (-141))) - (-4 *7 (-909 *6 *5 *4)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-706 *4 *5 *6 *7)) - (-5 *3 (-1117 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-390 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1181 (-392 (-526)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-390 *3)) (-5 *1 (-999 *3)) - (-4 *3 (-1181 (-392 (-905 (-526))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1181 (-392 (-526)))) - (-4 *5 (-13 (-348) (-141) (-689 (-392 (-526)) *4))) (-5 *2 (-390 *3)) - (-5 *1 (-1031 *4 *5 *3)) (-4 *3 (-1181 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1181 (-392 (-905 (-526))))) - (-4 *5 (-13 (-348) (-141) (-689 (-392 (-905 (-526))) *4))) (-5 *2 (-390 *3)) - (-5 *1 (-1032 *4 *5 *3)) (-4 *3 (-1181 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-436)) (-4 *7 (-909 *6 *4 *5)) - (-5 *2 (-390 (-1117 (-392 *7)))) (-5 *1 (-1119 *4 *5 *6 *7)) - (-5 *3 (-1117 (-392 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1164)))) - ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-116 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-526)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-830 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-14 *2 (-526)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-526)) (-14 *3 *2) (-5 *1 (-831 *3 *4)) (-4 *4 (-829 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-526)) (-5 *1 (-831 *2 *3)) (-4 *3 (-829 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-526)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-1004)) - (-4 *4 (-1198 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1198 *2))))) + (-5 *2 + (-619 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-548))))) + (-5 *1 (-410 *3)) (-4 *3 (-540)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-745)) (-4 *3 (-341)) (-4 *5 (-1194 *3)) + (-5 *2 (-619 (-1131 *3))) (-5 *1 (-488 *3 *5 *6)) + (-4 *6 (-1194 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-1137 (-399 (-548)))) + (-5 *1 (-183))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1203 *4 *5 *6)) + (|:| |%expon| (-311 *4 *5 *6)) + (|:| |%expTerms| + (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| *4)))))) + (|:| |%type| (-1118)))) + (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) + (-14 *5 (-1135)) (-14 *6 *4)))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) + (-5 *1 (-858 *4 *5)) (-4 *5 (-1063)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-735)) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) + (-12 (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) + (-5 *1 (-859 *5 *3)) (-4 *3 (-1172)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-278 *3)) (-5 *5 (-735)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-301 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-526))) (-5 *4 (-278 *6)) - (-4 *6 (-13 (-27) (-1145) (-406 *5))) - (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-735))) - (-4 *7 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-735))) - (-4 *3 (-13 (-27) (-1145) (-406 *7))) - (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) - (-5 *1 (-443 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3))))) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *6 (-1172)) (-5 *2 (-112)) (-5 *1 (-859 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-630 *3)) (-4 *3 (-1016)) (-4 *3 (-355)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) + (-5 *1 (-633 *5 *2)) (-4 *2 (-630 *5))))) +(((*1 *2) + (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-335 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890)))) + ((*1 *2) + (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-336 *3 *4)) (-4 *3 (-341)) + (-14 *4 (-1131 *3)))) + ((*1 *2) + (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-337 *3 *4)) (-4 *3 (-341)) + (-14 *4 (-890))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172))))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1104)))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) + ((*1 *2 *1) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-485))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-1167 *4)) (-4 *4 (-1004)) (-4 *4 (-533)) - (-5 *2 (-392 (-905 *4))))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) + (-5 *2 (-399 (-548)))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 (-861 *3))))) + (-5 *1 (-861 *3)) (-4 *3 (-1063)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-1167 *4)) (-4 *4 (-1004)) (-4 *4 (-533)) - (-5 *2 (-392 (-905 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-159 (-526))) (-5 *2 (-111)) (-5 *1 (-430)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) - (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) - (-5 *1 (-487 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-921 *3)) (-4 *3 (-525)))) - ((*1 *2 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-111))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1162))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123))))) - (-5 *1 (-1162))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1162)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1162))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-811)) (-4 *3 (-1052))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1161 *2)) - (-4 *2 (-1052)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-811)) (-5 *1 (-1161 *2))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-1052)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1052)) (-5 *2 (-111)) - (-5 *1 (-1161 *3))))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-861 *4))) + (-5 *1 (-861 *4)) (-4 *4 (-1063))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-13 (-355) (-821))) + (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-311 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-355)) (-5 *1 (-633 *4 *2)) + (-4 *2 (-630 *4))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3542 (-607 *3)) (|:| -3541 (-607 *3)))) - (-5 *1 (-1161 *3)) (-4 *3 (-1052))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-5 *2 (-1211)) (-5 *1 (-1161 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-5 *2 (-1211)) (-5 *1 (-1161 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-526)) (-4 *5 (-335)) (-5 *2 (-390 (-1117 (-1117 *5)))) - (-5 *1 (-1158 *5)) (-5 *3 (-1117 (-1117 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-335)) (-5 *2 (-390 (-1117 (-1117 *4)))) (-5 *1 (-1158 *4)) - (-5 *3 (-1117 (-1117 *4)))))) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) + (-5 *2 (-745)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-745))))) +(((*1 *1 *1) (-4 *1 (-1104)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-218)))) (-5 *1 (-895))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-481))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) + (-4 *3 (-1063))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-371)) (-5 *1 (-1009))))) (((*1 *2 *3) - (-12 (-4 *4 (-335)) (-5 *2 (-390 (-1117 (-1117 *4)))) (-5 *1 (-1158 *4)) - (-5 *3 (-1117 (-1117 *4)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *3)) - (-4 *3 (-1159)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1154 *4 *5 *3 *2)) (-4 *4 (-533)) (-4 *5 (-757)) - (-4 *3 (-811)) (-4 *2 (-1018 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-1157 *2)) (-4 *2 (-1159))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-607 (-607 (-211)))) (-5 *4 (-211)) (-5 *2 (-607 (-902 *4))) - (-5 *1 (-1156)) (-5 *3 (-902 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *2 (-607 (-607 (-211)))) (-5 *1 (-1156))))) -(((*1 *1 *2) - (-12 (-5 *2 (-878)) (-4 *1 (-224 *3 *4)) (-4 *4 (-1004)) (-4 *4 (-1159)))) - ((*1 *1 *2) - (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *5 (-224 (-4273 *3) (-735))) - (-14 *6 - (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *5)) - (-2 (|:| -2461 *2) (|:| -2462 *5)))) - (-5 *1 (-445 *3 *4 *2 *5 *6 *7)) (-4 *2 (-811)) - (-4 *7 (-909 *4 *5 (-824 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-902 (-211))) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-939 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-902 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)) (-5 *3 (-211))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-211)) (-5 *5 (-526)) (-5 *2 (-1155 *3)) (-5 *1 (-754 *3)) - (-4 *3 (-933)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-111)) (-5 *1 (-1155 *2)) - (-4 *2 (-933))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-399 *5)))) + (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-399 *5)))))) +(((*1 *2) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) + (-5 *2 (-112)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-443)))) + ((*1 *1 *1 *1) (-4 *1 (-443)))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1104)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-745)) (-4 *3 (-1172)) (-4 *1 (-56 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1) (-5 *1 (-168))) + ((*1 *1) (-12 (-5 *1 (-206 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1063)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381)))) + ((*1 *1) (-5 *1 (-386))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *1) + (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) + (-4 *4 (-640 *3)))) + ((*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) + ((*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) + ((*1 *1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1135))) + ((*1 *1) (-5 *1 (-1152)))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) + (-4 *4 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1137 (-399 (-548)))) (-5 *2 (-399 (-548))) + (-5 *1 (-183))))) (((*1 *2 *1) - (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-1155 *3)) (-4 *3 (-933))))) -(((*1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-933))))) + (|partial| -12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009))))) +(((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-111)))) + (-12 (-4 *3 (-1176)) (-4 *5 (-1194 *3)) (-4 *6 (-1194 (-399 *5))) + (-5 *2 (-112)) (-5 *1 (-333 *4 *3 *5 *6)) (-4 *4 (-334 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) - (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3643 (-607 *9)))) (-5 *3 (-607 *9)) - (-4 *1 (-1154 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1018 *5 *6 *7)) - (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3643 (-607 *8)))) (-5 *3 (-607 *8)) - (-4 *1 (-1154 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) - (-5 *2 (-2 (|:| -4180 (-607 *6)) (|:| -1794 (-607 *6))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-111)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1154 *5 *6 *7 *3)) (-4 *5 (-533)) - (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-111))))) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-1104)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-2 (|:| -3156 *3) (|:| -1657 *4)))) + (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *1 (-1148 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1148 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) + (-4 *4 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-890)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-766)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-399 (-548))) (-4 *1 (-1199 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009))))) (((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))) + (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-111) *7 (-607 *7))) (-4 *1 (-1154 *4 *5 *6 *7)) - (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-607 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) - (-4 *1 (-1154 *5 *6 *7 *8)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *8 (-1018 *5 *6 *7))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *2 (-1018 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *2 (-1018 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *2 (-1018 *3 *4 *5))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *2 (-1018 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *2 (-533)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *5 (-1018 *2 *3 *4))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *2 (-1018 *3 *4 *5))))) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-821)))) + ((*1 *2 *2) + (-12 (-5 *2 (-566 *4)) (-4 *4 (-13 (-29 *3) (-1157))) + (-4 *3 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) + (-5 *1 (-564 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-566 (-399 (-921 *3)))) + (-4 *3 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) + (-5 *1 (-569 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) + (-5 *2 (-2 (|:| -3944 *3) (|:| |special| *3))) (-5 *1 (-702 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1218 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) + (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) + (-5 *3 (-619 (-663 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1218 (-1218 *5))) (-4 *5 (-355)) (-4 *5 (-1016)) + (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) + (-5 *3 (-619 (-663 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-619 *1)) (-4 *1 (-1104))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 *10)) - (-5 *1 (-591 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1024 *5 *6 *7 *8)) - (-4 *10 (-1060 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) - (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-595 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) - (-14 *6 (-607 (-1123))) - (-5 *2 (-607 (-1094 *5 (-512 (-824 *6)) (-824 *6) (-744 *5 (-824 *6))))) - (-5 *1 (-595 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) - (-5 *1 (-984 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) - (-5 *1 (-984 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) - (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-1001 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 *1)) - (-4 *1 (-1024 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) - (-5 *1 (-1094 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) - (-5 *1 (-1094 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1154 *4 *5 *6 *7))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-294)))) + ((*1 *1 *1) (-4 *1 (-294))) ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) +(((*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478))))) (((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-607 (-2 (|:| -4180 *1) (|:| -1794 (-607 *7))))) (-5 *3 (-607 *7)) - (-4 *1 (-1154 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5))))) + (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-548)))) + (-4 *4 (-13 (-1194 *3) (-540) (-10 -8 (-15 -3587 ($ $ $))))) + (-4 *3 (-540)) (-5 *1 (-1197 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009))))) (((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-4 *5 (-353)) (-5 *2 (-735))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1004)) (-5 *1 (-49 *2 *3)) (-14 *3 (-607 (-1123))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-607 (-878))) (-4 *2 (-348)) (-5 *1 (-146 *4 *2 *5)) - (-14 *4 (-878)) (-14 *5 (-952 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-299 *3)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-308 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-129)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1004)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-533)) (-5 *1 (-590 *2 *4)) (-4 *4 (-1181 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-673 *2)) (-4 *2 (-1004)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1004)) (-5 *1 (-700 *2 *3)) (-4 *3 (-691)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *5)) (-5 *3 (-607 (-735))) (-4 *1 (-705 *4 *5)) - (-4 *4 (-1004)) (-4 *5 (-811)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-811)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-813 *2)) (-4 *2 (-1004)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 (-735))) (-4 *1 (-909 *4 *5 *6)) - (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-909 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-757)) - (-4 *2 (-811)))) + (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 *2))) + (-5 *2 (-861 *3)) (-5 *1 (-1039 *3 *4 *5)) + (-4 *5 (-13 (-422 *4) (-855 *3) (-593 *2)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) + (-4 *5 (-821)) (-5 *2 (-921 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-4 *2 (-909 *4 (-512 *5) *5)) (-5 *1 (-1076 *4 *5 *2)) - (-4 *4 (-1004)) (-4 *5 (-811)))) + (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) + (-4 *5 (-821)) (-5 *2 (-921 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) + (-5 *2 (-921 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-905 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1004))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1076 *4 *3 *5))) (-4 *4 (-37 (-392 (-526)))) - (-4 *4 (-1004)) (-4 *3 (-811)) (-5 *1 (-1076 *4 *3 *5)) - (-4 *5 (-909 *4 (-512 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1152 *4))) (-5 *3 (-1123)) (-5 *1 (-1152 *4)) - (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004))))) -(((*1 *2 *2) - (-12 (-4 *3 (-584 (-849 *3))) (-4 *3 (-845 *3)) (-4 *3 (-13 (-811) (-436))) - (-5 *1 (-1151 *3 *2)) (-4 *2 (-584 (-849 *3))) (-4 *2 (-845 *3)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-141)) (-4 *2 (-292)) (-4 *2 (-436)) (-4 *3 (-811)) - (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) (-4 *5 (-909 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-299 (-526))) (-5 *1 (-1069)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1145)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-533)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-1150 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-533)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-1150 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) + (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) + (-5 *2 (-921 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-159 (-299 *4))) - (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) + (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) + (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-159 *3)) (-5 *1 (-1149 *4 *3)) - (-4 *3 (-13 (-27) (-1145) (-406 *4)))))) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) +(((*1 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-548)) (-5 *1 (-477 *4)) + (-4 *4 (-1194 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-111)) - (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) + (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-111)) - (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + (|partial| -12 (-4 *4 (-767)) (-4 *5 (-1016)) (-4 *6 (-918 *5 *4 *2)) + (-4 *2 (-821)) (-5 *1 (-919 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *6)) (-15 -2470 (*6 $)) + (-15 -2480 (*6 $))))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-299 *4)) - (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-299 *4)) - (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) - (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) - (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) - (-5 *1 (-175 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) - (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) - (-5 *1 (-175 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) + (-5 *2 (-1135)) (-5 *1 (-1012 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))) + (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-745)) (-4 *5 (-169)))) ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *1 *1) (-4 *1 (-1148)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) + (-4 *4 (-169)))) ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *1 *1) (-4 *1 (-1148)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *1 *1) (-4 *1 (-1148)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *1 *1) (-4 *1 (-1148)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *2 *4)) (-4 *2 (-365 *3)) + (-4 *4 (-365 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1102 *2 *3)) (-14 *2 (-745)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *1 *1) (-4 *1 (-1148)))) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-548))) (-5 *1 (-477 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) +(((*1 *2 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-835 *4 *5 *6 *7)) + (-4 *4 (-1016)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) + (-14 *8 (-619 *5)) (-5 *2 (-1223)) + (-5 *1 (-1230 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-918 *4 *6 *5)) + (-14 *9 (-619 *3)) (-14 *10 *3)))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) + ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) + ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) +(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-133))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) + (-4 *6 (-13 (-540) (-1007 *5))) (-4 *5 (-540)) + (-5 *2 (-619 (-619 (-286 (-399 (-921 *6)))))) (-5 *1 (-1008 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-365 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) + (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-276))) + ((*1 *2 *3) + (-12 (-5 *3 (-410 *4)) (-4 *4 (-540)) + (-5 *2 (-619 (-2 (|:| -1489 (-745)) (|:| |logand| *4)))) + (-5 *1 (-312 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *2 *1) + (-12 (-5 *2 (-638 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) - ((*1 *1 *1) (-4 *1 (-1148)))) -(((*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-1146 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-607 (-1146 *2))) (-5 *1 (-1146 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) - (-4 *3 (-13 (-811) (-533))))) - ((*1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *1) (-5 *1 (-461))) ((*1 *1) (-4 *1 (-1145)))) -(((*1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1143))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1106)) (-5 *2 (-526)) (-5 *1 (-1142 *4)) (-4 *4 (-1004))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-1142 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-526)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) - (-5 *2 (-526)))) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) + (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) + (-4 *4 (-692 (-399 (-548)))) (-4 *3 (-821)) (-4 *4 (-169))))) +(((*1 *1 *2) + (-12 (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-1102 *3 *4)) + (-14 *3 (-745))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-548))) (-5 *1 (-477 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *4 (-1194 *3)) + (-5 *2 + (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) - (-5 *2 (-526)) (-5 *1 (-1067 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-803 *3)) - (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) - (-5 *1 (-1067 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-1106)) - (-4 *6 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) - (-5 *1 (-1067 *6 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))))) + (-12 (-5 *3 (-548)) (-4 *4 (-1194 *3)) + (-5 *2 + (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-742 *4 *5)) (-4 *5 (-401 *3 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-436)) (-5 *2 (-526)) - (-5 *1 (-1068 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-803 (-392 (-905 *6)))) - (-5 *3 (-392 (-905 *6))) (-4 *6 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-392 (-905 *6))) (-5 *4 (-1123)) (-5 *5 (-1106)) - (-4 *6 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-1142 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1141)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1141))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1141))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-1141))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-108)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-349 *2)) (-4 *2 (-1052)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-1141))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1141))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-823) (-823))) (-5 *1 (-112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-823) (-607 (-823)))) (-5 *1 (-112)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-823) (-607 (-823)))) (-5 *1 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1211)) (-5 *1 (-201 *3)) - (-4 *3 - (-13 (-811) - (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) - (-15 -2063 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-378)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-378)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-484)))) - ((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-675)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1139)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1139))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-735)) (-4 *3 (-1159)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)))) - ((*1 *1) (-5 *1 (-162))) - ((*1 *1) (-12 (-5 *1 (-200 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1052)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374)))) - ((*1 *1) (-5 *1 (-378))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) - ((*1 *1) - (-12 (-4 *3 (-1052)) (-5 *1 (-844 *2 *3 *4)) (-4 *2 (-1052)) - (-4 *4 (-631 *3)))) - ((*1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) - ((*1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) - ((*1 *1 *1) (-5 *1 (-1123))) ((*1 *1) (-5 *1 (-1123))) - ((*1 *1) (-5 *1 (-1139)))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) -(((*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1138))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-1138))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-811)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-267 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2) - (-12 + (-12 (-4 *4 (-341)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) (-5 *2 - (-2 - (|:| -4179 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (|:| -2164 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1101 (-211))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1537 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-536)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-659 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2) - (-12 + (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-954 *4 *3 *5 *6)) (-4 *6 (-699 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-341)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) (-5 *2 - (-2 - (|:| -4179 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (|:| -2164 - (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) - (|:| |expense| (-363)) (|:| |accuracy| (-363)) - (|:| |intermediateResults| (-363)))))) - (-5 *1 (-767)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1052)) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1052))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) + (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-1227 *4 *3 *5 *6)) (-4 *6 (-401 *3 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) +(((*1 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) + (-4 *2 (-1063))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-5 *1 (-477 *2)) (-4 *2 (-1194 (-548)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) + (-5 *2 (-1218 (-663 (-921 *4)))) (-5 *1 (-182 *4))))) (((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) + (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) + (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-4 *4 (-1194 *3)) + (-5 *2 + (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1194 (-548))) + (-5 *2 + (-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) + (|:| |basisInv| (-663 (-548))))) + (-5 *1 (-742 *3 *4)) (-4 *4 (-401 (-548) *3)))) + ((*1 *2) + (-12 (-4 *3 (-341)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) + (-5 *2 + (-2 (|:| -2877 (-663 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-663 *4)))) + (-5 *1 (-954 *3 *4 *5 *6)) (-4 *6 (-699 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-341)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) + (-5 *2 + (-2 (|:| -2877 (-663 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-663 *4)))) + (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *6 (-401 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) + ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) + ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) + (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) + (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-475 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1172)) (-5 *1 (-179 *3 *2)) (-4 *2 (-648 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-745)) (-4 *6 (-355)) (-5 *4 (-1166 *6)) + (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1226 *6)) + (-5 *5 (-1116 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-890)) (-5 *1 (-1001 *2)) + (-4 *2 (-13 (-1063) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-540)) + (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2) - (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) + (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) + (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-1052)) - (-4 *5 (-1052))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-1052)) - (-4 *5 (-1052))))) -(((*1 *2) - (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 (-2 (|:| -4179 *3) (|:| -2164 *4)))) (-4 *3 (-1052)) - (-4 *4 (-1052)) (-4 *1 (-1136 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-1134 *2)) (-4 *2 (-348))))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-821)) (-5 *4 (-619 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-619 *4)))) + (-5 *1 (-1143 *6)) (-5 *5 (-619 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-619 (-496))) (-5 *2 (-496)) (-5 *1 (-474))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1172)) (-5 *2 (-745)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-648 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-4 *5 (-355)) (-5 *2 (-619 (-1166 *5))) + (-5 *1 (-1226 *5)) (-5 *4 (-1166 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-878)) (-5 *2 (-1117 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-348))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-1134 *2)) (-4 *2 (-348))))) + (-12 (-5 *3 (-619 (-1218 *5))) (-5 *4 (-548)) (-5 *2 (-1218 *5)) + (-5 *1 (-998 *5)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016))))) (((*1 *2 *1) - (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-607 (-607 *3))))) + (-12 (-4 *1 (-583 *3 *2)) (-4 *3 (-1063)) (-4 *3 (-821)) + (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-607 (-607 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-607 *3))) (-5 *1 (-1133 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-1133 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-811)) - (-5 *2 - (-2 (|:| |f1| (-607 *4)) (|:| |f2| (-607 (-607 (-607 *4)))) - (|:| |f3| (-607 (-607 *4))) (|:| |f4| (-607 (-607 (-607 *4)))))) - (-5 *1 (-1131 *4)) (-5 *3 (-607 (-607 (-607 *4))))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-811)) (-5 *3 (-607 *6)) (-5 *5 (-607 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-607 *5)) (|:| |f3| *5) (|:| |f4| (-607 *5)))) - (-5 *1 (-1131 *6)) (-5 *4 (-607 *5))))) + (-12 (-4 *2 (-1172)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-240 *3 *4)) + (-14 *3 (-619 (-1135))) (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-548))) (-14 *3 (-619 (-1135))) + (-5 *1 (-445 *3 *4 *5)) (-4 *4 (-1016)) + (-4 *5 (-231 (-3643 *3) (-745))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-472 *3 *4)) + (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1172)) (-5 *1 (-179 *3 *2)) + (-4 *2 (-648 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-1 (-1131 (-921 *4)) (-921 *4))) + (-5 *1 (-1226 *4)) (-4 *4 (-355))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-548)) (-4 *6 (-355)) (-4 *6 (-360)) + (-4 *6 (-1016)) (-5 *2 (-619 (-619 (-663 *6)))) (-5 *1 (-998 *6)) + (-5 *3 (-619 (-663 *6))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-4 *7 (-950 *4)) (-4 *2 (-650 *7 *8 *9)) - (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-650 *4 *5 *6)) - (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)) (-4 *2 (-348)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-348)) (-4 *3 (-163)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2)) (-4 *2 (-348)) (-4 *2 (-1004)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1073 *2 *3 *4 *5)) (-4 *3 (-1004)) - (-4 *4 (-224 *2 *3)) (-4 *5 (-224 *2 *3)) (-4 *3 (-348)))) - ((*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-1131 *3))))) + (-12 (-4 *4 (-355)) (-4 *4 (-360)) (-4 *4 (-1016)) + (-5 *2 (-619 (-619 (-663 *4)))) (-5 *1 (-998 *4)) + (-5 *3 (-619 (-663 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)) + (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) + (-5 *3 (-619 (-663 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)) + (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) + (-5 *3 (-619 (-663 *5)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-548) (-548))) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-745) (-745))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) + (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) + (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-5 *2 (-896)) (-5 *1 (-894 *3)) + (-4 *3 (-593 (-524))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-896)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) + (-5 *1 (-896))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-548)) (-5 *2 (-112)) (-5 *1 (-471))))) (((*1 *2 *3) - (-12 (-4 *4 (-811)) (-5 *2 (-607 (-607 *4))) (-5 *1 (-1131 *4)) - (-5 *3 (-607 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-811)) (-5 *1 (-1131 *3))))) + (-12 (-4 *4 (-13 (-355) (-819))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3213 (-410 *3)))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-4 *5 (-355)) (-5 *2 (-1116 (-1116 (-921 *5)))) + (-5 *1 (-1226 *5)) (-5 *4 (-1116 (-921 *5)))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-471))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1194 (-166 *2)))))) (((*1 *2 *3) - (-12 (-4 *4 (-811)) (-5 *2 (-1133 (-607 *4))) (-5 *1 (-1131 *4)) - (-5 *3 (-607 *4))))) + (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) + (-5 *1 (-1226 *4)) (-4 *4 (-355))))) (((*1 *2 *3) - (-12 (-4 *4 (-811)) (-5 *2 (-607 (-607 (-607 *4)))) (-5 *1 (-1131 *4)) - (-5 *3 (-607 (-607 *4)))))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-299) (-145))) + (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) + (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) + (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) + (-5 *2 (-745)))) + ((*1 *2) + (-12 (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-320 *3 *4)) + (-4 *3 (-321 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) + ((*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) + ((*1 *2) + (-12 (-4 *4 (-1063)) (-5 *2 (-745)) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-745)) + (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-699 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) + ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *1) (-5 *1 (-322)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) + (-4 *5 (-540)) (-5 *2 (-619 (-619 (-921 *5)))) (-5 *1 (-1141 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1135)) (-5 *1 (-524)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-679 *3)) + (-4 *3 (-593 (-524)))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) + ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) + ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) + (-5 *2 + (-2 (|:| |dpolys| (-619 (-240 *5 *6))) + (|:| |coords| (-619 (-548))))) + (-5 *1 (-462 *5 *6 *7)) (-5 *3 (-619 (-240 *5 *6))) (-4 *7 (-443))))) (((*1 *2 *3) - (-12 (-5 *3 (-1133 (-607 *4))) (-4 *4 (-811)) (-5 *2 (-607 (-607 *4))) - (-5 *1 (-1131 *4))))) + (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) + (-4 *4 (-13 (-355) (-819))) (-4 *3 (-1194 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 (-607 (-607 *4)))) (-5 *2 (-607 (-607 *4))) - (-5 *1 (-1131 *4)) (-4 *4 (-811))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-607 (-607 (-607 *4)))) (-5 *2 (-607 (-607 *4))) (-4 *4 (-811)) - (-5 *1 (-1131 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-607 (-607 (-607 *4)))) (-5 *3 (-607 *4)) (-4 *4 (-811)) - (-5 *1 (-1131 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-607 (-607 (-607 *5)))) (-5 *3 (-1 (-111) *5 *5)) - (-5 *4 (-607 *5)) (-4 *5 (-811)) (-5 *1 (-1131 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-811)) (-5 *4 (-607 *6)) - (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-607 *4)))) - (-5 *1 (-1131 *6)) (-5 *5 (-607 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) - (-5 *2 (-607 (-607 (-905 *5)))) (-5 *1 (-1129 *5))))) + (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) + (-5 *1 (-1226 *4)) (-4 *4 (-355))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-299) (-145))) (-4 *4 (-13 (-821) (-593 (-1135)))) + (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *2 (-918 *3 *5 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 (-112) (-619 *1))) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) + ((*1 *1 *1) (|partial| -4 *1 (-697)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)))) + ((*1 *1) (-4 *1 (-1111)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-392 (-905 (-526))))) - (-5 *2 (-607 (-607 (-278 (-905 *4))))) (-5 *1 (-365 *4)) - (-4 *4 (-13 (-809) (-348))))) + (-12 (-5 *3 (-619 (-399 (-921 (-548))))) + (-5 *2 (-619 (-619 (-286 (-921 *4))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-819) (-355))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-278 (-392 (-905 (-526)))))) - (-5 *2 (-607 (-607 (-278 (-905 *4))))) (-5 *1 (-365 *4)) - (-4 *4 (-13 (-809) (-348))))) + (-12 (-5 *3 (-619 (-286 (-399 (-921 (-548)))))) + (-5 *2 (-619 (-619 (-286 (-921 *4))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-819) (-355))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 (-526)))) (-5 *2 (-607 (-278 (-905 *4)))) - (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) + (-12 (-5 *3 (-399 (-921 (-548)))) (-5 *2 (-619 (-286 (-921 *4)))) + (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-278 (-392 (-905 (-526))))) (-5 *2 (-607 (-278 (-905 *4)))) - (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) + (-12 (-5 *3 (-286 (-399 (-921 (-548))))) + (-5 *2 (-619 (-286 (-921 *4)))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-819) (-355))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1123)) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-4 *4 (-13 (-29 *6) (-1145) (-919))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-607 *4)))) - (-5 *1 (-618 *6 *4 *3)) (-4 *3 (-623 *4)))) + (|partial| -12 (-5 *5 (-1135)) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *4 (-13 (-29 *6) (-1157) (-928))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2877 (-619 *4)))) + (-5 *1 (-626 *6 *4 *3)) (-4 *3 (-630 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 *2)) - (-4 *2 (-13 (-29 *6) (-1145) (-919))) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *1 (-618 *6 *2 *3)) (-4 *3 (-623 *2)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) - (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) - (-4 *7 (-13 (-357 *5) (-10 -7 (-6 -4311)))) - (-5 *2 (-607 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2104 (-607 *7))))) - (-5 *1 (-632 *5 *6 *7 *3)) (-5 *4 (-607 *7)) (-4 *3 (-650 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-4 *5 (-348)) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *2)) + (-4 *2 (-13 (-29 *6) (-1157) (-928))) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *1 (-626 *6 *2 *3)) (-4 *3 (-630 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *5)) (-4 *5 (-355)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1218 *5) "failed")) + (|:| -2877 (-619 (-1218 *5))))) + (-5 *1 (-641 *5)) (-5 *4 (-1218 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-355)) (-5 *2 - (-2 (|:| |particular| (-3 (-1205 *5) #2="failed")) - (|:| -2104 (-607 (-1205 *5))))) - (-5 *1 (-633 *5)) (-5 *4 (-1205 *5)))) + (-2 (|:| |particular| (-3 (-1218 *5) "failed")) + (|:| -2877 (-619 (-1218 *5))))) + (-5 *1 (-641 *5)) (-5 *4 (-1218 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-607 *5))) (-4 *5 (-348)) + (-12 (-5 *3 (-663 *5)) (-4 *5 (-355)) (-5 *2 - (-2 (|:| |particular| (-3 (-1205 *5) #2#)) (|:| -2104 (-607 (-1205 *5))))) - (-5 *1 (-633 *5)) (-5 *4 (-1205 *5)))) + (-619 + (-2 (|:| |particular| (-3 (-1218 *5) "failed")) + (|:| -2877 (-619 (-1218 *5)))))) + (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-4 *5 (-348)) + (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-355)) (-5 *2 - (-607 - (-2 (|:| |particular| (-3 (-1205 *5) #2#)) - (|:| -2104 (-607 (-1205 *5)))))) - (-5 *1 (-633 *5)) (-5 *4 (-607 (-1205 *5))))) + (-619 + (-2 (|:| |particular| (-3 (-1218 *5) "failed")) + (|:| -2877 (-619 (-1218 *5)))))) + (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-607 *5))) (-4 *5 (-348)) + (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 - (-607 - (-2 (|:| |particular| (-3 (-1205 *5) #2#)) - (|:| -2104 (-607 (-1205 *5)))))) - (-5 *1 (-633 *5)) (-5 *4 (-607 (-1205 *5))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) - (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-734 *5)))) + (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) + (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4328)))) + (-5 *2 + (-619 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2877 (-619 *7))))) + (-5 *1 (-642 *5 *6 *7 *3)) (-5 *4 (-619 *7)) + (-4 *3 (-661 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) + (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-744 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-533)) - (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-734 *4)))) + (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-540)) + (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-744 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1123)) - (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *1 (-736 *5 *2)) (-4 *2 (-13 (-29 *5) (-1145) (-919))))) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1135)) + (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *1 (-746 *5 *2)) (-4 *2 (-13 (-29 *5) (-1157) (-928))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-653 *7)) (-5 *5 (-1123)) - (-4 *7 (-13 (-29 *6) (-1145) (-919))) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) - (-5 *1 (-766 *6 *7)) (-5 *4 (-1205 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-653 *6)) (-5 *4 (-1123)) - (-4 *6 (-13 (-29 *5) (-1145) (-919))) - (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-607 (-1205 *6))) (-5 *1 (-766 *5 *6)))) + (|partial| -12 (-5 *3 (-663 *7)) (-5 *5 (-1135)) + (-4 *7 (-13 (-29 *6) (-1157) (-928))) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 + (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) + (-5 *1 (-776 *6 *7)) (-5 *4 (-1218 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-663 *6)) (-5 *4 (-1135)) + (-4 *6 (-13 (-29 *5) (-1157) (-928))) + (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 (-619 (-1218 *6))) (-5 *1 (-776 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-607 (-278 *7))) (-5 *4 (-607 (-112))) (-5 *5 (-1123)) - (-4 *7 (-13 (-29 *6) (-1145) (-919))) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) - (-5 *1 (-766 *6 *7)))) + (|partial| -12 (-5 *3 (-619 (-286 *7))) (-5 *4 (-619 (-114))) + (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 + (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) + (-5 *1 (-776 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-607 *7)) (-5 *4 (-607 (-112))) (-5 *5 (-1123)) - (-4 *7 (-13 (-29 *6) (-1145) (-919))) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) - (-5 *1 (-766 *6 *7)))) + (|partial| -12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) + (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 + (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) + (-5 *1 (-776 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-278 *7)) (-5 *4 (-112)) (-5 *5 (-1123)) - (-4 *7 (-13 (-29 *6) (-1145) (-919))) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2104 (-607 *7))) *7 #3="failed")) - (-5 *1 (-766 *6 *7)))) + (-12 (-5 *3 (-286 *7)) (-5 *4 (-114)) (-5 *5 (-1135)) + (-4 *7 (-13 (-29 *6) (-1157) (-928))) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -2877 (-619 *7))) *7 "failed")) + (-5 *1 (-776 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-1123)) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2104 (-607 *3))) *3 #3#)) - (-5 *1 (-766 *6 *3)) (-4 *3 (-13 (-29 *6) (-1145) (-919))))) + (-12 (-5 *4 (-114)) (-5 *5 (-1135)) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2877 (-619 *3))) *3 "failed")) + (-5 *1 (-776 *6 *3)) (-4 *3 (-13 (-29 *6) (-1157) (-928))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-278 *2)) (-5 *4 (-112)) (-5 *5 (-607 *2)) - (-4 *2 (-13 (-29 *6) (-1145) (-919))) (-5 *1 (-766 *6 *2)) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))))) + (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-114)) (-5 *5 (-619 *2)) + (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-5 *1 (-776 *6 *2)) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-112)) (-5 *4 (-278 *2)) (-5 *5 (-607 *2)) - (-4 *2 (-13 (-29 *6) (-1145) (-919))) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *1 (-766 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-992)) (-5 *1 (-769)))) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-286 *2)) (-5 *5 (-619 *2)) + (-4 *2 (-13 (-29 *6) (-1157) (-928))) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *1 (-776 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-769)))) + (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) - (-5 *2 (-992)) (-5 *1 (-769)))) + (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) + (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) - (-5 *2 (-992)) (-5 *1 (-769)))) + (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) + (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) - (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) + (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) + (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) - (-5 *2 (-992)) (-5 *1 (-769)))) + (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) + (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) - (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) + (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) + (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) - (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) + (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) + (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *5) (|partial| -12 - (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2104 (-607 *6))) "failed") *7 *6)) - (-4 *6 (-348)) (-4 *7 (-623 *6)) - (-5 *2 (-2 (|:| |particular| (-1205 *6)) (|:| -2104 (-653 *6)))) - (-5 *1 (-777 *6 *7)) (-5 *3 (-653 *6)) (-5 *4 (-1205 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-992)) (-5 *1 (-856)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-856)))) + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2877 (-619 *6))) "failed") + *7 *6)) + (-4 *6 (-355)) (-4 *7 (-630 *6)) + (-5 *2 (-2 (|:| |particular| (-1218 *6)) (|:| -2877 (-663 *6)))) + (-5 *1 (-787 *6 *7)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1004)) (-5 *1 (-866)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-866)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-735)) (-5 *6 (-607 (-607 (-299 *3)))) (-5 *7 (-1106)) - (-5 *8 (-211)) (-5 *5 (-607 (-299 (-363)))) (-5 *3 (-363)) (-5 *2 (-992)) - (-5 *1 (-856)))) + (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-308 *3)))) (-5 *7 (-1118)) + (-5 *8 (-218)) (-5 *5 (-619 (-308 (-371)))) (-5 *3 (-371)) + (-5 *2 (-1004)) (-5 *1 (-866)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-735)) (-5 *6 (-607 (-607 (-299 *3)))) (-5 *7 (-1106)) - (-5 *5 (-607 (-299 (-363)))) (-5 *3 (-363)) (-5 *2 (-992)) (-5 *1 (-856)))) + (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-308 *3)))) (-5 *7 (-1118)) + (-5 *5 (-619 (-308 (-371)))) (-5 *3 (-371)) (-5 *2 (-1004)) + (-5 *1 (-866)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *2 (-607 (-363))) (-5 *1 (-980)) - (-5 *4 (-363)))) + (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *2 (-619 (-371))) + (-5 *1 (-992)) (-5 *4 (-371)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-526))) (-5 *2 (-607 (-363))) (-5 *1 (-980)) - (-5 *4 (-363)))) + (-12 (-5 *3 (-921 (-548))) (-5 *2 (-619 (-371))) (-5 *1 (-992)) + (-5 *4 (-371)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) + (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-299 *4)))) + (-12 (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1093 *4)) + (-5 *3 (-308 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1081 *4)) - (-5 *3 (-278 (-299 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) - (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1081 *5)) - (-5 *3 (-278 (-299 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) - (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1081 *5)) (-5 *3 (-299 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-1123))) - (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-607 (-607 (-278 (-299 *5))))) (-5 *1 (-1081 *5)) - (-5 *3 (-607 (-278 (-299 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) - (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-1129 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-1123))) (-4 *5 (-533)) - (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-1129 *5)) - (-5 *3 (-607 (-278 (-392 (-905 *5))))))) + (-12 (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1093 *4)) + (-5 *3 (-286 (-308 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1093 *5)) + (-5 *3 (-286 (-308 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1093 *5)) + (-5 *3 (-308 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1093 *5)) + (-5 *3 (-619 (-286 (-308 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) + (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) + (-5 *1 (-1141 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-540)) + (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-1141 *5)) + (-5 *3 (-619 (-286 (-399 (-921 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-607 (-392 (-905 *4)))) (-4 *4 (-533)) - (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-1129 *4)))) + (-12 (-5 *3 (-619 (-399 (-921 *4)))) (-4 *4 (-540)) + (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-1141 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) - (-5 *1 (-1129 *4)) (-5 *3 (-607 (-278 (-392 (-905 *4))))))) + (-12 (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) + (-5 *1 (-1141 *4)) (-5 *3 (-619 (-286 (-399 (-921 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *5))))) - (-5 *1 (-1129 *5)) (-5 *3 (-392 (-905 *5))))) + (-12 (-5 *4 (-1135)) (-4 *5 (-540)) + (-5 *2 (-619 (-286 (-399 (-921 *5))))) (-5 *1 (-1141 *5)) + (-5 *3 (-399 (-921 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *5))))) - (-5 *1 (-1129 *5)) (-5 *3 (-278 (-392 (-905 *5)))))) + (-12 (-5 *4 (-1135)) (-4 *5 (-540)) + (-5 *2 (-619 (-286 (-399 (-921 *5))))) (-5 *1 (-1141 *5)) + (-5 *3 (-286 (-399 (-921 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *4))))) + (-5 *1 (-1141 *4)) (-5 *3 (-399 (-921 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *4))))) (-5 *1 (-1129 *4)) - (-5 *3 (-392 (-905 *4))))) + (-12 (-4 *4 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *4))))) + (-5 *1 (-1141 *4)) (-5 *3 (-286 (-399 (-921 *4))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) + (-4 *6 (-1172)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) + (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 *5)) (-4 *6 (-1063)) + (-4 *5 (-1172)) (-5 *2 (-1 *5 *6)) (-5 *1 (-616 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) + (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) + (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-616 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-745))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-472 *4 *5))) (-5 *3 (-619 (-834 *4))) + (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-462 *4 *5 *6)) + (-4 *6 (-443))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1194 (-166 *2))))) ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *4))))) (-5 *1 (-1129 *4)) - (-5 *3 (-278 (-392 (-905 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1128))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1128)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-1128))) (-5 *1 (-1128))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1128))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-265)))) + (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1194 (-166 *2)))))) +(((*1 *2) + (-12 (-14 *4 (-745)) (-4 *5 (-1172)) (-5 *2 (-133)) + (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-355)) (-5 *2 (-133)) (-5 *1 (-320 *3 *4)) + (-4 *3 (-321 *4)))) + ((*1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-169)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-526) (-211) (-1123) (-1106) (-1128))) (-5 *1 (-1128))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-265))) (-5 *1 (-265)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1128))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1128))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2415)) (-5 *2 (-111)) (-5 *1 (-655 *4)) - (-4 *4 (-583 (-823))))) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-548)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-583 (-823))) (-5 *2 (-111)) - (-5 *1 (-655 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-111)) (-5 *1 (-1128)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-111)) (-5 *1 (-1128)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-211))) (-5 *2 (-111)) (-5 *1 (-1128)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-111)) (-5 *1 (-1128))))) -(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-276))) ((*1 *1) (-5 *1 (-823))) - ((*1 *1) - (-12 (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1037))) - ((*1 *1) - (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33))))) - ((*1 *1) (-5 *1 (-1126))) ((*1 *1) (-5 *1 (-1127)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-421)) (-5 *3 (-607 (-1123))) (-5 *4 (-1123)) (-5 *1 (-1126)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1127)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-607 (-1123))) (-5 *1 (-1127))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-421)) (-5 *1 (-1127))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1127))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-419)) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) + (-5 *2 (-548)) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1016)) (-5 *2 (-890)))) + ((*1 *2) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-355)) (-5 *2 (-133))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-619 (-548))) + (|:| |cols| (-619 (-548))))) + (-5 *4 (-663 *12)) (-5 *5 (-619 (-399 (-921 *9)))) + (-5 *6 (-619 (-619 *12))) (-5 *7 (-745)) (-5 *8 (-548)) + (-4 *9 (-13 (-299) (-145))) (-4 *12 (-918 *9 *11 *10)) + (-4 *10 (-13 (-821) (-593 (-1135)))) (-4 *11 (-767)) (-5 *2 - (-607 - (-3 (|:| -3864 (-1123)) - (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) - (-5 *1 (-1127))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1127))))) + (-2 (|:| |eqzro| (-619 *12)) (|:| |neqzro| (-619 *12)) + (|:| |wcond| (-619 (-921 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *9)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *9))))))))) + (-5 *1 (-893 *9 *10 *11 *12))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *1)))) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) + ((*1 *1 *1) (|partial| -4 *1 (-697)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-622 *5)) (-4 *5 (-1016)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-823 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-663 *3)) (-4 *1 (-409 *3)) (-4 *3 (-169)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1016)) + (-5 *1 (-824 *2 *3)) (-4 *3 (-823 *2))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-1140))) (-5 *1 (-1140))))) (((*1 *2 *1) - (-12 + (-12 (-5 *2 (-619 *4)) (-5 *1 (-1101 *3 *4)) + (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-355) (-819))) (-5 *1 (-178 *3 *2)) + (-4 *2 (-1194 (-166 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-218)) (-5 *1 (-1221)))) + ((*1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-1221))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *7)) (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) +(((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4)))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) + (-4 *4 (-169))))) +(((*1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) + ((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) +(((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-566 *3)) (-5 *1 (-541 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) + (-14 *4 (-745)) (-4 *5 (-169))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) + (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) + (-15 -2480 ((-1087 *3 (-591 $)) $)) + (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) + ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-5 *4 (-745)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) + (-4 *7 (-767)) (-5 *2 - (-607 - (-607 - (-3 (|:| -3864 (-1123)) - (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))))) - (-5 *1 (-1127))))) -(((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-1127))))) -(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1127))))) + (-619 + (-2 (|:| |det| *8) (|:| |rows| (-619 (-548))) + (|:| |cols| (-619 (-548)))))) + (-5 *1 (-893 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 *3 (-619 *1))) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) + (-5 *1 (-254 *2)) (-4 *2 (-1172)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *2 (-52)) + (-5 *1 (-255))))) +(((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4)))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) + (-4 *4 (-169))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) + ((*1 *1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-272)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-548) (-218) (-1135) (-1118) (-1140))) + (-5 *1 (-1140))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-795))))) +(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-619 (-619 (-912 (-218))))))) + ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-619 (-619 (-912 (-218)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-653 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1135)) + (-4 *4 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) + (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) + (-15 -2480 ((-1087 *3 (-591 $)) $)) + (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-355) (-819))) (-5 *1 (-178 *3 *2)) + (-4 *2 (-1194 (-166 *3)))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) + (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) + (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-112)) + (-5 *1 (-893 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-540)) (-4 *2 (-1016)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *1)))) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1203 *3 *4 *5)) (-5 *1 (-311 *3 *4 *5)) + (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1063)) (-5 *1 (-688 *3 *2 *4)) (-4 *3 (-821)) + (-14 *4 + (-1 (-112) (-2 (|:| -3337 *3) (|:| -3352 *2)) + (-2 (|:| -3337 *3) (|:| -3352 *2))))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-322))))) +(((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) + ((*1 *1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-272))) (-5 *1 (-272)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-795))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-4 *5 (-821)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-653 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-541 *6 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) + (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) + (-15 -2480 ((-1087 *3 (-591 $)) $)) + (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-355) (-819))) + (-5 *2 (-619 (-2 (|:| -3213 (-619 *3)) (|:| -2831 *5)))) + (-5 *1 (-178 *5 *3)) (-4 *3 (-1194 (-166 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-355) (-819))) + (-5 *2 (-619 (-2 (|:| -3213 (-619 *3)) (|:| -2831 *4)))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-619 (-619 (-548)))) + (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-548)) (-4 *7 (-918 *4 *6 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) + (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-360)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) + (-4 *4 (-341)))) + ((*1 *2 *1) + (-12 (-4 *2 (-821)) (-5 *1 (-688 *2 *3 *4)) (-4 *3 (-1063)) + (-14 *4 + (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *3)) + (-2 (|:| -3337 *2) (|:| -3352 *3))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) + (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-524))) (-5 *2 (-1135)) (-5 *1 (-524))))) (((*1 *1 *2) - (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421))))) - (-5 *1 (-1127))))) -(((*1 *1) (-5 *1 (-1126)))) -(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) - ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1126))))) -(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126))))) -(((*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1126))))) -(((*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1126))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1126)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126))))) + (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-548)) (-14 *4 (-745))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140))))) +(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795))))) +(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) + ((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) (-4 *1 (-838 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *4 (-821))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1135)) + (-4 *5 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-541 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) (-5 *2 (-1211)) - (-5 *1 (-1126)))) + (-12 (-4 *4 (-540)) (-5 *2 (-1131 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) + (-15 -2480 ((-1087 *4 (-591 $)) $)) + (-15 -3743 ($ (-1087 *4 (-591 $)))))))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-619 (-166 *4))) (-5 *1 (-152 *3 *4)) + (-4 *3 (-1194 (-166 (-548)))) (-4 *4 (-13 (-355) (-819))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-166 *4))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) - (-5 *2 (-1211)) (-5 *1 (-1126)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1123)) (-5 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) - (-5 *2 (-1211)) (-5 *1 (-1126))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1126)))) - ((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1123)) (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 "void"))) - (-5 *1 (-1126))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1126)) (-5 *3 (-1123))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-1127)) (-5 *1 (-1126))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-1004)) (-5 *2 (-1205 *4)) - (-5 *1 (-1124 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-878)) (-5 *2 (-1205 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1004))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1123))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-94)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1052)))) - ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-423 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-466)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-924)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1027 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-5 *1 (-1123)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1123))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) + (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-166 *4))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 (-619 *6))) (-4 *6 (-918 *3 *5 *4)) + (-4 *3 (-13 (-299) (-145))) (-4 *4 (-13 (-821) (-593 (-1135)))) + (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) ((*1 *2 *1) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) + (-4 *3 (-1194 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) + (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-389))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1216 *3)) (-4 *3 (-23)) (-4 *3 (-1172))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-283))) + ((*1 *1) (-5 *1 (-832))) + ((*1 *1) + (-12 (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) + (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1049))) + ((*1 *1) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34))))) + ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139)))) +(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795))))) +(((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-940))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2265 *1) (|:| -4314 *1) (|:| |associate| *1))) + (-4 *1 (-540))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-299)) (-5 *1 (-176 *3))))) +(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) - (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) - (|:| |args| (-607 (-823))))) - (-5 *1 (-1123))))) -(((*1 *1 *1 *2) + (-5 *3 + (-619 + (-2 (|:| -2103 (-745)) + (|:| |eqns| + (-619 + (-2 (|:| |det| *7) (|:| |rows| (-619 (-548))) + (|:| |cols| (-619 (-548)))))) + (|:| |fgb| (-619 *7))))) + (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) + (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) + (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) + (-4 *3 (-1194 *4)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-548)) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) + (-4 *3 (-1016)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-793 *4)) (-4 *4 (-821)) (-4 *1 (-1235 *4 *3)) + (-4 *3 (-1016))))) +(((*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1135))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) + (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) + (-5 *1 (-389)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) + (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) + (-5 *1 (-389)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-619 (-1135))) (-5 *5 (-1138)) (-5 *3 (-1135)) + (-5 *2 (-1067)) (-5 *1 (-389))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-734))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-429)) (-5 *1 (-1139))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-795))))) +(((*1 *2 *3) + (-12 (-5 *2 (-619 (-619 (-548)))) (-5 *1 (-940)) + (-5 *3 (-619 (-548)))))) +(((*1 *1 *1) (-4 *1 (-540)))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-474))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-299)) (-5 *1 (-176 *3))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1221))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) - (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) - (|:| |args| (-607 (-823))))) - (-5 *1 (-1123)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 (-823)))) (-5 *1 (-1123))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123))))) -(((*1 *1 *1) (-5 *1 (-823))) + (-5 *3 + (-619 + (-2 (|:| -2103 (-745)) + (|:| |eqns| + (-619 + (-2 (|:| |det| *7) (|:| |rows| (-619 (-548))) + (|:| |cols| (-619 (-548)))))) + (|:| |fgb| (-619 *7))))) + (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) + (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) + (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) + (-4 *3 (-1194 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-224 *4)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-745)))) + ((*1 *1 *1) (-4 *1 (-226))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-355) (-145))) (-5 *1 (-391 *2 *3)) + (-4 *3 (-1194 *2)))) + ((*1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) + (-4 *4 (-1063)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-322))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139))))) +(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-795))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-940))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-540)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-619 *3)) (-5 *1 (-893 *4 *5 *6 *3)) + (-4 *3 (-918 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1007 (-548))) (-4 *3 (-13 (-821) (-540))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-422 *3)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1131 *4)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1016)) (-4 *1 (-294)))) + ((*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1131 *3)))) + ((*1 *2) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) - ((*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1105)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1123))))) -(((*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1123))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) - ((*1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) - ((*1 *1) (-4 *1 (-691))) ((*1 *1) (-5 *1 (-1123)))) -(((*1 *1 *2 *2) - (-12 + (-12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-355))) + (-4 *2 (-1194 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-383))))) +(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-426)) (-5 *2 - (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) - (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) - (-5 *1 (-1122))))) -(((*1 *1 *2 *2) + (-619 + (-3 (|:| -2275 (-1135)) + (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) + (-5 *1 (-1139))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-793 *3)) (-4 *3 (-821))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1557 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-226)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) + (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-245 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) + (-5 *2 (-1 *1 (-745))) (-4 *1 (-245 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-258 *2)) (-4 *2 (-821))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-180))))) +(((*1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| -4035 (-663 (-399 (-921 *4)))) + (|:| |vec| (-619 (-399 (-921 *4)))) (|:| -2103 (-745)) + (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) + (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *2 - (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) - (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) - (-5 *1 (-1122))))) -(((*1 *1 *2 *2) + (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *4))))))) + (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 (-548))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) + ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1131 (-548))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1131 (-399 (-548)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) + ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-619 *1)) + (-4 *1 (-1033 *4 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-383))))) +(((*1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-821)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1557 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-399 (-548))) (-4 *1 (-538 *3)) + (-4 *3 (-13 (-396) (-1157))))) + ((*1 *1 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-258 *3)) (-4 *3 (-821)) (-5 *2 (-745))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) +(((*1 *2 *2 *3) (-12 (-5 *2 - (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) - (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) - (-5 *1 (-1122))))) -(((*1 *1 *2 *2) + (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *4))))))) + (-5 *3 (-619 *7)) (-4 *4 (-13 (-299) (-145))) + (-4 *7 (-918 *4 *6 *5)) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-540))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-540))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *2)) (-5 *4 (-1135)) (-4 *2 (-422 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-821) (-540))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-4 *1 (-981)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-5 *4 (-832)) + (-4 *1 (-981)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-819) (-355))) + (-4 *1 (-1033 *4 *2)) (-4 *2 (-1194 *4))))) +(((*1 *1 *1) + (-12 (-4 *2 (-341)) (-4 *2 (-1016)) (-5 *1 (-687 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1016)) + (-5 *1 (-824 *5 *2)) (-4 *2 (-823 *5))))) +(((*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-383))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-619 (-1 *4 (-619 *4)))) (-4 *4 (-1063)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-1 *4 (-619 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 - (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) - (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) - (-5 *1 (-1122))))) -(((*1 *1 *2 *2) - (-12 + (-619 + (-619 + (-3 (|:| -2275 (-1135)) + (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))))) + (-5 *1 (-1139))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-589 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-371)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) + (-4 *7 (-767)) (-5 *2 - (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) - (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) - (-5 *1 (-1122))))) -(((*1 *1 *2 *2) + (-619 + (-2 (|:| -2103 (-745)) + (|:| |eqns| + (-619 + (-2 (|:| |det| *8) (|:| |rows| (-619 (-548))) + (|:| |cols| (-619 (-548)))))) + (|:| |fgb| (-619 *8))))) + (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-745))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-993 *3)) + (-4 *3 (-13 (-819) (-355) (-991))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-355))) + (-4 *3 (-1194 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) +(((*1 *2 *1) + (-12 (-5 *2 (-832)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 (-745)) + (-14 *4 (-745)) (-4 *5 (-169))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1139))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) - (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) - (-5 *1 (-1122))))) -(((*1 *1 *2 *2) + (-2 (|:| |lm| (-378 *3)) (|:| |mm| (-378 *3)) (|:| |rm| (-378 *3)))) + (-5 *1 (-378 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *1) (-12 (-5 *2 - (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) - (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) - (-5 *1 (-1122))))) -(((*1 *1 *1) (-5 *1 (-1122))) - ((*1 *1 *2) - (-12 + (-2 (|:| |lm| (-793 *3)) (|:| |mm| (-793 *3)) (|:| |rm| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-821))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-4 *7 (-918 *4 *6 *5)) (-5 *2 - (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) - (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) - (-5 *1 (-1122))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-823) (-823) (-823))) (-5 *4 (-526)) (-5 *2 (-823)) - (-5 *1 (-614 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-823)) (-5 *1 (-815 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-97 *3)) - (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-823)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-823)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-823)))) - ((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1117 *3)) (-4 *3 (-1004))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1041 *3)) (-4 *3 (-909 *7 *6 *4)) (-4 *6 (-757)) (-4 *4 (-811)) - (-4 *7 (-533)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-526)))) - (-5 *1 (-565 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-533)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-526)))) (-5 *1 (-565 *5 *4 *6 *3)) - (-4 *3 (-909 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1115 *4 *2)) (-4 *2 (-13 (-406 *4) (-152) (-27) (-1145))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1044 *2)) (-4 *2 (-13 (-406 *4) (-152) (-27) (-1145))) - (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-1115 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) - (-5 *2 (-392 (-905 *5))) (-5 *1 (-1116 *5)) (-5 *3 (-905 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) - (-5 *2 (-3 (-392 (-905 *5)) (-299 *5))) (-5 *1 (-1116 *5)) - (-5 *3 (-392 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1044 (-905 *5))) (-5 *3 (-905 *5)) - (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-392 *3)) - (-5 *1 (-1116 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1044 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) - (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-3 *3 (-299 *5))) - (-5 *1 (-1116 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-145 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 (-2 (|:| -2462 (-735)) (|:| -4091 *4) (|:| |num| *4)))) - (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) - (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-111)) (-5 *1 (-421)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *3 (-607 (-1123))) - (-5 *4 (-111)) (-5 *1 (-421)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-571 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-163)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 (-607 (-607 *3)))) (-4 *3 (-1052)) (-5 *1 (-640 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-678 *2 *3 *4)) (-4 *2 (-811)) (-4 *3 (-1052)) - (-14 *4 - (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *3)) - (-2 (|:| -2461 *2) (|:| -2462 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1159)) (-4 *3 (-1159)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 *4)))) (-4 *4 (-1052)) - (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 *5)) (-4 *5 (-13 (-1052) (-33))) - (-5 *2 (-607 (-1088 *3 *5))) (-5 *1 (-1088 *3 *5)) - (-4 *3 (-13 (-1052) (-33))))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| |val| *4) (|:| -1636 *5)))) - (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) - (-5 *2 (-607 (-1088 *4 *5))) (-5 *1 (-1088 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1636 *4))) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1088 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-1052) (-33))) (-5 *1 (-1089 *2 *3)) - (-4 *2 (-13 (-1052) (-33))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-607 (-1088 *2 *3))) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33))) (-5 *1 (-1089 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-607 (-1089 *2 *3))) (-5 *1 (-1089 *2 *3)) - (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-593)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) - (-5 *1 (-1026 *3 *4 *2)) - (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1113 *2 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-593)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) - (-5 *1 (-1026 *3 *4 *2)) - (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-619 *7)) (|:| |n0| (-619 *7)))) + (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(((*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(((*1 *2 *1) (-12 (-4 *3 (-1159)) (-5 *2 (-607 *1)) (-4 *1 (-968 *3)))) + (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-1030 *3 *4 *2)) (-4 *2 (-821)))) ((*1 *2 *1) - (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) - (-4 *4 (-1004))))) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) (((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(((*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) -(((*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) - (-4 *4 (-1004)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) + (-12 (-5 *2 (-832)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 (-745)) + (-14 *4 (-745)) (-4 *5 (-169))))) +(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1139))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-5 *2 (-745)) (-5 *1 (-378 *4)) (-4 *4 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *2 (-23)) (-5 *1 (-623 *4 *2 *5)) + (-4 *4 (-1063)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-5 *2 (-745)) (-5 *1 (-793 *4)) (-4 *4 (-821))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-745)) (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) + (-4 *2 (-1194 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *2 (-735)) (-5 *1 (-1112 *4 *5)) - (-14 *4 (-878)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-735))) (-5 *3 (-735)) (-5 *1 (-1112 *4 *5)) - (-14 *4 (-878)) (-4 *5 (-1004)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-735))) (-5 *3 (-902 *5)) (-4 *5 (-1004)) - (-5 *1 (-1112 *4 *5)) (-14 *4 (-878))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-902 *4)) (-4 *4 (-1004)) (-5 *1 (-1112 *3 *4)) - (-14 *3 (-878))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-902 *5)) (-5 *3 (-735)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) - (-14 *4 (-878))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-735)) (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) - (-14 *4 (-878)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-735))) (-5 *3 (-735)) (-5 *1 (-1112 *4 *5)) - (-14 *4 (-878)) (-4 *5 (-1004)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-735))) (-5 *3 (-902 *5)) (-4 *5 (-1004)) - (-5 *1 (-1112 *4 *5)) (-14 *4 (-878))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-735))) (-5 *3 (-111)) (-5 *1 (-1112 *4 *5)) - (-14 *4 (-878)) (-4 *5 (-1004))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-735))) (-5 *3 (-162)) (-5 *1 (-1112 *4 *5)) - (-14 *4 (-878)) (-4 *5 (-1004))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) - (-4 *4 (-1004))))) -(((*1 *2 *1) - (-12 (-5 *2 (-902 *4)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) - (-4 *4 (-1004))))) -(((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(((*1 *2 *1) - (-12 (-5 *2 (-162)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) -(((*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) + (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-142))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-255))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-299) (-145))) + (-4 *2 (-918 *4 *6 *5)) (-5 *1 (-893 *4 *5 *6 *2)) + (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767))))) (((*1 *2 *1) - (-12 (-5 *2 (-607 (-902 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) - (-4 *4 (-1004))))) -(((*1 *1 *1) - (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-436)))) - ((*1 *1 *1) - (-12 (-4 *1 (-327 *2 *3 *4)) (-4 *2 (-1164)) (-4 *3 (-1181 *2)) - (-4 *4 (-1181 (-392 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-436)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) - (-4 *3 (-436)))) - ((*1 *1 *1) - (-12 (-4 *1 (-909 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-436)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-292)) (-4 *3 (-533)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-1181 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-917 *3)) (-5 *1 (-1111 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) (-4 *1 (-475))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) (-4 *1 (-475))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) (-4 *1 (-475))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *1 *1) (-4 *1 (-475))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *1 *1) (-4 *1 (-475))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *1 *1) (-4 *1 (-475))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-211))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *1 *1 *1) (-5 *1 (-363))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) - (-4 *2 (-1169 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) - (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-745))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118))))) +(((*1 *1) (-5 *1 (-1138)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-315 *2 *4)) (-4 *4 (-130)) + (-4 *2 (-1063)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-353 *2)) (-4 *2 (-1063)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *2 (-1063)) (-5 *1 (-623 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-793 *2)) (-4 *2 (-821))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *2 (-540)) (-5 *1 (-938 *2 *4)) + (-4 *4 (-1194 *2))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-112)) (-5 *1 (-537))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-13 (-299) (-145))) + (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) + (-5 *2 (-619 (-399 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)) + (-4 *7 (-918 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-211)))) + ((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-650)))) ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-37 (-392 (-526)))) - (-5 *2 (-2 (|:| -3804 (-1101 *4)) (|:| -3805 (-1101 *4)))) - (-5 *1 (-1109 *4)) (-5 *3 (-1101 *4))))) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-619 (-1131 *13))) (-5 *3 (-1131 *13)) + (-5 *4 (-619 *12)) (-5 *5 (-619 *10)) (-5 *6 (-619 *13)) + (-5 *7 (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| *13))))) + (-5 *8 (-619 (-745))) (-5 *9 (-1218 (-619 (-1131 *10)))) + (-4 *12 (-821)) (-4 *10 (-299)) (-4 *13 (-918 *10 *11 *12)) + (-4 *11 (-767)) (-5 *1 (-682 *11 *12 *10 *13))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-649 *2)) (-4 *2 (-1016)) (-4 *2 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-548))))) + (-5 *1 (-353 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-745))))) + (-5 *1 (-378 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| -1915 *3) (|:| -3352 (-548))))) + (-5 *1 (-410 *3)) (-4 *3 (-540)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-745))))) + (-5 *1 (-793 *3)) (-4 *3 (-821))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) + (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) + (|:| |args| (-619 (-832))))) + (-5 *1 (-1135))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) + (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) (((*1 *2 *3) - (-12 (-4 *4 (-37 (-392 (-526)))) - (-5 *2 (-2 (|:| -3960 (-1101 *4)) (|:| -3956 (-1101 *4)))) - (-5 *1 (-1109 *4)) (-5 *3 (-1101 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-526))) (-5 *5 (-1 (-1101 *4))) (-4 *4 (-348)) - (-4 *4 (-1004)) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-859 *4 *5)) (-4 *5 (-1172))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-299)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-378 *3)) (|:| |rm| (-378 *3)))) + (-5 *1 (-378 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3826 (-745)) (|:| -2233 (-745)))) + (-5 *1 (-745)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-537))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1101 *4)) (-4 *4 (-37 *3)) (-4 *4 (-1004)) - (-5 *3 (-392 (-526))) (-5 *1 (-1108 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)) - (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1101 *3))) (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) - (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004))))) + (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-399 (-921 *4))) (-5 *1 (-893 *4 *5 *6 *3)) + (-4 *3 (-918 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-663 (-399 (-921 *4)))) + (-5 *1 (-893 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-619 (-399 (-921 *4)))) + (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) (((*1 *2 *3) - (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)) - (-4 *4 (-1004))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-853 *2 *3)) (-4 *2 (-1181 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) + (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-1097))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-619 *11)) (-5 *5 (-619 (-1131 *9))) + (-5 *6 (-619 *9)) (-5 *7 (-619 *12)) (-5 *8 (-619 (-745))) + (-4 *11 (-821)) (-4 *9 (-299)) (-4 *12 (-918 *9 *10 *11)) + (-4 *10 (-767)) (-5 *2 (-619 (-1131 *12))) + (-5 *1 (-682 *10 *11 *9 *12)) (-5 *3 (-1131 *12))))) +(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-619 *4)) (-4 *4 (-355)) (-5 *2 (-1218 *4)) + (-5 *1 (-788 *4 *3)) (-4 *3 (-630 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) + (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) + ((*1 *1 *1) (-4 *1 (-533))) + ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-4 *1 (-964 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1169 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) + (-4 *2 (-1016))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) + (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-443)) (-4 *4 (-540)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3173 *4))) (-5 *1 (-938 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-537))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1101 *4)) (-5 *3 (-1 *4 (-526))) (-4 *4 (-1004)) - (-5 *1 (-1108 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) + (-12 (-5 *2 (-843)) (-5 *3 (-619 (-255))) (-5 *1 (-253))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-663 *11)) (-5 *4 (-619 (-399 (-921 *8)))) + (-5 *5 (-745)) (-5 *6 (-1118)) (-4 *8 (-13 (-299) (-145))) + (-4 *11 (-918 *8 *10 *9)) (-4 *9 (-13 (-821) (-593 (-1135)))) + (-4 *10 (-767)) + (-5 *2 + (-2 + (|:| |rgl| + (-619 + (-2 (|:| |eqzro| (-619 *11)) (|:| |neqzro| (-619 *11)) + (|:| |wcond| (-619 (-921 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *8)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *8)))))))))) + (|:| |rgsz| (-548)))) + (-5 *1 (-893 *8 *9 *10 *11)) (-5 *7 (-548))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-619 (-1131 *11))) (-5 *3 (-1131 *11)) + (-5 *4 (-619 *10)) (-5 *5 (-619 *8)) (-5 *6 (-619 (-745))) + (-5 *7 (-1218 (-619 (-1131 *8)))) (-4 *10 (-821)) + (-4 *8 (-299)) (-4 *11 (-918 *8 *9 *10)) (-4 *9 (-767)) + (-5 *1 (-682 *9 *10 *8 *11))))) +(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-355)) (-5 *2 (-663 *4)) + (-5 *1 (-788 *4 *5)) (-4 *5 (-630 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-355)) + (-5 *2 (-663 *5)) (-5 *1 (-788 *5 *6)) (-4 *6 (-630 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-443)) (-4 *4 (-540)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3173 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) + (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) - (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *1 (-768 *4 *2)) (-4 *2 (-13 (-29 *4) (-1145) (-919))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-1108 *4)) (-4 *4 (-1004)) - (-5 *3 (-526))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-1108 *4)) (-4 *4 (-1004)) - (-5 *3 (-526))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-27) (-422 *4))) + (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) + (-4 *7 (-1194 (-399 *6))) (-5 *1 (-536 *4 *5 *6 *7 *2)) + (-4 *2 (-334 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-843)) (-5 *3 (-619 (-255))) (-5 *1 (-253))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-299) (-145))) + (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) + (-5 *2 + (-619 + (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) + (|:| |wcond| (-619 (-921 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *4)))))))))) + (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-146 *2 *3 *4)) (-14 *2 (-878)) (-4 *3 (-348)) - (-14 *4 (-952 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) - ((*1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) - ((*1 *1 *1) (|partial| -4 *1 (-687))) ((*1 *1 *1) (|partial| -4 *1 (-691))) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *3 *5 *6 *7)) + (-4 *3 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)) + (-4 *7 (-1172)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-740 *5 *6 *7 *3 *4)) - (-4 *4 (-1024 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1021 *3 *2)) (-4 *3 (-13 (-809) (-348))) - (-4 *2 (-1181 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) + (-12 (-5 *4 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *3 *5 *6)) + (-4 *3 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381))))) +(((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) + (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-744 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-540)) + (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-744 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2877 (-619 *6))) + *7 *6)) + (-4 *6 (-355)) (-4 *7 (-630 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1218 *6) "failed")) + (|:| -2877 (-619 (-1218 *6))))) + (-5 *1 (-787 *6 *7)) (-5 *4 (-1218 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-540)) (-4 *2 (-443)) (-5 *1 (-938 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) + (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) + (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) + (-4 *5 (-365 *2)) (-4 *2 (-1172)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) - (-4 *2 (-533)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-533))) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-619 (-548))) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 (-548)) (-14 *5 (-745)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-745)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-745)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-745)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-745)))) + ((*1 *2 *1) + (-12 (-4 *2 (-169)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-548)) + (-14 *4 (-745)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *2 (-1063)) (-5 *1 (-206 *4 *2)) + (-14 *4 (-890)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-238 (-1118))) (-5 *1 (-207 *4)) + (-4 *4 + (-13 (-821) + (-10 -8 (-15 -3171 ((-1118) $ *3)) (-15 -2487 ((-1223) $)) + (-15 -3721 ((-1223) $))))))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)) (-4 *2 (-533)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-735))) + (-12 (-5 *2 (-958)) (-5 *1 (-207 *3)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) + (-15 -3721 ((-1223) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-745)) (-5 *1 (-238 *4)) (-4 *4 (-821)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-238 *3)) (-4 *3 (-821)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-533)) - (-5 *1 (-928 *3 *4)))) + (-12 (-5 *2 "unique") (-5 *1 (-238 *3)) (-4 *3 (-821)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-278 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-169)) (-5 *1 (-281 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1194 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-294)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) + (-4 *4 (-1194 (-399 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-409 *2)) (-4 *2 (-169)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1118)) (-5 *1 (-492)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-52)) (-5 *1 (-608)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *2 (-1004)) - (-4 *5 (-224 *4 *2)) (-4 *6 (-224 *3 *2)) (-4 *2 (-533)))) + (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-619 (-548))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-619 (-861 *4))) (-5 *1 (-861 *4)) + (-4 *4 (-1063)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) + (-4 *4 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-890)) (-4 *2 (-355)) + (-5 *1 (-962 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-979 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *2 (-1016)) + (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) + (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-890)) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) + (-5 *1 (-1039 *4 *5 *2)) + (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-890)) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) + (-5 *1 (-1040 *4 *5 *2)) + (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-548))) (-4 *1 (-1066 *3 *4 *5 *6 *7)) + (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) + (-4 *7 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) + (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) + ((*1 *1 *1 *1) (-4 *1 (-1104))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-399 *1)) (-4 *1 (-1194 *2)) (-4 *2 (-1016)) + (-4 *2 (-355)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-4 *4 (-1159)) (-5 *2 (-111)) - (-5 *1 (-1101 *4))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735)))) - (-5 *1 (-1101 *4)) (-4 *4 (-1159)) (-5 *3 (-735))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1101 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1159))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1101 *2)) (-4 *2 (-1159))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-820)))) - ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-820)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1106)) (-5 *4 (-823)) (-5 *2 (-1211)) (-5 *1 (-820)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1101 *4)) (-4 *4 (-1052)) - (-4 *4 (-1159))))) -(((*1 *2 *1) - (-12 (-5 *2 (-823)) (-5 *1 (-1101 *3)) (-4 *3 (-1052)) (-4 *3 (-1159))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1101 *3)) (-4 *3 (-1052)) (-4 *3 (-1159))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-1205 (-607 (-526)))) (-5 *1 (-463)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-526)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-517 *4 *2)) - (-4 *2 (-1198 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-526)) (-4 *4 (-13 (-348) (-353) (-584 *3))) (-4 *5 (-1181 *4)) - (-4 *6 (-689 *4 *5)) (-5 *1 (-521 *4 *5 *6 *2)) (-4 *2 (-1198 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-526)) (-4 *4 (-13 (-348) (-353) (-584 *3))) - (-5 *1 (-522 *4 *2)) (-4 *2 (-1198 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-13 (-533) (-141))) - (-5 *1 (-1100 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) - (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) - (-4 *2 (-1198 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) - (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) - (-4 *2 (-1198 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) - (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) - (-4 *2 (-1198 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) - ((*1 *1) (-4 *1 (-1099)))) -(((*1 *1 *1) (|partial| -4 *1 (-1099)))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1095 *3))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-607 (-984 *5 *6 *7 *3))) (-5 *1 (-984 *5 *6 *7 *3)) - (-4 *3 (-1018 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-607 *6)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *2 (-1018 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-607 (-1094 *5 *6 *7 *3))) (-5 *1 (-1094 *5 *6 *7 *3)) - (-4 *3 (-1018 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) - (-5 *1 (-984 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) - (-5 *1 (-1094 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *8 (-1018 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-607 *8)) (|:| |towers| (-607 (-984 *5 *6 *7 *8))))) - (-5 *1 (-984 *5 *6 *7 *8)) (-5 *3 (-607 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *8 (-1018 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-607 *8)) (|:| |towers| (-607 (-1094 *5 *6 *7 *8))))) - (-5 *1 (-1094 *5 *6 *7 *8)) (-5 *3 (-607 *8))))) + (-12 (-5 *2 (-399 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) + (-4 *3 (-540)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) + (-4 *6 (-13 (-27) (-422 *5))) + (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-4 *8 (-1194 (-399 *7))) + (-5 *2 (-566 *3)) (-5 *1 (-536 *5 *6 *7 *8 *3)) + (-4 *3 (-334 *6 *7 *8))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *4 (-735)) - (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-1211)) - (-5 *1 (-1022 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *4 (-735)) - (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-1211)) - (-5 *1 (-1093 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-607 *11)) - (|:| |todo| (-607 (-2 (|:| |val| *3) (|:| -1636 *11)))))) - (-5 *6 (-735)) (-5 *2 (-607 (-2 (|:| |val| (-607 *10)) (|:| -1636 *11)))) - (-5 *3 (-607 *10)) (-5 *4 (-607 *11)) (-4 *10 (-1018 *7 *8 *9)) - (-4 *11 (-1024 *7 *8 *9 *10)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) - (-5 *1 (-1022 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *5 - (-2 (|:| |done| (-607 *11)) - (|:| |todo| (-607 (-2 (|:| |val| *3) (|:| -1636 *11)))))) - (-5 *6 (-735)) (-5 *2 (-607 (-2 (|:| |val| (-607 *10)) (|:| -1636 *11)))) - (-5 *3 (-607 *10)) (-5 *4 (-607 *11)) (-4 *10 (-1018 *7 *8 *9)) - (-4 *11 (-1060 *7 *8 *9 *10)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) - (-5 *1 (-1093 *7 *8 *9 *10 *11))))) -(((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2386 (-398 *4 (-392 *4) *5 *6)) (|:| |principalPart| *6))))) + (-5 *3 + (-619 + (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) + (|:| |wcond| (-619 (-921 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) + (-5 *4 (-1118)) (-4 *5 (-13 (-299) (-145))) (-4 *8 (-918 *5 *7 *6)) + (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-548)) + (-5 *1 (-893 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-435 *4 *3)) + (-4 *3 (-1194 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *4 *5 *6)) + (-4 *4 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-399 (-921 (-548))))) (-5 *4 (-619 (-1135))) + (-5 *2 (-619 (-619 *5))) (-5 *1 (-372 *5)) + (-4 *5 (-13 (-819) (-355))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3392 (-392 *6)) (|:| |special| (-392 *6)))) - (-5 *1 (-692 *5 *6)) (-5 *3 (-392 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-855 *3 *4)) - (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-735)) (-4 *5 (-348)) - (-5 *2 (-2 (|:| -3435 *3) (|:| -3434 *3))) (-5 *1 (-855 *3 *5)) - (-4 *3 (-1181 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) - (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) - (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) - (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) - (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1093 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-735)) (-5 *6 (-111)) (-4 *7 (-436)) (-4 *8 (-757)) - (-4 *9 (-811)) (-4 *3 (-1018 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1022 *7 *8 *9 *3 *4)) (-4 *4 (-1024 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *3 (-1018 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) + (-12 (-5 *3 (-399 (-921 (-548)))) (-5 *2 (-619 *4)) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-819) (-355)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1138)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-735)) (-5 *6 (-111)) (-4 *7 (-436)) (-4 *8 (-757)) - (-4 *9 (-811)) (-4 *3 (-1018 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1093 *7 *8 *9 *3 *4)) (-4 *4 (-1060 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *3 (-1018 *6 *7 *8)) + (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) + (-5 *1 (-1138)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) + (-5 *1 (-1138))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-355)) (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1060 *6 *7 *8 *3)))) + (-2 (|:| A (-663 *5)) + (|:| |eqs| + (-619 + (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5)) (|:| -2383 *6) + (|:| |rh| *5)))))) + (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) + (-4 *6 (-630 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *3 (-1018 *6 *7 *8)) + (-12 (-4 *5 (-355)) (-4 *6 (-630 *5)) + (-5 *2 (-2 (|:| -4035 (-663 *6)) (|:| |vec| (-1218 *5)))) + (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-619 (-745))) (-5 *1 (-938 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) + (-4 *6 (-13 (-27) (-422 *5))) + (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-4 *8 (-1194 (-399 *7))) + (-5 *2 (-566 *3)) (-5 *1 (-536 *5 *6 *7 *8 *3)) + (-4 *3 (-334 *6 *7 *8))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-255))))) +(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) + (-4 *7 (-767)) (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) + (-619 + (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) + (|:| |wcond| (-619 (-921 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) + (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-12 (-5 *3 (-663 *8)) (-5 *4 (-619 (-1135))) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) + (-4 *7 (-767)) (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *3 (-1018 *6 *7 *8)) + (-619 + (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) + (|:| |wcond| (-619 (-921 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) + (-5 *1 (-893 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) + (-4 *6 (-767)) (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1060 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-619 + (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) + (|:| |wcond| (-619 (-921 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *4)))))))))) + (-5 *1 (-893 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) + (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) + (-4 *8 (-767)) (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *3 (-1018 *6 *7 *8)) + (-619 + (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) + (|:| |wcond| (-619 (-921 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *6)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *6)))))))))) + (-5 *1 (-893 *6 *7 *8 *9)) (-5 *4 (-619 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) + (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) + (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) + (-619 + (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) + (|:| |wcond| (-619 (-921 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *6)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *6)))))))))) + (-5 *1 (-893 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-12 (-5 *3 (-663 *8)) (-5 *4 (-890)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) + (-4 *7 (-767)) (-5 *2 - (-2 (|:| |done| (-607 *4)) - (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3))))) + (-619 + (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) + (|:| |wcond| (-619 (-921 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) + (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) + (-5 *1 (-893 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 *9)) (-5 *5 (-1118)) + (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) + (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) + (-5 *1 (-893 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-1118)) + (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) + (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) + (-5 *1 (-893 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-5 *4 (-1118)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) + (-4 *7 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 *10)) (-5 *5 (-890)) + (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-299) (-145))) + (-4 *8 (-13 (-821) (-593 (-1135)))) (-4 *9 (-767)) (-5 *2 (-548)) + (-5 *1 (-893 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) + (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-299) (-145))) + (-4 *8 (-13 (-821) (-593 (-1135)))) (-4 *9 (-767)) (-5 *2 (-548)) + (-5 *1 (-893 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *4 (-890)) (-5 *5 (-1118)) + (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) + (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) + (-5 *1 (-893 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-459)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1220))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) - (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-735)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) - (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-735)) (-5 *1 (-1093 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-218) (-218))) (-5 *1 (-678 *3)) + (-4 *3 (-593 (-524))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-218) (-218) (-218))) + (-5 *1 (-678 *3)) (-4 *3 (-593 (-524)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) - (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-735)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) - (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-735)) (-5 *1 (-1093 *5 *6 *7 *8 *9))))) -(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-138))) - ((*1 *1 *1) (-4 *1 (-1092)))) -(((*1 *1 *1) (-4 *1 (-1092)))) -(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-138))) - ((*1 *1 *1) (-4 *1 (-1092)))) -(((*1 *1 *1) (-4 *1 (-1092)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-111))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-111))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-526)) (-5 *2 (-111))))) + (-12 (-5 *3 (-399 (-921 (-166 (-548))))) (-5 *2 (-619 (-166 *4))) + (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-399 (-921 (-166 (-548)))))) + (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-166 *5)))) + (-5 *1 (-370 *5)) (-4 *5 (-13 (-355) (-819)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) + (-5 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) + (-5 *1 (-1138)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1135)) + (-5 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) + (-5 *1 (-1138))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *6)) (-4 *5 (-1052)) (-4 *6 (-1159)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-609 *5 *6)))) + (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *6 (-1194 *5)) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-4 *5 (-1052)) (-4 *2 (-1159)) - (-5 *1 (-609 *5 *2)))) + (-12 (-5 *3 (-627 (-399 *7))) (-5 *4 (-1 (-619 *6) *7)) + (-5 *5 (-1 (-410 *7) *7)) + (-4 *6 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *7 (-1194 *6)) (-5 *2 (-619 (-399 *7))) (-5 *1 (-786 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *6 (-1194 *5)) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 *5)) (-4 *6 (-1052)) (-4 *5 (-1159)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-609 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-4 *5 (-1052)) (-4 *2 (-1159)) - (-5 *1 (-609 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-607 *5)) (-5 *4 (-607 *6)) (-4 *5 (-1052)) - (-4 *6 (-1159)) (-5 *1 (-609 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1052)) - (-4 *2 (-1159)) (-5 *1 (-609 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-138)) (-5 *2 (-735))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-138)) (-5 *2 (-111))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1172 (-526)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-735)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-526)) (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-526)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-357 *4)) (-4 *4 (-1159)) - (-5 *2 (-526)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-526)) (-5 *3 (-135)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) - (-5 *1 (-120 *3)) (-4 *3 (-811)))) - ((*1 *2 *2) - (-12 (-5 *2 (-556 *4)) (-4 *4 (-13 (-29 *3) (-1145))) - (-4 *3 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) - (-5 *1 (-558 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-556 (-392 (-905 *3)))) - (-4 *3 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *1 (-561 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) - (-5 *2 (-2 (|:| -3392 *3) (|:| |special| *3))) (-5 *1 (-692 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) - (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1205 (-1205 *5))) (-4 *5 (-348)) (-4 *5 (-1004)) - (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-607 *1)) (-4 *1 (-1092)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-607 *1)) (-4 *1 (-1092))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) - (-4 *5 (-163)))) - ((*1 *1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) - ((*1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1004)) (-4 *1 (-650 *3 *2 *4)) (-4 *2 (-357 *3)) - (-4 *4 (-357 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1090 *2 *3)) (-14 *2 (-735)) (-4 *3 (-1004))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *4)) (-4 *4 (-1004)) (-5 *1 (-1090 *3 *4)) - (-14 *3 (-735))))) + (-12 (-5 *3 (-628 *7 (-399 *7))) (-5 *4 (-1 (-619 *6) *7)) + (-5 *5 (-1 (-410 *7) *7)) + (-4 *6 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *7 (-1194 *6)) (-5 *2 (-619 (-399 *7))) (-5 *1 (-786 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-399 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 (-619 (-399 *5))) (-5 *1 (-786 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-1 (-410 *6) *6)) + (-4 *6 (-1194 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-628 *5 (-399 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 (-619 (-399 *5))) (-5 *1 (-786 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-1 (-410 *6) *6)) + (-4 *6 (-1194 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-938 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-591 *3)) (-5 *5 (-1 (-1131 *3) (-1131 *3))) + (-4 *3 (-13 (-27) (-422 *6))) (-4 *6 (-13 (-821) (-540))) + (-5 *2 (-566 *3)) (-5 *1 (-535 *6 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253))))) +(((*1 *1) (-5 *1 (-1220)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-355)) (-4 *2 (-1194 *4)) + (-5 *1 (-891 *4 *2))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33)))))) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *4 *5 *6 *7)) + (-4 *4 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)) + (-4 *7 (-1172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-399 (-921 (-166 (-548)))))) + (-5 *2 (-619 (-619 (-286 (-921 (-166 *4)))))) (-5 *1 (-370 *4)) + (-4 *4 (-13 (-355) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-286 (-399 (-921 (-166 (-548))))))) + (-5 *2 (-619 (-619 (-286 (-921 (-166 *4)))))) (-5 *1 (-370 *4)) + (-4 *4 (-13 (-355) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-921 (-166 (-548))))) + (-5 *2 (-619 (-286 (-921 (-166 *4))))) (-5 *1 (-370 *4)) + (-4 *4 (-13 (-355) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-286 (-399 (-921 (-166 (-548)))))) + (-5 *2 (-619 (-286 (-921 (-166 *4))))) (-5 *1 (-370 *4)) + (-4 *4 (-13 (-355) (-819)))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) + (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2383 *3)))) + (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) + (-4 *7 (-630 (-399 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *6 (-1194 *5)) + (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2383 (-628 *6 (-399 *6)))))) + (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-399 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1566 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-896)) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) + (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-896)) (-5 *4 (-399 (-548))) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) + (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) + (-5 *1 (-151)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) + (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) + (-5 *1 (-151)) (-5 *3 (-619 (-912 (-218)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) + (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) + (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 (-218))))))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-619 (-255))) (-5 *1 (-1220)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-1118)) (-5 *1 (-1220)))) + ((*1 *1 *1) (-5 *1 (-1220)))) +(((*1 *2 *3) + (-12 (-4 *1 (-889)) (-5 *2 (-2 (|:| -1489 (-619 *1)) (|:| -4160 *1))) + (-5 *3 (-619 *1))))) (((*1 *1 *1) - (-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 *4)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1089 *3 *4)) - (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33)))))) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-548)) (-5 *1 (-371))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1088 *4 *5)) (-4 *4 (-13 (-1052) (-33))) - (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1089 *4 *5))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1088 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) - (-4 *5 (-13 (-1052) (-33))) (-4 *6 (-13 (-1052) (-33))) (-5 *2 (-111)) - (-5 *1 (-1089 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)) - (-4 *2 (-1052)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *3)) - (-4 *3 (-1159)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-526)) (-4 *4 (-1052)) - (-5 *1 (-701 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-701 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-221 *3)) - (-4 *3 (-1052)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-221 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-580 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-526)) (-4 *4 (-1052)) - (-5 *1 (-701 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-701 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-1088 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) - (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) - (-5 *1 (-1089 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-607 (-1088 *3 *4))) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-111)) - (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33)))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-819)))) - ((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-924)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-948)))) - ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1052) (-33))) (-5 *1 (-1088 *2 *3)) - (-4 *3 (-13 (-1052) (-33)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-111)) - (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33)))))) -(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-112))) - ((*1 *1 *1) (-5 *1 (-162))) ((*1 *1 *1) (-4 *1 (-525))) - ((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1088 *3 *2)) (-4 *3 (-13 (-1052) (-33))) - (-4 *2 (-13 (-1052) (-33)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) - (-4 *4 (-13 (-1052) (-33)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) - (-4 *3 (-13 (-1052) (-33)))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) - (-4 *5 (-13 (-1052) (-33))) (-4 *6 (-13 (-1052) (-33))) (-5 *2 (-111)) - (-5 *1 (-1088 *5 *6))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-111)) - (-5 *1 (-1088 *4 *5)) (-4 *4 (-13 (-1052) (-33)))))) -(((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1) (-4 *1 (-1087)))) -(((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1) (-4 *1 (-1087)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1087)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1087)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1087)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1087)))) -(((*1 *1 *1) (-5 *1 (-211))) ((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1) (-4 *1 (-1087))) ((*1 *1 *1 *1) (-4 *1 (-1087)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-211)) (-5 *3 (-735)) (-5 *1 (-212)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-159 (-211))) (-5 *3 (-735)) (-5 *1 (-212)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1087)))) -(((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1) (-4 *1 (-1087)))) -(((*1 *1 *1 *1) (-5 *1 (-211))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) - ((*1 *1 *1 *1) (-4 *1 (-1087)))) -(((*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) - ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) - ((*1 *1 *1) (-4 *1 (-809))) - ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) - ((*1 *1 *1) (-4 *1 (-1013))) ((*1 *1 *1) (-4 *1 (-1087)))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-61 *3)) (-14 *3 (-1123)))) - ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-67 *3)) (-14 *3 (-1123)))) - ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-70 *3)) (-14 *3 (-1123)))) - ((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1211)) (-5 *1 (-380)))) - ((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1211)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1106)) (-5 *4 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) - ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-607 (-1128))) (-5 *1 (-1085))))) -(((*1 *1 *2) (-12 (-5 *2 (-1112 3 *3)) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) - ((*1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004))))) -(((*1 *2) - (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) - (-5 *2 (-735)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-735))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-735))))) -(((*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-607 *1)) (-4 *1 (-1084 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-607 *1)) (-4 *1 (-1084 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-607 (-902 *4))) (-4 *1 (-1084 *4)) (-4 *4 (-1004)) - (-5 *2 (-735))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-902 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-607 (-607 (-902 *4)))) (-5 *3 (-111)) (-4 *4 (-1004)) - (-4 *1 (-1084 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 (-607 (-902 *3)))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-607 (-607 (-607 *4)))) (-5 *3 (-111)) (-4 *1 (-1084 *4)) - (-4 *4 (-1004)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-607 (-607 (-902 *4)))) (-5 *3 (-111)) (-4 *1 (-1084 *4)) - (-4 *4 (-1004)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-607 (-607 (-607 *5)))) (-5 *3 (-607 (-162))) (-5 *4 (-162)) - (-4 *1 (-1084 *5)) (-4 *5 (-1004)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-607 (-607 (-902 *5)))) (-5 *3 (-607 (-162))) (-5 *4 (-162)) - (-4 *1 (-1084 *5)) (-4 *5 (-1004))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-607 (-735)))))))) + (-12 (-5 *3 (-1135)) + (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *1 (-1138))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-619 *7) *7 (-1131 *7))) (-5 *5 (-1 (-410 *7) *7)) + (-4 *7 (-1194 *6)) (-4 *6 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-5 *2 (-619 (-2 (|:| |frac| (-399 *7)) (|:| -2383 *3)))) + (-5 *1 (-783 *6 *7 *3 *8)) (-4 *3 (-630 *7)) + (-4 *8 (-630 (-399 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 + (-619 (-2 (|:| |frac| (-399 *6)) (|:| -2383 (-628 *6 (-399 *6)))))) + (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-399 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1566 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-533)))) +(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255))))) (((*1 *2 *1) - (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) - (-5 *2 (-607 (-607 (-607 (-902 *3)))))))) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-1124 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1220))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-889))))) (((*1 *2 *1) - (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-162))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-162)))))) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-299)) (-4 *3 (-169)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) + (-5 *1 (-662 *3 *4 *5 *6)) (-4 *6 (-661 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-674 *3)) + (-4 *3 (-299))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-218)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-218)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-371)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-371))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1138)) (-5 *3 (-1135))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-355)) (-4 *7 (-1194 *5)) (-4 *4 (-699 *5 *7)) + (-5 *2 (-2 (|:| -4035 (-663 *6)) (|:| |vec| (-1218 *5)))) + (-5 *1 (-785 *5 *6 *7 *4 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3587 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-533)))) +(((*1 *1) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-524))) ((*1 *1) (-4 *1 (-697))) + ((*1 *1) (-4 *1 (-701))) + ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) + ((*1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821))))) +(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-745)) (-5 *3 (-912 *4)) (-4 *1 (-1096 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-912 (-218))) (-5 *2 (-1223)) + (-5 *1 (-1220))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-443)) + (-5 *1 (-887 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) - (-5 *2 - (-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) - (|:| |constructs| (-735))))))) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3))))) +(((*1 *1 *1) (-5 *1 (-218))) ((*1 *1 *1) (-5 *1 (-371))) + ((*1 *1) (-5 *1 (-371)))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1139)) (-5 *1 (-1138))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) + (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-628 *2 (-399 *2))) (-4 *2 (-1194 *4)) + (-5 *1 (-784 *4 *2)) + (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-607 (-2 (|:| -4051 (-1117 *6)) (|:| -2462 (-526))))) - (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) - (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004))))) + (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3587 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-585))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-524))) + ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-533)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-218) (-218) (-218) (-218))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218) (-218))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-255))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1220))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-1082 *4 *2)) - (-4 *2 (-13 (-574 (-526) *4) (-10 -7 (-6 -4310) (-6 -4311)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-811)) (-4 *3 (-1159)) (-5 *1 (-1082 *3 *2)) - (-4 *2 (-13 (-574 (-526) *3) (-10 -7 (-6 -4310) (-6 -4311))))))) + (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-443)) + (-5 *1 (-887 *4))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-1082 *4 *2)) - (-4 *2 (-13 (-574 (-526) *4) (-10 -7 (-6 -4310) (-6 -4311)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-811)) (-4 *3 (-1159)) (-5 *1 (-1082 *3 *2)) - (-4 *2 (-13 (-574 (-526) *3) (-10 -7 (-6 -4310) (-6 -4311))))))) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3))))) +(((*1 *1) (-5 *1 (-218))) ((*1 *1) (-5 *1 (-371)))) (((*1 *2 *3) - (-12 (-5 *3 (-1205 *4)) (-4 *4 (-1004)) (-4 *2 (-1181 *4)) - (-5 *1 (-428 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-392 (-1117 (-299 *5)))) (-5 *3 (-1205 (-299 *5))) - (-5 *4 (-526)) (-4 *5 (-13 (-533) (-811))) (-5 *1 (-1080 *5))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-392 (-1117 (-299 *3)))) (-4 *3 (-13 (-533) (-811))) - (-5 *1 (-1080 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-278 (-392 (-905 *5)))) (-5 *4 (-1123)) - (-4 *5 (-13 (-292) (-811) (-141))) - (-5 *2 (-1113 (-607 (-299 *5)) (-607 (-278 (-299 *5))))) - (-5 *1 (-1079 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) - (-4 *5 (-13 (-292) (-811) (-141))) - (-5 *2 (-1113 (-607 (-299 *5)) (-607 (-278 (-299 *5))))) - (-5 *1 (-1079 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) - (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-299 *5))) - (-5 *1 (-1079 *5)))) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)) + (-5 *1 (-1136 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) - (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-299 *5)))) - (-5 *1 (-1079 *5))))) + (-12 (-5 *4 (-890)) (-5 *2 (-1218 *3)) (-5 *1 (-1136 *3)) + (-4 *3 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) - (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) - (-5 *1 (-1079 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-13 (-292) (-811) (-141))) - (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1079 *4)))) + (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-399 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-5 *1 (-784 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-278 (-392 (-905 *5)))) (-5 *4 (-1123)) - (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) - (-5 *1 (-1079 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-278 (-392 (-905 *4)))) (-4 *4 (-13 (-292) (-811) (-141))) - (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1079 *4)))) + (-12 (-5 *3 (-627 (-399 *6))) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 (-2 (|:| -2877 (-619 (-399 *6))) (|:| -4035 (-663 *5)))) + (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-399 *6))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) - (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) - (-5 *1 (-1079 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-392 (-905 *4)))) (-4 *4 (-13 (-292) (-811) (-141))) - (-5 *2 (-607 (-607 (-278 (-299 *4))))) (-5 *1 (-1079 *4)))) + (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-399 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-5 *1 (-784 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-278 (-392 (-905 *5))))) (-5 *4 (-607 (-1123))) - (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) - (-5 *1 (-1079 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-278 (-392 (-905 *4))))) - (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *4))))) - (-5 *1 (-1079 *4))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3))))) + (-12 (-5 *3 (-628 *6 (-399 *6))) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-5 *2 (-2 (|:| -2877 (-619 (-399 *6))) (|:| -4035 (-663 *5)))) + (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-399 *6)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3587 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-533)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2085)) (-5 *2 (-112)) (-5 *1 (-665 *4)) + (-4 *4 (-592 (-832))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-592 (-832))) (-5 *2 (-112)) + (-5 *1 (-665 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)) (-5 *1 (-1140)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)) (-5 *1 (-1140)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)) (-5 *1 (-1140)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-548))) (-5 *2 (-112)) (-5 *1 (-1140))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-399 (-548))))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3))))) + (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-234)) (-5 *3 (-1118)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-234)))) + ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1) + (-12 (-4 *1 (-396)) (-3958 (|has| *1 (-6 -4318))) + (-3958 (|has| *1 (-6 -4310))))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (-4 *1 (-821))) + ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) + ((*1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3))))) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1058 *3)) (-4 *3 (-918 *7 *6 *4)) (-4 *6 (-767)) + (-4 *4 (-821)) (-4 *7 (-540)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-548)))) + (-5 *1 (-574 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-540)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-548)))) + (-5 *1 (-574 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1127 *4 *2)) (-4 *2 (-13 (-422 *4) (-157) (-27) (-1157))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-422 *4) (-157) (-27) (-1157))) + (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1127 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) + (-5 *2 (-399 (-921 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-921 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) + (-5 *2 (-3 (-399 (-921 *5)) (-308 *5))) (-5 *1 (-1128 *5)) + (-5 *3 (-399 (-921 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1056 (-921 *5))) (-5 *3 (-921 *5)) + (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-399 *3)) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1056 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) + (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-3 *3 (-308 *5))) + (-5 *1 (-1128 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1135))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *3 (-1194 *4)) (-5 *1 (-783 *4 *3 *2 *5)) (-4 *2 (-630 *3)) + (-4 *5 (-630 (-399 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-399 *5)) + (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) + (-5 *1 (-783 *4 *5 *2 *6)) (-4 *2 (-630 *5)) (-4 *6 (-630 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-533)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-619 *3)) (-4 *3 (-1172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *2 (-112)) + (-5 *1 (-255))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) + ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) + (-5 *2 (-619 (-2 (|:| -2325 *5) (|:| -2383 *3)))) + (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) + (-4 *7 (-630 (-399 *6)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-533)))) +(((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-249))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) + (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) + (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) + (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) + (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) + (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) + (-5 *1 (-255)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-548)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) + (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) + (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) + (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) + (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) + (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) + (-5 *1 (-1220)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3))))) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) + ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-12 (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-203)) + (-5 *3 (-1135)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-308 (-218))) (-5 *4 (-745)) (-5 *2 (-619 (-1135))) + (-5 *1 (-259)))) + ((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 *3)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-619 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *5 (-1194 *4)) + (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2383 *5)))) + (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-630 *5)) + (-4 *6 (-630 (-399 *5)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-540)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-533)))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-249))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-218) (-218) (-218))) + (-5 *4 (-1 (-218) (-218) (-218) (-218))) + (-5 *2 (-1 (-912 (-218)) (-218) (-218))) (-5 *1 (-671))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1194 *4)) (-5 *1 (-783 *4 *2 *3 *5)) + (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) + (-4 *5 (-630 (-399 *2)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 - (-2 (|:| |solns| (-607 *5)) - (|:| |maps| (-607 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1078 *3 *5)) (-4 *3 (-1181 *5))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-548) "failed") *5)) (-4 *5 (-1016)) + (-5 *2 (-548)) (-5 *1 (-531 *5 *3)) (-4 *3 (-1194 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-548) "failed") *4)) (-4 *4 (-1016)) + (-5 *2 (-548)) (-5 *1 (-531 *4 *3)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-548) "failed") *4)) (-4 *4 (-1016)) + (-5 *2 (-548)) (-5 *1 (-531 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-249))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) + (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) + (-5 *1 (-671))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-348)) (-4 *5 (-13 (-357 *4) (-10 -7 (-6 -4311)))) - (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311)))) (-5 *1 (-632 *4 *5 *2 *3)) - (-4 *3 (-650 *4 *5 *2)))) - ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1205 *4)) (-5 *3 (-653 *4)) (-4 *4 (-348)) - (-5 *1 (-633 *4)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-607 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-348)) - (-5 *1 (-778 *2 *3)) (-4 *3 (-623 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) - (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) + (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328))))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-655)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1080))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-540)) (-5 *1 (-938 *4 *2)) + (-4 *2 (-1194 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-1101 *7))) (-4 *6 (-811)) - (-4 *7 (-909 *5 (-512 *6) *6)) (-4 *5 (-1004)) (-5 *2 (-1 (-1101 *7) *7)) - (-5 *1 (-1076 *5 *6 *7))))) + (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *3 *5)) + (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) + (-4 *5 (-630 (-399 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *5 *3)) + (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-630 *2)) + (-4 *3 (-630 (-399 *2)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-299)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-299)) (-5 *1 (-451 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-299)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-745))) + (-5 *1 (-527 *3 *2 *4 *5)) (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-166 (-218)) (-166 (-218)))) (-5 *4 (-1058 (-218))) + (-5 *2 (-1220)) (-5 *1 (-249))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) + (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -2233 *1))) + (-4 *1 (-1030 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -2233 *1))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-218) (-218) (-218))) + (-5 *4 (-3 (-1 (-218) (-218) (-218) (-218)) "undefined")) + (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) + (-5 *1 (-671))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) + (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328))))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) + (-4 *4 (-169)))) + ((*1 *1) (-4 *1 (-701))) ((*1 *1) (-5 *1 (-1135)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2278 *5) (|:| -2155 *5)))) + (-5 *1 (-781 *4 *5 *3 *6)) (-4 *3 (-630 *5)) + (-4 *6 (-630 (-399 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2278 *4) (|:| -2155 *4)))) + (-5 *1 (-781 *5 *4 *3 *6)) (-4 *3 (-630 *4)) + (-4 *6 (-630 (-399 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2278 *5) (|:| -2155 *5)))) + (-5 *1 (-781 *4 *5 *6 *3)) (-4 *6 (-630 *5)) + (-4 *3 (-630 (-399 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2278 *4) (|:| -2155 *4)))) + (-5 *1 (-781 *5 *4 *6 *3)) (-4 *6 (-630 *4)) + (-4 *3 (-630 (-399 *4)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-540)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-527 *4 *2 *5 *6)) + (-4 *4 (-299)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-166 (-218)) (-166 (-218)))) (-5 *4 (-1058 (-218))) + (-5 *5 (-112)) (-5 *2 (-1220)) (-5 *1 (-249))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1489 *3) (|:| |gap| (-745)) (|:| -3826 (-756 *3)) + (|:| -2233 (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) + (-5 *2 + (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -3826 *1) + (|:| -2233 *1))) + (-4 *1 (-1030 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 + (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -3826 *1) + (|:| -2233 *1))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-218) (-218) (-218))) + (-5 *4 (-3 (-1 (-218) (-218) (-218) (-218)) "undefined")) + (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) + (-5 *1 (-671)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-218))) + (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-1 (-912 (-218)) (-218) (-218))) + (-5 *4 (-1058 (-218))) (-5 *5 (-619 (-255))) (-5 *1 (-671))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) + (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328))))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-832) (-832) (-832))) (-5 *4 (-548)) (-5 *2 (-832)) + (-5 *1 (-623 *5 *6 *7)) (-4 *5 (-1063)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-832)) (-5 *1 (-825 *3 *4 *5)) (-4 *3 (-1016)) + (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-832)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-832)))) + ((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-832)) (-5 *1 (-1131 *3)) (-4 *3 (-1016))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-292)) (-4 *6 (-357 *5)) (-4 *4 (-357 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) - (-5 *1 (-1074 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4))))) + (|partial| -12 (-5 *4 (-399 *2)) (-4 *2 (-1194 *5)) + (-5 *1 (-781 *5 *2 *3 *6)) + (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *3 (-630 *2)) (-4 *6 (-630 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-399 *2))) (-4 *2 (-1194 *5)) + (-5 *1 (-781 *5 *2 *3 *6)) + (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) + (-4 *6 (-630 (-399 *2)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-540)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-292)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1074 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-292)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-1074 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-527 *4 *2 *5 *6)) + (-4 *4 (-299)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-912 (-218)) (-218) (-218))) + (-5 *3 (-1 (-218) (-218) (-218) (-218))) (-5 *1 (-247))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) (((*1 *2 *3) - (-12 (-4 *4 (-292)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1074 *4 *5 *6 *3)) - (-4 *3 (-650 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) - ((*1 *2 *2) - (-12 (-4 *3 (-292)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-1074 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-735)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1004)) (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) - (-4 *5 (-224 *3 *2))))) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) + (-4 *2 (-1194 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-607 *1)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1004)) (-5 *1 (-653 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 *4)) (-4 *4 (-1004)) (-4 *1 (-1073 *3 *4 *5 *6)) - (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *2 *5)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) - (-4 *2 (-224 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-878)) (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-348)))) - ((*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1205 *4)) (-5 *3 (-878)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) + (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-4 *1 (-366 *3 *4)) + (-4 *4 (-169))))) +(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) - (-4 *2 (-1004))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-334 *5 *6 *7)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-5 *1 (-780 *5 *6 *7 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-540)) (-5 *1 (-938 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1135))) (-4 *6 (-355)) + (-5 *2 (-619 (-286 (-921 *6)))) (-5 *1 (-526 *5 *6 *7)) + (-4 *5 (-443)) (-4 *7 (-13 (-355) (-819)))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-215 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-246 *3)))) + ((*1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-756 *3)) (|:| |polden| *3) (|:| -4023 (-745)))) + (-5 *1 (-756 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4023 (-745)))) + (-4 *1 (-1030 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *4 (-1181 *2)) - (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) - (-5 *1 (-481 *2 *4 *5)) (-4 *5 (-395 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) - (-4 *2 (-1004))))) + (-12 (-5 *3 (-619 (-2 (|:| |deg| (-745)) (|:| -2168 *5)))) + (-4 *5 (-1194 *4)) (-4 *4 (-341)) (-5 *2 (-619 *5)) + (-5 *1 (-209 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-2 (|:| -1915 *5) (|:| -2512 (-548))))) + (-5 *4 (-548)) (-4 *5 (-1194 *4)) (-5 *2 (-619 *5)) + (-5 *1 (-670 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-821)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1172)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-348)) - (-5 *1 (-503 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) - (|has| *2 (-6 (-4312 "*"))) (-4 *2 (-1004)))) - ((*1 *2 *3) - (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) - (-5 *1 (-652 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) - (|has| *2 (-6 (-4312 "*"))) (-4 *2 (-1004))))) + (-12 (-4 *4 (-821)) + (-5 *2 + (-2 (|:| |f1| (-619 *4)) (|:| |f2| (-619 (-619 (-619 *4)))) + (|:| |f3| (-619 (-619 *4))) (|:| |f4| (-619 (-619 (-619 *4)))))) + (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 (-619 *4))))))) (((*1 *2 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) - (|has| *2 (-6 (-4312 "*"))) (-4 *2 (-1004)))) - ((*1 *2 *3) - (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) - (-5 *1 (-652 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) - (|has| *2 (-6 (-4312 "*"))) (-4 *2 (-1004))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1159)) (-5 *2 (-735))))) -(((*1 *1 *1 *1) (-4 *1 (-627))) ((*1 *1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1 *1 *1) (-4 *1 (-627))) ((*1 *1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1 *1) (-4 *1 (-627))) ((*1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1) - (-12 (-4 *1 (-389)) (-3636 (|has| *1 (-6 -4301))) - (-3636 (|has| *1 (-6 -4293))))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) (-4 *1 (-811))) - ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811)))) ((*1 *1) (-5 *1 (-1070)))) -(((*1 *1) - (-12 (-4 *1 (-389)) (-3636 (|has| *1 (-6 -4301))) - (-3636 (|has| *1 (-6 -4293))))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-811)))) - ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) (-4 *1 (-811))) ((*1 *1) (-5 *1 (-1070)))) -(((*1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1) (-4 *1 (-926))) ((*1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122))) - ((*1 *1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) - ((*1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) - ((*1 *1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) - ((*1 *1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1128))) (-5 *3 (-1128)) (-5 *1 (-1066))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-645)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-929)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1066))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-645)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1066))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-436)) (-4 *4 (-784)) (-14 *5 (-1123)) - (-5 *2 (-526)) (-5 *1 (-1065 *4 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-436)) (-4 *4 (-784)) (-14 *5 (-1123)) - (-5 *2 (-526)) (-5 *1 (-1065 *4 *5))))) + (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1557 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) - (-5 *1 (-1065 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) - (-5 *1 (-1065 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 *4)) - (-5 *1 (-1065 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 (-1174 *5 *4))) - (-5 *1 (-1065 *4 *5)) (-5 *3 (-1174 *5 *4))))) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-778 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1157) (-928)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-443)) + (-5 *2 (-619 (-619 *7))) (-5 *1 (-526 *6 *7 *5)) (-4 *7 (-355)) + (-4 *5 (-13 (-355) (-819)))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-548)) (-5 *2 (-619 (-2 (|:| -1915 *3) (|:| -2512 *4)))) + (-5 *1 (-670 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-548)) (|has| *1 (-6 -4328)) (-4 *1 (-365 *3)) + (-4 *3 (-1172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 (-1174 *5 *4))) - (-5 *1 (-1065 *4 *5)) (-5 *3 (-1174 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1061))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1205 (-526))) (-5 *3 (-526)) (-5 *1 (-1061)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1205 (-526))) (-5 *3 (-607 (-526))) (-5 *4 (-526)) - (-5 *1 (-1061))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *3 (-111)) (-5 *1 (-1061))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-653 (-526))) (-5 *3 (-607 (-526))) (-5 *1 (-1061))))) + (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1557 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *5)) (-4 *5 (-443)) (-5 *2 (-619 *6)) + (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-921 *5)) (-4 *5 (-443)) (-5 *2 (-619 *6)) + (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819)))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-890))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-365 *2)) (-4 *2 (-1172)) + (-4 *2 (-821)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4328)) + (-4 *1 (-365 *3)) (-4 *3 (-1172))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-1061))))) + (-12 (-4 *4 (-540)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1557 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 (-526))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-1061))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-607 (-526))) (-5 *3 (-653 (-526))) (-5 *1 (-1061))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-1061))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) - (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-111)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *2 + (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) + (|:| |expense| (-371)) (|:| |accuracy| (-371)) + (|:| |intermediateResults| (-371)))) + (-5 *1 (-777))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-524)) (-5 *1 (-523 *4)) + (-4 *4 (-1172))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) + ((*1 *1 *1 *1) (-4 *1 (-533))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) + ((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-745))))) +(((*1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) + ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1063))))) +(((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-359 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-619 + (-2 + (|:| -3156 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) + (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) + (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (|:| -1657 + (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) + (|:| |expense| (-371)) (|:| |accuracy| (-371)) + (|:| |intermediateResults| (-371))))))) + (-5 *1 (-777))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821))))) +(((*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-524))) (-5 *1 (-524))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540))))) +(((*1 *2 *1) + (-12 (-4 *1 (-669 *3)) (-4 *3 (-1063)) + (-5 *2 (-619 (-2 (|:| -1657 *3) (|:| -3945 (-745)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-890)) (-4 *4 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-777))))) +(((*1 *1 *1 *1) (-4 *1 (-936)))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-524))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) + (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) + (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-299))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3587 (-756 *3)) (|:| |coef1| (-756 *3)) + (|:| |coef2| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -3587 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *7 (-869 *6)) + (-5 *2 (-663 *7)) (-5 *1 (-666 *6 *7 *3 *4)) (-4 *3 (-365 *7)) + (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4327))))))) +(((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *1) (-5 *1 (-777)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *6)) (-5 *5 (-1 (-410 (-1131 *6)) (-1131 *6))) + (-4 *6 (-355)) + (-5 *2 + (-619 + (-2 (|:| |outval| *7) (|:| |outmult| (-548)) + (|:| |outvect| (-619 (-663 *7)))))) + (-5 *1 (-521 *6 *7 *4)) (-4 *7 (-355)) (-4 *4 (-13 (-355) (-819)))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-410 *2)) (-4 *2 (-299)) (-5 *1 (-883 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-410 (-921 *6))) (-5 *5 (-1135)) (-5 *3 (-921 *6)) + (-4 *6 (-13 (-299) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *6))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef1| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -3587 *1) (|:| |coef1| *1))) + (-4 *1 (-1030 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) - (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *4 (-619 (-1135))) + (-5 *2 (-663 (-308 (-218)))) (-5 *1 (-198)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1063)) (-4 *6 (-869 *5)) (-5 *2 (-663 *6)) + (-5 *1 (-666 *5 *6 *3 *4)) (-4 *3 (-365 *6)) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) +(((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1135)) + (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *4 (-13 (-29 *6) (-1157) (-928))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2877 (-619 *4)))) + (-5 *1 (-775 *6 *4 *3)) (-4 *3 (-630 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1131 *5)) (-4 *5 (-355)) (-5 *2 (-619 *6)) + (-5 *1 (-521 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-619 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef2| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -3587 *1) (|:| |coef2| *1))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *3 (-869 *6)) + (-5 *2 (-663 *3)) (-5 *1 (-666 *6 *3 *7 *4)) (-4 *7 (-365 *3)) + (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4327))))))) +(((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *1 (-774)) + (-5 *3 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *2 (-1004))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 *4)) (-4 *4 (-355)) (-5 *2 (-1131 *4)) + (-5 *1 (-521 *4 *5 *6)) (-4 *5 (-355)) (-4 *6 (-13 (-355) (-819)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) + ((*1 *2 *1) + (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-619 (-745)))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) - (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-663 *3)) + (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-365 *3)) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) +(((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-890)) (-4 *4 (-1016)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-968 *3)) (-4 *3 (-169)) (-5 *1 (-773 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-519 *3)) (-4 *3 (-13 (-701) (-25)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-540))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1063)) (-4 *2 (-869 *4)) (-5 *1 (-666 *4 *2 *5 *3)) + (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4327))))))) +(((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-272))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *2 (-745)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) + (-14 *4 (-890)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-890)) (-4 *4 (-360)) (-4 *4 (-355)) (-5 *2 (-1131 *1)) + (-4 *1 (-321 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1131 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-169)) (-4 *3 (-355)) + (-4 *2 (-1194 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-1131 *4)) + (-5 *1 (-518 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *2)) + (-4 *3 (-13 (-1063) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1229))))) +(((*1 *1 *1) + (-12 (-4 *1 (-245 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) + (-4 *4 (-258 *3)) (-4 *5 (-767))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-154)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-883 *3)) (-4 *3 (-299))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-540))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *5 (-111)) - (-4 *8 (-1018 *6 *7 *4)) (-4 *9 (-1024 *6 *7 *4 *8)) (-4 *6 (-436)) - (-4 *7 (-757)) (-4 *4 (-811)) - (-5 *2 (-607 (-2 (|:| |val| *8) (|:| -1636 *9)))) - (-5 *1 (-1059 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-4 *5 (-1063)) (-4 *2 (-869 *5)) (-5 *1 (-666 *5 *2 *3 *4)) + (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) (((*1 *2) - (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *2 (-1211)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *2 (-1211)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7))))) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-912 *4)) (-4 *4 (-1016)) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-890))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) + (-4 *3 (-936))))) +(((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) + ((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) + (-4 *4 (-341))))) +(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-241))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-912 (-218)))) (-5 *1 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-883 *3)) (-4 *3 (-299))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-1218 *3)) + (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-365 *3)) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) (((*1 *2) - (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *2 (-1211)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-912 *5)) (-5 *3 (-745)) (-4 *5 (-1016)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1218 *4)) (-4 *4 (-409 *3)) (-4 *3 (-299)) + (-4 *3 (-540)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-890)) (-4 *4 (-355)) (-5 *2 (-1218 *1)) + (-4 *1 (-321 *4)))) + ((*1 *2) (-12 (-4 *3 (-355)) (-5 *2 (-1218 *1)) (-4 *1 (-321 *3)))) ((*1 *2) - (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *2 (-1211)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *9 (-1018 *6 *7 *8)) - (-5 *2 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *4) (|:| |ineq| (-607 *9)))) - (-5 *1 (-947 *6 *7 *8 *9 *4)) (-5 *3 (-607 *9)) - (-4 *4 (-1024 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *9 (-1018 *6 *7 *8)) - (-5 *2 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *4) (|:| |ineq| (-607 *9)))) - (-5 *1 (-1058 *6 *7 *8 *9 *4)) (-5 *3 (-607 *9)) - (-4 *4 (-1024 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-607 *10)) (-5 *5 (-111)) (-4 *10 (-1024 *6 *7 *8 *9)) - (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) + (-12 (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *1)) + (-4 *1 (-401 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) + (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6)) + (-4 *6 (-13 (-401 *4 *5) (-1007 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) + (-5 *2 (-1218 *6)) (-5 *1 (-406 *3 *4 *5 *6 *7)) + (-4 *6 (-401 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-409 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 *4))) (-5 *1 (-518 *4)) + (-4 *4 (-341))))) +(((*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-241))))) +(((*1 *1) (-5 *1 (-1219)))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1131 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-443))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) + (-5 *1 (-664 *4))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-745)) (-5 *3 (-912 *5)) (-4 *5 (-1016)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) + (-14 *4 (-890)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) +(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) + (-4 *3 (-936))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) + (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-112)) + (-5 *1 (-349 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-112)) + (-5 *1 (-518 *4))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-745)) + (-4 *3 (-13 (-701) (-360) (-10 -7 (-15 ** (*3 *3 (-548)))))) + (-5 *1 (-239 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-459)) (-5 *3 (-619 (-255))) (-5 *1 (-1219)))) + ((*1 *1 *1) (-5 *1 (-1219)))) +(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-443))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-524))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-112)) (-5 *1 (-1124 *4 *5)) + (-14 *4 (-890)) (-4 *5 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) + ((*1 *1 *1 *1) (-4 *1 (-767)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-890)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-890)) + (-5 *1 (-518 *4))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-443))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-168)) (-5 *1 (-1124 *4 *5)) + (-14 *4 (-890)) (-4 *5 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 - (-607 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *10) (|:| |ineq| (-607 *9))))) - (-5 *1 (-947 *6 *7 *8 *9 *10)) (-5 *3 (-607 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-607 *10)) (-5 *5 (-111)) (-4 *10 (-1024 *6 *7 *8 *9)) - (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) + (-4 *3 (-936))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-548)) (-4 *4 (-341)) + (-5 *1 (-518 *4))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172))))) +(((*1 *2) (-12 (-5 *2 (-814 (-548))) (-5 *1 (-522)))) + ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-443))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-821)) (-5 *1 (-898 *4 *2)) + (-4 *2 (-422 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-1118)) (-5 *2 (-308 (-548))) + (-5 *1 (-899))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 - (-607 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *10) (|:| |ineq| (-607 *9))))) - (-5 *1 (-1058 *6 *7 *8 *9 *10)) (-5 *3 (-607 *9))))) + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1082)) (-4 *4 (-341)) + (-5 *1 (-518 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-548)) (-5 *1 (-234)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-548)) (-5 *1 (-234))))) +(((*1 *2) (-12 (-5 *2 (-814 (-548))) (-5 *1 (-522)))) + ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063))))) +(((*1 *1) (-5 *1 (-1028)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-304)) (-5 *1 (-288)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-1118))) (-5 *3 (-1118)) (-5 *2 (-304)) + (-5 *1 (-288))))) +(((*1 *2 *1) + (-12 (-5 *2 (-912 *4)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-5 *2 + (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-548))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) + (-4 *3 (-936))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-745)) (-4 *4 (-341)) + (-5 *1 (-518 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-234))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-933 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1218 *5)) (-5 *3 (-745)) (-5 *4 (-1082)) (-4 *5 (-341)) + (-5 *1 (-518 *5))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-234))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1142))))) +(((*1 *1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1 *1) (-5 *1 (-1082)))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-803))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1063)) (-5 *1 (-933 *2 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1131 *4)) (-5 *1 (-518 *4)) + (-4 *4 (-341))))) +(((*1 *2 *3) + (-12 (-5 *3 (-286 (-921 (-548)))) + (-5 *2 + (-2 (|:| |varOrder| (-619 (-1135))) + (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) + (|:| |hom| (-619 (-1218 (-745)))))) + (-5 *1 (-229))))) +(((*1 *1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1 *1) (-5 *1 (-1082)))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) + (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *2 (-145)) (-4 *2 (-299)) (-4 *2 (-443)) (-4 *3 (-821)) + (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-308 (-548))) (-5 *1 (-1081)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1063)) (-5 *1 (-933 *3 *2)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-1131 *4)) + (-5 *1 (-518 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-228 *3)))) + ((*1 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1063)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) + (-5 *2 (-619 (-1039 *3 *4 *5))) (-5 *1 (-1040 *3 *4 *5)) + (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3))))))) +(((*1 *1 *1) (-5 *1 (-1028)))) (((*1 *2 *2) - (-12 (-5 *2 (-607 (-2 (|:| |val| (-607 *6)) (|:| -1636 *7)))) - (-4 *6 (-1018 *3 *4 *5)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-947 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-540)) (-4 *3 (-169)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) + (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)))) ((*1 *2 *2) - (-12 (-5 *2 (-607 (-2 (|:| |val| (-607 *6)) (|:| -1636 *7)))) - (-4 *6 (-1018 *3 *4 *5)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1058 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-540)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) - (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) - (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) - (-5 *1 (-1058 *4 *5 *6 *7 *8))))) + (-12 (-5 *2 (-619 *3)) (-5 *1 (-930 *3)) (-4 *3 (-533))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) + (-4 *4 (-341)) (-5 *2 (-1223)) (-5 *1 (-518 *4))))) +(((*1 *1) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-540)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)) (-5 *3 (-1118))))) +(((*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-533))))) +(((*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-1082))))) +(((*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) (((*1 *2 *2) - (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *1 (-947 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *1 (-957 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *1 (-1058 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *1 (-1070 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-663 (-218))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) + (-5 *2 (-166 (-308 *4))) (-5 *1 (-181 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-166 *3)) (-5 *1 (-1161 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *4)))))) +(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803))))) +(((*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-533))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-517)) (-5 *3 (-128)) (-5 *2 (-1082))))) +(((*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-947 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) + (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-957 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) + (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1070 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-663 (-218))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-112)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-112)) (-5 *1 (-1161 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803))))) +(((*1 *1) (-4 *1 (-341))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *5)) (-4 *5 (-422 *4)) + (-4 *4 (-13 (-540) (-821) (-145))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-619 (-1131 *5))) + (|:| |prim| (-1131 *5)))) + (-5 *1 (-424 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + (-12 (-4 *4 (-13 (-540) (-821) (-145))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1131 *3)) + (|:| |pol2| (-1131 *3)) (|:| |prim| (-1131 *3)))) + (-5 *1 (-424 *4 *3)) (-4 *3 (-27)) (-4 *3 (-422 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-921 *5)) (-5 *4 (-1135)) (-4 *5 (-13 (-355) (-145))) + (-5 *2 + (-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) + (|:| |prim| (-1131 *5)))) + (-5 *1 (-929 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) - (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-1058 *5 *6 *7 *8 *3))))) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-355) (-145))) + (-5 *2 + (-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 *5))) + (|:| |prim| (-1131 *5)))) + (-5 *1 (-929 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-5 *5 (-1135)) + (-4 *6 (-13 (-355) (-145))) + (-5 *2 + (-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 *6))) + (|:| |prim| (-1131 *6)))) + (-5 *1 (-929 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-515))))) +(((*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) - (-4 *3 (-1024 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) - (-4 *3 (-1024 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *3 (-218)) + (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1031))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7)))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7))))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-619 (-1218 *4))) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) + (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) + (-5 *2 (-619 (-1218 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) + (-5 *1 (-181 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-52)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) + ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-599 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3676 *4) (|:| |sol?| (-112))) + (-548) *4)) + (-4 *4 (-355)) (-4 *5 (-1194 *4)) (-5 *1 (-558 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-834 *3)) (-14 *3 (-619 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-958)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1056 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-1135)))) + ((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7)))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7))))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *1) + (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) + (-5 *2 (-1131 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) + (-5 *1 (-181 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-683 *3)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-154)))) + ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-355)) (-5 *1 (-558 *4 *2)) (-4 *2 (-1194 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-218))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7)))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7))))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) + (-5 *1 (-723))))) +(((*1 *1 *1) (-4 *1 (-533)))) +(((*1 *2 *1) + (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) + (-5 *2 (-1131 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-308 *4)) (-4 *4 (-13 (-802) (-821) (-1016))) + (-5 *2 (-1118)) (-5 *1 (-800 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-308 *5)) (-5 *4 (-112)) + (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) + (-5 *1 (-800 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-796)) (-5 *4 (-308 *5)) + (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) + (-5 *1 (-800 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-796)) (-5 *4 (-308 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) + (-5 *1 (-800 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-802)) (-5 *2 (-1118)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-802)) (-5 *3 (-112)) (-5 *2 (-1118)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *2 (-1223)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *4 (-112)) (-5 *2 (-1223))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-619 (-399 *7))) + (-4 *7 (-1194 *6)) (-5 *3 (-399 *7)) (-4 *6 (-355)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-558 *6 *7))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-921 *6)) (-5 *4 (-1135)) + (-5 *5 (-814 *7)) + (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-4 *7 (-13 (-1157) (-29 *6))) (-5 *1 (-217 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1131 *6)) (-5 *4 (-814 *6)) + (-4 *6 (-13 (-1157) (-29 *5))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-217 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7))))) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *1 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) + (-5 *2 (-2 (|:| -1699 (-399 *6)) (|:| |coeff| (-399 *6)))) + (-5 *1 (-558 *5 *6)) (-5 *3 (-399 *6))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-814 *4)) (-5 *3 (-591 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1157) (-29 *6))) + (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-217 *6 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7))))) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3676 *7) (|:| |sol?| (-112))) + (-548) *7)) + (-5 *6 (-619 (-399 *8))) (-4 *7 (-355)) (-4 *8 (-1194 *7)) + (-5 *3 (-399 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-558 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1118)) + (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-112)) (-5 *1 (-217 *4 *5)) (-4 *5 (-13 (-1157) (-29 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *1 (-947 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *1 (-957 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *1 (-1058 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *1 (-1070 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) + (-5 *1 (-723))))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1699 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-619 (-399 *8))) (-4 *7 (-355)) (-4 *8 (-1194 *7)) + (-5 *3 (-399 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-558 *7 *8))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) + ((*1 *1 *1) + (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) + (-14 *3 (-619 (-1135)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7))))) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) + (-5 *1 (-723))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1007 (-48))) + (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) + (-5 *2 (-410 (-1131 (-48)))) (-5 *1 (-427 *4 *5 *3)) + (-4 *3 (-1194 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-890)) (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) + ((*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-355)))) + ((*1 *2 *1) + (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-341)) + (-5 *1 (-518 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) + (-4 *5 (-231 *3 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3676 *6) (|:| |sol?| (-112))) (-548) + *6)) + (-4 *6 (-355)) (-4 *7 (-1194 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-399 *7)) (|:| |a0| *6)) + (-2 (|:| -1699 (-399 *7)) (|:| |coeff| (-399 *7))) "failed")) + (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) (((*1 *2) - (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *2 (-1211)) (-5 *1 (-947 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) + (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-957 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *2 (-1211)) (-5 *1 (-1058 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6))))) + (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) + (-5 *1 (-723))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) + (-5 *2 + (-3 (|:| |overq| (-1131 (-399 (-548)))) + (|:| |overan| (-1131 (-48))) (|:| -4119 (-112)))) + (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1155))))) +(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-799))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1699 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-355)) (-4 *7 (-1194 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-399 *7)) (|:| |a0| *6)) + (-2 (|:| -1699 (-399 *7)) (|:| |coeff| (-399 *7))) "failed")) + (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-355)) (-5 *2 (-619 (-1116 *4))) (-5 *1 (-277 *4 *5)) + (-5 *3 (-1116 *4)) (-4 *5 (-1209 *4))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-947 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) - (-4 *8 (-1024 *4 *5 *6 *7))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-419)) (-4 *5 (-811)) (-5 *1 (-1057 *5 *4)) - (-4 *4 (-406 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) + (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) + (-5 *1 (-723))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) + (-4 *5 (-422 *4)) (-5 *2 (-410 (-1131 (-399 (-548))))) + (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1118)) (-5 *2 (-548)) (-5 *1 (-1154 *4)) + (-4 *4 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-799))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-355)) + (-5 *2 (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5))))) + (-5 *1 (-947 *5)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-619 *6) "failed") (-548) *6 *6)) (-4 *6 (-355)) + (-4 *7 (-1194 *6)) + (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) + (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) +(((*1 *1 *2) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-1158 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-619 (-1158 *2))) (-5 *1 (-1158 *2)) (-4 *2 (-1063))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) + (-5 *2 (-410 *3)) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-548)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-798)) (-5 *3 (-619 (-1135))) (-5 *1 (-799))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-890)) (-5 *1 (-673)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-663 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-355)) (-5 *1 (-947 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3676 *6) (|:| |sol?| (-112))) (-548) + *6)) + (-4 *6 (-355)) (-4 *7 (-1194 *6)) + (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) + (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) - ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-545 *3)) (-4 *3 (-995 (-526))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *3 (-218)) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) +(((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-548)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) + (-4 *3 (-1194 *4)) (-5 *2 (-548)))) + ((*1 *2 *3) + (|partial| -12 + (-4 *4 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) + (-5 *2 (-548)) (-5 *1 (-1078 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) + (-5 *2 (-548)) (-5 *1 (-1078 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-1118)) + (-4 *6 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) + (-5 *2 (-548)) (-5 *1 (-1078 *6 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-443)) (-5 *2 (-548)) + (-5 *1 (-1079 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 (-399 (-921 *6)))) + (-5 *3 (-399 (-921 *6))) (-4 *6 (-443)) (-5 *2 (-548)) + (-5 *1 (-1079 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-399 (-921 *6))) (-5 *4 (-1135)) + (-5 *5 (-1118)) (-4 *6 (-443)) (-5 *2 (-548)) (-5 *1 (-1079 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-548)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) +(((*1 *1) (-5 *1 (-797)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-355)) + (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-441 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-355)) + (-5 *2 + (-2 (|:| R (-663 *6)) (|:| A (-663 *6)) (|:| |Ainv| (-663 *6)))) + (-5 *1 (-947 *6)) (-5 *3 (-663 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1699 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-355)) (-4 *7 (-1194 *6)) + (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) + (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-274 *3)) (-4 *3 (-1172))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) + (-5 *2 (-1218 (-399 (-548)))) (-5 *1 (-1245 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) +(((*1 *1) (-5 *1 (-283)))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1153))))) +(((*1 *1) (-5 *1 (-797)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-566 *3) *3 (-1135))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1135))) + (-4 *3 (-276)) (-4 *3 (-605)) (-4 *3 (-1007 *4)) (-4 *3 (-422 *7)) + (-5 *4 (-1135)) (-4 *7 (-593 (-861 (-548)))) (-4 *7 (-443)) + (-4 *7 (-855 (-548))) (-4 *7 (-821)) (-5 *2 (-566 *3)) + (-5 *1 (-557 *7 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-228 *3)) + (-4 *3 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-409 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) + (-5 *2 (-1218 (-548))) (-5 *1 (-1245 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 *4)))) - (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-4 *7 (-1052)) (-5 *2 (-607 *1)) (-4 *1 (-1055 *3 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153))))) +(((*1 *1) (-5 *1 (-797)))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-1223)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-443)) (-4 *4 (-821)) + (-5 *1 (-557 *4 *2)) (-4 *2 (-276)) (-4 *2 (-422 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-272))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-409 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) (-5 *2 (-112)) + (-5 *1 (-1245 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *2 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052))))) -(((*1 *2 *3) (-12 (-5 *2 (-526)) (-5 *1 (-545 *3)) (-4 *3 (-995 *2)))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-548)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153))))) +(((*1 *1) (-5 *1 (-797)))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-540)) (-4 *4 (-821)) + (-5 *1 (-557 *4 *2)) (-4 *2 (-422 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-272))))) +(((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533)))) + ((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) + (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 *7))) + (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-878)) (-4 *1 (-389)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-389)))) + (-12 (-4 *3 (-443)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-410 *1)) (-4 *1 (-918 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-443)) (-5 *2 (-410 *3)) + (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-443)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 (-399 *7)))) + (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-399 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1176)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-410 *3)) (-5 *1 (-1197 *4 *3)) + (-4 *3 (-13 (-1194 *4) (-540) (-10 -8 (-15 -3587 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-14 *5 (-619 (-1135))) + (-5 *2 + (-619 (-1106 *4 (-520 (-834 *6)) (-834 *6) (-754 *4 (-834 *6))))) + (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *2)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) - (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) - (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-878)) (-5 *1 (-1053 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-878)) (-5 *1 (-1053 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-636)))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-109)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1063)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) + (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-1135)) (-4 *6 (-422 *5)) + (-4 *5 (-821)) (-5 *2 (-619 (-591 *6))) (-5 *1 (-557 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) + (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) + (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-553 *3)) (-4 *3 (-1007 (-548))))) ((*1 *2 *1) - (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) - (-14 *4 (-878))))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) - (-14 *4 (-878))))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-722))))) (((*1 *2) - (-12 (-5 *2 (-1205 (-1053 *3 *4))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) - (-14 *4 (-878))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) - (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-864 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-878)) (-5 *2 (-111)) (-5 *1 (-1053 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-735)) (-5 *1 (-1053 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-211)))) ((*1 *1 *1) (-4 *1 (-525))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-564 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1106))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1052)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) - ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-1050 *3)))) - ((*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-1050 *3)))) - ((*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 (-486 *3 *4 *5 *6))) (-4 *3 (-348)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) - (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) + (-12 (-4 *3 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-1223)) + (-5 *1 (-425 *3 *4)) (-4 *4 (-422 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-745)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-365 *3)) (-4 *3 (-1172)) + (-4 *3 (-1063)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) + (-12 (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) + (-5 *2 (-548)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1052)) (-5 *2 (-111))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1172)) + (-5 *2 (-548)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-548)) (-5 *3 (-139)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-548))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-607 (-581 *4))) (-4 *4 (-406 *3)) (-4 *3 (-811)) - (-5 *1 (-549 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1046 *3)) (-4 *3 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-1159)) (-5 *2 (-526))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1106)) (-5 *1 (-948)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1041 *4)) (-4 *4 (-1159)) (-5 *1 (-1044 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1043))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-314 *4)) (-4 *4 (-348)) (-5 *2 (-653 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1205 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-1205 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1181 *4)) (-5 *2 (-1205 *4)))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) + (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1118)) (|:| -2275 (-1118)))) + (-5 *1 (-796))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-619 (-591 *6))) (-5 *4 (-1135)) (-5 *2 (-591 *6)) + (-4 *6 (-422 *5)) (-4 *5 (-821)) (-5 *1 (-557 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-399 (-548))) + (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-619 (-1135))) + (-5 *2 (-619 (-619 (-371)))) (-5 *1 (-992)) (-5 *5 (-371)))) ((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-395 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) - (-5 *2 (-1205 *3)))) + (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) + (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) ((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-403 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-653 *5))) (-5 *3 (-653 *5)) (-4 *5 (-348)) - (-5 *2 (-1205 *5)) (-5 *1 (-1038 *5))))) + (-12 (-5 *3 (-619 (-921 *4))) + (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-722))))) (((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) - (-5 *2 (-1205 (-653 *4))))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-402 *3 *4)) - (-4 *3 (-403 *4)))) - ((*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 (-653 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-1123))) (-4 *5 (-348)) - (-5 *2 (-1205 (-653 (-392 (-905 *5))))) (-5 *1 (-1038 *5)) - (-5 *4 (-653 (-392 (-905 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-1123))) (-4 *5 (-348)) (-5 *2 (-1205 (-653 (-905 *5)))) - (-5 *1 (-1038 *5)) (-5 *4 (-653 (-905 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-653 *4))) (-4 *4 (-348)) (-5 *2 (-1205 (-653 *4))) - (-5 *1 (-1038 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-166))) (-5 *1 (-1037))))) -(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-107)) (-5 *1 (-166)))) - ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-107)) (-5 *1 (-1037))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1037))))) -(((*1 *1) (-5 *1 (-1037)))) -(((*1 *1) (-5 *1 (-1037)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1036 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-526) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1036 *2))))) -(((*1 *2) (-12 (-5 *2 (-607 *3)) (-5 *1 (-1036 *3)) (-4 *3 (-130))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1036 *3)) (-4 *3 (-130))))) -(((*1 *1) (-5 *1 (-1033)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-607 *3)) (-5 *1 (-563 *5 *6 *7 *8 *3)) - (-4 *3 (-1060 *5 *6 *7 *8)))) + (-12 (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-399 (-548))) + (-5 *1 (-425 *4 *3)) (-4 *3 (-422 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) - (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) - (-5 *1 (-1029 *5 *6)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-292) (-141))) - (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) - (-5 *1 (-1029 *4 *5)) (-5 *3 (-607 (-905 *4))) (-14 *5 (-607 (-1123))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) - (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) - (-5 *1 (-1029 *5 *6)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 (-1026 *3 *4 *5))) (-4 *3 (-1052)) - (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) - (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) - (-5 *1 (-1028 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) - (-5 *2 (-607 (-1026 *3 *4 *5))) (-5 *1 (-1028 *3 *4 *5)) - (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3))))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-1052)) - (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) - (-5 *1 (-1026 *4 *5 *2)) - (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) - (-5 *1 (-1026 *3 *4 *2)) - (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3))))))) + (-12 (-5 *4 (-591 *3)) (-4 *3 (-422 *5)) + (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) + (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-425 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-796))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) + (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-591 *5))) (-4 *4 (-821)) (-5 *2 (-591 *5)) + (-5 *1 (-557 *4 *5)) (-4 *5 (-422 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-524)) (-5 *1 (-523 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-524))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-849 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1052)) (-4 *5 (-1159)) - (-5 *1 (-850 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-849 *4)) (-5 *3 (-607 (-1 (-111) *5))) (-4 *4 (-1052)) - (-4 *5 (-1159)) (-5 *1 (-850 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-849 *5)) (-5 *3 (-607 (-1123))) (-5 *4 (-1 (-111) (-607 *6))) - (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *1 (-850 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1159)) - (-5 *2 (-299 (-526))) (-5 *1 (-896 *5)))) + (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))) + (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-269 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-14 *5 (-619 (-1135))) + (-5 *2 + (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) + (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 + (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) + (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 + (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) + (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-607 (-1 (-111) *5))) (-4 *5 (-1159)) - (-5 *2 (-299 (-526))) (-5 *1 (-896 *5)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 + (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) + (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 + (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) + (-5 *1 (-1244 *4 *5 *6)) (-5 *3 (-619 (-921 *4))) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-722))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) + (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1159)) (-4 *4 (-811)) - (-5 *1 (-897 *4 *2 *5)) (-4 *2 (-406 *4)))) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) + (-4 *4 (-443)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-591 *5))) (-5 *3 (-1135)) (-4 *5 (-422 *4)) + (-4 *4 (-821)) (-5 *1 (-557 *4 *5))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-619 (-591 *2))) (-5 *4 (-1135)) + (-4 *2 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-269 *5 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) + (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-619 (-1013 *4 *5))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-722))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) + ((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-593 *2) (-169))) (-5 *2 (-861 *4)) + (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1063)) (-4 *3 (-163 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-1058 (-814 (-371))))) + (-5 *2 (-619 (-1058 (-814 (-218))))) (-5 *1 (-297)))) + ((*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-371)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-401 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-1218 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-409 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-410 *1)) (-4 *1 (-422 *3)) (-4 *3 (-540)) + (-4 *3 (-821)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-454 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-524)))) + ((*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027)))) + ((*1 *1 *2) + (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) + (-4 *5 (-593 (-1135))) (-4 *4 (-767)) (-4 *5 (-821)))) + ((*1 *1 *2) + (-1524 + (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) + (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) + (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) + ((*1 *1 *2) + (-12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) + (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) + (-5 *1 (-1034 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1045)))) + ((*1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *2 (-1063)) (-4 *6 (-1063)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *2 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *2 (-1063)) + (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) + (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) + (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) + (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) + (-5 *1 (-1105 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-1152)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-1152)))) + ((*1 *2 *3) + (-12 (-5 *3 (-754 *4 (-834 *5))) + (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) + (-5 *2 (-754 *4 (-834 *6))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *6 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-921 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-754 *4 (-834 *6))) + (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *6 (-619 (-1135))) + (-5 *2 (-921 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) + (-5 *2 (-1131 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1106 *4 (-520 (-834 *6)) (-834 *6) (-754 *4 (-834 *6)))) + (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *6 (-619 (-1135))) + (-5 *2 (-619 (-754 *4 (-834 *6)))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *2 *3) + (-12 (-4 *4 (-443)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) + (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-796))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1135)) + (-4 *5 (-13 (-540) (-1007 (-548)) (-145))) + (-5 *2 + (-2 (|:| -1699 (-399 (-921 *5))) (|:| |coeff| (-399 (-921 *5))))) + (-5 *1 (-554 *5)) (-5 *3 (-399 (-921 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-607 (-1 (-111) *5))) (-4 *5 (-1159)) (-4 *4 (-811)) - (-5 *1 (-897 *4 *2 *5)) (-4 *2 (-406 *4)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-1 (-111) (-607 *6))) - (-4 *6 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))) (-4 *4 (-1052)) - (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) - (-5 *1 (-1026 *4 *5 *6))))) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1233 (-1135) *3)) (-4 *3 (-1016)) (-5 *1 (-1240 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *1 (-1242 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-645)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-722))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-419 *3 *2)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))) + (-4 *2 (-13 (-821) (-21)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-796))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-946 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 (-399 (-921 *6)))) + (-5 *3 (-399 (-921 *6))) + (-4 *6 (-13 (-540) (-1007 (-548)) (-145))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-554 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-619 (-591 *3))) + (|:| |vals| (-619 *3)))) + (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 *2))) - (-5 *2 (-849 *3)) (-5 *1 (-1026 *3 *4 *5)) - (-4 *5 (-13 (-406 *4) (-845 *3) (-584 *2)))))) + (-12 (-5 *2 (-619 (-2 (|:| |k| (-1135)) (|:| |c| (-1240 *3))))) + (-5 *1 (-1240 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |k| *3) (|:| |c| (-1242 *3 *4))))) + (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-722))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-419 *3 *2)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))) + (-4 *2 (-13 (-821) (-21)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) + (-4 *8 (-821)) (-5 *1 (-946 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-399 (-921 *4))) (-5 *3 (-1135)) + (-4 *4 (-13 (-540) (-1007 (-548)) (-145))) (-5 *1 (-554 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-268 *4 *3)) + (-4 *3 (-13 (-422 *4) (-971)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) - (-5 *2 (-607 (-1123))) (-5 *1 (-1026 *3 *4 *5)) - (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-793 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016))))) +(((*1 *2) + (-12 (-5 *2 (-1218 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) + (-14 *3 (-890)) (-14 *4 (-890))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-722))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 *4)) (-5 *1 (-1025 *5 *6 *7 *3 *4)) - (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-566 *3)) (-5 *1 (-418 *5 *3)) + (-4 *3 (-13 (-1157) (-29 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1150))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-111)) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-566 *3)) (-5 *1 (-418 *5 *3)) + (-4 *3 (-13 (-1157) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) - (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-1025 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *5 (-111)) - (-4 *8 (-1018 *6 *7 *4)) (-4 *9 (-1024 *6 *7 *4 *8)) (-4 *6 (-436)) - (-4 *7 (-757)) (-4 *4 (-811)) - (-5 *2 (-607 (-2 (|:| |val| *8) (|:| -1636 *9)))) - (-5 *1 (-1025 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))) - (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-1007 (-548)) (-145))) + (-5 *2 (-566 (-399 (-921 *5)))) (-5 *1 (-554 *5)) + (-5 *3 (-399 (-921 *5)))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-218))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3094 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-543))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-619 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-422 *4) (-971))) (-4 *4 (-13 (-821) (-540))) + (-5 *1 (-268 *4 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-3 (-111) (-607 *1))) (-4 *1 (-1024 *4 *5 *6 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *1)))) - (-4 *1 (-1024 *4 *5 *6 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-3 *3 (-607 *1))) (-4 *1 (-1024 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-533)) (-4 *2 (-1004)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *1)))) - (-4 *1 (-1024 *4 *5 *6 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) - (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) - (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-793 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) - (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) - (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-111)))) + (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) + (-4 *3 (-1063)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) - (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-111)))) + (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) + (-5 *1 (-873 *4)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) - (-5 *2 (-111))))) + (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-1063)) (-5 *2 (-745))))) +(((*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-608))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-1150))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-467 *4 *5 *6 *7)) (|:| -2088 (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-548)) (-5 *1 (-553 *3)) (-4 *3 (-1007 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-995 (-526))) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-31 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-1117 *4)) (-5 *1 (-156 *3 *4)) - (-4 *3 (-157 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1004)) (-4 *1 (-283)))) - ((*1 *2) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1117 *3)))) - ((*1 *2) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *2)) (-4 *3 (-13 (-809) (-348))) (-4 *2 (-1181 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-905 (-526))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) - ((*1 *2 *3) - (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) - ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-970)) (-5 *2 (-607 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117 (-526))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1117 (-392 (-526)))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-970)) (-5 *2 (-607 *1)))) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-817))))) +(((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1118))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) + (-4 *4 (-341)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) + (-4 *4 (-341)))) + ((*1 *1) (-4 *1 (-360))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-607 *1)) - (-4 *1 (-1021 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-5 *3 (-1123)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1123)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-811) (-533))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-811) (-533))))) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) + (-4 *4 (-341)))) + ((*1 *1 *1) (-4 *1 (-533))) ((*1 *1) (-4 *1 (-533))) + ((*1 *1 *1) (-5 *1 (-548))) ((*1 *1 *1) (-5 *1 (-745))) + ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) + (-4 *4 (-1063)))) + ((*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-533)) (-4 *2 (-540))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *1 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-360))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-524) (-619 (-524)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-524) (-619 (-524)))) (-5 *1 (-114))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1185 (-548)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-766)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-619 (-1135))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117 *2)) (-5 *4 (-1123)) (-4 *2 (-406 *5)) (-5 *1 (-31 *5 *2)) - (-4 *5 (-13 (-811) (-533))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1117 *1)) (-5 *3 (-878)) (-4 *1 (-970)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1117 *1)) (-5 *3 (-878)) (-5 *4 (-823)) - (-4 *1 (-970)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-548)) + (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) + (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-308 *3) (-308 *3))) (-4 *3 (-13 (-1016) (-821))) + (-5 *1 (-216 *3 *4)) (-14 *4 (-619 (-1135))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-745)) + (-4 *6 (-1172)) (-4 *7 (-1172)) (-5 *2 (-233 *5 *7)) + (-5 *1 (-232 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-286 *6)) (-5 *1 (-285 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-286 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1118)) (-5 *5 (-591 *6)) + (-4 *6 (-294)) (-4 *2 (-1172)) (-5 *1 (-289 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-591 *5)) (-4 *5 (-294)) + (-4 *2 (-294)) (-5 *1 (-290 *5 *2)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-878)) (-4 *4 (-13 (-809) (-348))) - (-4 *1 (-1021 *4 *2)) (-4 *2 (-1181 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-392 (-526))) (-5 *1 (-981 *3)) - (-4 *3 (-13 (-809) (-348) (-977))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1021 *2 *3)) (-4 *2 (-13 (-809) (-348))) (-4 *3 (-1181 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1019))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1019))))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-591 *1)) (-4 *1 (-294)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-663 *6)) (-5 *1 (-296 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-308 *5)) (-4 *5 (-821)) + (-4 *6 (-821)) (-5 *2 (-308 *6)) (-5 *1 (-306 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-355)) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) + (-4 *9 (-355)) (-4 *10 (-1194 *9)) (-4 *11 (-1194 (-399 *10))) + (-5 *2 (-328 *9 *10 *11 *12)) + (-5 *1 (-325 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-334 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1176)) (-4 *8 (-1176)) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *9 (-1194 *8)) + (-4 *2 (-334 *8 *9 *10)) (-5 *1 (-332 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-334 *5 *6 *7)) (-4 *10 (-1194 (-399 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) + (-4 *2 (-365 *6)) (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-365 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-540)) + (-4 *6 (-540)) (-5 *2 (-410 *6)) (-5 *1 (-397 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-540)) + (-4 *6 (-540)) (-5 *2 (-399 *6)) (-5 *1 (-398 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-405 *5 *6 *7 *8)) (-4 *5 (-299)) + (-4 *6 (-961 *5)) (-4 *7 (-1194 *6)) + (-4 *8 (-13 (-401 *6 *7) (-1007 *6))) (-4 *9 (-299)) + (-4 *10 (-961 *9)) (-4 *11 (-1194 *10)) + (-5 *2 (-405 *9 *10 *11 *12)) + (-5 *1 (-404 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-401 *10 *11) (-1007 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-409 *6)) (-5 *1 (-407 *4 *5 *2 *6)) (-4 *4 (-409 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-540)) (-5 *1 (-410 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1016) (-821))) + (-4 *6 (-13 (-1016) (-821))) (-4 *2 (-422 *6)) + (-5 *1 (-413 *5 *4 *6 *2)) (-4 *4 (-422 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) + (-4 *2 (-417 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-417 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-480 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-821)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-566 *5)) (-4 *5 (-355)) + (-4 *6 (-355)) (-5 *2 (-566 *6)) (-5 *1 (-565 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -1699 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-355)) (-4 *6 (-355)) + (-5 *2 (-2 (|:| -1699 *6) (|:| |coeff| *6))) + (-5 *1 (-565 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-355)) (-4 *2 (-355)) (-5 *1 (-565 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-355)) (-4 *6 (-355)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-565 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-580 *6)) (-5 *1 (-577 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-580 *7)) + (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-580 *8)) + (-5 *1 (-578 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-580 *7)) + (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) + (-5 *1 (-578 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-1116 *7)) + (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) + (-5 *1 (-578 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-619 *6)) (-5 *1 (-617 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-619 *6)) (-5 *5 (-619 *7)) + (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-619 *8)) + (-5 *1 (-618 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) + (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-661 *8 *9 *10)) + (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) + (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1016)) + (-4 *8 (-1016)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) + (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-540)) (-4 *7 (-540)) + (-4 *6 (-1194 *5)) (-4 *2 (-1194 (-399 *8))) + (-5 *1 (-684 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1194 (-399 *6))) + (-4 *8 (-1194 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1016)) (-4 *9 (-1016)) + (-4 *5 (-821)) (-4 *6 (-767)) (-4 *2 (-918 *9 *7 *5)) + (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) + (-4 *4 (-918 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-4 *7 (-767)) + (-4 *9 (-1016)) (-4 *2 (-918 *9 *8 *6)) + (-5 *1 (-704 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-767)) + (-4 *4 (-918 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5 *7)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-4 *7 (-701)) (-5 *2 (-710 *6 *7)) + (-5 *1 (-709 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-710 *3 *4)) + (-4 *4 (-701)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-756 *6)) (-5 *1 (-755 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-771 *6)) (-5 *1 (-772 *4 *5 *2 *6)) (-4 *4 (-771 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-807 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-806 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-814 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-813 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-858 *5 *6)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-858 *5 *7)) + (-5 *1 (-857 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-921 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-921 *6)) (-5 *1 (-915 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-821)) + (-4 *8 (-1016)) (-4 *6 (-767)) + (-4 *2 + (-13 (-1063) + (-10 -8 (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) + (-5 *1 (-920 *6 *7 *8 *5 *2)) (-4 *5 (-918 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-927 *6)) (-5 *1 (-926 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-912 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-912 *6)) (-5 *1 (-950 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-921 *4))) (-4 *4 (-1016)) + (-4 *2 (-918 (-921 *4) *5 *6)) (-4 *5 (-767)) + (-4 *6 + (-13 (-821) + (-10 -8 (-15 -2591 ((-1135) $)) + (-15 -2754 ((-3 $ "failed") (-1135)))))) + (-5 *1 (-953 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-540)) (-4 *6 (-540)) + (-4 *2 (-961 *6)) (-5 *1 (-959 *5 *6 *4 *2)) (-4 *4 (-961 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-966 *6)) (-5 *1 (-967 *4 *5 *2 *6)) (-4 *4 (-966 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) + (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) + (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1016)) (-4 *10 (-1016)) + (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-231 *6 *7)) + (-4 *9 (-231 *5 *7)) (-4 *2 (-1019 *5 *6 *10 *11 *12)) + (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *11 (-231 *6 *10)) + (-4 *12 (-231 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-1058 *6)) (-5 *1 (-1053 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-819)) + (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-619 *6)) + (-5 *1 (-1053 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1056 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-1056 *6)) (-5 *1 (-1055 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) + (-4 *2 (-1109 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-1116 *6)) (-5 *1 (-1114 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-1116 *7)) + (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) + (-5 *1 (-1115 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-1131 *6)) (-5 *1 (-1129 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1148 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5 *7 *9)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-14 *7 (-1135)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1182 *6 *8 *10)) (-5 *1 (-1177 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1135)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-1185 *6)) (-5 *1 (-1184 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-819)) + (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1116 *6)) + (-5 *1 (-1184 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1191 *5 *6)) (-14 *5 (-1135)) + (-4 *6 (-1016)) (-4 *8 (-1016)) (-5 *2 (-1191 *7 *8)) + (-5 *1 (-1186 *5 *6 *7 *8)) (-14 *7 (-1135)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-4 *2 (-1194 *6)) (-5 *1 (-1192 *5 *4 *6 *2)) (-4 *4 (-1194 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1203 *5 *7 *9)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-14 *7 (-1135)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1203 *6 *8 *10)) (-5 *1 (-1198 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1135)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-4 *2 (-1209 *6)) (-5 *1 (-1207 *5 *6 *4 *2)) (-4 *4 (-1209 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-1218 *6)) (-5 *1 (-1217 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1218 *5)) + (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1218 *6)) + (-5 *1 (-1217 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-1241 *3 *4)) + (-4 *4 (-817))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-274 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -3156 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (|:| -1657 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-218))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3094 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-543)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-669 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -3156 + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (|:| -1657 + (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) + (|:| |expense| (-371)) (|:| |accuracy| (-371)) + (|:| |intermediateResults| (-371)))))) + (-5 *1 (-777)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-619 (-399 *6))) (-5 *3 (-399 *6)) + (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-552 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-241))))) (((*1 *2 *1) - (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) - (-4 *5 (-1018 *3 *4 *2)) (-4 *2 (-811)))) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-735))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) - (-4 *1 (-1018 *3 *4 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-817))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063))))) +(((*1 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-360)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1063)) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-1030 *4 *5 *6)) (-4 *4 (-540)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *2))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) + (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| -1699 (-399 *5)) (|:| |coeff| (-399 *5)))) + (-5 *1 (-552 *4 *5)) (-5 *3 (-399 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-934))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114))))) (((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) - ((*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-49 *2 *3)) (-14 *3 (-607 (-1123))))) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-494 *3 *4 *5 *6))) (-4 *3 (-355)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) + (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1004)) + (-5 *1 (-721))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-412 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1157) (-422 *3))) + (-14 *4 (-1135)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-4 *2 (-13 (-27) (-1157) (-422 *3) (-10 -8 (-15 -3743 ($ *4))))) + (-4 *4 (-819)) + (-4 *5 + (-13 (-1196 *2 *4) (-355) (-1157) + (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) + (-5 *1 (-414 *3 *2 *4 *5 *6 *7)) (-4 *6 (-952 *5)) (-14 *7 (-1135))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) + (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) + (-4 *3 (-13 (-355) (-145) (-1007 (-548)))) (-5 *1 (-552 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) ((*1 *2 *1) - (-12 (-5 *2 (-299 *3)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1004)))) + (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) + (-14 *4 (-619 (-1135))))) ((*1 *2 *1) - (-12 (-14 *3 (-607 (-1123))) (-4 *5 (-224 (-4273 *3) (-735))) - (-14 *6 - (-1 (-111) (-2 (|:| -2461 *4) (|:| -2462 *5)) - (-2 (|:| -2461 *4) (|:| -2462 *5)))) - (-4 *2 (-163)) (-5 *1 (-445 *3 *2 *4 *5 *6 *7)) (-4 *4 (-811)) - (-4 *7 (-909 *2 *5 (-824 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-491 *2 *3)) (-4 *3 (-811)) (-4 *2 (-1052)))) - ((*1 *2 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1004)))) + (-12 (-5 *2 (-548)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-267)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *8)) (-5 *4 (-619 *6)) (-4 *6 (-821)) + (-4 *8 (-918 *7 *5 *6)) (-4 *5 (-767)) (-4 *7 (-1016)) + (-5 *2 (-619 (-745))) (-5 *1 (-313 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-890)))) + ((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-461 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-540)) (-5 *2 (-548)) (-5 *1 (-599 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 (-821)) (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-942 *3 *2 *4)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *2 (-766)))) ((*1 *2 *1) - (-12 (-4 *2 (-1004)) (-5 *1 (-700 *2 *3)) (-4 *3 (-811)) (-4 *3 (-691)))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-745)))) ((*1 *2 *1) - (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *3 (-756)) (-4 *4 (-811)) (-4 *2 (-1004)))) + (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)) + (-5 *2 (-548)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) + (-5 *2 (-399 (-548))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-807 (-890))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-745))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1004)) + (-5 *1 (-721))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-4 *3 (-13 (-27) (-1157) (-422 *6) (-10 -8 (-15 -3743 ($ *7))))) + (-4 *7 (-819)) + (-4 *8 + (-13 (-1196 *3 *7) (-355) (-1157) + (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) + (-5 *1 (-414 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) + (-14 *10 (-1135))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-593 (-861 (-548)))) + (-4 *5 (-855 (-548))) + (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-551 *5 *3)) (-4 *3 (-605)) + (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1135)) (-5 *4 (-814 *2)) (-4 *2 (-1099)) + (-4 *2 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-593 (-861 (-548)))) (-4 *5 (-855 (-548))) + (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) + (-5 *1 (-551 *5 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-801 *2 *3)) (-4 *2 (-683 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811))))) + (-12 (-5 *2 (-745)) (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) + (-5 *2 (-1004)) (-5 *1 (-721))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-4 *3 (-13 (-27) (-1157) (-422 *6) (-10 -8 (-15 -3743 ($ *7))))) + (-4 *7 (-819)) + (-4 *8 + (-13 (-1196 *3 *7) (-355) (-1157) + (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) + (-5 *1 (-414 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) + (-14 *10 (-1135))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) (((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-5 *2 (-111)) (-5 *1 (-428 *4 *3)) (-4 *3 (-1181 *4)))) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-593 (-861 (-548)))) + (-4 *5 (-855 (-548))) + (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-551 *5 *3)) (-4 *3 (-605)) + (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *1 (-638 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-111))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) - (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) - (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *2 (-111))))) + (|partial| -12 (-5 *2 (-638 *3 *4)) (-5 *1 (-1238 *3 *4)) + (-4 *3 (-821)) (-4 *4 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-111))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) + (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) + (-4 *6 (-1030 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3887 *1) (|:| |upper| *1))) + (-4 *1 (-945 *4 *5 *3 *6))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-112)) + (-5 *2 (-1004)) (-5 *1 (-720))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 + (-3 (|:| |%expansion| (-305 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) + (-5 *1 (-412 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) + (-14 *6 (-1135)) (-14 *7 *3)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-832))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1223)) (-5 *1 (-207 *3)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) + (-15 -3721 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-386)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-386)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-492)))) + ((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-685)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1152)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1152))))) +(((*1 *2) + (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) + (-5 *2 (-2 (|:| -3886 *3) (|:| |nconst| *3))) (-5 *1 (-551 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) + (-4 *4 (-169)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-422 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1056 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) + (-5 *1 (-155 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) + (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-4 *2 (-299)) + (-5 *1 (-405 *2 *3 *4 *5)) (-4 *5 (-13 (-401 *3 *4) (-1007 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-540)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-591 *1))) + (-4 *1 (-422 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) + ((*1 *2 *1) + (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) + (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) + (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-112)) + (-5 *2 (-1004)) (-5 *1 (-720))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) + (-5 *2 (-2 (|:| -1489 (-548)) (|:| |var| (-591 *1)))) + (-4 *1 (-422 *3))))) +(((*1 *2) + (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *2 (-112)) (-5 *1 (-259)))) + ((*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-112)) (-5 *1 (-259)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-591 *4)) (-5 *6 (-1135)) + (-4 *4 (-13 (-422 *7) (-27) (-1157))) + (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-2 (|:| |k| (-793 *3)) (|:| |c| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) + (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6)) + (-4 *6 (-13 (-401 *4 *5) (-1007 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-591 *1))) + (-4 *1 (-422 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) + ((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-701) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-692 *3)) (-5 *1 (-636 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-701) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-719 *3)) (-4 *3 (-169))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-410 *3)) (-4 *3 (-540)) (-5 *1 (-411 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) + (-4 *4 (-1063)) (-4 *5 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-591 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) + (-4 *2 (-13 (-422 *5) (-27) (-1157))) + (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *1 (-550 *5 *2 *6)) (-4 *6 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-399 *5)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) + (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1194 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1137 (-399 (-548)))) (-5 *2 (-399 (-548))) + (-5 *1 (-183)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-663 (-308 (-218)))) (-5 *3 (-619 (-1135))) + (-5 *4 (-1218 (-308 (-218)))) (-5 *1 (-198)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-286 *3))) (-4 *3 (-301 *3)) (-4 *3 (-1063)) + (-4 *3 (-1172)) (-5 *1 (-286 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) + (-12 (-4 *2 (-301 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)) + (-5 *1 (-286 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-294)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-294)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 (-619 *1)))) + (-4 *1 (-294)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-294)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 *1)) (-4 *1 (-294)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-294)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 (-619 *1)))) + (-4 *1 (-294)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-294)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-286 *3))) (-4 *1 (-301 *3)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-286 *3)) (-4 *1 (-301 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-548))) (-5 *4 (-1137 (-399 (-548)))) + (-5 *1 (-302 *2)) (-4 *2 (-38 (-399 (-548)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *1)) (-4 *1 (-366 *4 *5)) + (-4 *4 (-821)) (-4 *5 (-169)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 (-619 *1))) + (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) + (-5 *4 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-422 *5)) (-4 *5 (-821)) + (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) + (-5 *4 (-619 (-1 *1 *1))) (-4 *1 (-422 *5)) (-4 *5 (-821)) + (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 *1)) (-5 *4 (-1135)) + (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-593 (-524))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1135)) (-4 *1 (-422 *4)) (-4 *4 (-821)) + (-4 *4 (-593 (-524))))) + ((*1 *1 *1) + (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-593 (-524))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-1135))) (-4 *1 (-422 *3)) (-4 *3 (-821)) + (-4 *3 (-593 (-524))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)) + (-4 *3 (-593 (-524))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-504 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *5)) (-4 *1 (-504 *4 *5)) + (-4 *4 (-1063)) (-4 *5 (-1172)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-807 *3)) (-4 *3 (-355)) (-5 *1 (-693 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-399 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-540)) + (-5 *1 (-1012 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-619 (-1135))) (-5 *4 (-619 (-399 (-921 *5)))) + (-5 *2 (-399 (-921 *5))) (-4 *5 (-540)) (-5 *1 (-1012 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-286 (-399 (-921 *4)))) (-5 *2 (-399 (-921 *4))) + (-4 *4 (-540)) (-5 *1 (-1012 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-286 (-399 (-921 *4))))) (-5 *2 (-399 (-921 *4))) + (-4 *4 (-540)) (-5 *1 (-1012 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1116 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) - (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -3202 *1))) - (-4 *1 (-1018 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -3202 *1))) - (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -4270 *3) (|:| |gap| (-735)) (|:| -2072 (-745 *3)) - (|:| -3202 (-745 *3)))) - (-5 *1 (-745 *3)) (-4 *3 (-1004)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) - (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -2072 *1) (|:| -3202 *1))) - (-4 *1 (-1018 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -2072 *1) (|:| -3202 *1))) - (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004)))) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-276))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *1 *2) + (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-5 *1 (-603 *3 *4 *5)) + (-14 *5 (-890)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) + (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) + (-4 *4 (-692 (-399 (-548)))) (-4 *3 (-821)) (-4 *4 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1054))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 *6)) (-5 *3 (-548)) (-4 *6 (-299)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-355)) (-4 *1 (-321 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) + (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1194 (-399 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) + (-4 *1 (-359 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) + (-4 *1 (-362 *4 *5)) (-4 *5 (-1194 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-401 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-409 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) + (-4 *4 (-1063)) (-4 *5 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) + (-4 *3 (-13 (-422 *6) (-27) (-1157))) + (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| |polnum| (-745 *3)) (|:| |polden| *3) (|:| -3795 (-735)))) - (-5 *1 (-745 *3)) (-4 *3 (-1004)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3795 (-735)))) - (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1159)))) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *1 (-255)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-321 *4)) (-4 *4 (-355)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1218 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) + (-5 *2 (-1218 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-1218 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-401 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-1218 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-409 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-663 *5))) (-5 *3 (-663 *5)) (-4 *5 (-355)) + (-5 *2 (-1218 *5)) (-5 *1 (-1050 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-4 *7 (-821)) + (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-4 *8 (-299)) + (-5 *2 (-619 (-745))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *5 (-745))))) +(((*1 *1 *1) (-4 *1 (-533)))) +(((*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *2)) (-4 *2 (-169)))) + ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-408 *3 *2)) (-4 *3 (-409 *2)))) + ((*1 *2) (-12 (-4 *1 (-409 *2)) (-4 *2 (-169))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063))))) +(((*1 *2) + (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-905 (-363))) (-5 *1 (-324 *3 *4 *5)) - (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) - (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-921 (-371))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-392 (-905 (-363)))) (-5 *1 (-324 *3 *4 *5)) - (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) - (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-399 (-921 (-371)))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-299 (-363))) (-5 *1 (-324 *3 *4 *5)) - (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) - (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-308 (-371))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-905 (-526))) (-5 *1 (-324 *3 *4 *5)) - (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) - (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-921 (-548))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-392 (-905 (-526)))) (-5 *1 (-324 *3 *4 *5)) - (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) - (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-399 (-921 (-548)))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-299 (-526))) (-5 *1 (-324 *3 *4 *5)) - (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) - (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-308 (-548))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 *2)) - (-14 *4 (-607 *2)) (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-331 *3 *4 *5)) + (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-379)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-299 *5)) (-4 *5 (-372)) (-5 *1 (-324 *3 *4 *5)) - (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))))) + (|partial| -12 (-5 *2 (-308 *5)) (-4 *5 (-379)) + (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-653 (-392 (-905 (-526))))) (-4 *1 (-370)))) + (|partial| -12 (-5 *2 (-663 (-399 (-921 (-548))))) (-4 *1 (-376)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-653 (-392 (-905 (-363))))) (-4 *1 (-370)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-905 (-526)))) (-4 *1 (-370)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-905 (-363)))) (-4 *1 (-370)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-299 (-526)))) (-4 *1 (-370)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-299 (-363)))) (-4 *1 (-370)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-526)))) (-4 *1 (-382)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-363)))) (-4 *1 (-382)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-526))) (-4 *1 (-382)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-4 *1 (-382)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-526))) (-4 *1 (-382)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-363))) (-4 *1 (-382)))) + (|partial| -12 (-5 *2 (-663 (-399 (-921 (-371))))) (-4 *1 (-376)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1205 (-392 (-905 (-526))))) (-4 *1 (-425)))) + (|partial| -12 (-5 *2 (-663 (-921 (-548)))) (-4 *1 (-376)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1205 (-392 (-905 (-363))))) (-4 *1 (-425)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-905 (-526)))) (-4 *1 (-425)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-905 (-363)))) (-4 *1 (-425)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-299 (-526)))) (-4 *1 (-425)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-299 (-363)))) (-4 *1 (-425)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-335)) (-4 *5 (-314 *4)) (-4 *6 (-1181 *5)) - (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-741 *4 *5 *6 *3 *7)) (-4 *3 (-1181 *6)) - (-14 *7 (-878)))) + (|partial| -12 (-5 *2 (-663 (-921 (-371)))) (-4 *1 (-376)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *1 (-935 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) + (|partial| -12 (-5 *2 (-663 (-308 (-548)))) (-4 *1 (-376)))) ((*1 *1 *2) - (|partial| -3850 - (-12 (-5 *2 (-905 *3)) - (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-3636 (-4 *3 (-37 (-526)))) - (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) - (-12 (-5 *2 (-905 *3)) - (-12 (-3636 (-4 *3 (-525))) (-3636 (-4 *3 (-37 (-392 (-526))))) - (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) - (-12 (-5 *2 (-905 *3)) - (-12 (-3636 (-4 *3 (-950 (-526)))) (-4 *3 (-37 (-392 (-526)))) - (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))))) + (|partial| -12 (-5 *2 (-663 (-308 (-371)))) (-4 *1 (-376)))) ((*1 *1 *2) - (|partial| -3850 - (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) - (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) - (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) - (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811))))) + (|partial| -12 (-5 *2 (-399 (-921 (-548)))) (-4 *1 (-388)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811))))) -(((*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1159)))) + (|partial| -12 (-5 *2 (-399 (-921 (-371)))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-548))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-371))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-548))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-371))) (-4 *1 (-388)))) ((*1 *1 *2) - (-12 (-5 *2 (-905 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) - (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-1218 (-399 (-921 (-548))))) (-4 *1 (-432)))) ((*1 *1 *2) - (-12 (-5 *2 (-392 (-905 (-363)))) (-5 *1 (-324 *3 *4 *5)) - (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) - (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-1218 (-399 (-921 (-371))))) (-4 *1 (-432)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) - (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-1218 (-921 (-548)))) (-4 *1 (-432)))) ((*1 *1 *2) - (-12 (-5 *2 (-905 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) - (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-1218 (-921 (-371)))) (-4 *1 (-432)))) ((*1 *1 *2) - (-12 (-5 *2 (-392 (-905 (-526)))) (-5 *1 (-324 *3 *4 *5)) - (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) - (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-1218 (-308 (-548)))) (-4 *1 (-432)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) - (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + (|partial| -12 (-5 *2 (-1218 (-308 (-371)))) (-4 *1 (-432)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-341)) (-4 *5 (-321 *4)) (-4 *6 (-1194 *5)) + (-5 *2 (-1131 (-1131 *4))) (-5 *1 (-751 *4 *5 *6 *3 *7)) + (-4 *3 (-1194 *6)) (-14 *7 (-890)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *1 (-945 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) + (|partial| -1524 + (-12 (-5 *2 (-921 *3)) + (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) + (-3958 (-4 *3 (-38 (-548)))) (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821))) + (-12 (-5 *2 (-921 *3)) + (-12 (-3958 (-4 *3 (-533))) (-3958 (-4 *3 (-38 (-399 (-548))))) + (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821))) + (-12 (-5 *2 (-921 *3)) + (-12 (-3958 (-4 *3 (-961 (-548)))) (-4 *3 (-38 (-399 (-548)))) + (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821))))) + ((*1 *1 *2) + (|partial| -1524 + (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) + (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) + (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) + (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-548)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-840 *4)) (-14 *4 *3) + (-5 *3 (-548)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-399 (-548))) (-5 *1 (-841 *4 *5)) + (-5 *3 (-548)) (-4 *5 (-838 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-981)) (-5 *2 (-399 (-548))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-355))) + (-4 *3 (-1194 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3743 (*2 (-1135)))) + (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-591 *3)) + (-4 *3 (-13 (-422 *5) (-27) (-1157))) + (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) + (-5 *1 (-550 *5 *3 *6)) (-4 *6 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *3 (-540)) (-5 *2 (-112)) (-5 *1 (-599 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-701)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) + (-5 *2 (-1218 (-663 *4))))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-408 *3 *4)) + (-4 *3 (-409 *4)))) + ((*1 *2) + (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 (-663 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-355)) + (-5 *2 (-1218 (-663 (-399 (-921 *5))))) (-5 *1 (-1050 *5)) + (-5 *4 (-663 (-399 (-921 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-355)) + (-5 *2 (-1218 (-663 (-921 *5)))) (-5 *1 (-1050 *5)) + (-5 *4 (-663 (-921 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-355)) + (-5 *2 (-1218 (-663 *4))) (-5 *1 (-1050 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-548)) (-5 *4 (-410 *2)) (-4 *2 (-918 *7 *5 *6)) + (-5 *1 (-717 *5 *6 *7 *2)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-299))))) +(((*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *2)) (-4 *2 (-169)))) + ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-408 *3 *2)) (-4 *3 (-409 *2)))) + ((*1 *2) (-12 (-4 *1 (-409 *2)) (-4 *2 (-169))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-1146 *2)) (-4 *2 (-355))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) + (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1116 *4) (-1116 *4))) (-5 *2 (-1116 *4)) + (-5 *1 (-1243 *4)) (-4 *4 (-1172)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-619 (-1116 *5)) (-619 (-1116 *5)))) (-5 *4 (-548)) + (-5 *2 (-619 (-1116 *5))) (-5 *1 (-1243 *5)) (-4 *5 (-1172))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *5) (-27) (-1157))) + (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 (-566 *3)) (-5 *1 (-550 *5 *3 *6)) (-4 *6 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *1 *1) + (-12 (-5 *1 (-603 *2 *3 *4)) (-4 *2 (-821)) + (-4 *3 (-13 (-169) (-692 (-399 (-548))))) (-14 *4 (-890)))) + ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-172))) (-5 *1 (-1049))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) + (-4 *7 (-821)) (-4 *8 (-299)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) + (-5 *2 + (-2 (|:| |upol| (-1131 *8)) (|:| |Lval| (-619 *8)) + (|:| |Lfact| + (-619 (-2 (|:| -1915 (-1131 *8)) (|:| -3352 (-548))))) + (|:| |ctpol| *8))) + (-5 *1 (-717 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-408 *3 *4)) + (-4 *3 (-409 *4)))) + ((*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-5 *2 (-1131 *3)) (-5 *1 (-1146 *3)) + (-4 *3 (-355))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) + (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) + (-4 *7 (-1194 (-399 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -1693 *3))) + (-5 *1 (-546 *5 *6 *7 *3)) (-4 *3 (-334 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) + (-5 *2 + (-2 (|:| |answer| (-399 *6)) (|:| -1693 (-399 *6)) + (|:| |specpart| (-399 *6)) (|:| |polypart| *6))) + (-5 *1 (-547 *5 *6)) (-5 *3 (-399 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016)) (-4 *4 (-169)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)) + (-4 *3 (-169))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-172)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-1049))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) + (-4 *8 (-299)) (-4 *6 (-767)) (-4 *9 (-918 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-619 (-2 (|:| -1915 (-1131 *9)) (|:| -3352 (-548))))))) + (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-408 *3 *4)) + (-4 *3 (-409 *4)))) + ((*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-1146 *2)) (-4 *2 (-355))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) + (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) + (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) +(((*1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-745)) (-5 *1 (-545))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *3 *6)) (-4 *4 (-540)) (-4 *5 (-767)) + (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-548)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-299)) + (-4 *9 (-918 *8 *6 *7)) + (-5 *2 (-2 (|:| -2802 (-1131 *9)) (|:| |polval| (-1131 *8)))) + (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)) (-5 *4 (-1131 *8))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-619 (-619 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-619 (-619 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-619 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-142))) (-5 *1 (-139)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-139))))) +(((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1049)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) + (-5 *1 (-717 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-745)) (-4 *2 (-1063)) + (-5 *1 (-652 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-1144 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *5 *6 *7 *8))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-625 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1049)))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-2 (|:| -1915 (-1131 *6)) (|:| -3352 (-548))))) + (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-548)) + (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-405 *3 *4 *5 *6)) (-4 *6 (-1007 *4)) (-4 *3 (-299)) + (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *6 (-401 *4 *5)) + (-14 *7 (-1218 *6)) (-5 *1 (-406 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *6)) (-4 *6 (-401 *4 *5)) (-4 *4 (-961 *3)) + (-4 *5 (-1194 *4)) (-4 *3 (-299)) (-5 *1 (-406 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-821)) (-5 *3 (-619 *6)) (-5 *5 (-619 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-619 *5)) (|:| |f3| *5) + (|:| |f4| (-619 *5)))) + (-5 *1 (-1143 *6)) (-5 *4 (-619 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-921 (-371))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + ((*1 *1 *2) + (-12 (-5 *2 (-399 (-921 (-371)))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + ((*1 *1 *2) + (-12 (-5 *2 (-308 (-371))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + ((*1 *1 *2) + (-12 (-5 *2 (-921 (-548))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + ((*1 *1 *2) + (-12 (-5 *2 (-399 (-921 (-548)))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + ((*1 *1 *2) + (-12 (-5 *2 (-308 (-548))) (-5 *1 (-331 *3 *4 *5)) + (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *1 *2) - (-12 (-5 *2 (-1123)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 *2)) - (-14 *4 (-607 *2)) (-4 *5 (-372)))) + (-12 (-5 *2 (-1135)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 *2)) + (-14 *4 (-619 *2)) (-4 *5 (-379)))) ((*1 *1 *2) - (-12 (-5 *2 (-299 *5)) (-4 *5 (-372)) (-5 *1 (-324 *3 *4 *5)) - (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-392 (-905 (-526))))) (-4 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-392 (-905 (-363))))) (-4 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-905 (-526)))) (-4 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-905 (-363)))) (-4 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-299 (-526)))) (-4 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-299 (-363)))) (-4 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-526)))) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-363)))) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 (-526))))) (-4 *1 (-425)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 (-363))))) (-4 *1 (-425)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 (-905 (-526)))) (-4 *1 (-425)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 (-905 (-363)))) (-4 *1 (-425)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 (-299 (-526)))) (-4 *1 (-425)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 (-299 (-363)))) (-4 *1 (-425)))) + (-12 (-5 *2 (-308 *5)) (-4 *5 (-379)) (-5 *1 (-331 *3 *4 *5)) + (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-399 (-921 (-548))))) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-399 (-921 (-371))))) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-548)))) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-371)))) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-308 (-548)))) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-308 (-371)))) (-4 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-548)))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-371)))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-921 (-371))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 (-548))))) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 (-371))))) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-548)))) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-371)))) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-308 (-548)))) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-308 (-371)))) (-4 *1 (-432)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) (|:| |mdnia| - (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) - (-5 *1 (-733)))) + (-2 (|:| |fn| (-308 (-218))) + (|:| -3094 (-619 (-1058 (-814 (-218))))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) + (-5 *1 (-743)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *1 (-772)))) + (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) + (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) + (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) + (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-5 *1 (-782)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) - (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) - (|:| |ub| (-607 (-803 (-211)))))) + (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) + (|:| |lb| (-619 (-814 (-218)))) + (|:| |cf| (-619 (-308 (-218)))) + (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| - (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) - (-5 *1 (-802)))) + (-2 (|:| |lfn| (-619 (-308 (-218)))) + (|:| -3410 (-619 (-218))))))) + (-5 *1 (-812)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-607 (-299 (-211)))) + (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| - (-607 - (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) - (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) - (|:| |dFinish| (-653 (-211)))))) - (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) - (|:| |tol| (-211)))) - (-5 *1 (-857)))) + (-619 + (-2 (|:| |start| (-218)) (|:| |finish| (-218)) + (|:| |grid| (-745)) (|:| |boundaryType| (-548)) + (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) + (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) + (|:| |tol| (-218)))) + (-5 *1 (-867)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *1 (-935 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) ((*1 *1 *2) - (-3850 - (-12 (-5 *2 (-905 *3)) - (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-3636 (-4 *3 (-37 (-526)))) - (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) - (-12 (-5 *2 (-905 *3)) - (-12 (-3636 (-4 *3 (-525))) (-3636 (-4 *3 (-37 (-392 (-526))))) - (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) - (-12 (-5 *2 (-905 *3)) - (-12 (-3636 (-4 *3 (-950 (-526)))) (-4 *3 (-37 (-392 (-526)))) - (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))))) + (-1524 + (-12 (-5 *2 (-921 *3)) + (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) + (-3958 (-4 *3 (-38 (-548)))) (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821))) + (-12 (-5 *2 (-921 *3)) + (-12 (-3958 (-4 *3 (-533))) (-3958 (-4 *3 (-38 (-399 (-548))))) + (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821))) + (-12 (-5 *2 (-921 *3)) + (-12 (-3958 (-4 *3 (-961 (-548)))) (-4 *3 (-38 (-399 (-548)))) + (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821))))) ((*1 *1 *2) - (-3850 - (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) - (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) - (-4 *5 (-584 (-1123)))) - (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) - (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) - (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811))))) + (-1524 + (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) + (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) + (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) + (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) ((*1 *1 *2) - (-12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) - (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3457 (-745 *3)) (|:| |coef1| (-745 *3)) (|:| |coef2| (-745 *3)))) - (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-2 (|:| -3457 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef1| (-745 *3)))) - (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-2 (|:| -3457 *1) (|:| |coef1| *1))) (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef2| (-745 *3)))) - (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-2 (|:| -3457 *1) (|:| |coef2| *1))) (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) - (-4 *5 (-811)) (-4 *3 (-533))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) - (-4 *5 (-811)) (-4 *3 (-533))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-533))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-436)))) - ((*1 *1 *1 *1) (-4 *1 (-436))) - ((*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-469 *2)) (-4 *2 (-1181 (-526))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-735))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *2)) - (-4 *2 (-909 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *6 *4 *5)) (-5 *1 (-875 *4 *5 *6 *2)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-1117 *7))) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) - (-5 *2 (-1117 *7)) (-5 *1 (-875 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-878))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-436)) (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-436))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-436))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-436))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-436))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *2 (-436))))) -(((*1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1) (-5 *1 (-1016)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-363)) (-5 *1 (-1016))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-363)) (-5 *1 (-1016))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-363)) (-5 *1 (-1016))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1016)) (-5 *3 (-1106))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1016))))) -(((*1 *1) (-5 *1 (-1016)))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-1016))))) -(((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1015)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1015))))) -(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) - ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) + (-12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) + (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1159)) (-5 *2 (-735)) (-5 *1 (-223 *3 *4 *5)) - (-4 *3 (-224 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)) (-5 *2 (-735)))) - ((*1 *2) - (-12 (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) - ((*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) + (-12 (-4 *4 (-355)) (-5 *2 (-890)) (-5 *1 (-320 *3 *4)) + (-4 *3 (-321 *4)))) ((*1 *2) - (-12 (-4 *4 (-1052)) (-5 *2 (-735)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) - (-14 *5 *4))) + (-12 (-4 *4 (-355)) (-5 *2 (-807 (-890))) (-5 *1 (-320 *3 *4)) + (-4 *3 (-321 *4)))) + ((*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-890)))) ((*1 *2) - (-12 (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-735)) (-5 *1 (-688 *3 *4 *5)) - (-4 *3 (-689 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) - ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-390 *4) *4)) (-4 *4 (-533)) (-5 *2 (-390 *4)) - (-5 *1 (-404 *4)))) - ((*1 *1 *1) (-5 *1 (-884))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *1 *1) (-5 *1 (-886))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) - (-5 *4 (-392 (-526))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) - (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) - (-5 *4 (-392 (-526))) (-5 *1 (-979 *3)) (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) - (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-809) (-348))) (-5 *2 (-111)) (-5 *1 (-1014 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-581 (-47)))) (-5 *1 (-47)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-581 (-47))) (-5 *1 (-47)))) + (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-807 (-890)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1117 (-47))) (-5 *3 (-607 (-581 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-47))) (-5 *3 (-581 (-47))) (-5 *1 (-47)))) - ((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + (-12 (-5 *3 (-1 (-548) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) + (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *2 (-299)) (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) + (-5 *1 (-405 *2 *3 *4 *5)) (-4 *5 (-13 (-401 *3 *4) (-1007 *3)))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) - (-4 *3 (-1181 (-159 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-878)) (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-348)))) - ((*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1181 *2)) (-4 *2 (-950 *3)) (-5 *1 (-398 *3 *2 *4 *5)) - (-4 *3 (-292)) (-4 *5 (-13 (-395 *2 *4) (-995 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1181 *2)) (-4 *2 (-950 *3)) (-5 *1 (-400 *3 *2 *4 *5 *6)) - (-4 *3 (-292)) (-4 *5 (-395 *2 *4)) (-14 *6 (-1205 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-878)) (-4 *5 (-1004)) - (-4 *2 (-13 (-389) (-995 *5) (-348) (-1145) (-269))) (-5 *1 (-427 *5 *3 *2)) - (-4 *3 (-1181 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-581 (-477)))) (-5 *1 (-477)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-581 (-477))) (-5 *1 (-477)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1117 (-477))) (-5 *3 (-607 (-581 (-477)))) (-5 *1 (-477)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1117 (-477))) (-5 *3 (-581 (-477))) (-5 *1 (-477)))) + (|partial| -12 (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) + (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) + (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) + (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-355)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-355)) (-4 *3 (-169)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) + (-4 *2 (-661 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-663 *2)) (-4 *2 (-355)) (-4 *2 (-1016)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1085 *2 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-231 *2 *3)) (-4 *5 (-231 *2 *3)) (-4 *3 (-355)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-1143 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1205 *4)) (-5 *3 (-878)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-689 *4 *2)) (-4 *2 (-1181 *4)) - (-5 *1 (-739 *4 *2 *5 *3)) (-4 *3 (-1181 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) - ((*1 *1 *1) (-4 *1 (-1013)))) -(((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-525)))) - ((*1 *1 *1) (-4 *1 (-1013)))) -(((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-525)))) - ((*1 *1 *1) (-4 *1 (-1013)))) -(((*1 *2 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292)))) - ((*1 *2 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292)))) - ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-292)))) - ((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-526))))) -(((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204)))) - ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470)))) - ((*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-292)))) - ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) - ((*1 *1 *1) (-4 *1 (-1013)))) -(((*1 *1 *1) (-4 *1 (-1013)))) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-619 *7) (-619 *7))) (-5 *2 (-619 *7)) + (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) + (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) (((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1159)) (-5 *2 (-735)) (-5 *1 (-223 *3 *4 *5)) - (-4 *3 (-224 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-811)) (-5 *2 (-735)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) - ((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-524 *3)) (-4 *3 (-525)))) - ((*1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-735)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-759 *3 *4)) (-4 *3 (-760 *4)))) + (-12 (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-320 *3 *4)) + (-4 *3 (-321 *4)))) + ((*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-745))))) +(((*1 *1) (-5 *1 (-1045)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-714 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-1218 *2)) (-4 *5 (-299)) + (-4 *6 (-961 *5)) (-4 *2 (-13 (-401 *6 *7) (-1007 *6))) + (-5 *1 (-405 *5 *6 *7 *2)) (-4 *7 (-1194 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) + (-5 *3 (-619 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-545)) (-5 *3 (-548))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-748)) (-5 *1 (-52))))) +(((*1 *2 *2) + (-12 (-4 *3 (-341)) (-4 *4 (-321 *3)) (-4 *5 (-1194 *4)) + (-5 *1 (-751 *3 *4 *5 *2 *6)) (-4 *2 (-1194 *5)) (-14 *6 (-890)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) + ((*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-355)) (-4 *2 (-360))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-619 *3)) + (-5 *1 (-571 *5 *6 *7 *8 *3)) (-4 *3 (-1072 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) + (-5 *2 + (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) + (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-299) (-145))) + (-5 *2 + (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) + (-5 *1 (-1041 *4 *5)) (-5 *3 (-619 (-921 *4))) + (-14 *5 (-619 (-1135))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) + (-5 *2 + (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) + (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135)))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-712 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) + ((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) ((*1 *2) - (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-949 *3 *4)) (-4 *3 (-950 *4)))) + (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)) + (-5 *1 (-400 *3 *4 *5)) (-4 *3 (-401 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-955 *3 *4)) (-4 *3 (-956 *4)))) - ((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-969 *3)) (-4 *3 (-970)))) - ((*1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-735)))) - ((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1012 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *5)) (-4 *5 (-1004)) (-5 *1 (-1008 *3 *4 *5)) - (-14 *3 (-735)) (-14 *4 (-735))))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-823)))) (-5 *1 (-823)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1090 *3 *4)) (-5 *1 (-952 *3 *4)) (-14 *3 (-878)) - (-4 *4 (-348)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 (-607 *5))) (-4 *5 (-1004)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) - (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-526)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-526))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-526)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-526))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-526)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-526))))) + (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-663 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-821)) (-5 *1 (-1143 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) + (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-526)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-526))))) + (-12 (-4 *3 (-1063)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) + (-5 *2 (-619 (-1135))) (-5 *1 (-1039 *3 *4 *5)) + (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3))))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-735)))) + (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-735))))) + (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-663 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-821)) (-5 *2 (-1144 (-619 *4))) (-5 *1 (-1143 *4)) + (-5 *3 (-619 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-735)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-5 *2 (-735))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) - (-4 *5 (-357 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *6 (-224 *5 *2)) - (-4 *7 (-224 *4 *2)) (-4 *2 (-1004))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) - (-4 *2 (-357 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *6 *2 *7)) (-4 *6 (-1004)) - (-4 *7 (-224 *4 *6)) (-4 *2 (-224 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) - (-4 *2 (-357 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *6 *7 *2)) (-4 *6 (-1004)) - (-4 *7 (-224 *5 *6)) (-4 *2 (-224 *4 *6))))) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) (((*1 *2 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-950 *4)) - (-4 *2 (-650 *7 *8 *9)) (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-650 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)) (-4 *2 (-292)))) - ((*1 *2 *2) - (-12 (-4 *3 (-292)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) - (-4 *6 (-224 *2 *4)) (-4 *4 (-292))))) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-1231 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 *2) - (-4 *5 (-163)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-878)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-878)))) - ((*1 *2) - (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-878)))) - ((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) - (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-735)) - (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-5 *2 (-735)) - (-5 *1 (-633 *5)))) + (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-745)))) ((*1 *2 *1) - (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-735)))) - ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-735)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-745)))) ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-735))))) + (-12 (-5 *2 (-745)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-701))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540))))) (((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) - (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-735)))) - ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-735)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-735))))) + (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 (-619 *4)))) + (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-945 *4 *5 *3 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-545)) (-5 *3 (-548))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-1231 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4311)) (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-607 *6)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-657 *4 *5)) (-4 *4 (-1063)))) + ((*1 *2 *2) + (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4311)) (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-4 *7 (-950 *4)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)) (-5 *2 (-607 *6)) - (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-650 *4 *5 *6)) - (-4 *10 (-650 *7 *8 *9)))) + (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899)))) ((*1 *2 *1) - (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-607 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-607 *6)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) + (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) ((*1 *2 *1) - (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) - (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-607 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1174 *4 *5)) (-5 *3 (-607 *5)) (-14 *4 (-1123)) (-4 *5 (-348)) - (-5 *1 (-881 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *5)) (-4 *5 (-348)) (-5 *2 (-1117 *5)) (-5 *1 (-881 *4 *5)) - (-14 *4 (-1123)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-607 *6)) (-5 *4 (-735)) (-4 *6 (-348)) (-5 *2 (-392 (-905 *6))) - (-5 *1 (-1005 *5 *6)) (-14 *5 (-1123))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1002))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002))))) + (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-540)) (-4 *2 (-918 *3 *5 *4)) + (-5 *1 (-707 *5 *4 *6 *2)) (-5 *3 (-399 (-921 *6))) (-4 *5 (-767)) + (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)))))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1144 (-619 *4))) (-4 *4 (-821)) + (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *2)) (-5 *1 (-176 *2)) (-4 *2 (-299)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-619 (-619 *4))) (-5 *2 (-619 *4)) (-4 *4 (-299)) + (-5 *1 (-176 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 *8)) + (-5 *4 + (-619 + (-2 (|:| -2877 (-663 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-663 *7))))) + (-5 *5 (-745)) (-4 *8 (-1194 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-341)) + (-5 *2 + (-2 (|:| -2877 (-663 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-663 *7)))) + (-5 *1 (-488 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-109))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002))))) -(((*1 *1 *1 *1) (-4 *1 (-137))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-1231 *4 *5 *6 *7))) + (-5 *1 (-1231 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) + (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-619 (-1231 *6 *7 *8 *9))) + (-5 *1 (-1231 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 (-921 *6))) (-4 *6 (-540)) + (-4 *2 (-918 (-399 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) + (-4 *5 (-767)) + (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)))))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-410 *3)) (-4 *3 (-540))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) + (-5 *1 (-1143 *4)) (-4 *4 (-821))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *2 (-355)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-218)))) + ((*1 *1 *1 *1) + (-1524 (-12 (-5 *1 (-286 *2)) (-4 *2 (-355)) (-4 *2 (-1172))) + (-12 (-5 *1 (-286 *2)) (-4 *2 (-464)) (-4 *2 (-1172))))) + ((*1 *1 *1 *1) (-4 *1 (-355))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1087 *3 (-591 *1))) (-4 *3 (-540)) (-4 *3 (-821)) + (-4 *1 (-422 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-464))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002)) - (-5 *3 (-526))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1048 *4)) (-4 *4 (-1052)) (-5 *2 (-1 *4)) (-5 *1 (-975 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363)))) - ((*1 *2 *3) (-12 (-5 *3 (-1041 (-526))) (-5 *2 (-1 (-526))) (-5 *1 (-1002))))) -(((*1 *2 *3) - (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-292)) (-5 *2 (-392 (-390 (-905 *4)))) - (-5 *1 (-1000 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998))))) -(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1186 *3 *4 *5)) (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) - (-14 *5 *3) (-5 *1 (-304 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363))))) -(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-363)) (-5 *1 (-998))))) -(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998))))) -(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998))))) -(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1117 (-392 (-1117 *2)))) (-5 *4 (-581 *2)) - (-4 *2 (-13 (-406 *5) (-27) (-1145))) - (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *1 (-537 *5 *2 *6)) (-4 *6 (-1052)))) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-524))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117 *1)) (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) - (-4 *5 (-757)) (-4 *3 (-811)))) + (-12 (-4 *4 (-169)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-701) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-169)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-701) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)) (-4 *2 (-355)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117 *4)) (-4 *4 (-1004)) (-4 *1 (-909 *4 *5 *3)) - (-4 *5 (-757)) (-4 *3 (-811)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-1117 *2))) (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) - (-4 *2 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))) - (-5 *1 (-910 *5 *4 *6 *7 *2)) (-4 *7 (-909 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-1117 (-392 (-905 *5))))) (-5 *4 (-1123)) - (-5 *2 (-392 (-905 *5))) (-5 *1 (-997 *5)) (-4 *5 (-533))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-581 *1)) (-4 *1 (-406 *4)) (-4 *4 (-811)) (-4 *4 (-533)) - (-5 *2 (-392 (-1117 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) - (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-1117 (-392 (-1117 *3)))) (-5 *1 (-537 *6 *3 *7)) (-5 *5 (-1117 *3)) - (-4 *7 (-1052)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1202 *5)) (-14 *5 (-1123)) (-4 *6 (-1004)) - (-5 *2 (-1174 *5 (-905 *6))) (-5 *1 (-907 *5 *6)) (-5 *3 (-905 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-1117 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-1117 *1)) - (-4 *1 (-909 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *5 *4)) - (-5 *2 (-392 (-1117 *3))) (-5 *1 (-910 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1117 *3)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))) - (-4 *7 (-909 *6 *5 *4)) (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) - (-5 *1 (-910 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-392 (-1117 (-392 (-905 *5))))) - (-5 *1 (-997 *5)) (-5 *3 (-392 (-905 *5)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) - (-4 *2 (-811)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-757)) (-4 *5 (-1004)) (-4 *6 (-909 *5 *4 *2)) - (-4 *2 (-811)) (-5 *1 (-910 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *6)) (-15 -3298 (*6 $)) (-15 -3297 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-1123)) - (-5 *1 (-997 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) - (-5 *2 (-607 (-1123))) (-5 *1 (-252)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1117 *7)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1004)) (-5 *2 (-607 *5)) (-5 *1 (-306 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-324 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-372)))) - ((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-811)) (-5 *2 (-607 (-1123))))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-607 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) - (-5 *2 (-607 *5)) (-5 *1 (-910 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1048 (-1123))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) - ((*1 *2 *1) - (-12 (-4 *1 (-932 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *5 (-811)) - (-5 *2 (-607 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-607 (-1123))) - (-5 *1 (-997 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) - (-4 *6 (-13 (-533) (-995 *5))) (-4 *5 (-533)) - (-5 *2 (-607 (-607 (-278 (-392 (-905 *6)))))) (-5 *1 (-996 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-297)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-929)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-993))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-992))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-992))))) + (-12 (-4 *4 (-169)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-692 *4)) + (-4 *3 (|SubsetCategory| (-701) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-169)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)) + (-4 *2 (|SubsetCategory| (-701) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)) (-4 *2 (-355)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-835 *2 *3 *4 *5)) (-4 *2 (-355)) + (-4 *2 (-1016)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-745))) + (-14 *5 (-745)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) + (-4 *5 (-231 *4 *2)) (-4 *6 (-231 *3 *2)) (-4 *2 (-355)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-355)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-355)) (-4 *2 (-1016)) (-4 *3 (-821)) + (-4 *4 (-767)) (-14 *6 (-619 *3)) + (-5 *1 (-1230 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-918 *2 *4 *3)) + (-14 *7 (-619 (-745))) (-14 *8 (-745)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-355)) (-4 *2 (-1016)) + (-4 *3 (-817))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-591 *4)) (-5 *6 (-1131 *4)) + (-4 *4 (-13 (-422 *7) (-27) (-1157))) + (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-5 *1 (-544 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-591 *4)) (-5 *6 (-399 (-1131 *4))) + (-4 *4 (-13 (-422 *7) (-27) (-1157))) + (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-5 *1 (-544 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-108))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-581 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1145))) - (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-1117 (-392 (-1117 *6)))) (-5 *1 (-537 *5 *6 *7)) (-5 *3 (-1117 *6)) - (-4 *7 (-1052)))) - ((*1 *2 *1) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-677 *3 *2)) (-4 *3 (-1004)))) - ((*1 *2 *1) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1117 *11)) (-5 *6 (-607 *10)) (-5 *7 (-607 (-735))) - (-5 *8 (-607 *11)) (-4 *10 (-811)) (-4 *11 (-292)) (-4 *9 (-757)) - (-4 *5 (-909 *11 *9 *10)) (-5 *2 (-607 (-1117 *5))) - (-5 *1 (-707 *9 *10 *11 *5)) (-5 *3 (-1117 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-909 *3 *4 *5)) (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *3 (-348)) - (-4 *4 (-757)) (-4 *5 (-811)) (-14 *6 (-607 *2))))) + (-12 (-5 *3 (-1131 *2)) (-4 *2 (-918 (-399 (-921 *6)) *5 *4)) + (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) + (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) + (-4 *6 (-540))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-410 *4)) (-4 *4 (-540))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-878)) (-5 *1 (-989 *2)) - (-4 *2 (-13 (-1052) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) + (-4 *4 (-821)) (-5 *1 (-1143 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-207 *2)) + (-4 *2 + (-13 (-821) + (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) + (-15 -3721 ((-1223) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-591 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-1131 *2)) + (-4 *2 (-13 (-422 *6) (-27) (-1157))) + (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *1 (-544 *6 *2 *7)) (-4 *7 (-1063)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-591 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) + (-5 *5 (-399 (-1131 *2))) (-4 *2 (-13 (-422 *6) (-27) (-1157))) + (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *1 (-544 *6 *2 *7)) (-4 *7 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-767)) + (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)) + (-5 *2 (-2 (|:| -2857 (-921 *6)) (|:| -3243 (-921 *6)))) + (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-399 (-921 *6)) *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-878)) (-5 *1 (-988 *2)) - (-4 *2 (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-1205 *5))) (-5 *4 (-526)) (-5 *2 (-1205 *5)) - (-5 *1 (-987 *5)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-111)) (-5 *5 (-526)) (-4 *6 (-348)) (-4 *6 (-353)) - (-4 *6 (-1004)) (-5 *2 (-607 (-607 (-653 *6)))) (-5 *1 (-987 *6)) - (-5 *3 (-607 (-653 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *4 (-353)) (-4 *4 (-1004)) - (-5 *2 (-607 (-607 (-653 *4)))) (-5 *1 (-987 *4)) (-5 *3 (-607 (-653 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)) - (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-878)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)) - (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-526)) (-4 *5 (-348)) (-4 *5 (-1004)) - (-5 *2 (-111)) (-5 *1 (-987 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-653 *4))) (-4 *4 (-348)) (-4 *4 (-1004)) (-5 *2 (-111)) - (-5 *1 (-987 *4))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-607 (-653 *6))) (-5 *4 (-111)) (-5 *5 (-526)) (-5 *2 (-653 *6)) - (-5 *1 (-987 *6)) (-4 *6 (-348)) (-4 *6 (-1004)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-607 (-653 *4))) (-5 *2 (-653 *4)) (-5 *1 (-987 *4)) - (-4 *4 (-348)) (-4 *4 (-1004)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-526)) (-5 *2 (-653 *5)) - (-5 *1 (-987 *5)) (-4 *5 (-348)) (-4 *5 (-1004))))) + (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-619 *4)) (-4 *4 (-821)) + (-5 *1 (-1143 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-154))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-207 *2)) + (-4 *2 + (-13 (-821) + (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) + (-15 -3721 ((-1223) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-315 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *2)) + (-4 *2 (-1194 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-524))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-25))))) +(((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) (-5 *6 (-1131 *3)) + (-4 *3 (-13 (-422 *7) (-27) (-1157))) + (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-544 *7 *3 *8)) (-4 *8 (-1063)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) + (-5 *6 (-399 (-1131 *3))) (-4 *3 (-13 (-422 *7) (-27) (-1157))) + (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-544 *7 *3 *8)) (-4 *8 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-211)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-650)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1031))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1037 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) + (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) + (-4 *6 (-443)) (-4 *7 (-767)) (-4 *4 (-821)) + (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1806 *9)))) + (-5 *1 (-1037 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-1205 *5)) (-4 *5 (-292)) - (-4 *5 (-1004)) (-5 *2 (-653 *5)) (-5 *1 (-987 *5))))) + (-12 (-5 *3 (-399 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1194 *5)) + (-5 *1 (-702 *5 *2)) (-4 *5 (-355))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-619 *5)) (-4 *5 (-821)) (-5 *1 (-1143 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-1131 *3)) + (-4 *3 (-13 (-422 *6) (-27) (-1157))) + (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) + (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-399 (-1131 *3))) + (-4 *3 (-13 (-422 *6) (-27) (-1157))) + (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) + (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-234)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-619 (-1118))) (-5 *3 (-548)) (-5 *4 (-1118)) + (-5 *1 (-234)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016))))) +(((*1 *1) (-5 *1 (-322)))) +(((*1 *2) + (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) + (-4 *3 (-13 (-821) (-540)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-95)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1063)))) + ((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-430 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-474)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-934)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1038 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-5 *1 (-1135)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-653 *5))) (-4 *5 (-292)) (-4 *5 (-1004)) - (-5 *2 (-1205 (-1205 *5))) (-5 *1 (-987 *5)) (-5 *4 (-1205 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-607 (-653 *4))) (-5 *2 (-653 *4)) (-4 *4 (-1004)) - (-5 *1 (-987 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 (-1205 *4))) (-4 *4 (-1004)) (-5 *2 (-653 *4)) - (-5 *1 (-987 *4))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) + (-5 *2 (-2 (|:| -3944 (-410 *3)) (|:| |special| (-410 *3)))) + (-5 *1 (-702 *5 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-548)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-410 *2)) (-4 *2 (-540))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-591 *3)) (-5 *5 (-1131 *3)) + (-4 *3 (-13 (-422 *6) (-27) (-1157))) + (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 (-566 *3)) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-591 *3)) (-5 *5 (-399 (-1131 *3))) + (-4 *3 (-13 (-422 *6) (-27) (-1157))) + (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 (-566 *3)) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1220)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) + (-4 *3 (-13 (-821) (-540)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-697)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-255)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540))))) +(((*1 *1 *2) + (-12 (-5 *2 (-890)) (-4 *1 (-231 *3 *4)) (-4 *4 (-1016)) + (-4 *4 (-1172)))) + ((*1 *1 *2) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-4 *5 (-231 (-3643 *3) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *5)) + (-2 (|:| -3337 *2) (|:| -3352 *5)))) + (-5 *1 (-452 *3 *4 *2 *5 *6 *7)) (-4 *2 (-821)) + (-4 *7 (-918 *4 *5 (-834 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-619 + (-2 + (|:| -3156 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (|:| -1657 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-218))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3094 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-543))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-267))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-861 (-526))) (-5 *4 (-526)) (-5 *2 (-653 *4)) (-5 *1 (-986 *5)) - (-4 *5 (-1004)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-986 *4)) - (-4 *4 (-1004)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-861 (-526)))) (-5 *4 (-526)) (-5 *2 (-607 (-653 *4))) - (-5 *1 (-986 *5)) (-4 *5 (-1004)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-607 (-526)))) (-5 *2 (-607 (-653 (-526)))) - (-5 *1 (-986 *4)) (-4 *4 (-1004))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-607 (-653 *3))) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-607 (-653 *3))) (-4 *3 (-1004)) (-5 *1 (-986 *3))))) + (-12 (-5 *3 (-1218 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) + (-4 *1 (-699 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1194 *5)) + (-5 *2 (-663 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *4)) (-5 *3 (-878)) (-4 *4 (-1004)) (-5 *1 (-986 *4)))) + (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1063)) + (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-607 (-653 *4))) (-5 *3 (-878)) (-4 *4 (-1004)) - (-5 *1 (-986 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-653 (-905 *4))) (-5 *1 (-986 *4)) - (-4 *4 (-1004))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *4)) (-5 *3 (-878)) (|has| *4 (-6 (-4312 "*"))) - (-4 *4 (-1004)) (-5 *1 (-986 *4)))) + (-12 (-5 *2 (-861 *4)) (-5 *3 (-619 (-1 (-112) *5))) (-4 *4 (-1063)) + (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-861 *5)) (-5 *3 (-619 (-1135))) + (-5 *4 (-1 (-112) (-619 *6))) (-4 *5 (-1063)) (-4 *6 (-1172)) + (-5 *1 (-859 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-607 (-653 *4))) (-5 *3 (-878)) (|has| *4 (-6 (-4312 "*"))) - (-4 *4 (-1004)) (-5 *1 (-986 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-653 (-299 (-526))))) - (-5 *1 (-985))))) -(((*1 *2 *2) (-12 (-5 *2 (-607 (-653 (-299 (-526))))) (-5 *1 (-985))))) -(((*1 *2 *2) (-12 (-5 *2 (-653 (-299 (-526)))) (-5 *1 (-985))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-653 (-392 (-905 (-526))))) - (-5 *2 (-653 (-299 (-526)))) (-5 *1 (-985))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-299 (-526)))) - (-5 *1 (-985))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-653 (-299 (-526))))) - (-5 *1 (-985)) (-5 *3 (-299 (-526)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-392 (-905 (-526))))) - (-5 *2 - (-607 - (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) - (|:| |radvect| (-607 (-653 (-299 (-526)))))))) - (-5 *1 (-985))))) -(((*1 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-983 *3)) (-4 *3 (-1159))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-982 *3 *2)) (-4 *2 (-623 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) (-5 *2 (-2 (|:| -3578 *3) (|:| -2805 (-607 *5)))) - (-5 *1 (-982 *5 *3)) (-5 *4 (-607 *5)) (-4 *3 (-623 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1014 (-981 *4) (-1117 (-981 *4)))) (-5 *3 (-823)) - (-5 *1 (-981 *4)) (-4 *4 (-13 (-809) (-348) (-977)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1014 (-981 *3) (-1117 (-981 *3)))) (-5 *1 (-981 *3)) - (-4 *3 (-13 (-809) (-348) (-977)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) - (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) - (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) - (-5 *4 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) - (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) (-5 *4 (-392 (-526))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *5) (|:| -3434 *5)))) - (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) - (-5 *4 (-2 (|:| -3435 *5) (|:| -3434 *5))))) - ((*1 *2 *3) - (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) - (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1172)) (-4 *4 (-821)) + (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-422 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-4 *4 (-821)) + (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-422 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) - (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))) - (-5 *4 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) + (-12 (-5 *3 (-1135)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1172)) + (-5 *2 (-308 (-548))) (-5 *1 (-907 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *4) (|:| -3434 *4)))) - (-5 *1 (-979 *3)) (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *5) (|:| -3434 *5)))) - (-5 *1 (-979 *3)) (-4 *3 (-1181 *5)) - (-5 *4 (-2 (|:| -3435 *5) (|:| -3434 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) - (-5 *2 (-607 (-392 (-526)))) (-5 *1 (-978 *4)) (-4 *4 (-1181 (-526)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) - (-5 *2 (-392 (-526))) (-5 *1 (-978 *4)) (-4 *4 (-1181 (-526)))))) + (-12 (-5 *3 (-1135)) (-5 *4 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) + (-5 *2 (-308 (-548))) (-5 *1 (-907 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1 (-112) (-619 *6))) + (-4 *6 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) + (-5 *1 (-1039 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1205 *6)) (-5 *4 (-1205 (-526))) (-5 *5 (-526)) (-4 *6 (-1052)) - (-5 *2 (-1 *6)) (-5 *1 (-975 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| -3721 *4) (|:| -1553 (-526))))) (-4 *4 (-1052)) - (-5 *2 (-1 *4)) (-5 *1 (-975 *4))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) - (-5 *2 (-607 (-392 *5))) (-5 *1 (-974 *4 *5)) (-5 *3 (-392 *5))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-392 *6)) (|:| |h| *6) (|:| |c1| (-392 *6)) - (|:| |c2| (-392 *6)) (|:| -3396 *6))) - (-5 *1 (-974 *5 *6)) (-5 *3 (-392 *6))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1181 *6)) - (-4 *6 (-13 (-348) (-141) (-995 *4))) (-5 *4 (-526)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) - (|:| -3578 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-973 *6 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) - (-5 *2 (-2 (|:| |ans| (-392 *5)) (|:| |nosol| (-111)))) (-5 *1 (-973 *4 *5)) - (-5 *3 (-392 *5))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-392 *6)) (|:| |c| (-392 *6)) (|:| -3396 *6))) - (-5 *1 (-973 *5 *6)) (-5 *3 (-392 *6))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1123)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-607 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1145) (-27) (-406 *8))) - (-4 *8 (-13 (-436) (-811) (-141) (-995 *3) (-606 *3))) (-5 *3 (-526)) - (-5 *2 (-607 *4)) (-5 *1 (-972 *8 *4))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1123)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-607 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1145) (-27) (-406 *8))) - (-4 *8 (-13 (-436) (-811) (-141) (-995 *3) (-606 *3))) (-5 *3 (-526)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3434 *4) (|:| |sol?| (-111)))) - (-5 *1 (-971 *8 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) - ((*1 *1 *1) (-4 *1 (-960))) ((*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-970)))) - ((*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-970)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-878)))) - ((*1 *1 *1) (-4 *1 (-970)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-970)) (-5 *2 (-823))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117 *1)) (-4 *1 (-970))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117 *1)) (-4 *1 (-970))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-823))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-823))))) -(((*1 *2 *1) (-12 (-4 *3 (-1159)) (-5 *2 (-607 *1)) (-4 *1 (-968 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-607 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-526))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-607 *1)) (|has| *1 (-6 -4311)) (-4 *1 (-968 *3)) - (-4 *3 (-1159))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-968 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) - (-5 *2 (-392 (-526))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-390 *3)) (-4 *3 (-525)) - (-4 *3 (-533)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-525)) (-5 *2 (-392 (-526))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) - (-5 *2 (-392 (-526))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-796 *3)) (-4 *3 (-525)) - (-4 *3 (-1052)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-803 *3)) (-4 *3 (-525)) - (-4 *3 (-1052)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) - (-5 *2 (-392 (-526))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-966 *3)) (-4 *3 (-995 *2))))) + (-12 (-5 *4 (-218)) (-5 *5 (-548)) (-5 *2 (-1167 *3)) + (-5 *1 (-764 *3)) (-4 *3 (-943)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-112)) + (-5 *1 (-1167 *2)) (-4 *2 (-943))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) (((*1 *2 *1) - (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533)))) - ((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-966 *3)) (-4 *3 (-995 (-392 (-526))))))) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-543))))) +(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-267))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) + ((*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-180))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) + (|:| |lb| (-619 (-814 (-218)))) + (|:| |cf| (-619 (-308 (-218)))) + (|:| |ub| (-619 (-814 (-218)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-619 (-308 (-218)))) + (|:| -3410 (-619 (-218))))))) + (-5 *2 (-619 (-1118))) (-5 *1 (-259))))) +(((*1 *2 *3) + (-12 (-5 *3 (-548)) (|has| *1 (-6 -4318)) (-4 *1 (-396)) + (-5 *2 (-890))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) + ((*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) + ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-542 *2)) (-4 *2 (-533))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-259))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-1039 *3 *4 *5))) (-4 *3 (-1063)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) + (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) + (-5 *1 (-1040 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-548)) (|has| *1 (-6 -4318)) (-4 *1 (-396)) + (-5 *2 (-890))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-540))))) +(((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533))))) +(((*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-112)) (-5 *1 (-259))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-745)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-394)) (-5 *2 (-745))))) (((*1 *2 *1) - (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) - ((*1 *2 *1) - (-12 (-5 *2 (-392 (-526))) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533)))) - ((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-392 (-526))))) - ((*1 *2 *1) - (-12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) - ((*1 *2 *1) - (-12 (-5 *2 (-392 (-526))) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-5 *2 (-392 (-526))) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) - ((*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-966 *3)) (-4 *3 (-995 *2))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964))))) -(((*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-964))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) - ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-526))) (-5 *4 (-526)) (-5 *2 (-50)) (-5 *1 (-963))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) + (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-1167 *3)) + (-4 *3 (-943))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-995 *3)) (-4 *3 (-1172))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-540))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1135)) (-5 *6 (-619 (-591 *3))) + (-5 *5 (-591 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *7))) + (-4 *7 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) + (-5 *1 (-541 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 (-308 (-218)))) (-5 *1 (-259))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-394)) (-5 *2 (-745)))) + ((*1 *1 *1) (-4 *1 (-394)))) +(((*1 *2 *1) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-943))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2) (-12 (-5 *2 (-619 (-308 (-218)))) (-5 *1 (-259))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-390 *5)) (-4 *5 (-533)) - (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *5) (|:| |radicand| (-607 *5)))) - (-5 *1 (-305 *5)) (-5 *4 (-735)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-526))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-958 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) - ((*1 *1 *1 *1) (-4 *1 (-457))) - ((*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) - ((*1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-842)))) - ((*1 *1 *1) (-5 *1 (-930))) - ((*1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *2 + (-2 (|:| |solns| (-619 *5)) + (|:| |maps| (-619 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1090 *3 *5)) (-4 *3 (-1194 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-166 (-218)))) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *1 *1 *1) (-4 *1 (-936)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 *1)) (-4 *1 (-422 *4)) + (-4 *4 (-821)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821))))) (((*1 *1 *2) - (-12 (-5 *2 (-1090 *3 *4)) (-14 *3 (-878)) (-4 *4 (-348)) - (-5 *1 (-952 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) - (-5 *1 (-398 *3 *4 *5 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))))) + (-12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145))) + (-5 *1 (-391 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) ((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-4 *3 (-811)) (-5 *2 (-1075 *3 (-581 *1))) - (-4 *1 (-406 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) + (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) ((*1 *2 *1) - (-12 (-4 *3 (-163)) (-4 *2 (-37 *3)) (-5 *1 (-586 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-691) *3)))) + (-12 (-5 *2 (-308 *3)) (-5 *1 (-216 *3 *4)) + (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) ((*1 *2 *1) - (-12 (-4 *3 (-163)) (-4 *2 (-682 *3)) (-5 *1 (-617 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-691) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533))))) -(((*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) + (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) ((*1 *2 *1) - (-12 (-4 *3 (-950 *2)) (-4 *4 (-1181 *3)) (-4 *2 (-292)) - (-5 *1 (-398 *2 *3 *4 *5)) (-4 *5 (-13 (-395 *3 *4) (-995 *3))))) + (-12 (-14 *3 (-619 (-1135))) (-4 *5 (-231 (-3643 *3) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3337 *4) (|:| -3352 *5)) + (-2 (|:| -3337 *4) (|:| -3352 *5)))) + (-4 *2 (-169)) (-5 *1 (-452 *3 *2 *4 *5 *6 *7)) (-4 *4 (-821)) + (-4 *7 (-918 *2 *5 (-834 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-499 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1063)))) ((*1 *2 *1) - (-12 (-4 *3 (-533)) (-4 *3 (-811)) (-5 *2 (-1075 *3 (-581 *1))) - (-4 *1 (-406 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) + (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) ((*1 *2 *1) - (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-691) *4)) - (-5 *1 (-586 *3 *4 *2)) (-4 *3 (-37 *4)))) + (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) + (-4 *3 (-701)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) ((*1 *2 *1) - (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-691) *4)) - (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-682 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533))))) -(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-1004)))) - ((*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533))))) -(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-533)))) - ((*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533))))) -(((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) - ((*1 *1) (-4 *1 (-353))) - ((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) - ((*1 *1 *1) (-4 *1 (-525))) ((*1 *1) (-4 *1 (-525))) - ((*1 *1 *1) (-5 *1 (-526))) ((*1 *1 *1) (-5 *1 (-735))) - ((*1 *2 *1) (-12 (-5 *2 (-861 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-5 *2 (-861 *4)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) - ((*1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-525)) (-4 *2 (-533))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-945 (-392 (-526)) (-824 *3) (-225 *4 (-735)) (-233 *3 (-392 (-526))))) - (-14 *3 (-607 (-1123))) (-14 *4 (-735)) (-5 *1 (-946 *3 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-607 *3)) (-4 *3 (-909 *4 *6 *5)) (-4 *4 (-436)) (-4 *5 (-811)) - (-4 *6 (-757)) (-5 *1 (-945 *4 *5 *6 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-436)) (-4 *4 (-811)) - (-4 *5 (-757)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-607 *6)) - (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4))))) + (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *3 (-766)) (-4 *4 (-821)) + (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821))))) (((*1 *2 *1) - (-12 (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *3 (-436)) - (-4 *4 (-811)) (-4 *5 (-757))))) -(((*1 *1 *1) - (-12 (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *4 *3))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1181 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-944 *4 *2 *3 *5)) - (-4 *4 (-335)) (-4 *5 (-689 *2 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) - (-4 *5 (-533)) (-5 *1 (-697 *4 *3 *5 *2)) - (-4 *2 (-909 (-392 (-905 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *5 (-757)) - (-4 *3 - (-13 (-811) - (-10 -8 (-15 -4287 ((-1123) $)) - (-15 -4150 ((-3 $ #1="failed") (-1123)))))) - (-5 *1 (-943 *4 *5 *3 *2)) (-4 *2 (-909 (-905 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-607 *6)) - (-4 *6 - (-13 (-811) - (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) - (-4 *4 (-1004)) (-4 *5 (-757)) (-5 *1 (-943 *4 *5 *6 *2)) - (-4 *2 (-909 (-905 *4) *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) - (-4 *5 (-533)) (-5 *1 (-697 *4 *3 *5 *2)) - (-4 *2 (-909 (-392 (-905 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *5 (-757)) - (-4 *3 - (-13 (-811) - (-10 -8 (-15 -4287 ((-1123) $)) - (-15 -4150 ((-3 $ #1="failed") (-1123)))))) - (-5 *1 (-943 *4 *5 *3 *2)) (-4 *2 (-909 (-905 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-607 *6)) - (-4 *6 - (-13 (-811) - (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) - (-4 *4 (-1004)) (-4 *5 (-757)) (-5 *1 (-943 *4 *5 *6 *2)) - (-4 *2 (-909 (-905 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-735)) (-4 *1 (-942 *2)) (-4 *2 (-1145))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-833)))) - ((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-149)))) - ((*1 *2 *1) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) - ((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-149)))) - ((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) - (-5 *2 (-607 (-2 (|:| C (-653 *5)) (|:| |g| (-1205 *5))))) (-5 *1 (-937 *5)) - (-5 *3 (-653 *5)) (-5 *4 (-1205 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-878)) (-5 *1 (-663)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-653 *5)) (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) - (-5 *1 (-937 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-348)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-97 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-348)) - (-5 *2 (-2 (|:| R (-653 *6)) (|:| A (-653 *6)) (|:| |Ainv| (-653 *6)))) - (-5 *1 (-937 *6)) (-5 *3 (-653 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) - (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) - (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) - (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) - (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-607 *7)) (-5 *3 (-111)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) - (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-436)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) - (-5 *2 (-607 *3)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *1 (-936 *5 *6 *7 *8))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-607 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) - (-4 *8 (-811)) (-5 *1 (-936 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-460 *4 *5 *6 *7)) (|:| -3643 (-607 *7)))) - (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-607 *7)) (-5 *3 (-111)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) - (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) - (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) - (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *2 (-111)) (-5 *1 (-252)))) - ((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-111)) (-5 *1 (-252)))) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-995 (-814 (-548)))) + (-5 *3 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *4)))) (-4 *4 (-1016)) + (-5 *1 (-575 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-234)))) ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) - (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) - (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) - (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) - (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-1 (-111) *8))) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) - (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) - (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-1 (-111) *8))) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) - (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) - (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) - (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) - (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *7))))) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1223)) (-5 *1 (-234))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-607 *8))) (-5 *3 (-607 *8)) (-4 *8 (-1018 *5 *6 *7)) - (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-111)) - (-5 *1 (-936 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) - (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-607 *3)) (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-607 *7) (-607 *7))) (-5 *2 (-607 *7)) - (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) - (-5 *1 (-936 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) - (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) + (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *4 (-745)) + (-5 *2 (-663 (-218))) (-5 *1 (-259))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1218 *4)) (-5 *3 (-663 *4)) (-4 *4 (-355)) + (-5 *1 (-641 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-355)) + (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4328)))) + (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328)))) + (-5 *1 (-642 *4 *5 *2 *3)) (-4 *3 (-661 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-619 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-355)) + (-5 *1 (-788 *2 *3)) (-4 *3 (-630 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-166 (-218)))) + (-5 *2 (-1004)) (-5 *1 (-729))))) (((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-935 *4 *5 *3 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) - (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-111))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) - (-4 *5 (-1018 *3 *4 *2))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) - (-4 *5 (-1018 *3 *4 *2))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) - (-4 *5 (-1018 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) - ((*1 *2 *2) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *6 (-1018 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3427 *1) (|:| |upper| *1))) - (-4 *1 (-935 *4 *5 *3 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) + (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899))))) (((*1 *2 *1) - (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-935 *4 *5 *6 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-935 *4 *5 *6 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-607 *6)) (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-607 *6)) (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533))))) + (-12 (-4 *2 (-1194 *3)) (-5 *1 (-391 *3 *2)) + (-4 *3 (-13 (-355) (-145)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) + (-4 *8 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2088 (-619 *9)))) + (-5 *3 (-619 *9)) (-4 *1 (-1165 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2088 (-619 *8)))) + (-5 *3 (-619 *8)) (-4 *1 (-1165 *5 *6 *7 *8))))) +(((*1 *1 *1) (-5 *1 (-832)))) (((*1 *2 *1) - (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-607 (-607 (-902 (-211))))))) - ((*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-607 (-607 (-902 (-211)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1041 (-211))))) - ((*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211)))))) -(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1041 (-211))))) - ((*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211)))))) -(((*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211)))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1052)))) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) ((*1 *2 *1) - (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *6 (-224 (-4273 *3) (-735))) - (-14 *7 - (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) - (-2 (|:| -2461 *5) (|:| -2462 *6)))) - (-5 *2 (-678 *5 *6 *7)) (-5 *1 (-445 *3 *4 *5 *6 *7 *8)) (-4 *5 (-811)) - (-4 *8 (-909 *4 *6 (-824 *3))))) + (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) ((*1 *2 *1) - (-12 (-4 *2 (-691)) (-4 *2 (-811)) (-5 *1 (-700 *3 *2)) (-4 *3 (-1004)))) - ((*1 *1 *1) - (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *4 (-811))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-607 (-878))) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-878)) - (-4 *2 (-348)) (-14 *5 (-952 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-678 *5 *6 *7)) (-4 *5 (-811)) (-4 *6 (-224 (-4273 *4) (-735))) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-4 *6 (-231 (-3643 *3) (-745))) (-14 *7 - (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) - (-2 (|:| -2461 *5) (|:| -2462 *6)))) - (-14 *4 (-607 (-1123))) (-4 *2 (-163)) (-5 *1 (-445 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-909 *2 *6 (-824 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-811)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-533)) (-5 *1 (-590 *2 *4)) (-4 *4 (-1181 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-673 *2)) (-4 *2 (-1004)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-700 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-691)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *5)) (-5 *3 (-607 (-735))) (-4 *1 (-705 *4 *5)) - (-4 *4 (-1004)) (-4 *5 (-811)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-811)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-813 *2)) (-4 *2 (-1004)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 (-735))) (-4 *1 (-909 *4 *5 *6)) - (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-735)) (-4 *1 (-909 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-757)) - (-4 *2 (-811)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 *5)) (-4 *1 (-932 *4 *5 *6)) - (-4 *4 (-1004)) (-4 *5 (-756)) (-4 *6 (-811)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-932 *4 *3 *2)) (-4 *4 (-1004)) (-4 *3 (-756)) (-4 *2 (-811))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) + (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) + (-2 (|:| -3337 *5) (|:| -3352 *6)))) + (-5 *2 (-688 *5 *6 *7)) (-5 *1 (-452 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-821)) (-4 *8 (-918 *4 *6 (-834 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-932 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *5 (-811)) - (-5 *2 (-111))))) -(((*1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292)))) - ((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) - ((*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1) (-4 *1 (-829 *2))) + (-12 (-4 *2 (-701)) (-4 *2 (-821)) (-5 *1 (-710 *3 *2)) + (-4 *3 (-1016)))) ((*1 *1 *1) - (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *4 (-811))))) -(((*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-930))))) -(((*1 *2 *3) - (-12 (-5 *2 (-607 (-607 (-526)))) (-5 *1 (-930)) (-5 *3 (-607 (-526)))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-930))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4075 *4))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4075 *4))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-735)) (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-735)) (-4 *2 (-533)) (-5 *1 (-928 *2 *4)) (-4 *4 (-1181 *2))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-292)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-371 *3)) (|:| |rm| (-371 *3)))) - (-5 *1 (-371 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2072 (-735)) (|:| -3202 (-735)))) (-5 *1 (-735)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *4 (-533)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3178 *4))) (-5 *1 (-928 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *4 (-533)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3178 *4))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-533)) (-4 *2 (-436)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-607 (-735))) (-5 *1 (-928 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-928 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4076 *4))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) + (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *4 (-821))))) +(((*1 *2 *1) + (-12 (-5 *2 (-995 (-814 (-548)))) (-5 *1 (-575 *3)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-4 *4 (-533)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4076 *4))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3457 *3))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3457 *3))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3457 *3))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-735)) (-4 *5 (-533)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) - (-4 *3 (-1181 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-735)) (-4 *5 (-533)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-533)) (-5 *1 (-928 *4 *2)) (-4 *2 (-1181 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-735)) (-4 *5 (-533)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) - (-4 *3 (-1181 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-735)) (-4 *5 (-533)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-533)) (-5 *1 (-928 *4 *2)) (-4 *2 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4075 *4))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4075 *4))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-533)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4075 *4))) - (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811))))) -(((*1 *1 *1 *1) (-4 *1 (-926)))) -(((*1 *1 *1 *1) (-4 *1 (-926)))) -(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *1) (-4 *1 (-926)))) -(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *1) (-4 *1 (-926)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(((*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(((*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) + (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *2 (-112)) (-5 *1 (-259))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1116 *7))) (-4 *6 (-821)) + (-4 *7 (-918 *5 (-520 *6) *6)) (-4 *5 (-1016)) + (-5 *2 (-1 (-1116 *7) *7)) (-5 *1 (-1088 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-166 (-218)))) (-5 *2 (-1004)) + (-5 *1 (-729))))) (((*1 *2 *1) - (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) + (-12 (-4 *3 (-13 (-355) (-145))) + (-5 *2 (-619 (-2 (|:| -3352 (-745)) (|:| -2278 *4) (|:| |num| *4)))) + (-5 *1 (-391 *3 *4)) (-4 *4 (-1194 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) (((*1 *2 *1) - (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) + (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) + (-5 *1 (-575 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) + ((*1 *2 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821))))) +(((*1 *2 *2) (-12 (-5 *2 (-308 (-218))) (-5 *1 (-259))))) (((*1 *2 *1) - (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1106)) (-5 *2 (-737)) (-5 *1 (-112)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1054)) (-5 *1 (-924))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-923 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-923 *2 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-923 *3 *2)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-823)))) - ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-922))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-607 *3)) (-5 *1 (-921 *3)) (-4 *3 (-525))))) -(((*1 *2 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-525))))) -(((*1 *2 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-525))))) -(((*1 *1) (-4 *1 (-335))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-533) (-811) (-141))) + (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *5)) (-5 *1 (-854 *3 *4 *5)) + (-4 *3 (-1063)) (-4 *5 (-640 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-299)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-607 (-1117 *5))) - (|:| |prim| (-1117 *5)))) - (-5 *1 (-417 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-533) (-811) (-141))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-5 *1 (-1086 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *2 (-2 (|:| -2466 (-619 *6)) (|:| -1280 (-619 *6))))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2) + (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-821)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-308 (-218))) (-5 *1 (-259))))) +(((*1 *2 *3) + (-12 (-4 *4 (-299)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1117 *3)) (|:| |pol2| (-1117 *3)) - (|:| |prim| (-1117 *3)))) - (-5 *1 (-417 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-905 *5)) (-5 *4 (-1123)) (-4 *5 (-13 (-348) (-141))) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 *5)))) - (-5 *1 (-920 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) - (-4 *5 (-13 (-348) (-141))) + (-619 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-745)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-767)) (-4 *6 (-918 *4 *3 *5)) (-4 *4 (-443)) (-4 *5 (-821)) + (-5 *1 (-440 *4 *3 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-129)))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-958)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1058 *4)) (-4 *4 (-1172)) + (-5 *1 (-1056 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 *5)) (-4 *5 (-540)) (-5 *2 - (-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 *5))) - (|:| |prim| (-1117 *5)))) - (-5 *1 (-920 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-5 *5 (-1123)) - (-4 *6 (-13 (-348) (-141))) + (-2 (|:| -3352 (-745)) (|:| -1489 *5) (|:| |radicand| (-619 *5)))) + (-5 *1 (-312 *5)) (-5 *4 (-745)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-548))))) +(((*1 *1 *1) (-4 *1 (-236))) + ((*1 *1 *1) + (-12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-1524 (-12 (-5 *1 (-286 *2)) (-4 *2 (-355)) (-4 *2 (-1172))) + (-12 (-5 *1 (-286 *2)) (-4 *2 (-464)) (-4 *2 (-1172))))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-355))))) +(((*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 *6))) - (|:| |prim| (-1117 *6)))) - (-5 *1 (-920 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1123)) (-5 *1 (-556 *2)) (-4 *2 (-995 *3)) (-4 *2 (-348)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-348)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-596 *4 *2)) - (-4 *2 (-13 (-406 *4) (-960) (-1145))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1044 *2)) (-4 *2 (-13 (-406 *4) (-960) (-1145))) - (-4 *4 (-13 (-811) (-533))) (-5 *1 (-596 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-1123)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-919))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-878)) (-4 *5 (-533)) (-5 *2 (-653 *5)) - (-5 *1 (-916 *5 *3)) (-4 *3 (-623 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-913))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) (-4 *3 (-909 *7 *5 *6)) - (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| (-607 *3)))) - (-5 *1 (-912 *5 *6 *7 *3 *8)) (-5 *4 (-735)) - (-4 *8 - (-13 (-348) - (-10 -8 (-15 -3298 (*3 $)) (-15 -3297 (*3 $)) (-15 -4274 ($ *3)))))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) - (-4 *8 (-909 *7 *5 *6)) - (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| *3))) - (-5 *1 (-912 *5 *6 *7 *8 *3)) (-5 *4 (-735)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -3298 (*8 $)) (-15 -3297 (*8 $)) (-15 -4274 ($ *8)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-526))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) - (-4 *8 (-909 *7 *5 *6)) - (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *9) (|:| |radicand| *9))) - (-5 *1 (-912 *5 *6 *7 *8 *9)) (-5 *4 (-735)) - (-4 *9 - (-13 (-348) - (-10 -8 (-15 -3298 (*8 $)) (-15 -3297 (*8 $)) (-15 -4274 ($ *8)))))))) + (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) + (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) + (|:| |ub| (-619 (-814 (-218)))))) + (-5 *1 (-259))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *2) + (-12 (-4 *3 (-299)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1140))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-729))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-619 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *5 (-821)) + (-5 *1 (-440 *3 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-129)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1165 *5 *6 *7 *3)) + (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-294)))) + ((*1 *1 *1) (-4 *1 (-294))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-969 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-533)) (-4 *7 (-909 *3 *5 *6)) - (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *8) (|:| |radicand| *8))) - (-5 *1 (-912 *5 *6 *3 *7 *8)) (-5 *4 (-735)) - (-4 *8 - (-13 (-348) - (-10 -8 (-15 -3298 (*7 $)) (-15 -3297 (*7 $)) (-15 -4274 ($ *7)))))))) + (-12 (-5 *3 (-619 (-814 (-218)))) (-5 *4 (-218)) (-5 *2 (-619 *4)) + (-5 *1 (-259))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-4 *4 (-299)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-619 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-767)) (-4 *3 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) + (-5 *1 (-440 *4 *5 *6 *3))))) +(((*1 *1 *1) (-5 *1 (-218))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *1 *1) (-5 *1 (-371))) ((*1 *1) (-5 *1 (-371)))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1004)) (-4 *3 (-811)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2462 (-526)))) (-4 *1 (-406 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-849 *3)) (|:| -2462 (-849 *3)))) - (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) + (-4 *5 (-13 (-27) (-1157) (-422 *4))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) - (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2462 (-526)))) - (-5 *1 (-910 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) + (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-399 (-548))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-286 *3)) (-5 *5 (-399 (-548))) + (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-399 (-548)))) (-5 *4 (-286 *8)) + (-5 *5 (-1185 (-399 (-548)))) (-5 *6 (-399 (-548))) + (-4 *8 (-13 (-27) (-1157) (-422 *7))) + (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-399 (-548)))) + (-5 *7 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *8))) + (-4 *8 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-399 (-548))) (-4 *4 (-1016)) (-4 *1 (-1201 *4 *3)) + (-4 *3 (-1178 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *1 *1 *1) (-4 *1 (-464))) + ((*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-852)))) + ((*1 *1 *1) (-5 *1 (-940))) + ((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *6)))) + (-5 *4 (-995 (-814 (-548)))) (-5 *5 (-1135)) (-5 *7 (-399 (-548))) + (-4 *6 (-1016)) (-5 *2 (-832)) (-5 *1 (-575 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-409 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) + ((*1 *2 *2) + (-12 (-4 *3 (-299)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) + (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-619 (-112))) (-5 *5 (-663 (-218))) + (-5 *6 (-663 (-548))) (-5 *7 (-218)) (-5 *3 (-548)) (-5 *2 (-1004)) + (-5 *1 (-729))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-443)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-440 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1123)) (-4 *4 (-1004)) (-4 *4 (-811)) - (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-112)) (-4 *4 (-1004)) (-4 *4 (-811)) - (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1063)) (-4 *3 (-811)) - (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-849 *3)) (|:| -2462 (-735)))) - (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *2 (-2 (|:| |var| *5) (|:| -2462 (-735)))))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-185)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) + (-4 *5 (-13 (-27) (-1157) (-422 *4))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) - (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2462 (-526)))) - (-5 *1 (-910 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1063)) (-4 *3 (-811)) (-5 *2 (-607 *1)) - (-4 *1 (-406 *3)))) + (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-548)) (-4 *5 (-13 (-443) (-821) (-1007 *4) (-615 *4))) + (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-443) (-821) (-1007 *5) (-615 *5))) (-5 *5 (-548)) + (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-548))) + (-4 *7 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-548))) + (-4 *3 (-13 (-27) (-1157) (-422 *7))) + (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-548)) (-4 *4 (-1016)) (-4 *1 (-1180 *4 *3)) + (-4 *3 (-1209 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-308 (-371))) (-5 *1 (-297))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-745)) (-4 *5 (-443)) (-4 *5 (-821)) + (-4 *5 (-1007 (-548))) (-4 *5 (-540)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-422 *5)) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *5 (-591 $)) $)) + (-15 -2480 ((-1087 *5 (-591 $)) $)) + (-15 -3743 ($ (-1087 *5 (-591 $)))))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1016)) (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) + (-4 *5 (-231 *3 *2))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-168))) ((*1 *1 *1) (-4 *1 (-533))) + ((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-663 (-548))) (-5 *5 (-112)) (-5 *7 (-663 (-218))) + (-5 *3 (-548)) (-5 *6 (-218)) (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-443)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-440 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) + (-4 *5 (-13 (-27) (-1157) (-422 *4))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) - (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *3)) (-5 *1 (-910 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-811)) (-5 *2 (-607 *1)) - (-4 *1 (-406 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-745)) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-286 *3)) (-5 *5 (-745)) + (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-548))) (-5 *4 (-286 *6)) + (-4 *6 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-745))) + (-4 *7 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-745))) + (-4 *3 (-13 (-27) (-1157) (-422 *7))) + (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) - (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *3)) (-5 *1 (-910 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) + (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-399 (-548))) (-5 *1 (-575 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-921 (-218))) (-5 *2 (-218)) (-5 *1 (-297))))) (((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 *1)) (-4 *1 (-369 *3 *4)))) + (-12 (-5 *2 (-745)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) + (-14 *4 *2) (-4 *5 (-169)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-890)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-890)))) + ((*1 *2) + (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-890)))) + ((*1 *2 *3) + (-12 (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-5 *2 (-745)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-355)) + (-5 *2 (-745)) (-5 *1 (-641 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) + (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-745)) + (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-607 (-700 *3 *4))) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) - (-4 *4 (-691)))) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-745)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) + (-4 *3 (-661 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) - (-4 *1 (-909 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-311 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) - ((*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-607 (-735))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) - (-5 *2 (-735))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) + (-5 *2 (-745))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *1)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-663 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *4)) (-4 *4 (-1016)) (-4 *1 (-1085 *3 *4 *5 *6)) + (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *3 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-619 (-112))) (-5 *7 (-663 (-218))) + (-5 *8 (-663 (-548))) (-5 *3 (-548)) (-5 *4 (-218)) (-5 *5 (-112)) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) + (-5 *2 (-112)) (-5 *1 (-440 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) + (-15 -2480 ((-1087 *3 (-591 $)) $)) + (-15 -3743 ($ (-1087 *3 (-591 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) + (-15 -2480 ((-1087 *3 (-591 $)) $)) + (-15 -3743 ($ (-1087 *3 (-591 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) + (-15 -2480 ((-1087 *4 (-591 $)) $)) + (-15 -3743 ($ (-1087 *4 (-591 $))))))) + (-4 *4 (-540)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-591 *2))) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) + (-15 -2480 ((-1087 *4 (-591 $)) $)) + (-15 -3743 ($ (-1087 *4 (-591 $))))))) + (-4 *4 (-540)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-735)))) - ((*1 *2 *1) - (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-735))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) - (-4 *1 (-909 *3 *4 *5))))) + (-12 (-5 *3 (-1 (-112) *7 (-619 *7))) (-4 *1 (-1165 *4 *5 *6 *7)) + (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) + ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 (-218))) (-5 *2 (-308 (-371))) (-5 *1 (-297))))) (((*1 *2 *1) - (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)) (-4 *2 (-436)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-1181 (-526))) (-5 *2 (-607 (-526))) - (-5 *1 (-469 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-436)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) - (-4 *3 (-436))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-526)) (-4 *5 (-809)) (-4 *5 (-348)) - (-5 *2 (-735)) (-5 *1 (-904 *5 *6)) (-4 *6 (-1181 *5))))) + (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) + (-4 *2 (-231 *3 *4))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) + (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4328)) (-4 *1 (-119 *3)) + (-4 *3 (-1172)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4328)) (-4 *1 (-119 *3)) + (-4 *3 (-1172)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-206 *4 *2)) (-14 *4 (-890)) + (-4 *2 (-1063)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) + (-4 *2 (-1172)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1135)) (-5 *1 (-608)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1185 (-548))) (|has| *1 (-6 -4328)) (-4 *1 (-625 *2)) + (-4 *2 (-1172)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-619 (-548))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4328)) (-4 *1 (-979 *2)) + (-4 *2 (-1172)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) + (-4 *2 (-1172)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *3)) + (-4 *3 (-1172)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) + (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-548)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-440 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-355) (-294) + (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) + (-15 -2480 ((-1087 *3 (-591 $)) $)) + (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1165 *5 *6 *7 *8)) (-4 *5 (-540)) + (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-129)) (-5 *2 (-1082))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-809)) (-4 *4 (-348)) (-5 *2 (-735)) - (-5 *1 (-904 *4 *5)) (-4 *5 (-1181 *4))))) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) + (|:| |expense| (-371)) (|:| |accuracy| (-371)) + (|:| |intermediateResults| (-371)))) + (-5 *2 (-1004)) (-5 *1 (-297))))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 *2)) (-4 *4 (-1194 *2)) + (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) + (-5 *1 (-489 *2 *4 *5)) (-4 *5 (-401 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) + (-4 *5 (-231 *3 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-663 (-218))) (-5 *5 (-112)) (-5 *6 (-218)) + (-5 *7 (-663 (-548))) + (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) + (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-128)) (-5 *2 (-1082))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-4 *2 (-348)) (-4 *2 (-809)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1181 *2))))) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-218))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3094 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1004)) (-5 *1 (-297))))) (((*1 *2 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1181 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-905 *5)) (-4 *5 (-1004)) (-5 *2 (-233 *4 *5)) - (-5 *1 (-903 *4 *5)) (-14 *4 (-607 (-1123)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) - (-5 *2 (-905 *5)) (-5 *1 (-903 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-464 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) - (-5 *2 (-905 *5)) (-5 *1 (-903 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-905 *5)) (-4 *5 (-1004)) (-5 *2 (-464 *4 *5)) - (-5 *1 (-903 *4 *5)) (-14 *4 (-607 (-1123)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-464 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) - (-5 *2 (-233 *4 *5)) (-5 *1 (-903 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) - (-5 *2 (-464 *4 *5)) (-5 *1 (-903 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) - ((*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *3 (-1117 (-526))) (-5 *2 (-526)) (-5 *1 (-901))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) - ((*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-178)) (-5 *3 (-526)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-163)))) - ((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) - ((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) - ((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-538)) (-5 *3 (-526)))) - ((*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-849 *6))) - (-5 *5 (-1 (-847 *6 *8) *8 (-849 *6) (-847 *6 *8))) (-4 *6 (-1052)) - (-4 *8 (-13 (-1004) (-584 (-849 *6)) (-995 *7))) (-5 *2 (-847 *6 *8)) - (-4 *7 (-13 (-1004) (-811))) (-5 *1 (-900 *6 *7 *8))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-847 *5 *3)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *3 (-157 *6)) - (-4 (-905 *6) (-845 *5)) (-4 *6 (-13 (-845 *5) (-163))) - (-5 *1 (-169 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-847 *4 *1)) (-5 *3 (-849 *4)) (-4 *1 (-845 *4)) - (-4 *4 (-1052)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-847 *5 *6)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) - (-4 *6 (-13 (-1052) (-995 *3))) (-4 *3 (-845 *5)) (-5 *1 (-890 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) - (-4 *3 (-13 (-406 *6) (-584 *4) (-845 *5) (-995 (-581 $)))) - (-5 *4 (-849 *5)) (-4 *6 (-13 (-533) (-811) (-845 *5))) - (-5 *1 (-891 *5 *6 *3)))) + (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-355)) + (-5 *1 (-511 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) + (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) + ((*1 *2 *3) + (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-169)) + (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) + (-4 *5 (-231 *3 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-663 (-218))) (-5 *6 (-112)) (-5 *7 (-663 (-548))) + (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS)))) + (-5 *3 (-548)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-355)) (-4 *5 (-1194 *4)) (-5 *2 (-1223)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1194 (-399 *5))) (-14 *7 *6)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-38 (-399 (-548)))) + (-4 *2 (-169))))) +(((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-847 (-526) *3)) (-5 *4 (-849 (-526))) (-4 *3 (-525)) - (-5 *1 (-892 *3)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-57 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (|has| *1 (-6 -4327)) + (-4 *1 (-149 *2)) (-4 *2 (-1172)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) + (-4 *2 (-1172)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) + (-4 *2 (-1172)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-5 *2 (-2 (|:| -2802 (-1131 *4)) (|:| |deg| (-890)))) + (-5 *1 (-214 *4 *5)) (-5 *3 (-1131 *4)) (-4 *5 (-13 (-540) (-821))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-847 *5 *6)) (-5 *3 (-581 *6)) (-4 *5 (-1052)) - (-4 *6 (-13 (-811) (-995 (-581 $)) (-584 *4) (-845 *5))) (-5 *4 (-849 *5)) - (-5 *1 (-893 *5 *6)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-745)) + (-4 *6 (-1172)) (-4 *2 (-1172)) (-5 *1 (-232 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-169)) (-5 *1 (-281 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1194 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-308 *2)) (-4 *2 (-540)) (-4 *2 (-821)))) + ((*1 *1 *1) + (-12 (-4 *1 (-327 *2 *3 *4 *5)) (-4 *2 (-355)) (-4 *3 (-1194 *2)) + (-4 *4 (-1194 (-399 *3))) (-4 *5 (-334 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-844 *5 *6 *3)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) - (-4 *6 (-845 *5)) (-4 *3 (-631 *6)) (-5 *1 (-894 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-847 *6 *3) *8 (-849 *6) (-847 *6 *3))) (-4 *8 (-811)) - (-5 *2 (-847 *6 *3)) (-5 *4 (-849 *6)) (-4 *6 (-1052)) - (-4 *3 (-13 (-909 *9 *7 *8) (-584 *4))) (-4 *7 (-757)) - (-4 *9 (-13 (-1004) (-811) (-845 *6))) (-5 *1 (-895 *6 *7 *8 *9 *3)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1172)) (-4 *2 (-1172)) + (-5 *1 (-363 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) - (-4 *3 (-13 (-909 *8 *6 *7) (-584 *4))) (-5 *4 (-849 *5)) (-4 *7 (-845 *5)) - (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-13 (-1004) (-811) (-845 *5))) - (-5 *1 (-895 *5 *6 *7 *8 *3)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1063)) (-4 *2 (-1063)) + (-5 *1 (-415 *5 *4 *2 *6)) (-4 *4 (-417 *5)) (-4 *6 (-417 *2)))) + ((*1 *1 *1) (-5 *1 (-485))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) (-4 *3 (-950 *6)) - (-4 *6 (-13 (-533) (-845 *5) (-584 *4))) (-5 *4 (-849 *5)) - (-5 *1 (-898 *5 *6 *3)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-617 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-847 *5 (-1123))) (-5 *3 (-1123)) (-5 *4 (-849 *5)) - (-4 *5 (-1052)) (-5 *1 (-899 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-607 (-849 *7))) (-5 *5 (-1 *9 (-607 *9))) - (-5 *6 (-1 (-847 *7 *9) *9 (-849 *7) (-847 *7 *9))) (-4 *7 (-1052)) - (-4 *9 (-13 (-1004) (-584 (-849 *7)) (-995 *8))) (-5 *2 (-847 *7 *9)) - (-5 *3 (-607 *9)) (-4 *8 (-13 (-1004) (-811))) (-5 *1 (-900 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1052) (-995 *5))) (-4 *5 (-845 *4)) - (-4 *4 (-1052)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-890 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) - ((*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) - ((*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-112)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-1106)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-811)) (-5 *1 (-889 *4 *2)) (-4 *2 (-406 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-607 (-1041 (-211)))) - (-5 *1 (-887))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) - (-5 *1 (-884)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) - (-5 *1 (-884)))) - ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) - (-5 *1 (-886)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) - (-5 *1 (-886))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-607 (-1 (-211) (-211)))) (-5 *3 (-1041 (-211))) - (-5 *1 (-884)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-607 (-1 (-211) (-211)))) (-5 *3 (-1041 (-211))) - (-5 *1 (-884)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) + (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) + (-4 *9 (-365 *2)) (-5 *1 (-659 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-661 *5 *6 *7)) (-4 *10 (-661 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) - (-4 *3 (-584 (-515))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) - (-4 *3 (-584 (-515))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886))))) -(((*1 *2 *1) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *2 *1) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-211)))) (-5 *1 (-886))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-884)))) + (-12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) - (-4 *3 (-584 (-515))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) - ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) - ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) - ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) - ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) - ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) - ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-111)) - (-5 *1 (-883 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-111)) - (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-292) (-141))) (-4 *4 (-13 (-811) (-584 (-1123)))) - (-4 *5 (-757)) (-5 *1 (-883 *3 *4 *5 *2)) (-4 *2 (-909 *3 *5 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) - (-5 *4 (-653 *12)) (-5 *5 (-607 (-392 (-905 *9)))) (-5 *6 (-607 (-607 *12))) - (-5 *7 (-735)) (-5 *8 (-526)) (-4 *9 (-13 (-292) (-141))) - (-4 *12 (-909 *9 *11 *10)) (-4 *10 (-13 (-811) (-584 (-1123)))) - (-4 *11 (-757)) - (-5 *2 - (-2 (|:| |eqzro| (-607 *12)) (|:| |neqzro| (-607 *12)) - (|:| |wcond| (-607 (-905 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *9)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *9))))))))) - (-5 *1 (-883 *9 *10 *11 *12))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *7)) (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) - (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) - (-4 *6 (-757)) (-5 *1 (-883 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-735)) (-4 *8 (-909 *5 *7 *6)) - (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) - (-4 *7 (-757)) - (-5 *2 - (-607 - (-2 (|:| |det| *8) (|:| |rows| (-607 (-526))) - (|:| |cols| (-607 (-526)))))) - (-5 *1 (-883 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-607 *8))) (-5 *3 (-607 *8)) (-4 *8 (-909 *5 *7 *6)) - (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) - (-4 *7 (-757)) (-5 *2 (-111)) (-5 *1 (-883 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) - (-4 *6 (-757)) (-5 *2 (-607 (-607 (-526)))) (-5 *1 (-883 *4 *5 *6 *7)) - (-5 *3 (-526)) (-4 *7 (-909 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 (-607 *6))) (-4 *6 (-909 *3 *5 *4)) - (-4 *3 (-13 (-292) (-141))) (-4 *4 (-13 (-811) (-584 (-1123)))) - (-4 *5 (-757)) (-5 *1 (-883 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-607 - (-2 (|:| -3406 (-735)) - (|:| |eqns| - (-607 - (-2 (|:| |det| *7) (|:| |rows| (-607 (-526))) - (|:| |cols| (-607 (-526)))))) - (|:| |fgb| (-607 *7))))) - (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-735)) - (-5 *1 (-883 *4 *5 *6 *7))))) + (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-355)) + (-4 *3 (-169)) (-4 *1 (-699 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-926 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) + (-14 *6 (-619 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1016)) (-4 *2 (-1016)) + (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-231 *6 *7)) + (-4 *9 (-231 *5 *7)) (-4 *10 (-231 *6 *2)) (-4 *11 (-231 *5 *2)) + (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *12 (-1019 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-1114 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1165 *5 *6 *7 *2)) (-4 *5 (-540)) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *2 (-1030 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-1217 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) (-12 (-5 *3 - (-607 - (-2 (|:| -3406 (-735)) - (|:| |eqns| - (-607 - (-2 (|:| |det| *7) (|:| |rows| (-607 (-526))) - (|:| |cols| (-607 (-526)))))) - (|:| |fgb| (-607 *7))))) - (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-735)) - (-5 *1 (-883 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) - (-4 *6 (-757)) (-5 *2 (-607 *3)) (-5 *1 (-883 *4 *5 *6 *3)) - (-4 *3 (-909 *4 *6 *5))))) -(((*1 *2 *3) + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *2 (-1004)) (-5 *1 (-297)))) + ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1676 (-653 (-392 (-905 *4)))) (|:| |vec| (-607 (-392 (-905 *4)))) - (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) - (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) - (-4 *6 (-757)) - (-5 *2 - (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *4))))))) - (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *4))))))) - (-5 *3 (-607 *7)) (-4 *4 (-13 (-292) (-141))) (-4 *7 (-909 *4 *6 *5)) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) - (-5 *1 (-883 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) - (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) - (-5 *2 - (-607 - (-2 (|:| -3406 (-735)) - (|:| |eqns| - (-607 - (-2 (|:| |det| *8) (|:| |rows| (-607 (-526))) - (|:| |cols| (-607 (-526)))))) - (|:| |fgb| (-607 *8))))) - (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-735))))) + (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) + (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) + (-5 *2 (-1004)) (-5 *1 (-297))))) +(((*1 *2 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) + (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) + ((*1 *2 *3) + (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-169)) + (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) + (-4 *5 (-231 *3 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-112)) + (-5 *2 (-1004)) (-5 *1 (-728))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) - (-4 *6 (-757)) (-4 *7 (-909 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-607 *7)) (|:| |n0| (-607 *7)))) - (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-292) (-141))) (-4 *2 (-909 *4 *6 *5)) - (-5 *1 (-883 *4 *5 *6 *2)) (-4 *5 (-13 (-811) (-584 (-1123)))) - (-4 *6 (-757))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) - (-5 *2 (-607 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)) - (-4 *7 (-909 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) - (-4 *6 (-757)) (-5 *2 (-392 (-905 *4))) (-5 *1 (-883 *4 *5 *6 *3)) - (-4 *3 (-909 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) - (-5 *2 (-653 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) - (-5 *2 (-607 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-653 *11)) (-5 *4 (-607 (-392 (-905 *8)))) (-5 *5 (-735)) - (-5 *6 (-1106)) (-4 *8 (-13 (-292) (-141))) (-4 *11 (-909 *8 *10 *9)) - (-4 *9 (-13 (-811) (-584 (-1123)))) (-4 *10 (-757)) - (-5 *2 - (-2 - (|:| |rgl| - (-607 - (-2 (|:| |eqzro| (-607 *11)) (|:| |neqzro| (-607 *11)) - (|:| |wcond| (-607 (-905 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *8)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *8)))))))))) - (|:| |rgsz| (-526)))) - (-5 *1 (-883 *8 *9 *10 *11)) (-5 *7 (-526))))) + (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) + (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) + (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) + (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) + (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) - (-5 *2 - (-607 - (-2 (|:| |eqzro| (-607 *7)) (|:| |neqzro| (-607 *7)) - (|:| |wcond| (-607 (-905 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *4)))))))))) - (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) (((*1 *2 *3 *4) + (-12 (-5 *4 (-591 *6)) (-4 *6 (-13 (-422 *5) (-27) (-1157))) + (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 (-1131 (-399 (-1131 *6)))) (-5 *1 (-544 *5 *6 *7)) + (-5 *3 (-1131 *6)) (-4 *7 (-1063)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1131 *11)) (-5 *6 (-619 *10)) + (-5 *7 (-619 (-745))) (-5 *8 (-619 *11)) (-4 *10 (-821)) + (-4 *11 (-299)) (-4 *9 (-767)) (-4 *5 (-918 *11 *9 *10)) + (-5 *2 (-619 (-1131 *5))) (-5 *1 (-717 *9 *10 *11 *5)) + (-5 *3 (-1131 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-918 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) + (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-14 *6 (-619 *2))))) +(((*1 *2 *3) (-12 (-5 *3 - (-607 - (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) - (|:| |wcond| (-607 (-905 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) - (-5 *4 (-1106)) (-4 *5 (-13 (-292) (-141))) (-4 *8 (-909 *5 *7 *6)) - (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-526)) - (-5 *1 (-883 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) - (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) - (-5 *2 - (-607 - (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) - (|:| |wcond| (-607 (-905 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) - (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-607 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-607 (-1123))) (-4 *8 (-909 *5 *7 *6)) - (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) - (-4 *7 (-757)) - (-5 *2 - (-607 - (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) - (|:| |wcond| (-607 (-905 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) - (-5 *1 (-883 *5 *6 *7 *8)))) + (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) + (-5 *2 (-619 (-1135))) (-5 *1 (-259)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) - (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) - (-5 *2 - (-607 - (-2 (|:| |eqzro| (-607 *7)) (|:| |neqzro| (-607 *7)) - (|:| |wcond| (-607 (-905 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *4)))))))))) - (-5 *1 (-883 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *9)) (-5 *5 (-878)) (-4 *9 (-909 *6 *8 *7)) - (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) - (-4 *8 (-757)) - (-5 *2 - (-607 - (-2 (|:| |eqzro| (-607 *9)) (|:| |neqzro| (-607 *9)) - (|:| |wcond| (-607 (-905 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *6)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *6)))))))))) - (-5 *1 (-883 *6 *7 *8 *9)) (-5 *4 (-607 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 (-1123))) (-5 *5 (-878)) - (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) - (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) - (-5 *2 - (-607 - (-2 (|:| |eqzro| (-607 *9)) (|:| |neqzro| (-607 *9)) - (|:| |wcond| (-607 (-905 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *6)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *6)))))))))) - (-5 *1 (-883 *6 *7 *8 *9)))) + (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-619 *5)) + (-5 *1 (-313 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-331 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-379)))) + ((*1 *2 *1) + (-12 (-4 *1 (-422 *3)) (-4 *3 (-821)) (-5 *2 (-619 (-1135))))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-619 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *5)) + (-5 *1 (-919 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1065 (-1135))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) + ((*1 *2 *1) + (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-4 *5 (-821)) (-5 *2 (-619 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-619 (-1135))) + (-5 *1 (-1012 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1118)) (-5 *1 (-297))))) +(((*1 *1 *1) + (-12 (-4 *1 (-245 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) + (-4 *4 (-258 *3)) (-4 *5 (-767))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-238 *3))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1)))) + (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) + (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) + (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1131 (-399 (-1131 *2)))) (-5 *4 (-591 *2)) + (-4 *2 (-13 (-422 *5) (-27) (-1157))) + (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *1 (-544 *5 *2 *6)) (-4 *6 (-1063)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1131 *1)) (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *3 (-821)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1131 *4)) (-4 *4 (-1016)) (-4 *1 (-918 *4 *5 *3)) + (-4 *5 (-767)) (-4 *3 (-821)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-878)) (-4 *8 (-909 *5 *7 *6)) - (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) - (-4 *7 (-757)) - (-5 *2 - (-607 - (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) - (|:| |wcond| (-607 (-905 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) - (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) - (-5 *1 (-883 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 *9)) (-5 *5 (-1106)) - (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) - (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) - (-5 *1 (-883 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 (-1123))) (-5 *5 (-1106)) - (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) - (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) - (-5 *1 (-883 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-1106)) (-4 *8 (-909 *5 *7 *6)) - (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) - (-4 *7 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-653 *10)) (-5 *4 (-607 *10)) (-5 *5 (-878)) (-5 *6 (-1106)) - (-4 *10 (-909 *7 *9 *8)) (-4 *7 (-13 (-292) (-141))) - (-4 *8 (-13 (-811) (-584 (-1123)))) (-4 *9 (-757)) (-5 *2 (-526)) - (-5 *1 (-883 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-653 *10)) (-5 *4 (-607 (-1123))) (-5 *5 (-878)) (-5 *6 (-1106)) - (-4 *10 (-909 *7 *9 *8)) (-4 *7 (-13 (-292) (-141))) - (-4 *8 (-13 (-811) (-584 (-1123)))) (-4 *9 (-757)) (-5 *2 (-526)) - (-5 *1 (-883 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *9)) (-5 *4 (-878)) (-5 *5 (-1106)) (-4 *9 (-909 *6 *8 *7)) - (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) - (-4 *8 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-348)) (-4 *2 (-1181 *4)) - (-5 *1 (-882 *4 *2))))) + (-12 (-5 *3 (-399 (-1131 *2))) (-4 *5 (-767)) (-4 *4 (-821)) + (-4 *6 (-1016)) + (-4 *2 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))) + (-5 *1 (-919 *5 *4 *6 *7 *2)) (-4 *7 (-918 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-1131 (-399 (-921 *5))))) (-5 *4 (-1135)) + (-5 *2 (-399 (-921 *5))) (-5 *1 (-1012 *5)) (-4 *5 (-540))))) +(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-4 *1 (-880)) (-5 *2 (-2 (|:| -4270 (-607 *1)) (|:| -2470 *1))) - (-5 *3 (-607 *1))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-880))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-607 (-905 *4))) (-5 *3 (-607 (-1123))) (-4 *4 (-436)) - (-5 *1 (-877 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-607 (-905 *4))) (-5 *3 (-607 (-1123))) (-4 *4 (-436)) - (-5 *1 (-877 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-878))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *2)) - (-4 *2 (-909 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *6)))) + (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-185)))) ((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *6 *4 *5)) (-5 *1 (-875 *4 *5 *6 *2)) - (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-390 *2)) (-4 *2 (-292)) (-5 *1 (-873 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-141))) - (-5 *2 (-50)) (-5 *1 (-874 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-390 (-905 *6))) (-5 *5 (-1123)) (-5 *3 (-905 *6)) - (-4 *6 (-13 (-292) (-141))) (-5 *2 (-50)) (-5 *1 (-874 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-390 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292))))) -(((*1 *2 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-873 *3)) (-4 *3 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-873 *3)) (-4 *3 (-292))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292))))) -(((*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292))))) + (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-292)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-297))))) +(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2)))) + (-5 *2 (-1004)) (-5 *1 (-728))))) (((*1 *2 *2) - (-12 (-4 *3 (-1181 (-392 (-526)))) (-5 *1 (-872 *3 *2)) - (-4 *2 (-1181 (-392 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *3)) - (-4 *3 (-1181 (-392 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))))) - (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *5)) - (-4 *5 (-1181 (-392 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1181 (-392 (-526)))) - (-5 *2 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526)))) (-5 *1 (-872 *3 *4)) - (-4 *4 (-1181 (-392 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *3)) - (-4 *3 (-1181 (-392 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-526)) (-4 *4 (-1181 (-392 *3))) (-5 *2 (-878)) - (-5 *1 (-872 *4 *5)) (-4 *5 (-1181 (-392 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) - (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) - (-4 *4 (-13 (-811) (-533) (-995 (-526)))) - (-5 *2 (-2 (|:| -4090 (-735)) (|:| -2444 *8))) - (-5 *1 (-870 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) - (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) - (-4 *6 (-327 (-392 (-526)) *4 *5)) - (-5 *2 (-2 (|:| -4090 (-735)) (|:| -2444 *6))) (-5 *1 (-871 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1181 *5)) - (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) - (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-111)) - (-5 *1 (-870 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) (-4 *4 (-1181 (-392 (-526)))) - (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-111)) - (-5 *1 (-871 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-436)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) - (-4 *5 (-869)) (-5 *1 (-441 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-869))))) -(((*1 *2 *3) - (-12 (-5 *2 (-390 (-1117 *1))) (-5 *1 (-299 *4)) (-5 *3 (-1117 *1)) - (-4 *4 (-436)) (-4 *4 (-533)) (-4 *4 (-811)))) - ((*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-390 (-1117 *1))) (-5 *1 (-299 *4)) (-5 *3 (-1117 *1)) - (-4 *4 (-436)) (-4 *4 (-533)) (-4 *4 (-811)))) - ((*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 (-1117 *5))) (-5 *3 (-1117 *5)) (-4 *5 (-157 *4)) - (-4 *4 (-525)) (-5 *1 (-143 *4 *5)))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-299)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-438 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-1181 *4)) - (-4 *4 (-335)) (-5 *1 (-343 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 (-1117 (-526)))) (-5 *3 (-1117 (-526))) - (-5 *1 (-548)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 (-1117 *1))) (-5 *3 (-1117 *1)) (-4 *1 (-869))))) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-438 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-438 *4 *5 *6 *7))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-540)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-355)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) + (-4 *3 (-823 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-619 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) + (-4 *2 (-355)) (-14 *5 (-962 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-688 *5 *6 *7)) (-4 *5 (-821)) + (-4 *6 (-231 (-3643 *4) (-745))) + (-14 *7 + (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) + (-2 (|:| -3337 *5) (|:| -3352 *6)))) + (-14 *4 (-619 (-1135))) (-4 *2 (-169)) + (-5 *1 (-452 *4 *2 *5 *6 *7 *8)) (-4 *8 (-918 *2 *6 (-834 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-499 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-548)) (-4 *2 (-540)) (-5 *1 (-599 *2 *4)) + (-4 *4 (-1194 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-710 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-701)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) + (-4 *4 (-1016)) (-4 *5 (-821)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) + (-4 *2 (-821)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) + (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *2 (-821)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 *5)) (-4 *1 (-942 *4 *5 *6)) + (-4 *4 (-1016)) (-4 *5 (-766)) (-4 *6 (-821)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-942 *4 *3 *2)) (-4 *4 (-1016)) (-4 *3 (-766)) + (-4 *2 (-821))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-653 *1)) (-4 *1 (-335)) (-5 *2 (-1205 *1)))) + (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-185)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-653 *1)) (-4 *1 (-139)) (-4 *1 (-869)) - (-5 *2 (-1205 *1))))) -(((*1 *1 *1) (|partial| -4 *1 (-139))) ((*1 *1 *1) (-4 *1 (-335))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-139)) (-4 *1 (-869))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-811)) (-4 *5 (-869)) (-4 *6 (-757)) - (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-390 (-1117 *8))) (-5 *1 (-866 *5 *6 *7 *8)) - (-5 *4 (-1117 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) - (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5))))) -(((*1 *2) - (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-869)) (-5 *1 (-441 *3 *4 *2 *5)) - (-4 *5 (-909 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-869)) (-5 *1 (-866 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-869)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) - (-5 *2 (-390 (-1117 *7))) (-5 *1 (-866 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) + (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-292)))) ((*1 *2 *3) - (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) - (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5))))) + (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-297))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1063))))) (((*1 *2 *3) - (-12 (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) - (-5 *2 (-390 (-1117 *7))) (-5 *1 (-866 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) - (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5))))) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-443)) (-4 *4 (-794)) + (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) + (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1)))) + (-5 *2 (-1004)) (-5 *1 (-728))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 (-1117 *7))) (-5 *3 (-1117 *7)) - (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) - (-5 *1 (-866 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 (-1117 *5))) (-5 *3 (-1117 *5)) - (-4 *5 (-1181 *4)) (-4 *4 (-869)) (-5 *1 (-867 *4 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-607 (-1117 *7))) (-5 *3 (-1117 *7)) - (-4 *7 (-909 *5 *6 *4)) (-4 *5 (-869)) (-4 *6 (-757)) (-4 *4 (-811)) - (-5 *1 (-866 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *6)) - (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) ((*1 *1) (-4 *1 (-525))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) - ((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-607 (-735)))) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-861 *3))) (-4 *3 (-1052)) (-5 *1 (-864 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1052)) (-5 *2 (-1048 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1052)) (-5 *2 (-1048 (-607 *4))) (-5 *1 (-864 *4)) - (-5 *3 (-607 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1052)) (-5 *2 (-1048 (-1048 *4))) (-5 *1 (-864 *4)) - (-5 *3 (-1048 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1048 (-1048 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-607 (-735))) - (-5 *1 (-864 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-607 (-735))) - (-5 *1 (-864 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1052)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-863 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-4 *1 (-863 *3))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-299)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-438 *4 *5 *6 *2))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-548)) (-4 *2 (-422 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1007 *4)) (-4 *3 (-13 (-821) (-540)))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-355)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) + (-5 *1 (-741 *3 *4)) (-4 *3 (-683 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-355)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) + (-4 *3 (-823 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1102 *3 *4)) (-14 *3 (-890)) (-4 *4 (-355)) + (-5 *1 (-962 *3 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-1090 *4 *2)) (-14 *4 (-878)) - (-4 *2 (-13 (-1004) (-10 -7 (-6 (-4312 "*"))))) (-5 *1 (-862 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-607 *3)) (|:| |image| (-607 *3)))) - (-5 *1 (-861 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-861 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 (-526))) (-4 *1 (-283)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-861 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 (-526))) (-4 *1 (-283)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-861 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1048 *3)) (-5 *1 (-861 *3)) (-4 *3 (-353)) (-4 *3 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-861 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *1 (-217 *4)) (-4 *4 (-1004)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-217 *3)) (-4 *3 (-1004)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-735)))) - ((*1 *1 *1) (-4 *1 (-219))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)) - (-4 *4 (-1181 *3)))) + (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-185)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-292)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-297))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-443)) (-4 *4 (-794)) + (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-548)) (-5 *5 (-112)) (-5 *6 (-663 (-218))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) + (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-625 *3)) (-4 *3 (-1172))))) +(((*1 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-437)) (-5 *3 (-548))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-218))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-348) (-141))) (-5 *1 (-384 *2 *3)) (-4 *3 (-1181 *2)))) - ((*1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 (-735))) (-4 *1 (-859 *4)) - (-4 *4 (-1052)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-859 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-859 *3)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-859 *2)) (-4 *2 (-1052))))) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *1 *1 *1) (-5 *1 (-371))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-733)) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) - (-5 *1 (-541)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-733)) (-5 *4 (-1016)) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) - (-5 *1 (-541)))) + (-12 (-5 *3 (-619 *5)) (-4 *5 (-422 *4)) (-4 *4 (-13 (-821) (-540))) + (-5 *2 (-832)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *10)) + (-5 *1 (-600 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1036 *5 *6 *7 *8)) + (-4 *10 (-1072 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-751)) (-5 *3 (-1016)) - (-5 *4 - (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) - (|:| |extra| (-992)))))) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) + (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) + (-5 *1 (-604 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-751)) (-5 *3 (-1016)) - (-5 *4 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) + (-14 *6 (-619 (-1135))) (-5 *2 - (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) - (|:| |extra| (-992)))))) + (-619 (-1106 *5 (-520 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) + (-5 *1 (-604 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) + (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) + (-5 *1 (-1013 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-764)) (-5 *3 (-1016)) - (-5 *4 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-772)) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))))) - (-5 *1 (-769)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-1016)) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))))) - (-5 *1 (-769)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-800)) (-5 *3 (-1016)) - (-5 *4 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) - (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-800)) (-5 *3 (-1016)) - (-5 *4 - (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) - (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) - (|:| |ub| (-607 (-803 (-211)))))) - (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1165 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-540)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-540)) (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) + (-4 *3 (-823 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-185)))) ((*1 *2 *3) - (-12 (-5 *3 (-802)) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))))) - (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-802)) (-5 *4 (-1016)) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))))) - (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-854)) (-5 *3 (-1016)) - (-5 *4 - (-2 (|:| |pde| (-607 (-299 (-211)))) - (|:| |constraints| - (-607 - (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) - (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) - (|:| |dFinish| (-653 (-211)))))) - (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) - (|:| |tol| (-211)))) - (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-857)) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))))) - (-5 *1 (-856)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1016)) - (-5 *2 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))))) - (-5 *1 (-856))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-348)) (-5 *1 (-855 *2 *4)) (-4 *2 (-1181 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-348)) (-5 *1 (-855 *2 *3)) (-4 *2 (-1181 *3))))) + (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-292)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-297))))) (((*1 *2 *3) - (-12 (-4 *1 (-854)) - (-5 *3 - (-2 (|:| |pde| (-607 (-299 (-211)))) - (|:| |constraints| - (-607 - (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) - (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) - (|:| |dFinish| (-653 (-211)))))) - (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) - (|:| |tol| (-211)))) - (-5 *2 (-992))))) -(((*1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-515))) ((*1 *1) (-4 *1 (-687))) ((*1 *1) (-4 *1 (-691))) - ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) - ((*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811))))) -(((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) - (-5 *2 (-607 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) + (-5 *2 (-548)) (-5 *1 (-1077 *4 *5))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) + ((*1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-619 (-2 (|:| -2466 *1) (|:| -1280 (-619 *7))))) + (-5 *3 (-619 *7)) (-4 *1 (-1165 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-540)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-540)) (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) + (-4 *3 (-823 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-540)))) + ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1118)) (-5 *1 (-297))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) + (-5 *2 (-548)) (-5 *1 (-1077 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-153)))) + ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-469)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-572)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602)))) ((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |k| (-852 *3)) (|:| |c| *4)))) - (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) - (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-637 *3))) (-5 *1 (-852 *3)) (-4 *3 (-811))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *3) - (-12 (-5 *3 (-50)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1159)))) + (-12 (-4 *3 (-1063)) + (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) + (-5 *1 (-1039 *3 *4 *2)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-852 *3)) (-4 *3 (-811))))) -(((*1 *2 *3) - (-12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-607 *5)) (-5 *1 (-850 *4 *5)) - (-4 *5 (-1159))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-850 *4 *3)) (-4 *3 (-1159))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-111)) - (-5 *1 (-847 *4 *5)) (-4 *5 (-1052)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-850 *5 *3)) - (-4 *3 (-1159)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-1159)) - (-5 *2 (-111)) (-5 *1 (-850 *5 *6))))) + (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1063))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-1 (-111) *5)) - (-5 *1 (-850 *4 *5)) (-4 *5 (-1159))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-515))) ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 (-849 *3))))) - (-5 *1 (-849 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-112)) (-5 *2 (-607 (-849 *4))) (-5 *1 (-849 *4)) - (-4 *4 (-1052))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-299 (-211))) (-5 *1 (-288)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-849 *3)) (|:| |den| (-849 *3)))) - (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-111)) (-5 *1 (-849 *4)) (-4 *4 (-1052))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-50)) (-5 *1 (-849 *4)) (-4 *4 (-1052))))) + (-12 (-5 *2 (-548)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-548)) (-4 *1 (-1057 *3)) (-4 *3 (-1172))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50)))) - (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) (((*1 *2 *1) - (-12 (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-844 *3 *4 *5)) (-4 *3 (-1052)) - (-4 *5 (-631 *4)))) + (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 *4)))) + (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) -(((*1 *1) - (-12 (-4 *3 (-1052)) (-5 *1 (-844 *2 *3 *4)) (-4 *2 (-1052)) - (-4 *4 (-631 *3)))) - ((*1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-4 *2 (-1052)) - (-5 *1 (-847 *4 *2))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-4 *6 (-845 *5)) (-5 *2 (-844 *5 *6 (-607 *6))) - (-5 *1 (-846 *5 *6 *4)) (-5 *3 (-607 *6)) (-4 *4 (-584 (-849 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-5 *2 (-607 (-278 *3))) (-5 *1 (-846 *5 *3 *4)) - (-4 *3 (-995 (-1123))) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-5 *2 (-607 (-278 (-905 *3)))) (-5 *1 (-846 *5 *3 *4)) - (-4 *3 (-1004)) (-3636 (-4 *3 (-995 (-1123)))) (-4 *3 (-845 *5)) - (-4 *4 (-584 (-849 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-5 *2 (-847 *5 *3)) (-5 *1 (-846 *5 *3 *4)) - (-3636 (-4 *3 (-995 (-1123)))) (-3636 (-4 *3 (-1004))) (-4 *3 (-845 *5)) - (-4 *4 (-584 (-849 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-111)) (-5 *1 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1123)) (-5 *2 (-111)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1123)) (-5 *2 (-111)) (-5 *1 (-581 *4)) (-4 *4 (-811)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-112)) (-5 *2 (-111)) (-5 *1 (-581 *4)) (-4 *4 (-811)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-846 *5 *3 *4)) (-4 *3 (-845 *5)) - (-4 *4 (-584 (-849 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6)) (-4 *6 (-845 *5)) (-4 *5 (-1052)) (-5 *2 (-111)) - (-5 *1 (-846 *5 *6 *4)) (-4 *4 (-584 (-849 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-847 *4 *5)) (-5 *3 (-847 *4 *6)) (-4 *4 (-1052)) - (-4 *5 (-1052)) (-4 *6 (-631 *5)) (-5 *1 (-844 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1052)) (-5 *2 (-847 *3 *4)) (-5 *1 (-844 *3 *4 *5)) - (-4 *3 (-1052)) (-4 *5 (-631 *4))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1052)) (-5 *2 (-847 *3 *5)) (-5 *1 (-844 *3 *4 *5)) - (-4 *3 (-1052)) (-4 *5 (-631 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *3 (-607 (-526))) (-5 *1 (-842))))) + (-12 (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) + (-4 *7 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-956 (-399 (-548)) (-834 *3) (-233 *4 (-745)) + (-240 *3 (-399 (-548))))) + (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-955 *3 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-185)))) + ((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-292)))) + ((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-297))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) - ((*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-836 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-838 *2)) (-4 *2 (-1159)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-841 *2)) (-4 *2 (-1159))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1159))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-607 (-1128))) (-5 *1 (-839))))) -(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) -(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) -(((*1 *2 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-227)) (-5 *3 (-1106)))) - ((*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-227)))) - ((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) -(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) -(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1159)) (-4 *3 (-1159))))) -(((*1 *2 *1) - (-12 (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-116 *3)) (-14 *3 (-526)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-292)) (-5 *1 (-165 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-392 *3)) (-4 *3 (-292)) (-5 *1 (-165 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-165 (-526))) (-5 *1 (-730 *3)) (-4 *3 (-389)))) - ((*1 *2 *1) - (-12 (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-830 *3)) (-14 *3 (-526)))) - ((*1 *2 *1) - (-12 (-14 *3 (-526)) (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-831 *3 *4)) - (-4 *4 (-829 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-388 *3)) (-4 *3 (-389)))) - ((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-388 *3)) (-4 *3 (-389)))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) - ((*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) - ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-1101 (-526)))))) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) + (-5 *2 (-619 *4)) (-5 *1 (-1077 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-727))))) (((*1 *2 *1) - (-12 (-4 *3 (-163)) (-4 *2 (-23)) (-5 *1 (-274 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1181 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + (-12 (-4 *2 (-1172)) (-5 *1 (-842 *3 *2)) (-4 *3 (-1172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-153)))) + ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-469)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-572)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-676 *3 *2 *4 *5 *6)) (-4 *3 (-163)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-677 *3 *2)) (-4 *3 (-1004)))) + (-12 (-4 *3 (-1063)) + (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) + (-5 *1 (-1039 *3 *4 *2)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-680 *3 *2 *4 *5 *6)) (-4 *3 (-163)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526))))) -(((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526))))) -(((*1 *1 *1) (-4 *1 (-829 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *3 (-526)) (-4 *1 (-829 *4))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-735)) (-4 *5 (-348)) (-5 *2 (-392 *6)) - (-5 *1 (-826 *5 *4 *6)) (-4 *4 (-1198 *5)) (-4 *6 (-1181 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-735)) (-5 *4 (-1195 *5 *6 *7)) (-4 *5 (-348)) - (-14 *6 (-1123)) (-14 *7 *5) (-5 *2 (-392 (-1174 *6 *5))) - (-5 *1 (-827 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-735)) (-5 *4 (-1195 *5 *6 *7)) (-4 *5 (-348)) - (-14 *6 (-1123)) (-14 *7 *5) (-5 *2 (-392 (-1174 *6 *5))) - (-5 *1 (-827 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-735)) (-4 *5 (-348)) (-5 *2 (-165 *6)) - (-5 *1 (-826 *5 *4 *6)) (-4 *4 (-1198 *5)) (-4 *6 (-1181 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-823))))) -(((*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) - ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) -(((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-735)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) - (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) - ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) -(((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) -(((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823))))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-283)))) - ((*1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) - (-5 *4 (-299 (-159 (-363)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-363))) - (-5 *1 (-315)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-526))) - (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-159 (-363))))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-363)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-526)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-159 (-363))))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-363)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-526)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-159 (-363)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-363))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-526))) (-5 *1 (-315)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-658))) - (-5 *1 (-315)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-663))) - (-5 *1 (-315)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-665))) - (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-658)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-663)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-665)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-658)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-663)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-665)))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-658))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-663))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-665))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-658))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-663))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-665))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-658))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-663))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-665))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1106)) (-5 *1 (-315)))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) -(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) - ((*1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) - ((*1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) - ((*1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-283)))) - ((*1 *1 *1) (-4 *1 (-283))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) - ((*1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-179)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-783 *3)) (|:| |rm| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-811)))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-4 *1 (-292))) ((*1 *1 *1 *1) (-5 *1 (-735))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *1 *1 *1) (-4 *1 (-292))) ((*1 *1 *1 *1) (-5 *1 (-735))) - ((*1 *1 *1 *1) (-5 *1 (-823)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-127)) (-5 *2 (-1070))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-128)) (-5 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-50))) (-5 *2 (-1211)) (-5 *1 (-820))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-37 (-392 (-526)))) - (-4 *2 (-163))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-348)) (-4 *3 (-1004)) - (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-97 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) - (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) - (-4 *3 (-813 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) - (-5 *1 (-731 *3 *4)) (-4 *3 (-673 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-348)) (-4 *3 (-1004)) - (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-97 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) - (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) - (-4 *3 (-813 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-533)) (-4 *3 (-1004)) - (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-97 *5)) (-4 *5 (-533)) (-4 *5 (-1004)) - (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) - (-4 *3 (-813 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-533)) (-4 *3 (-1004)) - (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-97 *5)) (-4 *5 (-533)) (-4 *5 (-1004)) - (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) - (-4 *3 (-813 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-613 *5)) (-4 *5 (-1004)) - (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-813 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-653 *3)) (-4 *1 (-403 *3)) (-4 *3 (-163)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-97 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1004)) (-5 *1 (-814 *2 *3)) - (-4 *3 (-813 *2))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1004)) (-5 *1 (-814 *5 *2)) - (-4 *2 (-813 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) + (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *2 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3) + (-12 (-5 *2 (-548)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-348)) (-4 *3 (-1004)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) - (-4 *1 (-813 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-348)) (-4 *3 (-1004)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) - (-4 *1 (-813 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) - (-14 *4 (-735))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) - (-14 *4 (-735))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) - (-14 *4 (-735))))) -(((*1 *2) (-12 (-5 *2 (-803 (-526))) (-5 *1 (-514)))) - ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1052))))) -(((*1 *2) (-12 (-5 *2 (-803 (-526))) (-5 *1 (-514)))) - ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-803 *3)) (-4 *3 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-992)) (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-299 (-363)))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) - (-5 *1 (-801))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-802)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-801)))) - ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-992)) (-5 *1 (-801)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-607 (-363))) (-5 *5 (-607 (-803 (-363)))) - (-5 *6 (-607 (-299 (-363)))) (-5 *3 (-299 (-363))) (-5 *2 (-992)) - (-5 *1 (-801)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-363))) (-5 *5 (-607 (-803 (-363)))) - (-5 *2 (-992)) (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) - (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-299 (-363)))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) - (-5 *1 (-801))))) + (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-918 *4 *6 *5)) (-4 *4 (-443)) + (-4 *5 (-821)) (-4 *6 (-767)) (-5 *1 (-956 *4 *5 *6 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-4 *1 (-800)) - (-5 *3 - (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) - (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) - (|:| |ub| (-607 (-803 (-211)))))) - (-5 *2 (-992)))) - ((*1 *2 *3) - (-12 (-4 *1 (-800)) - (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) - (-5 *2 (-992))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-201 (-484))) (-5 *1 (-799))))) -(((*1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)))) - ((*1 *2 *3) - (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-652 *4 *5 *6 *3)) - (-4 *3 (-650 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004)))) - ((*1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004))))) + (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-1218 (-308 (-371)))) + (-5 *1 (-297))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) + (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-436 *3)) (-4 *3 (-1016))))) (((*1 *2 *2) - (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-112)) (-5 *4 (-607 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1052)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-607 *4))) (-4 *4 (-1052)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-607 *4))) (-5 *1 (-113 *4)) - (-4 *4 (-1052)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-613 *3)) (-4 *3 (-1004)) - (-5 *1 (-679 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-798 *3))))) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *5 (-360)) + (-5 *2 (-745))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-613 *3)) (-4 *3 (-1004)) - (-5 *1 (-679 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-798 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-112)) (-4 *4 (-1004)) (-5 *1 (-679 *4 *2)) (-4 *2 (-613 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-798 *2)) (-4 *2 (-1004))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-346 (-112))) (-4 *2 (-1004)) (-5 *1 (-679 *2 *4)) - (-4 *4 (-613 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-346 (-112))) (-5 *1 (-798 *2)) (-4 *2 (-1004))))) -(((*1 *2) (-12 (-5 *2 (-796 (-526))) (-5 *1 (-514)))) - ((*1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1211)) (-5 *1 (-795))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-786)) (-5 *4 (-50)) (-5 *2 (-1211)) (-5 *1 (-795))))) -(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-50)) (-5 *1 (-795))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-793))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-793))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-793))))) -(((*1 *2 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-793)) (-5 *3 (-1106))))) -(((*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-793))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-793))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-793))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-50)) (-5 *1 (-793))))) -(((*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-792 *2 *3)) (-4 *2 (-673 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-673 *3)) (-5 *1 (-792 *2 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1) (-12 (-4 *1 (-785)) (-5 *2 (-1106)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-785)) (-5 *3 (-111)) (-5 *2 (-1106)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-785)) (-5 *3 (-787)) (-5 *2 (-1211)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-785)) (-5 *3 (-787)) (-5 *4 (-111)) (-5 *2 (-1211)))) - ((*1 *2 *3) - (-12 (-5 *3 (-299 *4)) (-4 *4 (-13 (-785) (-811) (-1004))) (-5 *2 (-1106)) - (-5 *1 (-791 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-299 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-785) (-811) (-1004))) - (-5 *2 (-1106)) (-5 *1 (-791 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-787)) (-5 *4 (-299 *5)) (-4 *5 (-13 (-785) (-811) (-1004))) - (-5 *2 (-1211)) (-5 *1 (-791 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-787)) (-5 *4 (-299 *6)) (-5 *5 (-111)) - (-4 *6 (-13 (-785) (-811) (-1004))) (-5 *2 (-1211)) (-5 *1 (-791 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) -(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-789))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-789))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-607 (-1123))) (-5 *1 (-789))))) -(((*1 *1) (-5 *1 (-788)))) -(((*1 *1) (-5 *1 (-788)))) -(((*1 *1) (-5 *1 (-788)))) -(((*1 *1) (-5 *1 (-788)))) -(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-787))))) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-443)) (-4 *4 (-821)) + (-4 *5 (-767)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-308 (-218))) (-5 *2 (-308 (-371))) (-5 *1 (-297))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1172)) (-4 *1 (-231 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1106)) (|:| -3864 (-1106)))) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-788)) (-5 *1 (-787))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-788)) (-5 *1 (-787))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-111)) (-5 *1 (-786))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1106)) (-5 *4 (-1070)) (-5 *2 (-111)) (-5 *1 (-786))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-786))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-786))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-786))))) -(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-786))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-783 *3)) (-4 *3 (-811))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| |lm| (-371 *3)) (|:| |mm| (-371 *3)) (|:| |rm| (-371 *3)))) - (-5 *1 (-371 *3)) (-4 *3 (-1052)))) + (-12 (-4 *1 (-245 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-767)) (-4 *2 (-258 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) + (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-218)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) ((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| |lm| (-783 *3)) (|:| |mm| (-783 *3)) (|:| |rm| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-811))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) + (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-5 *2 (-735)) (-5 *1 (-371 *4)) (-4 *4 (-1052)))) + (-12 (-5 *3 (-619 (-890))) (-4 *2 (-355)) (-5 *1 (-150 *4 *2 *5)) + (-14 *4 (-890)) (-14 *5 (-962 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-308 *3)) (-5 *1 (-216 *3 *4)) + (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-23)) (-5 *1 (-614 *4 *2 *5)) (-4 *4 (-1052)) - (-14 *5 *2))) + (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-5 *2 (-735)) (-5 *1 (-783 *4)) (-4 *4 (-811))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-308 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-346 *2)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-371 *2)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) + (-12 (-5 *3 (-548)) (-4 *2 (-540)) (-5 *1 (-599 *2 *4)) + (-4 *4 (-1194 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-1052)) (-5 *1 (-614 *2 *4 *5)) (-4 *4 (-23)) - (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-783 *2)) (-4 *2 (-811))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-526))))) (-5 *1 (-346 *3)) - (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-735))))) (-5 *1 (-371 *3)) - (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| -4051 *3) (|:| -2462 (-526))))) (-5 *1 (-390 *3)) - (-4 *3 (-533)))) - ((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-735))))) (-5 *1 (-783 *3)) - (-4 *3 (-811))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-607 *4)) (-4 *4 (-348)) (-5 *2 (-1205 *4)) - (-5 *1 (-778 *4 *3)) (-4 *3 (-623 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-348)) (-5 *2 (-653 *4)) (-5 *1 (-778 *4 *5)) - (-4 *5 (-623 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-735)) (-4 *5 (-348)) (-5 *2 (-653 *5)) - (-5 *1 (-778 *5 *6)) (-4 *6 (-623 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) - (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-734 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-533)) - (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-734 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2104 (-607 *6))) *7 *6)) - (-4 *6 (-348)) (-4 *7 (-623 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1205 *6) "failed")) - (|:| -2104 (-607 (-1205 *6))))) - (-5 *1 (-777 *6 *7)) (-5 *4 (-1205 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) - (-5 *2 - (-2 (|:| A (-653 *5)) - (|:| |eqs| - (-607 - (-2 (|:| C (-653 *5)) (|:| |g| (-1205 *5)) (|:| -3578 *6) - (|:| |rh| *5)))))) - (-5 *1 (-777 *5 *6)) (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) - (-4 *6 (-623 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) (-4 *6 (-623 *5)) - (-5 *2 (-2 (|:| -1676 (-653 *6)) (|:| |vec| (-1205 *5)))) - (-5 *1 (-777 *5 *6)) (-5 *3 (-653 *6)) (-5 *4 (-1205 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-1 (-607 *5) *6)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *6 (-1181 *5)) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 (-392 *7))) (-5 *4 (-1 (-607 *6) *7)) - (-5 *5 (-1 (-390 *7) *7)) - (-4 *6 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *7 (-1181 *6)) (-5 *2 (-607 (-392 *7))) (-5 *1 (-776 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-1 (-607 *5) *6)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *6 (-1181 *5)) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-621 *7 (-392 *7))) (-5 *4 (-1 (-607 *6) *7)) - (-5 *5 (-1 (-390 *7) *7)) - (-4 *6 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *7 (-1181 *6)) (-5 *2 (-607 (-392 *7))) (-5 *1 (-776 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-620 (-392 *5))) (-4 *5 (-1181 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-607 (-392 *5))) (-5 *1 (-776 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-621 *5 (-392 *5))) (-4 *5 (-1181 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-607 (-392 *5))) (-5 *1 (-776 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-607 *5) *6)) - (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) - (-5 *2 (-607 (-2 (|:| |poly| *6) (|:| -3578 *3)))) - (-5 *1 (-773 *5 *6 *3 *7)) (-4 *3 (-623 *6)) (-4 *7 (-623 (-392 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-607 *5) *6)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *6 (-1181 *5)) - (-5 *2 (-607 (-2 (|:| |poly| *6) (|:| -3578 (-621 *6 (-392 *6)))))) - (-5 *1 (-776 *5 *6)) (-5 *3 (-621 *6 (-392 *6)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-607 *7) *7 (-1117 *7))) (-5 *5 (-1 (-390 *7) *7)) - (-4 *7 (-1181 *6)) (-4 *6 (-13 (-348) (-141) (-995 (-392 (-526))))) - (-5 *2 (-607 (-2 (|:| |frac| (-392 *7)) (|:| -3578 *3)))) - (-5 *1 (-773 *6 *7 *3 *8)) (-4 *3 (-623 *7)) (-4 *8 (-623 (-392 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-607 (-2 (|:| |frac| (-392 *6)) (|:| -3578 (-621 *6 (-392 *6)))))) - (-5 *1 (-776 *5 *6)) (-5 *3 (-621 *6 (-392 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) (-4 *7 (-1181 *5)) (-4 *4 (-689 *5 *7)) - (-5 *2 (-2 (|:| -1676 (-653 *6)) (|:| |vec| (-1205 *5)))) - (-5 *1 (-775 *5 *6 *7 *4 *3)) (-4 *6 (-623 *5)) (-4 *3 (-623 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-620 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-774 *4 *2)) - (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))))) + (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-701)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) + (-4 *4 (-1016)) (-4 *5 (-821)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) + (-4 *2 (-821)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) + (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *2 (-821)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *2 (-918 *4 (-520 *5) *5)) + (-5 *1 (-1088 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-821)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-921 *4)) (-5 *1 (-1166 *4)) + (-4 *4 (-1016))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-655)))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-939)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1080))))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) ((*1 *2 *3) - (-12 (-5 *3 (-621 *2 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-774 *4 *2)) - (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-392 *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) - (-5 *1 (-774 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-392 *6))) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-2 (|:| -2104 (-607 (-392 *6))) (|:| -1676 (-653 *5)))) - (-5 *1 (-774 *5 *6)) (-5 *4 (-607 (-392 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-392 *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) - (-5 *1 (-774 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-621 *6 (-392 *6))) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-2 (|:| -2104 (-607 (-392 *6))) (|:| -1676 (-653 *5)))) - (-5 *1 (-774 *5 *6)) (-5 *4 (-607 (-392 *6)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-1181 *4)) - (-5 *1 (-773 *4 *3 *2 *5)) (-4 *2 (-623 *3)) (-4 *5 (-623 (-392 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-392 *5)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) - (-4 *5 (-1181 *4)) (-5 *1 (-773 *4 *5 *2 *6)) (-4 *2 (-623 *5)) - (-4 *6 (-623 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-607 *5) *6)) - (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) - (-5 *2 (-607 (-2 (|:| -4268 *5) (|:| -3578 *3)))) (-5 *1 (-773 *5 *6 *3 *7)) - (-4 *3 (-623 *6)) (-4 *7 (-623 (-392 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) - (-5 *2 (-607 (-2 (|:| |deg| (-735)) (|:| -3578 *5)))) - (-5 *1 (-773 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-623 (-392 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1181 *4)) (-5 *1 (-773 *4 *2 *3 *5)) - (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) - (-4 *5 (-623 (-392 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1181 *4)) (-5 *1 (-771 *4 *2 *3 *5)) - (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) - (-4 *5 (-623 (-392 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1181 *4)) (-5 *1 (-771 *4 *2 *5 *3)) - (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-623 *2)) - (-4 *3 (-623 (-392 *2)))))) + (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-308 *4)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-619 *6)) + (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *1 *1 *1) (-4 *1 (-299))) ((*1 *1 *1 *1) (-5 *1 (-745))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) - (-5 *2 (-607 (-2 (|:| -4091 *5) (|:| -3539 *5)))) (-5 *1 (-771 *4 *5 *3 *6)) - (-4 *3 (-623 *5)) (-4 *6 (-623 (-392 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *4 (-1181 *5)) - (-5 *2 (-607 (-2 (|:| -4091 *4) (|:| -3539 *4)))) (-5 *1 (-771 *5 *4 *3 *6)) - (-4 *3 (-623 *4)) (-4 *6 (-623 (-392 *4))))) + (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1218 (-673))) (-5 *1 (-297))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) + (-5 *7 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) + ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1088 *4 *3 *5))) (-4 *4 (-38 (-399 (-548)))) + (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *1 (-1088 *4 *3 *5)) + (-4 *5 (-918 *4 (-520 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1166 *4))) (-5 *3 (-1135)) (-5 *1 (-1166 *4)) + (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-355)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) + (-4 *1 (-823 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) - (-5 *2 (-607 (-2 (|:| -4091 *5) (|:| -3539 *5)))) (-5 *1 (-771 *4 *5 *6 *3)) - (-4 *6 (-623 *5)) (-4 *3 (-623 (-392 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *4 (-1181 *5)) - (-5 *2 (-607 (-2 (|:| -4091 *4) (|:| -3539 *4)))) (-5 *1 (-771 *5 *4 *6 *3)) - (-4 *6 (-623 *4)) (-4 *3 (-623 (-392 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-392 *2)) (-4 *2 (-1181 *5)) - (-5 *1 (-771 *5 *2 *3 *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) - (-4 *3 (-623 *2)) (-4 *6 (-623 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-392 *2))) (-4 *2 (-1181 *5)) (-5 *1 (-771 *5 *2 *3 *6)) - (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) - (-4 *6 (-623 (-392 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-327 *5 *6 *7)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) - (-5 *1 (-770 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1123)) - (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-768 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1145) (-919)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) - (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-5 *1 (-768 *4 *2)) (-4 *2 (-13 (-29 *4) (-1145) (-919)))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 - (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) - (|:| |expense| (-363)) (|:| |accuracy| (-363)) - (|:| |intermediateResults| (-363)))) - (-5 *1 (-767))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-607 - (-2 - (|:| -4179 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (|:| -2164 - (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) - (|:| |expense| (-363)) (|:| |accuracy| (-363)) - (|:| |intermediateResults| (-363))))))) - (-5 *1 (-767))))) + (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-308 *4)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-607 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211))))) - (-5 *1 (-536)))) - ((*1 *2 *1) - (-12 (-4 *1 (-580 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-607 *3)))) + (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-956 *3 *4 *5 *2)) + (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) + (-4 *5 (-365 *3)) (-5 *2 (-619 *3)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-607 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211))))) - (-5 *1 (-767))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-767))))) -(((*1 *1) (-5 *1 (-767)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1123)) - (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) - (-4 *4 (-13 (-29 *6) (-1145) (-919))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-607 *4)))) - (-5 *1 (-765 *6 *4 *3)) (-4 *3 (-623 *4))))) + (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) + (-5 *2 (-619 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-673)) (-5 *1 (-297))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *6 (-218)) + (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-548)) (-5 *1 (-436 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *2) + (-12 (-4 *3 (-593 (-861 *3))) (-4 *3 (-855 *3)) + (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-593 (-861 *3))) (-4 *2 (-855 *3)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) + ((*1 *1 *1) (-4 *1 (-971))) + ((*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-981)))) + ((*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-4 *1 (-981)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-890)))) + ((*1 *1 *1) (-4 *1 (-981)))) +(((*1 *1 *1) + (-12 (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) + (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-4 *1 (-764)) + (-12 (-5 *3 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 (-992))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-163)) (-5 *1 (-762 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163))))) -(((*1 *1 *1) (-4 *1 (-229))) - ((*1 *1 *1) - (-12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *2)) - (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3850 (-12 (-5 *1 (-278 *2)) (-4 *2 (-348)) (-4 *2 (-1159))) - (-12 (-5 *1 (-278 *2)) (-4 *2 (-457)) (-4 *2 (-1159))))) - ((*1 *1 *1) (-4 *1 (-457))) - ((*1 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) + (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) + (-5 *2 (-619 (-218))) (-5 *1 (-297))))) +(((*1 *1 *1 *1) (-4 *1 (-299))) ((*1 *1 *1 *1) (-5 *1 (-745))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) + (-5 *7 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-410 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-1016)) (-5 *2 (-619 *6)) (-5 *1 (-435 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) + (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) + (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) ((*1 *1 *1) - (-12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)) (-4 *2 (-348))))) -(((*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) - ((*1 *1 *1 *1) (-4 *1 (-757)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) - (|:| |success| (-111)))) - (-5 *1 (-753)) (-5 *5 (-526))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) - (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-526)) - (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363)))) - (-5 *7 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) - (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-526)) - (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363)))) - (-5 *7 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) - (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) - (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) - (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) - (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-751)) (-5 *2 (-992)) - (-5 *3 - (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-751)) (-5 *2 (-992)) - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-750))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-750))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-878)) (-5 *1 (-750))))) -(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1106)) (-5 *1 (-750))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-878)) (-5 *1 (-750))))) -(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1106)) (-5 *1 (-750))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-905 (-159 *4))) (-4 *4 (-163)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-905 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-163)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-48))) (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1194 (-48))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) + (-5 *2 (-410 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-918 (-48) *6 *5)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) + (-4 *7 (-918 (-48) *6 *5)) (-5 *2 (-410 (-1131 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-392 (-905 (-159 *4)))) (-4 *4 (-533)) - (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + (-12 (-4 *4 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-164 *4 *3)) + (-4 *3 (-1194 (-166 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-392 (-905 (-159 *5)))) (-5 *4 (-878)) (-4 *5 (-533)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) - (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-209 *4 *3)) + (-4 *3 (-1194 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-299 (-159 *4))) (-4 *4 (-533)) (-4 *4 (-811)) - (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-299 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-533)) - (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) - (-5 *1 (-749 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 *2)) - (-5 *2 (-363)) (-5 *1 (-749 *4)))) + (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) + (-4 *3 (-1194 (-548))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) - (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) + (-12 (-5 *4 (-619 (-745))) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) + (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-410 *3)) + (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) + (-4 *3 (-1194 (-548))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 *2)) - (-5 *2 (-363)) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) - (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) + (-12 (-5 *2 (-410 (-166 (-548)))) (-5 *1 (-437)) + (-5 *3 (-166 (-548))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) - (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) - (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-159 (-363))) (-5 *1 (-749 *3)) (-4 *3 (-584 (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-878)) (-5 *2 (-159 (-363))) (-5 *1 (-749 *3)) - (-4 *3 (-584 (-363))))) + (-12 + (-4 *4 + (-13 (-821) + (-10 -8 (-15 -2591 ((-1135) $)) + (-15 -2754 ((-3 $ "failed") (-1135)))))) + (-4 *5 (-767)) (-4 *7 (-540)) (-5 *2 (-410 *3)) + (-5 *1 (-447 *4 *5 *6 *7 *3)) (-4 *6 (-540)) + (-4 *3 (-918 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-159 *4)) (-4 *4 (-163)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-159 *5)) (-5 *4 (-878)) (-4 *5 (-163)) (-4 *5 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-299)) (-5 *2 (-410 (-1131 *4))) (-5 *1 (-449 *4)) + (-5 *3 (-1131 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) + (-4 *7 (-13 (-355) (-145) (-699 *5 *6))) (-5 *2 (-410 *3)) + (-5 *1 (-484 *5 *6 *7 *3)) (-4 *3 (-1194 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-410 (-1131 *7)) (-1131 *7))) + (-4 *7 (-13 (-299) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) + (-5 *2 (-410 *3)) (-5 *1 (-528 *5 *6 *7 *3)) + (-4 *3 (-918 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-410 (-1131 *7)) (-1131 *7))) + (-4 *7 (-13 (-299) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) + (-4 *8 (-918 *7 *6 *5)) (-5 *2 (-410 (-1131 *8))) + (-5 *1 (-528 *5 *6 *7 *8)) (-5 *3 (-1131 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *6 (-1194 *5)) (-5 *2 (-619 (-627 (-399 *6)))) + (-5 *1 (-631 *5 *6)) (-5 *3 (-627 (-399 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-905 (-159 *4))) (-4 *4 (-163)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-163)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-399 *5)))) + (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-399 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-646 *4))) + (-5 *1 (-646 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-5 *4 (-548)) (-5 *2 (-619 *3)) (-5 *1 (-670 *3)) + (-4 *3 (-1194 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-341)) (-5 *2 (-410 *3)) + (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-392 (-905 (-159 *4)))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 (-159 *5)))) (-5 *4 (-878)) (-4 *5 (-533)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-341)) + (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-410 (-1131 *7))) + (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) - (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-767)) + (-4 *5 + (-13 (-821) + (-10 -8 (-15 -2591 ((-1135) $)) + (-15 -2754 ((-3 $ "failed") (-1135)))))) + (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-705 *4 *5 *6 *3)) + (-4 *3 (-918 (-921 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-299 (-159 *4))) (-4 *4 (-533)) (-4 *4 (-811)) - (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-299 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) - (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-363)) (-5 *1 (-749 *3)) (-4 *3 (-584 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-878)) (-5 *2 (-363)) (-5 *1 (-749 *3)) (-4 *3 (-584 *2)))) + (-12 (-4 *4 (-767)) + (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)) + (-5 *2 (-410 *3)) (-5 *1 (-707 *4 *5 *6 *3)) + (-4 *3 (-918 (-399 (-921 *6)) *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 *2)) (-5 *2 (-363)) - (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 *2)) - (-5 *2 (-363)) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-13 (-299) (-145))) + (-5 *2 (-410 *3)) (-5 *1 (-708 *4 *5 *6 *3)) + (-4 *3 (-918 (-399 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 *2)) (-5 *2 (-363)) - (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 *2)) - (-5 *2 (-363)) (-5 *1 (-749 *5)))) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-299) (-145))) + (-5 *2 (-410 *3)) (-5 *1 (-716 *4 *5 *6 *3)) + (-4 *3 (-918 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 *2)) - (-5 *2 (-363)) (-5 *1 (-749 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) - (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-37 (-392 (-526)))) - (-4 *2 (-163))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-37 (-392 (-526)))) - (-4 *2 (-163))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-607 (-745 *3))) (-5 *1 (-745 *3)) (-4 *3 (-533)) - (-4 *3 (-1004))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| -4075 *3) (|:| |coef1| (-745 *3)) (|:| |coef2| (-745 *3)))) - (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef1| (-745 *3)))) (-5 *1 (-745 *3)) - (-4 *3 (-533)) (-4 *3 (-1004))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) - (-4 *3 (-533)) (-4 *3 (-1004))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-392 (-526)))) - (-5 *2 - (-607 - (-2 (|:| |outval| *4) (|:| |outmult| (-526)) - (|:| |outvect| (-607 (-653 *4)))))) - (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-607 *4)) (-5 *1 (-743 *4)) - (-4 *4 (-13 (-348) (-809)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-653 *2)) (-4 *2 (-163)) (-5 *1 (-140 *2)))) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-299) (-145))) + (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-410 (-1131 *7))) + (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-163)) (-4 *2 (-1181 *4)) (-5 *1 (-168 *4 *2 *3)) - (-4 *3 (-689 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-392 (-905 *5)))) (-5 *4 (-1123)) (-5 *2 (-905 *5)) - (-5 *1 (-277 *5)) (-4 *5 (-436)))) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-976 *3)) + (-4 *3 (-1194 (-399 (-548)))))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-392 (-905 *4)))) (-5 *2 (-905 *4)) (-5 *1 (-277 *4)) - (-4 *4 (-436)))) - ((*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-1010 *3)) + (-4 *3 (-1194 (-399 (-921 (-548))))))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-905 (-159 (-392 (-526))))) - (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *4 (-1123)) - (-5 *2 (-905 (-159 (-392 (-526))))) (-5 *1 (-729 *5)) - (-4 *5 (-13 (-348) (-809))))) + (-12 (-4 *4 (-1194 (-399 (-548)))) + (-4 *5 (-13 (-355) (-145) (-699 (-399 (-548)) *4))) + (-5 *2 (-410 *3)) (-5 *1 (-1042 *4 *5 *3)) (-4 *3 (-1194 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-905 (-392 (-526)))) - (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *4 (-1123)) - (-5 *2 (-905 (-392 (-526)))) (-5 *1 (-743 *5)) (-4 *5 (-13 (-348) (-809)))))) + (-12 (-4 *4 (-1194 (-399 (-921 (-548))))) + (-4 *5 (-13 (-355) (-145) (-699 (-399 (-921 (-548))) *4))) + (-5 *2 (-410 *3)) (-5 *1 (-1044 *4 *5 *3)) (-4 *3 (-1194 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-443)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 (-399 *7)))) + (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-399 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1176)))) + ((*1 *2 *3) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548)))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-607 (-735))) - (-5 *1 (-742 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *6)) (-4 *7 (-909 *6 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1181 *9)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-292)) - (-4 *10 (-909 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-607 (-1117 *10))) - (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-607 *6)) (|:| |nlead| (-607 *10)))) - (-5 *1 (-742 *6 *7 *8 *9 *10)) (-5 *3 (-1117 *10)) (-5 *4 (-607 *6)) - (-5 *5 (-607 *10))))) -(((*1 *2 *3) - (-12 (-4 *4 (-335)) (-4 *5 (-314 *4)) (-4 *6 (-1181 *5)) (-5 *2 (-607 *3)) - (-5 *1 (-741 *4 *5 *6 *3 *7)) (-4 *3 (-1181 *6)) (-14 *7 (-878))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) - (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1106)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-4 *4 (-1018 *6 *7 *8)) (-5 *2 (-1211)) (-5 *1 (-740 *6 *7 *8 *4 *5)) - (-4 *5 (-1024 *6 *7 *8 *4))))) + (-12 (-4 *3 (-1194 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-954 *4 *2 *3 *5)) + (-4 *4 (-341)) (-4 *5 (-699 *2 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 (-814 (-218)))) (-5 *1 (-297))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |rm| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-821)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1073))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-890)) (-5 *1 (-433 *2)) + (-4 *2 (-1194 (-548))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-890)) (-5 *4 (-745)) (-5 *1 (-433 *2)) + (-4 *2 (-1194 (-548))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *1 (-433 *2)) + (-4 *2 (-1194 (-548))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) + (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) + (-5 *6 (-112)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-410 *2)) (-4 *2 (-1194 *5)) + (-5 *1 (-435 *5 *2)) (-4 *5 (-1016))))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-262 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-767)) + (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *5 (-540)) + (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-399 (-921 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) - ((*1 *1 *1) (-5 *1 (-363))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) - (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) - (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -2591 ((-1135) $)) + (-15 -2754 ((-3 $ "failed") (-1135)))))) + (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *6)) + (-4 *6 + (-13 (-821) + (-10 -8 (-15 -2591 ((-1135) $)) + (-15 -2754 ((-3 $ "failed") (-1135)))))) + (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) + (-4 *2 (-918 (-921 *4) *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) + (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) + (-4 *6 (-918 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-308 (-218))) (-5 *2 (-308 (-399 (-548)))) + (-5 *1 (-297))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *2 (-540)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-540))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) + (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-540)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-745))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-540)) + (-5 *1 (-938 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) + (-4 *5 (-231 *4 *2)) (-4 *6 (-231 *3 *2)) (-4 *2 (-540)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *2 (-1018 *4 *5 *6)) - (-5 *1 (-740 *4 *5 *6 *2 *3)) (-4 *3 (-1024 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) - ((*1 *1 *1 *1) (-4 *1 (-525))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) - ((*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-159 (-392 (-526))))) - (-5 *2 - (-607 - (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-526)) - (|:| |outvect| (-607 (-653 (-159 *4))))))) - (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-607 (-159 *4))) - (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-726)))) -(((*1 *1 *1 *1) (-4 *1 (-457))) ((*1 *1 *1 *1) (-4 *1 (-726)))) -(((*1 *1 *1 *1) (-4 *1 (-726)))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-724))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-724))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-905 (-526)))) (-5 *1 (-421)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-653 (-211))) (-5 *2 (-1054)) (-5 *1 (-724)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-653 (-526))) (-5 *2 (-1054)) (-5 *1 (-724))))) -(((*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724))))) -(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724))))) -(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-159 (-211))) (-5 *6 (-1106)) (-5 *4 (-211)) - (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1106)) (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *2 (-992)) - (-5 *1 (-723))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1106)) (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *2 (-992)) - (-5 *1 (-723))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-159 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-722))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-722))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) - (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-722))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-722))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD)))) (-5 *4 (-211)) - (-5 *2 (-992)) (-5 *1 (-721))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) - (-5 *2 (-992)) (-5 *1 (-721))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *6 (-211)) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD)))) - (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-992)) - (-5 *1 (-721))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) - (-5 *2 (-992)) (-5 *1 (-721))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) - (-5 *1 (-721))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) - (-5 *2 (-992)) (-5 *1 (-721))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-721))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-159 (-211)))) (-5 *2 (-992)) - (-5 *1 (-721))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-111)) (-5 *5 (-653 (-159 (-211)))) - (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-111)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-720))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-211)) - (-5 *2 (-992)) (-5 *1 (-720)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-373)) - (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-111)) (-5 *6 (-653 (-211))) (-5 *4 (-211)) - (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) - (-5 *1 (-720))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-159 (-211)))) - (-5 *2 (-992)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-159 (-211)))) - (-5 *2 (-992)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-159 (-211)))) (-5 *2 (-992)) - (-5 *1 (-719))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-719))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-719))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-719))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) - (-5 *2 (-992)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-607 (-111))) (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) - (-5 *7 (-211)) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-653 (-526))) (-5 *5 (-111)) (-5 *7 (-653 (-211))) - (-5 *3 (-526)) (-5 *6 (-211)) (-5 *2 (-992)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-607 (-111))) (-5 *7 (-653 (-211))) (-5 *8 (-653 (-526))) - (-5 *3 (-526)) (-5 *4 (-211)) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) - (-5 *1 (-718))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 - *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) - (-12 (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *6 (-211)) - (-5 *7 (-653 (-526))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-526)) - (-5 *2 (-992)) (-5 *1 (-718))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 - *8) - (-12 (-5 *5 (-653 (-211))) (-5 *6 (-111)) (-5 *7 (-653 (-526))) - (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-526)) - (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-718))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *2 (-992)) - (-5 *1 (-718))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-992)) - (-5 *1 (-718))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-992)) - (-5 *1 (-718))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-992)) - (-5 *1 (-718))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-526)) (-5 *5 (-111)) (-5 *6 (-653 (-211))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-211)) - (-5 *2 (-992)) (-5 *1 (-718))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) - (-5 *1 (-717))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) - (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) - (-5 *7 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *6 (-211)) - (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) - (-5 *7 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-524))) (-5 *1 (-524))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1218 (-548))) (-5 *3 (-548)) (-5 *1 (-1073)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1218 (-548))) (-5 *3 (-619 (-548))) (-5 *4 (-548)) + (-5 *1 (-1073))))) (((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) - (-5 *1 (-717))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) - (-5 *1 (-717))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) - (-5 *1 (-717))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) - (-5 *1 (-717))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) - (-5 *1 (-717))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) (-5 *3 (-526)) - (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) - (-5 *1 (-717))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) - (-5 *1 (-716))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) - (-5 *1 (-716))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *6 (-211)) - (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-716))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) - (-5 *1 (-716))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 - *4) - (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-640 (-211))) - (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-715))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-1106)) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-992)) - (-5 *1 (-715))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) - (-5 *1 (-715))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP)))) - (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-714))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-992)) - (-5 *1 (-714)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-373)) - (-5 *2 (-992)) (-5 *1 (-714))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-714))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *2 (-992)) - (-5 *1 (-714))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-653 (-211))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) - (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-714))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-653 (-211))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) - (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-714))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-714))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) - (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-714))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-713))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-713))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *3 (-211)) - (-5 *2 (-992)) (-5 *1 (-713))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-712))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-712))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-712))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) - (-5 *1 (-712))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN)))) (-5 *2 (-992)) - (-5 *1 (-711))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) - (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN)))) (-5 *2 (-992)) - (-5 *1 (-711))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-211)) (-5 *4 (-526)) - (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) - (-5 *1 (-711))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-111)) (-5 *2 (-992)) - (-5 *1 (-710))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-111)) (-5 *2 (-992)) - (-5 *1 (-710))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-709 *3)) (-4 *3 (-163))))) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-2 (|:| -1915 *4) (|:| -2512 (-548))))) + (-4 *4 (-1194 (-548))) (-5 *2 (-712 (-745))) (-5 *1 (-433 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-410 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1016)) + (-5 *2 (-712 (-745))) (-5 *1 (-435 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1117 *6)) (-5 *3 (-526)) (-4 *6 (-292)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-4 *7 (-811)) - (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-4 *8 (-292)) (-5 *2 (-607 (-735))) - (-5 *1 (-707 *6 *7 *8 *9)) (-5 *5 (-735))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-526)) (-5 *4 (-390 *2)) (-4 *2 (-909 *7 *5 *6)) - (-5 *1 (-707 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-292))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-5 *5 (-607 (-607 *8))) - (-4 *7 (-811)) (-4 *8 (-292)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) - (-5 *2 - (-2 (|:| |upol| (-1117 *8)) (|:| |Lval| (-607 *8)) - (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 *8)) (|:| -2462 (-526))))) - (|:| |ctpol| *8))) - (-5 *1 (-707 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-607 *7)) (-5 *5 (-607 (-607 *8))) (-4 *7 (-811)) (-4 *8 (-292)) - (-4 *6 (-757)) (-4 *9 (-909 *8 *6 *7)) + (-12 (-4 *4 (-767)) + (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *5 (-540)) + (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-399 (-921 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -2591 ((-1135) $)) + (-15 -2754 ((-3 $ "failed") (-1135)))))) + (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *6)) + (-4 *6 + (-13 (-821) + (-10 -8 (-15 -2591 ((-1135) $)) + (-15 -2754 ((-3 $ "failed") (-1135)))))) + (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) + (-4 *2 (-918 (-921 *4) *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 *9)) (|:| -2462 (-526))))))) - (-5 *1 (-707 *6 *7 *8 *9)) (-5 *3 (-1117 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-526)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-292)) - (-4 *9 (-909 *8 *6 *7)) - (-5 *2 (-2 (|:| -2096 (-1117 *9)) (|:| |polval| (-1117 *8)))) - (-5 *1 (-707 *6 *7 *8 *9)) (-5 *3 (-1117 *9)) (-5 *4 (-1117 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) - (-5 *1 (-707 *5 *4 *6 *3)) (-4 *3 (-909 *6 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| -4051 (-1117 *6)) (|:| -2462 (-526))))) - (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-526)) - (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) - (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-909 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-704 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-703))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-701 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1052)))) - ((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1052))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) - (-5 *2 (-607 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1052))))) + (-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) + (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548)))) + (-5 *1 (-297))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-619 (-548))) (-5 *3 (-112)) (-5 *1 (-1073))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-735)))) - ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-735)))) - ((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-533)) (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) - (-5 *3 (-392 (-905 *6))) (-4 *5 (-757)) - (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117 (-905 *6))) (-4 *6 (-533)) - (-4 *2 (-909 (-392 (-905 *6)) *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) - (-4 *5 (-757)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117 *2)) (-4 *2 (-909 (-392 (-905 *6)) *5 *4)) - (-5 *1 (-697 *5 *4 *6 *2)) (-4 *5 (-757)) - (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *6 (-533))))) -(((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) - (-4 *6 (-533)) (-5 *2 (-2 (|:| -2702 (-905 *6)) (|:| -2146 (-905 *6)))) - (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-909 (-392 (-905 *6)) *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-526)) - (-14 *6 (-735)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-132 *5 *6 *8)) - (-5 *1 (-133 *5 *6 *7 *8)))) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1135)) + (|:| |arrayIndex| (-619 (-921 (-548)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1134)) (|:| |thenClause| (-322)) + (|:| |elseClause| (-322)))) + (|:| |returnBranch| + (-2 (|:| -1616 (-112)) + (|:| -4056 + (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) + (|:| |blockBranch| (-619 (-322))) + (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) + (|:| |forBranch| + (-2 (|:| -3094 (-1056 (-921 (-548)))) + (|:| |span| (-921 (-548))) (|:| -2286 (-322)))) + (|:| |labelBranch| (-1082)) + (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 (-322)))) + (|:| |commonBranch| + (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) + (|:| |printBranch| (-619 (-832))))) + (-5 *1 (-322))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-591 *1)) (-4 *1 (-422 *4)) (-4 *4 (-821)) + (-4 *4 (-540)) (-5 *2 (-399 (-1131 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) + (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-5 *2 (-1131 (-399 (-1131 *3)))) (-5 *1 (-544 *6 *3 *7)) + (-5 *5 (-1131 *3)) (-4 *7 (-1063)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *9)) (-4 *9 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) - (-4 *8 (-1004)) (-4 *2 (-909 *9 *7 *5)) (-5 *1 (-693 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-757)) (-4 *4 (-909 *8 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-392 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1181 *5)) - (-5 *1 (-692 *5 *2)) (-4 *5 (-348))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) - (-5 *2 (-2 (|:| -3392 (-390 *3)) (|:| |special| (-390 *3)))) - (-5 *1 (-692 *5 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) - (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-687)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-691)) (-5 *2 (-111))))) -(((*1 *1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) - (-14 *4 (-607 (-1123))))) - ((*1 *1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) - (-14 *4 (-607 (-1123))))) - ((*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) + (-12 (-5 *4 (-1214 *5)) (-14 *5 (-1135)) (-4 *6 (-1016)) + (-5 *2 (-1191 *5 (-921 *6))) (-5 *1 (-916 *5 *6)) (-5 *3 (-921 *6)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-321 *3 *4 *5 *2)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-4 *2 (-327 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-163)))) - ((*1 *1) (-12 (-4 *2 (-163)) (-4 *1 (-689 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1205 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) - (-4 *1 (-689 *5 *6)) (-4 *5 (-163)) (-4 *6 (-1181 *5)) (-5 *2 (-653 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) - ((*1 *1 *1) (|partial| -4 *1 (-687)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) - ((*1 *1 *1) (|partial| -4 *1 (-687)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1186 *3 *4 *5)) (-5 *1 (-304 *3 *4 *5)) - (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1052)) (-5 *1 (-678 *3 *2 *4)) (-4 *3 (-811)) - (-14 *4 - (-1 (-111) (-2 (|:| -2461 *3) (|:| -2462 *2)) - (-2 (|:| -2461 *3) (|:| -2462 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-353)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) - ((*1 *2 *1) - (-12 (-4 *2 (-811)) (-5 *1 (-678 *2 *3 *4)) (-4 *3 (-1052)) - (-14 *4 - (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *3)) - (-2 (|:| -2461 *2) (|:| -2462 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-5 *2 (-1205 *3)) (-5 *1 (-677 *3 *4)) - (-4 *4 (-1181 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1004)) (-5 *1 (-677 *3 *4)) - (-4 *4 (-1181 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1004)) (-5 *2 (-1205 *3)) (-5 *1 (-677 *3 *4)) - (-4 *4 (-1181 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1004)) (-5 *2 (-917 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) - (-4 *4 (-1181 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1004)) (-5 *2 (-917 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) - (-4 *4 (-1181 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-335)) (-4 *2 (-1004)) (-5 *1 (-677 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-607 (-1117 *13))) (-5 *3 (-1117 *13)) - (-5 *4 (-607 *12)) (-5 *5 (-607 *10)) (-5 *6 (-607 *13)) - (-5 *7 (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| *13))))) - (-5 *8 (-607 (-735))) (-5 *9 (-1205 (-607 (-1117 *10)))) (-4 *12 (-811)) - (-4 *10 (-292)) (-4 *13 (-909 *10 *11 *12)) (-4 *11 (-757)) - (-5 *1 (-672 *11 *12 *10 *13))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-607 *11)) (-5 *5 (-607 (-1117 *9))) (-5 *6 (-607 *9)) - (-5 *7 (-607 *12)) (-5 *8 (-607 (-735))) (-4 *11 (-811)) (-4 *9 (-292)) - (-4 *12 (-909 *9 *10 *11)) (-4 *10 (-757)) (-5 *2 (-607 (-1117 *12))) - (-5 *1 (-672 *10 *11 *9 *12)) (-5 *3 (-1117 *12))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-607 (-1117 *11))) (-5 *3 (-1117 *11)) - (-5 *4 (-607 *10)) (-5 *5 (-607 *8)) (-5 *6 (-607 (-735))) - (-5 *7 (-1205 (-607 (-1117 *8)))) (-4 *10 (-811)) (-4 *8 (-292)) - (-4 *11 (-909 *8 *9 *10)) (-4 *9 (-757)) (-5 *1 (-672 *9 *10 *8 *11))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1123)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-666 *3 *5 *6 *7)) - (-4 *3 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *7 (-1159)))) + (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-1131 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-1131 *1)) + (-4 *1 (-918 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-671 *3 *5 *6)) - (-4 *3 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159))))) + (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) + (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-399 (-1131 *3))) + (-5 *1 (-919 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1131 *3)) + (-4 *3 + (-13 (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))) + (-4 *7 (-918 *6 *5 *4)) (-4 *5 (-767)) (-4 *4 (-821)) + (-4 *6 (-1016)) (-5 *1 (-919 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-4 *5 (-540)) + (-5 *2 (-399 (-1131 (-399 (-921 *5))))) (-5 *1 (-1012 *5)) + (-5 *3 (-399 (-921 *5)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-671 *4 *5 *6)) - (-4 *4 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-670 *3 *4)) - (-4 *3 (-1159)) (-4 *4 (-1159))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-1123)) (-5 *1 (-515)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-607 (-1123))) (-5 *2 (-1123)) (-5 *1 (-669 *3)) - (-4 *3 (-584 (-515)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-5 *2 (-1 (-211) (-211))) (-5 *1 (-668 *3)) - (-4 *3 (-584 (-515))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1123)) (-5 *2 (-1 (-211) (-211) (-211))) (-5 *1 (-668 *3)) - (-4 *3 (-584 (-515)))))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) + (-5 *2 (-371)) (-5 *1 (-259)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-371)) (-5 *1 (-297))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-663 (-548))) (-5 *3 (-619 (-548))) (-5 *1 (-1073))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-355)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) + (-4 *1 (-823 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) + ((*1 *1 *1) + (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) + (-14 *3 (-619 (-1135))))) + ((*1 *1 *1) + (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) + ((*1 *1 *1) + (-12 (-14 *2 (-619 (-1135))) (-4 *3 (-169)) + (-4 *5 (-231 (-3643 *2) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3337 *4) (|:| -3352 *5)) + (-2 (|:| -3337 *4) (|:| -3352 *5)))) + (-5 *1 (-452 *2 *3 *4 *5 *6 *7)) (-4 *4 (-821)) + (-4 *7 (-918 *3 *5 (-834 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-499 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) + ((*1 *1 *1) + (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1) + (-12 (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1016)) + (-4 *3 (-701)))) + ((*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817))))) +(((*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-218)) (-5 *1 (-297))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-591 *1))) (-4 *1 (-294))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-1073))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) + (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-918 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-666 *4 *5 *6 *7)) - (-4 *4 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *7 (-1159))))) -(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-665)))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-665))))) + (-12 (-5 *3 (-308 (-218))) (-5 *2 (-399 (-548))) (-5 *1 (-297))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-619 (-663 (-548)))) + (-5 *1 (-1073))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) + (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-292)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-652 *3 *4 *5 *6)) - (-4 *6 (-650 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-664 *3)) - (-4 *3 (-292))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) - ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-663))))) -(((*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) - ((*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) - ((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) - ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663))))) -(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) - ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-211) (-211) (-211))) - (-5 *4 (-1 (-211) (-211) (-211) (-211))) - (-5 *2 (-1 (-902 (-211)) (-211) (-211))) (-5 *1 (-661))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) - (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-211) (-211) (-211))) - (-5 *4 (-3 (-1 (-211) (-211) (-211) (-211)) "undefined")) - (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) - (-5 *1 (-661))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-211) (-211) (-211))) - (-5 *4 (-3 (-1 (-211) (-211) (-211) (-211)) "undefined")) - (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) - (-5 *1 (-661)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-211))) - (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-1 (-902 (-211)) (-211) (-211))) - (-5 *4 (-1041 (-211))) (-5 *5 (-607 (-246))) (-5 *1 (-661))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3))))) + (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| |deg| (-735)) (|:| -2872 *5)))) (-4 *5 (-1181 *4)) - (-4 *4 (-335)) (-5 *2 (-607 *5)) (-5 *1 (-203 *4 *5)))) + (-12 (-5 *2 (-166 (-371))) (-5 *1 (-759 *3)) (-4 *3 (-593 (-371))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-2 (|:| -4051 *5) (|:| -4264 (-526))))) (-5 *4 (-526)) - (-4 *5 (-1181 *4)) (-5 *2 (-607 *5)) (-5 *1 (-660 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-526)) (-5 *2 (-607 (-2 (|:| -4051 *3) (|:| -4264 *4)))) - (-5 *1 (-660 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) - ((*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1052))))) -(((*1 *2 *1) - (-12 (-4 *1 (-659 *3)) (-4 *3 (-1052)) - (-5 *2 (-607 (-2 (|:| -2164 *3) (|:| -2045 (-735)))))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-735)) (-4 *6 (-1052)) (-4 *7 (-859 *6)) (-5 *2 (-653 *7)) - (-5 *1 (-656 *6 *7 *3 *4)) (-4 *3 (-357 *7)) - (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4310))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *4 (-607 (-1123))) - (-5 *2 (-653 (-299 (-211)))) (-5 *1 (-192)))) + (-12 (-5 *4 (-890)) (-5 *2 (-166 (-371))) (-5 *1 (-759 *3)) + (-4 *3 (-593 (-371))))) + ((*1 *2 *3) + (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-593 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-4 *6 (-859 *5)) (-5 *2 (-653 *6)) - (-5 *1 (-656 *5 *6 *3 *4)) (-4 *3 (-357 *6)) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-735)) (-4 *6 (-1052)) (-4 *3 (-859 *6)) (-5 *2 (-653 *3)) - (-5 *1 (-656 *6 *3 *7 *4)) (-4 *7 (-357 *3)) - (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4310))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-4 *3 (-859 *5)) (-5 *2 (-653 *3)) - (-5 *1 (-656 *5 *3 *6 *4)) (-4 *6 (-357 *3)) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *2 (-859 *4)) (-5 *1 (-656 *4 *2 *5 *3)) - (-4 *5 (-357 *2)) (-4 *3 (-13 (-357 *4) (-10 -7 (-6 -4310))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-4 *2 (-859 *5)) (-5 *1 (-656 *5 *2 *3 *4)) - (-4 *3 (-357 *2)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) + (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-169)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-593 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) + (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-399 (-921 (-166 *4)))) (-4 *4 (-540)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-399 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) + (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-308 (-166 *4))) (-4 *4 (-540)) (-4 *4 (-821)) + (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-308 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-540)) + (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) + (-5 *1 (-759 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-399 (-548))) (-5 *1 (-297))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-619 (-548))) (-5 *3 (-663 (-548))) (-5 *1 (-1073))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-727))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1052)) (-4 *3 (-859 *5)) (-5 *2 (-1205 *3)) - (-5 *1 (-656 *5 *3 *6 *4)) (-4 *6 (-357 *3)) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) -(((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823)))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-653 *4)) (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-654 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) + (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-5 *2 (-548)) + (-5 *1 (-434 *5 *3 *6)) (-4 *3 (-1194 *5)) + (-4 *6 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) + (-4 *3 (-1194 *4)) + (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276)))))) (((*1 *2 *2) - (-12 (-4 *3 (-533)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-526)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) - (-5 *1 (-652 *3 *5 *6 *2)) (-4 *2 (-650 *3 *5 *6))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-526)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) - (-5 *1 (-652 *3 *5 *6 *2)) (-4 *2 (-650 *3 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-526)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *1 (-652 *4 *5 *6 *2)) (-4 *2 (-650 *4 *5 *6))))) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3))))) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-648 *4 *5 *6))))) + (-12 (-5 *3 (-1058 (-814 (-371)))) (-5 *2 (-1058 (-814 (-218)))) + (-5 *1 (-297))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-1073))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) (-5 *3 (-548)) + (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-619 (-371))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-459)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-459)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-648 *4 *5 *6)) (-4 *4 (-1052))))) + (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) + (-4 *3 (-1194 *4)) + (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-648 *4 *5 *6)) (-4 *5 (-1052))))) + (-12 (-5 *3 (-814 (-371))) (-5 *2 (-814 (-218))) (-5 *1 (-297))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1052)) (-4 *4 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *5 *4 *6))))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *2 (-1004)) (-5 *1 (-727))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-647 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-5 *2 (-1 *5)) - (-5 *1 (-647 *4 *5))))) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) + (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *2 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))) + (-5 *1 (-434 *5 *3 *2)) (-4 *3 (-1194 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-297)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-1004))) (-5 *2 (-1004)) (-5 *1 (-297)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) (-5 *1 (-1028))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1113 *4)) + (-4 *4 (-1172)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1) + (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-647 *4 *3)) (-4 *4 (-1052)) - (-4 *3 (-1052))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-735) *2)) (-5 *4 (-735)) (-4 *2 (-1052)) - (-5 *1 (-642 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-735) *3)) (-4 *3 (-1052)) (-5 *1 (-646 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-646 *2)) (-4 *2 (-1052)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-607 *5) (-607 *5))) (-5 *4 (-526)) (-5 *2 (-607 *5)) - (-5 *1 (-646 *5)) (-4 *5 (-1052))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1160))) (-5 *3 (-1160)) (-5 *1 (-645))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-4 *2 (-1052)) (-5 *1 (-644 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-643 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-643 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-735)) (-4 *2 (-1052)) (-5 *1 (-642 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-1044 (-905 (-526)))) (-5 *2 (-315)) - (-5 *1 (-317)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-640 *3)) (-4 *3 (-1004)) (-4 *3 (-1052))))) -(((*1 *1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-640 *3)) (-4 *3 (-1004)) (-4 *3 (-1052))))) + (-12 (-5 *3 (-308 (-371))) (-5 *2 (-308 (-218))) (-5 *1 (-297))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1004)) (-4 *2 (-1052))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-735)) (-5 *1 (-640 *2)) (-4 *2 (-1052))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-640 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205 (-735))) (-5 *1 (-640 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) -(((*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-735))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783 *4)) (-4 *4 (-811)) (-5 *2 (-111)) (-5 *1 (-637 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *3 (-811)) (-5 *1 (-637 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-783 *3)) (-4 *3 (-811)) (-5 *1 (-637 *3))))) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-878)) (-4 *5 (-811)) - (-5 *2 (-56 (-607 (-637 *5)))) (-5 *1 (-637 *5))))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) + (-4 *3 (-1194 *4)) + (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *5)) (-5 *4 (-878)) (-4 *5 (-811)) (-5 *2 (-607 (-637 *5))) - (-5 *1 (-637 *5))))) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) + (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-571 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-218)) (-5 *1 (-297))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1118)) (-5 *1 (-52))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *7)) (-4 *7 (-811)) - (-4 *8 (-909 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *2 (-1004)) (-5 *1 (-726))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-748)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-934))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1065 (-745))) (-5 *6 (-745)) (-5 *2 - (-2 (|:| |particular| (-3 (-1205 (-392 *8)) "failed")) - (|:| -2104 (-607 (-1205 (-392 *8)))))) - (-5 *1 (-634 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-111)) - (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-5 *2 (-111)) - (-5 *1 (-633 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 (-1117 *4))) (-5 *3 (-1117 *4)) (-4 *4 (-869)) - (-5 *1 (-628 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-348)) (-5 *1 (-625 *4 *2)) - (-4 *2 (-623 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-623 *3)) (-4 *3 (-1004)) (-4 *3 (-348)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-735)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) (-5 *1 (-625 *5 *2)) - (-4 *2 (-623 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-348)) (-5 *1 (-625 *4 *2)) - (-4 *2 (-623 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *5 (-1181 *4)) (-5 *2 (-607 (-620 (-392 *5)))) (-5 *1 (-624 *4 *5)) - (-5 *3 (-620 (-392 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-616 *3)) (-4 *3 (-1159))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-616 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))) - (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))) (-4 *3 (-1052)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-614 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)))) - ((*1 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-357 *2)) (-4 *2 (-1159)))) - ((*1 *1 *1) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) - (-14 *5 *4)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-526) (-526))) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-735) (-735))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-614 *3 *4 *5)) - (-4 *3 (-1052))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-346 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-371 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-614 *3 *4 *5)) (-4 *4 (-23)) - (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-612 *3)) (-4 *3 (-1052))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-1052))))) -(((*1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-607 *3)) (-4 *3 (-1159))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159))))) + (-2 (|:| |contp| (-548)) + (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) + (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *1)) (-5 *4 (-1205 *1)) (-4 *1 (-606 *5)) (-4 *5 (-1004)) - (-5 *2 (-2 (|:| -1676 (-653 *5)) (|:| |vec| (-1205 *5)))))) + (-12 (-5 *3 (-619 (-548))) (-5 *4 (-874 (-548))) + (-5 *2 (-663 (-548))) (-5 *1 (-570)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 *1)) (-4 *1 (-606 *4)) (-4 *4 (-1004)) (-5 *2 (-653 *4))))) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-619 (-663 (-548)))) + (-5 *1 (-570)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-548))) (-5 *4 (-619 (-874 (-548)))) + (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-570))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-591 *1))) (-4 *1 (-294))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *4 (-1135)) + (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-292))))) +(((*1 *2) + (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 *5)) (-4 *5 (-348)) - (-4 *5 (-533)) (-5 *2 (-1205 *5)) (-5 *1 (-605 *5 *4)))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *2 (-1004)) (-5 *1 (-726))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 *5)) (-3636 (-4 *5 (-348))) - (-4 *5 (-533)) (-5 *2 (-1205 (-392 *5))) (-5 *1 (-605 *5 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1205 *5)) (-4 *5 (-606 *4)) (-4 *4 (-533)) - (-5 *2 (-1205 *4)) (-5 *1 (-605 *4 *5))))) + (-12 (-5 *3 (-619 (-308 (-371)))) (-5 *4 (-619 (-371))) + (-5 *2 (-1004)) (-5 *1 (-811))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-745)) (-5 *1 (-570))))) (((*1 *2 *3) - (-12 (-5 *3 (-1205 *5)) (-4 *5 (-606 *4)) (-4 *4 (-533)) (-5 *2 (-111)) - (-5 *1 (-605 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-803 *3))) (-4 *3 (-13 (-27) (-1145) (-406 *5))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 - (-3 (-803 *3) - (-2 (|:| |leftHandLimit| (-3 (-803 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-803 *3) #1#))) - "failed")) - (-5 *1 (-603 *5 *3)))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 (-1116 (-218))) (-5 *1 (-185)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-278 *3)) (-5 *5 (-1106)) - (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-803 *3)) - (-5 *1 (-603 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-803 (-905 *5)))) (-4 *5 (-436)) - (-5 *2 - (-3 (-803 (-392 (-905 *5))) - (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-803 (-392 (-905 *5))) #2#))) - #3="failed")) - (-5 *1 (-604 *5)) (-5 *3 (-392 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-436)) - (-5 *2 - (-3 (-803 *3) - (-2 (|:| |leftHandLimit| (-3 (-803 *3) #2#)) - (|:| |rightHandLimit| (-3 (-803 *3) #2#))) - #3#)) - (-5 *1 (-604 *5)))) + (-12 (-5 *3 (-308 (-218))) (-5 *4 (-619 (-1135))) + (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-278 (-392 (-905 *6)))) (-5 *5 (-1106)) - (-5 *3 (-392 (-905 *6))) (-4 *6 (-436)) (-5 *2 (-803 *3)) - (-5 *1 (-604 *6))))) + (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *4 (-619 (-1135))) + (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292))))) +(((*1 *1) + (-12 (-4 *1 (-396)) (-3958 (|has| *1 (-6 -4318))) + (-3958 (|has| *1 (-6 -4310))))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) + ((*1 *2 *1) (-12 (-4 *1 (-804 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (-4 *1 (-821))) ((*1 *1) (-5 *1 (-1082)))) +(((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-278 (-796 *3))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-796 *3)) - (-5 *1 (-603 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-796 (-905 *5)))) (-4 *5 (-436)) - (-5 *2 (-796 (-392 (-905 *5)))) (-5 *1 (-604 *5)) (-5 *3 (-392 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-436)) - (-5 *2 (-796 *3)) (-5 *1 (-604 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-599))))) -(((*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1) (-5 *1 (-599)))) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *6 (-218)) + (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-726))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) (((*1 *2 *3) - (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) - (-5 *2 (-464 *4 *5)) (-5 *1 (-598 *4 *5))))) + (-12 (-4 *1 (-810)) + (-5 *3 + (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) + (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) + (|:| |ub| (-619 (-814 (-218)))))) + (-5 *2 (-1004)))) + ((*1 *2 *3) + (-12 (-4 *1 (-810)) + (-5 *3 + (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) + (-5 *2 (-1004))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-607 (-233 *4 *5))) (-5 *2 (-233 *4 *5)) (-14 *4 (-607 (-1123))) - (-4 *5 (-436)) (-5 *1 (-598 *4 *5))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-607 (-464 *4 *5))) (-5 *3 (-824 *4)) (-14 *4 (-607 (-1123))) - (-4 *5 (-436)) (-5 *1 (-598 *4 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-233 *5 *6))) (-4 *6 (-436)) - (-5 *2 (-233 *5 *6)) (-14 *5 (-607 (-1123))) (-5 *1 (-598 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *1 (-246)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *3 (-607 (-246))) - (-5 *1 (-247)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-464 *5 *6))) (-5 *3 (-464 *5 *6)) (-14 *5 (-607 (-1123))) - (-4 *6 (-436)) (-5 *2 (-1205 *6)) (-5 *1 (-598 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 (-464 *3 *4))) (-14 *3 (-607 (-1123))) (-4 *4 (-436)) - (-5 *1 (-598 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-607 (-464 *5 *6))) (-5 *4 (-824 *5)) (-14 *5 (-607 (-1123))) - (-5 *2 (-464 *5 *6)) (-5 *1 (-598 *5 *6)) (-4 *6 (-436)))) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-418 *4 *2)) (-4 *2 (-13 (-1157) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-464 *5 *6))) (-5 *4 (-824 *5)) (-14 *5 (-607 (-1123))) - (-5 *2 (-464 *5 *6)) (-5 *1 (-598 *5 *6)) (-4 *6 (-436))))) + (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) + (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) + (-5 *2 (-308 *5)) (-5 *1 (-569 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) + (-5 *2 (-619 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-619 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-308 (-218))) (-5 *4 (-619 (-1135))) + (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-726))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 (-464 *4 *5))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) - (-5 *2 (-607 (-233 *4 *5))) (-5 *1 (-598 *4 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) (((*1 *2 *3) - (-12 (-14 *4 (-607 (-1123))) (-4 *5 (-436)) - (-5 *2 (-2 (|:| |glbase| (-607 (-233 *4 *5))) (|:| |glval| (-607 (-526))))) - (-5 *1 (-598 *4 *5)) (-5 *3 (-607 (-233 *4 *5)))))) + (-12 (-5 *3 (-1118)) (-5 *2 (-207 (-492))) (-5 *1 (-809))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 (-464 *4 *5))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) - (-5 *2 (-2 (|:| |gblist| (-607 (-233 *4 *5))) (|:| |gvlist| (-607 (-526))))) - (-5 *1 (-598 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960) (-1145))))) - ((*1 *1 *1) (-4 *1 (-597)))) + (-12 (-5 *3 (-566 *2)) (-4 *2 (-13 (-29 *4) (-1157))) + (-5 *1 (-564 *4 *2)) + (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-566 (-399 (-921 *4)))) + (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) + (-5 *2 (-308 *4)) (-5 *1 (-569 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-308 (-218))) (-5 *4 (-1135)) + (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-185)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-308 (-218))) (-5 *4 (-1135)) + (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-292))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-726))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960) (-1145))))) - ((*1 *1 *1) (-4 *1 (-597)))) + (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960) (-1145))))) - ((*1 *1 *1) (-4 *1 (-597)))) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) + (-4 *3 (-622 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) + (-4 *3 (-622 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-568 *4)) + (-4 *4 (-341))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) + (-5 *2 (-112)) (-5 *1 (-292))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) + (-5 *2 (-1004)) (-5 *1 (-726))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960) (-1145))))) - ((*1 *1 *1) (-4 *1 (-597)))) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960) (-1145))))) - ((*1 *1 *1) (-4 *1 (-597)))) + (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) + (-4 *3 (-622 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-533))))) +(((*1 *1 *1 *1) (-4 *1 (-294))) ((*1 *1 *1) (-4 *1 (-294)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) + (-4 *5 (-13 (-27) (-1157) (-422 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-399 (-548))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-286 *3)) (-5 *5 (-399 (-548))) + (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-548))) (-5 *4 (-286 *6)) + (-4 *6 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-548))) + (-4 *7 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-548))) + (-4 *3 (-13 (-27) (-1157) (-422 *7))) + (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-399 (-548)))) (-5 *4 (-286 *8)) + (-5 *5 (-1185 (-399 (-548)))) (-5 *6 (-399 (-548))) + (-4 *8 (-13 (-27) (-1157) (-422 *7))) + (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-399 (-548)))) + (-5 *7 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *8))) + (-4 *8 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-52)) (-5 *1 (-450 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) + (-4 *3 (-1016)) (-5 *1 (-575 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-576 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) + (-4 *3 (-1016)) (-4 *1 (-1178 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-745)) + (-5 *3 (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| *4)))) + (-4 *4 (-1016)) (-4 *1 (-1199 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 (-2 (|:| |k| (-745)) (|:| |c| *3)))) + (-4 *3 (-1016)) (-4 *1 (-1209 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-726))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960) (-1145))))) - ((*1 *1 *1) (-4 *1 (-597)))) + (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-31 *3 *4)) - (-4 *4 (-406 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *1 (-112)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-112)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *4)) - (-4 *4 (-406 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-112)) (-5 *1 (-154)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *4)) - (-4 *4 (-13 (-406 *3) (-960))))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-282 *3)) (-4 *3 (-283)))) - ((*1 *2 *2) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *4 (-811)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *4)) - (-4 *4 (-406 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *4)) - (-4 *4 (-13 (-406 *3) (-960) (-1145)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) - (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) - (-5 *1 (-150 *4 *5)) (-4 *5 (-406 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) - (-5 *1 (-261 *4 *5)) (-4 *5 (-13 (-406 *4) (-960))))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-5 *2 (-111)) (-5 *1 (-282 *4)) (-4 *4 (-283)))) - ((*1 *2 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-405 *4 *5)) - (-4 *4 (-406 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) - (-5 *1 (-416 *4 *5)) (-4 *5 (-406 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) - (-5 *1 (-596 *4 *5)) (-4 *5 (-13 (-406 *4) (-960) (-1145)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) - (-14 *6 (-607 (-1123))) - (-5 *2 (-607 (-1094 *5 (-512 (-824 *6)) (-824 *6) (-744 *5 (-824 *6))))) - (-5 *1 (-595 *5 *6))))) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) - (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-595 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 (-905 *3))) (-4 *3 (-436)) (-5 *1 (-345 *3 *4)) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-431 *3 *4 *5 *6)))) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-619 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1063)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-607 (-744 *3 (-824 *4)))) (-4 *3 (-436)) - (-14 *4 (-607 (-1123))) (-5 *1 (-595 *3 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-607 (-905 *3))) (-4 *3 (-436)) (-5 *1 (-345 *3 *4)) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-607 (-744 *3 (-824 *4)))) (-4 *3 (-436)) - (-14 *4 (-607 (-1123))) (-5 *1 (-595 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-436)) (-5 *2 (-111)) - (-5 *1 (-345 *4 *5)) (-14 *5 (-607 (-1123))))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-619 *4))) (-4 *4 (-1063)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) + (-5 *1 (-113 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-607 (-744 *4 (-824 *5)))) (-4 *4 (-436)) - (-14 *5 (-607 (-1123))) (-5 *2 (-111)) (-5 *1 (-595 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *4)) (-4 *4 (-811)) (-5 *2 (-607 (-629 *4 *5))) - (-5 *1 (-594 *4 *5 *6)) (-4 *5 (-13 (-163) (-682 (-392 (-526))))) - (-14 *6 (-878))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |k| (-637 *3)) (|:| |c| *4)))) - (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) - (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-607 (-278 *4))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) - (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2736 (-607 (-2 (|:| |irr| *10) (|:| -2456 (-526))))))) - (-5 *6 (-607 *3)) (-5 *7 (-607 *8)) (-4 *8 (-811)) (-4 *3 (-292)) - (-4 *10 (-909 *3 *9 *8)) (-4 *9 (-757)) - (-5 *2 - (-2 (|:| |polfac| (-607 *10)) (|:| |correct| *3) - (|:| |corrfact| (-607 (-1117 *3))))) - (-5 *1 (-592 *8 *9 *3 *10)) (-5 *4 (-607 (-1117 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-735)) (-5 *5 (-607 *3)) (-4 *3 (-292)) (-4 *6 (-811)) - (-4 *7 (-757)) (-5 *2 (-111)) (-5 *1 (-592 *6 *7 *3 *8)) - (-4 *8 (-909 *3 *7 *6))))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-619 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) + (-5 *1 (-689 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-567 *2)) (-4 *2 (-533))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-294))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) + (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) + (-4 *6 (-443)) (-4 *7 (-767)) (-4 *4 (-821)) + (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1806 *9)))) + (-5 *1 (-1071 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-726))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) (((*1 *2 *2) - (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) - (-5 *1 (-591 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1024 *3 *4 *5 *6)) - (-4 *2 (-1060 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1123)) - (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1145) (-919) (-29 *4)))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526))))) - (-4 *5 (-1181 *4)) (-5 *2 (-1117 (-392 *5))) (-5 *1 (-585 *4 *5)) - (-5 *3 (-392 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526))))) - (-5 *2 (-1117 (-392 *6))) (-5 *1 (-585 *5 *6)) (-5 *3 (-392 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-581 *4)) (-4 *4 (-811)) (-4 *2 (-811)) - (-5 *1 (-582 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-581 *4)) (-5 *1 (-582 *3 *4)) (-4 *3 (-811)) (-4 *4 (-811))))) -(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1145)))) - ((*1 *2 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-581 *3)) (-4 *3 (-811))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 *1)) (-4 *1 (-283)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-112)) (-5 *3 (-607 *5)) (-5 *4 (-735)) (-4 *5 (-811)) - (-5 *1 (-581 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-580 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-580 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-576))))) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) + (-5 *1 (-689 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-533))))) +(((*1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-619 (-114)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-726))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2198 (-548)) (|:| -3213 (-619 *3)))) + (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) (((*1 *2 *1) (-12 (-5 *2 - (-607 - (-2 - (|:| -4179 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (|:| -2164 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1101 (-211))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1537 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-536)))) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-322))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *2)) + (-4 *2 (-622 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-808 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-567 *2)) (-4 *2 (-533))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-1135)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-912 (-218))) (-5 *4 (-843)) (-5 *2 (-1223)) + (-5 *1 (-459)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-607 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-607 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4310)) (-4 *1 (-574 *4 *3)) (-4 *4 (-1052)) - (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-574 *2 *3)) (-4 *3 (-1159)) (-4 *2 (-1052)) (-4 *2 (-811))))) -(((*1 *2 *1) - (-12 (-4 *1 (-574 *2 *3)) (-4 *3 (-1159)) (-4 *2 (-1052)) (-4 *2 (-811))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1159)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-912 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4311)) (-4 *1 (-574 *3 *2)) (-4 *3 (-1052)) - (-4 *2 (-1159))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4311)) (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) - (-4 *4 (-1159)) (-5 *2 (-1211))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-607 (-581 *2))) (-5 *4 (-607 (-1123))) - (-4 *2 (-13 (-406 (-159 *5)) (-960) (-1145))) (-4 *5 (-13 (-533) (-811))) - (-5 *1 (-570 *5 *6 *2)) (-4 *6 (-13 (-406 *5) (-960) (-1145)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811))) (-5 *2 (-159 *5)) (-5 *1 (-570 *4 *5 *3)) - (-4 *5 (-13 (-406 *4) (-960) (-1145))) - (-4 *3 (-13 (-406 (-159 *4)) (-960) (-1145)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811))) - (-4 *2 (-13 (-406 (-159 *4)) (-960) (-1145))) (-5 *1 (-570 *4 *3 *2)) - (-4 *3 (-13 (-406 *4) (-960) (-1145)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 *4) (-960) (-1145))) - (-5 *1 (-570 *4 *2 *3)) (-4 *3 (-13 (-406 (-159 *4)) (-960) (-1145)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-406 *4) (-960) (-1145))) - (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 (-159 *4)) (-960) (-1145))) - (-5 *1 (-570 *4 *5 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-983 (-803 (-526)))) - (-5 *3 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *4)))) (-4 *4 (-1004)) - (-5 *1 (-566 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-983 (-803 (-526)))) (-5 *1 (-566 *3)) (-4 *3 (-1004))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-5 *1 (-566 *3)) - (-4 *3 (-1004))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *1 (-566 *3)) (-4 *3 (-1004))))) -(((*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1004))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *6)))) - (-5 *4 (-983 (-803 (-526)))) (-5 *5 (-1123)) (-5 *7 (-392 (-526))) - (-4 *6 (-1004)) (-5 *2 (-823)) (-5 *1 (-566 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-392 (-526))) (-5 *1 (-566 *3)) (-4 *3 (-37 *2)) - (-4 *3 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *1 *1) - (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-607 *3)) (-4 *3 (-1060 *5 *6 *7 *8)) - (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-563 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-526))) (-5 *4 (-861 (-526))) (-5 *2 (-653 (-526))) - (-5 *1 (-562)))) + (-12 (-5 *2 (-745)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-912 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)) (-5 *3 (-218))))) +(((*1 *2) + (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-726))))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) ((*1 *2 *3) - (-12 (-5 *3 (-607 (-526))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-562)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-526))) (-5 *4 (-607 (-861 (-526)))) - (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-562))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-735)) (-5 *1 (-562))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) - (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-413 *4 *2)) (-4 *2 (-13 (-1145) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-141)) - (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-299 *5)) - (-5 *1 (-561 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-29 *4) (-1145))) (-5 *1 (-558 *4 *2)) - (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-556 (-392 (-905 *4)))) - (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-299 *4)) - (-5 *1 (-561 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-560 *4)) (-4 *4 (-335))))) -(((*1 *2 *2) (-12 (-5 *1 (-559 *2)) (-4 *2 (-525))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-559 *2)) (-4 *2 (-525))))) -(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-559 *3)) (-4 *3 (-525))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-559 *2)) (-4 *2 (-525))))) + (-12 (-5 *3 (-619 (-2 (|:| -1915 *4) (|:| -2512 (-548))))) + (-4 *4 (-1194 (-548))) (-5 *2 (-745)) (-5 *1 (-433 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-322)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-322))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-353 (-114))) (-4 *2 (-1016)) (-5 *1 (-689 *2 *4)) + (-4 *4 (-622 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-353 (-114))) (-5 *1 (-808 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-735)) (-5 *1 (-559 *2)) (-4 *2 (-525)))) + (|partial| -12 (-5 *3 (-745)) (-5 *1 (-567 *2)) (-4 *2 (-533)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3957 *3) (|:| -3352 (-745)))) (-5 *1 (-567 *3)) + (-4 *3 (-533))))) +(((*1 *2 *3) + (-12 (-5 *3 (-591 *5)) (-4 *5 (-422 *4)) (-4 *4 (-1007 (-548))) + (-4 *4 (-13 (-821) (-540))) (-5 *2 (-1131 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| -2462 (-735)))) (-5 *1 (-559 *3)) - (-4 *3 (-525))))) + (-12 (-5 *3 (-591 *1)) (-4 *1 (-1016)) (-4 *1 (-294)) + (-5 *2 (-1131 *1))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *1) (-4 *1 (-936)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-649 (-218))) + (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-725))))) +(((*1 *2) + (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *2) + (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1223)) (-5 *1 (-805))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-745)) (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-533))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1016)) (-4 *4 (-1194 *3)) (-5 *1 (-161 *3 *4 *2)) + (-4 *2 (-1194 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172))))) +(((*1 *1) (-5 *1 (-112)))) +(((*1 *2) + (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-1118)) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1004)) + (-5 *1 (-725))))) +(((*1 *2) + (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *2) + (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-735)) (-5 *2 (-111)) (-5 *1 (-559 *3)) (-4 *3 (-525))))) + (-12 (-5 *3 (-795)) (-5 *4 (-52)) (-5 *2 (-1223)) (-5 *1 (-805))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-607 - (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 *2)) - (|:| |logand| (-1117 *2))))) - (-5 *4 (-607 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-348)) - (-5 *1 (-556 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-348))))) -(((*1 *2 *1) + (-619 + (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 *2)) + (|:| |logand| (-1131 *2))))) + (-5 *4 (-619 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-355)) (-5 *1 (-566 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-725))))) +(((*1 *1 *2 *3) (-12 - (-5 *2 - (-607 - (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 *3)) - (|:| |logand| (-1117 *3))))) - (-5 *1 (-556 *3)) (-4 *3 (-348))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-556 *3)) (-4 *3 (-348))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-556 *3)) (-4 *3 (-348))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-555))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1123)) - (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-1145) (-919) (-1087) (-29 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-550 *5 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) - (-5 *2 - (-2 (|:| |ir| (-556 (-392 *6))) (|:| |specpart| (-392 *6)) - (|:| |polypart| *6))) - (-5 *1 (-550 *5 *6)) (-5 *3 (-392 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-590 *4 *5)) (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3434 *4) (|:| |sol?| (-111))) (-526) *4)) - (-4 *4 (-348)) (-4 *5 (-1181 *4)) (-5 *1 (-550 *4 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-348)) (-5 *1 (-550 *4 *2)) (-4 *2 (-1181 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-607 (-392 *7))) (-4 *7 (-1181 *6)) - (-5 *3 (-392 *7)) (-4 *6 (-348)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-550 *6 *7))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) - (-5 *2 (-2 (|:| -2222 (-392 *6)) (|:| |coeff| (-392 *6)))) - (-5 *1 (-550 *5 *6)) (-5 *3 (-392 *6))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3434 *7) (|:| |sol?| (-111))) (-526) *7)) - (-5 *6 (-607 (-392 *8))) (-4 *7 (-348)) (-4 *8 (-1181 *7)) (-5 *3 (-392 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-550 *7 *8))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2222 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-607 (-392 *8))) (-4 *7 (-348)) (-4 *8 (-1181 *7)) (-5 *3 (-392 *8)) + (-619 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-548))))) + (-4 *2 (-540)) (-5 *1 (-410 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-548)) + (|:| -3213 (-619 (-2 (|:| |irr| *4) (|:| -3286 (-548))))))) + (-4 *4 (-1194 (-548))) (-5 *2 (-410 *4)) (-5 *1 (-433 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157)))))) +(((*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-52)) (-5 *1 (-805))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-355))))) +(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) + (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2383 (-619 *9)) (|:| -1806 *4) (|:| |ineq| (-619 *9)))) + (-5 *1 (-957 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) + (-4 *4 (-1036 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) + (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2383 (-619 *9)) (|:| -1806 *4) (|:| |ineq| (-619 *9)))) + (-5 *1 (-1070 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) + (-4 *4 (-1036 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP)))) + (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-428)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-428))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-550 *7 *8))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3434 *6) (|:| |sol?| (-111))) (-526) *6)) - (-4 *6 (-348)) (-4 *7 (-1181 *6)) + (-619 + (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 *3)) + (|:| |logand| (-1131 *3))))) + (-5 *1 (-566 *3)) (-4 *3 (-355))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-701)) (-4 *2 (-1172))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) + (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *9 (-1030 *6 *7 *8)) (-5 *2 - (-3 (-2 (|:| |answer| (-392 *7)) (|:| |a0| *6)) - (-2 (|:| -2222 (-392 *7)) (|:| |coeff| (-392 *7))) "failed")) - (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2222 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-348)) (-4 *7 (-1181 *6)) + (-619 + (-2 (|:| -2383 (-619 *9)) (|:| -1806 *10) (|:| |ineq| (-619 *9))))) + (-5 *1 (-957 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) + (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *9 (-1030 *6 *7 *8)) (-5 *2 - (-3 (-2 (|:| |answer| (-392 *7)) (|:| |a0| *6)) - (-2 (|:| -2222 (-392 *7)) (|:| |coeff| (-392 *7))) "failed")) - (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-607 *6) "failed") (-526) *6 *6)) - (-4 *6 (-348)) (-4 *7 (-1181 *6)) - (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) - (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3434 *6) (|:| |sol?| (-111))) (-526) *6)) - (-4 *6 (-348)) (-4 *7 (-1181 *6)) - (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) - (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2222 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-348)) (-4 *7 (-1181 *6)) - (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) - (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-556 *3) *3 (-1123))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1123))) - (-4 *3 (-269)) (-4 *3 (-597)) (-4 *3 (-995 *4)) (-4 *3 (-406 *7)) - (-5 *4 (-1123)) (-4 *7 (-584 (-849 (-526)))) (-4 *7 (-436)) - (-4 *7 (-845 (-526))) (-4 *7 (-811)) (-5 *2 (-556 *3)) - (-5 *1 (-549 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-436)) (-4 *4 (-811)) (-5 *1 (-549 *4 *2)) - (-4 *2 (-269)) (-4 *2 (-406 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-533)) (-4 *4 (-811)) (-5 *1 (-549 *4 *2)) - (-4 *2 (-406 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6)) (-5 *4 (-1123)) (-4 *6 (-406 *5)) (-4 *5 (-811)) - (-5 *2 (-607 (-581 *6))) (-5 *1 (-549 *5 *6))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-607 (-581 *6))) (-5 *4 (-1123)) (-5 *2 (-581 *6)) - (-4 *6 (-406 *5)) (-4 *5 (-811)) (-5 *1 (-549 *5 *6))))) + (-619 + (-2 (|:| -2383 (-619 *9)) (|:| -1806 *10) (|:| |ineq| (-619 *9))))) + (-5 *1 (-1070 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) + (-5 *2 (-1004)) (-5 *1 (-724)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) + (-5 *8 (-380)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-428))))) +(((*1 *1 *1) + (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-443)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *1)))) + (-4 *1 (-1036 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1176))) + ((*1 *2 *2) + (-12 (-4 *3 (-540)) (-5 *1 (-1197 *3 *2)) + (-4 *2 (-13 (-1194 *3) (-540) (-10 -8 (-15 -3587 ($ $ $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-566 *3)) (-4 *3 (-355))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-701)) (-4 *2 (-1172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1806 *7)))) + (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1806 *7)))) + (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1070 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-218)) + (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-428))))) +(((*1 *2 *1) + (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) + (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| -1489 *3) (|:| -3310 *4)))) + (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-1116 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-355))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-540)) + (-4 *3 (-1172))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) + (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) + (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1004)) + (-5 *1 (-724))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-428))))) +(((*1 *2 *1) + (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-258 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-890)))) + ((*1 *2 *3) + (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-360) (-355))) + (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-4 *7 (-334 *4 *5 *6)) + (-5 *2 (-745)) (-5 *1 (-384 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-807 (-890))))) + ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *3 (-540)) (-5 *2 (-548)) (-5 *1 (-599 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) + (-4 *3 (-821)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) + (-4 *8 (-334 *5 *6 *7)) + (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-745)) + (-5 *1 (-880 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) + (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) + (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-745)) + (-5 *1 (-881 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-355)) + (-4 *7 (-1194 *6)) (-4 *4 (-1194 (-399 *7))) (-4 *8 (-334 *6 *7 *4)) + (-4 *9 (-13 (-360) (-355))) (-5 *2 (-745)) + (-5 *1 (-987 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-540)) + (-5 *2 (-745)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-563))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 (-581 *5))) (-4 *4 (-811)) (-5 *2 (-581 *5)) - (-5 *1 (-549 *4 *5)) (-4 *5 (-406 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-607 (-581 *5))) (-5 *3 (-1123)) (-4 *5 (-406 *4)) - (-4 *4 (-811)) (-5 *1 (-549 *4 *5))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-995 (-526)) (-141))) - (-5 *2 (-2 (|:| -2222 (-392 (-905 *5))) (|:| |coeff| (-392 (-905 *5))))) - (-5 *1 (-546 *5)) (-5 *3 (-392 (-905 *5)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 (-392 (-905 *6)))) - (-5 *3 (-392 (-905 *6))) (-4 *6 (-13 (-533) (-995 (-526)) (-141))) + (-12 (-4 *4 (-443)) (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-546 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-392 (-905 *4))) (-5 *3 (-1123)) - (-4 *4 (-13 (-533) (-995 (-526)) (-141))) (-5 *1 (-546 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) - (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-556 *3)) (-5 *1 (-413 *5 *3)) (-4 *3 (-13 (-1145) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-995 (-526)) (-141))) - (-5 *2 (-556 (-392 (-905 *5)))) (-5 *1 (-546 *5)) (-5 *3 (-392 (-905 *5)))))) + (-619 + (-2 (|:| |eigval| (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4)))) + (|:| |eigmult| (-745)) + (|:| |eigvec| (-619 (-663 (-399 (-921 *4)))))))) + (-5 *1 (-284 *4)) (-5 *3 (-663 (-399 (-921 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-832)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-931))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-5 *1 (-429))))) +(((*1 *1 *1) (-4 *1 (-1025))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1135)) + (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) + (-5 *1 (-559 *4 *2)) + (-4 *2 (-13 (-1157) (-928) (-1099) (-29 *4)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-526)) (-5 *1 (-545 *3)) (-4 *3 (-995 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-607 (-392 *6))) (-5 *3 (-392 *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-348) (-141) (-995 (-526)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-544 *5 *6))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) - (-5 *2 (-2 (|:| -2222 (-392 *5)) (|:| |coeff| (-392 *5)))) - (-5 *1 (-544 *4 *5)) (-5 *3 (-392 *5))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) - (-4 *3 (-13 (-348) (-141) (-995 (-526)))) (-5 *1 (-544 *3 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-584 (-849 (-526)))) - (-4 *5 (-845 (-526))) - (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-543 *5 *3)) - (-4 *3 (-597)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1123)) (-5 *4 (-803 *2)) (-4 *2 (-1087)) - (-4 *2 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-584 (-849 (-526)))) - (-4 *5 (-845 (-526))) - (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) - (-5 *1 (-543 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-584 (-849 (-526)))) - (-4 *5 (-845 (-526))) - (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-543 *5 *3)) - (-4 *3 (-597)) (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) - (-5 *2 (-2 (|:| -2388 *3) (|:| |nconst| *3))) (-5 *1 (-543 *5 *3)) - (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-581 *4)) (-5 *6 (-1123)) (-4 *4 (-13 (-406 *7) (-27) (-1145))) - (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) - (-5 *1 (-542 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1123))) - (-4 *2 (-13 (-406 *5) (-27) (-1145))) - (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *1 (-542 *5 *2 *6)) (-4 *6 (-1052))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) - (-4 *3 (-13 (-406 *6) (-27) (-1145))) - (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-12 (-4 *4 (-443)) (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-542 *6 *3 *7)) (-4 *7 (-1052))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1145))) - (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-542 *5 *3 *6)) - (-4 *6 (-1052))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1145))) - (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-556 *3)) (-5 *1 (-542 *5 *3 *6)) (-4 *6 (-1052))))) + (-619 + (-2 (|:| |eigval| (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4)))) + (|:| |geneigvec| (-619 (-663 (-399 (-921 *4)))))))) + (-5 *1 (-284 *4)) (-5 *3 (-663 (-399 (-921 *4))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) - (-4 *7 (-1181 (-392 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2221 *3))) - (-5 *1 (-539 *5 *6 *7 *3)) (-4 *3 (-327 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) - (-5 *2 - (-2 (|:| |answer| (-392 *6)) (|:| -2221 (-392 *6)) - (|:| |specpart| (-392 *6)) (|:| |polypart| *6))) - (-5 *1 (-540 *5 *6)) (-5 *3 (-392 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-735)) (-5 *1 (-538))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) -(((*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-538)) (-5 *3 (-526))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) -(((*1 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-538)) (-5 *3 (-526))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-170 *2)) (-4 *2 (-292)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-607 (-607 *4))) (-5 *2 (-607 *4)) (-4 *4 (-292)) - (-5 *1 (-170 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 *8)) - (-5 *4 - (-607 - (-2 (|:| -2104 (-653 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-653 *7))))) - (-5 *5 (-735)) (-4 *8 (-1181 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-335)) - (-5 *2 - (-2 (|:| -2104 (-653 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-653 *7)))) - (-5 *1 (-480 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-581 *4)) (-5 *6 (-1117 *4)) - (-4 *4 (-13 (-406 *7) (-27) (-1145))) - (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) - (-5 *1 (-537 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-581 *4)) (-5 *6 (-392 (-1117 *4))) - (-4 *4 (-13 (-406 *7) (-27) (-1145))) - (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) - (-5 *1 (-537 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-581 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1123))) (-5 *5 (-1117 *2)) - (-4 *2 (-13 (-406 *6) (-27) (-1145))) - (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *1 (-537 *6 *2 *7)) (-4 *7 (-1052)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1123))) - (-5 *5 (-392 (-1117 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1145))) - (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *1 (-537 *6 *2 *7)) (-4 *7 (-1052))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-5 *6 (-1117 *3)) - (-4 *3 (-13 (-406 *7) (-27) (-1145))) - (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-537 *7 *3 *8)) (-4 *8 (-1052)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-5 *6 (-392 (-1117 *3))) - (-4 *3 (-13 (-406 *7) (-27) (-1145))) - (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-537 *7 *3 *8)) (-4 *8 (-1052))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-1117 *3)) - (-4 *3 (-13 (-406 *6) (-27) (-1145))) - (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-537 *6 *3 *7)) - (-4 *7 (-1052)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-392 (-1117 *3))) - (-4 *3 (-13 (-406 *6) (-27) (-1145))) - (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-537 *6 *3 *7)) - (-4 *7 (-1052))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-581 *3)) (-5 *5 (-1117 *3)) - (-4 *3 (-13 (-406 *6) (-27) (-1145))) - (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-556 *3)) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-581 *3)) (-5 *5 (-392 (-1117 *3))) - (-4 *3 (-13 (-406 *6) (-27) (-1145))) - (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) - (-5 *2 (-556 *3)) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1101 (-211))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1537 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-536))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) + (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) + (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -12397,4015 +15345,2949 @@ "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1101 (-211))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1537 + (-3 (|:| |str| (-1116 (-218))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-536))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-607 - (-2 - (|:| -4179 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (|:| -2164 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1101 (-211))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1537 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-536))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-536))))) -(((*1 *1) (-5 *1 (-536)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-525))))) -(((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1123)) (-5 *6 (-607 (-581 *3))) (-5 *5 (-581 *3)) - (-4 *3 (-13 (-27) (-1145) (-406 *7))) - (-4 *7 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-534 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) - (-4 *5 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-556 *3)) (-5 *1 (-534 *5 *3)) - (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) + (-5 *1 (-543))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-715 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-821)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *1 (-949 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) + (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) + (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1123)) - (-4 *4 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-534 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 *3)) - (-4 *3 (-13 (-27) (-1145) (-406 *6))) - (-4 *6 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-534 *6 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1123)) - (-4 *5 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-534 *5 *3)) - (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1868 *1) (|:| -4297 *1) (|:| |associate| *1))) - (-4 *1 (-533))))) -(((*1 *1 *1) (-4 *1 (-533)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-533)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-111))))) -(((*1 *1 *2) - (-12 (-5 *2 (-392 (-526))) (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))))) - ((*1 *1 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145)))))) -(((*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145)))))) + (|partial| -12 (-5 *3 (-745)) (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-558 *5 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-399 (-921 *6)) (-1125 (-1135) (-921 *6)))) + (-5 *5 (-745)) (-4 *6 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *6))))) + (-5 *1 (-284 *6)) (-5 *4 (-663 (-399 (-921 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-399 (-921 *5)) (-1125 (-1135) (-921 *5)))) + (|:| |eigmult| (-745)) (|:| |eigvec| (-619 *4)))) + (-4 *5 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *5))))) + (-5 *1 (-284 *5)) (-5 *4 (-663 (-399 (-921 *5))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34))) + (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) + (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1) (-5 *1 (-429)))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-111)) (-5 *1 (-530))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-530))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-530))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1181 *5)) - (-4 *5 (-13 (-27) (-406 *4))) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) - (-4 *7 (-1181 (-392 *6))) (-5 *1 (-529 *4 *5 *6 *7 *2)) - (-4 *2 (-327 *5 *6 *7))))) + (-12 (-5 *3 (-745)) (-4 *1 (-1194 *4)) (-4 *4 (-1016)) + (-5 *2 (-1218 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-843)))) + ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-27) (-406 *5))) - (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-4 *8 (-1181 (-392 *7))) - (-5 *2 (-556 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-327 *6 *7 *8))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) + (-5 *2 + (-2 (|:| |ir| (-566 (-399 *6))) (|:| |specpart| (-399 *6)) + (|:| |polypart| *6))) + (-5 *1 (-558 *5 *6)) (-5 *3 (-399 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-27) (-406 *5))) - (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-4 *8 (-1181 (-392 *7))) - (-5 *2 (-556 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-327 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-581 *3)) (-5 *5 (-1 (-1117 *3) (-1117 *3))) - (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-811) (-533))) (-5 *2 (-556 *3)) - (-5 *1 (-528 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111))))) -(((*1 *1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-525)))) -(((*1 *1 *1 *1) (-4 *1 (-525)))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-526) #1="failed") *5)) (-4 *5 (-1004)) - (-5 *2 (-526)) (-5 *1 (-523 *5 *3)) (-4 *3 (-1181 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-526) #1#) *4)) (-4 *4 (-1004)) (-5 *2 (-526)) - (-5 *1 (-523 *4 *3)) (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-526) #1#) *4)) (-4 *4 (-1004)) (-5 *2 (-526)) - (-5 *1 (-523 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1181 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-292)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-735))) - (-5 *1 (-519 *3 *2 *4 *5)) (-4 *2 (-1181 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-519 *4 *2 *5 *6)) - (-4 *4 (-292)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-735)))))) + (-12 (-5 *3 (-3 (-399 (-921 *5)) (-1125 (-1135) (-921 *5)))) + (-4 *5 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *5))))) + (-5 *1 (-284 *5)) (-5 *4 (-663 (-399 (-921 *5))))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1100 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) + (-5 *2 (-112)) (-5 *1 (-1101 *5 *6))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) + (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-745)) (-5 *1 (-114))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-5 *2 (-1131 *3))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-112)) (-5 *1 (-861 *4)) + (-4 *4 (-1063))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-519 *4 *2 *5 *6)) - (-4 *4 (-292)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-735)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-1123))) (-4 *6 (-348)) - (-5 *2 (-607 (-278 (-905 *6)))) (-5 *1 (-518 *5 *6 *7)) (-4 *5 (-436)) - (-4 *7 (-13 (-348) (-809)))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-4 *6 (-436)) - (-5 *2 (-607 (-607 *7))) (-5 *1 (-518 *6 *7 *5)) (-4 *7 (-348)) - (-4 *5 (-13 (-348) (-809)))))) + (-12 (-5 *3 (-663 (-399 (-921 *4)))) (-4 *4 (-443)) + (-5 *2 (-619 (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4))))) + (-5 *1 (-284 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-228 *3)) + (-4 *3 (-1063)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4327)) (-4 *1 (-228 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-589 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-548)) (-4 *4 (-1063)) + (-5 *1 (-712 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1117 *5)) (-4 *5 (-436)) (-5 *2 (-607 *6)) - (-5 *1 (-518 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 *5)) (-4 *5 (-436)) (-5 *2 (-607 *6)) - (-5 *1 (-518 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809)))))) -(((*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-515)))) - ((*1 *2 *3) (-12 (-5 *3 (-515)) (-5 *1 (-516 *2)) (-4 *2 (-1159))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-5 *2 (-515)) (-5 *1 (-516 *4)) (-4 *4 (-1159))))) -(((*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-515))) (-5 *1 (-515))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-515))))) -(((*1 *1 *1) (-5 *1 (-515)))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-515))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-515))) (-5 *2 (-1123)) (-5 *1 (-515))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-515))) (-5 *1 (-515))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *6)) (-5 *5 (-1 (-390 (-1117 *6)) (-1117 *6))) - (-4 *6 (-348)) - (-5 *2 - (-607 - (-2 (|:| |outval| *7) (|:| |outmult| (-526)) - (|:| |outvect| (-607 (-653 *7)))))) - (-5 *1 (-513 *6 *7 *4)) (-4 *7 (-348)) (-4 *4 (-13 (-348) (-809)))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1131 *3)) (-4 *3 (-1016)) (-4 *1 (-1194 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-52)) (-5 *1 (-861 *4)) + (-4 *4 (-1063))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) + (-5 *1 (-1039 *4 *5 *2)) + (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1063)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) + (-5 *1 (-1039 *3 *4 *2)) + (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1117 *5)) (-4 *5 (-348)) (-5 *2 (-607 *6)) - (-5 *1 (-513 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-348)) (-5 *2 (-1117 *4)) - (-5 *1 (-513 *4 *5 *6)) (-4 *5 (-348)) (-4 *6 (-13 (-348) (-809)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-511 *3)) (-4 *3 (-13 (-691) (-25)))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-511 *3)) (-4 *3 (-13 (-691) (-25)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-878)) (-4 *4 (-353)) (-4 *4 (-348)) (-5 *2 (-1117 *1)) - (-4 *1 (-314 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1117 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-163)) (-4 *3 (-348)) (-4 *2 (-1181 *3)))) + (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-548)) (-4 *5 (-355)) + (-4 *5 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4))))) -(((*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) - ((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1205 *4)) (-4 *4 (-403 *3)) (-4 *3 (-292)) (-4 *3 (-533)) - (-5 *1 (-42 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-878)) (-4 *4 (-348)) (-5 *2 (-1205 *1)) (-4 *1 (-314 *4)))) - ((*1 *2) (-12 (-4 *3 (-348)) (-5 *2 (-1205 *1)) (-4 *1 (-314 *3)))) - ((*1 *2) - (-12 (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-1205 *1)) - (-4 *1 (-395 *3 *4)))) + (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-355)) (-4 *4 (-1016)) + (-5 *2 (-112)) (-5 *1 (-998 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-353 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-378 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-623 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1049))) (-5 *1 (-283))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1100 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) + (-5 *1 (-1101 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-619 (-1100 *3 *4))) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52)))) + (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-619 (-663 *6))) (-5 *4 (-112)) (-5 *5 (-548)) + (-5 *2 (-663 *6)) (-5 *1 (-998 *6)) (-4 *6 (-355)) (-4 *6 (-1016)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-5 *1 (-998 *4)) + (-4 *4 (-355)) (-4 *4 (-1016)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-548)) (-5 *2 (-663 *5)) + (-5 *1 (-998 *5)) (-4 *5 (-355)) (-4 *5 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-548)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-745)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) + (-4 *4 (-169)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-154)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157))) + (-5 *1 (-220 *3)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) + ((*1 *1 *2 *1) + (-12 (-5 *1 (-286 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-286 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-353 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-353 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-4 *6 (-231 (-3643 *3) (-745))) + (-14 *7 + (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) + (-2 (|:| -3337 *5) (|:| -3352 *6)))) + (-5 *1 (-452 *3 *4 *5 *6 *7 *2)) (-4 *5 (-821)) + (-4 *2 (-918 *4 *6 (-834 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-524))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-658 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-661 *3 *2 *4)) (-4 *3 (-1016)) (-4 *2 (-365 *3)) + (-4 *4 (-365 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-661 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) + (-4 *2 (-365 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) + (-4 *4 (-365 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-695))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-540)) + (-5 *1 (-938 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1 *1) (-4 *1 (-1075))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *2 (-231 *3 *4)) + (-4 *5 (-231 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1085 *3 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) + (-4 *2 (-231 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) + (-4 *2 (-918 *3 (-520 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-912 (-218))) (-5 *3 (-218)) (-5 *1 (-1168)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-548)) (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-283))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) - (-5 *1 (-398 *3 *4 *5 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))))) + (-12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) + (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) - (-5 *1 (-400 *3 *4 *5 *6 *7)) (-4 *6 (-395 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1205 *1)) (-4 *1 (-403 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1205 (-1205 *4))) (-5 *1 (-510 *4)) - (-4 *4 (-335))))) -(((*1 *2 *1) - (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-341 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-510 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-878)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-878)) (-5 *1 (-510 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1205 *4)) (-5 *3 (-526)) (-4 *4 (-335)) (-5 *1 (-510 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1070)) (-4 *4 (-335)) (-5 *1 (-510 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1205 *4)) (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-510 *4))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1205 *5)) (-5 *3 (-735)) (-5 *4 (-1070)) (-4 *5 (-335)) - (-5 *1 (-510 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-735)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) - (-4 *4 (-335)) (-5 *2 (-1211)) (-5 *1 (-510 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-1070))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-509)) (-5 *3 (-128)) (-5 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-507))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-507))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-506))))) -(((*1 *2 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-312 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-498 *3 *4)) (-14 *4 (-526))))) -(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) - ((*1 *2 *1) - (-12 (-5 *2 (-735)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 (-526))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-526)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *1) (-4 *1 (-605))) ((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 (-526))))) -(((*1 *2 *1) (-12 (-4 *1 (-491 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-811))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) - (-4 *5 (-163)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) - (-4 *5 (-163)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) - (-5 *3 (-607 (-824 *4))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) - (-5 *1 (-487 *4 *5))))) -(((*1 *2 *3) - (-12 (-14 *4 (-607 (-1123))) (-14 *5 (-735)) - (-5 *2 - (-607 - (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526)))))) - (-5 *1 (-487 *4 *5)) - (-5 *3 - (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526)))))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-486 (-392 (-526)) (-225 *4 (-735)) (-824 *3) (-233 *3 (-392 (-526))))) - (-14 *3 (-607 (-1123))) (-14 *4 (-735)) (-5 *1 (-487 *3 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) - (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) - (-5 *1 (-487 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) - (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) - (-5 *1 (-487 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) - (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-211)) (-5 *2 (-111)) (-5 *1 (-287 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1041 (-803 (-211)))) (-5 *3 (-211)) (-5 *2 (-111)) - (-5 *1 (-288)))) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) +(((*1 *1) (-5 *1 (-429)))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) + (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-918 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) - (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) - (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) - (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) - (-5 *2 (-111)) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6))))) + (-12 (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) + (-4 *1 (-1194 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-1218 *5)) (-4 *5 (-299)) + (-4 *5 (-1016)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *1)) (-5 *4 (-1218 *1)) (-4 *1 (-615 *5)) + (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -4035 (-663 *5)) (|:| |vec| (-1218 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *1)) (-4 *1 (-615 *4)) (-4 *4 (-1016)) + (-5 *2 (-663 *4))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-283))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *2)) - (-4 *2 (-909 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) - (-5 *2 - (-2 (|:| |mval| (-653 *4)) (|:| |invmval| (-653 *4)) - (|:| |genIdeal| (-486 *4 *5 *6 *7)))) - (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-653 *3)) (|:| |invmval| (-653 *3)) - (|:| |genIdeal| (-486 *3 *4 *5 *6)))) - (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) - (-4 *6 (-909 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) - (-4 *5 (-909 *2 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) - (-5 *2 (-398 *4 (-392 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1205 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))) - (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *3 (-292)) - (-5 *1 (-398 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) - (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) - (-5 *1 (-486 *4 *5 *6 *2)) (-4 *2 (-909 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *2)) - (-4 *2 (-909 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *6 (-584 (-1123))) - (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) - (-5 *2 (-1113 (-607 (-905 *4)) (-607 (-278 (-905 *4))))) - (-5 *1 (-486 *4 *5 *6 *7))))) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-201 *4)) - (-4 *4 - (-13 (-811) - (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) - (-15 -2063 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1211)) (-5 *1 (-201 *3)) - (-4 *3 - (-13 (-811) - (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) - (-15 -2063 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-484))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *6 (-1181 *5)) - (-5 *2 (-1117 (-1117 *7))) (-5 *1 (-483 *5 *6 *4 *7)) (-4 *4 (-1181 *6))))) + (-12 (-5 *3 (-890)) (-5 *2 (-745)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-653 (-1117 *8))) - (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-1181 *5)) (-5 *2 (-653 *6)) - (-5 *1 (-483 *5 *6 *7 *8)) (-4 *7 (-1181 *6))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-1016)) + (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1194 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1117 *7)) - (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *2 (-1181 *5)) - (-5 *1 (-483 *5 *2 *6 *7)) (-4 *6 (-1181 *2))))) + (-12 (-5 *3 (-619 (-663 *5))) (-4 *5 (-299)) (-4 *5 (-1016)) + (-5 *2 (-1218 (-1218 *5))) (-5 *1 (-998 *5)) (-5 *4 (-1218 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1117 *7)) (-4 *5 (-1004)) (-4 *7 (-1004)) - (-4 *2 (-1181 *5)) (-5 *1 (-483 *5 *2 *6 *7)) (-4 *6 (-1181 *2)))) + (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-4 *5 (-355)) + (-4 *5 (-540)) (-5 *2 (-1218 *5)) (-5 *1 (-614 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *4 (-1181 *5)) - (-5 *2 (-1117 *7)) (-5 *1 (-483 *5 *4 *6 *7)) (-4 *6 (-1181 *4))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) - (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) - (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) - (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) - (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) - (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-735)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) - (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-653 *2)) (-5 *4 (-526)) - (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *5 (-1181 *2)) - (-5 *1 (-481 *2 *5 *6)) (-4 *6 (-395 *2 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-653 *2)) (-5 *4 (-735)) - (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *5 (-1181 *2)) - (-5 *1 (-481 *2 *5 *6)) (-4 *6 (-395 *2 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-735)) (-4 *5 (-335)) (-4 *6 (-1181 *5)) - (-5 *2 - (-607 - (-2 (|:| -2104 (-653 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-653 *6))))) - (-5 *1 (-480 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2104 (-653 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-653 *6)))) - (-4 *7 (-1181 *6))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-607 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-526))))) - (-5 *1 (-390 *3)) (-4 *3 (-533)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-735)) (-4 *3 (-335)) (-4 *5 (-1181 *3)) - (-5 *2 (-607 (-1117 *3))) (-5 *1 (-480 *3 *5 *6)) (-4 *6 (-1181 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-477))))) -(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-473))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4311)) (-4 *1 (-472 *3)) - (-4 *3 (-1159))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) - (-4 *4 (-1159)) (-5 *2 (-111))))) + (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) + (-3958 (-4 *5 (-355))) (-4 *5 (-540)) (-5 *2 (-1218 (-399 *5))) + (-5 *1 (-614 *5 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) - (-4 *4 (-1159)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) - (-5 *2 (-735)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) - (-4 *4 (-1159)) (-5 *2 (-735))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-607 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) - (-5 *2 (-607 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-526))) (-5 *2 (-526)) (-5 *1 (-469 *4)) - (-4 *4 (-1181 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1181 (-526))) (-5 *1 (-469 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1181 (-526))) (-5 *1 (-469 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-469 *2)) (-4 *2 (-1181 (-526)))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-467 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-607 (-488))) (-5 *2 (-488)) (-5 *1 (-466))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-488))) (-5 *1 (-466))))) + (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-619 (-934))) (-5 *1 (-283))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-526))) (-5 *1 (-233 *3 *4)) (-14 *3 (-607 (-1123))) - (-4 *4 (-1004)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-526))) (-14 *3 (-607 (-1123))) (-5 *1 (-438 *3 *4 *5)) - (-4 *4 (-1004)) (-4 *5 (-224 (-4273 *3) (-735))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-526))) (-5 *1 (-464 *3 *4)) (-14 *3 (-607 (-1123))) - (-4 *4 (-1004))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-111)) (-5 *1 (-463))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-463))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-824 *5))) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) - (-5 *2 (-2 (|:| |dpolys| (-607 (-233 *5 *6))) (|:| |coords| (-607 (-526))))) - (-5 *1 (-455 *5 *6 *7)) (-5 *3 (-607 (-233 *5 *6))) (-4 *7 (-436))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 (-464 *4 *5))) (-5 *3 (-607 (-824 *4))) - (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *1 (-455 *4 *5 *6)) - (-4 *6 (-436))))) + (-12 (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))) + (-4 *2 (-13 (-1063) (-34)))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-166 (-218))) (-5 *6 (-1118)) + (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-824 *5))) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) - (-5 *2 (-607 (-607 (-233 *5 *6)))) (-5 *1 (-455 *5 *6 *7)) - (-5 *3 (-607 (-233 *5 *6))) (-4 *7 (-436))))) -(((*1 *1) (-5 *1 (-452)))) + (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) + (-5 *2 (-619 (-619 (-240 *5 *6)))) (-5 *1 (-462 *5 *6 *7)) + (-5 *3 (-619 (-240 *5 *6))) (-4 *7 (-443))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-1016)) + (-5 *1 (-998 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-540)) + (-5 *2 (-1218 *4)) (-5 *1 (-614 *4 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-283))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-218))) (-5 *5 (-548)) + (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1) (-5 *1 (-459)))) +(((*1 *1 *2) + (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-355)) (-14 *5 (-962 *3 *4))))) +(((*1 *2) + (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) + (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-1218 *4))) (-4 *4 (-1016)) (-5 *2 (-663 *4)) + (-5 *1 (-998 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-540)) + (-5 *2 (-112)) (-5 *1 (-614 *4 *5))))) +(((*1 *1) (-5 *1 (-283)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-748)) (-5 *1 (-114))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-218))) (-5 *5 (-548)) + (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) - (-5 *4 (-607 (-878))) (-5 *5 (-607 (-246))) (-5 *1 (-452)))) + (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) + (-5 *4 (-619 (-890))) (-5 *5 (-619 (-255))) (-5 *1 (-459)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) - (-5 *4 (-607 (-878))) (-5 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) - ((*1 *1 *1) (-5 *1 (-452)))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-452)))) - ((*1 *2 *1) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-452))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-902 (-211))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *2 (-1211)) - (-5 *1 (-452)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-452)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *4 (-833)) (-5 *5 (-878)) - (-5 *2 (-1211)) (-5 *1 (-452))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-452))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) - (-5 *1 (-452))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-607 (-211))) - (-5 *1 (-452))))) -(((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) - ((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451))))) -(((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1205 (-1205 (-526)))) (-5 *1 (-450))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1205 (-1205 (-526)))) (-5 *3 (-878)) (-5 *1 (-450))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-811)) (-4 *5 (-757)) (-4 *6 (-533)) - (-4 *7 (-909 *6 *5 *3)) (-5 *1 (-446 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-995 (-392 (-526))) (-348) - (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) - (-14 *6 - (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *2)) - (-2 (|:| -2461 *5) (|:| -2462 *2)))) - (-4 *2 (-224 (-4273 *3) (-735))) (-5 *1 (-445 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-811)) (-4 *7 (-909 *4 *2 (-824 *3)))))) + (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) + (-5 *4 (-619 (-890))) (-5 *1 (-459)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) + ((*1 *1 *1) (-5 *1 (-459)))) +(((*1 *2) + (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016))))) (((*1 *2 *1) - (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *5 (-224 (-4273 *3) (-735))) - (-14 *6 - (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *5)) - (-2 (|:| -2461 *2) (|:| -2462 *5)))) - (-4 *2 (-811)) (-5 *1 (-445 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-909 *4 *5 (-824 *3)))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-607 (-1123))) (-4 *2 (-163)) (-4 *4 (-224 (-4273 *5) (-735))) - (-14 *6 - (-1 (-111) (-2 (|:| -2461 *3) (|:| -2462 *4)) - (-2 (|:| -2461 *3) (|:| -2462 *4)))) - (-5 *1 (-445 *5 *2 *3 *4 *6 *7)) (-4 *3 (-811)) - (-4 *7 (-909 *2 *4 (-824 *5)))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-607 (-1123))) (-4 *2 (-163)) (-4 *3 (-224 (-4273 *4) (-735))) - (-14 *6 - (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *3)) - (-2 (|:| -2461 *5) (|:| -2462 *3)))) - (-5 *1 (-445 *4 *2 *5 *3 *6 *7)) (-4 *5 (-811)) - (-4 *7 (-909 *2 *3 (-824 *4)))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-607 *3)) (-5 *5 (-878)) (-4 *3 (-1181 *4)) (-4 *4 (-292)) - (-5 *1 (-444 *4 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-878)) (-4 *5 (-292)) (-4 *3 (-1181 *5)) - (-5 *2 (-2 (|:| |plist| (-607 *3)) (|:| |modulo| *5))) (-5 *1 (-444 *5 *3)) - (-5 *4 (-607 *3))))) + (-12 (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-854 *3 *4 *5)) + (-4 *3 (-1063)) (-4 *5 (-640 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-607 *5)) (-4 *5 (-1181 *3)) (-4 *3 (-292)) (-5 *2 (-111)) - (-5 *1 (-439 *3 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1205 (-607 *3))) (-4 *4 (-292)) (-5 *2 (-607 *3)) - (-5 *1 (-439 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-735)) (-4 *4 (-292)) (-4 *6 (-1181 *4)) - (-5 *2 (-1205 (-607 *6))) (-5 *1 (-439 *4 *6)) (-5 *5 (-607 *6))))) + (-12 (-5 *3 (-874 (-548))) (-5 *4 (-548)) (-5 *2 (-663 *4)) + (-5 *1 (-997 *5)) (-4 *5 (-1016)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-997 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-874 (-548)))) (-5 *4 (-548)) + (-5 *2 (-619 (-663 *4))) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-619 (-548)))) (-5 *2 (-619 (-663 (-548)))) + (-5 *1 (-997 *4)) (-4 *4 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-292)) (-5 *2 (-735)) - (-5 *1 (-439 *5 *3))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-607 *1)))) (-4 *1 (-352 *3)))) - ((*1 *2) - (|partial| -12 + (-12 (-5 *4 (-286 (-814 *3))) (-4 *3 (-13 (-27) (-1157) (-422 *5))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 - (-2 (|:| |particular| (-437 *3 *4 *5 *6)) - (|:| -2104 (-607 (-437 *3 *4 *5 *6))))) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) - (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-607 *1)))) (-4 *1 (-352 *3)))) - ((*1 *2) - (|partial| -12 + (-3 (-814 *3) + (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) + (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) + "failed")) + (-5 *1 (-612 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1118)) + (-4 *3 (-13 (-27) (-1157) (-422 *6))) + (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-814 *3)) (-5 *1 (-612 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-814 (-921 *5)))) (-4 *5 (-443)) (-5 *2 - (-2 (|:| |particular| (-437 *3 *4 *5 *6)) - (|:| -2104 (-607 (-437 *3 *4 *5 *6))))) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) - (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1205 (-1123))) (-5 *3 (-1205 (-437 *4 *5 *6 *7))) - (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-878)) - (-14 *6 (-607 (-1123))) (-14 *7 (-1205 (-653 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-437 *4 *5 *6 *7))) - (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-878)) (-14 *6 (-607 *2)) - (-14 *7 (-1205 (-653 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-437 *3 *4 *5 *6))) (-5 *1 (-437 *3 *4 *5 *6)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1205 (-1123))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) - (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1123)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) - (-14 *4 (-878)) (-14 *5 (-607 *2)) (-14 *6 (-1205 (-653 *3))))) - ((*1 *1) - (-12 (-5 *1 (-437 *2 *3 *4 *5)) (-4 *2 (-163)) (-14 *3 (-878)) - (-14 *4 (-607 (-1123))) (-14 *5 (-1205 (-653 *2)))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-1117 (-905 *4))) (-5 *1 (-402 *3 *4)) - (-4 *3 (-403 *4)))) - ((*1 *2) - (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-4 *3 (-348)) - (-5 *2 (-1117 (-905 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) - (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) - (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-1117 (-905 *4))) (-5 *1 (-402 *3 *4)) - (-4 *3 (-403 *4)))) + (-3 (-814 (-399 (-921 *5))) + (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-814 (-399 (-921 *5))) "failed"))) + "failed")) + (-5 *1 (-613 *5)) (-5 *3 (-399 (-921 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) + (-4 *5 (-443)) + (-5 *2 + (-3 (-814 *3) + (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) + (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) + "failed")) + (-5 *1 (-613 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-286 (-399 (-921 *6)))) (-5 *5 (-1118)) + (-5 *3 (-399 (-921 *6))) (-4 *6 (-443)) (-5 *2 (-814 *3)) + (-5 *1 (-613 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) + (-5 *2 (-112)) (-5 *1 (-1100 *5 *6))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) + (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459))))) +(((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *2 *4)) (-4 *4 (-1194 *2)) + (-4 *2 (-169)))) ((*1 *2) - (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-4 *3 (-348)) - (-5 *2 (-1117 (-905 *3))))) + (-12 (-4 *4 (-1194 *2)) (-4 *2 (-169)) (-5 *1 (-400 *3 *2 *4)) + (-4 *3 (-401 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-401 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) ((*1 *2) - (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) - (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) - (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) + (-12 (-4 *3 (-1194 *2)) (-5 *2 (-548)) (-5 *1 (-742 *3 *4)) + (-4 *4 (-401 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *2 *3) + (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-4 *2 (-1063)) + (-5 *1 (-858 *4 *2))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-286 (-807 *3))) + (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) + (-5 *2 (-807 *3)) (-5 *1 (-612 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-807 (-921 *5)))) (-4 *5 (-443)) + (-5 *2 (-807 (-399 (-921 *5)))) (-5 *1 (-613 *5)) + (-5 *3 (-399 (-921 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-286 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) + (-4 *5 (-443)) (-5 *2 (-807 *3)) (-5 *1 (-613 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) + (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4)))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1063) (-34))) + (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-255)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) + (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *3 (-619 (-255))) + (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-459)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-459))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1063))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (-4 *4 (-1016)) + (-5 *1 (-997 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (-4 *4 (-1016)) + (-5 *1 (-997 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1) (-5 *1 (-608)))) (((*1 *2 *1) - (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) - (-5 *2 (-607 (-905 *4))))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-607 (-905 *4))) (-5 *1 (-402 *3 *4)) - (-4 *3 (-403 *4)))) - ((*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-607 (-905 *3))))) - ((*1 *2) - (-12 (-5 *2 (-607 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) - (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) - (-14 *6 (-1205 (-653 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1205 (-437 *4 *5 *6 *7))) (-5 *2 (-607 (-905 *4))) - (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-533)) (-4 *4 (-163)) (-14 *5 (-878)) - (-14 *6 (-607 (-1123))) (-14 *7 (-1205 (-653 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-436)))) - ((*1 *1 *1 *1) (-4 *1 (-436)))) -(((*1 *2 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-735)) - (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-735)) (|:| -2096 *4))) (-5 *5 (-735)) - (-4 *4 (-909 *6 *7 *8)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-434 *6 *7 *8 *4))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-757)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) - (-5 *2 (-111)) (-5 *1 (-434 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-526)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) - (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6))))) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) + (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-912 (-218))) (-5 *4 (-843)) (-5 *5 (-890)) + (-5 *2 (-1223)) (-5 *1 (-459)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-459)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *4 (-843)) (-5 *5 (-890)) + (-5 *2 (-1223)) (-5 *1 (-459))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-540)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-526)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-735)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-757)) (-4 *4 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-811)) - (-5 *1 (-434 *5 *6 *7 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-526)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-735)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-757)) (-4 *4 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-811)) - (-5 *1 (-434 *5 *6 *7 *4))))) + (-12 (-5 *3 (-745)) (-5 *2 (-663 (-921 *4))) (-5 *1 (-997 *4)) + (-4 *4 (-1016))))) (((*1 *2 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1211)) - (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) + (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) + (-5 *2 (-472 *4 *5)) (-5 *1 (-607 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) + (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1194 (-399 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-459))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-399 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) + (-4 *3 (-540)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1063))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4329 "*"))) + (-4 *4 (-1016)) (-5 *1 (-997 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) + (|has| *4 (-6 (-4329 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-240 *4 *5))) (-5 *2 (-240 *4 *5)) + (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-607 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-526)) - (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1176)) + (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) + (-5 *2 (-2 (|:| |num| (-663 *5)) (|:| |den| *5)))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-607 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-735)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-757)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *5 (-811)) - (-5 *1 (-434 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-757)) (-4 *2 (-909 *4 *5 *6)) (-5 *1 (-434 *4 *5 *6 *2)) - (-4 *4 (-436)) (-4 *6 (-811))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 *3)))) (-5 *4 (-735)) - (-4 *3 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) - (-5 *1 (-434 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *2)) - (-4 *2 (-909 *3 *4 *5))))) + (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) + (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-607 *3)) (-4 *3 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) - (-4 *7 (-811)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-434 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-607 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-735)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-757)) (-4 *6 (-909 *4 *3 *5)) (-4 *4 (-436)) (-4 *5 (-811)) - (-5 *1 (-434 *4 *3 *5 *6))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-607 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-735)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-757)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *5 (-811)) - (-5 *1 (-434 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-607 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-757)) (-4 *3 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) - (-5 *1 (-434 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-436)) (-4 *3 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) - (-5 *1 (-434 *4 *3 *5 *6)) (-4 *6 (-909 *4 *3 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-436)) (-4 *3 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) - (-5 *1 (-434 *4 *3 *5 *6)) (-4 *6 (-909 *4 *3 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-757)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) - (-5 *2 (-111)) (-5 *1 (-434 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-607 *7)) (-5 *3 (-526)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *2))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *2))))) + (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) + (-5 *1 (-459))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) - (-5 *3 (-607 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) - (-5 *3 (-607 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) - (-5 *3 (-607 *7)))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-355) (-1157) (-971)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-5 *2 (-854 *5 *6 (-619 *6))) + (-5 *1 (-856 *5 *6 *4)) (-5 *3 (-619 *6)) (-4 *4 (-593 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) - (-5 *3 (-607 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) - (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) - (-5 *3 (-607 *7)))) + (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-286 *3))) (-5 *1 (-856 *5 *3 *4)) + (-4 *3 (-1007 (-1135))) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) - (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) - (-5 *3 (-607 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-292)) (-4 *4 (-757)) - (-4 *5 (-811)) (-5 *1 (-432 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-292)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-292)) - (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-292)) (-4 *5 (-757)) - (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-430)) (-5 *3 (-526))))) -(((*1 *2 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) - ((*1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004))))) -(((*1 *2 *3) - (-12 (-5 *2 (-526)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004))))) -(((*1 *2 *3) - (-12 (-5 *2 (-526)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-429 *3)) (-4 *3 (-1004))))) -(((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004))))) -(((*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) - ((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-735)) (-5 *4 (-526)) (-5 *1 (-429 *2)) (-4 *2 (-1004))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-390 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-1004)) - (-5 *2 (-607 *6)) (-5 *1 (-428 *5 *6))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-878)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-878)) (-5 *4 (-735)) (-5 *1 (-426 *2)) - (-4 *2 (-1181 (-526))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *1 (-426 *2)) - (-4 *2 (-1181 (-526))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *5 (-735)) - (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *5 (-735)) - (-5 *6 (-111)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) + (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-286 (-921 *3)))) + (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1016)) + (-3958 (-4 *3 (-1007 (-1135)))) (-4 *3 (-855 *5)) + (-4 *4 (-593 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-878)) (-5 *4 (-390 *2)) (-4 *2 (-1181 *5)) (-5 *1 (-428 *5 *2)) - (-4 *5 (-1004))))) + (-12 (-4 *5 (-1063)) (-5 *2 (-858 *5 *3)) (-5 *1 (-856 *5 *3 *4)) + (-3958 (-4 *3 (-1007 (-1135)))) (-3958 (-4 *3 (-1016))) + (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| -4051 *4) (|:| -4264 (-526))))) - (-4 *4 (-1181 (-526))) (-5 *2 (-701 (-735))) (-5 *1 (-426 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-390 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-1004)) - (-5 *2 (-701 (-735))) (-5 *1 (-428 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) - (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4))))) + (-12 (-5 *3 (-663 (-399 (-921 (-548))))) + (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-619 (-472 *4 *5))) (-5 *3 (-834 *4)) + (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-607 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) - (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4))))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-355) (-1157) (-971))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-399 *2))) + (-4 *2 (-1194 *4)) (-5 *1 (-333 *3 *4 *2 *5)) + (-4 *3 (-334 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1176)) + (-4 *4 (-1194 (-399 *2))) (-4 *2 (-1194 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) + (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-735)) (-4 *5 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *5 *3 *6)) - (-4 *3 (-1181 *5)) (-4 *6 (-13 (-389) (-995 *5) (-348) (-1145) (-269))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) - (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269)))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) - (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269)))))) + (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-619 (-218))) + (-5 *1 (-459))))) (((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) - (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-355) (-1157) (-971)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-540)) + (-5 *2 (-2 (|:| -1489 *4) (|:| -3826 *3) (|:| -2233 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1030 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-540)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -1489 *3) (|:| -3826 *1) (|:| -2233 *1))) + (-4 *1 (-1194 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-1135)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-821)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-821)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-878)) (-4 *5 (-1004)) - (-4 *2 (-13 (-389) (-995 *5) (-348) (-1145) (-269))) (-5 *1 (-427 *5 *3 *2)) - (-4 *3 (-1181 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) - (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-111)) (-5 *5 (-1048 (-735))) (-5 *6 (-735)) - (-5 *2 - (-2 (|:| |contp| (-526)) - (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) - (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2875 (-526)) (|:| -2736 (-607 *3)))) (-5 *1 (-426 *3)) - (-4 *3 (-1181 (-526)))))) -(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| -4051 *4) (|:| -4264 (-526))))) - (-4 *4 (-1181 (-526))) (-5 *2 (-735)) (-5 *1 (-426 *4))))) -(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-607 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-526))))) - (-4 *2 (-533)) (-5 *1 (-390 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-526)) - (|:| -2736 (-607 (-2 (|:| |irr| *4) (|:| -2456 (-526))))))) - (-4 *4 (-1181 (-526))) (-5 *2 (-390 *4)) (-5 *1 (-426 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-422)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-422))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-422))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-422))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-422))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 "void"))) (-5 *1 (-421))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-421))))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-995 (-47))) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) - (-4 *5 (-406 *4)) (-5 *2 (-390 (-1117 (-47)))) (-5 *1 (-420 *4 *5 *3)) - (-4 *3 (-1181 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) - (-5 *2 - (-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) - (|:| -2936 (-111)))) - (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) - (-5 *2 (-390 (-1117 (-392 (-526))))) (-5 *1 (-420 *4 *5 *3)) - (-4 *3 (-1181 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) - (-5 *2 (-390 *3)) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-1211)) - (-5 *1 (-418 *3 *4)) (-4 *4 (-406 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-392 (-526))) - (-5 *1 (-418 *4 *3)) (-4 *3 (-406 *4)))) + (-12 (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *3 *4)) + (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-581 *3)) (-4 *3 (-406 *5)) - (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-1117 (-392 (-526)))) - (-5 *1 (-418 *5 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-414 *3 *2)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))) - (-4 *2 (-13 (-811) (-21)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-414 *3 *2)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))) - (-4 *2 (-13 (-811) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) - (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-556 *3)) (-5 *1 (-413 *5 *3)) (-4 *3 (-13 (-1145) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-1052)) (-5 *2 (-735))))) -(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-353))))) -(((*1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-353)) (-4 *2 (-1052))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-408 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1145) (-406 *3))) - (-14 *4 (-1123)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-4 *2 (-13 (-27) (-1145) (-406 *3) (-10 -8 (-15 -4274 ($ *4))))) - (-4 *4 (-809)) - (-4 *5 - (-13 (-1184 *2 *4) (-348) (-1145) - (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) - (-5 *1 (-409 *3 *2 *4 *5 *6 *7)) (-4 *6 (-942 *5)) (-14 *7 (-1123))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-111)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-4 *3 (-13 (-27) (-1145) (-406 *6) (-10 -8 (-15 -4274 ($ *7))))) - (-4 *7 (-809)) - (-4 *8 - (-13 (-1184 *3 *7) (-348) (-1145) - (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) - (-5 *1 (-409 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1106)) (-4 *9 (-942 *8)) - (-14 *10 (-1123))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-111)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-4 *3 (-13 (-27) (-1145) (-406 *6) (-10 -8 (-15 -4274 ($ *7))))) - (-4 *7 (-809)) - (-4 *8 - (-13 (-1184 *3 *7) (-348) (-1145) - (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-855 *5)) (-4 *5 (-1063)) + (-5 *2 (-112)) (-5 *1 (-856 *5 *6 *4)) (-4 *4 (-593 (-861 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-240 *5 *6))) (-4 *6 (-443)) + (-5 *2 (-240 *5 *6)) (-14 *5 (-619 (-1135))) (-5 *1 (-607 *5 *6))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-399 *2))) + (-4 *2 (-1194 *4)) (-5 *1 (-333 *3 *4 *2 *5)) + (-4 *3 (-334 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1176)) + (-4 *4 (-1194 (-399 *2))) (-4 *2 (-1194 *3))))) +(((*1 *1 *1) (-5 *1 (-1134))) + ((*1 *1 *2) + (-12 (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) - (-5 *1 (-409 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1106)) (-4 *9 (-942 *8)) - (-14 *10 (-1123))))) + (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) + (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 - (-3 (|:| |%expansion| (-298 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) - (-5 *1 (-408 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) - (-14 *6 (-1123)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-811)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) - ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-355) (-1157) (-971)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-355)) (-4 *4 (-540)) (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| -2189 (-599 *4 *5)) (|:| -2180 (-399 *5)))) + (-5 *1 (-599 *4 *5)) (-5 *3 (-399 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-890)) (-4 *4 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-443)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1194 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1123)) (-5 *3 (-607 *1)) (-4 *1 (-406 *4)) (-4 *4 (-811)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-811)) - (-5 *2 (-2 (|:| -4270 (-526)) (|:| |var| (-581 *1)))) (-4 *1 (-406 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-390 *3)) (-4 *3 (-533)) (-5 *1 (-404 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-348)) (-4 *1 (-314 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1181 *4)) (-4 *4 (-1164)) - (-4 *1 (-327 *4 *3 *5)) (-4 *5 (-1181 (-392 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1205 *1)) (-4 *4 (-163)) (-4 *1 (-352 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1205 *1)) (-4 *4 (-163)) - (-4 *1 (-355 *4 *5)) (-4 *5 (-1181 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-395 *3 *4)) - (-4 *4 (-1181 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-403 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *2)) (-4 *2 (-163)))) - ((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-402 *3 *2)) (-4 *3 (-403 *2)))) - ((*1 *2) (-12 (-4 *1 (-403 *2)) (-4 *2 (-163))))) -(((*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *2)) (-4 *2 (-163)))) - ((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-402 *3 *2)) (-4 *3 (-403 *2)))) - ((*1 *2) (-12 (-4 *1 (-403 *2)) (-4 *2 (-163))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-653 *4)) (-5 *1 (-402 *3 *4)) - (-4 *3 (-403 *4)))) - ((*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-653 *4)) (-5 *1 (-402 *3 *4)) - (-4 *3 (-403 *4)))) - ((*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-398 *3 *4 *5 *6)) (-4 *6 (-995 *4)) (-4 *3 (-292)) - (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *6 (-395 *4 *5)) - (-14 *7 (-1205 *6)) (-5 *1 (-400 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-858 *4 *5)) (-5 *3 (-858 *4 *6)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-640 *5)) (-5 *1 (-854 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-663 (-308 (-548)))) (-5 *1 (-1000))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *3 (-619 (-255))) + (-5 *1 (-253)))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 *6)) (-4 *6 (-395 *4 *5)) (-4 *4 (-950 *3)) - (-4 *5 (-1181 *4)) (-4 *3 (-292)) (-5 *1 (-400 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *1) - (-12 (-4 *2 (-292)) (-4 *3 (-950 *2)) (-4 *4 (-1181 *3)) - (-5 *1 (-398 *2 *3 *4 *5)) (-4 *5 (-13 (-395 *3 *4) (-995 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-735)) (-5 *4 (-1205 *2)) (-4 *5 (-292)) (-4 *6 (-950 *5)) - (-4 *2 (-13 (-395 *6 *7) (-995 *6))) (-5 *1 (-398 *5 *6 *7 *2)) - (-4 *7 (-1181 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)) - (-5 *1 (-394 *3 *4 *5)) (-4 *3 (-395 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) - (-5 *2 (-653 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) + (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-472 *5 *6))) (-5 *3 (-472 *5 *6)) + (-14 *5 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-1218 *6)) + (-5 *1 (-607 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-832))) ((*1 *2 *1) - (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) - (-5 *2 (-653 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-390 *3)) (-4 *3 (-533))))) + (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1135))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-390 *4)) (-4 *4 (-533))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-526)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-390 *2)) (-4 *2 (-533))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-246)))) - ((*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533))))) -(((*1 *1 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-111)) (-5 *1 (-109)))) - ((*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) - ((*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878))))) -(((*1 *2 *3) - (-12 (-5 *3 (-526)) (|has| *1 (-6 -4301)) (-4 *1 (-389)) (-5 *2 (-878))))) -(((*1 *2 *3) - (-12 (-5 *3 (-526)) (|has| *1 (-6 -4301)) (-4 *1 (-389)) (-5 *2 (-878))))) -(((*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-735)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-387)) (-5 *2 (-735))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-387)) (-5 *2 (-735)))) - ((*1 *1 *1) (-4 *1 (-387)))) -(((*1 *1 *2) - (-12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141))) - (-5 *1 (-384 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1181 *3)) (-5 *1 (-384 *3 *2)) (-4 *3 (-13 (-348) (-141)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-348) (-141))) - (-5 *2 (-607 (-2 (|:| -2462 (-735)) (|:| -4091 *4) (|:| |num| *4)))) - (-5 *1 (-384 *3 *4)) (-4 *4 (-1181 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-380))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-607 (-607 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-607 (-3 (|:| |array| (-607 *3)) (|:| |scalar| (-1123))))) - (-5 *6 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-607 (-607 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-607 (-3 (|:| |array| (-607 *3)) (|:| |scalar| (-1123))))) - (-5 *6 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-607 (-1123))) (-5 *5 (-1126)) (-5 *3 (-1123)) (-5 *2 (-1054)) - (-5 *1 (-380))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378))))) -(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-376))))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1211)) (-5 *1 (-376)))) - ((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-376))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-376))))) -(((*1 *2) (-12 (-5 *2 (-1095 (-1106))) (-5 *1 (-376))))) -(((*1 *2) (-12 (-5 *2 (-1095 (-1106))) (-5 *1 (-376))))) -(((*1 *2 *1) - (-12 (-5 *2 (-823)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) - (-4 *5 (-163))))) -(((*1 *2 *1) - (-12 (-5 *2 (-823)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) - (-4 *5 (-163))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374))))) -(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106))))) -(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106))))) -(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 (-392 (-905 (-526))))) (-5 *4 (-607 (-1123))) - (-5 *2 (-607 (-607 *5))) (-5 *1 (-365 *5)) (-4 *5 (-13 (-809) (-348))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 (-526)))) (-5 *2 (-607 *4)) (-5 *1 (-365 *4)) - (-4 *4 (-13 (-809) (-348)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 (-159 (-526))))) (-5 *2 (-607 (-159 *4))) - (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 (-392 (-905 (-159 (-526)))))) (-5 *4 (-607 (-1123))) - (-5 *2 (-607 (-607 (-159 *5)))) (-5 *1 (-364 *5)) - (-4 *5 (-13 (-348) (-809)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1176)) + (-4 *6 (-1194 (-399 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-334 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-392 (-905 (-159 (-526)))))) - (-5 *2 (-607 (-607 (-278 (-905 (-159 *4)))))) (-5 *1 (-364 *4)) - (-4 *4 (-13 (-348) (-809))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-278 (-392 (-905 (-159 (-526))))))) - (-5 *2 (-607 (-607 (-278 (-905 (-159 *4)))))) (-5 *1 (-364 *4)) - (-4 *4 (-13 (-348) (-809))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-392 (-905 (-159 (-526))))) - (-5 *2 (-607 (-278 (-905 (-159 *4))))) (-5 *1 (-364 *4)) - (-4 *4 (-13 (-348) (-809))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-278 (-392 (-905 (-159 (-526)))))) - (-5 *2 (-607 (-278 (-905 (-159 *4))))) (-5 *1 (-364 *4)) - (-4 *4 (-13 (-348) (-809)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-526)) (-5 *1 (-363))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-211)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-211)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-363)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-363))))) -(((*1 *1 *1) (-5 *1 (-211))) ((*1 *1 *1) (-5 *1 (-363))) - ((*1 *1) (-5 *1 (-363)))) -(((*1 *1 *1) (-5 *1 (-211))) - ((*1 *1 *1) - (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) - (-4 *4 (-372)))) - ((*1 *1 *1) (-5 *1 (-363))) ((*1 *1) (-5 *1 (-363)))) -(((*1 *1) (-5 *1 (-211))) ((*1 *1) (-5 *1 (-363)))) -(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) - ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363))))) -(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) - ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363))))) -(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) - ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363))))) -(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) - (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) - (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) - (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-4 *1 (-359 *3 *4)) (-4 *4 (-163))))) -(((*1 *2 *1) - (-12 (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-811)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-357 *4)) (-4 *4 (-1159)) - (-5 *2 (-111))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-526)) (|has| *1 (-6 -4311)) (-4 *1 (-357 *3)) (-4 *3 (-1159))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4311)) (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4311)) (-4 *1 (-357 *3)) - (-4 *3 (-1159))))) -(((*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1205 *1)) (-4 *1 (-352 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-1117 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-1117 *3))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) - ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-355) (-1007 (-399 *2)))) (-5 *2 (-548)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-355) (-1157) (-971)))))) (((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-607 (-1205 *4))) (-5 *1 (-351 *3 *4)) - (-4 *3 (-352 *4)))) - ((*1 *2) - (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) - (-5 *2 (-607 (-1205 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-1117 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-1117 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163))))) -(((*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1106)) (-4 *1 (-350 *2 *4)) (-4 *2 (-1052)) (-4 *4 (-1052)))) - ((*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1106)) (-4 *1 (-350 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) -(((*1 *1 *1) (-4 *1 (-164))) - ((*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) + (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-1190 *4 *2)) + (-4 *2 (-1194 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-1106))))) -(((*1 *2 *1) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) + (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *4)) (-5 *1 (-854 *3 *4 *5)) + (-4 *3 (-1063)) (-4 *5 (-640 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) - (-4 *2 - (-13 (-387) - (-10 -7 (-15 -4274 (*2 *4)) (-15 -2102 ((-878) *2)) - (-15 -2104 ((-1205 *2) (-878))) (-15 -4245 (*2 *2))))) - (-5 *1 (-342 *2 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-335)) (-5 *2 (-917 (-1117 *4))) (-5 *1 (-341 *4)) - (-5 *3 (-1117 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) + (|partial| -12 (-5 *3 (-663 (-399 (-921 (-548))))) + (-5 *2 (-663 (-308 (-548)))) (-5 *1 (-1000))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) + (-12 (-5 *2 (-619 (-472 *3 *4))) (-14 *3 (-619 (-1135))) + (-4 *4 (-443)) (-5 *1 (-607 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) -(((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) -(((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) -(((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) -(((*1 *2 *3) - (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) -(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335))))) -(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335))))) -(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335))))) -(((*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-111)))) + (-12 (-5 *3 (-1135)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) + (-4 *7 (-1194 (-399 *6))) (-5 *2 (-619 (-921 *5))) + (-5 *1 (-333 *4 *5 *6 *7)) (-4 *4 (-334 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-341 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 (-865 *3)) (|:| -2461 (-1070)))))) - (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) - ((*1 *2) - (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))) - (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) (-14 *4 (-3 (-1117 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))) - (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) -(((*1 *2) - (-12 (-5 *2 (-653 (-865 *3))) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) - (-14 *4 (-878)))) - ((*1 *2) - (-12 (-5 *2 (-653 *3)) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) - (-14 *4 - (-3 (-1117 *3) (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070))))))))) - ((*1 *2) - (-12 (-5 *2 (-653 *3)) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) - (-4 *4 (-335)) (-5 *2 (-735)) (-5 *1 (-332 *4)))) - ((*1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) - ((*1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) - (-14 *4 - (-3 (-1117 *3) (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070))))))))) - ((*1 *2) - (-12 (-5 *2 (-735)) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) -(((*1 *2) - (-12 (-4 *1 (-335)) - (-5 *2 (-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-335)) (-5 *3 (-526)) (-5 *2 (-1132 (-878) (-735)))))) -(((*1 *1) (-4 *1 (-335)))) -(((*1 *2) - (-12 (-4 *1 (-335)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3) - (-12 (-5 *3 (-878)) - (-5 *2 - (-3 (-1117 *4) (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070))))))) - (-5 *1 (-332 *4)) (-4 *4 (-335))))) + (-12 (-5 *3 (-1135)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1176)) + (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-4 *4 (-355)) + (-5 *2 (-619 (-921 *4)))))) +(((*1 *1 *1) (-5 *1 (-218))) + ((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1) (-4 *1 (-1099))) ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1242 *4 *2)) (-4 *1 (-366 *4 *2)) (-4 *4 (-821)) + (-4 *2 (-169)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-793 *4)) (-4 *1 (-1235 *4 *2)) (-4 *4 (-821)) + (-4 *2 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-878)) - (-5 *2 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) - (-5 *1 (-332 *4)) (-4 *4 (-335))))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-355) (-1157) (-971)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) - (-4 *4 (-335)) (-5 *2 (-653 *4)) (-5 *1 (-332 *4))))) + (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1063)) (-4 *2 (-821)) + (-5 *1 (-113 *2))))) +(((*1 *2) + (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) - (-5 *2 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) - (-5 *1 (-332 *4))))) + (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-917 (-1070))) - (-5 *1 (-332 *4))))) -(((*1 *2) - (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-329 *3 *4)) (-14 *3 (-878)) - (-14 *4 (-878)))) - ((*1 *2) - (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-330 *3 *4)) (-4 *3 (-335)) - (-14 *4 (-1117 *3)))) - ((*1 *2) - (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-331 *3 *4)) (-4 *3 (-335)) - (-14 *4 (-878))))) -(((*1 *2) - (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) - (-5 *2 (-735)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-735))))) + (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-308 (-548)))) + (-5 *1 (-1000))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-680 *3 *4)) (-4 *3 (-1172)) (-4 *4 (-1172))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-619 (-472 *5 *6))) (-5 *4 (-834 *5)) + (-14 *5 (-619 (-1135))) (-5 *2 (-472 *5 *6)) (-5 *1 (-607 *5 *6)) + (-4 *6 (-443)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-472 *5 *6))) (-5 *4 (-834 *5)) + (-14 *5 (-619 (-1135))) (-5 *2 (-472 *5 *6)) (-5 *1 (-607 *5 *6)) + (-4 *6 (-443))))) (((*1 *2) - (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) - (-5 *2 (-111)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) + (-5 *2 (-619 (-619 *4))) (-5 *1 (-333 *3 *4 *5 *6)) + (-4 *3 (-334 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1164)) (-4 *5 (-1181 *3)) (-4 *6 (-1181 (-392 *5))) - (-5 *2 (-111)) (-5 *1 (-326 *4 *3 *5 *6)) (-4 *4 (-327 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) - (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-4 *3 (-360)) (-5 *2 (-619 (-619 *3)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-218)) (-5 *3 (-745)) (-5 *1 (-219)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-166 (-218))) (-5 *3 (-745)) (-5 *1 (-219)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *3) - (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) - (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 (-548)))) (-5 *1 (-457))))) (((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) + (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) - (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-355) (-1157) (-971)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) + (-5 *3 (-619 (-548))))) ((*1 *2 *3) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) - (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) - (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) - (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) - (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) - (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) - (-5 *2 (-2 (|:| |num| (-1205 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) - (-5 *2 (-2 (|:| |num| (-1205 *4)) (|:| |den| *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1181 *4)) (-4 *4 (-1164)) - (-4 *1 (-327 *4 *3 *5)) (-4 *5 (-1181 (-392 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-327 *4 *5 *6)) (-4 *4 (-1164)) - (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) - (-5 *2 (-2 (|:| |num| (-653 *5)) (|:| |den| *5)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) - (-4 *3 (-13 (-348) (-1145) (-960))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 (-392 *2))) (-4 *2 (-1181 *4)) - (-5 *1 (-326 *3 *4 *2 *5)) (-4 *3 (-327 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-327 *3 *2 *4)) (-4 *3 (-1164)) - (-4 *4 (-1181 (-392 *2))) (-4 *2 (-1181 *3))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 (-392 *2))) (-4 *2 (-1181 *4)) - (-5 *1 (-326 *3 *4 *2 *5)) (-4 *3 (-327 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-327 *3 *2 *4)) (-4 *3 (-1164)) - (-4 *4 (-1181 (-392 *2))) (-4 *2 (-1181 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-1164)) - (-4 *6 (-1181 (-392 *5))) - (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-327 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *5 (-1164)) (-4 *6 (-1181 *5)) - (-4 *7 (-1181 (-392 *6))) (-5 *2 (-607 (-905 *5))) - (-5 *1 (-326 *4 *5 *6 *7)) (-4 *4 (-327 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *1 (-327 *4 *5 *6)) (-4 *4 (-1164)) - (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-4 *4 (-348)) - (-5 *2 (-607 (-905 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) - (-5 *2 (-607 (-607 *4))) (-5 *1 (-326 *3 *4 *5 *6)) - (-4 *3 (-327 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-4 *3 (-353)) (-5 *2 (-607 (-607 *3)))))) + (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) + (-5 *3 (-619 (-548)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-663 (-399 (-921 (-548))))) + (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000)) + (-5 *3 (-308 (-548)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-472 *4 *5))) (-14 *4 (-619 (-1135))) + (-4 *5 (-443)) (-5 *2 (-619 (-240 *4 *5))) (-5 *1 (-607 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1219)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1220))))) (((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) - (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + (-12 (-5 *2 (-112)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) ((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) - (-14 *4 (-607 (-1123))) (-4 *5 (-372))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-348)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) - (-4 *1 (-321 *4 *3 *5 *2)) (-4 *2 (-327 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-526)) (-4 *2 (-348)) (-4 *4 (-1181 *2)) - (-4 *5 (-1181 (-392 *4))) (-4 *1 (-321 *2 *4 *5 *6)) - (-4 *6 (-327 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-348)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))) - (-4 *1 (-321 *2 *3 *4 *5)) (-4 *5 (-327 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) - (-4 *1 (-321 *3 *4 *5 *2)) (-4 *2 (-327 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-398 *4 (-392 *4) *5 *6)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-4 *3 (-348)) - (-4 *1 (-321 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) - (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) - (-5 *2 (-1205 *6)) (-5 *1 (-318 *3 *4 *5 *6)) (-4 *6 (-327 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) - (-5 *2 (-1205 *6)) (-5 *1 (-318 *3 *4 *5 *6)) (-4 *6 (-327 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317))))) + (-12 (-5 *2 (-112)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-379))))) +(((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *1 *1) (-4 *1 (-1099)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-316 *3)) (-4 *3 (-811))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1044 (-905 (-526)))) (-5 *3 (-905 (-526))) (-5 *1 (-315)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1044 (-905 (-526)))) (-5 *1 (-315))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-299 (-159 (-363)))) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-299 (-658))) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-299 (-665))) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-299 (-663))) (-5 *1 (-315)))) - ((*1 *1) (-5 *1 (-315)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-5 *1 (-315))))) -(((*1 *1) (-5 *1 (-315)))) -(((*1 *1) (-5 *1 (-315)))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-315))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1123)) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") - (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") - (|:| |Goto| "goto") (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) - (|:| |ints2Floats?| (-111)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1122)) (|:| |thenClause| (-315)) - (|:| |elseClause| (-315)))) - (|:| |returnBranch| - (-2 (|:| -3722 (-111)) - (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) - (|:| |blockBranch| (-607 (-315))) (|:| |commentBranch| (-607 (-1106))) - (|:| |callBranch| (-1106)) - (|:| |forBranch| - (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) - (|:| -3494 (-315)))) - (|:| |labelBranch| (-1070)) - (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 (-315)))) - (|:| |commonBranch| - (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) - (|:| |printBranch| (-607 (-823))))) - (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-315))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315))))) -(((*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1117 *3)) (-4 *3 (-353)) (-4 *1 (-314 *3)) (-4 *3 (-348))))) -(((*1 *2 *1) - (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) - (-5 *2 (-1117 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-735)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) - (-4 *3 (-163))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-526)) (-4 *1 (-308 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-129))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-308 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-129)) (-4 *3 (-756))))) -(((*1 *2 *3) - (-12 (-5 *3 (-526)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1004)) - (-5 *1 (-306 *4 *5 *2 *6)) (-4 *6 (-909 *2 *4 *5))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1117 *7)) (-5 *3 (-526)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) - (-4 *5 (-811)) (-4 *6 (-1004)) (-5 *1 (-306 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117 *6)) (-4 *6 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) - (-5 *2 (-1117 *7)) (-5 *1 (-306 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117 *7)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) - (-4 *6 (-1004)) (-5 *2 (-1117 *6)) (-5 *1 (-306 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1218 (-1218 (-548)))) (-5 *3 (-890)) (-5 *1 (-457))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-5 *5 (-607 *8)) (-4 *7 (-811)) - (-4 *8 (-1004)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-5 *2 (-1117 *8)) - (-5 *1 (-306 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-392 (-526))) (-5 *1 (-304 *3 *4 *5)) - (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) - (-5 *6 (-526)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) - (-5 *6 (-526)) (-5 *7 (-1106)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) - (-5 *6 (-211)) (-5 *7 (-526)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) - (-5 *6 (-211)) (-5 *7 (-526)) (-5 *8 (-1106)) (-5 *2 (-1155 (-886))) - (-5 *1 (-303))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-303)) (-5 *3 (-211))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-278 *6)) (-5 *4 (-112)) (-4 *6 (-406 *5)) - (-4 *5 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-278 *7)) (-5 *4 (-112)) (-5 *5 (-607 *7)) (-4 *7 (-406 *6)) - (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-607 (-278 *7))) (-5 *4 (-607 (-112))) (-5 *5 (-278 *7)) - (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-607 (-278 *8))) (-5 *4 (-607 (-112))) (-5 *5 (-278 *8)) - (-5 *6 (-607 *8)) (-4 *8 (-406 *7)) - (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-607 *7)) (-5 *4 (-607 (-112))) (-5 *5 (-278 *7)) - (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-112))) (-5 *6 (-607 (-278 *8))) - (-4 *8 (-406 *7)) (-5 *5 (-278 *8)) - (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-278 *5)) (-5 *4 (-112)) (-4 *5 (-406 *6)) - (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-4 *3 (-406 *6)) - (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-4 *3 (-406 *6)) - (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-5 *6 (-607 *3)) (-4 *3 (-406 *7)) - (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) - (-5 *1 (-302 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-299 *3)) (-4 *3 (-533)) (-4 *3 (-811))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-526)) (-5 *1 (-299 *3)) (-4 *3 (-533)) (-4 *3 (-811))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-292)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-292)) (-5 *2 (-735))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-292)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) - (-4 *1 (-292))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-292))))) -(((*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-809)) (-5 *1 (-289 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-211))) (-5 *4 (-735)) (-5 *2 (-653 (-211))) - (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-392 (-526))) (-5 *2 (-211)) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-299 (-363))) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-905 (-211))) (-5 *2 (-211)) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-905 (-211))) (-5 *2 (-299 (-363))) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) - (|:| |expense| (-363)) (|:| |accuracy| (-363)) - (|:| |intermediateResults| (-363)))) - (-5 *2 (-992)) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1101 (-211))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1537 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-992)) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))))) - (-5 *2 (-992)) (-5 *1 (-288)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) - (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) - (-5 *2 (-992)) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1106)) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-179)))) - ((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-286)))) - ((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-179)))) - ((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-286)))) - ((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-179)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-286)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-179)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-286)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1106)) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-179)))) - ((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-286)))) - ((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-1205 (-299 (-363)))) - (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-299 (-363))) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1205 (-663))) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-663)) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) - (-5 *2 (-607 (-211))) (-5 *1 (-288))))) -(((*1 *2 *2) (-12 (-5 *2 (-1041 (-803 (-211)))) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-299 (-211))) (-5 *2 (-299 (-392 (-526)))) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 (-299 (-211)))) - (-5 *2 - (-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) - (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526)))) - (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) - (-5 *2 (-363)) (-5 *1 (-252)))) - ((*1 *2 *3) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-363)) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-211)) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-392 (-526))) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-392 (-526))) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1041 (-803 (-363)))) (-5 *2 (-1041 (-803 (-211)))) - (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-803 (-363))) (-5 *2 (-803 (-211))) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-299 (-363))) (-5 *2 (-299 (-211))) (-5 *1 (-288))))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-211)) (-5 *1 (-288))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *4 (-1123)) - (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-286))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (-5 *2 (-1101 (-211))) (-5 *1 (-179)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-299 (-211))) (-5 *4 (-607 (-1123))) - (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *4 (-607 (-1123))) - (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117 *1)) (-5 *4 (-1123)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-607 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *3)))) + (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-299 (-211))) (-5 *4 (-607 (-1123))) - (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-299 (-211))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) - (-5 *2 (-607 (-211))) (-5 *1 (-179)))) + (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-299 (-211))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) - (-5 *2 (-607 (-211))) (-5 *1 (-286))))) + (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) + (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) + (-5 *1 (-251 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-371))) + (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) + (-5 *1 (-251 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) + (-5 *2 (-1095 (-218))) (-5 *1 (-251 *3)) + (-4 *3 (-13 (-593 (-524)) (-1063))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *3)) + (-4 *3 (-13 (-593 (-524)) (-1063))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) + (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) + (-5 *1 (-251 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-371))) + (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) + (-5 *1 (-251 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (-5 *2 (-111)) (-5 *1 (-286))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-283)) (-4 *2 (-1159)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-607 (-581 *1))) (-5 *3 (-607 *1)) (-4 *1 (-283)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-278 *1))) (-4 *1 (-283)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-278 *1)) (-4 *1 (-283))))) -(((*1 *1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1) (-4 *1 (-283)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-581 *1)) (-4 *1 (-283))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-581 *1))) (-4 *1 (-283))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-581 *1))) (-4 *1 (-283))))) -(((*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-607 (-112)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1123)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-581 *5)) (-4 *5 (-406 *4)) (-4 *4 (-995 (-526))) - (-4 *4 (-13 (-811) (-533))) (-5 *2 (-1117 *5)) (-5 *1 (-31 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-581 *1)) (-4 *1 (-1004)) (-4 *1 (-283)) (-5 *2 (-1117 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-296)) (-5 *1 (-281)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 (-1106))) (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1004)) (-4 *4 (-1181 *3)) (-5 *1 (-155 *3 *4 *2)) - (-4 *2 (-1181 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-691)) (-4 *2 (-1159))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-691)) (-4 *2 (-1159))))) -(((*1 *2 *1) - (-12 (-5 *2 (-607 (-278 *3))) (-5 *1 (-278 *3)) (-4 *3 (-533)) - (-4 *3 (-1159))))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-355) (-1157) (-971)))))) +(((*1 *2) + (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-540)) + (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-1189 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *3 (-619 (-548))) + (-5 *1 (-852))))) (((*1 *2 *3) - (-12 (-4 *4 (-436)) + (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 - (-607 - (-2 (|:| |eigval| (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4)))) - (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 *4)))))))) - (-5 *1 (-277 *4)) (-5 *3 (-653 (-392 (-905 *4))))))) + (-619 + (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) + (|:| |radvect| (-619 (-663 (-308 (-548)))))))) + (-5 *1 (-1000))))) (((*1 *2 *3) - (-12 (-4 *4 (-436)) + (-12 (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 - (-607 - (-2 (|:| |eigval| (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4)))) - (|:| |geneigvec| (-607 (-653 (-392 (-905 *4)))))))) - (-5 *1 (-277 *4)) (-5 *3 (-653 (-392 (-905 *4))))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-392 (-905 *6)) (-1113 (-1123) (-905 *6)))) (-5 *5 (-735)) - (-4 *6 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *6))))) (-5 *1 (-277 *6)) - (-5 *4 (-653 (-392 (-905 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-392 (-905 *5)) (-1113 (-1123) (-905 *5)))) - (|:| |eigmult| (-735)) (|:| |eigvec| (-607 *4)))) - (-4 *5 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *5))))) (-5 *1 (-277 *5)) - (-5 *4 (-653 (-392 (-905 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-392 (-905 *5)) (-1113 (-1123) (-905 *5)))) (-4 *5 (-436)) - (-5 *2 (-607 (-653 (-392 (-905 *5))))) (-5 *1 (-277 *5)) - (-5 *4 (-653 (-392 (-905 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-392 (-905 *4)))) (-4 *4 (-436)) - (-5 *2 (-607 (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4))))) - (-5 *1 (-277 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1037))) (-5 *1 (-276))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-276))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1123)) (-5 *3 (-1054)) (-5 *1 (-276))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-607 (-924))) (-5 *1 (-276))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-924))) (-5 *1 (-276))))) -(((*1 *1) (-5 *1 (-276)))) -(((*1 *1) (-5 *1 (-276)))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) - (-4 *5 (-357 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4311)) (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) - (-4 *2 (-1159))))) + (-2 (|:| |glbase| (-619 (-240 *4 *5))) (|:| |glval| (-619 (-548))))) + (-5 *1 (-607 *4 *5)) (-5 *3 (-619 (-240 *4 *5)))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-355)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) + (-4 *1 (-327 *4 *3 *5 *2)) (-4 *2 (-334 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-548)) (-4 *2 (-355)) (-4 *4 (-1194 *2)) + (-4 *5 (-1194 (-399 *4))) (-4 *1 (-327 *2 *4 *5 *6)) + (-4 *6 (-334 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-355)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))) + (-4 *1 (-327 *2 *3 *4 *5)) (-4 *5 (-334 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) + (-4 *1 (-327 *3 *4 *5 *2)) (-4 *2 (-334 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-405 *4 (-399 *4) *5 *6)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-4 *3 (-355)) + (-4 *1 (-327 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-218))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-348)) (-5 *2 (-607 (-1101 *4))) (-5 *1 (-270 *4 *5)) - (-5 *3 (-1101 *4)) (-4 *5 (-1198 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-267 *3)) (-4 *3 (-1159))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-221 *3)) - (-4 *3 (-1052)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159))))) -(((*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-265))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1054)) (-5 *1 (-265))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-265))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-392 (-526))) - (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)) - (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-581 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))) - (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-262 *4 *2))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-607 (-581 *2))) (-5 *4 (-1123)) - (-4 *2 (-13 (-27) (-1145) (-406 *5))) - (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-262 *5 *2))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-821)) (-4 *5 (-767)) + (-4 *6 (-540)) (-4 *7 (-918 *6 *5 *3)) + (-5 *1 (-453 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1007 (-399 (-548))) (-355) + (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) + (-15 -2480 (*7 $)))))))) +(((*1 *2) + (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-262 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-607 (-581 *3))) (|:| |vals| (-607 *3)))) - (-5 *1 (-262 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) + (-5 *1 (-173 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-261 *4 *3)) - (-4 *3 (-13 (-406 *4) (-960)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-607 (-2 (|:| |func| *2) (|:| |pole| (-111))))) - (-4 *2 (-13 (-406 *4) (-960))) (-4 *4 (-13 (-811) (-533))) - (-5 *1 (-261 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) - (-4 *2 (-13 (-406 *3) (-960)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) - (-4 *3 (-13 (-811) (-533)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) - (-4 *3 (-13 (-811) (-533)))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-260))))) -(((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-260))))) + (-12 (-4 *4 (-13 (-540) (-145))) (-5 *2 (-619 *3)) + (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) + (-5 *3 (-619 (-548)))))) +(((*1 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) - (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) - (|:| |ub| (-607 (-803 (-211)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) - (-5 *2 (-607 (-1106))) (-5 *1 (-252))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-992)) (-5 *3 (-1123)) (-5 *1 (-252))))) -(((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-111)) (-5 *1 (-252))))) -(((*1 *2 *2) (-12 (-5 *2 (-607 (-299 (-211)))) (-5 *1 (-252))))) -(((*1 *2 *2) (-12 (-5 *2 (-607 (-299 (-211)))) (-5 *1 (-252))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *4 (-735)) (-5 *2 (-653 (-211))) - (-5 *1 (-252))))) -(((*1 *2 *3) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *2 (-111)) (-5 *1 (-252))))) -(((*1 *2 *2) (-12 (-5 *2 (-299 (-211))) (-5 *1 (-252))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-299 (-211))) (-5 *1 (-252))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *3 (-619 (-472 *4 *5))) (-14 *4 (-619 (-1135))) + (-4 *5 (-443)) (-5 *2 - (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) - (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) - (|:| |ub| (-607 (-803 (-211)))))) - (-5 *1 (-252))))) + (-2 (|:| |gblist| (-619 (-240 *4 *5))) + (|:| |gvlist| (-619 (-548))))) + (-5 *1 (-607 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) + ((*1 *1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) + (-4 *2 (-422 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) + ((*1 *1 *1) (-4 *1 (-819))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) + ((*1 *1 *1) (-4 *1 (-1025))) ((*1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-803 (-211)))) (-5 *4 (-211)) (-5 *2 (-607 *4)) - (-5 *1 (-252))))) + (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-811)))) + ((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-619 (-371))) (-5 *5 (-619 (-814 (-371)))) + (-5 *6 (-619 (-308 (-371)))) (-5 *3 (-308 (-371))) (-5 *2 (-1004)) + (-5 *1 (-811)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-371))) + (-5 *5 (-619 (-814 (-371)))) (-5 *2 (-1004)) (-5 *1 (-811)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-371))) (-5 *2 (-1004)) + (-5 *1 (-811)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-308 (-371)))) (-5 *4 (-619 (-371))) + (-5 *2 (-1004)) (-5 *1 (-811))))) (((*1 *2 *1) - (-12 (-4 *3 (-219)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) - (-4 *6 (-757)) (-5 *2 (-1 *1 (-735))) (-4 *1 (-238 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) - (-5 *2 (-1 *1 (-735))) (-4 *1 (-238 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-251 *2)) (-4 *2 (-811))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) - (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-14 *6 + (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *2)) + (-2 (|:| -3337 *5) (|:| -3352 *2)))) + (-4 *2 (-231 (-3643 *3) (-745))) (-5 *1 (-452 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-821)) (-4 *7 (-918 *4 *2 (-834 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2) + (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-409 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-540) (-145))) + (-5 *2 (-2 (|:| -3663 *3) (|:| -3676 *3))) (-5 *1 (-1188 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852))))) +(((*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) + (-5 *2 (-1218 *6)) (-5 *1 (-328 *3 *4 *5 *6)) + (-4 *6 (-334 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 (-591 *4))) (-4 *4 (-422 *3)) (-4 *3 (-821)) + (-5 *1 (-557 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-303)))) ((*1 *2 *1) - (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) - (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-251 *3)) (-4 *3 (-811)) (-5 *2 (-735))))) + (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *2 (-50)) - (-5 *1 (-246)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *1 (-248 *2)) - (-4 *2 (-1159))))) -(((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *1) (-5 *1 (-138))) - ((*1 *1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-246)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-247))))) -(((*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-833)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-833)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-246)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-884)) - (-5 *2 - (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) - (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) - (-5 *1 (-147)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-884)) (-5 *4 (-392 (-526))) - (-5 *2 - (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) - (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) - (-5 *1 (-147)))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-4 *5 (-231 (-3643 *3) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *5)) + (-2 (|:| -3337 *2) (|:| -3352 *5)))) + (-4 *2 (-821)) (-5 *1 (-452 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-918 *4 *5 (-834 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-409 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1188 *3 *2)) + (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) - (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) - (-5 *1 (-147)) (-5 *3 (-607 (-902 (-211)))))) + (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) + (-5 *2 (-1218 *6)) (-5 *1 (-328 *3 *4 *5 *6)) + (-4 *6 (-334 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) - (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) - (-5 *1 (-147)) (-5 *3 (-607 (-607 (-902 (-211))))))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246))))) -(((*1 *1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246))))) -(((*1 *1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211) (-211) (-211))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211) (-211))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-246))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-392 (-526))))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246))))) + (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *2 (-111)) (-5 *1 (-246))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-619 (-1135))) (-4 *2 (-169)) + (-4 *4 (-231 (-3643 *5) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3337 *3) (|:| -3352 *4)) + (-2 (|:| -3337 *3) (|:| -3352 *4)))) + (-5 *1 (-452 *5 *2 *3 *4 *6 *7)) (-4 *3 (-821)) + (-4 *7 (-918 *2 *4 (-834 *5)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1208)) - (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) + (-12 (-5 *3 (-1 (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-247)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1219)) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-846 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-247)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1208)) (-5 *1 (-240 *3)) - (-4 *3 (-13 (-584 (-515)) (-1052))))) + (-12 (-5 *3 (-846 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1219)) (-5 *1 (-247)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-836 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) - (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1208)) (-5 *1 (-240 *6)))) + (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-836 *5)) (-5 *4 (-1044 (-363))) - (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1208)) (-5 *1 (-240 *5)))) + (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1220)) (-5 *1 (-247)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-838 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) - (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *6)))) + (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-838 *5)) (-5 *4 (-1044 (-363))) - (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *5)))) + (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1220)) (-5 *1 (-247)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) - (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) + (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1209)) (-5 *1 (-240 *3)) - (-4 *3 (-13 (-584 (-515)) (-1052))))) + (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1220)) (-5 *1 (-247)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-841 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) - (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *6)))) + (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-841 *5)) (-5 *4 (-1044 (-363))) - (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) - (-5 *2 (-1208)) (-5 *1 (-241)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1208)) - (-5 *1 (-241)))) + (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1220)) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) + (-5 *2 (-1220)) (-5 *1 (-247)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-286 *7)) (-5 *4 (-1135)) (-5 *5 (-619 (-255))) + (-4 *7 (-422 *6)) (-4 *6 (-13 (-540) (-821) (-1007 (-548)))) + (-5 *2 (-1219)) (-5 *1 (-248 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-836 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-241)))) + (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1219)) + (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-836 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1208)) - (-5 *1 (-241)))) + (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1219)) (-5 *1 (-251 *3)) + (-4 *3 (-13 (-593 (-524)) (-1063))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) + (-12 (-5 *3 (-846 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) + (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1219)) + (-5 *1 (-251 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) - (-5 *1 (-241)))) + (-12 (-5 *3 (-846 *5)) (-5 *4 (-1056 (-371))) + (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1219)) + (-5 *1 (-251 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) + (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) + (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) + (-5 *1 (-251 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) - (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) - (-5 *1 (-241)))) + (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-371))) + (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) + (-5 *1 (-251 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) + (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) + (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) - (-5 *2 (-1209)) (-5 *1 (-241)))) + (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1220)) (-5 *1 (-251 *3)) + (-4 *3 (-13 (-593 (-524)) (-1063))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) + (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) + (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) + (-5 *1 (-251 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) - (-5 *2 (-1209)) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-278 *7)) (-5 *4 (-1123)) (-5 *5 (-607 (-246))) - (-4 *7 (-406 *6)) (-4 *6 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-1208)) - (-5 *1 (-242 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1208)) (-5 *1 (-245)))) + (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-371))) + (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) + (-5 *1 (-251 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1219)) (-5 *1 (-252)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-607 (-211))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) - (-5 *1 (-245)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *2 (-1208)) (-5 *1 (-245)))) + (-12 (-5 *3 (-619 (-218))) (-5 *4 (-619 (-255))) (-5 *2 (-1219)) + (-5 *1 (-252)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *2 (-1219)) (-5 *1 (-252)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) - (-5 *1 (-245)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1209)) (-5 *1 (-245)))) + (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *4 (-619 (-255))) + (-5 *2 (-1219)) (-5 *1 (-252)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1220)) (-5 *1 (-252)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-607 (-211))) (-5 *4 (-607 (-246))) (-5 *2 (-1209)) - (-5 *1 (-245))))) -(((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-243))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-243))))) -(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-243))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-159 (-211)) (-159 (-211)))) (-5 *4 (-1041 (-211))) - (-5 *2 (-1209)) (-5 *1 (-243))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-159 (-211)) (-159 (-211)))) (-5 *4 (-1041 (-211))) - (-5 *5 (-111)) (-5 *2 (-1209)) (-5 *1 (-243))))) + (-12 (-5 *3 (-619 (-218))) (-5 *4 (-619 (-255))) (-5 *2 (-1220)) + (-5 *1 (-252))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-540) (-145))) + (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-846 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-848 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-851 *2)) (-4 *2 (-1172))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *3)) + (-4 *3 (-1172)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1165 *4 *5 *3 *2)) (-4 *4 (-540)) + (-4 *5 (-767)) (-4 *3 (-821)) (-4 *2 (-1030 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *1 (-1169 *2)) (-4 *2 (-1172))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-902 (-211)) (-211) (-211))) - (-5 *3 (-1 (-211) (-211) (-211) (-211))) (-5 *1 (-241))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-838 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) - (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) - (-5 *1 (-240 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-838 *5)) (-5 *4 (-1044 (-363))) - (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) - (-5 *1 (-240 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) - (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *3)) - (-4 *3 (-13 (-584 (-515)) (-1052))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-841 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) - (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) - (-5 *1 (-240 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-841 *5)) (-5 *4 (-1044 (-363))) - (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) - (-5 *1 (-240 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) - (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) + (-12 (-4 *3 (-355)) (-5 *1 (-994 *3 *2)) (-4 *2 (-630 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) - (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) - (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) - (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) - (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) - (-5 *2 (-1083 (-211))) (-5 *1 (-241))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-208 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-239 *3)))) - ((*1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) - (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) - (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-607 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) - (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-607 (-735))))) - ((*1 *2 *1) - (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) - (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-607 (-735)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) - (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-238 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) - (-4 *2 (-251 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-238 *2 *3 *4 *5)) (-4 *2 (-1004)) (-4 *3 (-811)) - (-4 *4 (-251 *3)) (-4 *5 (-757))))) -(((*1 *1 *1) - (-12 (-4 *1 (-238 *2 *3 *4 *5)) (-4 *2 (-1004)) (-4 *3 (-811)) - (-4 *4 (-251 *3)) (-4 *5 (-757))))) -(((*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-234))))) -(((*1 *1 *2) (-12 (-5 *2 (-174)) (-5 *1 (-234))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-234))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-735)) - (-4 *3 (-13 (-691) (-353) (-10 -7 (-15 ** (*3 *3 (-526)))))) - (-5 *1 (-232 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-231 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-526)) (-5 *1 (-227)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-526)) (-5 *1 (-227))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-227)))) - ((*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1211)) (-5 *1 (-227))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-227))))) -(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-227))))) -(((*1 *1 *2) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1159)) (-4 *1 (-224 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-278 (-905 (-526)))) - (-5 *2 - (-2 (|:| |varOrder| (-607 (-1123))) - (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) - (|:| |hom| (-607 (-1205 (-735)))))) - (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-221 *3)))) - ((*1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1052))))) -(((*1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) -(((*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) -(((*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) -(((*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212))))) -(((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) - ((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212))))) -(((*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-211))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *3 (-905 *6)) (-5 *4 (-1123)) - (-5 *5 (-803 *7)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-4 *7 (-13 (-1145) (-29 *6))) (-5 *1 (-210 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1117 *6)) (-5 *4 (-803 *6)) - (-4 *6 (-13 (-1145) (-29 *5))) - (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-210 *5 *6))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-803 *4)) (-5 *3 (-581 *4)) (-5 *5 (-111)) - (-4 *4 (-13 (-1145) (-29 *6))) - (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *1 (-210 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1106)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) - (-5 *2 (-111)) (-5 *1 (-210 *4 *5)) (-4 *5 (-13 (-1145) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))))) - ((*1 *1 *1) - (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) - (-14 *3 (-607 (-1123)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) - (-14 *4 (-607 (-1123))))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) - (-14 *4 (-607 (-1123)))))) + (-12 (-4 *5 (-355)) (-5 *2 (-2 (|:| -2383 *3) (|:| -2503 (-619 *5)))) + (-5 *1 (-994 *5 *3)) (-5 *4 (-619 *5)) (-4 *3 (-630 *5))))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) + (-5 *1 (-324))))) (((*1 *1 *2) - (-12 (-5 *2 (-299 *3)) (-4 *3 (-13 (-1004) (-811))) (-5 *1 (-209 *3 *4)) - (-14 *4 (-607 (-1123)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) - (-14 *3 (-607 (-1123)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1123)) (-5 *6 (-111)) - (-4 *7 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) - (-4 *3 (-13 (-1145) (-919) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| "failed") - (|:| |pole| "potentialPole"))) - (-5 *1 (-205 *7 *3)) (-5 *5 (-803 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204))))) -(((*1 *2 *3) - (-12 (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-335)) (-5 *2 (-607 (-2 (|:| |deg| (-735)) (|:| -2872 *3)))) - (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4))))) + (-12 (-5 *2 (-1124 3 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-335)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) - (-5 *1 (-203 *5 *3)) (-4 *3 (-1181 *5))))) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-294)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-114)) (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-821)) + (-5 *1 (-591 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-619 (-1135))) (-4 *2 (-169)) + (-4 *3 (-231 (-3643 *4) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *3)) + (-2 (|:| -3337 *5) (|:| -3352 *3)))) + (-5 *1 (-452 *4 *2 *5 *3 *6 *7)) (-4 *5 (-821)) + (-4 *7 (-918 *2 *3 (-834 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-540) (-145))) + (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1172))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1026 (-993 *4) (-1131 (-993 *4)))) (-5 *3 (-832)) + (-5 *1 (-993 *4)) (-4 *4 (-13 (-819) (-355) (-991)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-422 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *4)) + (-4 *4 (-422 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-114)) (-5 *1 (-160)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *4)) + (-4 *4 (-13 (-422 *3) (-971))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-293 *3)) (-4 *3 (-294)))) + ((*1 *2 *2) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *4 (-821)) (-5 *1 (-421 *3 *4)) + (-4 *3 (-422 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *4)) + (-4 *4 (-422 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *4)) + (-4 *4 (-13 (-422 *3) (-971) (-1157))))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-348)) (-4 *6 (-1181 (-392 *2))) - (-4 *2 (-1181 *5)) (-5 *1 (-202 *5 *2 *6 *3)) (-4 *3 (-327 *5 *2 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-607 (-299 (-211)))) - (|:| |constraints| - (-607 - (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) - (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) - (|:| |dFinish| (-653 (-211)))))) - (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) - (|:| |tol| (-211)))) - (-5 *2 (-111)) (-5 *1 (-197))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-607 (-299 (-211)))) (-5 *3 (-211)) (-5 *2 (-111)) - (-5 *1 (-197))))) -(((*1 *2 *2) (-12 (-5 *2 (-299 (-211))) (-5 *1 (-197))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 (-363)) (-5 *1 (-192))))) + (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) + (-5 *1 (-324))))) +(((*1 *2) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) + (-5 *2 (-745)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-399 *4))) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-619 *3)) (-5 *5 (-890)) (-4 *3 (-1194 *4)) + (-4 *4 (-299)) (-5 *1 (-451 *4 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) + (-5 *1 (-173 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 (-363)) (-5 *1 (-192))))) + (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) + (-4 *3 (-365 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-493 *4 *5 *6 *3)) (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-540)) + (-5 *2 (-2 (|:| |num| (-663 *4)) (|:| |den| *4))) + (-5 *1 (-667 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *6 (-1194 *5)) + (-5 *2 (-2 (|:| -2383 *7) (|:| |rh| (-619 (-399 *6))))) + (-5 *1 (-781 *5 *6 *7 *3)) (-5 *4 (-619 (-399 *6))) + (-4 *7 (-630 *6)) (-4 *3 (-630 (-399 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1187 *4 *5 *3)) + (-4 *3 (-1194 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 (-363)) (-5 *1 (-192))))) + (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-849))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1026 (-993 *3) (-1131 (-993 *3)))) + (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-355) (-991)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 (-363)) (-5 *1 (-192))))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-422 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) + (-5 *1 (-155 *4 *5)) (-4 *5 (-422 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) + (-5 *1 (-268 *4 *5)) (-4 *5 (-13 (-422 *4) (-971))))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-293 *4)) (-4 *4 (-294)))) + ((*1 *2 *3) (-12 (-4 *1 (-294)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-421 *4 *5)) (-4 *4 (-422 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) + (-5 *1 (-423 *4 *5)) (-4 *5 (-422 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) + (-5 *1 (-606 *4 *5)) (-4 *5 (-13 (-422 *4) (-971) (-1157)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) + (-5 *1 (-324))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-890)) (-4 *5 (-299)) (-4 *3 (-1194 *5)) + (-5 *2 (-2 (|:| |plist| (-619 *3)) (|:| |modulo| *5))) + (-5 *1 (-451 *5 *3)) (-5 *4 (-619 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-540)) (-4 *4 (-961 *3)) (-5 *1 (-140 *3 *4 *2)) + (-4 *2 (-365 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-4 *2 (-365 *4)) + (-5 *1 (-493 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-540)) + (-5 *2 (-663 *4)) (-5 *1 (-667 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-540)) (-4 *4 (-961 *3)) (-5 *1 (-1187 *3 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-4 *6 (-13 (-540) (-821))) + (-5 *2 (-619 (-308 *6))) (-5 *1 (-214 *5 *6)) (-5 *3 (-308 *6)) + (-4 *5 (-1016)))) + ((*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540)))) + ((*1 *2 *3) + (-12 (-5 *3 (-566 *5)) (-4 *5 (-13 (-29 *4) (-1157))) + (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) + (-5 *2 (-619 *5)) (-5 *1 (-564 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-566 (-399 (-921 *4)))) + (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) + (-5 *2 (-619 (-308 *4))) (-5 *1 (-569 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-819)) (-4 *2 (-1109 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *1)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) + (-4 *2 (-1109 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-422 *3) (-1157))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1233 (-1135) *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016))))) (((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) - (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) - (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) - (|:| |abserr| (-211)) (|:| |relerr| (-211)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) - (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-299 (-211)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) - (-5 *1 (-192))))) -(((*1 *2 *3) (-12 (-5 *3 (-653 (-299 (-211)))) (-5 *2 (-363)) (-5 *1 (-192))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-192)))) - ((*1 *2 *2 *3) (-12 (-5 *3 (-607 (-363))) (-5 *2 (-363)) (-5 *1 (-192))))) -(((*1 *2 *3) + (-5 *2 + (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) + (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *4) (-12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (-5 *2 (-526)) (-5 *1 (-191))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (-5 *2 (-607 (-211))) (-5 *1 (-191))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (-5 *2 (-2 (|:| -2805 (-112)) (|:| |w| (-211)))) (-5 *1 (-191))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-992)) (-5 *3 (-1123)) (-5 *1 (-179))))) -(((*1 *2 *3) + (-5 *2 + (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) + (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) + (-5 *4 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) + ((*1 *2 *3 *4) (-12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) - (-5 *2 (-363)) (-5 *1 (-179))))) -(((*1 *2 *3) + (-5 *2 + (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) + (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) (-5 *4 (-399 (-548))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-399 (-548))) + (-5 *2 (-619 (-2 (|:| -3663 *5) (|:| -3676 *5)))) (-5 *1 (-989 *3)) + (-4 *3 (-1194 (-548))) (-5 *4 (-2 (|:| -3663 *5) (|:| -3676 *5))))) + ((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| "There is a singularity at the lower end point") - (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-179))))) -(((*1 *2 *3) + (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) + (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))))) + ((*1 *2 *3 *4) (-12 - (-5 *3 - (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) - (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) - (|:| |relerr| (-211)))) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-179))))) -(((*1 *2 *3) (-12 (-5 *2 (-390 (-1117 (-526)))) (-5 *1 (-178)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-607 (-1117 (-526)))) (-5 *1 (-178)) (-5 *3 (-526))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-607 (-526))) (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 (-526))) (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1125 (-392 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-177))))) -(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) -(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1205 (-653 *4))) (-4 *4 (-163)) - (-5 *2 (-1205 (-653 (-905 *4)))) (-5 *1 (-176 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-174))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1159)) (-5 *1 (-173 *3 *2)) (-4 *2 (-639 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1159)) (-5 *2 (-735)) (-5 *1 (-173 *4 *3)) (-4 *3 (-639 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1159)) (-5 *1 (-173 *3 *2)) (-4 *2 (-639 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-809))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2736 (-390 *3)))) (-5 *1 (-172 *4 *3)) - (-4 *3 (-1181 (-159 *4)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) - (-4 *3 (-1181 (-159 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-159 *4)) (-5 *1 (-172 *4 *3)) (-4 *4 (-13 (-348) (-809))) - (-4 *3 (-1181 *2))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) - (-4 *3 (-1181 (-159 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) - (-4 *3 (-1181 (-159 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-348) (-809))) (-5 *1 (-172 *3 *2)) - (-4 *2 (-1181 (-159 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) - (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) + (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) + (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))) + (-5 *4 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) - (-4 *3 (-1181 (-159 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-348) (-809))) (-5 *1 (-172 *3 *2)) - (-4 *2 (-1181 (-159 *3)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-348) (-809))) - (-5 *2 (-607 (-2 (|:| -2736 (-607 *3)) (|:| -1632 *5)))) - (-5 *1 (-172 *5 *3)) (-4 *3 (-1181 (-159 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-348) (-809))) - (-5 *2 (-607 (-2 (|:| -2736 (-607 *3)) (|:| -1632 *4)))) - (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4)))))) + (-12 (-5 *4 (-399 (-548))) + (-5 *2 (-619 (-2 (|:| -3663 *4) (|:| -3676 *4)))) (-5 *1 (-990 *3)) + (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-399 (-548))) + (-5 *2 (-619 (-2 (|:| -3663 *5) (|:| -3676 *5)))) (-5 *1 (-990 *3)) + (-4 *3 (-1194 *5)) (-5 *4 (-2 (|:| -3663 *5) (|:| -3676 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) + ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-673))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-607 (-159 *4))) (-5 *1 (-148 *3 *4)) - (-4 *3 (-1181 (-159 (-526)))) (-4 *4 (-13 (-348) (-809))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-159 *4))) - (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-159 *4))) - (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-607 *3)) (-4 *3 (-292)) (-5 *1 (-170 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-292)) (-5 *1 (-170 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) - (-4 *3 (-13 (-348) (-1145) (-960)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) - (-4 *3 (-13 (-348) (-1145) (-960)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) - (-4 *3 (-13 (-348) (-1145) (-960)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) - (-4 *3 (-13 (-348) (-1145) (-960)))))) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) + (-14 *6 (-619 (-1135))) + (-5 *2 + (-619 (-1106 *5 (-520 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) + (-5 *1 (-604 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-323 *3)) (-4 *3 (-821))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-166 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) + (-5 *1 (-733))))) +(((*1 *2) (-12 (-5 *2 (-807 (-548))) (-5 *1 (-522)))) + ((*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *5)) (-4 *5 (-1194 *3)) (-4 *3 (-299)) + (-5 *2 (-112)) (-5 *1 (-446 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-108))) (-5 *1 (-172))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) - (-4 *3 (-13 (-348) (-1145) (-960)))))) + (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-140 *2 *4 *3)) + (-4 *3 (-365 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-493 *2 *4 *5 *3)) + (-4 *5 (-365 *2)) (-4 *3 (-365 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *4)) (-4 *4 (-961 *2)) (-4 *2 (-540)) + (-5 *1 (-667 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-1187 *2 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) - (-4 *3 (-13 (-348) (-1145) (-960)))))) + (-12 + (-5 *3 + (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) + (-5 *2 (-619 (-399 (-548)))) (-5 *1 (-989 *4)) + (-4 *4 (-1194 (-548)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) + (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) + (-5 *1 (-604 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) - (-4 *3 (-13 (-348) (-1145) (-960)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) - (-5 *1 (-167 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) - (-5 *1 (-167 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) - (-5 *1 (-167 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) - (-5 *1 (-167 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) - (-5 *1 (-167 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) - (-5 *1 (-167 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) - (-5 *1 (-167 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-107))) (-5 *1 (-166))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-166))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-292)) (-5 *1 (-165 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) -(((*1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 (-392 *3))) (-5 *1 (-165 *3)) (-4 *3 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 (-392 *3))) (-5 *1 (-165 *3)) (-4 *3 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162))))) -(((*1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-519 *3)) (-4 *3 (-13 (-701) (-25)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1056 (-921 (-548)))) (-5 *3 (-921 (-548))) + (-5 *1 (-322)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1056 (-921 (-548)))) (-5 *1 (-322))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-106 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-1013)) (-4 *3 (-1145)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-153))) - ((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-153))))) + (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-732))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) + (-4 *3 (-13 (-821) (-540))))) + ((*1 *1) + (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + ((*1 *1) (-5 *1 (-468))) ((*1 *1) (-4 *1 (-1157)))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1218 (-619 *3))) (-4 *4 (-299)) + (-5 *2 (-619 *3)) (-5 *1 (-446 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-540)) + (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1131 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-940)) (-4 *2 (-130)) (-5 *1 (-1137 *3)) (-4 *3 (-540)) + (-4 *3 (-1016)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1191 *4 *3)) (-14 *4 (-1135)) + (-4 *3 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) + (-5 *2 (-399 (-548))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-548)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) - (-4 *2 (-406 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) - ((*1 *1 *1) (-4 *1 (-152)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) - (-4 *2 (-406 *4)))) + (-12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-443)) (-5 *1 (-352 *3 *4)) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-441 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1044 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) - (-5 *1 (-150 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-152)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) -(((*1 *1 *1 *1) (-4 *1 (-137))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-525)) (-5 *1 (-151 *2))))) -(((*1 *1 *1) (-4 *1 (-137))) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-441 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-441 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-811) (-533)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-811) (-533)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-811) (-533)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-811) (-533)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-811) (-533)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-811) (-533)))))) + (-12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-443)) + (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 (-912 *4))) (-4 *1 (-1096 *4)) (-4 *4 (-1016)) + (-5 *2 (-745))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) + (-5 *2 (-1004)) (-5 *1 (-732))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-745)) (-4 *4 (-299)) (-4 *6 (-1194 *4)) + (-5 *2 (-1218 (-619 *6))) (-5 *1 (-446 *4 *6)) (-5 *5 (-619 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1116 *2)) (-4 *2 (-299)) (-5 *1 (-171 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-117 *3)) (-14 *3 (-548)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1116 *2)) (-4 *2 (-299)) (-5 *1 (-171 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-299)) (-5 *1 (-171 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-171 (-548))) (-5 *1 (-740 *3)) (-4 *3 (-396)))) + ((*1 *2 *1) + (-12 (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-840 *3)) (-14 *3 (-548)))) + ((*1 *2 *1) + (-12 (-14 *3 (-548)) (-5 *2 (-171 (-399 (-548)))) + (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1218 (-619 (-548)))) (-5 *1 (-471)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1218 *6)) (-5 *4 (-1218 (-548))) (-5 *5 (-548)) + (-4 *6 (-1063)) (-5 *2 (-1 *6)) (-5 *1 (-986 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3))))) -(((*1 *1) (-5 *1 (-149)))) -(((*1 *1) (-5 *1 (-149)))) -(((*1 *1) (-5 *1 (-149)))) -(((*1 *1) (-5 *1 (-149)))) -(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-149))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-211)) + (|partial| -12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-443)) + (-5 *1 (-352 *3 *4)) (-14 *4 (-619 (-1135))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-443)) + (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) + (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-732))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-299)) + (-5 *2 (-745)) (-5 *1 (-446 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |brans| (-607 (-607 (-902 *4)))) (|:| |xValues| (-1041 *4)) - (|:| |yValues| (-1041 *4)))) - (-5 *1 (-147)) (-5 *3 (-607 (-607 (-902 *4))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-884)) + (-2 (|:| |contp| (-548)) + (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) + (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) - (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) - (-5 *1 (-147)))) + (-2 (|:| |contp| (-548)) + (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) + (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-395 *3)) (-4 *3 (-396)))) + ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-395 *3)) (-4 *3 (-396)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) + ((*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-1116 (-548)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-2 (|:| -4056 *4) (|:| -3266 (-548))))) + (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-443)) (-5 *2 (-112)) + (-5 *1 (-352 *4 *5)) (-14 *5 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-754 *4 (-834 *5)))) (-4 *4 (-443)) + (-14 *5 (-619 (-1135))) (-5 *2 (-112)) (-5 *1 (-604 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322))))) +(((*1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-104))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-890)) (-4 *1 (-396)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-396)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-732))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2877 (-619 *1)))) + (-4 *1 (-359 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-444 *3 *4 *5 *6)) + (|:| -2877 (-619 (-444 *3 *4 *5 *6))))) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| -1489 (-399 *5)) (|:| |poly| *3))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) +(((*1 *2 *3) + (-12 (-4 *4 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-209 *4 *3)) + (-4 *3 (-1194 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) + (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-745))) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) + (-4 *3 (-1194 (-548))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-410 *3)) + (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-884)) (-5 *4 (-392 (-526))) - (-5 *2 - (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) - (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) - (-5 *1 (-147))))) -(((*1 *1 *2) - (-12 (-5 *2 (-878)) (-5 *1 (-146 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-348)) - (-14 *5 (-952 *3 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-145 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)) - (-4 *2 (-1052))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) + (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) + (-4 *3 (-1194 (-548))))) + ((*1 *2 *3) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-976 *3)) + (-4 *3 (-1194 (-399 (-548)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-410 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-281 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1194 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-686 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-399 *5))) (-5 *1 (-985 *4 *5)) + (-5 *3 (-399 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-638 *4 *5))) + (-5 *1 (-603 *4 *5 *6)) (-4 *5 (-13 (-169) (-692 (-399 (-548))))) + (-14 *6 (-890))))) +(((*1 *1 *2) (-12 (-5 *2 (-308 (-166 (-371)))) (-5 *1 (-322)))) + ((*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-5 *1 (-322)))) + ((*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-5 *1 (-322)))) + ((*1 *1 *2) (-12 (-5 *2 (-308 (-668))) (-5 *1 (-322)))) + ((*1 *1 *2) (-12 (-5 *2 (-308 (-675))) (-5 *1 (-322)))) + ((*1 *1 *2) (-12 (-5 *2 (-308 (-673))) (-5 *1 (-322)))) + ((*1 *1) (-5 *1 (-322)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-392 *5)) - (|:| |c2| (-392 *5)) (|:| |deg| (-735)))) - (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1181 *2)) (-4 *2 (-1164)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-1181 (-392 *4)))))) + (-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) + (|:| |singularities| (-1116 (-218))))) + (-5 *1 (-104))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) + (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD)))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2877 (-619 *1)))) + (-4 *1 (-359 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-444 *3 *4 *5 *6)) + (|:| -2877 (-619 (-444 *3 *4 *5 *6))))) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-399 *6)) (|:| |h| *6) + (|:| |c1| (-399 *6)) (|:| |c2| (-399 *6)) (|:| -2405 *6))) + (-5 *1 (-985 *5 *6)) (-5 *3 (-399 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |k| (-646 *3)) (|:| |c| *4)))) + (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-5 *1 (-322))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4329 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) + (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) + (-4 *4 (-661 *2 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-392 *6)) (-4 *5 (-1164)) (-4 *6 (-1181 *5)) - (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| *6))) - (-5 *1 (-142 *5 *6 *7)) (-5 *4 (-735)) (-4 *7 (-1181 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) - (-5 *2 (-2 (|:| |radicand| (-392 *5)) (|:| |deg| (-735)))) - (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) - (-5 *2 (-2 (|:| -4270 (-392 *5)) (|:| |poly| *3))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-1181 (-392 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-138))))) -(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-138)))) - ((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-138))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 (-138))) (-5 *1 (-135)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-135))))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-607 (-526))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) - (-14 *4 (-735)) (-4 *5 (-163))))) -(((*1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163))))) -(((*1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163))))) + (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) + (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) + (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) + (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) + (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) + (-5 *1 (-1105 *5 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-607 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) - (-14 *4 (-735)) (-4 *5 (-163))))) -(((*1 *1 *2) - (-12 (-5 *2 (-607 *5)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) - (-14 *4 (-735))))) -(((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-131))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-735)) (-5 *2 (-1211))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-129)))) -(((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-127))))) -(((*1 *1 *1 *1) (-5 *1 (-127)))) -(((*1 *1 *1 *1) (-5 *1 (-127)))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-125 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-120 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-811))))) -(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-118 *2)) (-4 *2 (-1159))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-118 *2)) (-4 *2 (-1159))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-348) (-995 (-392 *2)))) (-5 *2 (-526)) - (-5 *1 (-114 *4 *3)) (-4 *3 (-1181 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1052)) (-4 *2 (-811)) - (-5 *1 (-113 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-113 *3)) (-4 *3 (-811)) (-4 *3 (-1052))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-607 (-1 *4 (-607 *4)))) (-4 *4 (-1052)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-112)) (-5 *2 (-607 (-1 *4 (-607 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-607 (-924))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-44 (-1106) (-737))) (-5 *1 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-735)) (-5 *1 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-112) (-112))) (-5 *1 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-112) (-112))) (-5 *1 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-515) (-607 (-515)))) (-5 *1 (-112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-515) (-607 (-515)))) (-5 *1 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-112))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-737)) (-5 *1 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1106) (-737))) (-5 *1 (-112))))) -(((*1 *1) (-5 *1 (-111)))) -(((*1 *1) (-5 *1 (-111)))) -(((*1 *1 *1) (-5 *1 (-111)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-108))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-924))) (-5 *1 (-107))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-105 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159))))) -(((*1 *2) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-103))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1123)) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 (-1135))) (-5 *3 (-1218 (-444 *4 *5 *6 *7))) + (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) + (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-444 *4 *5 *6 *7))) + (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) + (-14 *6 (-619 *2)) (-14 *7 (-1218 (-663 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 (-444 *3 *4 *5 *6))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) + (-14 *6 (-1218 (-663 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 (-1135))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) + (-14 *6 (-1218 (-663 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-890)) (-14 *5 (-619 *2)) (-14 *6 (-1218 (-663 *3))))) + ((*1 *1) + (-12 (-5 *1 (-444 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-890)) + (-14 *4 (-619 (-1135))) (-14 *5 (-1218 (-663 *2)))))) +(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-548)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-840 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-14 *2 (-548)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-548)) (-14 *3 *2) (-5 *1 (-841 *3 *4)) + (-4 *4 (-838 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-548)) (-5 *1 (-841 *2 *3)) (-4 *3 (-838 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-548)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1209 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1209 *2))))) +(((*1 *1 *1) (-4 *1 (-838 *2)))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1194 *6)) + (-4 *6 (-13 (-355) (-145) (-1007 *4))) (-5 *4 (-548)) (-5 *2 - (-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) - (|:| |singularities| (-1101 (-211))))) - (-5 *1 (-103))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4312 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) - (-4 *2 (-1004)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1181 *2)) - (-4 *4 (-650 *2 *5 *6))))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -2383 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-984 *6 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-619 (-286 *4))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-322))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4312 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) - (-4 *2 (-1004)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1181 *2)) - (-4 *4 (-650 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4329 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) + (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) + (-4 *4 (-661 *2 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-112)) + (-5 *6 (-218)) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD)))) + (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE)))) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-408 *3 *4)) + (-4 *3 (-409 *4)))) + ((*1 *2) + (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-4 *3 (-355)) + (-5 *2 (-1131 (-921 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1116 (-399 *3))) (-5 *1 (-171 *3)) (-4 *3 (-299))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1209 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1131 (-548))) (-5 *3 (-548)) (-4 *1 (-838 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1004)) (-4 *2 (-650 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) - (-4 *3 (-1181 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4))))) + (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| |ans| (-399 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-984 *4 *5)) (-5 *3 (-399 *5))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3213 (-619 (-2 (|:| |irr| *10) (|:| -3286 (-548))))))) + (-5 *6 (-619 *3)) (-5 *7 (-619 *8)) (-4 *8 (-821)) (-4 *3 (-299)) + (-4 *10 (-918 *3 *9 *8)) (-4 *9 (-767)) + (-5 *2 + (-2 (|:| |polfac| (-619 *10)) (|:| |correct| *3) + (|:| |corrfact| (-619 (-1131 *3))))) + (-5 *1 (-601 *8 *9 *3 *10)) (-5 *4 (-619 (-1131 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-322))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1004)) (-4 *2 (-650 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) - (-4 *3 (-1181 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *1 (-101 *3)) (-4 *3 (-1052))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-101 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-101 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-101 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-607 *2) *2 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-101 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-101 *2))))) + (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-142))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1116 (-399 *3))) (-5 *1 (-171 *3)) (-4 *3 (-299))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-540)) + (-5 *2 (-399 (-921 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-548)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-540)) + (-5 *2 (-399 (-921 *4)))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-745)) (-4 *5 (-355)) (-5 *2 (-399 *6)) + (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-355)) + (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-399 (-1191 *6 *5))) + (-5 *1 (-837 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-355)) + (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-399 (-1191 *6 *5))) + (-5 *1 (-837 *5 *6 *7))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-399 *6)) (|:| |c| (-399 *6)) + (|:| -2405 *6))) + (-5 *1 (-984 *5 *6)) (-5 *3 (-399 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-745)) (-5 *5 (-619 *3)) (-4 *3 (-299)) (-4 *6 (-821)) + (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-601 *6 *7 *3 *8)) + (-4 *8 (-918 *3 *7 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1118)) (-4 *1 (-356 *2 *4)) (-4 *2 (-1063)) + (-4 *4 (-1063)))) + ((*1 *1 *2) + (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-322))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-436) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-98 *4 *3)) - (-4 *3 (-1181 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-13 (-436) (-141))) - (-5 *2 (-390 *3)) (-5 *1 (-98 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-526))) (-4 *3 (-1004)) (-5 *1 (-97 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-97 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-97 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95))))) -(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95))))) -(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-95))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-95))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1106)) (-5 *1 (-95)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1106)) (-5 *1 (-95))))) -(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-89 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-348)) (-4 *5 (-533)) - (-5 *2 - (-2 (|:| |minor| (-607 (-878))) (|:| -3578 *3) - (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 *3)))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-878)) (-4 *3 (-623 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-88 *4 *5)) - (-5 *3 (-653 *4)) (-4 *5 (-623 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-533)) - (-5 *2 (-2 (|:| -1676 (-653 *5)) (|:| |vec| (-1205 (-607 (-878)))))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-878)) (-4 *3 (-623 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *1 (-56 *3)) (-4 *3 (-1159)))) - ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-56 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-526)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1159)) (-4 *3 (-357 *4)) - (-4 *5 (-357 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-526)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) - (-4 *3 (-357 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-1052)) - (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) - (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-607 (-1026 *4 *5 *2))) (-4 *4 (-1052)) - (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) - (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))) (-5 *1 (-53 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-607 (-1026 *5 *6 *2))) (-5 *4 (-878)) (-4 *5 (-1052)) - (-4 *6 (-13 (-1004) (-845 *5) (-811) (-584 (-849 *5)))) - (-4 *2 (-13 (-406 *6) (-845 *5) (-584 (-849 *5)))) (-5 *1 (-53 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1054)) (-5 *3 (-737)) (-5 *1 (-50))))) -(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-50))))) -(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-50))))) -(((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-50))))) -(((*1 *2 *1) (-12 (-5 *2 (-737)) (-5 *1 (-50))))) -(((*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1106)) (-5 *1 (-50))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-403 *3))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-403 *3))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-403 *3))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) -(((*1 *2) - (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-112)) (-5 *4 (-735)) (-4 *5 (-436)) (-4 *5 (-811)) - (-4 *5 (-995 (-526))) (-4 *5 (-533)) (-5 *1 (-40 *5 *2)) (-4 *2 (-406 *5)) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *5 (-581 $)) $)) - (-15 -3297 ((-1075 *5 (-581 $)) $)) - (-15 -4274 ($ (-1075 *5 (-581 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) - (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) - (-15 -3297 ((-1075 *3 (-581 $)) $)) - (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) - (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) - (-15 -3297 ((-1075 *3 (-581 $)) $)) - (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) - (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) - (-15 -3297 ((-1075 *3 (-581 $)) $)) - (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-533)) (-5 *2 (-1117 *3)) (-5 *1 (-40 *4 *3)) - (-4 *3 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) - (-15 -3297 ((-1075 *4 (-581 $)) $)) - (-15 -4274 ($ (-1075 *4 (-581 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) - (-15 -3297 ((-1075 *3 (-581 $)) $)) - (-15 -4274 ($ (-1075 *3 (-581 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) - (-15 -3297 ((-1075 *3 (-581 $)) $)) - (-15 -4274 ($ (-1075 *3 (-581 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-607 *2)) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) - (-15 -3297 ((-1075 *4 (-581 $)) $)) - (-15 -4274 ($ (-1075 *4 (-581 $))))))) - (-4 *4 (-533)) (-5 *1 (-40 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-607 (-581 *2))) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) - (-15 -3297 ((-1075 *4 (-581 $)) $)) - (-15 -4274 ($ (-1075 *4 (-581 $))))))) - (-4 *4 (-533)) (-5 *1 (-40 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-348) (-283) - (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) - (-15 -3297 ((-1075 *3 (-581 $)) $)) - (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-735)) (-4 *4 (-348)) (-4 *5 (-1181 *4)) (-5 *2 (-1211)) - (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1181 (-392 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) - (-5 *2 (-2 (|:| -4179 *3) (|:| -2164 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-526)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-995 *4)) - (-4 *3 (-13 (-811) (-533)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-607 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-811) (-533))) - (-5 *2 (-823)) (-5 *1 (-31 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1117 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) - (-5 *1 (-31 *4 *2))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-905 (-526))) (-5 *3 (-1123)) (-5 *4 (-1041 (-392 (-526)))) - (-5 *1 (-30))))) + (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-365 *4)) + (-4 *6 (-365 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2 *1) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1117 *1)) (-5 *4 (-1123)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) + (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) + (-5 *2 (-619 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-607 *1)) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-5 *3 (-1123)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) + (-12 (-4 *3 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) +(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)))) + ((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) (-12 (-5 *3 (-166 (-548))) (-5 *2 (-112)) (-5 *1 (-437)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) + (-240 *4 (-399 (-548))))) + (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) + (-5 *1 (-495 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-930 *3)) (-4 *3 (-533)))) + ((*1 *2 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-745)) (-4 *5 (-355)) (-5 *2 (-171 *6)) + (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1135)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-619 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1157) (-27) (-422 *8))) + (-4 *8 (-13 (-443) (-821) (-145) (-1007 *3) (-615 *3))) + (-5 *3 (-548)) (-5 *2 (-619 *4)) (-5 *1 (-983 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-600 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *2 (-1072 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-102 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) + (-5 *2 (-619 (-619 (-912 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *4 (-1016)) + (-4 *1 (-1096 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 (-912 *3)))) (-4 *3 (-1016)) + (-4 *1 (-1096 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-112)) + (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) + (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-619 (-168))) + (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-619 (-619 (-912 *5)))) (-5 *3 (-619 (-168))) + (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) + (-5 *1 (-731))))) +(((*1 *2 *1) + (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1123)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-811) (-533))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-811) (-533)))))) -((-1238 . 722536) (-1239 . 722109) (-1240 . 721988) (-1241 . 721873) - (-1242 . 721747) (-1243 . 721618) (-1244 . 721549) (-1245 . 721495) - (-1246 . 721360) (-1247 . 721284) (-1248 . 721128) (-1249 . 720900) - (-1250 . 719936) (-1251 . 719689) (-1252 . 719388) (-1253 . 719087) - (-1254 . 718786) (-1255 . 718449) (-1256 . 718357) (-1257 . 718265) - (-1258 . 718173) (-1259 . 718081) (-1260 . 717989) (-1261 . 717897) - (-1262 . 717802) (-1263 . 717707) (-1264 . 717615) (-1265 . 717523) - (-1266 . 717431) (-1267 . 717339) (-1268 . 717247) (-1269 . 717145) - (-1270 . 717043) (-1271 . 716941) (-1272 . 716849) (-1273 . 716782) - (-1274 . 716731) (-1275 . 716679) (-1276 . 716628) (-1277 . 716577) - (-1278 . 716507) (-1279 . 716069) (-1280 . 715867) (-1281 . 715744) - (-1282 . 715621) (-1283 . 715477) (-1284 . 715307) (-1285 . 715183) - (-1286 . 714944) (-1287 . 714871) (-1288 . 714730) (-1289 . 714679) - (-1290 . 714630) (-1291 . 714560) (-1292 . 714425) (-1293 . 714290) - (-1294 . 714062) (-1295 . 713816) (-1296 . 713636) (-1297 . 713465) - (-1298 . 713388) (-1299 . 713314) (-1300 . 713159) (-1301 . 713004) - (-1302 . 712818) (-1303 . 712635) (-1304 . 712458) (-1305 . 712401) - (-1306 . 712345) (-1307 . 712289) (-1308 . 712215) (-1309 . 712137) - (-1310 . 712081) (-1311 . 712050) (-1312 . 712022) (-1313 . 711994) - (-1314 . 711925) (-1315 . 711851) (-1316 . 711795) (-1317 . 711724) - (-1318 . 711571) (-1319 . 711497) (-1320 . 711423) (-1321 . 711371) - (-1322 . 711319) (-1323 . 711267) (-1324 . 711205) (-1325 . 711082) - (-1326 . 710760) (-1327 . 710672) (-1328 . 710571) (-1329 . 710451) - (-1330 . 710370) (-1331 . 710289) (-1332 . 710132) (-1333 . 709981) - (-1334 . 709903) (-1335 . 709845) (-1336 . 709772) (-1337 . 709707) - (-1338 . 709642) (-1339 . 709580) (-1340 . 709507) (-1341 . 709391) - (-1342 . 709357) (-1343 . 709323) (-1344 . 709271) (-1345 . 709227) - (-1346 . 709156) (-1347 . 709104) (-1348 . 709055) (-1349 . 709003) - (-1350 . 708951) (-1351 . 708835) (-1352 . 708719) (-1353 . 708627) - (-1354 . 708535) (-1355 . 708412) (-1356 . 708384) (-1357 . 708356) - (-1358 . 708328) (-1359 . 708300) (-1360 . 708190) (-1361 . 708138) - (-1362 . 708086) (-1363 . 708034) (-1364 . 707982) (-1365 . 707930) - (-1366 . 707878) (-1367 . 707850) (-1368 . 707747) (-1369 . 707695) - (-1370 . 707529) (-1371 . 707345) (-1372 . 707134) (-1373 . 707019) - (-1374 . 706786) (-1375 . 706687) (-1376 . 706593) (-1377 . 706478) - (-1378 . 706080) (-1379 . 705862) (-1380 . 705813) (-1381 . 705785) - (-1382 . 705757) (-1383 . 705729) (-1384 . 705701) (-1385 . 705610) - (-1386 . 705498) (-1387 . 705386) (-1388 . 705274) (-1389 . 705162) - (-1390 . 705050) (-1391 . 704938) (-1392 . 704765) (-1393 . 704689) - (-1394 . 704507) (-1395 . 704449) (-1396 . 704391) (-1397 . 704053) - (-1398 . 703768) (-1399 . 703684) (-1400 . 703551) (-1401 . 703493) - (-1402 . 703441) (-1403 . 703386) (-1404 . 703334) (-1405 . 703260) - (-1406 . 703186) (-1407 . 703105) (-1408 . 703024) (-1409 . 702969) - (-1410 . 702895) (-1411 . 702821) (-1412 . 702747) (-1413 . 702670) - (-1414 . 702615) (-1415 . 702556) (-1416 . 702457) (-1417 . 702358) - (-1418 . 702259) (-1419 . 702160) (-1420 . 702061) (-1421 . 701962) - (-1422 . 701863) (-1423 . 701749) (-1424 . 701635) (-1425 . 701521) - (-1426 . 701407) (-1427 . 701293) (-1428 . 701179) (-1429 . 701062) - (-1430 . 700986) (-1431 . 700910) (-1432 . 700523) (-1433 . 700177) - (-1434 . 700075) (-1435 . 699813) (-1436 . 699711) (-1437 . 699506) - (-1438 . 699393) (-1439 . 699291) (-1440 . 699134) (-1441 . 699045) - (-1442 . 698951) (-1443 . 698871) (-1444 . 698811) (-1445 . 698758) - (-1446 . 698639) (-1447 . 698557) (-1448 . 698475) (-1449 . 698393) - (-1450 . 698311) (-1451 . 698229) (-1452 . 698135) (-1453 . 698065) - (-1454 . 697995) (-1455 . 697904) (-1456 . 697810) (-1457 . 697728) - (-1458 . 697646) (-1459 . 697155) (-1460 . 696602) (-1461 . 696392) - (-1462 . 696318) (-1463 . 696064) (-1464 . 695837) (-1465 . 695627) - (-1466 . 695497) (-1467 . 695416) (-1468 . 695267) (-1469 . 694912) - (-1470 . 694620) (-1471 . 694328) (-1472 . 694036) (-1473 . 693744) - (-1474 . 693685) (-1475 . 693578) (-1476 . 693150) (-1477 . 692990) - (-1478 . 692791) (-1479 . 692655) (-1480 . 692555) (-1481 . 692455) - (-1482 . 692361) (-1483 . 692302) (-1484 . 691961) (-1485 . 691860) - (-1486 . 691741) (-1487 . 691525) (-1488 . 691344) (-1489 . 691178) - (-1490 . 690964) (-1491 . 690527) (-1492 . 690474) (-1493 . 690365) - (-1494 . 690250) (-1495 . 690181) (-1496 . 690112) (-1497 . 690043) - (-1498 . 689977) (-1499 . 689852) (-1500 . 689635) (-1501 . 689557) - (-1502 . 689507) (-1503 . 689436) (-1504 . 689293) (-1505 . 689152) - (-1506 . 689071) (-1507 . 688990) (-1508 . 688934) (-1509 . 688878) - (-1510 . 688805) (-1511 . 688665) (-1512 . 688612) (-1513 . 688560) - (-1514 . 688508) (-1515 . 688390) (-1516 . 688272) (-1517 . 688154) - (-1518 . 688021) (-1519 . 687740) (-1520 . 687604) (-1521 . 687548) - (-1522 . 687492) (-1523 . 687433) (-1524 . 687374) (-1525 . 687318) - (-1526 . 687262) (-1527 . 687065) (-1528 . 684723) (-1529 . 684596) - (-1530 . 684450) (-1531 . 684322) (-1532 . 684270) (-1533 . 684218) - (-1534 . 684166) (-1535 . 680128) (-1536 . 680033) (-1537 . 679894) - (-1538 . 679685) (-1539 . 679583) (-1540 . 679481) (-1541 . 678565) - (-1542 . 678488) (-1543 . 678359) (-1544 . 678232) (-1545 . 678155) - (-1546 . 678078) (-1547 . 677951) (-1548 . 677824) (-1549 . 677658) - (-1550 . 677531) (-1551 . 677404) (-1552 . 677187) (-1553 . 676749) - (-1554 . 676383) (-1555 . 676276) (-1556 . 676057) (-1557 . 675988) - (-1558 . 675929) (-1559 . 675848) (-1560 . 675737) (-1561 . 675671) - (-1562 . 675605) (-1563 . 675531) (-1564 . 675460) (-1565 . 675083) - (-1566 . 675031) (-1567 . 674972) (-1568 . 674868) (-1569 . 674764) - (-1570 . 674657) (-1571 . 674550) (-1572 . 674443) (-1573 . 674336) - (-1574 . 674229) (-1575 . 674122) (-1576 . 674015) (-1577 . 673908) - (-1578 . 673801) (-1579 . 673694) (-1580 . 673587) (-1581 . 673480) - (-1582 . 673373) (-1583 . 673266) (-1584 . 673159) (-1585 . 673052) - (-1586 . 672945) (-1587 . 672838) (-1588 . 672731) (-1589 . 672624) - (-1590 . 672517) (-1591 . 672410) (-1592 . 672303) (-1593 . 672196) - (-1594 . 672089) (-1595 . 671982) (-1596 . 671803) (-1597 . 671681) - (-1598 . 671431) (-1599 . 671130) (-1600 . 670925) (-1601 . 670759) - (-1602 . 670589) (-1603 . 670537) (-1604 . 670474) (-1605 . 670411) - (-1606 . 670359) (-1607 . 670170) (-1608 . 670016) (-1609 . 669936) - (-1610 . 669856) (-1611 . 669776) (-1612 . 669646) (-1613 . 669414) - (-1614 . 669386) (-1615 . 669358) (-1616 . 669277) (-1617 . 669187) - (-1618 . 669109) (-1619 . 669022) (-1620 . 668962) (-1621 . 668804) - (-1622 . 668611) (-1623 . 668126) (-1624 . 667884) (-1625 . 667622) - (-1626 . 667521) (-1627 . 667440) (-1628 . 667359) (-1629 . 667289) - (-1630 . 667219) (-1631 . 667060) (-1632 . 666756) (-1633 . 666514) - (-1634 . 666390) (-1635 . 666331) (-1636 . 666269) (-1637 . 666207) - (-1638 . 666142) (-1639 . 666080) (-1640 . 665801) (-1641 . 665591) - (-1642 . 665317) (-1643 . 664746) (-1644 . 664232) (-1645 . 664087) - (-1646 . 664020) (-1647 . 663939) (-1648 . 663858) (-1649 . 663756) - (-1650 . 663682) (-1651 . 663601) (-1652 . 663527) (-1653 . 663318) - (-1654 . 663105) (-1655 . 663015) (-1656 . 662948) (-1657 . 662812) - (-1658 . 662745) (-1659 . 662663) (-1660 . 662582) (-1661 . 662480) - (-1662 . 662280) (-1663 . 662212) (-1664 . 661970) (-1665 . 661719) - (-1666 . 661477) (-1667 . 661235) (-1668 . 661167) (-1669 . 660834) - (-1670 . 659834) (-1671 . 659615) (-1672 . 659534) (-1673 . 659460) - (-1674 . 659386) (-1675 . 659312) (-1676 . 659208) (-1677 . 659135) - (-1678 . 659067) (-1679 . 658857) (-1680 . 658805) (-1681 . 658750) - (-1682 . 658660) (-1683 . 658573) (-1684 . 656722) (-1685 . 656643) - (-1686 . 655898) (-1687 . 655768) (-1688 . 655561) (-1689 . 655399) - (-1690 . 655237) (-1691 . 655076) (-1692 . 654937) (-1693 . 654843) - (-1694 . 654745) (-1695 . 654651) (-1696 . 654536) (-1697 . 654451) - (-1698 . 654353) (-1699 . 654157) (-1700 . 654066) (-1701 . 653972) - (-1702 . 653905) (-1703 . 653852) (-1704 . 653799) (-1705 . 653746) - (-1706 . 652608) (-1707 . 652098) (-1708 . 652019) (-1709 . 651960) - (-1710 . 651932) (-1711 . 651904) (-1712 . 651845) (-1713 . 651732) - (-1714 . 651355) (-1715 . 651302) (-1716 . 651191) (-1717 . 651138) - (-1718 . 651085) (-1719 . 651029) (-1720 . 650973) (-1721 . 650808) - (-1722 . 650738) (-1723 . 650643) (-1724 . 650548) (-1725 . 650453) - (-1726 . 650296) (-1727 . 650139) (-1728 . 649986) (-1729 . 649228) - (-1730 . 648975) (-1731 . 648664) (-1732 . 648312) (-1733 . 648095) - (-1734 . 647832) (-1735 . 647457) (-1736 . 647273) (-1737 . 647139) - (-1738 . 646973) (-1739 . 646807) (-1740 . 646673) (-1741 . 646539) - (-1742 . 646405) (-1743 . 646271) (-1744 . 646140) (-1745 . 646009) - (-1746 . 645878) (-1747 . 645495) (-1748 . 645368) (-1749 . 645240) - (-1750 . 644988) (-1751 . 644864) (-1752 . 644612) (-1753 . 644488) - (-1754 . 644236) (-1755 . 644112) (-1756 . 643827) (-1757 . 643554) - (-1758 . 643281) (-1759 . 642983) (-1760 . 642881) (-1761 . 642736) - (-1762 . 642595) (-1763 . 642444) (-1764 . 642283) (-1765 . 642195) - (-1766 . 642167) (-1767 . 642085) (-1768 . 641988) (-1769 . 641520) - (-1770 . 641169) (-1771 . 640736) (-1772 . 640595) (-1773 . 640525) - (-1774 . 640455) (-1775 . 640385) (-1776 . 640294) (-1777 . 640203) - (-1778 . 640112) (-1779 . 640021) (-1780 . 639930) (-1781 . 639844) - (-1782 . 639758) (-1783 . 639672) (-1784 . 639586) (-1785 . 639500) - (-1786 . 639426) (-1787 . 639321) (-1788 . 639095) (-1789 . 639017) - (-1790 . 638942) (-1791 . 638849) (-1792 . 638745) (-1793 . 638649) - (-1794 . 638480) (-1795 . 638403) (-1796 . 638326) (-1797 . 638235) - (-1798 . 638144) (-1799 . 637944) (-1800 . 637789) (-1801 . 637634) - (-1802 . 637479) (-1803 . 637324) (-1804 . 637169) (-1805 . 637014) - (-1806 . 636947) (-1807 . 636792) (-1808 . 636637) (-1809 . 636482) - (-1810 . 636327) (-1811 . 636172) (-1812 . 636017) (-1813 . 635862) - (-1814 . 635707) (-1815 . 635633) (-1816 . 635559) (-1817 . 635504) - (-1818 . 635449) (-1819 . 635394) (-1820 . 635339) (-1821 . 635268) - (-1822 . 635063) (-1823 . 634962) (-1824 . 634771) (-1825 . 634678) - (-1826 . 634541) (-1827 . 634404) (-1828 . 634267) (-1829 . 634199) - (-1830 . 634083) (-1831 . 633967) (-1832 . 633851) (-1833 . 633798) - (-1834 . 633601) (-1835 . 633516) (-1836 . 633208) (-1837 . 633153) - (-1838 . 632501) (-1839 . 632186) (-1840 . 631902) (-1841 . 631783) - (-1842 . 631731) (-1843 . 631679) (-1844 . 631627) (-1845 . 631574) - (-1846 . 631521) (-1847 . 631462) (-1848 . 631349) (-1849 . 631236) - (-1850 . 631178) (-1851 . 631120) (-1852 . 631070) (-1853 . 630935) - (-1854 . 630885) (-1855 . 630822) (-1856 . 630762) (-1857 . 630165) - (-1858 . 630105) (-1859 . 629938) (-1860 . 629846) (-1861 . 629733) - (-1862 . 629649) (-1863 . 629534) (-1864 . 629443) (-1865 . 629352) - (-1866 . 629163) (-1867 . 629108) (-1868 . 628921) (-1869 . 628798) - (-1870 . 628725) (-1871 . 628652) (-1872 . 628532) (-1873 . 628459) - (-1874 . 628386) (-1875 . 628313) (-1876 . 628093) (-1877 . 627760) - (-1878 . 627577) (-1879 . 627434) (-1880 . 627074) (-1881 . 626906) - (-1882 . 626738) (-1883 . 626482) (-1884 . 626226) (-1885 . 626031) - (-1886 . 625836) (-1887 . 625242) (-1888 . 625166) (-1889 . 625028) - (-1890 . 624626) (-1891 . 624499) (-1892 . 624340) (-1893 . 624015) - (-1894 . 623527) (-1895 . 623039) (-1896 . 622523) (-1897 . 622455) - (-1898 . 622384) (-1899 . 622313) (-1900 . 622131) (-1901 . 622012) - (-1902 . 621893) (-1903 . 621802) (-1904 . 621711) (-1905 . 621421) - (-1906 . 621300) (-1907 . 621248) (-1908 . 621196) (-1909 . 621144) - (-1910 . 621092) (-1911 . 621040) (-1912 . 620892) (-1913 . 620712) - (-1914 . 620473) (-1915 . 620280) (-1916 . 620252) (-1917 . 620224) - (-1918 . 620196) (-1919 . 620168) (-1920 . 620140) (-1921 . 620112) - (-1922 . 620084) (-1923 . 620032) (-1924 . 619942) (-1925 . 619892) - (-1926 . 619823) (-1927 . 619754) (-1928 . 619649) (-1929 . 619278) - (-1930 . 619127) (-1931 . 618976) (-1932 . 618771) (-1933 . 618649) - (-1934 . 618574) (-1935 . 618496) (-1936 . 618421) (-1937 . 618343) - (-1938 . 618265) (-1939 . 618190) (-1940 . 618112) (-1941 . 617878) - (-1942 . 617724) (-1943 . 617427) (-1944 . 617273) (-1945 . 616949) - (-1946 . 616810) (-1947 . 616671) (-1948 . 616590) (-1949 . 616509) - (-1950 . 616244) (-1951 . 615511) (-1952 . 615374) (-1953 . 615283) - (-1954 . 615146) (-1955 . 615078) (-1956 . 615009) (-1957 . 614921) - (-1958 . 614833) (-1959 . 614662) (-1960 . 614588) (-1961 . 614444) - (-1962 . 613984) (-1963 . 613604) (-1964 . 612840) (-1965 . 612696) - (-1966 . 612552) (-1967 . 612390) (-1968 . 612152) (-1969 . 612011) - (-1970 . 611864) (-1971 . 611625) (-1972 . 611389) (-1973 . 611150) - (-1974 . 610958) (-1975 . 610835) (-1976 . 610631) (-1977 . 610408) - (-1978 . 610169) (-1979 . 610028) (-1980 . 609890) (-1981 . 609751) - (-1982 . 609498) (-1983 . 609242) (-1984 . 609085) (-1985 . 608931) - (-1986 . 608690) (-1987 . 608405) (-1988 . 608267) (-1989 . 608180) - (-1990 . 607514) (-1991 . 607338) (-1992 . 607156) (-1993 . 606980) - (-1994 . 606798) (-1995 . 606619) (-1996 . 606440) (-1997 . 606253) - (-1998 . 605871) (-1999 . 605692) (-2000 . 605513) (-2001 . 605326) - (-2002 . 604944) (-2003 . 603951) (-2004 . 603567) (-2005 . 603183) - (-2006 . 603065) (-2007 . 602908) (-2008 . 602766) (-2009 . 602648) - (-2010 . 602466) (-2011 . 602342) (-2012 . 602052) (-2013 . 601762) - (-2014 . 601478) (-2015 . 601194) (-2016 . 600916) (-2017 . 600828) - (-2018 . 600743) (-2019 . 600644) (-2020 . 600545) (-2021 . 600321) - (-2022 . 600221) (-2023 . 600118) (-2024 . 600040) (-2025 . 599715) - (-2026 . 599423) (-2027 . 599350) (-2028 . 598965) (-2029 . 598937) - (-2030 . 598738) (-2031 . 598564) (-2032 . 598323) (-2033 . 598268) - (-2034 . 598192) (-2035 . 597821) (-2036 . 597705) (-2037 . 597628) - (-2038 . 597555) (-2039 . 597474) (-2040 . 597393) (-2041 . 597312) - (-2042 . 597211) (-2043 . 597152) (-2044 . 596933) (-2045 . 596694) - (-2046 . 596570) (-2047 . 596446) (-2048 . 596219) (-2049 . 596166) - (-2050 . 596111) (-2051 . 595779) (-2052 . 595455) (-2053 . 595267) - (-2054 . 595076) (-2055 . 594912) (-2056 . 594577) (-2057 . 594410) - (-2058 . 594169) (-2059 . 593841) (-2060 . 593649) (-2061 . 593432) - (-2062 . 593259) (-2063 . 592837) (-2064 . 592610) (-2065 . 592339) - (-2066 . 592201) (-2067 . 592060) (-2068 . 591583) (-2069 . 591460) - (-2070 . 591224) (-2071 . 590970) (-2072 . 590720) (-2073 . 590425) - (-2074 . 590284) (-2075 . 589940) (-2076 . 589799) (-2077 . 589606) - (-2078 . 589413) (-2079 . 589238) (-2080 . 588964) (-2081 . 588529) - (-2082 . 588455) (-2083 . 588294) (-2084 . 588131) (-2085 . 587970) - (-2086 . 587803) (-2087 . 587750) (-2088 . 587697) (-2089 . 587568) - (-2090 . 587508) (-2091 . 587455) (-2092 . 587402) (-2093 . 587331) - (-2094 . 587278) (-2095 . 587136) (-2096 . 587041) (-2097 . 586950) - (-2098 . 586834) (-2099 . 586740) (-2100 . 586642) (-2101 . 586548) - (-2102 . 586407) (-2103 . 586142) (-2104 . 585286) (-2105 . 585130) - (-2106 . 584761) (-2107 . 584676) (-2108 . 584588) (-2109 . 584442) - (-2110 . 584293) (-2111 . 584003) (-2112 . 583925) (-2113 . 583850) - (-2114 . 583797) (-2115 . 583766) (-2116 . 583703) (-2117 . 583584) - (-2118 . 583495) (-2119 . 583375) (-2120 . 583080) (-2121 . 582886) - (-2122 . 582698) (-2123 . 582553) (-2124 . 582408) (-2125 . 582122) - (-2126 . 581677) (-2127 . 581643) (-2128 . 581606) (-2129 . 581569) - (-2130 . 581532) (-2131 . 581495) (-2132 . 581464) (-2133 . 581433) - (-2134 . 581402) (-2135 . 581368) (-2136 . 581334) (-2137 . 581279) - (-2138 . 581090) (-2139 . 580849) (-2140 . 580608) (-2141 . 580372) - (-2142 . 580320) (-2143 . 580265) (-2144 . 580195) (-2145 . 580106) - (-2146 . 580037) (-2147 . 579965) (-2148 . 579735) (-2149 . 579683) - (-2150 . 579628) (-2151 . 579597) (-2152 . 579491) (-2153 . 579259) - (-2154 . 578942) (-2155 . 578761) (-2156 . 578569) (-2157 . 578291) - (-2158 . 578218) (-2159 . 578153) (-2160 . 578125) (-2161 . 578075) - (-2162 . 576652) (-2163 . 575504) (-2164 . 574366) (-2165 . 573876) - (-2166 . 573300) (-2167 . 572560) (-2168 . 571985) (-2169 . 571343) - (-2170 . 570764) (-2171 . 570690) (-2172 . 570638) (-2173 . 570586) - (-2174 . 570512) (-2175 . 570457) (-2176 . 570405) (-2177 . 570353) - (-2178 . 570301) (-2179 . 570231) (-2180 . 569783) (-2181 . 569570) - (-2182 . 569314) (-2183 . 568973) (-2184 . 568712) (-2185 . 568403) - (-2186 . 568193) (-2187 . 567894) (-2188 . 567326) (-2189 . 567189) - (-2190 . 566987) (-2191 . 566707) (-2192 . 566622) (-2193 . 566279) - (-2194 . 566138) (-2195 . 565847) (-2196 . 565627) (-2197 . 565502) - (-2198 . 565378) (-2199 . 565232) (-2200 . 565089) (-2201 . 564974) - (-2202 . 564844) (-2203 . 564473) (-2204 . 564213) (-2205 . 563938) - (-2206 . 563698) (-2207 . 563368) (-2208 . 563023) (-2209 . 562615) - (-2210 . 562192) (-2211 . 561995) (-2212 . 561720) (-2213 . 561552) - (-2214 . 561351) (-2215 . 561129) (-2216 . 560974) (-2217 . 560782) - (-2218 . 560713) (-2219 . 560643) (-2220 . 560524) (-2221 . 560346) - (-2222 . 560291) (-2223 . 560045) (-2224 . 559955) (-2225 . 559765) - (-2226 . 559692) (-2227 . 559622) (-2228 . 559557) (-2229 . 559502) - (-2230 . 559411) (-2231 . 559106) (-2232 . 558763) (-2233 . 558689) - (-2234 . 558367) (-2235 . 558160) (-2236 . 558074) (-2237 . 557988) - (-2238 . 557902) (-2239 . 557816) (-2240 . 557730) (-2241 . 557644) - (-2242 . 557558) (-2243 . 557472) (-2244 . 557386) (-2245 . 557300) - (-2246 . 557214) (-2247 . 557128) (-2248 . 557042) (-2249 . 556956) - (-2250 . 556870) (-2251 . 556784) (-2252 . 556698) (-2253 . 556612) - (-2254 . 556526) (-2255 . 556440) (-2256 . 556354) (-2257 . 556268) - (-2258 . 556182) (-2259 . 556096) (-2260 . 556010) (-2261 . 555924) - (-2262 . 555821) (-2263 . 555732) (-2264 . 555523) (-2265 . 555464) - (-2266 . 555408) (-2267 . 555319) (-2268 . 555207) (-2269 . 555120) - (-2270 . 554973) (-2271 . 554788) (-2272 . 554624) (-2273 . 554457) - (-2274 . 554272) (-2275 . 554051) (-2276 . 553927) (-2277 . 553719) - (-2278 . 553627) (-2279 . 553535) (-2280 . 553399) (-2281 . 553304) - (-2282 . 553209) (-2283 . 551693) (-2284 . 551633) (-2285 . 551543) - (-2286 . 551448) (-2287 . 551367) (-2288 . 551060) (-2289 . 550865) - (-2290 . 550772) (-2291 . 550666) (-2292 . 550255) (-2293 . 550081) - (-2294 . 550004) (-2295 . 549815) (-2296 . 549635) (-2297 . 549211) - (-2298 . 549059) (-2299 . 548879) (-2300 . 548706) (-2301 . 548444) - (-2302 . 548192) (-2303 . 547381) (-2304 . 547212) (-2305 . 546993) - (-2306 . 546089) (-2307 . 545056) (-2308 . 544912) (-2309 . 544768) - (-2310 . 544624) (-2311 . 544480) (-2312 . 544336) (-2313 . 544192) - (-2314 . 543997) (-2315 . 543803) (-2316 . 543660) (-2317 . 543345) - (-2318 . 543230) (-2319 . 542890) (-2320 . 542730) (-2321 . 542591) - (-2322 . 542452) (-2323 . 542323) (-2324 . 542238) (-2325 . 542186) - (-2326 . 541699) (-2327 . 540423) (-2328 . 540308) (-2329 . 540179) - (-2330 . 539872) (-2331 . 539621) (-2332 . 539546) (-2333 . 539471) - (-2334 . 539396) (-2335 . 539337) (-2336 . 539266) (-2337 . 539213) - (-2338 . 539151) (-2339 . 539080) (-2340 . 538717) (-2341 . 538430) - (-2342 . 538319) (-2343 . 538226) (-2344 . 538133) (-2345 . 538046) - (-2346 . 537826) (-2347 . 537606) (-2348 . 537463) (-2349 . 537370) - (-2350 . 537227) (-2351 . 537075) (-2352 . 536921) (-2353 . 536850) - (-2354 . 536643) (-2355 . 536465) (-2356 . 536255) (-2357 . 536077) - (-2358 . 535959) (-2359 . 535644) (-2360 . 535366) (-2361 . 535245) - (-2362 . 535118) (-2363 . 535033) (-2364 . 534960) (-2365 . 534870) - (-2366 . 534799) (-2367 . 534743) (-2368 . 534687) (-2369 . 534631) - (-2370 . 534560) (-2371 . 534489) (-2372 . 534418) (-2373 . 534339) - (-2374 . 534261) (-2375 . 534176) (-2376 . 533916) (-2377 . 533827) - (-2378 . 533529) (-2379 . 533431) (-2380 . 533353) (-2381 . 533275) - (-2382 . 533132) (-2383 . 533053) (-2384 . 532981) (-2385 . 532778) - (-2386 . 532722) (-2387 . 532534) (-2388 . 532435) (-2389 . 532317) - (-2390 . 532196) (-2391 . 532053) (-2392 . 531910) (-2393 . 531770) - (-2394 . 531630) (-2395 . 531487) (-2396 . 531360) (-2397 . 531230) - (-2398 . 531106) (-2399 . 530982) (-2400 . 530876) (-2401 . 530770) - (-2402 . 530667) (-2403 . 530517) (-2404 . 530364) (-2405 . 530211) - (-2406 . 530067) (-2407 . 529913) (-2408 . 529836) (-2409 . 529756) - (-2410 . 529601) (-2411 . 529521) (-2412 . 529441) (-2413 . 529361) - (-2414 . 529258) (-2415 . 529199) (-2416 . 529024) (-2417 . 528871) - (-2418 . 528718) (-2419 . 528544) (-2420 . 528352) (-2421 . 528053) - (-2422 . 527858) (-2423 . 527743) (-2424 . 527617) (-2425 . 527540) - (-2426 . 527408) (-2427 . 527102) (-2428 . 526919) (-2429 . 526374) - (-2430 . 526154) (-2431 . 525980) (-2432 . 525810) (-2433 . 525711) - (-2434 . 525612) (-2435 . 525394) (-2436 . 525292) (-2437 . 525219) - (-2438 . 525143) (-2439 . 525064) (-2440 . 524767) (-2441 . 524668) - (-2442 . 524506) (-2443 . 524272) (-2444 . 523830) (-2445 . 523700) - (-2446 . 523560) (-2447 . 523251) (-2448 . 522949) (-2449 . 522633) - (-2450 . 522227) (-2451 . 522159) (-2452 . 522091) (-2453 . 522023) - (-2454 . 521928) (-2455 . 521820) (-2456 . 521712) (-2457 . 521610) - (-2458 . 521508) (-2459 . 521406) (-2460 . 521328) (-2461 . 521004) - (-2462 . 520523) (-2463 . 519896) (-2464 . 519832) (-2465 . 519713) - (-2466 . 519594) (-2467 . 519486) (-2468 . 519378) (-2469 . 519222) - (-2470 . 518620) (-2471 . 518382) (-2472 . 518214) (-2473 . 518092) - (-2474 . 517694) (-2475 . 517458) (-2476 . 517257) (-2477 . 517049) - (-2478 . 516856) (-2479 . 516586) (-2480 . 516413) (-2481 . 516234) - (-2482 . 516165) (-2483 . 516089) (-2484 . 515948) (-2485 . 515745) - (-2486 . 515601) (-2487 . 515351) (-2488 . 515043) (-2489 . 514687) - (-2490 . 514528) (-2491 . 514322) (-2492 . 514162) (-2493 . 514089) - (-2494 . 513971) (-2495 . 513853) (-2496 . 513694) (-2497 . 513515) - (-2498 . 513333) (-2499 . 513236) (-2500 . 513139) (-2501 . 513039) - (-2502 . 512936) (-2503 . 512811) (-2504 . 512686) (-2505 . 512558) - (-2506 . 512427) (-2507 . 512330) (-2508 . 512233) (-2509 . 512133) - (-2510 . 512033) (-2511 . 511868) (-2512 . 511703) (-2513 . 511510) - (-2514 . 511345) (-2515 . 511178) (-2516 . 511008) (-2517 . 510844) - (-2518 . 510680) (-2519 . 510581) (-2520 . 510390) (-2521 . 510290) - (-2522 . 510096) (-2523 . 509847) (-2524 . 509603) (-2525 . 509282) - (-2526 . 508895) (-2527 . 508695) (-2528 . 508432) (-2529 . 507891) - (-2530 . 507598) (-2531 . 507462) (-2532 . 507217) (-2533 . 507014) - (-2534 . 506908) (-2535 . 506808) (-2536 . 506699) (-2537 . 506590) - (-2538 . 506463) (-2539 . 506357) (-2540 . 506254) (-2541 . 506099) - (-2542 . 505966) (-2543 . 505833) (-2544 . 505724) (-2545 . 505606) - (-2546 . 505430) (-2547 . 505297) (-2548 . 505161) (-2549 . 505031) - (-2550 . 504922) (-2551 . 504801) (-2552 . 504677) (-2553 . 504577) - (-2554 . 504394) (-2555 . 504221) (-2556 . 504023) (-2557 . 503850) - (-2558 . 503735) (-2559 . 503611) (-2560 . 503484) (-2561 . 503366) - (-2562 . 503142) (-2563 . 502972) (-2564 . 502802) (-2565 . 502626) - (-2566 . 502475) (-2567 . 502199) (-2568 . 501808) (-2569 . 501678) - (-2570 . 501477) (-2571 . 501295) (-2572 . 501112) (-2573 . 500984) - (-2574 . 500881) (-2575 . 500741) (-2576 . 500610) (-2577 . 500497) - (-2578 . 500350) (-2579 . 500212) (-2580 . 500112) (-2581 . 500009) - (-2582 . 499903) (-2583 . 499794) (-2584 . 499694) (-2585 . 499588) - (-2586 . 499482) (-2587 . 499370) (-2588 . 499264) (-2589 . 499152) - (-2590 . 499022) (-2591 . 498874) (-2592 . 498338) (-2593 . 498196) - (-2594 . 498047) (-2595 . 497925) (-2596 . 497822) (-2597 . 497719) - (-2598 . 497613) (-2599 . 497476) (-2600 . 497370) (-2601 . 497240) - (-2602 . 497085) (-2603 . 496813) (-2604 . 496667) (-2605 . 496465) - (-2606 . 496365) (-2607 . 496212) (-2608 . 496093) (-2609 . 495965) - (-2610 . 495871) (-2611 . 495784) (-2612 . 495697) (-2613 . 495610) - (-2614 . 495523) (-2615 . 495436) (-2616 . 495343) (-2617 . 495256) - (-2618 . 495169) (-2619 . 495082) (-2620 . 494995) (-2621 . 494908) - (-2622 . 494821) (-2623 . 494734) (-2624 . 494647) (-2625 . 494560) - (-2626 . 494473) (-2627 . 494336) (-2628 . 494199) (-2629 . 494080) - (-2630 . 493961) (-2631 . 493821) (-2632 . 493734) (-2633 . 493647) - (-2634 . 493560) (-2635 . 493473) (-2636 . 493336) (-2637 . 493199) - (-2638 . 493112) (-2639 . 493025) (-2640 . 492938) (-2641 . 492851) - (-2642 . 492764) (-2643 . 492677) (-2644 . 492587) (-2645 . 492494) - (-2646 . 492401) (-2647 . 492305) (-2648 . 492255) (-2649 . 492205) - (-2650 . 492152) (-2651 . 491898) (-2652 . 491849) (-2653 . 491799) - (-2654 . 491765) (-2655 . 491700) (-2656 . 491663) (-2657 . 491526) - (-2658 . 491288) (-2659 . 491039) (-2660 . 490881) (-2661 . 490342) - (-2662 . 490143) (-2663 . 489928) (-2664 . 489766) (-2665 . 489367) - (-2666 . 489200) (-2667 . 488125) (-2668 . 488002) (-2669 . 487785) - (-2670 . 487654) (-2671 . 487523) (-2672 . 487365) (-2673 . 487261) - (-2674 . 487202) (-2675 . 487143) (-2676 . 487037) (-2677 . 486931) - (-2678 . 486013) (-2679 . 483884) (-2680 . 483068) (-2681 . 481263) - (-2682 . 481195) (-2683 . 481127) (-2684 . 481059) (-2685 . 480991) - (-2686 . 480923) (-2687 . 480845) (-2688 . 480445) (-2689 . 480089) - (-2690 . 479907) (-2691 . 479378) (-2692 . 479202) (-2693 . 478980) - (-2694 . 478758) (-2695 . 478536) (-2696 . 478317) (-2697 . 478098) - (-2698 . 477879) (-2699 . 477660) (-2700 . 477441) (-2701 . 477222) - (-2702 . 477121) (-2703 . 476388) (-2704 . 476333) (-2705 . 476278) - (-2706 . 476223) (-2707 . 476168) (-2708 . 476018) (-2709 . 475726) - (-2710 . 475468) (-2711 . 475440) (-2712 . 475390) (-2713 . 474798) - (-2714 . 474264) (-2715 . 473815) (-2716 . 473644) (-2717 . 473454) - (-2718 . 473167) (-2719 . 472781) (-2720 . 471909) (-2721 . 471569) - (-2722 . 471401) (-2723 . 471179) (-2724 . 470929) (-2725 . 470581) - (-2726 . 469571) (-2727 . 469260) (-2728 . 469048) (-2729 . 468484) - (-2730 . 467971) (-2731 . 466215) (-2732 . 465743) (-2733 . 465144) - (-2734 . 464894) (-2735 . 464760) (-2736 . 464308) (-2737 . 463819) - (-2738 . 463459) (-2739 . 463176) (-2740 . 463061) (-2741 . 462946) - (-2742 . 462731) (-2743 . 462678) (-2744 . 462625) (-2745 . 462573) - (-2746 . 462521) (-2747 . 462429) (-2748 . 462358) (-2749 . 462284) - (-2750 . 462213) (-2751 . 462160) (-2752 . 462089) (-2753 . 462036) - (-2754 . 461983) (-2755 . 461930) (-2756 . 461877) (-2757 . 461824) - (-2758 . 461771) (-2759 . 461718) (-2760 . 461665) (-2761 . 461612) - (-2762 . 461559) (-2763 . 461506) (-2764 . 461453) (-2765 . 461400) - (-2766 . 461347) (-2767 . 461276) (-2768 . 461205) (-2769 . 461133) - (-2770 . 461061) (-2771 . 460986) (-2772 . 460933) (-2773 . 460880) - (-2774 . 460827) (-2775 . 460774) (-2776 . 460721) (-2777 . 460668) - (-2778 . 460615) (-2779 . 460562) (-2780 . 460509) (-2781 . 460456) - (-2782 . 460403) (-2783 . 460350) (-2784 . 460297) (-2785 . 460244) - (-2786 . 460192) (-2787 . 460140) (-2788 . 460087) (-2789 . 460034) - (-2790 . 459943) (-2791 . 459890) (-2792 . 459862) (-2793 . 459834) - (-2794 . 459806) (-2795 . 459778) (-2796 . 459700) (-2797 . 459640) - (-2798 . 459588) (-2799 . 459536) (-2800 . 459484) (-2801 . 459432) - (-2802 . 459380) (-2803 . 458576) (-2804 . 458499) (-2805 . 458422) - (-2806 . 458356) (-2807 . 458289) (-2808 . 458222) (-2809 . 458165) - (-2810 . 458089) (-2811 . 458021) (-2812 . 457950) (-2813 . 457879) - (-2814 . 457813) (-2815 . 457726) (-2816 . 457654) (-2817 . 457547) - (-2818 . 457361) (-2819 . 457192) (-2820 . 457012) (-2821 . 456421) - (-2822 . 456258) (-2823 . 455680) (-2824 . 455605) (-2825 . 455241) - (-2826 . 454568) (-2827 . 454392) (-2828 . 454320) (-2829 . 454180) - (-2830 . 453990) (-2831 . 453883) (-2832 . 453776) (-2833 . 453660) - (-2834 . 453544) (-2835 . 453428) (-2836 . 453277) (-2837 . 453133) - (-2838 . 453059) (-2839 . 452973) (-2840 . 452899) (-2841 . 452825) - (-2842 . 452751) (-2843 . 452607) (-2844 . 452456) (-2845 . 452281) - (-2846 . 452130) (-2847 . 451979) (-2848 . 451852) (-2849 . 451463) - (-2850 . 451177) (-2851 . 450891) (-2852 . 450480) (-2853 . 450194) - (-2854 . 450121) (-2855 . 449974) (-2856 . 449868) (-2857 . 449794) - (-2858 . 449723) (-2859 . 449652) (-2860 . 449555) (-2861 . 449458) - (-2862 . 449298) (-2863 . 449211) (-2864 . 449124) (-2865 . 449037) - (-2866 . 448978) (-2867 . 448919) (-2868 . 448786) (-2869 . 448727) - (-2870 . 448557) (-2871 . 448469) (-2872 . 448372) (-2873 . 448338) - (-2874 . 448307) (-2875 . 448223) (-2876 . 448167) (-2877 . 448105) - (-2878 . 448071) (-2879 . 448037) (-2880 . 448003) (-2881 . 447969) - (-2882 . 447935) (-2883 . 445182) (-2884 . 445148) (-2885 . 445114) - (-2886 . 445080) (-2887 . 444968) (-2888 . 444934) (-2889 . 444882) - (-2890 . 444848) (-2891 . 444751) (-2892 . 444689) (-2893 . 444598) - (-2894 . 444507) (-2895 . 444452) (-2896 . 444400) (-2897 . 444348) - (-2898 . 444296) (-2899 . 444244) (-2900 . 443821) (-2901 . 443655) - (-2902 . 443586) (-2903 . 443533) (-2904 . 443377) (-2905 . 442856) - (-2906 . 442715) (-2907 . 442681) (-2908 . 442626) (-2909 . 441915) - (-2910 . 441600) (-2911 . 441095) (-2912 . 441017) (-2913 . 440965) - (-2914 . 440913) (-2915 . 440729) (-2916 . 440677) (-2917 . 440625) - (-2918 . 440549) (-2919 . 440487) (-2920 . 440269) (-2921 . 440014) - (-2922 . 439947) (-2923 . 439853) (-2924 . 439759) (-2925 . 439576) - (-2926 . 439494) (-2927 . 439372) (-2928 . 439250) (-2929 . 439104) - (-2930 . 438449) (-2931 . 437745) (-2932 . 437641) (-2933 . 437540) - (-2934 . 437439) (-2935 . 437328) (-2936 . 437160) (-2937 . 436954) - (-2938 . 436861) (-2939 . 436784) (-2940 . 436728) (-2941 . 436657) - (-2942 . 436537) (-2943 . 436436) (-2944 . 436338) (-2945 . 436258) - (-2946 . 436178) (-2947 . 436101) (-2948 . 436030) (-2949 . 435959) - (-2950 . 435888) (-2951 . 435817) (-2952 . 435746) (-2953 . 435675) - (-2954 . 435582) (-2955 . 435387) (-2956 . 435143) (-2957 . 434973) - (-2958 . 434852) (-2959 . 434480) (-2960 . 434311) (-2961 . 434195) - (-2962 . 433691) (-2963 . 433309) (-2964 . 433063) (-2965 . 432635) - (-2966 . 432543) (-2967 . 432446) (-2968 . 429160) (-2969 . 428340) - (-2970 . 428227) (-2971 . 428153) (-2972 . 428061) (-2973 . 427868) - (-2974 . 427675) (-2975 . 427604) (-2976 . 427533) (-2977 . 427452) - (-2978 . 427371) (-2979 . 427246) (-2980 . 427112) (-2981 . 427031) - (-2982 . 426957) (-2983 . 426792) (-2984 . 426633) (-2985 . 426402) - (-2986 . 426254) (-2987 . 426150) (-2988 . 426046) (-2989 . 425961) - (-2990 . 425593) (-2991 . 425512) (-2992 . 425425) (-2993 . 425344) - (-2994 . 425101) (-2995 . 424881) (-2996 . 424694) (-2997 . 424372) - (-2998 . 424079) (-2999 . 423786) (-3000 . 423476) (-3001 . 423159) - (-3002 . 423030) (-3003 . 422842) (-3004 . 422369) (-3005 . 422287) - (-3006 . 422072) (-3007 . 421857) (-3008 . 421598) (-3009 . 421168) - (-3010 . 420648) (-3011 . 420518) (-3012 . 420244) (-3013 . 420065) - (-3014 . 419950) (-3015 . 419846) (-3016 . 419791) (-3017 . 419714) - (-3018 . 419644) (-3019 . 419571) (-3020 . 419516) (-3021 . 419443) - (-3022 . 419388) (-3023 . 419033) (-3024 . 418625) (-3025 . 418472) - (-3026 . 418319) (-3027 . 418238) (-3028 . 418085) (-3029 . 417932) - (-3030 . 417797) (-3031 . 417662) (-3032 . 417527) (-3033 . 417392) - (-3034 . 417257) (-3035 . 417122) (-3036 . 417066) (-3037 . 416913) - (-3038 . 416802) (-3039 . 416691) (-3040 . 416623) (-3041 . 416513) - (-3042 . 416410) (-3043 . 412259) (-3044 . 411811) (-3045 . 411384) - (-3046 . 410767) (-3047 . 410166) (-3048 . 409948) (-3049 . 409770) - (-3050 . 409510) (-3051 . 409099) (-3052 . 408805) (-3053 . 408362) - (-3054 . 408184) (-3055 . 407791) (-3056 . 407398) (-3057 . 407213) - (-3058 . 407006) (-3059 . 406785) (-3060 . 406479) (-3061 . 406280) - (-3062 . 405651) (-3063 . 405494) (-3064 . 405103) (-3065 . 405051) - (-3066 . 405002) (-3067 . 404950) (-3068 . 404901) (-3069 . 404849) - (-3070 . 404703) (-3071 . 404651) (-3072 . 404505) (-3073 . 404453) - (-3074 . 404307) (-3075 . 404255) (-3076 . 403880) (-3077 . 403828) - (-3078 . 403779) (-3079 . 403727) (-3080 . 403678) (-3081 . 403626) - (-3082 . 403577) (-3083 . 403525) (-3084 . 403476) (-3085 . 403424) - (-3086 . 403375) (-3087 . 403309) (-3088 . 403191) (-3089 . 402029) - (-3090 . 401612) (-3091 . 401504) (-3092 . 401259) (-3093 . 401110) - (-3094 . 400961) (-3095 . 400798) (-3096 . 398551) (-3097 . 398275) - (-3098 . 398121) (-3099 . 397975) (-3100 . 397829) (-3101 . 397610) - (-3102 . 397478) (-3103 . 397403) (-3104 . 397328) (-3105 . 397193) - (-3106 . 397063) (-3107 . 396933) (-3108 . 396806) (-3109 . 396679) - (-3110 . 396552) (-3111 . 396425) (-3112 . 396322) (-3113 . 396222) - (-3114 . 396128) (-3115 . 395998) (-3116 . 395847) (-3117 . 395468) - (-3118 . 395353) (-3119 . 395110) (-3120 . 394647) (-3121 . 394334) - (-3122 . 393766) (-3123 . 393196) (-3124 . 392184) (-3125 . 391641) - (-3126 . 391328) (-3127 . 390990) (-3128 . 390659) (-3129 . 390339) - (-3130 . 390286) (-3131 . 390159) (-3132 . 389631) (-3133 . 388474) - (-3134 . 388419) (-3135 . 388364) (-3136 . 388288) (-3137 . 388169) - (-3138 . 388094) (-3139 . 388019) (-3140 . 387941) (-3141 . 387790) - (-3142 . 387698) (-3143 . 387628) (-3144 . 387536) (-3145 . 387466) - (-3146 . 387374) (-3147 . 387304) (-3148 . 387212) (-3149 . 387142) - (-3150 . 387087) (-3151 . 387017) (-3152 . 386897) (-3153 . 386842) - (-3154 . 386772) (-3155 . 386675) (-3156 . 386578) (-3157 . 386544) - (-3158 . 386510) (-3159 . 386292) (-3160 . 386142) (-3161 . 386012) - (-3162 . 385882) (-3163 . 385782) (-3164 . 385605) (-3165 . 385445) - (-3166 . 385345) (-3167 . 385168) (-3168 . 385008) (-3169 . 384849) - (-3170 . 384710) (-3171 . 384560) (-3172 . 384430) (-3173 . 384300) - (-3174 . 384153) (-3175 . 384026) (-3176 . 383923) (-3177 . 383816) - (-3178 . 383719) (-3179 . 383554) (-3180 . 383406) (-3181 . 382977) - (-3182 . 382877) (-3183 . 382774) (-3184 . 382686) (-3185 . 382606) - (-3186 . 382456) (-3187 . 382326) (-3188 . 382274) (-3189 . 382184) - (-3190 . 382072) (-3191 . 381759) (-3192 . 381578) (-3193 . 379967) - (-3194 . 379334) (-3195 . 379274) (-3196 . 379156) (-3197 . 379038) - (-3198 . 378894) (-3199 . 378739) (-3200 . 378578) (-3201 . 378417) - (-3202 . 378209) (-3203 . 378020) (-3204 . 377865) (-3205 . 377707) - (-3206 . 377549) (-3207 . 377394) (-3208 . 377254) (-3209 . 376828) - (-3210 . 376700) (-3211 . 376572) (-3212 . 376444) (-3213 . 376301) - (-3214 . 376158) (-3215 . 376016) (-3216 . 375871) (-3217 . 375118) - (-3218 . 374958) (-3219 . 374770) (-3220 . 374613) (-3221 . 374373) - (-3222 . 374126) (-3223 . 373879) (-3224 . 373668) (-3225 . 373529) - (-3226 . 373318) (-3227 . 373028) (-3228 . 372817) (-3229 . 372678) - (-3230 . 372467) (-3231 . 372161) (-3232 . 372016) (-3233 . 371874) - (-3234 . 371650) (-3235 . 371508) (-3236 . 371283) (-3237 . 371084) - (-3238 . 370927) (-3239 . 370597) (-3240 . 370437) (-3241 . 370277) - (-3242 . 370117) (-3243 . 369945) (-3244 . 369773) (-3245 . 369598) - (-3246 . 369246) (-3247 . 369052) (-3248 . 368890) (-3249 . 368816) - (-3250 . 368742) (-3251 . 368668) (-3252 . 368594) (-3253 . 368520) - (-3254 . 368446) (-3255 . 368322) (-3256 . 368148) (-3257 . 368024) - (-3258 . 367938) (-3259 . 367872) (-3260 . 367806) (-3261 . 367740) - (-3262 . 367674) (-3263 . 367608) (-3264 . 367542) (-3265 . 367476) - (-3266 . 367410) (-3267 . 367344) (-3268 . 367278) (-3269 . 367212) - (-3270 . 367146) (-3271 . 367080) (-3272 . 367014) (-3273 . 366948) - (-3274 . 366882) (-3275 . 366816) (-3276 . 366750) (-3277 . 366684) - (-3278 . 366618) (-3279 . 366552) (-3280 . 366486) (-3281 . 366420) - (-3282 . 366354) (-3283 . 366288) (-3284 . 366222) (-3285 . 365573) - (-3286 . 364924) (-3287 . 364796) (-3288 . 364673) (-3289 . 364550) - (-3290 . 364409) (-3291 . 364254) (-3292 . 364110) (-3293 . 363935) - (-3294 . 363297) (-3295 . 363174) (-3296 . 363050) (-3297 . 362373) - (-3298 . 361676) (-3299 . 361575) (-3300 . 361519) (-3301 . 361463) - (-3302 . 361407) (-3303 . 361351) (-3304 . 361292) (-3305 . 361228) - (-3306 . 361120) (-3307 . 361012) (-3308 . 360904) (-3309 . 360625) - (-3310 . 360551) (-3311 . 360325) (-3312 . 360244) (-3313 . 360166) - (-3314 . 360088) (-3315 . 360010) (-3316 . 359931) (-3317 . 359853) - (-3318 . 359760) (-3319 . 359661) (-3320 . 359593) (-3321 . 359544) - (-3322 . 358853) (-3323 . 358205) (-3324 . 357414) (-3325 . 357333) - (-3326 . 357229) (-3327 . 357137) (-3328 . 357045) (-3329 . 356971) - (-3330 . 356897) (-3331 . 356823) (-3332 . 356768) (-3333 . 356713) - (-3334 . 356647) (-3335 . 356581) (-3336 . 356519) (-3337 . 356132) - (-3338 . 355632) (-3339 . 355167) (-3340 . 354914) (-3341 . 354725) - (-3342 . 354383) (-3343 . 354087) (-3344 . 353919) (-3345 . 353788) - (-3346 . 353648) (-3347 . 353493) (-3348 . 353324) (-3349 . 351938) - (-3350 . 351804) (-3351 . 351662) (-3352 . 351433) (-3353 . 351164) - (-3354 . 351105) (-3355 . 351049) (-3356 . 350993) (-3357 . 350781) - (-3358 . 350642) (-3359 . 350535) (-3360 . 350418) (-3361 . 350352) - (-3362 . 350279) (-3363 . 350165) (-3364 . 349910) (-3365 . 349809) - (-3366 . 349613) (-3367 . 349301) (-3368 . 348831) (-3369 . 348725) - (-3370 . 348618) (-3371 . 348468) (-3372 . 348327) (-3373 . 347911) - (-3374 . 347663) (-3375 . 346999) (-3376 . 346845) (-3377 . 346731) - (-3378 . 346621) (-3379 . 345793) (-3380 . 345741) (-3381 . 345689) - (-3382 . 345483) (-3383 . 345289) (-3384 . 343935) (-3385 . 343485) - (-3386 . 342085) (-3387 . 341224) (-3388 . 341175) (-3389 . 341126) - (-3390 . 341077) (-3391 . 341010) (-3392 . 340935) (-3393 . 340732) - (-3394 . 340660) (-3395 . 340585) (-3396 . 340513) (-3397 . 340395) - (-3398 . 340150) (-3399 . 339832) (-3400 . 339747) (-3401 . 339662) - (-3402 . 339600) (-3403 . 339210) (-3404 . 338335) (-3405 . 337759) - (-3406 . 336521) (-3407 . 335711) (-3408 . 335459) (-3409 . 335207) - (-3410 . 334873) (-3411 . 334627) (-3412 . 334381) (-3413 . 334135) - (-3414 . 333889) (-3415 . 333643) (-3416 . 333397) (-3417 . 333150) - (-3418 . 332903) (-3419 . 332656) (-3420 . 332409) (-3421 . 331979) - (-3422 . 331861) (-3423 . 331017) (-3424 . 330985) (-3425 . 330638) - (-3426 . 330411) (-3427 . 330311) (-3428 . 330211) (-3429 . 328443) - (-3430 . 328329) (-3431 . 327278) (-3432 . 327185) (-3433 . 326194) - (-3434 . 325859) (-3435 . 325524) (-3436 . 325419) (-3437 . 325332) - (-3438 . 325303) (-3439 . 325246) (-3440 . 325166) (-3441 . 325094) - (-3442 . 325019) (-3443 . 324944) (-3444 . 324912) (-3445 . 324880) - (-3446 . 324848) (-3447 . 324816) (-3448 . 324784) (-3449 . 324752) - (-3450 . 324720) (-3451 . 324688) (-3452 . 324659) (-3453 . 324546) - (-3454 . 324433) (-3455 . 324320) (-3456 . 324207) (-3457 . 323118) - (-3458 . 322996) (-3459 . 322859) (-3460 . 322725) (-3461 . 322591) - (-3462 . 322294) (-3463 . 321997) (-3464 . 321649) (-3465 . 321419) - (-3466 . 321189) (-3467 . 321076) (-3468 . 320963) (-3469 . 315689) - (-3470 . 311323) (-3471 . 311011) (-3472 . 310856) (-3473 . 310328) - (-3474 . 309995) (-3475 . 309798) (-3476 . 309601) (-3477 . 309404) - (-3478 . 309207) (-3479 . 309091) (-3480 . 308965) (-3481 . 308849) - (-3482 . 308733) (-3483 . 308638) (-3484 . 308543) (-3485 . 308430) - (-3486 . 308224) (-3487 . 307067) (-3488 . 306972) (-3489 . 306856) - (-3490 . 306761) (-3491 . 306612) (-3492 . 306499) (-3493 . 306281) - (-3494 . 306177) (-3495 . 306116) (-3496 . 305817) (-3497 . 305047) - (-3498 . 304470) (-3499 . 303977) (-3500 . 303729) (-3501 . 303481) - (-3502 . 303182) (-3503 . 302568) (-3504 . 302120) (-3505 . 301963) - (-3506 . 301817) (-3507 . 301491) (-3508 . 301333) (-3509 . 301190) - (-3510 . 301047) (-3511 . 300904) (-3512 . 300623) (-3513 . 300401) - (-3514 . 299874) (-3515 . 299659) (-3516 . 299444) (-3517 . 299056) - (-3518 . 298876) (-3519 . 298664) (-3520 . 298463) (-3521 . 298281) - (-3522 . 297127) (-3523 . 296738) (-3524 . 296528) (-3525 . 296315) - (-3526 . 295472) (-3527 . 295443) (-3528 . 295374) (-3529 . 295303) - (-3530 . 295136) (-3531 . 295107) (-3532 . 295078) (-3533 . 295022) - (-3534 . 294861) (-3535 . 294801) (-3536 . 294105) (-3537 . 292927) - (-3538 . 292866) (-3539 . 292642) (-3540 . 292570) (-3541 . 292513) - (-3542 . 292456) (-3543 . 292399) (-3544 . 292342) (-3545 . 292267) - (-3546 . 291908) (-3547 . 291833) (-3548 . 291773) (-3549 . 291655) - (-3550 . 290704) (-3551 . 290577) (-3552 . 290364) (-3553 . 290289) - (-3554 . 290235) (-3555 . 290038) (-3556 . 289929) (-3557 . 289616) - (-3558 . 289508) (-3559 . 289405) (-3560 . 289244) (-3561 . 289143) - (-3562 . 289045) (-3563 . 288907) (-3564 . 288769) (-3565 . 288631) - (-3566 . 288369) (-3567 . 288160) (-3568 . 288022) (-3569 . 287733) - (-3570 . 287580) (-3571 . 287302) (-3572 . 287080) (-3573 . 286927) - (-3574 . 286774) (-3575 . 286621) (-3576 . 286468) (-3577 . 286315) - (-3578 . 286159) (-3579 . 286040) (-3580 . 285649) (-3581 . 285314) - (-3582 . 284969) (-3583 . 284618) (-3584 . 284273) (-3585 . 283928) - (-3586 . 283541) (-3587 . 283154) (-3588 . 282767) (-3589 . 282396) - (-3590 . 281666) (-3591 . 281315) (-3592 . 280861) (-3593 . 280432) - (-3594 . 279815) (-3595 . 279214) (-3596 . 278822) (-3597 . 278486) - (-3598 . 278094) (-3599 . 277758) (-3600 . 277536) (-3601 . 277009) - (-3602 . 276794) (-3603 . 276579) (-3604 . 276363) (-3605 . 276183) - (-3606 . 275967) (-3607 . 275787) (-3608 . 275399) (-3609 . 275219) - (-3610 . 275007) (-3611 . 274917) (-3612 . 274827) (-3613 . 274736) - (-3614 . 274649) (-3615 . 274559) (-3616 . 274478) (-3617 . 274289) - (-3618 . 274233) (-3619 . 274152) (-3620 . 274071) (-3621 . 273990) - (-3622 . 273855) (-3623 . 273720) (-3624 . 273596) (-3625 . 273475) - (-3626 . 273357) (-3627 . 273221) (-3628 . 273088) (-3629 . 272969) - (-3630 . 272762) (-3631 . 272682) (-3632 . 272590) (-3633 . 272498) - (-3634 . 272412) (-3635 . 272314) (-3636 . 272197) (-3637 . 271918) - (-3638 . 271639) (-3639 . 271579) (-3640 . 271513) (-3641 . 271447) - (-3642 . 271306) (-3643 . 271249) (-3644 . 271192) (-3645 . 271132) - (-3646 . 270735) (-3647 . 270211) (-3648 . 269933) (-3649 . 269512) - (-3650 . 269399) (-3651 . 268957) (-3652 . 268725) (-3653 . 268522) - (-3654 . 268340) (-3655 . 268210) (-3656 . 268004) (-3657 . 267797) - (-3658 . 267606) (-3659 . 267041) (-3660 . 266785) (-3661 . 266494) - (-3662 . 266200) (-3663 . 265903) (-3664 . 265603) (-3665 . 265473) - (-3666 . 265340) (-3667 . 265204) (-3668 . 265065) (-3669 . 263786) - (-3670 . 263461) (-3671 . 263080) (-3672 . 262967) (-3673 . 262713) - (-3674 . 262417) (-3675 . 262121) (-3676 . 261860) (-3677 . 261685) - (-3678 . 261606) (-3679 . 261518) (-3680 . 261417) (-3681 . 261322) - (-3682 . 261240) (-3683 . 261168) (-3684 . 260367) (-3685 . 260295) - (-3686 . 259963) (-3687 . 259891) (-3688 . 259559) (-3689 . 259487) - (-3690 . 259038) (-3691 . 258966) (-3692 . 258861) (-3693 . 258786) - (-3694 . 258711) (-3695 . 258639) (-3696 . 258296) (-3697 . 258166) - (-3698 . 258089) (-3699 . 257540) (-3700 . 257397) (-3701 . 257254) - (-3702 . 256756) (-3703 . 256411) (-3704 . 256183) (-3705 . 255913) - (-3706 . 255533) (-3707 . 255293) (-3708 . 255053) (-3709 . 254813) - (-3710 . 254573) (-3711 . 254345) (-3712 . 254117) (-3713 . 253965) - (-3714 . 253781) (-3715 . 253676) (-3716 . 253553) (-3717 . 253445) - (-3718 . 253337) (-3719 . 253010) (-3720 . 252744) (-3721 . 252433) - (-3722 . 252128) (-3723 . 251818) (-3724 . 251083) (-3725 . 250488) - (-3726 . 250311) (-3727 . 250166) (-3728 . 250011) (-3729 . 249888) - (-3730 . 249783) (-3731 . 249668) (-3732 . 249569) (-3733 . 249085) - (-3734 . 248975) (-3735 . 248865) (-3736 . 248755) (-3737 . 247661) - (-3738 . 247146) (-3739 . 247079) (-3740 . 247005) (-3741 . 246132) - (-3742 . 246058) (-3743 . 246002) (-3744 . 245946) (-3745 . 245914) - (-3746 . 245828) (-3747 . 245796) (-3748 . 245710) (-3749 . 245286) - (-3750 . 244862) (-3751 . 244305) (-3752 . 243193) (-3753 . 241469) - (-3754 . 239907) (-3755 . 239111) (-3756 . 238607) (-3757 . 238117) - (-3758 . 237711) (-3759 . 237053) (-3760 . 236978) (-3761 . 236906) - (-3762 . 236834) (-3763 . 236792) (-3764 . 236670) (-3765 . 236230) - (-3766 . 235790) (-3767 . 235350) (-3768 . 234828) (-3769 . 234663) - (-3770 . 234498) (-3771 . 234187) (-3772 . 234100) (-3773 . 234010) - (-3774 . 233678) (-3775 . 233561) (-3776 . 233480) (-3777 . 233321) - (-3778 . 233207) (-3779 . 233132) (-3780 . 232280) (-3781 . 231094) - (-3782 . 230994) (-3783 . 230894) (-3784 . 230554) (-3785 . 230475) - (-3786 . 230399) (-3787 . 230292) (-3788 . 230134) (-3789 . 230026) - (-3790 . 229890) (-3791 . 229754) (-3792 . 229631) (-3793 . 229535) - (-3794 . 229386) (-3795 . 229290) (-3796 . 229135) (-3797 . 228980) - (-3798 . 228300) (-3799 . 227620) (-3800 . 226877) (-3801 . 226309) - (-3802 . 225741) (-3803 . 225173) (-3804 . 224492) (-3805 . 223811) - (-3806 . 223130) (-3807 . 222561) (-3808 . 221992) (-3809 . 221423) - (-3810 . 220855) (-3811 . 220287) (-3812 . 219719) (-3813 . 219151) - (-3814 . 218583) (-3815 . 218015) (-3816 . 217911) (-3817 . 217322) - (-3818 . 217216) (-3819 . 217140) (-3820 . 217047) (-3821 . 216954) - (-3822 . 216861) (-3823 . 216768) (-3824 . 216669) (-3825 . 216563) - (-3826 . 216439) (-3827 . 216315) (-3828 . 215948) (-3829 . 215825) - (-3830 . 215723) (-3831 . 215359) (-3832 . 214825) (-3833 . 214749) - (-3834 . 214673) (-3835 . 214580) (-3836 . 214398) (-3837 . 214302) - (-3838 . 214226) (-3839 . 214133) (-3840 . 214040) (-3841 . 213878) - (-3842 . 213521) (-3843 . 213164) (-3844 . 210436) (-3845 . 208978) - (-3846 . 208416) (-3847 . 208217) (-12 . 208045) (-3849 . 207873) - (-3850 . 207701) (-3851 . 207529) (-3852 . 207357) (-3853 . 207185) - (-3854 . 207013) (-3855 . 206820) (-3856 . 206705) (-3857 . 206435) - (-3858 . 206372) (-3859 . 206309) (-3860 . 206246) (-3861 . 205968) - (-3862 . 205701) (-3863 . 205648) (-3864 . 205037) (-3865 . 204986) - (-3866 . 204793) (-3867 . 204720) (-3868 . 204640) (-3869 . 204527) - (-3870 . 204337) (-3871 . 203973) (-3872 . 203701) (-3873 . 203650) - (-3874 . 203599) (-3875 . 203529) (-3876 . 203410) (-3877 . 203381) - (-3878 . 203279) (-3879 . 203157) (-3880 . 203103) (-3881 . 202926) - (-3882 . 202865) (-3883 . 202684) (-3884 . 202623) (-3885 . 202551) - (-3886 . 202076) (-3887 . 201701) (-3888 . 201160) (-3889 . 201107) - (-3890 . 200979) (-3891 . 200827) (-3892 . 200774) (-3893 . 200632) - (-3894 . 200364) (-3895 . 191037) (-3896 . 190886) (-3897 . 190835) - (-3898 . 190784) (-3899 . 190733) (-3900 . 190663) (-3901 . 190465) - (-3902 . 190322) (-3903 . 190208) (-3904 . 190087) (-3905 . 189969) - (-3906 . 189857) (-3907 . 189739) (-3908 . 189634) (-3909 . 189553) - (-3910 . 189449) (-3911 . 188512) (-3912 . 188292) (-3913 . 188055) - (-3914 . 187973) (-3915 . 187626) (-3916 . 187552) (-3917 . 187457) - (-3918 . 187383) (-3919 . 187181) (-3920 . 187090) (-3921 . 186974) - (-3922 . 186861) (-3923 . 186770) (-3924 . 186679) (-3925 . 186589) - (-3926 . 186499) (-3927 . 186409) (-3928 . 186321) (-3929 . 183959) - (-3930 . 183891) (-3931 . 183837) (-3932 . 183712) (-3933 . 183648) - (-3934 . 183523) (-3935 . 183404) (-3936 . 182710) (-3937 . 182649) - (-3938 . 182530) (-3939 . 181778) (-3940 . 181725) (-3941 . 181536) - (-3942 . 181472) (-3943 . 181418) (-3944 . 181309) (-3945 . 179989) - (-3946 . 179907) (-3947 . 179817) (-3948 . 179759) (-3949 . 179494) - (-3950 . 179409) (-3951 . 179334) (-3952 . 179249) (-3953 . 179192) - (-3954 . 178976) (-3955 . 178835) (-3956 . 178100) (-3957 . 177530) - (-3958 . 176960) (-3959 . 176390) (-3960 . 175655) (-3961 . 174973) - (-3962 . 174385) (-3963 . 173797) (-3964 . 173521) (-3965 . 173068) - (-3966 . 172721) (-3967 . 172365) (-3968 . 172043) (-3969 . 171910) - (-3970 . 171777) (-3971 . 171445) (-3972 . 171336) (-3973 . 171227) - (-3974 . 171118) (-3975 . 171009) (-3976 . 170900) (-3977 . 170791) - (-3978 . 170682) (-3979 . 170573) (-3980 . 170464) (-3981 . 170355) - (-3982 . 170246) (-3983 . 170137) (-3984 . 170028) (-3985 . 169919) - (-3986 . 169810) (-3987 . 169701) (-3988 . 169592) (-3989 . 169483) - (-3990 . 169374) (-3991 . 169265) (-3992 . 169156) (-3993 . 169047) - (-3994 . 168938) (-3995 . 168829) (-3996 . 168720) (-3997 . 168522) - (-3998 . 168207) (-3999 . 166636) (-4000 . 166481) (-4001 . 166343) - (-4002 . 166200) (-4003 . 165997) (-4004 . 164046) (-4005 . 163918) - (-4006 . 163793) (-4007 . 163665) (-4008 . 163441) (-4009 . 163217) - (-4010 . 163089) (-4011 . 162886) (-4012 . 162707) (-4013 . 162180) - (-4014 . 161653) (-4015 . 161372) (-4016 . 160954) (-4017 . 160427) - (-4018 . 160242) (-4019 . 160099) (-4020 . 159599) (-4021 . 158957) - (-4022 . 158901) (-4023 . 158807) (-4024 . 158686) (-4025 . 158615) - (-4026 . 158541) (-4027 . 158310) (-4028 . 157685) (-4029 . 157253) - (-4030 . 157171) (-4031 . 157029) (-4032 . 156551) (-4033 . 156429) - (-4034 . 156307) (-4035 . 156167) (-4036 . 155980) (-4037 . 155864) - (-4038 . 155603) (-4039 . 155534) (-4040 . 155335) (-4041 . 155176) - (-4042 . 155021) (-4043 . 154914) (-4044 . 154863) (-4045 . 154479) - (-4046 . 154238) (-4047 . 154147) (-4048 . 152341) (-4049 . 151752) - (-4050 . 151673) (-4051 . 146210) (-4052 . 145420) (-4053 . 145041) - (-4054 . 144969) (-4055 . 144780) (-4056 . 144605) (-4057 . 144115) - (-4058 . 143693) (-4059 . 143253) (-4060 . 142390) (-4061 . 142266) - (-4062 . 142139) (-4063 . 142030) (-4064 . 141878) (-4065 . 141764) - (-4066 . 141625) (-4067 . 141543) (-4068 . 141461) (-4069 . 141353) - (-4070 . 140933) (-4071 . 140509) (-4072 . 140434) (-4073 . 140168) - (-4074 . 139901) (-4075 . 139518) (-4076 . 138817) (-4077 . 138757) - (-4078 . 138682) (-4079 . 138607) (-4080 . 138484) (-4081 . 138232) - (-4082 . 138145) (-4083 . 138069) (-4084 . 137993) (-4085 . 137897) - (-4086 . 133937) (-4087 . 132755) (-4088 . 132092) (-4089 . 131905) - (-4090 . 129684) (-4091 . 129358) (-4092 . 128977) (-4093 . 128533) - (-4094 . 128298) (-4095 . 128050) (-4096 . 127959) (-4097 . 126470) - (-4098 . 126391) (-4099 . 126285) (-4100 . 124756) (-4101 . 124344) - (-4102 . 123929) (-4103 . 123827) (-4104 . 123745) (-4105 . 123587) - (-4106 . 122194) (-4107 . 122112) (-4108 . 122033) (-4109 . 121678) - (-4110 . 121621) (-4111 . 121549) (-4112 . 121492) (-4113 . 121435) - (-4114 . 121305) (-4115 . 121101) (-4116 . 120784) (-4117 . 120362) - (-4118 . 115198) (-4119 . 114595) (-4120 . 113970) (-4121 . 113755) - (-4122 . 113540) (-4123 . 113372) (-4124 . 113157) (-4125 . 112989) - (-4126 . 112821) (-4127 . 112653) (-4128 . 112485) (-4129 . 110342) - (-4130 . 110070) (-4131 . 103153) (** . 100091) (-4133 . 99671) - (-4134 . 99423) (-4135 . 99366) (-4136 . 98868) (-4137 . 95974) - (-4138 . 95824) (-4139 . 95660) (-4140 . 95496) (-4141 . 95400) - (-4142 . 95282) (-4143 . 95158) (-4144 . 95015) (-4145 . 94844) - (-4146 . 94717) (-4147 . 94572) (-4148 . 94419) (-4149 . 94259) - (-4150 . 93773) (-4151 . 93683) (-4152 . 93016) (-4153 . 92822) - (-4154 . 92726) (-4155 . 92416) (-4156 . 91240) (-4157 . 91033) - (-4158 . 89856) (-4159 . 89781) (-4160 . 88600) (-4161 . 84996) - (-4162 . 84632) (-4163 . 84355) (-4164 . 84263) (-4165 . 84170) - (-4166 . 83893) (-4167 . 83800) (-4168 . 83707) (-4169 . 83614) - (-4170 . 83230) (-4171 . 83159) (-4172 . 83067) (-4173 . 82909) - (-4174 . 82555) (-4175 . 82397) (-4176 . 82289) (-4177 . 82260) - (-4178 . 82193) (-4179 . 82039) (-4180 . 81880) (-4181 . 81486) - (-4182 . 81411) (-4183 . 81305) (-4184 . 81233) (-4185 . 81155) - (-4186 . 81082) (-4187 . 81009) (-4188 . 80936) (-4189 . 80864) - (-4190 . 80792) (-4191 . 80719) (-4192 . 80478) (-4193 . 80138) - (-4194 . 79990) (-4195 . 79917) (-4196 . 79844) (-4197 . 79771) - (-4198 . 79517) (-4199 . 79373) (-4200 . 78037) (-4201 . 77843) - (-4202 . 77572) (-4203 . 77424) (-4204 . 77276) (-4205 . 77036) - (-4206 . 76841) (-4207 . 76571) (-4208 . 76375) (-4209 . 76346) - (-4210 . 76245) (-4211 . 76144) (-4212 . 76043) (-4213 . 75942) - (-4214 . 75841) (-4215 . 75740) (-4216 . 75639) (-4217 . 75538) - (-4218 . 75437) (-4219 . 75336) (-4220 . 75221) (-4221 . 75106) - (-4222 . 75055) (-4223 . 74938) (-4224 . 74880) (-4225 . 74779) - (-4226 . 74678) (-4227 . 74577) (-4228 . 74461) (-4229 . 74432) - (-4230 . 73700) (-4231 . 73575) (-4232 . 73450) (-4233 . 73310) - (-4234 . 73192) (-4235 . 73067) (-4236 . 72912) (-4237 . 71929) - (-4238 . 71070) (-4239 . 70862) (-4240 . 70488) (-4241 . 70074) - (-4242 . 69713) (-4243 . 69352) (-4244 . 69199) (-4245 . 68897) - (-4246 . 68741) (-4247 . 68415) (-4248 . 68344) (-4249 . 68273) - (-4250 . 68061) (-4251 . 67254) (-4252 . 67048) (-4253 . 66674) - (-4254 . 66154) (-4255 . 65886) (-4256 . 65336) (-4257 . 64786) - (-4258 . 64660) (-4259 . 63431) (-4260 . 62225) (-4261 . 61623) - (-4262 . 61405) (-4263 . 61219) (-4264 . 59119) (-4265 . 56944) - (-4266 . 56796) (-4267 . 56614) (-4268 . 56206) (-4269 . 55905) - (-4270 . 55554) (-4271 . 55386) (-4272 . 55218) (-4273 . 54904) - (-4274 . 31668) (-4275 . 17709) (-4276 . 16589) (* . 12093) (-4278 . 11837) - (-4279 . 11651) (-4280 . 10648) (-4281 . 10379) (-4282 . 9747) (-4283 . 8470) - (-4284 . 7222) (-4285 . 6350) (-4286 . 5085) (-4287 . 382) (-4288 . 280) - (-4289 . 160) (-4290 . 30))
\ No newline at end of file + (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-540))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-540)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1174))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-832))))) +(((*1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1135)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-619 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1157) (-27) (-422 *8))) + (-4 *8 (-13 (-443) (-821) (-145) (-1007 *3) (-615 *3))) + (-5 *3 (-548)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3676 *4) (|:| |sol?| (-112)))) + (-5 *1 (-982 *8 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2))))) +(((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +((-1251 . 732590) (-1252 . 732518) (-1253 . 732439) (-1254 . 732365) + (-1255 . 732298) (-1256 . 732219) (-1257 . 731699) (-1258 . 731639) + (-1259 . 731570) (-1260 . 731519) (-1261 . 731445) (-1262 . 731115) + (-1263 . 730936) (-1264 . 730826) (-1265 . 730019) (-1266 . 729945) + (-1267 . 729892) (-1268 . 729703) (-1269 . 729182) (-1270 . 729023) + (-1271 . 728634) (-1272 . 728427) (-1273 . 728353) (-1274 . 727923) + (-1275 . 727744) (-1276 . 727613) (-1277 . 727541) (-1278 . 727383) + (-1279 . 727330) (-1280 . 727156) (-1281 . 726976) (-1282 . 726702) + (-1283 . 726166) (-1284 . 725925) (-1285 . 725842) (-1286 . 725655) + (-1287 . 725499) (-1288 . 725163) (-1289 . 725060) (-1290 . 724902) + (-1291 . 724849) (-1292 . 724398) (-1293 . 724208) (-1294 . 724065) + (-1295 . 723968) (-1296 . 723885) (-1297 . 723833) (-1298 . 723451) + (-1299 . 723178) (-1300 . 723106) (-1301 . 722920) (-1302 . 722861) + (-1303 . 722709) (-1304 . 722366) (-1305 . 722332) (-1306 . 721736) + (-1307 . 721708) (-1308 . 721653) (-1309 . 720657) (-1310 . 720510) + (-1311 . 720174) (-1312 . 719670) (-1313 . 719487) (-1314 . 719428) + (-1315 . 719248) (-1316 . 718936) (-1317 . 718881) (-1318 . 718800) + (-1319 . 718726) (-1320 . 718674) (-1321 . 718266) (-1322 . 718063) + (-1323 . 717991) (-1324 . 717814) (-1325 . 717437) (-1326 . 717264) + (-1327 . 717086) (-1328 . 716373) (-1329 . 715576) (-1330 . 715502) + (-1331 . 715336) (-1332 . 714928) (-1333 . 714824) (-1334 . 714371) + (-1335 . 714109) (-1336 . 714052) (-1337 . 713999) (-1338 . 713737) + (-1339 . 713606) (-1340 . 713291) (-1341 . 712912) (-1342 . 712838) + (-1343 . 712720) (-1344 . 712566) (-1345 . 712494) (-1346 . 712438) + (-1347 . 712382) (-1348 . 712124) (-1349 . 711984) (-1350 . 711669) + (-1351 . 711160) (-1352 . 711088) (-1353 . 711009) (-1354 . 710849) + (-1355 . 710729) (-1356 . 710624) (-1357 . 710568) (-1358 . 710512) + (-1359 . 709695) (-1360 . 709540) (-1361 . 709488) (-1362 . 708991) + (-1363 . 708936) (-1364 . 708791) (-1365 . 708526) (-1366 . 708397) + (-1367 . 708320) (-1368 . 708246) (-1369 . 708078) (-1370 . 707990) + (-1371 . 707818) (-1372 . 707639) (-1373 . 707587) (-1374 . 707165) + (-1375 . 707106) (-1376 . 706988) (-1377 . 706881) (-1378 . 706783) + (-1379 . 706706) (-1380 . 706636) (-1381 . 706413) (-1382 . 706311) + (-1383 . 704887) (-1384 . 703877) (-1385 . 703825) (-1386 . 703385) + (-1387 . 703286) (-1388 . 703104) (-1389 . 703016) (-1390 . 702944) + (-1391 . 702846) (-1392 . 701942) (-1393 . 701805) (-1394 . 701638) + (-1395 . 701560) (-1396 . 700690) (-1397 . 700591) (-1398 . 700467) + (-1399 . 700379) (-1400 . 700036) (-1401 . 699938) (-1402 . 698851) + (-1403 . 698709) (-1404 . 698542) (-1405 . 698480) (-1406 . 698353) + (-1407 . 698254) (-1408 . 697961) (-1409 . 697654) (-1410 . 697566) + (-1411 . 697434) (-1412 . 697336) (-1413 . 697192) (-1414 . 696961) + (-1415 . 696474) (-1416 . 696256) (-1417 . 696126) (-1418 . 696027) + (-1419 . 691964) (-1420 . 691671) (-1421 . 691583) (-1422 . 691438) + (-1423 . 691278) (-1424 . 691134) (-1425 . 691075) (-1426 . 690997) + (-1427 . 690740) (-1428 . 690628) (-1429 . 690530) (-1430 . 690431) + (-1431 . 690144) (-1432 . 690056) (-1433 . 689910) (-1434 . 689549) + (-1435 . 689404) (-1436 . 689244) (-1437 . 689100) (-1438 . 689044) + (-1439 . 688977) (-1440 . 688819) (-1441 . 688724) (-1442 . 688625) + (-1443 . 688341) (-1444 . 687662) (-1445 . 687568) (-1446 . 687067) + (-1447 . 686914) (-1448 . 686707) (-1449 . 686651) (-1450 . 686554) + (-1451 . 686440) (-1452 . 686341) (-1453 . 686246) (-1454 . 685940) + (-1455 . 685852) (-1456 . 685501) (-1457 . 684743) (-1458 . 684545) + (-1459 . 684332) (-1460 . 684235) (-1461 . 684087) (-1462 . 683992) + (-1463 . 683878) (-1464 . 681533) (-1465 . 681445) (-1466 . 681357) + (-1467 . 681126) (-1468 . 680873) (-1469 . 680633) (-1470 . 680490) + (-1471 . 680347) (-1472 . 680158) (-1473 . 680074) (-1474 . 679960) + (-1475 . 679865) (-1476 . 679780) (-1477 . 679692) (-1478 . 679417) + (-1479 . 679106) (-1480 . 678785) (-1481 . 678655) (-1482 . 678547) + (-1483 . 678463) (-1484 . 678379) (-1485 . 678284) (-1486 . 678180) + (-1487 . 678066) (-1488 . 677967) (-1489 . 677609) (-1490 . 677521) + (-1491 . 677134) (-1492 . 676782) (-1493 . 676667) (-1494 . 676546) + (-1495 . 676424) (-1496 . 676316) (-1497 . 676214) (-1498 . 676100) + (-1499 . 675979) (-1500 . 675880) (-1501 . 675792) (-1502 . 675549) + (-1503 . 675323) (-1504 . 675053) (-1505 . 674708) (-1506 . 674641) + (-1507 . 674495) (-1508 . 674072) (-1509 . 673958) (-1510 . 673906) + (-1511 . 673680) (-1512 . 673592) (-1513 . 673349) (-1514 . 673150) + (-1515 . 672875) (-1516 . 672715) (-1517 . 672641) (-1518 . 671986) + (-1519 . 671559) (-1520 . 671445) (-1521 . 671345) (-1522 . 671257) + (-1523 . 671014) (-1524 . 670842) (-1525 . 670455) (-1526 . 670316) + (-1527 . 670201) (-1528 . 669491) (-1529 . 669414) (-1530 . 669297) + (-1531 . 669194) (-1532 . 669106) (-1533 . 668863) (-12 . 668691) + (-1535 . 668507) (-1536 . 668368) (-1537 . 668113) (-1538 . 668006) + (-1539 . 667735) (-1540 . 667655) (-1541 . 667567) (-1542 . 667336) + (-1543 . 667284) (-1544 . 667150) (-1545 . 667021) (-1546 . 666920) + (-1547 . 666816) (-1548 . 666545) (-1549 . 666218) (-1550 . 666130) + (-1551 . 665899) (-1552 . 665847) (-1553 . 665681) (-1554 . 665596) + (-1555 . 665397) (-1556 . 665293) (-1557 . 664906) (-1558 . 664611) + (-1559 . 664473) (-1560 . 664200) (-1561 . 664048) (-1562 . 663882) + (-1563 . 663379) (-1564 . 663063) (-1565 . 662949) (-1566 . 662246) + (-1567 . 662173) (-1568 . 662035) (-1569 . 661851) (-1570 . 661782) + (-1571 . 660470) (-1572 . 660000) (-1573 . 659791) (-1574 . 659731) + (-1575 . 659629) (-1576 . 659244) (-1577 . 659124) (-1578 . 659019) + (-1579 . 658945) (-1580 . 658917) (-1581 . 658802) (-1582 . 658696) + (-1583 . 658597) (-1584 . 658520) (-1585 . 658418) (-1586 . 658303) + (-1587 . 658275) (-1588 . 658155) (-1589 . 658032) (-1590 . 657949) + (-1591 . 657817) (-1592 . 657710) (-1593 . 657631) (-1594 . 657554) + (-1595 . 657355) (-1596 . 657214) (-1597 . 657106) (-1598 . 657016) + (-1599 . 656697) (-1600 . 656547) (-1601 . 656491) (-1602 . 656368) + (-1603 . 656280) (-1604 . 656226) (-1605 . 656117) (-1606 . 656009) + (-1607 . 655929) (-1608 . 655672) (-1609 . 655531) (-1610 . 655460) + (-1611 . 655208) (-1612 . 655180) (-1613 . 655036) (-1614 . 654948) + (-1615 . 654894) (-1616 . 654589) (-1617 . 654502) (* . 649956) + (-1619 . 649900) (-1620 . 649829) (-1621 . 649413) (-1622 . 649293) + (-1623 . 649206) (-1624 . 649178) (-1625 . 649090) (-1626 . 648780) + (-1627 . 648720) (-1628 . 648350) (-1629 . 648102) (-1630 . 647710) + (-1631 . 647606) (-1632 . 647528) (-1633 . 647476) (-1634 . 647448) + (-1635 . 647360) (-1636 . 646617) (-1637 . 646459) (-1638 . 646358) + (-1639 . 646280) (-1640 . 646218) (-1641 . 646190) (-1642 . 646052) + (-1643 . 645875) (-1644 . 645682) (-1645 . 645460) (-1646 . 645336) + (-1647 . 645254) (-1648 . 645155) (-1649 . 645127) (-1650 . 644989) + (-1651 . 644844) (-1652 . 644359) (-1653 . 644201) (-1654 . 644115) + (-1655 . 644033) (-1656 . 642835) (-1657 . 641633) (-1658 . 641581) + (-1659 . 641493) (-1660 . 641388) (-1661 . 641146) (-1662 . 640941) + (-1663 . 640875) (-1664 . 640796) (-1665 . 640605) (-1666 . 640512) + (-1667 . 640393) (-1668 . 640125) (-1669 . 640056) (-1670 . 639990) + (-1671 . 639919) (-1672 . 637651) (-1673 . 637601) (-1674 . 637400) + (-1675 . 636943) (-1676 . 636842) (-1677 . 636772) (-1678 . 636706) + (-1679 . 636635) (-1680 . 636254) (-1681 . 636185) (-1682 . 635921) + (-1683 . 635492) (-1684 . 635409) (-1685 . 635290) (-1686 . 635224) + (-1687 . 635153) (-1688 . 634706) (-1689 . 634637) (-1690 . 634094) + (-1691 . 633461) (-1692 . 633378) (-1693 . 633200) (-1694 . 633134) + (-1695 . 633029) (-1696 . 632735) (-1697 . 632096) (-1698 . 632026) + (-1699 . 631971) (-1700 . 631905) (-1701 . 631839) (-1702 . 631730) + (-1703 . 631359) (-1704 . 631222) (-1705 . 630830) (-1706 . 630760) + (-1707 . 630514) (-1708 . 630448) (-1709 . 630361) (-1710 . 630252) + (-1711 . 630097) (-1712 . 629851) (-1713 . 629509) (-1714 . 629481) + (-1715 . 629322) (-1716 . 629232) (-1717 . 629166) (-1718 . 629094) + (-1719 . 628985) (-1720 . 628830) (-1721 . 628623) (-1722 . 628231) + (-1723 . 628134) (-1724 . 627888) (-1725 . 627698) (-1726 . 627632) + (-1727 . 627444) (-1728 . 627335) (-1729 . 627224) (-1730 . 627019) + (-1731 . 626909) (-1732 . 626567) (-1733 . 625929) (-1734 . 625805) + (-1735 . 625732) (-1736 . 625666) (-1737 . 625494) (-1738 . 625385) + (-1739 . 624870) (-1740 . 624748) (-1741 . 624686) (-1742 . 624582) + (-1743 . 624357) (-1744 . 624298) (-1745 . 624228) (-1746 . 624162) + (-1747 . 623980) (-1748 . 623871) (-1749 . 623794) (-1750 . 623681) + (-1751 . 623151) (-1752 . 623120) (-1753 . 623055) (-1754 . 622990) + (-1755 . 622924) (-1756 . 622322) (-1757 . 622213) (-1758 . 622133) + (-1759 . 622020) (-1760 . 621802) (-1761 . 618875) (-1762 . 618813) + (-1763 . 618758) (-1764 . 618692) (-1765 . 618526) (-1766 . 618417) + (-1767 . 618340) (-1768 . 618212) (-1769 . 617994) (-1770 . 617784) + (-1771 . 617690) (-1772 . 617624) (-1773 . 617040) (-1774 . 616931) + (-1775 . 616851) (-1776 . 616741) (-1777 . 616522) (-1778 . 616248) + (-1779 . 615938) (-1780 . 615872) (-1781 . 615795) (-1782 . 615686) + (-1783 . 615606) (-1784 . 615499) (-1785 . 615319) (-1786 . 614745) + (-1787 . 614400) (-1788 . 614334) (-1789 . 613964) (-1790 . 613855) + (-1791 . 613778) (-1792 . 613622) (-1793 . 613403) (-1794 . 613228) + (-1795 . 612949) (-1796 . 612435) (-1797 . 612361) (-1798 . 612295) + (-1799 . 612117) (-1800 . 612008) (-1801 . 611928) (-1802 . 611794) + (-1803 . 611614) (-1804 . 611519) (-1805 . 611374) (-1806 . 611312) + (-1807 . 610987) (-1808 . 610921) (-1809 . 610849) (-1810 . 610740) + (-1811 . 610506) (-1812 . 610353) (-1813 . 610219) (-1814 . 609825) + (-1815 . 609758) (-1816 . 609675) (-1817 . 609608) (-1818 . 609398) + (-1819 . 609332) (-1820 . 609192) (-1821 . 609083) (-1822 . 608925) + (-1823 . 608812) (-1824 . 608632) (-1825 . 608549) (-1826 . 608466) + (-1827 . 608380) (-1828 . 608190) (-1829 . 608124) (-1830 . 608015) + (-1831 . 607385) (-1832 . 607083) (-1833 . 606964) (-1834 . 606749) + (-1835 . 606666) (-1836 . 606580) (-1837 . 606514) (-1838 . 606398) + (-1839 . 606289) (-1840 . 606131) (-1841 . 605747) (-1842 . 605570) + (-1843 . 605480) (-1844 . 605378) (-1845 . 605292) (-1846 . 605226) + (-1847 . 605110) (-1848 . 605001) (-1849 . 604669) (-1850 . 604535) + (-1851 . 604445) (-1852 . 604371) (-1853 . 604285) (-1854 . 602153) + (-1855 . 602087) (-1856 . 601971) (-1857 . 601862) (-1858 . 601719) + (-1859 . 601582) (-1860 . 601488) (-1861 . 601405) (-1862 . 601290) + (-1863 . 601204) (-1864 . 601138) (-1865 . 600985) (-1866 . 600876) + (-1867 . 600733) (-1868 . 600602) (-1869 . 600515) (-1870 . 600453) + (-1871 . 600379) (-1872 . 599242) (-1873 . 599156) (-1874 . 599090) + (-1875 . 598946) (-1876 . 598837) (-1877 . 598693) (-1878 . 598610) + (-1879 . 598497) (-1880 . 598407) (-1881 . 598189) (-1882 . 598103) + (-1883 . 598037) (-1884 . 596629) (-1885 . 596555) (-1886 . 596446) + (-1887 . 595265) (-1888 . 595182) (-1889 . 595060) (-1890 . 594977) + (-1891 . 594764) (-1892 . 594678) (-1893 . 594021) (-1894 . 593935) + (-1895 . 593826) (-1896 . 593561) (-1897 . 593436) (-1898 . 593245) + (-1899 . 593165) (-1900 . 592304) (-1901 . 592211) (-1902 . 591936) + (-1903 . 591850) (-1904 . 591193) (-1905 . 591119) (-1906 . 591010) + (-1907 . 590866) (-1908 . 590115) (-1909 . 590011) (-1910 . 589955) + (-1911 . 589792) (-1912 . 589725) (-1913 . 589639) (-1914 . 589511) + (-1915 . 583998) (-1916 . 583924) (-1917 . 583815) (-1918 . 583074) + (-1919 . 582937) (-1920 . 582753) (-1921 . 582670) (-1922 . 582573) + (-1923 . 582430) (-1924 . 582344) (-1925 . 582221) (-1926 . 581833) + (-1927 . 581759) (-1928 . 581558) (-1929 . 580817) (-1930 . 580726) + (-1931 . 580552) (-1932 . 580469) (-1933 . 580402) (-1934 . 580183) + (-1935 . 580097) (-1936 . 579974) (-1937 . 579519) (-1938 . 579375) + (-1939 . 579060) (-1940 . 578372) (-1941 . 578235) (-1942 . 578036) + (-1943 . 577953) (-1944 . 577869) (-1945 . 577772) (-1946 . 577686) + (-1947 . 577545) (-1948 . 577196) (-1949 . 576989) (-1950 . 576836) + (-1951 . 575248) (-1952 . 574672) (-1953 . 574604) (-1954 . 574430) + (-1955 . 574295) (-1956 . 574177) (-1957 . 574097) (-1958 . 574014) + (-1959 . 573928) (-1960 . 573773) (-1961 . 573598) (-1962 . 573440) + (-1963 . 572864) (-1964 . 572795) (-1965 . 572676) (-1966 . 572541) + (-1967 . 572439) (-1968 . 572353) (-1969 . 572209) (-1970 . 572056) + (-1971 . 571915) (-1972 . 571827) (-1973 . 571251) (-1974 . 570685) + (-1975 . 570553) (-1976 . 570425) (-1977 . 570301) (-1978 . 570101) + (-1979 . 570015) (-1980 . 569835) (-1981 . 569546) (-1982 . 569393) + (-1983 . 569250) (-1984 . 569173) (-1985 . 569085) (-1986 . 568399) + (-1987 . 567833) (-1988 . 567776) (-1989 . 567648) (-1990 . 567527) + (-1991 . 567459) (-1992 . 567373) (-1993 . 567250) (-1994 . 566964) + (-1995 . 566758) (-1996 . 566072) (-1997 . 565901) (-1998 . 565779) + (-1999 . 565661) (-2000 . 565413) (-2001 . 565327) (-2002 . 565203) + (-2003 . 564917) (-2004 . 562953) (-2005 . 562827) (-2006 . 562078) + (-2007 . 562004) (-2008 . 561848) (-2009 . 561623) (-2010 . 561487) + (-2011 . 561236) (-2012 . 561150) (-2013 . 561049) (-2014 . 560638) + (-2015 . 560510) (-2016 . 560380) (-2017 . 559806) (-2018 . 559662) + (-2019 . 559491) (-2020 . 559358) (-2021 . 559296) (-2022 . 559048) + (-2023 . 558962) (-2024 . 557333) (-2025 . 557277) (-2026 . 556991) + (-2027 . 556866) (-2028 . 556797) (-2029 . 556223) (-2030 . 555757) + (-2031 . 555586) (-2032 . 555529) (-2033 . 555281) (-2034 . 555195) + (-2035 . 555139) (-2036 . 554273) (-2037 . 554200) (-2038 . 554072) + (-2039 . 554018) (-2040 . 553444) (-2041 . 553064) (-2042 . 552887) + (-2043 . 552827) (-2044 . 552754) (-2045 . 552636) (-2046 . 552568) + (-2047 . 552482) (-2048 . 552426) (-2049 . 551052) (-2050 . 550203) + (-2051 . 550054) (-2052 . 549827) (-2053 . 549749) (-2054 . 549062) + (-2055 . 548298) (-2056 . 548146) (-2057 . 547749) (-2058 . 547413) + (-2059 . 547327) (-2060 . 547271) (-2061 . 543650) (-2062 . 543544) + (-2063 . 543317) (-2064 . 543161) (-2065 . 542474) (-2066 . 542330) + (-2067 . 542050) (-2068 . 541526) (-2069 . 540461) (-2070 . 540375) + (-2071 . 540316) (-2072 . 540245) (-2073 . 540117) (-2074 . 539430) + (-2075 . 539286) (-2076 . 538882) (-2077 . 538604) (-2078 . 538384) + (-2079 . 538298) (-2080 . 538234) (-2081 . 538163) (-2082 . 537960) + (-2083 . 537732) (-2084 . 537567) (-2085 . 537508) (-2086 . 536933) + (-2087 . 536802) (-2088 . 536745) (-2089 . 535344) (-2090 . 535231) + (-2091 . 535148) (-2092 . 535062) (-2093 . 534954) (-2094 . 534788) + (-2095 . 534729) (-2096 . 534550) (-2097 . 533586) (-2098 . 533011) + (-2099 . 532958) (-2100 . 532720) (-2101 . 532515) (-2102 . 532071) + (-2103 . 530821) (-2104 . 530747) (-2105 . 530644) (-2106 . 530536) + (-2107 . 528698) (-2108 . 528639) (-2109 . 528112) (-2110 . 527537) + (-2111 . 527396) (-2112 . 527213) (-2113 . 526886) (-2114 . 526654) + (-2115 . 526313) (-2116 . 526239) (-2117 . 526150) (-2118 . 526042) + (-2119 . 524532) (-2120 . 524397) (-2121 . 523870) (-2122 . 523296) + (-2123 . 523149) (-2124 . 522962) (-2125 . 522757) (-2126 . 522662) + (-2127 . 522453) (-2128 . 522174) (-2129 . 520626) (-2130 . 520567) + (-2131 . 520286) (-2132 . 519712) (-2133 . 519515) (-2134 . 519276) + (-2135 . 519147) (-2136 . 518965) (-2137 . 518909) (-2138 . 518802) + (-2139 . 518743) (-2140 . 518669) (-2141 . 518595) (-2142 . 518425) + (-2143 . 518004) (-2144 . 517970) (-2145 . 517396) (-2146 . 517160) + (-2147 . 517053) (-2148 . 516785) (-2149 . 516655) (-2150 . 516584) + (-2151 . 516365) (-2152 . 516309) (-2153 . 515573) (-2154 . 515343) + (-2155 . 515116) (-2156 . 515028) (-2157 . 514501) (-2158 . 513927) + (-2159 . 513893) (-2160 . 513654) (-2161 . 513513) (-2162 . 513303) + (-2163 . 513234) (-2164 . 513072) (-2165 . 512983) (-2166 . 512900) + (-2167 . 512747) (-2168 . 512650) (-2169 . 512465) (-2170 . 511891) + (-2171 . 511759) (-2172 . 511548) (-2173 . 511426) (-2174 . 511367) + (-2175 . 511240) (-2176 . 511128) (-2177 . 511048) (-2178 . 511014) + (-2179 . 510871) (-2180 . 510704) (-2181 . 510590) (-2182 . 510399) + (-2183 . 510316) (-2184 . 510229) (-2185 . 509585) (-2186 . 509505) + (-2187 . 509474) (-2188 . 508956) (-2189 . 508861) (-2190 . 508708) + (-2191 . 508560) (-2192 . 507977) (-2193 . 507866) (-2194 . 507721) + (-2195 . 507574) (-2196 . 507494) (-2197 . 506322) (-2198 . 506238) + (-2199 . 505596) (-2200 . 505483) (-2201 . 505074) (-2202 . 505040) + (-2203 . 504901) (-2204 . 504645) (-2205 . 504579) (-2206 . 504523) + (-2207 . 504467) (-2208 . 504383) (-2209 . 504279) (-2210 . 503985) + (-2211 . 503919) (-2212 . 503625) (-2213 . 503461) (-2214 . 503192) + (-2215 . 503130) (-2216 . 503033) (-2217 . 502918) (-2218 . 502820) + (-2219 . 502713) (-2220 . 502416) (-2221 . 502342) (-2222 . 502269) + (-2223 . 502105) (-2224 . 502071) (-2225 . 501950) (-2226 . 501856) + (-2227 . 501643) (-2228 . 501533) (-2229 . 501233) (-2230 . 501161) + (-2231 . 501096) (-2232 . 500878) (-2233 . 500670) (-2234 . 500439) + (-2235 . 500405) (-2236 . 500334) (-2237 . 500240) (-2238 . 499841) + (-2239 . 499813) (-2240 . 499624) (-2241 . 499537) (-2242 . 499503) + (-2243 . 499429) (-2244 . 499376) (-2245 . 499187) (-2246 . 499079) + (-2247 . 498936) (-2248 . 498884) (-2249 . 498834) (-2250 . 498728) + (-2251 . 498570) (-2252 . 498411) (-2253 . 498377) (-2254 . 498146) + (-2255 . 498091) (-2256 . 496934) (-2257 . 496775) (-2258 . 496632) + (-2259 . 496573) (-2260 . 495127) (-2261 . 494966) (-2262 . 494879) + (-2263 . 494845) (-2264 . 494407) (-2265 . 494218) (-2266 . 493980) + (-2267 . 493699) (-2268 . 493595) (-2269 . 493201) (-2270 . 492709) + (-2271 . 492548) (-2272 . 492425) (-2273 . 492257) (-2274 . 492032) + (-2275 . 491419) (-2276 . 491315) (-2277 . 491287) (-2278 . 490956) + (-2279 . 490354) (-2280 . 490196) (-2281 . 490143) (-2282 . 490000) + (-2283 . 489927) (-2284 . 489805) (-2285 . 489275) (-2286 . 488794) + (-2287 . 488687) (-2288 . 487883) (-2289 . 487743) (-2290 . 486557) + (-2291 . 486504) (-2292 . 486390) (-2293 . 486317) (-2294 . 486078) + (-2295 . 485860) (-2296 . 485753) (-2297 . 485147) (-2298 . 485019) + (-2299 . 483837) (-2300 . 483784) (-2301 . 483663) (-2302 . 483543) + (-2303 . 483339) (-2304 . 483121) (-2305 . 483041) (-2306 . 482934) + (-2307 . 482280) (-2308 . 482152) (-2309 . 479946) (-2310 . 479893) + (-2311 . 479775) (-2312 . 479702) (-2313 . 479491) (-2314 . 479097) + (-2315 . 478680) (-2316 . 478624) (-2317 . 478517) (-2318 . 477931) + (-2319 . 477803) (-2320 . 477750) (-2321 . 477638) (-2322 . 477565) + (-2323 . 477372) (-2324 . 477192) (-2325 . 476776) (-2326 . 476400) + (-2327 . 476293) (-2328 . 476219) (-2329 . 476076) (-2330 . 476023) + (-2331 . 475905) (-2332 . 475832) (-2333 . 475553) (-2334 . 475338) + (-2335 . 474962) (-2336 . 474855) (-2337 . 474803) (-2338 . 474660) + (-2339 . 474607) (-2340 . 474502) (-2341 . 474282) (-2342 . 474109) + (-2343 . 473905) (-2344 . 473752) (-2345 . 473645) (-2346 . 473593) + (-2347 . 473451) (-2348 . 473398) (-2349 . 473315) (-2350 . 472982) + (-2351 . 472803) (-2352 . 471939) (-2353 . 471870) (-2354 . 471568) + (-2355 . 471498) (-2356 . 471391) (-2357 . 471317) (-2358 . 471172) + (-2359 . 471119) (-2360 . 471015) (-2361 . 470831) (-2362 . 470753) + (-2363 . 470724) (-2364 . 470565) (-2365 . 470458) (-2366 . 470403) + (-2367 . 469650) (-2368 . 469597) (-2369 . 468631) (-2370 . 468487) + (-2371 . 468346) (-2372 . 468177) (-2373 . 467846) (-2374 . 467739) + (-2375 . 462401) (-2376 . 462349) (-2377 . 462186) (-2378 . 462115) + (-2379 . 461890) (-2380 . 461529) (-2381 . 461326) (-2382 . 461297) + (-2383 . 461141) (-2384 . 461070) (-2385 . 460963) (-2386 . 460911) + (-2387 . 460755) (-2388 . 460567) (-2389 . 460496) (-2390 . 460412) + (-2391 . 460241) (-2392 . 460140) (-2393 . 459996) (-2394 . 459967) + (-2395 . 459896) (-2396 . 459786) (-2397 . 459679) (-2398 . 459627) + (-2399 . 459467) (-2400 . 459395) (-2401 . 459046) (-2402 . 458875) + (-2403 . 458625) (-2404 . 458569) (-2405 . 458496) (-2406 . 458284) + (-2407 . 458177) (-2408 . 458107) (-2409 . 458054) (-2410 . 457814) + (-2411 . 457742) (-2412 . 457668) (-2413 . 457409) (-2414 . 457091) + (-2415 . 456926) (-2416 . 456717) (-2417 . 456610) (-2418 . 456159) + (-2419 . 455912) (-2420 . 455835) (-2421 . 455737) (-2422 . 455478) + (-2423 . 455112) (-2424 . 455052) (-2425 . 454676) (-2426 . 454569) + (-2427 . 454355) (-2428 . 454086) (-2429 . 453839) (-2430 . 453786) + (-2431 . 453712) (-2432 . 453517) (-2433 . 453355) (-2434 . 452654) + (-2435 . 452119) (-2436 . 452012) (-2437 . 451740) (-2438 . 451526) + (-2439 . 450851) (-2440 . 450798) (-2441 . 446256) (-2442 . 446162) + (-2443 . 446046) (-2444 . 445851) (-2445 . 445820) (-2446 . 445614) + (-2447 . 444422) (-2448 . 443865) (-2449 . 443758) (-2450 . 443385) + (-2451 . 443246) (-2452 . 443193) (-2453 . 443077) (-2454 . 443025) + (-2455 . 442428) (-2456 . 442268) (-2457 . 442207) (-2458 . 440995) + (-2459 . 440438) (-2460 . 436440) (-2461 . 436333) (-2462 . 436056) + (-2463 . 435842) (-2464 . 435789) (-2465 . 435676) (-2466 . 435517) + (-2467 . 435439) (-2468 . 435366) (-2469 . 435309) (-2470 . 434608) + (-2471 . 434482) (-2472 . 434375) (-2473 . 434058) (-2474 . 433766) + (-2475 . 433713) (-2476 . 433619) (-2477 . 433472) (-2478 . 433353) + (-2479 . 433296) (-2480 . 432618) (-2481 . 432008) (-2482 . 431901) + (-2483 . 431687) (-2484 . 431473) (-2485 . 431420) (-2486 . 431326) + (-2487 . 430572) (-2488 . 430243) (-2489 . 430124) (-2490 . 429693) + (-2491 . 429616) (-2492 . 429563) (-2493 . 429339) (-2494 . 429232) + (-2495 . 428914) (-2496 . 428775) (-2497 . 428722) (-2498 . 428629) + (-2499 . 428137) (-2500 . 427977) (-2501 . 427917) (-2502 . 427725) + (-2503 . 427646) (-2504 . 427539) (-2505 . 426939) (-2506 . 426725) + (-2507 . 426672) (-2508 . 426579) (-2509 . 426087) (-2510 . 425907) + (-2511 . 425789) (-2512 . 423675) (-2513 . 423568) (-2514 . 423427) + (-2515 . 423118) (-2516 . 423065) (-2517 . 422972) (-2518 . 422454) + (-2519 . 422271) (-2520 . 421311) (-2521 . 421159) (-2522 . 421036) + (-2523 . 420929) (-2524 . 420714) (-2525 . 420569) (-2526 . 420516) + (-2527 . 420428) (-2528 . 420360) (-2529 . 420247) (-2530 . 420146) + (-2531 . 420069) (-2532 . 419881) (-2533 . 419828) (-2534 . 419583) + (-2535 . 419476) (-2536 . 419167) (-2537 . 419025) (-2538 . 418972) + (-2539 . 416557) (-2540 . 402443) (-2541 . 402376) (-2542 . 402221) + (-2543 . 402150) (-2544 . 402049) (-2545 . 401399) (-2546 . 401345) + (-2547 . 401038) (-2548 . 400931) (-2549 . 400845) (-2550 . 400612) + (-2551 . 400559) (-2552 . 400491) (-2553 . 400439) (-2554 . 400368) + (-2555 . 400264) (-2556 . 399948) (-2557 . 399775) (-2558 . 399584) + (-2559 . 398288) (-2560 . 397937) (-2561 . 397795) (-2562 . 397742) + (-2563 . 397688) (-2564 . 397502) (-2565 . 397395) (-2566 . 397287) + (-2567 . 397114) (-2568 . 396992) (-2569 . 396847) (-2570 . 396619) + (-2571 . 396566) (-2572 . 396441) (-2573 . 396322) (-2574 . 396196) + (-2575 . 396093) (-2576 . 395837) (-2577 . 395578) (-2578 . 395252) + (-2579 . 395053) (-2580 . 395001) (-2581 . 394937) (-2582 . 394818) + (-2583 . 394692) (-2584 . 394531) (-2585 . 394345) (-2586 . 394039) + (-2587 . 393799) (-2588 . 393747) (-2589 . 393587) (-2590 . 393462) + (-2591 . 388743) (-2592 . 388614) (-2593 . 388520) (-2594 . 388391) + (-2595 . 388284) (-2596 . 387643) (-2597 . 387428) (-2598 . 387303) + (-2599 . 386967) (-2600 . 386914) (-2601 . 386795) (-2602 . 386701) + (-2603 . 386569) (-2604 . 386465) (-2605 . 385168) (-2606 . 385001) + (-2607 . 384881) (-2608 . 384757) (-2609 . 384594) (-2610 . 384541) + (-2611 . 384422) (-2612 . 384130) (-2613 . 384029) (-2614 . 383876) + (-2615 . 382625) (-2616 . 382454) (-2617 . 382308) (-2618 . 382214) + (-2619 . 382051) (-2620 . 381998) (-2621 . 381477) (-2622 . 381355) + (-2623 . 381254) (-2624 . 380973) (-2625 . 380098) (-2626 . 380046) + (-2627 . 379903) (-2628 . 379740) (-2629 . 379687) (-2630 . 379498) + (-2631 . 379446) (-2632 . 379342) (-2633 . 379120) (-2634 . 377848) + (-2635 . 377785) (-2636 . 377670) (-2637 . 377495) (-2638 . 377467) + (-2639 . 377403) (-2640 . 377351) (-2641 . 377247) (-2642 . 377173) + (-2643 . 377020) (-2644 . 376918) (-2645 . 376823) (-2646 . 376760) + (-2647 . 376630) (-2648 . 376601) (-2649 . 376426) (-2650 . 376398) + (-2651 . 376344) (-2652 . 376292) (-2653 . 376126) (-2654 . 375973) + (-2655 . 375850) (-2656 . 375755) (-2657 . 375564) (-2658 . 375187) + (-2659 . 375009) (-2660 . 374981) (-2661 . 374872) (-2662 . 374844) + (-2663 . 374792) (-2664 . 374626) (-2665 . 374570) (-2666 . 374417) + (-2667 . 374284) (-2668 . 374128) (-2669 . 373868) (-2670 . 373509) + (-2671 . 373481) (-2672 . 372105) (-2673 . 372053) (-2674 . 371859) + (-2675 . 371706) (-2676 . 371624) (-2677 . 371344) (-2678 . 371150) + (-2679 . 371070) (-2680 . 370986) (-2681 . 370837) (-2682 . 370671) + (-2683 . 370615) (-2684 . 370462) (-2685 . 370380) (-2686 . 370162) + (-2687 . 369919) (-2688 . 369757) (-2689 . 369697) (-2690 . 369604) + (-2691 . 369511) (-2692 . 369324) (-2693 . 369156) (-2694 . 368765) + (-2695 . 368635) (-2696 . 368305) (-2697 . 368231) (-2698 . 368179) + (-2699 . 368121) (-2700 . 367881) (-2701 . 367710) (-2702 . 367369) + (-2703 . 367019) (-2704 . 366945) (-2705 . 366893) (-2706 . 366808) + (-2707 . 366382) (-2708 . 366175) (-2709 . 366010) (-2710 . 365659) + (-2711 . 365476) (-2712 . 365009) (-2713 . 364935) (-2714 . 364883) + (-2715 . 364806) (-2716 . 364778) (-2717 . 364613) (-2718 . 364262) + (-2719 . 364092) (-2720 . 363954) (-2721 . 363468) (-2722 . 363394) + (-2723 . 363342) (-2724 . 363257) (-2725 . 363229) (-2726 . 363129) + (-2727 . 362778) (-2728 . 362554) (-2729 . 362351) (-2730 . 362277) + (-2731 . 362225) (-2732 . 362168) (-2733 . 361976) (-2734 . 361924) + (-2735 . 361573) (-2736 . 361113) (-2737 . 360810) (-2738 . 360736) + (-2739 . 359923) (-2740 . 359782) (-2741 . 359688) (-2742 . 359657) + (-2743 . 359553) (-2744 . 359166) (-2745 . 359113) (-2746 . 358932) + (-2747 . 358808) (-2748 . 358729) (-2749 . 358134) (-2750 . 358040) + (-2751 . 357845) (-2752 . 357458) (-2753 . 357349) (-2754 . 356860) + (-2755 . 356642) (-2756 . 356468) (-2757 . 356402) (-2758 . 355807) + (-2759 . 355607) (-2760 . 355357) (-2761 . 354970) (-2762 . 354855) + (-2763 . 354794) (-2764 . 354727) (-2765 . 354449) (-2766 . 354291) + (-2767 . 354046) (-2768 . 353663) (-2769 . 353594) (-2770 . 353541) + (-2771 . 352376) (-2772 . 352309) (-2773 . 351948) (-2774 . 351790) + (-2775 . 351468) (-2776 . 350732) (-2777 . 350663) (-2778 . 350592) + (-2779 . 350537) (-2780 . 350480) (-2781 . 350153) (-2782 . 349995) + (-2783 . 349607) (-2784 . 349256) (-2785 . 349187) (-2786 . 349134) + (-2787 . 349079) (-2788 . 349001) (-2789 . 348868) (-2790 . 348710) + (-2791 . 348644) (-2792 . 348502) (-2793 . 348424) (-2794 . 348356) + (-2795 . 348223) (-2796 . 347998) (-2797 . 347840) (-2798 . 347693) + (-2799 . 347661) (-2800 . 347448) (-2801 . 347323) (-2802 . 347225) + (-2803 . 347148) (-2804 . 347077) (-2805 . 346745) (-2806 . 346587) + (-2807 . 346424) (-2808 . 346392) (-2809 . 346326) (-2810 . 346109) + (-2811 . 346015) (-2812 . 345938) (-2813 . 345867) (-2814 . 345758) + (-2815 . 345691) (-2816 . 345612) (-2817 . 345580) (-2818 . 345514) + (-2819 . 345444) (-2820 . 345394) (-2821 . 345278) (-2822 . 345198) + (-2823 . 345040) (-2824 . 344958) (-2825 . 344926) (-2826 . 344855) + (-2827 . 344758) (-2828 . 344663) (-2829 . 344444) (-2830 . 344345) + (-2831 . 344036) (-2832 . 343878) (-2833 . 343719) (-2834 . 343690) + (-2835 . 343583) (-2836 . 343440) (-2837 . 343339) (-2838 . 343269) + (-2839 . 343050) (-2840 . 342944) (-2841 . 342693) (-2842 . 342535) + (-2843 . 342453) (-2844 . 342340) (-2845 . 342233) (-2846 . 342150) + (-2847 . 342053) (-2848 . 341958) (-2849 . 341739) (-2850 . 341615) + (-2851 . 341457) (-2852 . 341375) (-2853 . 341262) (-2854 . 341179) + (-2855 . 341035) (-2856 . 340965) (-2857 . 340864) (-2858 . 340740) + (-2859 . 340582) (-2860 . 340519) (-2861 . 340437) (-2862 . 340324) + (-2863 . 340269) (-2864 . 340159) (-2865 . 340013) (-2866 . 339742) + (-2867 . 339687) (-2868 . 339592) (-2869 . 339518) (-2870 . 339151) + (-2871 . 338993) (-2872 . 338887) (-2873 . 338774) (-2874 . 338695) + (-2875 . 338666) (-2876 . 338614) (-2877 . 337748) (-2878 . 337678) + (-2879 . 337623) (-2880 . 337500) (-2881 . 337342) (-2882 . 337167) + (-2883 . 337045) (-2884 . 336975) (-2885 . 336908) (-2886 . 336856) + (-2887 . 336697) (-2888 . 336602) (-2889 . 336547) (-2890 . 336445) + (-2891 . 336287) (-2892 . 336134) (-2893 . 335997) (-2894 . 335924) + (-2895 . 335847) (-2896 . 335729) (-2897 . 335521) (-2898 . 335146) + (-2899 . 335076) (-2900 . 335021) (-2901 . 334657) (-2902 . 334605) + (-2903 . 334531) (-2904 . 334378) (-2905 . 334244) (-2906 . 334189) + (-2907 . 334117) (-2908 . 334089) (-2909 . 333956) (-2910 . 333871) + (-2911 . 333816) (-2912 . 333662) (-2913 . 333124) (-2914 . 333050) + (-2915 . 332876) (-2916 . 332742) (-2917 . 332669) (-2918 . 332589) + (-2919 . 332308) (-2920 . 332162) (-2921 . 332042) (-2922 . 331749) + (-2923 . 331671) (-2924 . 331619) (-2925 . 331564) (-2926 . 331372) + (-2927 . 331072) (-2928 . 331017) (-2929 . 330944) (-2930 . 330808) + (-2931 . 330659) (-2932 . 330604) (-2933 . 330345) (-2934 . 330267) + (-2935 . 330215) (-2936 . 330160) (-2937 . 329861) (-2938 . 329561) + (-2939 . 329204) (-2940 . 329131) (-2941 . 329075) (-2942 . 328785) + (-2943 . 328715) (-2944 . 328687) (-2945 . 328591) (-2946 . 328539) + (-2947 . 328484) (-2948 . 328289) (-2949 . 327936) (-2950 . 327525) + (-2951 . 327452) (-2952 . 327396) (-2953 . 327343) (-2954 . 327309) + (-2955 . 327259) (-2956 . 327077) (-2957 . 327025) (-2958 . 326970) + (-2959 . 326855) (-2960 . 326625) (-2961 . 326470) (-2962 . 326398) + (-2963 . 326339) (-2964 . 326220) (-2965 . 326002) (-2966 . 325456) + (-2967 . 325357) (-2968 . 325286) (-2969 . 325160) (-2970 . 324911) + (-2971 . 324681) (-2972 . 324526) (-2973 . 324454) (-2974 . 324395) + (-2975 . 324303) (-2976 . 323824) (-2977 . 323674) (-2978 . 323596) + (-2979 . 323479) (-2980 . 323271) (-2981 . 323192) (-2982 . 323079) + (-2983 . 322996) (-2984 . 322923) (-2985 . 322867) (-2986 . 322572) + (-2987 . 322442) (-2988 . 322270) (-2989 . 322174) (-2990 . 322070) + (-2991 . 321938) (-2992 . 321825) (-2993 . 321670) (-2994 . 321328) + (-2995 . 321272) (-2996 . 321078) (-2997 . 320887) (-2998 . 320757) + (-2999 . 320661) (-3000 . 320424) (-3001 . 320233) (-3002 . 319921) + (-3003 . 319605) (-3004 . 319450) (-3005 . 319298) (-3006 . 319101) + (-3007 . 318913) (-3008 . 318810) (-3009 . 318517) (-3010 . 318352) + (-3011 . 318256) (-3012 . 318070) (-3013 . 317912) (-3014 . 317775) + (-3015 . 317702) (-3016 . 317575) (-3017 . 317430) (-3018 . 317249) + (-3019 . 316846) (-3020 . 316282) (-3021 . 316145) (-3022 . 315600) + (-3023 . 315054) (-3024 . 314917) (-3025 . 314844) (-3026 . 314698) + (-3027 . 314553) (-3028 . 314393) (-3029 . 313505) (-3030 . 313309) + (-3031 . 313172) (-3032 . 312952) (-3033 . 312619) (-3034 . 312482) + (-3035 . 312409) (-3036 . 312281) (-3037 . 311991) (-3038 . 311649) + (-3039 . 311546) (-3040 . 311483) (-3041 . 311364) (-3042 . 311227) + (-3043 . 311050) (-3044 . 310847) (-3045 . 310706) (-3046 . 310569) + (-3047 . 310315) (-3048 . 310263) (-3049 . 310179) (-3050 . 309718) + (-3051 . 309537) (-3052 . 309368) (-3053 . 309305) (-3054 . 309237) + (-3055 . 309067) (-3056 . 308864) (-3057 . 308727) (-3058 . 308583) + (-3059 . 308531) (-3060 . 308497) (-3061 . 308337) (-3062 . 308108) + (-3063 . 308045) (-3064 . 307929) (-3065 . 307113) (-3066 . 307014) + (-3067 . 306811) (-3068 . 306674) (-3069 . 305334) (-3070 . 305282) + (-3071 . 305245) (-3072 . 305082) (-3073 . 304828) (-3074 . 304775) + (-3075 . 304659) (-3076 . 304560) (-3077 . 304357) (-3078 . 304301) + (-3079 . 304107) (-3080 . 304009) (-3081 . 303938) (-3082 . 303901) + (-3083 . 303759) (-3084 . 303406) (-3085 . 303355) (-3086 . 303239) + (-3087 . 301769) (-3088 . 301696) (-3089 . 301541) (-3090 . 301425) + (-3091 . 301145) (-3092 . 300993) (-3093 . 300807) (-3094 . 300668) + (-3095 . 300123) (-3096 . 300086) (-3097 . 299936) (-3098 . 298908) + (-3099 . 298712) (-3100 . 298659) (-3101 . 298581) (-3102 . 298452) + (-3103 . 298341) (-3104 . 298189) (-3105 . 297978) (-3106 . 297941) + (-3107 . 297770) (-3108 . 297710) (-3109 . 297580) (-3110 . 297262) + (-3111 . 297189) (-3112 . 297104) (-3113 . 297023) (-3114 . 296907) + (-3115 . 296796) (-3116 . 296595) (-3117 . 296493) (-3118 . 296246) + (-3119 . 296212) (-3120 . 296082) (-3121 . 295870) (-3122 . 295788) + (-3123 . 295472) (-3124 . 295175) (-3125 . 295059) (-3126 . 294991) + (-3127 . 294719) (-3128 . 294617) (-3129 . 294583) (-3130 . 294436) + (-3131 . 293862) (-3132 . 293749) (-3133 . 293694) (-3134 . 293595) + (-3135 . 293497) (-3136 . 293387) (-3137 . 293189) (-3138 . 292273) + (-3139 . 292218) (-3140 . 292091) (-3141 . 291572) (-3142 . 291382) + (-3143 . 290730) (-3144 . 290565) (-3145 . 290467) (-3146 . 290364) + (-3147 . 290335) (-3148 . 290256) (-3149 . 290067) (-3150 . 289964) + (-3151 . 288186) (-3152 . 287813) (-3153 . 287498) (-3154 . 287264) + (-3155 . 287151) (-3156 . 286997) (-3157 . 282837) (-3158 . 282736) + (-3159 . 282605) (-3160 . 282357) (-3161 . 282250) (-3162 . 281778) + (-3163 . 281498) (-3164 . 281211) (-3165 . 281071) (-3166 . 280862) + (-3167 . 280414) (-3168 . 280313) (-3169 . 280184) (-3170 . 279936) + (-3171 . 274729) (-3172 . 274557) (-3173 . 274457) (-3174 . 273853) + (-3175 . 273802) (-3176 . 273683) (-3177 . 273624) (-3178 . 273312) + (-3179 . 273214) (-3180 . 272787) (-3181 . 272686) (-3182 . 272607) + (-3183 . 272355) (-3184 . 272183) (-3185 . 272018) (-3186 . 271768) + (-3187 . 271717) (-3188 . 271665) (-3189 . 271320) (-3190 . 271204) + (-3191 . 271134) (-3192 . 270514) (-3193 . 270413) (-3194 . 270334) + (-3195 . 270282) (-3196 . 270134) (-3197 . 269962) (-3198 . 269288) + (-3199 . 269151) (-3200 . 269081) (-3201 . 269029) (-3202 . 268698) + (-3203 . 268619) (-3204 . 268521) (-3205 . 267914) (-3206 . 267813) + (-3207 . 267684) (-3208 . 267629) (-3209 . 267194) (-3210 . 267073) + (-3211 . 266901) (-3212 . 266634) (-3213 . 266182) (-3214 . 266063) + (-3215 . 266011) (-3216 . 265743) (-3217 . 265322) (-3218 . 265056) + (-3219 . 264838) (-3220 . 264737) (-3221 . 264608) (-3222 . 264538) + (-3223 . 264435) (-3224 . 263943) (-3225 . 263914) (-3226 . 263861) + (-3227 . 263827) (-3228 . 263759) (-3229 . 263646) (-3230 . 263468) + (-3231 . 263367) (-3232 . 263199) (-3233 . 263110) (-3234 . 263004) + (-3235 . 262644) (-3236 . 262522) (-3237 . 262409) (-3238 . 262341) + (-3239 . 262120) (-3240 . 261856) (-3241 . 261755) (-3242 . 261626) + (-3243 . 261557) (-3244 . 261469) (-3245 . 261178) (-3246 . 261124) + (-3247 . 261066) (-3248 . 260953) (-3249 . 260885) (-3250 . 260580) + (-3251 . 260166) (-3252 . 260065) (-3253 . 259936) (-3254 . 259864) + (-3255 . 259774) (-3256 . 259692) (-3257 . 259577) (-3258 . 259400) + (-3259 . 259072) (-3260 . 259014) (-3261 . 258887) (-3262 . 258789) + (-3263 . 258013) (-3264 . 257719) (-3265 . 257618) (-3266 . 257180) + (-3267 . 256947) (-3268 . 256797) (-3269 . 256682) (-3270 . 256621) + (-3271 . 256533) (-3272 . 256475) (-3273 . 256367) (-3274 . 255786) + (-3275 . 255338) (-3276 . 255223) (-3277 . 255163) (-3278 . 254797) + (-3279 . 254745) (-3280 . 254615) (-3281 . 254400) (-3282 . 254219) + (-3283 . 254166) (-3284 . 254116) (-3285 . 254064) (-3286 . 253956) + (-3287 . 253459) (-3288 . 253281) (-3289 . 253166) (-3290 . 253111) + (-3291 . 253059) (-3292 . 253006) (-3293 . 252945) (-3294 . 252892) + (-3295 . 252829) (-3296 . 251997) (-3297 . 251895) (-3298 . 251647) + (-3299 . 251254) (-3300 . 251203) (-3301 . 251125) (-3302 . 251009) + (-3303 . 250978) (-3304 . 250885) (-3305 . 250832) (-3306 . 250760) + (-3307 . 250711) (-3308 . 250108) (-3309 . 249993) (-3310 . 249717) + (-3311 . 249615) (-3312 . 249367) (-3313 . 248974) (-3314 . 248857) + (-3315 . 248779) (-3316 . 248673) (-3317 . 248561) (-3318 . 248509) + (-3319 . 248133) (-3320 . 247926) (-3321 . 247866) (-3322 . 247728) + (-3323 . 247626) (-3324 . 247327) (-3325 . 247142) (-3326 . 247084) + (-3327 . 246697) (-3328 . 246450) (-3329 . 246208) (-3330 . 245890) + (-3331 . 245838) (-3332 . 245785) (-3333 . 245669) (-3334 . 245592) + (-3335 . 245512) (-3336 . 245374) (-3337 . 245047) (-3338 . 244424) + (-3339 . 244217) (-3340 . 244116) (-3341 . 243770) (-3342 . 243468) + (-3343 . 243119) (-3344 . 243039) (-3345 . 242858) (-3346 . 242766) + (-3347 . 242638) (-3348 . 242546) (-3349 . 242412) (-3350 . 242331) + (-3351 . 242254) (-3352 . 241773) (-3353 . 241320) (-3354 . 241096) + (-3355 . 240995) (-3356 . 240893) (-3357 . 240591) (-3358 . 240403) + (-3359 . 240323) (-3360 . 240179) (-3361 . 240108) (-3362 . 239953) + (-3363 . 239861) (-3364 . 239766) (-3365 . 239632) (-3366 . 239409) + (-3367 . 239332) (-3368 . 238672) (-3369 . 238512) (-3370 . 238206) + (-3371 . 238105) (-3372 . 237803) (-3373 . 237541) (-3374 . 237418) + (-3375 . 237225) (-3376 . 237067) (-3377 . 236957) (-3378 . 236883) + (-3379 . 236830) (-3380 . 236778) (-3381 . 236692) (-3382 . 236597) + (-3383 . 236463) (-3384 . 236386) (-3385 . 236322) (-3386 . 236242) + (-3387 . 236093) (-3388 . 235894) (-3389 . 235778) (-3390 . 235676) + (-3391 . 235648) (-3392 . 235538) (-3393 . 235467) (-3394 . 235344) + (-3395 . 235200) (-3396 . 235066) (-3397 . 235017) (-3398 . 234626) + (-3399 . 234505) (-3400 . 234176) (-3401 . 233542) (-3402 . 232807) + (-3403 . 232602) (-3404 . 232422) (-3405 . 232370) (-3406 . 232317) + (-3407 . 231444) (-3408 . 221884) (-3409 . 221753) (-3410 . 221628) + (-3411 . 221507) (-3412 . 221346) (-3413 . 221189) (-3414 . 221064) + (-3415 . 220951) (-3416 . 220701) (-3417 . 220555) (-3418 . 220109) + (-3419 . 220038) (-3420 . 219887) (-3421 . 219756) (-3422 . 219728) + (-3423 . 218725) (-3424 . 218617) (-3425 . 218474) (-3426 . 218083) + (-3427 . 217958) (-3428 . 217856) (-3429 . 217801) (-3430 . 217749) + (-3431 . 217696) (-3432 . 217645) (-3433 . 217514) (-3434 . 217465) + (-3435 . 217325) (-3436 . 217168) (-3437 . 217090) (-3438 . 216709) + (-3439 . 216656) (-3440 . 216605) (-3441 . 216222) (-3442 . 215935) + (-3443 . 215262) (-3444 . 215210) (-3445 . 215092) (-3446 . 214997) + (-3447 . 214623) (-3448 . 214571) (-3449 . 214518) (-3450 . 214467) + (-3451 . 214340) (-3452 . 214229) (-3453 . 213616) (-3454 . 213462) + (-3455 . 213413) (-3456 . 213288) (-3457 . 213191) (-3458 . 213112) + (-3459 . 213063) (-3460 . 213010) (-3461 . 212812) (-3462 . 212651) + (-3463 . 212523) (-3464 . 212427) (-3465 . 212000) (-3466 . 211889) + (-3467 . 211837) (-3468 . 211679) (-3469 . 211597) (-3470 . 211524) + (-3471 . 211472) (-3472 . 211317) (-3473 . 211065) (-3474 . 211003) + (-3475 . 210907) (-3476 . 210854) (-3477 . 210708) (-3478 . 209710) + (-3479 . 209591) (-3480 . 209508) (-3481 . 209459) (-3482 . 209371) + (-3483 . 209253) (-3484 . 209154) (-3485 . 209030) (-3486 . 208940) + (-3487 . 208887) (-3488 . 208835) (-3489 . 208783) (-3490 . 207904) + (-3491 . 207820) (-3492 . 207737) (-3493 . 207649) (-3494 . 207597) + (-3495 . 207498) (-3496 . 206260) (-3497 . 206008) (-3498 . 205717) + (-3499 . 205492) (-3500 . 205296) (-3501 . 205244) (-3502 . 205098) + (-3503 . 204718) (-3504 . 204634) (-3505 . 204551) (-3506 . 204502) + (-3507 . 204414) (-3508 . 203925) (-3509 . 203801) (-3510 . 203658) + (-3511 . 203180) (-3512 . 203096) (-3513 . 202995) (-3514 . 202939) + (-3515 . 202887) (-3516 . 202799) (-3517 . 202689) (-3518 . 202437) + (-3519 . 202341) (-3520 . 201915) (-3521 . 201733) (-3522 . 201683) + (-3523 . 201612) (-3524 . 201377) (-3525 . 201293) (-3526 . 201234) + (-3527 . 201185) (-3528 . 201073) (-3529 . 200985) (-3530 . 199878) + (-3531 . 199754) (-3532 . 199611) (-3533 . 199561) (-3534 . 199490) + (-3535 . 199235) (-3536 . 199151) (-3537 . 199027) (-3538 . 198975) + (-3539 . 198773) (-3540 . 198682) (-3541 . 198650) (-3542 . 198365) + (-3543 . 198294) (-3544 . 198244) (-3545 . 198173) (-3546 . 198076) + (-3547 . 197979) (-3548 . 197855) (-3549 . 197806) (-3550 . 197112) + (-3551 . 197018) (-3552 . 196932) (-3553 . 196845) (-3554 . 196572) + (-3555 . 196363) (-3556 . 196295) (-3557 . 196196) (-3558 . 196115) + (-3559 . 196045) (-3560 . 195992) (-3561 . 195926) (-3562 . 195832) + (-3563 . 195800) (-3564 . 195527) (-3565 . 195349) (-3566 . 195296) + (-3567 . 195092) (-3568 . 194836) (-3569 . 194730) (-3570 . 194660) + (-3571 . 194605) (-3572 . 194487) (-3573 . 194390) (-3574 . 194304) + (-3575 . 194245) (-3576 . 193947) (-3577 . 193737) (-3578 . 193664) + (-3579 . 193289) (-3580 . 192813) (-3581 . 192719) (-3582 . 192384) + (-3583 . 191204) (-3584 . 191154) (-3585 . 190730) (-3586 . 190587) + (-3587 . 189485) (-3588 . 189383) (-3589 . 189205) (-3590 . 189087) + (-3591 . 188915) (-3592 . 188462) (-3593 . 188365) (-3594 . 188036) + (-3595 . 188005) (-3596 . 187588) (-3597 . 187538) (-3598 . 187114) + (-3599 . 187086) (-3600 . 186941) (-3601 . 186820) (-3602 . 186567) + (-3603 . 186451) (-3604 . 186349) (-3605 . 186265) (-3606 . 186077) + (-3607 . 185969) (-3608 . 185916) (-3609 . 185356) (-3610 . 185215) + (-3611 . 184900) (-3612 . 184579) (-3613 . 184075) (-3614 . 183991) + (-3615 . 183907) (-3616 . 183716) (-3617 . 183549) (-3618 . 183289) + (-3619 . 182171) (-3620 . 182014) (-3621 . 181736) (-3622 . 181651) + (-3623 . 181267) (-3624 . 181105) (-3625 . 180984) (-3626 . 180493) + (-3627 . 180326) (-3628 . 178063) (-3629 . 178013) (-3630 . 176283) + (-3631 . 176117) (-3632 . 175996) (-3633 . 175911) (-3634 . 175482) + (-3635 . 175398) (-3636 . 175283) (-3637 . 174710) (-3638 . 174369) + (-3639 . 174335) (-3640 . 174055) (-3641 . 173978) (-3642 . 172401) + (-3643 . 172084) (-3644 . 171993) (-3645 . 171866) (-3646 . 171804) + (-3647 . 171706) (-3648 . 171625) (-3649 . 171415) (-3650 . 171245) + (-3651 . 171089) (-3652 . 171024) (-3653 . 170222) (-3654 . 170194) + (-3655 . 170166) (-3656 . 170081) (-3657 . 169691) (-3658 . 169591) + (-3659 . 169230) (-3660 . 169153) (-3661 . 168907) (-3662 . 168759) + (-3663 . 168421) (-3664 . 168384) (-3665 . 167881) (-3666 . 167853) + (-3667 . 167769) (-3668 . 167696) (-3669 . 166809) (-3670 . 166757) + (-3671 . 163458) (-3672 . 163401) (-3673 . 163132) (-3674 . 162798) + (-3675 . 162650) (-3676 . 162312) (-3677 . 162175) (-3678 . 161769) + (-3679 . 161672) (-3680 . 161579) (-3681 . 160997) (-3682 . 160923) + (-3683 . 160851) (-3684 . 160609) (-3685 . 160411) (-3686 . 160188) + (-3687 . 159950) (-3688 . 159292) (-3689 . 158813) (-3690 . 158742) + (-3691 . 157924) (-3692 . 157829) (-3693 . 157772) (-3694 . 157677) + (-3695 . 157467) (-3696 . 157238) (-3697 . 157077) (-3698 . 156943) + (-3699 . 156344) (-3700 . 156272) (-3701 . 155913) (-3702 . 154992) + (-3703 . 154936) (-3704 . 154684) (-3705 . 154488) (-3706 . 154270) + (-3707 . 154175) (-3708 . 154043) (-3709 . 153867) (-3710 . 153790) + (-3711 . 153243) (-3712 . 153171) (-3713 . 153055) (-3714 . 152615) + (-3715 . 152435) (-3716 . 152379) (-3717 . 152127) (-3718 . 151931) + (-3719 . 151713) (-3720 . 151630) (-3721 . 151208) (-3722 . 151009) + (-3723 . 150932) (-3724 . 150610) (-3725 . 150568) (-3726 . 150167) + (-3727 . 150023) (-3728 . 149967) (-3729 . 149721) (-3730 . 149634) + (-3731 . 149563) (-3732 . 149390) (-3733 . 149252) (-3734 . 149099) + (-3735 . 148872) (-3736 . 148735) (-3737 . 148517) (-3738 . 148071) + (-3739 . 148001) (-3740 . 147948) (-3741 . 147877) (-3742 . 147631) + (-3743 . 124209) (-3744 . 124138) (-3745 . 123920) (-3746 . 123561) + (-3747 . 123290) (-3748 . 123160) (-3749 . 122995) (-3750 . 122549) + (-3751 . 122479) (-3752 . 122408) (-3753 . 122162) (-3754 . 119410) + (-3755 . 119327) (-3756 . 119154) (-3757 . 118862) (-3758 . 118724) + (-3759 . 118594) (-3760 . 118185) (-3761 . 117739) (-3762 . 117669) + (-3763 . 117598) (-3764 . 117352) (-3765 . 117269) (-3766 . 117096) + (-3767 . 116804) (-3768 . 116663) (-3769 . 116536) (-3770 . 116366) + (-3771 . 115841) (-3772 . 115747) (-3773 . 115666) (-3774 . 115419) + (-3775 . 115294) (-3776 . 115121) (-3777 . 114829) (-3778 . 114351) + (-3779 . 114224) (-3780 . 113139) (-3781 . 113049) (-3782 . 112957) + (-3783 . 112863) (-3784 . 112783) (-3785 . 112536) (-3786 . 112399) + (-3787 . 112226) (-3788 . 112152) (-3789 . 111860) (-3790 . 111737) + (-3791 . 111610) (-3792 . 111487) (-3793 . 111394) (-3794 . 111300) + (-3795 . 111022) (-3796 . 110937) (-3797 . 110690) (-3798 . 110607) + (-3799 . 110335) (-3800 . 110276) (-3801 . 110040) (-3802 . 109913) + (-3803 . 109775) (-3804 . 109558) (-3805 . 109475) (-3806 . 109381) + (-3807 . 109289) (-3808 . 109042) (-3809 . 108968) (-3810 . 101969) + (-3811 . 101862) (** . 98773) (-3813 . 98519) (-3814 . 98388) + (-3815 . 98285) (-3816 . 98027) (-3817 . 97594) (-3818 . 97431) + (-3819 . 97337) (-3820 . 97033) (-3821 . 96915) (-3822 . 96747) + (-3823 . 96497) (-3824 . 96402) (-3825 . 95974) (-3826 . 95724) + (-3827 . 95693) (-3828 . 95593) (-3829 . 95383) (-3830 . 95252) + (-3831 . 95138) (-3832 . 95052) (-3833 . 94991) (-3834 . 94910) + (-3835 . 94051) (-3836 . 93899) (-3837 . 93842) (-3838 . 93744) + (-3839 . 93692) (-3840 . 93529) (-3841 . 93234) (-3842 . 93137) + (-3843 . 92975) (-3844 . 92898) (-3845 . 92740) (-3846 . 92568) + (-3847 . 92482) (-3848 . 92410) (-3849 . 92378) (-3850 . 92276) + (-3851 . 92172) (-3852 . 91661) (-3853 . 91462) (-3854 . 91183) + (-3855 . 91042) (-3856 . 90938) (-3857 . 90808) (-3858 . 90675) + (-3859 . 89459) (-3860 . 89373) (-3861 . 89168) (-3862 . 88819) + (-3863 . 88715) (-3864 . 88562) (-3865 . 88423) (-3866 . 88079) + (-3867 . 87875) (-3868 . 87724) (-3869 . 87665) (-3870 . 87565) + (-3871 . 87483) (-3872 . 87397) (-3873 . 87262) (-3874 . 87072) + (-3875 . 86845) (-3876 . 86760) (-3877 . 86646) (-3878 . 86479) + (-3879 . 86376) (-3880 . 86235) (-3881 . 85853) (-3882 . 85794) + (-3883 . 85694) (-3884 . 85608) (-3885 . 85558) (-3886 . 85459) + (-3887 . 85359) (-3888 . 84987) (-3889 . 84820) (-3890 . 84717) + (-3891 . 84519) (-3892 . 84276) (-3893 . 84170) (-3894 . 83827) + (-3895 . 83753) (-3896 . 83635) (-3897 . 83535) (-3898 . 82984) + (-3899 . 82648) (-3900 . 82565) (-3901 . 82466) (-3902 . 82369) + (-3903 . 82171) (-3904 . 81708) (-3905 . 81602) (-3906 . 81521) + (-3907 . 81452) (-3908 . 81347) (-3909 . 81226) (-3910 . 79443) + (-3911 . 79356) (-3912 . 79238) (-3913 . 79179) (-3914 . 78894) + (-3915 . 78578) (-3916 . 77738) (-3917 . 77660) (-3918 . 77434) + (-3919 . 77291) (-3920 . 77177) (-3921 . 77059) (-3922 . 76976) + (-3923 . 76852) (-3924 . 76510) (-3925 . 76070) (-3926 . 75643) + (-3927 . 75036) (-3928 . 73180) (-3929 . 73073) (-3930 . 72993) + (-3931 . 72850) (-3932 . 72731) (-3933 . 71665) (-3934 . 71547) + (-3935 . 71325) (-3936 . 71179) (-3937 . 71078) (-3938 . 71004) + (-3939 . 70395) (-3940 . 70327) (-3941 . 70165) (-3942 . 69990) + (-3943 . 69913) (-3944 . 69835) (-3945 . 69596) (-3946 . 69456) + (-3947 . 69360) (-3948 . 69300) (-3949 . 69107) (-3950 . 68936) + (-3951 . 68817) (-3952 . 68653) (-3953 . 68554) (-3954 . 67479) + (-3955 . 67411) (-3956 . 67303) (-3957 . 67010) (-3958 . 66893) + (-3959 . 66797) (-3960 . 66570) (-3961 . 66430) (-3962 . 66325) + (-3963 . 65994) (-3964 . 65508) (-3965 . 65381) (-3966 . 65165) + (-3967 . 65002) (-3968 . 64417) (-3969 . 64349) (-3970 . 64213) + (-3971 . 63981) (-3972 . 63875) (-3973 . 63732) (-3974 . 63645) + (-3975 . 63349) (-3976 . 63204) (-3977 . 63040) (-3978 . 62724) + (-3979 . 62656) (-3980 . 62520) (-3981 . 62421) (-3982 . 62294) + (-3983 . 62265) (-3984 . 61969) (-3985 . 61816) (-3986 . 61626) + (-3987 . 61456) (-3988 . 61118) (-3989 . 61050) (-3990 . 60927) + (-3991 . 60848) (-3992 . 60718) (-3993 . 60661) (-3994 . 60351) + (-3995 . 60188) (-3996 . 59977) (-3997 . 59864) (-3998 . 59811) + (-3999 . 59480) (-4000 . 59400) (-4001 . 59301) (-4002 . 59221) + (-4003 . 59142) (-4004 . 59018) (-4005 . 58936) (-4006 . 58619) + (-4007 . 58526) (-4008 . 58411) (-4009 . 58358) (-4010 . 57951) + (-4011 . 57624) (-4012 . 57475) (-4013 . 57260) (-4014 . 57202) + (-4015 . 57078) (-4016 . 57006) (-4017 . 56877) (-4018 . 56681) + (-4019 . 56448) (-4020 . 56319) (-4021 . 56266) (-4022 . 55904) + (-4023 . 55805) (-4024 . 55731) (-4025 . 55625) (-4026 . 55051) + (-4027 . 54974) (-4028 . 54783) (-4029 . 54467) (-4030 . 54367) + (-4031 . 54307) (-4032 . 54177) (-4033 . 53992) (-4034 . 53837) + (-4035 . 53733) (-4036 . 53627) (-4037 . 53550) (-4038 . 53473) + (-4039 . 52985) (-4040 . 51804) (-4041 . 51406) (-4042 . 51353) + (-4043 . 50758) (-4044 . 50226) (-4045 . 49683) (-4046 . 49528) + (-4047 . 49455) (-4048 . 49352) (-4049 . 49320) (-4050 . 47158) + (-4051 . 47074) (-4052 . 46707) (-4053 . 46489) (-4054 . 46310) + (-4055 . 46206) (-4056 . 45895) (-4057 . 45827) (-4058 . 45674) + (-4059 . 45642) (-4060 . 45425) (-4061 . 45145) (-4062 . 45096) + (-4063 . 44901) (-4064 . 44679) (-4065 . 44084) (-4066 . 43871) + (-4067 . 43798) (-4068 . 43642) (-4069 . 43610) (-4070 . 43393) + (-4071 . 43114) (-4072 . 43086) (-4073 . 42963) (-4074 . 42907) + (-4075 . 42685) (-4076 . 42579) (-4077 . 42527) (-4078 . 42462) + (-4079 . 42306) (-4080 . 42274) (-4081 . 42015) (-4082 . 41922) + (-4083 . 41894) (-4084 . 41690) (-4085 . 41468) (-4086 . 41390) + (-4087 . 41335) (-4088 . 41284) (-4089 . 40850) (-4090 . 40757) + (-4091 . 40729) (-4092 . 40506) (-4093 . 40287) (-4094 . 40191) + (-4095 . 40101) (-4096 . 39913) (-4097 . 39832) (-4098 . 39781) + (-4099 . 39227) (-4100 . 39036) (-4101 . 38943) (-4102 . 38915) + (-4103 . 38676) (-4104 . 38632) (-4105 . 38413) (-4106 . 38081) + (-4107 . 37985) (-4108 . 37898) (-4109 . 37731) (-4110 . 37651) + (-4111 . 37207) (-4112 . 37077) (-4113 . 37006) (-4114 . 36912) + (-4115 . 36771) (-4116 . 36700) (-4117 . 36481) (-4118 . 36385) + (-4119 . 36217) (-4120 . 34366) (-4121 . 34199) (-4122 . 34103) + (-4123 . 33898) (-4124 . 33624) (-4125 . 33532) (-4126 . 33420) + (-4127 . 33282) (-4128 . 33201) (-4129 . 33016) (-4130 . 32917) + (-4131 . 32794) (-4132 . 32615) (-4133 . 32453) (-4134 . 32341) + (-4135 . 32202) (-4136 . 32089) (-4137 . 31959) (-4138 . 31205) + (-4139 . 30981) (-4140 . 30913) (-4141 . 30790) (-4142 . 30675) + (-4143 . 30315) (-4144 . 30203) (-4145 . 29950) (-4146 . 29846) + (-4147 . 29713) (-4148 . 29583) (-4149 . 29459) (-4150 . 29410) + (-4151 . 29266) (-4152 . 29162) (-4153 . 29004) (-4154 . 28892) + (-4155 . 28636) (-4156 . 28526) (-4157 . 28390) (-4158 . 28183) + (-4159 . 27975) (-4160 . 27364) (-4161 . 26652) (-4162 . 26482) + (-4163 . 26422) (-4164 . 26310) (-4165 . 26150) (-4166 . 26040) + (-4167 . 25901) (-4168 . 25804) (-4169 . 25680) (-4170 . 25515) + (-4171 . 25420) (-4172 . 24771) (-4173 . 21990) (-4174 . 21906) + (-4175 . 21794) (-4176 . 21640) (-4177 . 21524) (-4178 . 20239) + (-4179 . 20000) (-4180 . 19835) (-4181 . 19740) (-4182 . 18924) + (-4183 . 18890) (-4184 . 18748) (-4185 . 18572) (-4186 . 18331) + (-4187 . 18221) (-4188 . 17896) (-4189 . 17823) (-4190 . 17659) + (-4191 . 17523) (-4192 . 17440) (-4193 . 17406) (-4194 . 17284) + (-4195 . 17206) (-4196 . 16916) (-4197 . 16800) (-4198 . 16419) + (-4199 . 16278) (-4200 . 16139) (-4201 . 16041) (-4202 . 15937) + (-4203 . 15903) (-4204 . 15781) (-4205 . 15535) (-4206 . 15350) + (-4207 . 15212) (-4208 . 15081) (-4209 . 14968) (-4210 . 14917) + (-4211 . 14820) (-4212 . 14722) (-4213 . 14627) (-4214 . 14593) + (-4215 . 14453) (-4216 . 14207) (-4217 . 14149) (-4218 . 13481) + (-4219 . 13332) (-4220 . 13078) (-4221 . 13029) (-4222 . 12928) + (-4223 . 11386) (-4224 . 11291) (-4225 . 11194) (-4226 . 11001) + (-4227 . 10943) (-4228 . 10767) (-4229 . 10229) (-4230 . 9933) + (-4231 . 9863) (-4232 . 9766) (-4233 . 9668) (-4234 . 9594) + (-4235 . 9503) (-4236 . 9387) (-4237 . 9049) (-4238 . 8998) + (-4239 . 8816) (-4240 . 8673) (-4241 . 8377) (-4242 . 8242) + (-4243 . 8127) (-4244 . 8044) (-4245 . 7970) (-4246 . 7913) + (-4247 . 7822) (-4248 . 7561) (-4249 . 7273) (-4250 . 7097) + (-4251 . 6947) (-4252 . 6828) (-4253 . 6757) (-4254 . 6496) + (-4255 . 6361) (-4256 . 6276) (-4257 . 6081) (-4258 . 6026) + (-4259 . 5954) (-4260 . 5899) (-4261 . 5830) (-4262 . 5746) + (-4263 . 5564) (-4264 . 5441) (-4265 . 5360) (-4266 . 5128) + (-4267 . 5027) (-4268 . 4931) (-4269 . 4876) (-4270 . 4819) + (-4271 . 4767) (-4272 . 4565) (-4273 . 4432) (-4274 . 4253) + (-4275 . 4146) (-4276 . 4058) (-4277 . 3812) (-4278 . 3610) + (-4279 . 3501) (-4280 . 3435) (-4281 . 3383) (-4282 . 3221) + (-4283 . 3169) (-4284 . 2990) (-4285 . 2883) (-4286 . 2782) + (-4287 . 2599) (-4288 . 2505) (-4289 . 2072) (-4290 . 2006) + (-4291 . 1954) (-4292 . 1795) (-4293 . 1730) (-4294 . 1675) + (-4295 . 1488) (-4296 . 1378) (-4297 . 1280) (-4298 . 1107) + (-4299 . 1033) (-4300 . 936) (-4301 . 761) (-4302 . 699) (-4303 . 647) + (-4304 . 537) (-4305 . 464) (-4306 . 412) (-4307 . 30))
\ No newline at end of file |